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ABSTRACT OF THE THESIS 

A STUDY OF CAROTENOIDS UPTAKE IN HUMAN SUBJECTS AND THEIR

METABOLITES 

by 

Yin Chen 

Florida International University, 1999 

Miami, Florida 

Professor John T. Landrum, Major Professor 

In this study, a metabolite of lutein was tentatively shown to result from oxidation of 

lutein by performing a reduction reaction. The result is important evidence that supports 

the hypothesis that lutein functions as an antioxidant in the human body. In a long term of 

dietary supplementary study of zeaxanthin in a human subject, the expected increase in 

the serum concentration of the supplement was accompanied by an increase in serum 

concentration of several metabolites. A six-month low dose dietary supplementation with 

lutein in 2 2  human subjects was performed with an expected result in increase of the 

serum concentration lutein and macular pigment optical densities. The mean increase of 

serum lutein concentration and macular pigment optical density in all subjects are 128% 

and 4.5%, respectively. The abundance of zeaxanthin stereoisomers in 18 of the subject’s 

serum was also measured. We noted a significant difference in zeaxanthin stereoisomer 

composition between the serum and the retina. The all-rrarcs-RR-zaexanthin was the 

predominate form presented in human serum. This result is in agreement with previously 

published work.
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I INTRODUCTION

1. Natural Occurrence and Distribution

Carotenoids are one of the main classes of natural pigments. Around 600 naturally 

occurring carotenoids have been isolated and identified. (Straub, 1987) They are related 

to the beautiful colors of many fruits (e.g. pineapples, citrus, orange, tomatoes), 

vegetables (paprika, spinach and many green vegetables) and flowers (e.g. marigold, 

sunflower). The greatest production of carotenoids occurs in the photosynthetic tissues of 

plants, algae and bacteria. (Pfander, 1992) Although carotenoids are commonly 

considered plant pigments, they also occur widely in microorganisms, such as bacteria. 

Many animals are also colored by carotenoids, including birds (flamingo, ibis, canary), 

insects (ladybird) and marine animals (salmon). Significantly, carotenoids are 

synthesized in nature only by plants and microorganisms. Animals are not able to 

synthesize carotenoids. The carotenoids found in animals are derived from dietary 

sources.

2. Structures and Properties

As is well known, the carotenoid pigments belong to the class of polyenes. Most 

naturally occurring carotenoids contain 40 carbon atoms, corresponding to 8  isoprene 

units linked to form a conjugated double bond system. The carbon skeleton of the 

carotenoids is highly branched. The acyclic hydrocarbon lycopene, (Figure 1) can be 

considered as the prototype of these carotenoids. Other carotenoids can be considered to 

be related to lycopene through structural changes and as oxygenated derivatives. For 

example, 6 ,6 -carotene (Figure 1) can be regarded as resulting from cyclization of both



Figure 1. The structures of the most abundant carotenoids 
in human body



end-groups in lycopene. The end-groups of carotenoids can form several different 

structural moieties. Since the two terminal groups of carotenoids may be either identical 

or different, both symmetrical and non-symmetrical carotenoid structures exist. The long, 

conjugated double-bond system also offers many spatial possibilities. The double bonds 

of the natural carotenoids are usually found to have an all-E (trans) geometry because 

this is the most stable geometry. The oxygenated carotenoids can be alcohols, aldehydes, 

ketones, or acids. Some of the most important and characteristic carotenoids are the 

carotenes lycopene, 6,13-carotene, and the xanthophylls zeaxanthin, and lutein. Their 

structures are shown in Figure 1. They are the most abundant carotenoids in the human 

body because of their high concentration in dietary sources. (Khachik, et al., 1992A; 

Barua, et al., 1992; Khachik, et al., 1992B) The function and metabolism of those 

carotenoids in the human body is an area of considerable research activity.

Carotenoids have special properties due to their chemical structures. Because of 

the presence of the polyene chain, the all-trans or all-E carotenoids may undergo 

geometrical isomerization producing cis-or Z-isomers. A large number of geometrical 

isomers is theoretically possible for any carotenoid. (Zechmeister, 1962) In general, there 

are two types of double bonds in the polyene chain of most C40 carotenoids. (see Figure

2) However, the cw-geometry is sufficiently stable only for those double bonds which are 

of the type A where two CH groups are adjacent. This is because there is less hindrance 

from overlapping of hydrogen atoms in these bonds than those disubstituted double bonds 

of type B having a hydrogen atom and a methyl group which sterically interfere. It is not 

surprising that most natural carotenoids occur predominantly in the all-trans (all-E) form 

because its nearly planar structure allows for effective resonance throughout the polyene.



An all-trans (all-E) carotenoid is generally expected to surpass in stability its cA-isomers 

(Z-isomers). In practice, few cw-isomers of carotenoids are encountered. Despite this lack 

of stability, a few examples of naturally abundant cis-isomers are known, for example 

natural Bixin, Figure 3.

Carotenoids are insoluble in water but are soluble in fats or in dipolar solvents. 

They are sensitive to light and heat which can cause E/Z isomerization, and to air and 

peroxides which can cause oxidation. In the presence of acid they can undergo addition 

reactions of electrophiles to the carotenoid.



3. Biological Functions

The most characteristic feature of carotenoids is their observed color, which is 

caused by the conjugated polyene chain. As natural pigments, carotenoids are widely 

used as additives, to provide attractive colors, in manufactured foods. Although synthetic 

carotenoids are now produced on a large scale for food coloration, natural extracts are 

still extensively used.

In photosynthetic systems, carotenoids have the important functions of light- 

harvesting and photo-protection. (Cogdell, 1985) The functions of carotenoids in 

photosynthesis depend on their location and orientation relative to the other components. 

In photosynthetic bacteria, carotenoids act as accessory light-harvesting pigments where 

they function by transferring their excitation energy to bacteriochlorophyll through 

singlet energy transfer. Studies have demonstrated that natural all-trans (E) carotenoids 

are involved in this process. (Koyama et al., 1990) In plants and algae, carotenoids in the 

reaction center are able to protect against photosensitized oxidation by quenching the 

excitation energy of the chlorophyll triplet state and singlet oxygen.

Vitamin A deficiency is a worldwide nutritional problem. Vitamin A deficiency in 

humans can cause blindness and premature death. Vitamin A also has important systemic 

functions in humans related to growth, health maintenance, and development. As a 

micronutrient, the best known function of carotenoids is the provitamin A activity. 

(Zechmeister, 1962) Particularly 6 ,6 -carotene, but also, carotenoids with an unsubstituted 

6 -ionene ring such as a-carotene, y-carotene, and p-cryptoxanthin are sources of vitamin

A. These C40 -  carotenes are converted in the body into vitamin A and vitamin A 

derivatives. The mechanism of the cleavage is not established. Central cleavage by a 15,



15’-dioxygenase enzyme has been proven but isolation of the enzyme has proven illusive. 

Eccentric cleavage of other double bonds also occurs. (Zechmeister, 1962) The complete 

nature of the conversion process is still far from clear.

Several studies have demonstrated that carotenoids act as antioxidants and may 

have an important protective action against several types of cancers. (Khachik, et al., 

1995) This protective effect is not related to the formation of vitamin A. A number of 

studies have shown that consuming large quantities of fruits and vegetables which 

contain major dietary carotenoids such as lycopene or lutein, reduces the risk of cancer. 

Lycopene and lutein have high antioxidant activity. (Khachik, et al., 1995)

The nonprovitamin A carotenoids have other biological functions and activities. 

For example, Bone et al established that the macular pigment may play a protective role 

in the eye. (Bone, et al., 1985; Schalch, 1992) The human macular pigment is a mixture 

of two carotenoids, lutein and zeaxanthin. (Bone, et al., 1985) The most important 

function of these carotenoids is to provide the central retina with protection against 

damaging photochemical reactions initiated by absorption of blue light. Blue light has a 

short wavelength and it can induce the formation of reactive free radicals, triplet excited 

states, superoxide, and singlet oxygen within the retina. The macular pigments harmlessly 

absorbs blue light reducing the potential for damage to the delicate retinal tissues. In a 

recent study, Landrum et al found that the serum levels of lutein and the level of lutein in 

the macula of the human eye are both increased by long-term dietary supplementation. 

(Landrum, et al., 1997)

Considerable evidence supports the hypothesis that light-promoted damage to the 

retina is one of several possible factors contributing to the development of Age -  Related



Macular Degeneration (AMD), which occurs in about 20% of the population above the 

age of 65. (Landrum, et al., 1997; Landrum, et al., 1995)

4. Techniques used in the carotenoid analysis.

In order to accurately identify individual carotenoids, a number of techniques are 

required. Because of their long, conjugated double bond system, the carotenoids exhibit a 

strong absorption in the visible and UV region. The extinction coefficients of many 

carotenoids have been published and are widely used. (Davies, 1976; De Ritter, et al., 

1981; Britton, 1985; and Kohler, 1995) Several important facts can be obtained from the 

spectrum.

1) The wavelength of maximum absorption provides structural information. As the 

length of the chromophore increases, the energy required to promote one of the 71-  

bonding electrons to the excited state is reduced and the absorption occurs at a 

longer wavelength.

2) The intensity of absorption is related to the structure. The optical density or 

absorbance is a measure of the concentration of the carotenoids. The formation of 

Z or c/s-isomers will cause a hypsochromic shift in ^ max and a lowered value of 

the extinction coefficient results.

3) Most carotenoid spectra are characterized by three overlapping peaks. The degree 

of overlap provides important information for identification. It is useful to 

calculate the value of %III/II for describing fine structure. (Ill is the peak height 

of the longest-wavelength absorption band/ II is that of the middle absorption 

band) (Figure 4 ).



Figure 4. Comparison of the absorption spectra of geometrical 
isomers of p, (3-carotene in hexane

4) The UV spectrum also provides some information to identify E/Z or cis- 

trans isomers. In addition to the hypsochromic shift in the wavelength of 

maximum absorption, Z or ds-isom ers exhibit a reduction in vibrational fine 

structure and the appearance of a cis peak at a position about 142 nm below the 

wavelength of maximum absorption. Usually the intensity of the dx-band is the 

greatest when the cis double bond is closest to the center of the molecule. 

Therefore, a 15-cw isomer shows a well-developed cis-band. (Figure 4) For 

conclusive identification, NMR is required.

Because of the involvement of carotenoids in many biochemical and biological 

processes, numerous methods of isolation and detection of carotenoids have been 

developed. HPLC in combination with a number of different detectors is the current



method of choice. (Handelman, et al., 1992; Khachik, et al., 1992; and Craft, 1992)) 

HPLC with UV detection is the most frequently used and this method gives excellent 

separation in a short time and is highly sensitive. Alternatively, HPLC can be coupled 

with a multi-wavelength photodiode array detector for carotenoids analysis. (De 

Leenheer, et al., 1992; and Sowell, et al., 1988) In comparision to the UV detector, 

the photodiode array gives more information because complete spectra can be 

obtained which can be compared with those of standards. However, photodiode 

arrays are somewhat less sensitive than the conventional UV detectors and are more 

expensive. Identifications are often made by simply comparing retention times of 

unknown peaks with those of reference materials. However, only a limited number of 

synthetic carotenoid standards are readily available. It is unwise to attempt 

identifications based solely on retention time and UV spectrum since many 

carotenoids have very similar structures. Therefore, HPLC-MS coupling is another 

useful method. The specificity of mass spectrometric detection for identification of 

carotenoids greatly improves the identification process, (van Breemen, 1996; and van 

Breemen, et al., 1993)

The ds-isomers of cartenoids are generally poorly separated from frans-isomers. 

These isomers have sufficiently similar absorption coefficients such that the exact 

structure is often impossible to determine by UV techniques. HPLC-MS is also of 

limited usefulness for identification cis/trans isomers, all of which have the same 

mass, and yield identical fragmentation patterns. The method of choice for structural 

elucidation of cis/trans isomers is !H NMR spectroscopy. (Strohschein, et al., 1997) 

Large quantities (typically several pg) are required for NMR. For this reason NMR is



of limited value in practice due to the low concentrations of the carotenoids found in 

plants and other biological samples.

5. Outline of experiments

In order to address some of the problems that are of interest to the scientists 

working in the carotenoid field, my research work focuses on the following four 

topics:

Part 1 Study of Metabolites of Carotenoids 

Part 2 Zeaxanthin Supplementation Study

Part 3 A Six months study of Lutein Uptake in 22 Human Subjects 

Part 4 Zeaxanthin Stereoisomers in Human Serum Samples

Each part will contain an overview, experiment procedure, results and discussion, 

and conclusions.



II PA R T I STUDY OF THE METABOLITES OF CAROTENOIDS

1. Overview

The vitamin A activity of provitamin A carotenoids is well established. (Straub, 

1987) However, the nutritional and metabolic benefits of non-provitamin A carotenoids 

are still insufficiently investigated. Recently, a number of epidemiological studies have 

demonstrated that a high consumption of fruits and vegetables may reduce the risk of 

cancer. (Khachik, et a l,  1992; Khachik, et a l, 1995; Khachik, et a l,  1997; Khachik, et 

a l, 1997) It was also reported that the chances of several types of cancer are very low in 

regions where consumption of several types of fruits and vegetables on part of the normal 

diet. (Khachik, et a l,  1995) It is known that lutein, which is found in human serum, is a 

non-provitamin A carotenoid. (Khachik, et a l, 1992; Barua, et a l,  1992; Khachik, et a l, 

1992) Although the carotenoids found in commonly consumed fruits and vegetables have 

been identified, not all of them are present in human blood. It has been reported that at 

least 21 carotenoids are found in blood. Seven of these are reported to be metabolites. 

(Khachik, et a l,  1995) Since the concentration levels of these metabolites are very low, 

their identification is very difficult. Khachik et al reported that oxidation products of 

lutein, zeaxanthin, and lycopene are present in human serum. (Khachik, et a l, 1995) A 

possible metabolic pathway for the oxidation of lutein in humans was proposed. A 

combination of several reactions are required to account for the formation of these lutein 

metabolites. An equilibrium was suggested to exist between (3R,3’R,6’R)-lutein and 

(3R,3’R)-zeaxanthin and the intermediate (3R,3’S,6’R)-lutein, (3’-epilutein), as shown in



Figure 5. (Khachick, et al., 1995) Allylic oxidation of natural lutein at the allylic 3 ’ 

hydroxyl group and may result in the formation of oxolutein. It was suggested that the 

double bond migration followed by allylic oxidation of oxoluteins would result in the 

formation of mono- and di-ketocarotenoids as shown in Figure 6. (Khachick, et al., 1995) 

The proposed mechanism by which carotenoids function in cancer prevention is based on 

their antioxidant capability. They are able to quench singlet oxygen and react with other 

oxidizing species, inhibit lipid peroxidation, and thereby prevent promotion and 

replication in the neoplastic cells. Lutein is a proposed antioxidant and its oxidation

products should be found in serum.

Figure 5. Equilibrium between lutein, 3’-Epilutein, and zeaxanthin in human 
serum (Khachik, et al. 1995)



Figure 6. Formation of diketocarotenoids from oxoluteins (Khachik, et al.
1995)

In order to identify the possible oxidation products of the carotenoids, a powerful 

analytical technique, such as LC-MS is generally used. (Khachik et al., 1997) Although 

HPLC coupled with a UV detector cannot give exact structural information, it is still the 

most common method for carotenoid analysis due to it high sensitivity. This method has 

been used in our group for the analysis of carotenoids extracted from human serum. 

Figure 7 shows a typical chromatogram of the carotenoids found in human serum 

obtained using a reversed-phase HPLC with a UV detector. Several peaks can be 

identified with a high degree of confidence based upon their retention times. The most 

abundant peak, which elutes at 10.958 min, is the lutein peak. Peaks at retention time

11.758, 19.575, 27.975, 77.0 and 84.90 min are identified as zeaxanthin, p-cryptoxanthin,



a-carotene and p-carotene, respectively. However, several peaks are found to be present 

for which the identity is not known. Two of them, referred to as A and B, are constantly 

present in the chromatograms of carotenoids extracted from human serum. These two 

peaks have been found to be lutein-related. They are suspected to be oxidation products 

of lutein in human serum based on the following observations. First, it has been found 

that the area of these two peaks increased with increases in the lutein peak which 

occurred in a long-term lutein supplementation study. (Landrum, et al., 1997) Second, 

based on reports in the literature (Khachik et al., 1995), the reported oxidation products 

of lutein should elute at earlier times than the hydroxycarotenoids.

The purpose of this part of this work is to further characterize these metabolites of 

lutein in human serum. The results of this study will be helpful in understanding the 

function of lutein as an antioxidant in human blood. The identification of the metabolites 

of lutein can also helpful in determination of the total concentration of lutein in serum.

2. Experimental

(1) Reagents and materials

Lutein and zeaxanthin were extracted from marigold flowers and guji berry, 

respectively. Lutein and zeaxanthin standards were prepared at a concentration ratio of 

1:1. The concentrations of lutein and zeaxanthin were determined at wavelength 451 nm 

using an UV spectrometer. It is known that the molar absorption coefficient of lutein and 

zeaxanthin are 144800 and 140900 L/(mol, cm) in ethanol.

HPLC grade of methanol, acetonitrile, triethylamine and hexane were purchased 

from Fisher. The reduction reagent sodium borohydride (98%) was purchased from



Aldrich Chemical Company. (Milwaukee WI 53233 USA) The nitrogen gas was 

purchased from Air Products and Chemical, Inc.

The blood samples were drawn from a healthy, female volunteer.

(2) Apparatus

Reversed-phase HPLC system (1) is a LDC/Milton Roy solvent delivery system 

equipped with a 50 pi injection loop and it was coupled with a SM4000 UV-visible 

detector set at 451 nm. The data was stored and processed by a Peak Simple computing 

system.

The reversed-phase HPLC system (2) is a LDC/Milton Roy solvent delivery 

system equipped with a 250 pi injection loop and it was coupled with a Shimadzu SPD- 

M 6 A photodiode array UV/Vis detector. The wavelength scan range is set at 195-600 

nm. The data was stored and processed in a Shimadzu supplied software.

A Centrific Model 228 Centrifuge was used which was purchased from Fisher. A 

Fisher brand K-550-G Vortex was also used.

(3) Procedures

(i) Reduction of serum extract with NaBH4

Serum extraction: A pair of frozen serum samples (serum samples were obtained from a 

blood sample drawn from the same person on the same day) were chosen. They were left 

at room temperature for 30 min to allow them to defrost and then homogenized by 

shaking the sample vials gently several times to insure homogeneity of the sample. A 2 

ml aliquot of serum was transferred into a 10 ml centrifuge tube by a pipette. The serum 

proteins were precipitated by the addition of 2 ml of ethanol/deionized water (50:50 

V:V). The carotenoids were extracted with three 4 ml portions of hexane, and followed



by a 1 min vortex and 5 min centrifugation. The hexane layer was removed by pipette 

into a 2  ml high-density polypropylene vial and evaporated to dryness under a gentle 

stream of nitrogen. One of the extracted carotenoid samples was treated with NaBH4  

following the reduction reaction procedures. Another extract was analyzed directly 

without treatment with NaBH4  for the purpose of the comparison. All the procedures 

were preformed carefully in a dim light condition.

Reduction reaction: About 1 g NaBH4  in 10 ml MeOH solution was prepared in a round 

bottom flask. 1 0 0  pi of this solution was transferred to a high-density polypropylene vial 

that contained the extracted carotenoids. The reduction reaction occurs rapidly and after a 

10 min period, 1 ml of deionized water was added to decompose the excess NaBH4. The 

solution obtained was carefully transferred into a 10 ml centrifuge tube with pipette. The 

reduced carotenoids were extracted with three portions of 3 ml hexane and followed by 1 

min vortex and 5 min centrifugation. The hexane layer was removed and dried under a 

stream of nitrogen.

HPLC analysis'. Carotenoids extracted from serum with or without reduction by NaBH4  

were analyzed by the reversed-phase HPLC system (1) equipped with an SM4000 UV- 

visible detector set at 451 nm. The data was stored and processed using the Peak Simple 

data acquisition system. The column used was a 250 x 4.6 mm Ultracarb C18 3 pm ODS 

(Phenomenex™) which was protected with a C l 8  Phenomenex™ guard cartridge. The 

mobile phase consisted of an isocratic mixture of acetonitrile 85%, MeOH 15% with 1 ml 

triethylamine per liter of mobile phase added to inhibit degradation of the carotenoids on 

column. The flow rate was 1.0 ml/min. The injection volume was 20 pi. The 

chromatograms of pre- and post- reduction reaction were shown in Figure 7 and Figure 8 .



(ii) Reduction of separated compounds A and B with NaBH4

Carotenoids were extracted from 2 ml serum according to the procedure described 

above. The carotenoid extracts were analyzed using the reversed phase HPLC system (1). 

The separated compounds A and B were carefully collected into two 2 ml vials. After a 

number of injections, the collected compounds A and B were dried under a stream of 

nitrogen gas. Since the retention times of compounds A and B are very close, further 

purification was carried out by adding 2 0  pi of ethanol to the dried samples which were 

re-separated using the same HPLC system. Chromatograms obtained for the re-injection 

analysis of compounds A and B are shown in Figure 9 and 10, respectively. It can be seen 

that there is a small shoulder (Figure 9) resulting from a trace of compound B in the 

purified sample of compound A. Similarly, the small peak (Figure 10) eluting prior to 

compound B is a trace of compound A and the small shoulder with a longer elution time 

is lutein. Compounds A and B were separately collected into 2 ml vials, then dried with a 

stream of nitrogen gas. Reduction reactions were carried out for both compound A and B 

following the procedure described above. After reduction, both samples were analyzed by 

reversed-phase HPLC system as above and the products of the reactions were collected 

and dried. Typical chromatograms obtained for the reduced A and B are shown in Figure 

11 and 12. These reduced compounds were also co-injected with the lutein/zeaxanthin 

(1:1) standard and the results are shown in Figure 13, 14 and 15.

(iii) Comparisons of UV absorption Spectrum

The extracted carotenoids from 2 ml serum were analyzed by the reversed-phase 

HPLC system (2) with a 250ml injection loop and followed by a Shimadzu SPD-M6 A 

photodiode array UV/Vis detector. In order to obtain a good quality spectrum, a 250x10.0



mm Ultracarb 3 pm ODS column was used. The carotenoids extracted from 2 ml serum 

can be totally introduced to the column in one injection using this setup. The flow rate 

was 4.0 ml/min. and a typical chromatogram for the carotenoid analysis is shown in 

Figure 16. Compounds A and B are well separated and were collected separately. The 

UV absorption spectrum of lutein, compound A and B were obtained and are shown as in 

Figures 17, 18, and 19. The collected compounds A and B were subjected to reduction 

following the previously described procedures. After reaction, the products were 

analyzed using the same HPLC/UV/Vis system. The absorption spectra were recorded 

over the wavelength range of 195-600 nm.

3. Results and Discussion

As mentioned before, peaks A and B were two unknown components. They eluted 

before lutein on a reversed-phase HPLC. (Figure 7) Both compounds A and B were 

thought to be the oxidative metabolites of the hydroxy-carotenoids. One or two carbonyl 

groups may be present on the ionene end-rings. Lutein is the most abundant hydroxy- 

carotenoid found in human blood. It has been suggested that lutein functions as an 

antioxidant. If this is true, mono- or di-keto forms of lutein are expected to be found in 

serum. Figures 5 and 6  show several of the possible mono- or di-keto oxidative 

metabolites of lutein. The suspected carbonyl on the compounds A and B, if present, 

should be reduced by NaBH4  to produce a hydroxyl group. The structures of reduced A 

and B might be expected to be that of lutein or lutein stereoisomers. In this study, three 

experiments were designed to test this hypothesis.

In the experiment Reduction of serum extract with NaBH4, the serum extract 

was directly reduced with NaBH4  and the products were reanalyzed and compared with



the serum extract obtained prior to reduction. It was found that the peak height of 

compounds A and B decreased significantly after the reduction reaction. (Figure 8) 

However, no significant increase in the peak area of lutein can be observed because of the 

low concentration of A and B in comparison to the concentration of lutein in the extract. 

The changes in peak area ratios, which result from reduction of A and B, are shown in 

Table. 1. Lutein is stable toward the treatment by NaBH4. The increases of peak ratios for 

both A and B indicate that both compounds react with NaBH4. The result of this 

experiment is consistent with the presence of a carbonyl group in both compounds A and

B.

Before Reduction After Reduction Changes in Ratio

Lutein peak area/Peak A area 10.30 54.17 43.87

Lutein peak area/Peak B area 12.01 97.05 85.04

Table 1. Changes in peak ratio of Lutein peak /A and Lutein peak /B

In order to further characterize these two unknown compounds, Reduction of the 

separated compounds A and B with NaBH4 was conducted. Because the retention 

times of lutein and these two compounds are very close, separation and collection was 

done twice in order to obtain pure samples. (Figures 9 and 10) Reduction reactions were 

performed for both separated A and B. For compound A, two peaks, Ai and A2 , were 

observed on the HPLC chromatogram after reduction at retention times of 9.116 and 

10.366 minutes, respectively. (Figure 11) An additional peak of variable height was



observed at about 19 min. Since peak Ai has the same retention time as Peak A, its 

identity was consistent with some unreacted compound A. Peak A2  was collected and co­

injected with a lutein/zeaxanthin standard (1:1). There was not an observable increase in 

the peak area of the lutein peak. (Figure 14) However, a small peak was observed at 

retention times of 10.483min, which is the time of B elution in the chromatogram, where 

no peak can be found in the chromatogram of the lutein/zeaxanthin ( 1 : 1 ) standard. 

(Figure 13)

There are three peaks labeled Bi, B2 , B3 and an unknown peak that can be 

observed in the chromatogram obtained by reduction of product B at retention times of 

9.725, 10.316, 11.075 and 20.658 min, respectively (Figure 12). Bi was considered as the 

impurity of compound A and B2  was unreacted compound B. Peak B3 has same retention 

time as lutein, peak B3 was collected and co-injected to the lutein/zeaxanthin ( 1 : 1 ) 

standard and a significant increase in peak high of the lutein peak was observed. (Figure 

15) These results are consistent with the identity of component B as an oxidative product 

of lutein possessing a carbonyl group. After reduction reaction, B was in part reduced to 

form lutein.

In order to prove the result obtained from the above experiment, comparisons of 

UV absorption spectra were performed. Figure 16 to Figure 27 show the results. The 

spectrum of peak B3 is identical to the UV absorption spectrum of an authentic lutein 

standard. (Figure 17 and Figure 22) Spectra of A and B are shown in Figure 18 and 

Figure 19. They are lutein-like, but the Xmax of A is 5 nm shorter than that of lutein. The 

keto groups in the oxidative products of lutein are expected to be on C3’ of the s-end 

ring. These carbonyls are not expected to be conjugated with the extended polyene



system. Therefore, reduction of these keto groups has little or no effect on the absorption 

spectra of the compounds. In other words, they should have similar spectra to lutein. Co­

injection was also performed in this part of the experiment. The results agree with those 

obtained above. Peak B3 caused a significant increase in lutein peak. (Figure 25) The 

same result was obtained from the co-injection of reduced compound A with the 

lutein/zeaxanthin (1:1) standard. (Figure 23) There is only a marginal increase in peak 

area observed, (Figure 24) but this may be only because the amount of material is small.

An unexpected result was obtained in this study. An unknown peak was found in 

both chromatograms of reduced compounds A and B. (Figure 11, 12, 20 and 21) The 

retention time of this unknown is about 19-20 min which is near the time of |3- 

cryptoxanthin elution in the chromatogram of serum analysis. (Figure 7) A side reaction 

might occur during the reduction process. The spectrum of this unknown peak from both 

reduced compounds A and B was also obtained and is shown in Figures 26 and 27. These 

spectra are both similar. Since an authentic standard of p-cryptoxanthin is not available, 

the further comparison was not pursued. It appears to be a single compound produced 

from both A and B.

4. Conclusion

The UV absorption spectra of authentic lutein, compound A and B are shown in 

Figure 17, 18 and 19. The UV absorption spectrum of compound B is identical as that of 

authentic lutein. Compound A has unique spectroscopic with Xmax 5 nm shorter than that 

of the lutein. The two unknown compounds A and B both react with NaBIU. They appear 

to be oxidized carotenoids containing one or more carbonyl function groups. B is reduced



to form lutein. Compound B might be either the mono- or diketo- form of lutein. 

Characterization of compound A has proven difficult.

A comparison experiment, oxidization of lutein, would be very helpful for further 

identification and this project is currently in progress. The structures of lutein oxidation 

products can be identified by NMR since sufficient quantities can be readily prepared. 

LC-MS will also be essential for final identification of these compounds. This technique 

was not available during this study but is also currently under way.
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Figure 9. Purified lutein metabolite A
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Figure 10. Purified lutein metabolite B
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Figure 13. HPLC chromatogram of lutein/zeaxanthin (1:1) standard
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Figure 17. UV/Vis spectrum of authentic lutein, Xmax=446 nm
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Figure 18. UV/Vis spectrum of lutein metabolite A, /.max=441 nm
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Figure 19. UV/Vis Spectrum of lutein metabolite B, A.max=446 nm
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Figure 20. HPLC chromatogram of reduced lutein metabolite A on 
a 10.00 mm C18 column
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Figure 21. HPLC chromatogram of lutein metabolite B on 
a 10.00 mm C l8 column
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Figure 22. UV/Vis spectrum of B3 A.max=450 nm
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Figure 24. HPLC chromatogram of co-injection A2 with 
lutein/zeaxanthin (1:1) standard on a 10.00 mm 
C l8 column



lutein/zeaxanthin (1:1) standard on a 10.00 mm 
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Figure 26. UV/Vis spectrum of unknown peak from the chromatogram 
of reduced lutein metabolite A, kmax=452 nm
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Figure 27. UV/Vis spectrum of unknown peak from the chromatogram 
of reduced lutein metabolite B, >umax=456 nm



II PART 2 ZEAXANTHIN SUPPLEMENTATION STUDY

1. Overview

Zeaxanthin is a yellow pigment that is widespread in nature. It occurs abundantly 

in maize, certain algae and bacteria. Zeaxanthin is 6 , 6-carotene-3, 3’-diol (Figure 1). It 

is found in human serum. Although it is not the most abundant carotenoid in serum, it is a 

main component of macular pigment in the inner macula where the concentration of 

zeaxanthin is about twice that of lutein. (Bone, et al., 1997) The macular pigment has a 

protective function for the central retina. It has been reported that a significant increase in 

macular pigment optical density occurs when dietary supplements increase serum 

xanthophyll levels. (Landrum, et al., 1997) In this study, we have found the relationship 

of the serum response to dietary supplementation of zeaxanthin.

Among the number of methods that have been employed to investigate the 

absorption of carotenoids in humans, the most common one is the chronic dosing of a 

carotenoid and the measurement of the blood response. (Bowen, et al., 1993) The 

carotenoid may be in the form of a purified compound or ingested as a food. Healthy 

human subjects are given quantitated amounts of carotenoids, and changes in serum 

concentrations at various time intervals are determined. This method does not provide the 

absolute quantity or percent of the carotenoid absorbed. Some other methods of choice 

are metabolic balance techniques using isotopically labeled carotenoids. The metabolic 

balance technique involves the estimation of total carotenoid intake for a period of days 

called the balance period and the collection and analysis of all fecal output for 

carotenoids for the same time period. Output is subtracted from input and divided by the



number of days of the balance period to obtain the quantity of carotenoid absorbed in the 

body per day. These methods are complicated. They do provide more definitive data for 

the characterization and quantitation of carotenoid absorption in human. The method of 

chronic dosing and measurement of serum response has been employed in this 

experiment. The concentrations of carotenoids in the serum were measured using 

reversed-phase HPLC.

2. Experimental

(1) Reagents and materials

HPLC grade Methanol, Acetonitrile, Hexane and Ethanol were purchased from 

Fisher. Pure lutein was obtained from Kemin Foods, Inc.

(2) Apparatus

Reversed-phase HPLC system (1) is a Waters 2690 separation module coupled 

with a Waters 486 tunable absorbance UV/Vis detector.

Reversed-phase HPLC system (2) is an LDC Analytical Consta Metric 3200 

solvent delivery system equipped with a 250 pi injection loop and coupled with an 

LDC/Milton Roy UV detector.

(3) Procedures

One healthy, male, non-smoker volunteer supplemented his diet with 30 mg of 

zeaxanthin per day for 120 days. Blood samples were drawn every two days in the 

beginning of the supplementation period and also at the end of that period. At other 

times, blood samples were drawn weekly. The concentration of zeaxanthin in the serum 

before supplementation was also measured as a baseline level. All serum samples were 

analyzed by reversed-phase HPLC. An internal standard, mono-hexyl lutein (MHL), was



used to quantify carotenoids. The concentrations of zeaxanthin and other carotenoids 

were determined from the peak area of the internal standard since the quantity of the 

internal standard is known. It has been previously shown that both the internal standard 

and lutein have the same absorption coefficient. (Sprague, 1997) The relative differences 

in absorption were determined by comparing the serum carotenoids concentration at 

various post-ingestion intervals with the baseline values.

(i) Sample preparation

Blood was drawn into a 5 ml Vacutainer serum-separator tube by venipuncture. 

After allowing at least 30 min for coagulation, the blood samples were centrifuged for 10 

min and the serum portion was removed by a disposable pipette and placed into high- 

density polypropylene 2 ml vials which are fitted with a rubber O-ring seal. Serum was 

filled to the capacity to minimize any potential oxidation by air. Samples were analyzed 

immediately or stored at -20°C in the dark to minimize degradation.

(ii) Serum extraction

A 200 pi aliquot of serum was transferred into a centrifuge tube by a pipette. 20 

pi of mono-hexyl lutein was added to this portion of serum as an internal standard. The 

concentration of the internal standard was 56.81 ng per 20 pi. The serum proteins were 

precipitated by the addition of 2 ml of ethanol/deionized water (50:50, V:V). The 

carotenoids were extracted with three 2  ml portions of hexane, and followed by a 1 min 

vortex and 5 min centrifugation. The hexane layer was removed by pipette into a high- 

density polypropylene vial and evaporated to dryness under a stream of nitrogen. All the 

procedures were preformed carefully in a dim light condition. The extracted carotenoid 

sample was dissolved in 50 pi of ethanol for HPLC analysis, or the dried extracted



carotenoid sample was stored in the dark -20°C prior to HPLC analysis. To minimize 

experimental errors, two replicate extracted carotenoid samples were prepared from each 

serum sample and two analyses were made for each by injecting two aliquots from each 

extraction. The average concentrations of the carotenoids were calculated from the four 

injections.

(iii) Preparation of MHL internal standard

The internal standard was chosen because of its chemical similarity to that of the 

analyte. It was previously shown that the internal standard and the analytes would have 

same percent recovery in the process of extraction and would behave similarly on the 

HPLC column. Both assumptions have been proved in a previous study in our group. 

Mono-hexyl lutein (MHL) was chosen as an internal standard for quantitative analysis of 

extracted carotenoids from serum in this experiment. It was synthesized as follows:

An acidified hexanol solution was prepared by adding 10 pi concentrated HC1 to 

10 ml hexanol. About lmg of dry lutein (Kemin Foods, Inc.) was dissolved in this 

acidified alcohol solution. The mixture was stored at 4 °C for at least 24 hrs to allow the 

reaction to reach completion. The structure of MHL is shown in Figure 28. Fifty ml of 

saturated NaHCC>3 solution was transferred to the mixture to quench the reaction. The 

carotenoids were extracted with equal portions of CH2 CI2 . The CH2 CI2  was evaporated 

by a rotary evaporator. The dried MHL was dissolved in ethanol and purified by a 

reversed-phase HPLC system (2)(LDC/Milton Roy solvent delivery system) which 

coupled with an SM4000 UV-Visible detector set at 451 nm. A manual injector with a 

250 pi injection loop was installed in this HPLC system. The column used was a 250x4.6 

mm Ultracarb C18 3pm ODS (Phenomenex™). The flow rate was 1.0 ml/min. The



mobile phase used was 85% acetonitrile, 15% methanol, with 0.1% (V:V) of 

triethylamine added. The MHL peak was collected at a retention time of 40 min and dried 

under a stream of nitrogen gas. The dried M HL was re-dissolved in ethanol. The 

concentration of M HL was determined by the absorption at a wavelength of 451 nm. The 

absorption coefficient of M HL is considered the same as lutein which is 250 Lg 'c m 1.

(iv) Reversed-phase HPLC conditions

Analysis of all extracted carotenoids from serum samples were conducted on a 

Waters 2690 separation module HPLC with a Waters 486 UV tunable detector set at 451 

nm. The data was stored and processed on the Millenium integration software. The 

column used was a 250 x 4.6 mm C l8 column packed with 3 pm Ultracarb ODS 

(Phenomenex, Torrance, CA, U.S.A) and was protected with a C18 Phenomenex™ guard 

cartridge. Separation was achieved with a mobile phase of 85% acetonitrile and 15% 

methaol, with 0.1% (V/V) of triethylamine added to inhibit degradation of carotenoids 

during elution. The flow rate was 1.0 ml/ min.

3. Results and Discussion

The concentration of the carotenoids in serum are reported in pg/ml. The 

calculation is based on Beer’s law



A = ebC (1)

W here A is absorption, e is molar extinction coefficient, b is the pathlength of the cell,

and C is the concentration of the analyte. The £ value is the same for all analytes as well

as the internal standard MHL. Therefore,

C a =  ( A a * C m h l ) / A m h l  ( 2 )

W here CA is the concentration of the carotenoids. C m h l  is the concentration of the 

internal standard, MHL. Aa is the peak area of the carotenoid obtained from the 

chromatogram. A Mh l  is the peak area of the internal standard, MHL.

The concentration of zeaxanthin in the serum is plotted as a function of time as 

shown in Figure 29. It represents the average concentration of zeaxanthin of four 

replicate analyses vs the day of the supplementation. The first day of the supplementation 

is counted as zero.

Figure 29. Plots of serum zeaxanthin concentration as a function of time, (a) 
represents the best fit during the supplementation, (b) represents the 
best fit after discontinue the supplementation.



It can be seen that there is a significant increase of serum zeaxanthin during the 

first 40 days of supplementation. A plateau of about 0.30 pg/ml was maintained between 

the day 40-120 supplementation period. It was also found that the concentration dropped 

rapidly to the baseline level once the supplementation was discontinued. Although small 

changes were found in the concentration of zeaxanthin in serum due to the dietary

sources, the effect of diet on this experiment is small because of the high dosage (30 mg

per day) of zeaxanthin taken by the subject.

A baseline zeaxanthin concentration C0  was calculated from the average 

zeaxanthin concentration of pre-supplement analyses. The uptake and decay of 

zeaxanthin concentration in serum as a function of time were fit using equation (3 ) and

(4), respectively. Those two equations have been also used to fit the experiment data in a 

previous long-term lutein supplementation study.

C = C0  + a ( 1 -  e'kl) (3)

C = C0  + b e -k < ‘" V( (4)

Where C is the experimentally determined concentration, t is the time, tf is equal 

to 1 2 0  days which is the first day when the subject discontinued the supplement, a, b, k, 

and k ’ are parameters varied to obtain the best fit. These fit parameters are found in table 

2.

PARAMETERS ZEAXANTHIN METABOLITE A METABOLITE B METABOLITE C
a 0.269 0.0038 0.0062 0.078
b 0.029 0.052 0 . 1 1

k 0.071 0.067 0.054 0.041
k ’ 0.0566 0.073 0.053

Table 2. parameters for uptake and decay of zeaxanthin supplement and metabolite serum 
concentrations.



During the supplementation, the metabolites of zeaxanthin were also determined. 

Their concentrations were calculated using the same method as that of zeaxanthin. Figure 

30 (a) and (b) show the chromatograms of serum extract before and after 40 days 

supplementation.

extract prior supplem entation (a) HPLC chrom atogram  
of carotenoids from serum extract after 40 days 
supplem entation with 30 mg/day zeaxanthin

Peaks A, B and C represent the xanthophyll metabolites that are observed in 

serum. Compound C has been characterized as a c/s-isomer of zeaxanthin. It was found 

that both peak B and C increased significantly after supplementation with zeaxanthin. 

Figures 31, 32 and 33 represent the average concentrations of these metabolites vs the 

days of the supplementation. The results show that metabolites B and C increase rapidly 

from the baseline levels of 0.03, and 0.008 pg/ml to a plateau that is about three and ten 

times higher, respectively, than the baseline level prior to the first 40 days



supplementation. The concentrations of both B and C dropped to the baseline level once 

the supplementation was discontinued. The average concentration of metabolite A did not 

change during zeaxanthin supplementation. It maintains an average concentration of

0.016 pg/ml. This result supports those obtained previously that suggest A to be a lutein 

metabolite. The changes in the average concentrations of zeaxanthin metabolites A , B 

and C are listed in table 3.

Average concentration (Standard Deviation) Baseline Level Plateau Level

Zeaxanthin 0.055 (±0.007) 0.324 (±0.053)

Metabolite A 0.016 (±0.003) 0.016 (±0 .0 0 2 )

Metabolite B 0.03 (±0.003) 0.08 (±0.007)

Metabolite C 0.008 (±0.0003) 0.077 (±0.006)

Table 3. Serum average concentration and standard deviation of zeaxanthin and 
the metabolites A, B and C

The calculated half-lives for the uptake and decay of zeaxanthin and metabolites, 

and the half-lives of lutein obtained from a previous experiment are listed in table 4.

HALF-LIVES LUTEIN ZEAXANTHIN METABOLITE B METABOLITE C

ti/ 2  uptake 9.6 9.76 12.83 16.90

1 1/2 decay 8.13 12.24 9.49 13.08

Table 4. The calculated half-lives for the uptake and decay of the concentrations of lutein, 
zeaxanthin and metabolites B and C.



4. Conclusion

The concentration of zeaxanthin as well as the metabolites B and C in 

human serum is increased by zeaxanthin supplementation during the first 40 days of 

supplementation. Plateaus maintained concentrations of 0.32, 0.079, and 0.077 pg/ml 

between days 40 -  120 of supplementation for zeaxanthin and metabolites B and C, 

respectively. The concentrations dropped to the baseline level once the supplement was 

discontinued. No correlation was found for metabolite A during zeaxanthin 

supplementation.

of time.

Figure 32. The plot of serum concentration of metabolite B as a function 
of time.



Figure 33. The plot of serum concentration of metabolite C as a function 
of time.



I ll  PART 3 A SIX MONTH STUDY OF LUTEIN UPTAKE IN 22

HUMAN SUBJECTS

1. Overview

Lutein, as a micronutrient, has been found in many fruits and vegetables that we 

consume. It is also one of the most abundant carotenoids found in the human body. It acts 

as an antioxidant. The structure of lutein is shown in Figure 1.

As an antioxidant nutrient, lutein is normally accumulated in the macula region of 

the human retina. The macula is the anatomical region of the retina that is responsible for 

central vision. It is composed of several functionally and structurally distinct layers 

overlaying and supporting the cone and rod photoreceptors. Lutein and zeaxanthin are the 

major constituents of human macular pigment. (Bone, et al., 1985). Macular lutein is 

believed to function as a blue light filter by absorption of blue light. The macular 

carotenoids can reduce the blue light intensity reaching photoreceptors on average by 

about 40 percent. (Landrum, et al., 1996) Blue light can cause the formation of singlet 

oxygen, triplet excited state species, and free radicals. Lutein may act as an active 

quencher of singlet oxygen, and excited state triplets. It can react with and deactivate 

radical species preventing chain propagation. These actions may all be functions of 

carotenoids of the macular pigment.

Age -  related macular degenaration (AMD) is one of the eye diseases which 

disrupts the normal functioning of the macula. It occurs in about 20% of people over the 

age of 65. (Landrum, et al., 1995; Landrum, et al., 1997) It is an irreversible condition of



a visual impaiment. There are many factors with the positive correlation with AMD. The 

low levels of dietary xanthophylis and serum xanthophylis are two factors among them. 

Landrum, et a l, (1995) have reported that lower than normal amounts of macular 

pigment are found in person with AMD. The macular pigment may reduce the risk of the 

AMD. (Hyman, 1992, Eye Disease Case-Control Study Group, 1993, Seddon, et a l, 

1994) In Landrum’s early study, it is reported that the amount of the macular pigment 

may be enhanced by dietary supplementation with 30 mg of lutein per day. (Landrum, et 

a l,  1997) It is known that the average optical density of the macular pigment in the retina 

is proportional to the average pigment concentration. (Handelman, et a l,  1991) The 

optical density can be measured by heterochromatic flicker photometry. It was 

established that the macular pigment optical density increased in the eyes when the 

concentration of lutein was elevated in the serum during a long-term supplementation 

study with a lutein ester form supplement. (Landrum, et al 1997) It was found that the 

concentration of lutein in serum decreased and returned to pre-supplementation levels 

after the subjects discontinued the supplement. However, the optical density remained 

higher than the pre-supplementation level after conclusion of supplementation and did 

not return to baseline. Therefore, the hypothesis that lower doses of lutein might also 

cause similar increases in macular pigment optical density in eyes was suggested. This 

study, based on the earlier methods, used a large group of subjects ( 2 2  human subjects) in 

order to determine if low dosages produced a significant result.



2. Experimental

(1) Reagents and materials

HPLC grade Methanol, Acetonitrile, Hexane and Ethanol were purchased from 

Fisher. Nitrogen gas was purchased from Air Products and Chemicals, Inc.

A 250x4.6 mm column Ultracarb C l 8  3pm ODS and a guard column were from 

the Phenomenex, Torrance, CA, U.S.A.

(2) Apparatus

The reversed phase HPLC was a Waters 2690 separation module equipped with a 

column heater and a sample cooling system. A Waters 486 tunable absorbance UV/Vis 

detector was used for detection.

A heterochromatic flicker photometer was constructed as previously described. 

(Bone, et al., 1971, Bone, et al., 1992)

(3) Procedures

In this study, 22 healthy, non-smoker human volunteers were selected. None of 

the subjects took a commercial dietary supplement that included carotenoids during the 

period of time of this study. Eye exams were performed by an ophthalmologist before 

supplementation for each subject. For several subjects a follow-up eye exam was also 

performed. These 22 volunteers supplemented their diets with lutein (1.2 mg x 2 per 

day), in the form of Nutrilite’s softgel Bilberry with Lutein Botanical Blend for a period 

of six months. Blood samples were drawn weekly from the subjects and analyzed by 

reversed-phase HPLC. The initial baseline of serum lutein level and post­

supplementation serum lutein level were monitored for the subjects. The same 

experimental method as previously described was conducted. The macular pigment



optical density for the subjects was measured twice each week by heterochromatic flicker 

photometry to determine both pre- and post- optical density levels in their eyes.

(i) Serum sampling and handling

Blood was sampled into 5 ml Vacutainer serum separator tubes by venipuncture. 

Serum was separated from blood and stored in the freezer by the same procedures as 

described in part 2. Serum samples were labeled to identify the subjects and the day the 

blood was sampled.

(ii) Serum extraction

Serum extraction was preformed by following the same procedures as in part 2. 

A 200 pi aliquot of serum was taken for the extraction from each serum sample. 20 pi of 

monhexyl lutein (MHL) was added to this portion of serum as an internal standard. The 

amount of the internal standard was about 50 ng. The extracted sample was dissolved in a 

50 pi of ethanol for HPLC analysis, or the dried extracted sample was stored in the dark 

at -20°C until HPLC analysis. A replicate injection was preformed for the each extraction 

in order to minimize the experimental errors.

(iii) HPLC conditions

All serum samples were analyzed on a Waters 2690 module HPLC with a Waters 

486 UV tunable detector set at 451 nm. The data were stored and processed on Millenium 

intergration software. The column used was a 250 x 4.6 mm C l 8  column with a C18 

guard column packed with 3 pm Ultracarb ODS. The column was housed in a column 

heater set at 25°C. A sample cooling system was installed in this HPLC and it was set to 

4°C to minimize potential sample degradation. Separation was achieved with a mobile



phase of 80% acetonitrile and 20% of methaol, with 0.1% (V/V) of triethylamine added 

to inhibit degradation of carotenoids during elution. The flow rate was 1.0 ml/ min.

3. Results and discussion

The pre- and post- supplementation serum lutein levels and macular pigment 

optical densities of the subjects are shown in Table 5. The baseline serum lutein 

concentrations and macular pigment optical densities were measured as the mean value of 

all measurements during the period of time of pre- supplementation. The first day of 

supplementation was counted as zero. The post- supplementation serum lutein 

concentrations and macular optical densities were the mean value of all measurements 

taken between day 7 and day 150 of supplementation. For the subjects who dropped-out 

from the study prior to day 150, the mean concentration and macular pigment optical 

densities were calculated from all data after day 7. It was observed that there was a 

significant increase in serum lutein concentration for all subjects. The percentage increase 

ranged from 20% to 300% with a mean increase of 128% (median = 116%). The increase 

in macular pigment optical density was significant for 11 of the 19 subjects. The mean 

increase for all 19 subjects was also significant as 4.5%.

Baseline dietary intake for lutein and zeaxanthin of 1.2 ±1.1 mg/day was 

determined from a food frequency questionnaire. Therefore, the 2.4 mg of dosage 

represents about twice the mean dietary intake. Figure 34 shows the plot of pre­

supplement serum lutein level vs dietary intake. A significant correlation was found 

showing that the higher the dietary intake the higher the supplementation level of pre­

serum lutein. We also note that individuals with high pre-supplementation serum lutein 

levels also had high post-supplementation levels (Figure35). Figure 36 (a) and (b)



represent two typical examples from the two subjects with different pre- supplementation 

serum lutein levels. Subject B has higher pre- and post- supplementation serum lutein

levels than that of subject A.

Serum  Lutein (pg/ml) M acular Pigment Optical Density

Subject
num ber

Pre­
supplement

Post­
supplement

%increase Absolute
increase

Pre­
supplement

Post­
supplement

%increase Absolute
increase

1 0.092 0.137 49 0.045 0.415 0.426 2 . 8 0 . 0 1 1

2 0.187 0.384 106 0.197 0.448 0.495 10.5 0.047
3 0.104 0.275 165 0.171 0.678 0.695 2.5 0.017
4 0.091 0.284 2 1 1 0.192 0.28 0.4 40 0 . 1 2

5 0.076 0.148 95 0.072 0.397 0.413 4.2 0.016
6 0.163 0.382 134 0.218 0.315 0.338 7.5 0.023
7 0.257 0.339 32 0.082 0.81 0.83 2 0 . 0 2

8 0.058 0.132 127 0.074 0.243 0.252 3.7 0.009
9 0.188 0.336 79 0.148 0 . 6 0.61 1 0 . 0 1

1 0 0.062 0.179 189 0.117 0.205 0.219 6 . 8 0.014
1 1 0.059 0.231 291 0.172 0.311 0.311 0 0

1 2 0.141 0.459 225 0.317 0.612 0.65 6 . 1 0.038
13 0.148 0.307 107 0.159 0.384 0.487 27 0.103
14 0.163 0.292 79 0.129 0.45 0.514 14 0.064
15 0.250 0.311 25 0.061 0.387
16 0.089 0 . 2 1 0 136 0 . 1 2 1 0.613 0.706 15 0.093
17 0.203 0.275 35 0.071 0.465 0.489 5 0.024
18 0.208 0.469 126 0.261 0.307 0.388 26 0.081
19 0.080 0.340 325 0.260 0.186 0.318 71 0.132
2 0 0.240 0.280 17 0.040 0.711 0.719 1 0.008
2 1 0.060 0 . 2 0 2 235 0.142 0.478 0.528 10.3 0.05
Average 128 4.5

Table 5. Pre- and post- supplementation serum lutein levels and macular pigment 
optical densities of the subjects

W e can see that one of the metabolites, labeled as peak A, increased significantly 

during the supplementation. (Figure7) Table 6 shows average % increases in several 

serum carotenoid levels. Some variation of serum carotenoid levels occured during the 

period of time of supplementation since the subjects were on an uncontrolled diet. Peak A



is the only significant change other than lutein in the chromatogram. This agrees with the 

results of the high dosage lutein supplementation study and gives further evidence that A 

is the metabolite of lutein. However, B and C only had little increases. We noted that 

different forms of lutein supplement have been taken in this and previous studies. Instead 

of a form of supplement containing natural free lutein, a commercial available 

supplement form was giving. It is understandable that the different form of the 

supplement should affect the presence of the metabolites.

% Average increase

Lutein 128

Macular Pigment Optical Density 1 2 . 8

Peak A 1 0 1 . 2

Peak B 24.3

Peak C 36.4

Zeaxanthin 12.9

P-Cryptoxanthin 3.6

Table 6 . Percent average increases from all human subjects in several carotenoids, 
metabolites and optical density after supplementation

4. Conclusion

This study has shown that supplementation of the normal diet with as little as 2.4 mg/day 

of lutein results in increased serum levels of lutein by as much as 300% in some 

individuals and results in a increase in macular pigment optical density for 19 of the 

study group. We also noted that the serum levels of several metabolites also have 

increases. A correlation between pre-supplementation and post-supplementation was also



found. The higher the pre-supplementation level the higher the post-supplementation 

level of serum lutein.
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Figure 36. The plots of serum concentration of lutein as function of time from two human 
subjects (a) and (b) with lower and higher pre-supplementation serum lutein 
levels.



IV PART 4 ZEAXANTHIN STEREOISOM ERS IN HUMAN SERUM
SAMPLES

1. Overview

Zeaxanthin is one of the carotenoids found in the human body. It has two stereo

centers in the positions of C3 and C 3’ which give rise to three stereoisomers, (3R,3’R)- 

P,P-carotene-3,3’-diol, (3R,3’S)-p,f3-carotene-3,3’-diol and (3S,3’S)-|3,p-carotene-3,3’- 

diol. The structures of these three stereoisomers are illustrated in Figure 37.

Figure  37.  S t e r e o c h e m i c a l  s t r u c tu re s  of  z e a x a n th i n



As mentioned earlier, lutein and zeaxanthin are major components of macular 

pigment in the human retina. (Bone, et a l, 1988) The macular pigments play a protective 

role in the eye. The concentration of zeaxanthin is about twice that of lutein in the inner 

macula. (Bone, et a l,  1988) The macula contains the highest density of cone 

photoreceptors and is specialized for acute central vision. The macula is visually 

pigmented with the yellow carotenoids. The yellow spot is about 2 to 3 mm in diameter 

in human eyes. The macula is divided into the inner macula and the outer macula. The 

inner macula is about 1.5 mm in diameter and the outer macula is the surrounding 

annulus. Figure 38 shows the human eye in cross-section. As eccentricity from the fovea 

increases, the lutein/zeaxanthin ratio of concentrations continuously changes with lutein 

becoming the dominant component. It was reported that all three zeaxanthin 

stereoisomers (RR, RS, SS) are present in the human eye. (Landrum, et a l,  1999; Bone, 

et al., 1997) The concentration of RS zeaxanthin decreases with eccentricity. This 

decrease in RS zeaxanthin closely corresponds to the increase in lutein. (Landrum, et al, 

1999; Bone, et a l, 1997) Among the three zeaxanthin stereoisomers, the RR 

configuration is the only one that is found in significant quantities in the diet and is 

relatively abundant in a number of fruits and com. Since animals cannot synthesize 

carotenoids, RR-zeaxanthin would be expected to be the sole stereoismer to be found in 

human body. The presence of RS and SS zeaxanthin in the retina suggests that the 

conversion of lutein to zeaxanthin may occur by migration of a double bond in the lutein 

molecule. Landrum et al have reported that only RR-zeaxanthin has been detected in 

human blood. (Landrum, et a l, 1999) Therefore, the process of conversion would seem



to occur in the eye. The purpose of this study was to confirm the absence of RS and SS 

zeaxanthin in human serum. The composition of zeaxanthin stereoisomers in serum

Figure 38. Cross-sectional diagram of the human eye. (Handelman, 1992)

samples from 18 subjects was studied by normal phase HPLC.

2. Experim ental

(1) Reagents and materials

HPLC grade Methanol, Acetonitrile, Hexane, Ethanol, and Isopropyl acetate were 

purchased from Fisher. Pyridine anhydrous 99% (water<0.005%), benzene (99.8% 

anhydrous), and (S)-(+)-l-(l-N aphthyl) ethyl isocyanate were purchased from Aldrich 

Chemical Company. (Milwaukee W I 53233 USA) Synthesized, pure RR, RS, and SS 

zeaxanthin were obtained as a gift from the company Hoffman La Roche.

A 250x2.Omm normal phase column packed with 5pm Prodigy silica and a 

250x10.0 mm reversed phase column packed with 3pm Ultracarb ODS were purchased 

from Phenomenex, Torrance CA. U.S.A.



(2 ) Apparatus

Reversed phase HPLC system (1) was an LDC Analytica Consta Metric 3200 

solvent delivery system equipped with a 50 pi injection loop and was coupled with an 

LDC/Milton Roy UV detector. Normal phase HPLC, system (2), was an LDC Milton 

Roy system which included an SM4000 UV/Vis detector.

(3) Procedures

Serum samples were obtained from 20 human subjects. 2 ml of serum from each 

subject was extracted. In order to isolate the zeaxanthin from each sample, reversed- 

phase HPLC system (1) was employed. This included a 250x10.0 mm C18 column. 

Zeaxanthin was collected during elution and dried under a stream of nitrogen gas. The 

dicarbamate derivatization reaction was carried out individually on the collected 

zeaxanthin for each subject’s sample. The dicarbamate derivatives of the collected 

zeaxanthin were further analyzed by normal phase HPLC, system (2), to determine the 

stereoisomer composition. The separated stereoisomer peaks were collected and dried for 

further identification analysis. For comparison purposes, a racemic standard of the three 

synthesized zeaxanthin stereoisomer mixtures was converted to the dicarbamate 

derivatives. The concentration ratio of these three stereoisomers, RR:RS:SS, was equal to 

1:2:1. The identification of zeaxanthin stereoisomers in 20 human subjects was 

determined from the peak enhancement by the co-injection of the collected, derivatized 

stereoisomer components with the racemic mixture of zeaxanthin dicarbamates.

(i) Preparation of standard

Three synthetic zeaxanthin steroisomers, (3R,3’R)-p,p-carotene-3,3’-diol, 

(3R,3’S)-p,p-carotene-3,3’-diol and (3S,3’S)-p,p-carotene-3,3’-diol, were obtained as a



gift from the company Hoffman-La Roche. They were separately dissolved in EtOH in 

three pear-shaped flasks. Since the absorption coefficients of these three stereoisomers 

are identical, the concentration ratio (RR:RS:SS) was determined from UV spectrometry. 

The three stereoisomers were mixed together to produce a concentration ratio of 

RR.RS:SS equal to 1:2:1. This racemic-mixture of steroisomers was dried under a stream 

of nitrogen gas. The dicarbamate derivatization reaction was carried out under nitrogen 

gas in a glove box following the derivatization procedures described below.

(ii) Carotenoids extraction and zeaxanthin collection

2  ml of serum from each subject was extracted individually by following the 

extraction procedures mentioned previously. The extracted carotenoids were dissolved in 

200 pi EtOH for reversed-phase HPLC separation. All carotenoid separations were 

conducted on reversed-phase HPLC system (1) with a UV detector set at 451 nm. A C l 8  

250x10mm reversed phase column was used for the separation. A mobile phase of 85% 

acetonitrile, 15% methanol and with 0.1% triethlyamine was used. The flow rate was 4.0 

ml/min. The zeaxanthin peak was collected in a plastic vial, having been identified from 

its retention time which was known by running a lutein and zeaxanthin ( 1 : 1 ) standard in 

the same HPLC system. The collected zeaxanthin was dried under nitrogen gas for 

subsequent derivatization.

(iii) Zeaxanthin dicarbamate derivatization reaction

The plastic vial with the dried zeaxanthin from serum was transferred into a glove 

box containing a dry nitrigen atmosphere in order to carry out the derivatization reaction. 

The zeaxanthin was dissolved in 50 pi of anhydrous pyridine/benzene (50:50 v/v). 2 pi of



(S)-(-f-)-1 -(1 -naphthyl) ethly isocyanate was added to the above solution and the mixture 

was capped and centrifuged for 30 sec. The plastic vial was covered with aluminum foil 

to exclude light and the mixture was allowed to react for at least 48 hr. Figure 40 shows 

the chemical reaction.

The resulting dicarbamate derivatives were removed from the glove box. 5 ml of 

wet (saturated) hexane was used to rinse the plastic vial and transfer the reaction mixture 

to a centrifuge tube. The solution becomes very cloudy. The derivatized zeaxanthin was 

extracted by addition of three 5 ml portions of hexane, followed by 1 min vortex, 5 min 

centrifugation. The top clear portion of hexane was removed carefully to a pear-shaped 

flask by a syringe and dried under a stream of nitrogen gas. Since the amount of 

zeaxanthin was very small all of the procedures were carried out very carefully in order 

to prevent any loss.

(iv) Norm al phase HPLC separation of zeaxanthin stereoisomers

The dicarbamate zeaxanthin derivatives were dissolved in a 20 pi of the mobile 

phase and analyzed by a normal phase HPLC (LDC solvent delivery system) coupled



with a UV detector. A 250x2.0mm normal phase column packed with 5 pm silica 

(Phenomenex™) was used. The mobile phase was 8 8 % hexane and 1 2 % isopropyl 

acetate at a flow rate of 0.2 ml/min. Detection was set at 451 nm.

In order to obtain a good separation, the mobile phase solvent was prepared 

freshly since both hexane and isopropyl acetate evaporate rapidly. No internal standard 

was used in the analysis since only the relative proportions of the three stereoismers was 

sought. The dicarbamate derivatives of the zeaxanthin stereoisomers were compared to 

the racemic standard. The peaks were collected and co-injected with the racemic mixture. 

Peak enhancement provides a reasonably good confirmation of isomer identification.

3. Results and discussion

The normal phase HPLC chromatogram of racemic mixture standard is shown in 

Figure 40. Three zeaxanthin stereoisomers are well separated. The elution order of the 

three zeaxanthin stereoisomers is SS, RS and RR with retention time of 36.11 min, 38.85 

min and 42.48 min, respectively. The results of the normal phase separation of the 

derivatized macular pigment zeaxanthin isomers from 18 human subjects are presented in 

Table 7 and show the percentage of the SS, RS and RR in serum zeaxanthin. It is clear 

that RR confirmation is the principal isomer. Figure 41 is a normal phase HPLC 

chromatogram from 20 human subjects showing the presence of a major RR peak. This 

result supports the hypothesis that the lutein to meso-zeaxanthin conversion process 

occurs in the eye. For further identification, the principal peak was collected and 

combined with the racemic mixture. An identical result was obtained for all 18 human 

subjects. Figure 42 is a typical example of the co-injection HPLC chromatogram of the 

collected stereoisomer peak with the zeaxanthin standard racemic mixture. The observed



enhancement of the all E-R,R-zeaxanthin dicabamate peak provides us the most reliable 

conclusion that serum is composed chiefly of this isomer.

SUBJECTS %SS %RR %RS

1 0 . 0 0 1.27 98.9

2 1.45 3.95 94.6

3 0 . 0 0 3.20 96.7

4 0 . 0 0 8.28 91.8

5 1.05 3.42 95.5

6 0.78 5.20 92.8

7 0 . 0 0 6.96 93.1

8 0 . 0 0 4.09 93.9

9 0 . 0 0 11.7 88.4

1 0 0 . 0 0 0 . 0 0 1 0 0

1 1 0 . 0 0 0 . 0 0 1 0 0

1 2 2.67 2.05 95.3

13 0 . 0 0 1.24 98.8

14 3.45 2.85 93.7

15 0 . 0 0 3.20 96.8

16 0 . 0 0 0 . 0 0 1 0 0

17 0 . 0 0 0 . 0 0 1 0 0

18 0 . 0 0 0 . 0 0 1 0 0

Average % 0.52 3.19 96.3

Table 7. Percentage of zeaxanthin stereoisomers in serum

A small peak can be observed in derivatized zeaxanthin samples of some human 

subjects. (Table 5) This is believed to be the RS-zeaxanthin component. The average 

percentage of the RS configuration of the total zeaxanthin is about 3%. The SS-



zeaxanthin isomer might be present in some samples based on the presence of a small 

peak at the correct elution time. The minute quantities of these potentially RS- and SS- 

prevented confirmation by co-injection.

4. Conclusion

A significant difference in zeaxanthin stereoisomer composition between the 

serum and the retina was verified in this study. The determination of the composition of 

the zeaxanthin stereoisomers in 18 human subjects was carried out. All-E-RR-zeaxanthin 

configuration predominates in the human serum. The average percentage of the 

tentatively identified RS- configuration has been calculated and is 3.37%. However, the 

percentage of tentatively identified SS- confirmation is generally below the detectable 

level. The result obtained from this study indicates that the RS and SS zeaxanthin isomers 

in the retina are probably formed by the metabolism of lutein in the retina.
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Figure 40. HPLC chromatogram of dicabamated zeaxanthin 

racemic-mixture standard on a Normal phase HPLC



Figure 41. HPLC chromatogram of dicarbamated zeaxanthin from 
serum extract on a Normal phase HPLC

of dicarbamated zeaxanthin from serum extract with dicarbamated
zeaxanthin racemic-mixture standard on a normal phase HPLC
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