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ABSTRACT OF THE DISSERTATION 

ASSESSING CURRENT INSTRUCTIONAL PRACTICES IN GENERAL 

BIOLOGY ONE (BIO1010) AND ARGUING FOR A MODEL-CENTERED 

CURRICULUM 

by 

Seth Manthey 

Florida International University, 2015 

Miami, Florida 

Professor Eric Brewe, Major Professor 

This collected papers dissertation focused on the argument for the need to adapt and 

develop a model-centered General Biology I course through the analyses of current 

instructional practices at a large, public, Hispanic-serving university. This dissertation 

included a comparison of General Biology I course sections taught in two differing 

formats, one is a traditional lecture with face-to-face meetings and the other is an 

online instruction setting. The comparison of these sections was accomplished 

through the use of a conceptual inventory, student attitude survey, drop-fail-withdraw 

(DFW) rates, and Social Network Analysis. This comparison found that there was no 

detectible significant difference between course type for both the conceptual 

understanding and formation of student-to-student networks. It was also found that 

there was a significant difference between course type when looking at students’ 

attitudes towards Biology and success in the two course types. 

Additionally in a second study the project used a phenomoenographic analysis 

of student interviews that explored the students’ use of scientific models when asked 
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about plant cells and animal cells. It was found that during the analysis of students’ 

ideas that students predominantly used a single model function. The cell types of 

focus in the second study were two models that were identified, in a third study, 

through a coded analysis of faculty interviews and textbook analysis. These models 

are viewed as essential for students to possess an understanding of upon completion 

of General Biology I.  

The model-based course that this study argued for is based on a curricular 

framework initially developed for use in introductory physics courses. University 

Modeling Instruction courses in physics (UMI-P) have been linked to improved 

student conceptual understanding positive attitudinal shifts, and decreased DFW 

rates. UMI, however, has not been expanded for implementation within the other 

science disciplines. Drawing from the success of UMI within physics this dissertation 

focused on the argument for the need for the adaptation and development of UMI for 

introductory biology. 
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CHAPTER 1 INTRODUCTION 

1.1. Project Motivation.  

 For more than a decade, considerable effort has been placed on increasing the 

number of Science, Technology, Engineering, and Math (STEM) majors and bachelor’s 

degrees awarded within the United States. These efforts are focused on increasing the 

number of majors/degrees awarded, and also increasing the competitiveness of these 

majors within the global setting of STEM. The National Research Council (NRC) entered 

into discussions of how to address these concerns within each of the STEM disciplines 

(National Research Council, 2007, 2012a). One particular area of emphasis to the 

National Research Council that serves as an avenue to improve STEM education is 

through curricular reform efforts.  

1.1.1. Curricular Reform in Undergraduate Biology. 

BIO2010: Transforming Undergraduate Education for Future Research 

Biologists (National Research Council, 2003) takes the general discussion regarding 

improving education in STEM and turns to focus specifically to biology. BIO2010 

outlines curricular changes at both the program and individual class level that are 

suggested to serve as solutions. Increasing the level and frequency of quantitative 

analysis is one of the prominent suggestions within BIO2010. “Quantitative analysis, 

modeling, and prediction play increasingly significant day-to-day roles in today’s 

biomedical research. To prepare for this sea change in activities, biology majors headed 

for research careers need to be educated in a more quantitative manner (National 

Research Council, 2003, p. 41).  
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 Embedded within the need for undergraduate biology majors to improve 

quantitative abilities is the need for them to develop skills in modeling. These modeling 

skills include understanding modeling as “the process of abstracting certain aspects of 

realty to include in the simplifications of reality we call models” (p. 43), that “there are 

trade-offs in modeling – no one model can address all questions. These trade-offs are 

between generality, precision, and realism” (p. 43), and that “evaluating models depends 

in part on the purpose for which the model was constructed. Models oriented toward 

prediction of specific phenomena may require formal statistical validation methods, while 

models that wish to elucidate general patterns of system response may require 

corroboration with the available observed patters” (p. 43).   

 Vision and Change in Undergraduate Biology Education: A Call to Action 

(Science, 2011), much like BIO2010, outlines key areas of importance for improving 

undergraduate biology. In particular, Vision and Change, sets forth both biological 

concepts – evolution; structure and function; information flow, exchange, and storage; 

pathways and transformations of energy and matter; and systems – and skills that 

students should possess upon completion of their undergraduate career. One such skill 

that Vision and Change argues for is that students have the “ability to use modeling and 

simulations” (Science, 2011, p. 14) as “modeling is a standard tool for biologists” (p. 15). 

While it may seem that modeling is an area that is only appearing in the literature to 

shape undergraduate education it has also become an essential aspect of the K-12 

curriculum (National Research Council, 2012b). 
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1.1.2. Increasing Participation in Undergraduate Biology. 

 Increasing the number of majors and the number of students earning Bachelor’s 

degrees in the biological sciences is an additional area of emphasis to biology educators. 

While many of the other STEM disciplines face issues of unequal gender participation, 

the biological and life sciences do not face this problem with 60% of Bachelor’s degrees 

being earned by women as of 2009 (National Science Foundation, 2012). Much like other 

STEM disciplines though, interest lies in increasing the participation of historically 

underrepresented minorities (Hispanic, Black/African American, Native American, and 

Pacific Islander) in the biological sciences as only 26% of biological sciences majors are 

from underrepresented minorities. The ethnicity discrepancy is even more apparent when 

we look at persistence and retention throughout a natural sciences bachelor’s degree 

program. Looking at the retention and persistence in a natural sciences degree program, 

that is those intending to major versus those completing the major, is where I pay 

particular attention for the purposes of this dissertation. Using 2012 data from the 

National Science Foundation it can be seen that there is a retention rate of 93% for both 

White and Asian (majority) students (National Science Foundation, 2012). That is to say 

93% of students from either of these populations who have intended to major in the 

natural sciences complete the program and earn their bachelor’s degree in a natural 

science. However, when we use this same data source we can see that 63% of 

Black/African American students persist throughout the degree program and 72% of 

Hispanic students persist through the program (National Science Foundation, 2012).  
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1.1.3. Discipline Based Education Research at Florida International University.  

Florida International University (FIU) is a large, urban, research intensive 

Hispanic-serving institution with a Hispanic population making up 61% of the 2012 

enrollment (Florida International University, 2013). The Physics Education Research 

Group (PERG) at Florida International University (FIU) developed in part to increase the 

competitiveness and representation of underrepresented students within the physics 

community. This discipline specific education research group has successfully developed 

and implemented a curriculum, known as University Modeling Instruction – Physics, that 

focuses around students’ development and interaction with modeling skills and processes. 

Through the development, implementation, and refinement of this curriculum the PERG 

established a place to target the untapped resources of ethnic minority students in the 

STEM disciplines. While the PERG group is focused on reform efforts benefiting the 

physics community, FIU as a whole has taken on the task of being a leader in STEM 

education reform through the creation of the STEM Transformation Institute (Florida 

International University, 2012), which “focuses on the creation, validation, and 

implementation of inclusive models of STEM education to support all learners” (p. 5). 

With the support of the STEM Transformation Institute and the successful physics 

curriculum to serve as a framework, it was the focus of my study to adapt, develop, 

implement, and study the efficacy of University Modeling Instruction – Biology to aid in 

the broadening of participation and competitiveness within biology.  
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1.2. Literature Review and Theoretical Framework. 

 In this section I broadly summarize the research relating to Communities of 

Practice, models, modeling, and University Modeling Instruction. More extensive 

literature reviews will be incorporated into each chapter.   

1.2.1. Communities of Practice 

 Communities of Practice from Lave and Wenger is described by Wenger (2011) 

as “locates learning, not in the head or outside it, but in the relationships between the 

person and the world, which for human beings is a social person in a social world in this 

relation of participated” (p. 1). That is to say that learning can be seen as being the 

individual participating within a particular community. However, according to Wenger 

participation is not enough, as meaningful learning “requires both participation and 

reification to be in interplay” (p. 1).  It is with both participation and reification that a 

community develops and new members are acculturated into this learning community.  

The development of a community also develops a general set of competences. These 

competences are: 

Understanding what matters, what the enterprise of the community is, and 

how it gives rise to a perspective of the world; being able (and allowed) to 

engage productively with others in the community; using appropriately the 

repertoire of resources that the community has accumulated through its 

history of learning. (Wenger, 2011, p. 2) 

 While it may seem that by focusing on the community aspect of Communities of 

Practice the role of the individual is diminished aside from the fact he or she is a member 

of the community, however, Wenger (2011) emphasizes that the individual identity is 
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essential to fully understanding what a community of practice means for the individual. 

Wenger goes as far as saying that identity is “a central element of the theory, just as 

fundamental and essential as community of practice” (p. 3). The identities of the 

individual are viewed as an essential aspect of the theory because they are a resource that 

is able to shape the learning that takes place.  

The use of Communities of Practice as a theoretical framework lends itself 

traditionally to qualitative research, it is important to note that it is the lens by which I 

interpreted the combined analysis from the conceptual inventory, social network, student 

attitude, and drop-fail-withdraw results as opposed to each of these results individually. 

In using all these results to evaluate the differences between face-to-face and online 

instruction in General Biology I, I followed the guidelines proposed in the What Works 

Clearinghouse (2008).  

 1.2.2. Models in Science. 

 As identified by both BIO2010 and Vision and Change models and modeling play 

a significant role in science. This view regarding the importance of models and modeling 

in science has also been expressed by (Hestenes, 1992; Nersessian, 1992; 1995; 

Odenbaugh, 2005; Windschitl, Thompson, & Braaten, 2008). Odenbaugh (2005) using 

examples such as the Lotka-Volterra predator-prey models described by Roughgarden 

(1979), as cited in Odenbaugh (2005), argues that models serve five functions within 

theoretical ecology and these functions are: a) explore possibilities, b) investigate more 

complex systems, c) provide conceptual frameworks, d) generate accurate predictions, 

and e) generate explanations.  
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While Odenbaugh claims these five rolls of models are within theoretical ecology, 

these same five functions of models can be seen when considering Listeria 

monocytogenes. Hamon, Bierne, and Cossart (2006) argue that L. monocytogenes is a 

multifaceted model. While Hamon, Bierne, and Cossart do not define a model in the 

same way as it is defined in this dissertation, calling L. monocytogenes a multifaceted 

model implies that it a model organism, which has successfully served as the basis for a 

variety of models that fit with the definition of a model used in this dissertation.  It is a 

model that microbiologists have used to inform how bacteria invade cells, and has shaped 

the paradigm for studying bacterial adaptations to mammalian hosts. These examples of 

L. monocytogenes’ use as a model extend Odenbaugh’s (2005) argument beyond 

theoretical ecology and into microbiology, but the use of models is not limited to the 

biological sciences.  

Nersessian (1992) extends the roles of models to all scientific disciplines, but 

places particular emphasis on the roll that models play in physics. Using Maxwell as the 

primary example Nersessian (1992, 1995) argues that through the process of model 

construction physics was able to advance beyond Newtonian systems and develop laws 

that explain non-Newtonian systems – that is electromagnetism.  Nersessian links model 

construction to the broader idea of conceptual change within science regardless of 

discipline. This is to say that “scientific ‘discoveries’ [happen through] a process in 

which scientists actively construct representations by employing problem-solving 

procedures” (Nersessian 1992, p. 39). This view that modeling is a cross-disciplinary 

practice is also reflected by both Hestenes (1992) “the great game of science is modeling 

the real world” (p. 732) and Passmore, Stewart, and Cartier (2009) “the development, 
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use, assessment, and revision of models and related explanations play a central role in 

scientific inquiry” (p. 395). “Constructive modeling” (Nersessian 1995, p. 204), also 

referred to as model-based inquiry (Windschitl et al., 2008), is an authentic scientific 

practice that scientists have argued should be incorporated into science courses across the 

disciplines.  

1.2.3. Models in Science Education. 

The implementation of model-based inquiry, “inquiry based on the generation, 

testing, and revision of scientific models” (Windschitl et al. 2008, p. 2), in the science 

classroom as a mechanism for student investigation and experimentation differs from the 

traditional scientific method in multiple ways. Windschitl et al. (2008) argue that the 

scientific method “misrepresents fundamental intellectual work done by contemporary 

science” (p. 5).  Another key way that model-based inquiry (MBI) differs from the 

scientific method (TSM) is that in regards to scientific epistemology, TSM prevents 

students from learning both the disciplinary content and the authentic practice at the same 

time. Addressing the disconnect between the learning of content and practice as presented 

in traditional science classrooms employing TSM is one of the strongest features of MBI. 

Lehrer and Schauble (2006) have described this connection between modeling practice 

and content, saying, “one cannot engage in the activity of modeling without modeling 

something, and the something (the content and domain) is critical with respect to the 

questions raised, the inquiry pursued, and the conclusions reached. At the same time, 

modeling is a practice, not a predigested heap of facts” (p. 383). 

A modeling perspective has been used to teach various topics in the sciences 

ranging from solar systems where the model serves as an analogy allowing for 
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elementary students to interact with learned content (Lehrer & Schauble, 2006) to 

evolutionary biology where the model is Darwin’s model of natural selection (Passmore 

& Stewart, 2002). In the evolutionary biology component of a high school biology class, 

students engaged with case studies that were able to provide data and background 

readings. These background readings presented students with the explanatory models of 

evolution - Intelligent Design, Use Inheritance, and Natural Selection. Through reading 

additional case studies students were able to reason using these three models and 

eventually were able to understand the explanatory powers of Darwin’s model of Natural 

Selection. While both the elementary classrooms and high school biology have used 

models and modeling as a key feature of their courses, I argue that it is important for the 

student not simply presented with the models they are supposed to use, but to instead 

develop and use the models to better represent the authentic practice of scientific 

modeling.  

1.2.4. University Modeling Instruction – Physics. 

A curriculum that engages students through the development and use of models 

exists within the physics setting and is University Modeling Instruction – Physics. This 

curriculum has been examined in regards to conceptual understanding, students’ attitudes, 

students’ odds of success, and the development of student learning communities.   

Brewe et al. (2010) explored the conceptual understanding of students enrolled in 

University Modeling Instruction – Physics, with particular focus on the conceptual scores 

of underrepresented minorities and by gender. Using the Force Concept Inventory (FCI; 

Hestenes & Wells, 1992) as a pre- and post- test measure of conceptual understanding 

Brewe et al. (2010) found that students enrolled in UMI-Physics scored 61.9% correct on 
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the post FCI versus students in traditional lecture scoring 47.9% correct, a statistically 

significant difference (p<0.001, Cohen’s d 0.71) with a large effect d = 0.71 (0.57-0.86, 

95% CI on d). When these results are broken down by race/ethnicity it shows neutral 

results in that the gap between represented and underrepresented student populations does 

not widen. When broken down by gender however, the gap in post FCI scores actually 

widens. 

In addition to positive conceptual understanding results, Brewe et al. (2009) found 

the first positive results of students’ attitudinal shifts for a reformed introductory physics 

course on the Colorado Learning Attitudes about Science Survey (CLASS-Physics; 

Adams et al., 2006). This finding has been extended to include multiple classes with 

multiple instructors (Brewe, Traxler, de la Garza, & Kramer, 2013) The CLASS-Physics 

survey targets students’ attitudinal beliefs and compares them to the beliefs of discipline 

experts. Brewe et al. (2009) found that UMI-Physics students had significant positive 

shifts in the overall attitudinal beliefs. It was also found that when broken down by the 

subcategories of the CLASS-Physics survey UMI-Physics students had positive shifts in 

four categories.  

An additional measure showing the success of the University Modeling 

Instruction framework comes from the measure of students’ odds of success. Using the 

grades of students enrolled in introductory physics courses at FIU, Brewe et al. (2010) 

found that the odds of success (receiving a grade of C- of higher) were greater for 

students enrolled in UMI-Physics versus traditional lecture. Their study found that the 

odds of success are 6.73 times higher in students participating in University Modeling 
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Instruction – Physics. These success rates are of particular interest because it is in 

introductory STEM courses where many students are lost from the major.  

Using Social Network Analysis Brewe, Kramer, and O’Brien (2010) attempted to 

explain why students enrolled in a University Modeling Instruction – Physics class have 

greater conceptual gains. It was found that students enrolled in sections of University 

Modeling Instruction – Physics have ten times greater the number of connections within a 

student network when compared to their peers in traditional lecture format classes. 

University Modeling Instruction – Physics courses had a post instruction density of 

0.1529, while traditional lecture courses only had a post instruction density of 0.0025. 

Through taking a learning as participation perspective it can be concluded that the 

differences in the number of connects made within a student network will have an impact 

on student learning.  

1.2.5. University Modeling Instruction Framework. 

With the results based on implementation of University Modeling Instruction – 

Physics and the perspective that models and modeling are cross-disciplinary in nature, I 

turn to the development of a University Modeling Instruction – Biology course using the 

University Modeling Instruction framework. University Modeling Instruction is the 

amalgamation of three aspects that have been developed with the practice of modeling 

and models as the primary foci and serve as threads that tie the curricular framework to 

the practice of scientists. These three aspects are the Modeling Theory of Science, 

Modeling Theory of Instruction, and Modeling Discourse Management. I will discuss 

each of these three aspects in the following section. 
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 The Modeling Theory of Science (Halloun, 2006; Hestenes, 1987, 1992, 2006) is 

the theory that argues that models and modeling are the central focus and activities by 

which scientists partake, regardless of discipline. That is to say that the scientific 

endeavor of any discipline moves forward and generates new knowledge through the 

process of model construction, validation, deployment, and revision. It is in the Modeling 

Theory of Science where the epistemological assumptions and foundations that shape 

University Modeling Instruction can be found. The Modeling Theory of Science lays the 

foundation to shape University Modeling Instruction because models serve as the center 

of a “conceptual hierarchy, between theory and concept” (Halloun, 2006, p. 21). With 

models serving as the center of this hierarchy it allows scientists to connect concept to 

theory through the mediation of “a mechanism that can be used to explain why something 

in the natural world works the way it does” (Passmore et al., 2009, p. 395).  

 The Modeling Theory of Instruction (Brewe, 2008) extends the Modeling Theory 

of Science from the laboratory into the classroom. It suggests that as modeling is the 

central activity that scientists engage in it is essential that we conduct science classrooms 

in the same way; around the building, validating, deploying, and revising of models. It 

asserts that models should be the focus of the content and that the primary activities that 

students engage in are the components of the modeling cycle (building, validating, 

deploying, and revision). Beyond emphasizing the importance of models being the focus 

of both content and activity, the Modeling Theory of Instruction encourages the use of a 

student-centered pedagogy. By implementing this student-centered pedagogy it creates a 

community of learners through the high level of student-to-student discourse.  
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 In addition to having a student-centered pedagogy there are a set of in-class 

discourse tools, which can be classified as Modeling Discourse Management (Desbien, 

2002), that help structure the discourse for the development and deployment of models. 

This set of discourse tools includes Socratic questioning, intentional lack of closure, use 

of 2’ x 3’ whiteboards to communicate scientific ideas, small group work, whole class 

discussions, and a tool known as “seeding” (Desbien, 2002). “Seeding” is the process of 

introducing a new concept, idea, or question into an intentionally chosen group, and then 

allowing them to develop their own interpretation of this concept, idea, or question that 

they will later be asked to present to the whole class (Durden, Brewe, & Kramer 2011).  

 An important aspect to consider before developing a model and modeling focused 

curriculum is the lack of consistent definition of what a model is or what it means to be 

modeling when exploring the role of models and modeling within science. Hestenes 

(1987) has defined a model as “a surrogate object, a conceptual representation of a real 

thing” (p. 4). This definition of Hestenes’ provides a strong foundation to begin defining 

a scientific model and is one that Halloun has expanded upon by defining a scientific 

model as “a conceptual system mapped, within the context of a scientific theory, onto a 

specific pattern in the structure and/or behavior of a set of physical systems as to reliably 

represent the pattern in question and serve specific functions in its regard” (Halloun, 

2006, p. 24). However, I believe this does not provide a complete description of a 

scientific model for the purposes of these studies thus provide an operational definition of 

a conceptual model that will serve as the definition of a model throughout the curriculum 

and the following chapters. I define a scientific conceptual model as a coordinated set of 

representations (e.g., graphs, equations, diagrams, and/or written descriptions) of a 
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particular class of phenomena that exist in the shared domain of discourse. Defining a 

model in such a way allows for a general definition that is aligned with the various 

definitions found in the literature regarding models. It also provides a limit to the 

definition as it restricts me from attempting to make conclusions about what is happening 

inside an individual’s head, and instead only speaks of the shared domain, an area we can 

draw claims from more readily. This definition of a scientific conceptual model is also in 

line with Vygotsky’s definition of “tool” (Cole & John-Steiner, 1978) allowing for an 

explicit connection between Vygotsky and the constructivist nature of the University 

Modeling Instruction framework.  

1.3. Overview of the Dissertation Project. 

This dissertation is organized such that each of the data chapters (Chapters 2 - 5) 

is written in a research paper format that is either published, currently under review, or is 

in preparation for submission for publication. By organizing this dissertation in this 

fashion the specific methods and literature relevant to the study is discussed within each 

chapter. In this section I provide a description of the studies, thus providing a basic 

overview of this dissertation. Here I will provide a brief outline of the contents of the 

following chapters, that is methodology, framework, and purpose - and the details 

regarding the journal of choice for the respective chapter as well as the format 

requirements for each. 

 1.3.1. Purpose of the Dissertation Project and Research Questions. 

 The goal of this research project was to argue for the adaptation and development 

of a model-centered undergraduate General Biology I curriculum. This research project 

first made the argument for the importance of taking a model-centered approach towards 
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a General Biology I curriculum and used this argument as motivation for identifying the 

essential models of General Biology I. Using this argument for the need for a model-

centered curriculum and identified models in Manthey and Brewe (2013) I extended the 

argument through an exploration of current instructional practices for General Biology I 

sections, which were a face-to-face traditional lecture and an online section. Additionally, 

this research project examined student interviews on the topics of plant cells and animal 

cells, two models identified as part of this study, in order to explore the students’ ideas. 

The focus on general biology is because this introductory course serves as a gateway 

course that is able to engage underrepresented minorities and provides the opportunity to 

aid in the development of students’ foundational understanding. In particular, the project 

pushes for the development of a curriculum using the University Modeling Instruction 

curricular framework, adopted from University Modeling Instruction – Physics. The first 

phase of my work was to study the efficacy of current General Biology I instructional 

practices. This was completed by comparing a single section of the lecture aspect of the 

course with the online section of the course, both course formats were taught by the same 

instructor.  In order to study the efficacy of current instructional practices this phase of 

my work was framed around the analysis of students’ conceptual understanding, attitudes 

towards biology, retention, and student-student network development.  

The second phase of my work was to identify the models that are fundamental to 

general biology. As part of this work, I describe a University Modeling Instruction – 

Biology class, and how it is able to contribute to improving undergraduate biology 

education.  
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The third phase of this work was an exploration of student ideas regarding plant 

cells and animal cells upon completion of General Biology I. This investigation looked 

into students’ ideas regarding cellular respiration and photosynthesis, cellular structure, 

osmosis and diffusion across the membrane, and cellular replication. These areas have 

been identified as components of the two cell types. 

In this dissertation I addressed the following questions: 

1) How does the University Modeling Instruction theoretical framework 

developed for university physics function when applied to the development of University 

Modeling Instruction – Biology?  

2) What are the essential basic models identified by faculty and general biology 

textbooks for a general biology one course?  

3) How do students enrolled in a traditional face-to-face lecture format of General 

Biology I compare to their peers enrolled in an online format of General Biology I on the 

Biological Concept Inventory?  

4) How do students enrolled in a traditional face-to-face lecture format of General 

Biology I compare to their peers enrolled in an online format of General Biology I on the 

Maryland Biology Expectations Survey?  

5) How do students enrolled in a traditional face-to-face lecture format of General 

Biology I compare to their peers enrolled in an online format of General Biology I in 

terms of the odds of success, measured using retention rates (drop-fail-withdraw)?  

6) How do students enrolled in a traditional face-to-face lecture format of General 

Biology I compare to their peers enrolled in an online format of General Biology I in the 

development of student-to-student networks?  
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7) Do students apply the functions of models (describe, explain, predict) in 

courses without an explicit model focus? 

1.3.2. Dissertation Structure, Format and Methodology. 

This doctoral dissertation was written using the Florida International University 

College of Education’s “Collected Papers” format. It is comprised of chapters written 

only for this dissertation (Chapter 1 and Chapter 5, and a set of related papers that is 

either published, currently under review, or is in preparation for submission for 

publication to peer-reviewed journals; journal description to follow. This overall thesis 

takes on a model/modeling-centered and communities of practice research framework. 

By using a model/modeling-centered framework I was able to address the calls from the 

AAAS and NRC regarding a need to engage undergraduate students in the modeling 

practices of scientists. I was also to draw upon a successful framework from another 

scientific discipline with the University Modeling Instruction – Physics framework to 

provide a foundation of a curriculum to argue for. By taking a Communities of Practice 

framework to guide the interpretation of the efficacy results it provided a theory of 

learning to structure the interpretation around, as it is the lens through which I view 

learning takes place. This interpretation of the results in the efficacy study comparing 

online and face-to-face formats is not shaped off of a single measure but is instead shaped 

by a multi-measure assessment. It is through these multiple measures of the efficacy that 

I was able to following the What Works Clearinghouse (Clearinghouse, 2008) standards 

and guidelines. 

Chapter 2 addressed the questions, how do students enrolled in an online section 

of General Biology I compare to their peers enrolled in traditional lecture general biology 
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one on the Biology Concept Inventory (research question 3); how do students enrolled in 

an online section of General Biology I compare to their peers enrolled in traditional 

lecture general biology one on the Maryland Biology Expectations Survey (research 

question 4). It also addressed the research questions of how do students enrolled in a 

traditional face-to-face lecture format of General Biology I compare to their peers 

enrolled in an online format of General Biology I in terms of the odds of success, 

measured using retention rates (research question 5); how do students enrolled in a 

traditional face-to-face lecture format of General Biology I compare to their peers 

enrolled in an online format of General Biology I in the development of student-to-

student networks (research question 6). It reviewed the relevant literature regarding 

conceptual understanding, attitudinal beliefs within general biology, retention (DFW) and 

network analysis, provides the theoretical structure of the argument and provides the 

quantitative results of this analysis. This paper is intended for publication within the 

Journal of Biological Education, which requires Taylor and Francis Standard Reference 

Style: Chicago author-date format. 

(http://www.tandfonline.com/action/aboutThisJournal?show=aimsScope&journalCode=rj

be20) 

Chapter 2 of this dissertation is comprised of student conceptual inventory data, 

student attitudinal belief data, retention rate data, and social network data. These data 

were collected from two different course types of General Biology I (BSC 1010) 

available at FIU, traditional lecture and online instruction. In order to collect these data  I 

used the Biology Concepts Instrument (Klymkowsky, Underwood, & Garvin-Doxas, 

2010) and the Maryland Biology Expectations Survey (Hall, 2013). Data collection began 
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during the Fall 2013 semester for both traditional lecture and online instruction sections. 

In order to collect Social Network data a survey was administered to the students enrolled 

in all course types that asked questions along the lines of, “Who do you work with to 

learn biology? Who did you study with for the test? etc.” following the similar 

procedures to Brewe, Kramer, & O’Brien, (2010) and Brewe, Kramer, & Sawtelle (2012) 

to explore the development of student learning communities. Enrollment data was 

collected within the first week of the semester and again at the end of the semester. This 

data allowed me to measure odds of success for students enrolled in the various sections 

types and provides an analysis of drop-fail-withdraw (DFW) rates from the sections.  

Upon collection of all general biology data for the three-section types, a linear 

regression analysis was used to generate an equation for predicting BCI score in lecture 

and Modeling course types using student characteristics (gender, race/ethnicity, pre-test, 

course type) as predictor variables in predicting student’s post-test scores. To analyze the 

results from the MBEX, a regression analysis was used to generate an equation for 

predicting MBEX post-instruction score. To build this equation I used the same 

predictive variables as in the BCI analysis.  

Chapter 3 addressed the role of models and modeling in Biology and identifies the 

fundamental models in biology. It provided an introduction to University Modeling 

Instruction, reviewed the relevant literature regarding the use of models in biology 

education, and provides a framework for the fundamental general models that were 

identified from analysis of faculty interviews and textbook analysis. This paper has been 

published in CBE-Life Science Education, which requires Council of Biology Editors 

Style Manual format.  
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In Chapter 3 of this dissertation, data was collected from interviews of current 

biology faculty. These interviews were conducted using a semi-structure format and were 

conducted to target the identification of the fundamental models of a general biology 

course. Following the interviews the results were analyzed to generate an outline of the 

basic models for general biology. To support and build upon the results of the interviews 

a qualitative analysis of current biology textbooks (Becker, Kleinsmith, Hardin, & 

Bertoni, 2009; Freeman & Herron, 2007; Raven, Johnson, Mason, Losos, & Singer, 

2010; Reece et al., 2011) was conducted. A member-check was conducted to check both 

the correctness of the interpretation of interview results and the validity of the models 

identified from the textbook analysis as identified by the researcher (Manthey & Brewe, 

2013). Chapter 3 is focused and shaped by research question 1 and research question 2. 

Chapter 4 of this dissertation project focuses on the exploration of students’ ideas 

regarding plant cells, animal cells, and the related content. This chapter addressed the 

research question of what model functions (describe, explain, and predict) do students 

deploy when discussing plant, animal, and eukaryotic cell models. This chapter also 

discusses how a model-centered General Biology I course could theoretically help in 

students developing the ability to deploy all three model functions. It reviews the relevant 

literature regarding scientific model, model function, and the argument for models in the 

classroom, provides the methodology for collection the data, analysis of the student 

interviews, and the argument for how a model-centered course could theoretically aid in 

the students use of models. This paper is intended for submission to CBE-Life Science 

Education, which requires Council of Biology Editors Style Manual format. 
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Chapter 4 of this dissertation draws on student interview data. Students from the 

current instruction practices were asked to participate in interviews following completion 

of General Biology I during the Fall 2014 semester. These interviews took a semi-

structured format and will be transcribed then analyzed to look for trends and patterns in 

students’ ideas regarding the content of interest. A member check will be conducted to 

check the correctness of the interpretation of students’ ideas. A model(-ing) centered 

view will be drawn upon during the analysis of students’ ideas. 
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CHAPTER 2 A MULTI-MEASURE COMPARISON BETWEEN WEB-ASSISTED 
LECTURE BASED AND ONLINE SECTIONS OF GENERAL BIOLOGY I AT A 

LARGE, PUBLIC, HISPANIC-SERVING UNIVERSITY IN THE USA 
 

2.1 Introduction 

 2.1.1. Growth and Trends in Online Education in USA 

 Within the USA there is a significant shift towards providing online educational 

opportunities to students. These online formats range from online versions of traditional 

face-to-face courses at a university to massively open online courses, MOOCs. In fact, 

the growth of online courses has taken the number of students enrolled in at least one 

online course at a degree-granting postsecondary institution from 1.6 million students in 

2002 to over 7.1 million students as of 2012 in the USA alone (Allen and Seaman 2013; 

Allen and Seaman 2014). These 7.1 million students taking at least one online course 

represent an all-time high of 33.5% of all students enrolled. With the rapid growth of 

online education come questions regarding the effectiveness of these courses in 

comparison to courses that have a face-to-face meeting. Courses that can be categorized 

as having face-to-face meetings include traditional courses that have 0% of the material 

delivered online, web-facilitated with 1-29% material delivered online, and hybrid 

courses with 30-79% material delivered online (Allen and Seaman 2014). 

 2.1.2. Perception of Differences 

 Much of the research examining the differences between face-to-face courses – 

those with less than 80% of course content delivered online – and online courses has 

targeted perceptions and satisfaction of these courses be it from an administrative or a 

student perspective (Dziuban, Moskal, and Brophy 2007; Swan 2003; Allen and Seaman 

2014; Eom, Wen, and Ashill 2006; Richardson and Swan 2003; Moore and Kearsley 
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2011). From the administrative perspective, 74% of these academic leaders view online 

courses as equally, if not more, successful than traditional face-to-face sections (Allen 

and Seaman 2014). There is a sharp division in administrator perceptions between those 

who work at universities providing online course and those who work at universities that 

do not provide online courses. The majority, 80%, of those working at universities that 

provide online courses view them as successful, or more successful than the same course 

in a traditional lecture format. In universities that do not offer online courses the majority, 

72%, view online courses as inferior to face-to-face meeting courses.  

 Students on the other hand report mixed perceptions of online courses. Summers, 

Waigandt, and Whittaker (2005) found that students enrolled in an online statistics class 

were less satisfied with their experiences and the method of delivery when compared to 

students enrolled in a traditionally taught statistics course. Richardson and Swan (2003) 

studied factors influencing students’ satisfaction with their online courses. Specifically, 

they explored the concept of social presence—the perception that someone in a mediated 

interaction is real—of the course instructor. Richardson and Swan found that there was a 

correlation between social presence and students’ perception of satisfaction of the course. 

This study drew data from a variety of content areas that were taught using online 

instruction and found that there was a significant correlation between social presence and 

student satisfaction with the instructor, which was used as a measure of course 

satisfaction. Eom, Wen, and Ashill (2006) also explored the factors that influence student 

satisfaction. They found a wide range of predictors for the variance in students’ 

satisfaction with the course for students who had taken at least one online course.  These 
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significant predictors included course structure, self-motivation, interaction, instructor 

knowledge and facilitation, learning style, and instructor feedback (p. 236).  

 2.1.3. Researching the Differences (or Lack Thereof) 

  Russell (1999) reviewed the literature on differences between fully/mostly online 

and traditional courses and found that on a variety of measures there was no significant 

difference, which he titled the “No Significant Difference Phenomenon” (2014). Their 

review examined 355 different studies that assessed differences between course formats 

with measurements such as grade comparisons, common question performance, and 

standardized test scores. Building upon this work Russell has developed a website 

(http://www.nosignificantdifference.org/) that provides access to articles evaluating the 

efficacy of the different course formats, many of which also found no significant 

difference between course formats.  

 Summers, Waigandt, and Whittaker (2005) found no significant differences 

between course types student content acquisition. These results are in line with those 

found by Russell, but only consider one of the reported measures from Russell’s work. 

The other result of this work, as found in previous studies, was that students in the online 

course were significantly less satisfied with their course than their peers in face-to-face 

courses. Along these same lines, Anstine and Skidmore (2005) found no significant 

difference in student performance between students in online and traditional face-to-face 

course formats for both statistics and managerial economics courses. However, Anstine 

and Skidmore take their analysis further by performing a regression analysis to hold 

factors such as student age, if the student has children, level of mathematics, and 

Graduate Management Admission Test scores constant. They found a significant 
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difference in student performance between students based on statistics course type, but 

there remained no significant difference in the managerial economics course. These 

results indicate that not only should instructional format matter, but also that the 

interaction between course content and instructional format should be considered. 

 The aim of this study is to explore the differences in course efficacy for a General 

Biology I course that is offered in two different instructional formats. Our study has at its 

foundation the idea that course content and instructional format interact. The first 

instructional format is a web-assisted lecture based format (WALB), which is defined as 

having 1-29% of course content delivered online (Allen and Seaman 2013), and the 

second course format is a fully online course with 100% of course content delivered 

online. To measure the efficacy of these courses, four different measures were employed 

to address different aspects of complex learning environments: conceptual understanding, 

attitudes toward learning, success in the course, and engagement with other students.  

2.2 Methods 

 2.2.1. Setting 

 This study was conducted with students enrolled in the first semester (General 

Biology I) of a two-semester sequence of General Biology at Florida International 

University, in Miami, FL (US). Florida International University is a large, public, 

Hispanic-serving university. It ranks 1st in the US for awarding Bachelors and Masters 

degrees to Hispanic students (Florida International University 2013; Cooper 2011).  

The data were collected during the Fall semester of the 2013-2014 academic year; 

this was the first year of implementation of the online format of General Biology I.  This 

course is designed to cover the following content areas: biomolecules and cells, 
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metabolism and cell cycle, central dogma (DNA -> RNA -> proteins), and evolution. The 

students enrolled in both formats of the course were required to enroll in the 

corresponding lab course, which is intended to overlap the lecture materials but is graded 

independently. The same instructor taught the online and the web-assisted lecture based 

(WALB) classes.  

 2.2.2. Participants 

The students enrolled in General Biology I consisted of primarily first-year 

students, however there were also second- and third-year students also enrolled. The web-

assisted lecture based format had a total enrollment of 228 students; the online format had 

a total enrollment of 75 students. The demographic breakdown of each class type can be 

found in Table 1. This demographic breakdown includes student’s statistical 

representation status, which looks at a student’s race/ethnicity and classifies him or her as 

either statistically represented or statistically underrepresented. A student’s race/ethnicity 

is classified as being either statistically represented in science population if they identify 

as White/Caucasian or Asian/Asian American, or it is classified as statistically 

underrepresented in science population if they identify as Black/African American, 

Native American, Pacific Islander, or Hispanic.    

  Web Assisted 
Lecture Based 

Online

Total  228 75
Gender   
 Male 94 28
 Female 134 47
Race/Ethnicity   
 Statistically Represented 37 11
 Statistically Underrepresented 186 62
Table 1. Demographic breakdown of the Web-Assisted Lecture Based and Online 
course format total enrollments during the Fall 2013 semester of General Biology I.  
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 2.2.3. Instructional Format 

 The online format of General Biology I was designed to follow the same content 

sequence as the web-assisted lecture based format. The students were given recorded 

lectures from the instructor along with online animations and simulations for each of the 

content areas.  Each of the content sections for the online course was made available after 

students completed the exam associated with the previous material. These exams were 

offered at the same time as the exams for the WALB section, thus maintaining a similar 

pace between the two course formats. Although course content was the same, the tasks 

and grading schemes were slightly different. The grading for lecture consisted primarily 

of exams (90% of final grade) and weekly quizzes (10% of final grade). The online 

course included weekly discussions (30% of final grade) as well as exams (60% of final 

grade) and weekly quizzes (10% of final grade).  

 2.2.4. Data sources and collection 

 In order to address the complex nature of student learning environments, the study 

was designed to make measurements of several aspects considered important to 

understanding student learning. These aspects include students’ content understanding, 

students’ epistemological expectations, the success rate of students in the course, and the 

formation of student-to-student collaborative study networks.  

2.2.4.1. Conceptual Understanding - Biological Concepts 

Instrument (BCI) 

 One of the instruments selected for assessment of both General Biology I course 

formats was the Biological Concepts Instrument (BCI; Klymkowsky, Underwood, and 

Garvin-Doxas 2010). The BCI is a 29 multiple-choice question survey that covers a 
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breadth of topics standard to a General Biology I course. Administration of the BCI was 

conducted through the web-assisted portion of the lecture-format course to allow for 

common administration between the two course formats. It was given as an optional extra 

credit incentive to the students and was administered as a pre- and post-course 

assessment. Students were matched on their pre-/post-instruction scores based on a 

student identification number. The matched number of responses, those students taking 

both the pre- and post- course assessment, was 63 and 32 for the lecture based and online 

course formats, respectively. For the breakdown of total and matched responses, see 

Table 2. 

 

  Web Assisted 
Lecture Based

Online

Total  
 Pre 9.48 (N=124) 9.90 (N=51)
 Post 11.77 (N=102) 11.91 (N=55)
Matched  
 Pre 9.36 (N=63) 11.18 (N=32)
 Post 12.19 (N=63) 12.81 (N=32)

Table 2. Student Pre- and Post- instruction scores on the Biological Concepts 
Instrument out of a 29 total points. Scores reported by course type and by all 
student responses (students taking either the Pre- or Post-instruction survey) and 
matched student responses (students taking both the Pre- and Post-instruction 
survey).  

  2.2.4.2. Epistemological Expectations - Maryland Biology 

Expectations Survey (MBEX) 

 The research team selected the Maryland Biology Expectations Survey (MBEX; 

Hall 2013) as an additional survey to examine course format differences. The MBEX was 

designed to measure students’ epistemological expectations about Biology courses in 

general and thus is not constrained by the course content. Student epistemological 
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expectations measured by the MBEX include views on whether biology is a collection of 

isolated facts or a series of interconnected principles, and whether biology has 

connections to real world experiences. The MBEX is a 32-question Likert-scaled survey, 

including a filtering question that requires students to select the specified answer for the 

results to be considered valid. Like the BCI, the MBEX was administered online to create 

a common administration process between the two instructional groups. It was given as 

an optional extra credit incentive to the  

students, was administered as a pre- and post-course assessment, and students were 

matched on their pre-/post-instruction scores based on a student identification number. 

The matched number of responses, those students who took both the pre- and post- 

instruction survey (and correctly responded to the filtering question), were 58 

and 30 for the lecture based and online instructional formats respectively. For the 

breakdown of total and matched responses see Table 3.  

Table 3. Student Pre- and Post- instruction scores on the Maryland Biology 
Expectations Survey out of 155 total points. Scores reported by course type and by 
all student responses (students taking either the Pre- or Post-instruction survey) and 
matched and valid student responses  (students taking both the Pre- and Post-
instruction survey and answering a filtering question correctly).  

2.2.4.3. Student Success - Drop, Fail, or Withdraw 

 The third measure of course differences selected by the research team was Drop, 

Fail, or Withdraw (DFW) rates, also referred to as student success rates. For the purposes 

  Web Assisted 
Lecture Based

Online

Total  
 Pre 84.18 (N=113) 91.82 (N=41)
 Post 82.02 (N=85) 87.25 (N=47)
Matched  
 Pre 84.07 (N=58) 91.84 (N=30)
 Post 81.42 (N=58) 90.68 (N=30)
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of this study a mark of Fail is considered earning a grade of C- or below on a standard A 

– F scale. This data was collected at the end of the semester by conducting a query of 

student grades from the university database. The end of semester query also included the 

records of students who had dropped or withdrawn from the course throughout the 

semester and thus contained the full sample of students from each course type. 

 

  2.2.4.4. Formation of Student Networks - Social Network Analysis 

 Social Network Analysis for this study explores the formation of student-to-

student study groups.  Data was collected through the administration of a survey to the 

students enrolled in all course types. This survey was comprised of two questions, but for 

the purposes of this study we focus on the following question, “who do you work with to 

learn biology?” Similar studies by Brewe, Kramer, and O’Brien (2010) and Brewe, 

Kramer, and Sawtelle (2012) have used this type of question to explore the development 

of the student learning communities. This measure of student learning communities is 

important to consider because it is argued that “by design, the success of many online 

courses is dependent upon the nature of student-to-student and student-to-faculty 

interactions” (Picciano 2002). Measurement of student learning communities also 

provides the ability to ask questions about the opportunities for students to form peer 

groups as a pedagogical element of their course (Grunspan, Wiggins, and Goodreau 

2014). Understanding the formation of student peer groups is important because it has 

been linked to retention and persistence (Allen and Seaman 2013; Brewe, Kramer, and 

Sawtelle 2012; Allen and Seaman 2014), participation (Allen and Seaman 2014; 

Goertzen, Brewe, and Kramer 2011), and exam performance (Dziuban, Moskal, and 
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Brophy 2007; Grunspan, Wiggins, and Goodreau 2014; Swan 2003; Allen and Seaman 

2014; Eom, Wen, and Ashill 2006; Richardson and Swan 2003; Moore and Kearsley 

2011). The network survey was administered three times as extra credit opportunities 

throughout the semester as a pre-, mid-, and post-assessment through the web-assisted 

portion of the lecture-based course. For the purposes of this study we only focus on the 

mid-semester survey as a comparison of the two different course formats because the 

participation rate was higher on this survey. These varying response rates be due to 

survey fatigue, as described by Allen and Seaman (2014) and Grunspan, Wiggins, and 

Goodreau (2014), affected the results of the pre- and post-assessment network survey 

results. In the web-assisted lecture based format there were 115 respondents who named a 

total of 155 out of the possible 228 students as study partners. In the online format of 

General Biology I there were 53 respondents who named a total of 60 out of the possible 

75 students.  

  2.2.4.5. Statistical tests and analysis 

 For this study we present the results of the matched data, i.e. students who took 

both the pre- and post-instruction assessments, for the BCI and MBEX results. However, 

t-tests were conducted to test for significant differences between the scores on pre-

instruction and post-instruction in a comparison of all responses versus only the matched 

responses.  

 Regression analysis and model building allow us to compare the BCI and MBEX 

between the two different course formats for the matched student responses. Regression 

analysis and model building allow the use of multiple predictive and/or control variables. 

These variables can include a student’s pre-instruction score and student demographic 
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information, such as gender and statistical representation status. For the regression 

analysis, a threshold of p<0.05 was used to consider if either the model or the factors 

which loaded into the model were significant. For both the BCI and MBEX t-tests were 

conducted on each course format to check for significant shifts on each measure from 

pre-instructor scores to post-instruction scores. 

 In order to test for the significance of DFW rates, odds ratio tests (Summers, 

Waigandt, and Whittaker 2005; Szumilas 2010) were conducted. Odds ratios for the 

purposes of this study were calculated by determining the ratio of students earning a 

grade equal to or above a certain threshold to those receiving a grade lower than the 

threshold. As part of this study, the odds ratios (hereafter referred to as “odds of 

success”) were calculated to compare across course types, gender, statistical 

representation status, and the interaction between course type and the student 

demographics.  

 The Social Network Analysis mid-semester survey results from the two different 

course formats were analyzed and compared through a calculation of degree centrality 

(Richardson and Swan 2003; Grunspan, Wiggins, and Goodreau 2014). Degree centrality 

is best described as the total number of connections each student (node) has in the 

network. Connections are determined by Student A either listing that he or she has 

learned biology with Student B or by Student B listing that he or she has learned biology 

with Student A (or both listing each other). For the purposes of this study directionality of 

the connection (indegree/outdegree) were not considered. Additionally, to analyze the 

Social Network Analysis survey results, we calculated the cumulative degree distribution 

(CDF) of study partners. Cumulative degree distribution calculates the probability that 
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Student A, from either course type, would have a certain number (k) of study partners 

from the corresponding format, this is also referred to as k-cores. The CDF gives 

information about, e.g., whether the total number of connections in a network is 

dominated by a few high-degree students, or more equally spread around among many 

moderately-connected students. These two analyses allow for us to make direct 

comparisons of the two different course networks.  

2.3 Results And Interpretation 

 2.3.1. All Scores versus Matched Scores  

 As part of this study we compared the differences between all responses (pre- and 

post- instruction) and only those responses that had matching responses (students took 

both the pre- and post- instruction assessment) for both the BCI and MBEX. Looking at 

the overall number of students taking either the pre- or post- instructional assessment, we 

had a response rate of less than 50% for the WALB section and approximately 70% for 

the online section on both assessments. These response rates drop to 25% for the web-

assisted lecture based course and 13% for the online course when considering matched 

students only. The web-assisted lecture based course had 124 BCI responses and 113 

valid MBEX responses on the pre-instruction assessment and the online course had 51 

responses on the pre-instruction assessment. The web-assisted lecture based course had 

102 BCI responses and 85 valid student MBEX responses on the post-instruction 

assessment and the online course had 55-student responses on the post-instruction 

assessment.  
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Web 
Assisted 
Lecture 
Based 

All Responses Matched 
Responses

p-
value

Lower 95% 
CI 

Upper 
95% CI

Pre 9.48 (N=124) 9.36 (N=63) 0.119 -1.31 1.55
Post 11.77 (N=102) 12.19 (N=63) 0.6541 -2.219 1.3789
Online All Responses Matched 

Responses
p-

value
Lower 95% 

CI 
Upper 

95% CI
Pre 9.90 (N=51) 11.18 (N=32) 0.3343 -3.918 1.3476
Post 11.91 (N=55) 12.81 (N=32) 0.5671 -4.025 2.2201
  

Maryland Biology Expectations Survey (MBEX) 
Web 
Assisted 
Lecture 
Based 

All Responses Matched 
Responses

p-
value

Lower 95% 
CI 

Upper 
95% CI

Pre 84.18 (N=113) 84.07 (N=58) 0.9402 -2.735 2.939
Post 82.02 (N=85) 81.42 (N=58) 0.7035 -2.517 3.7207
Online All Responses Matched 

Responses
p-

value
Lower 95% 

CI 
Upper 

95% CI
Pre 91.82 (N=41) 91.84 (N=30) 0.996 -5.6953 5.6663
Post 87.25 (N=47) 90.68 (N=30) 0.3213 -10.28 3.4156

Table 4. t-test comparison of means between all student responses and matched 
student responses on both the Biological Concepts Instrument and the Maryland 
Biology Expectations Survey. Results show no significant statistical difference 
between all student responses and matched student responses on both the BCI and 
MBEX. 

 When only considering matched students the web-assisted lecture based section had 63-

student scores and 58 valid student scores; the online section had 32-student scores and 

30 valid student scores for the BCI and MBEX, respectively.  

The results of the t-test comparison for the BCI across all scores versus matched only 

scores show no significant difference as seen in Table 4. 

The t-test comparison for the MBEX shows no significant difference between all 

students who took the pre-instruction assessment and the pre-score of those who took 

both the pre- and post- instruction assessment for either course format, that is, WALB-
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PreAll versus WALB-PreMatched had a p-value = 0.9402. The complete results of this 

comparison can be seen in Table 4. Accordingly, we find support to extend the matched 

results to the remainder of students in the respective sections. 

2.3.2. Student Conceptual Understanding - Biological Concepts Instrument 

(BCI) 

The web-assisted lecture based class had 63 matched student scores, whereas the 

online course had 32 matched student scores. The mean pre-instruction scores were 31% 

and 38% for the WALB and online courses, respectively. The post-instruction scores 

were 41% for WALB and 45% for the online courses. The course-based shifts from pre- 

to post- instruction yield effect sizes (Cohen’s d; Eom, Wen, and Ashill 2006; Cohen 

1992) of  0.58 and 0.25 respectively. Additionally, when looking at the scores pre- and 

post-instructions for student race/ethnicity representational status we see that statistically 

represented students (N=12) went from a pre-score of 36% correct to a post-score of 46% 

correct whereas statistically underrepresented students (N=77) go from 33% correct to 

42% correct. Conducting a similar comparison for student gender we see that males 

(N=30) shifted from 31% to 43% correct and females (N=65) shifted from 35% correct to 

42% correct. In order to better test these ranges in students’ scores based off of their 

demographics and course types we built the regression models to predict student BCI 

post-scores using pre-score, course type, student gender, and student statistical 

representation status, the best model (Model 3 in Table 5) produced a R2 = 0.4012, and a 

Cohen’s f2= 0.67. In this model course type was coded as Lecture/Online, student gender 

as Female/Male, and student race/ethnicity representational status as Rep/URep. 
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  Model 1 
R2 = 0.299 

Model 2 
R2 = 0.3009 

Model 3 
R2 = 0.4012 

Factors  
 Intercept 6.19*** 6.2831 5.1217** 
 Pre-instruction 0.62219*** 0.6308*** 0.7821*** 
 Course Type (Online) - -0.5275 -0.3903 
 Gender (Male) - - 0.9304 
 Race/Ethnicity 

Representation 
(Statistically 
Underrepresented) 

- - -0.5599 

*** p≈0        **p<0.001        *p<0.05        (p<0. 1) 
Table 5. Regression models predicting student Post-instruction score on the 
Biological Concepts Instrument. Models are built using Pre-instruction score, 
Course type, student Gender, and student Race/Ethnicity. Results show that Pre-
instruction score is the only statistically significant factor in explaining the variance 
in student Post-Instruction BCI score.  

 We can conclude from this analysis that 40% of the variance in student post-score 

on the BCI can be explained by the factors included. More specifically, the significant 

factors in Model 3 were student pre-score (and the intercept). Interactions between 

factors, for example the interaction between course type and gender, contributed only 

non-significant increases in R2 value. The shifts for the WALB course from pre-

instruction to post-instruction scores were found to be statistically significant, while the 

shifts for the online course were not found to be statistically significant.  

 2.3.3. Student Epistemological Attitudes - Maryland Biology Expectations 

Survey (MBEX) 

 The web-assisted lecture based course had 58 matched and valid (those who 

answered the filtering question correctly) student scores, and the online course had 30 

matched and valid student scores. The mean pre-score for the WALB course was 54% 

favorable and 60% favorable for the online section. The mean post-score for the WALB 

course was 53% favorable and 59% favorable for the online section. The course-based 



 

 41

shifts from pre- to post- instruction yield effect sizes (Cohen’s d) of -0.30 and -0.08 

respectively. Similar to examining the BCI results we explored the descriptive statistics 

for student demographics and their pre- and post-instruction MBEX scores. We found 

that statistically represented students (N=18) scored 58% favorable on the pre and 54% 

favorable on the post, while statistically underrepresented students (N=77) scored 55% 

favorable pre and 54% favorable on the post. Regarding the shifts in MBEX score for 

both male and female students we found that female scores shifted from 56% favorable to 

55% favorable; male students had MBEX scores that shifted from 56% favorable to 53% 

favorable.  

  Model 1 
R2 = 0.5221 

Model 2 
R2 = 0.539 

Model 3 
R2 = 0.5641 

Factors   
 Intercept 14.78582* 18.8317* 19.494* 
 Pre-instruction 0.80851*** 0.74784*** 0.75503*** 
 Course Type (Online) - (-3.58469) 4.1419* 
 Gender (Male) - - (-3.34353) 
 Race/Ethnicity 

Representation 
(Statistically 
Represented) 

- - -3.30047 

*** p≈0        **p<0.001        *p<0.05        (p<0. 1) 

Table 6. Regression models predicting student Post-instruction score on the 
Maryland Biology Expectations Survey. Models are built using Pre-instruction 
score, Course type, student Gender, and student Race/Ethnicity. Results show that 
Pre-instruction score and Course type are the statistically significant factors in 
explaining the variance in student Post-Instruction MBEX score. The results show 
that the students enrolled in the online course scored higher on average than the 
WALB course. 

When building the regression models to predict student post-score using student 

pre-score, course type, gender, and statistical representation status, using the codes of 

Lecture/Online for course type, Female/Male for student gender, and student 
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race/ethnicity representation status as 0 for underrepresented and 1 for represented. Using 

this coding scheme we found that the best model (Model 2 in Table 6) produced a R2 = 

0.539, with Cohen’s f2= 1.16. Model 2 used pre-score and course type as predictive 

factors, with only the intercept and pre-score meeting the threshold for significance at a 

p-value = 0.05. Model 3 was also tested (R2 = 0.564, Cohen’s f2= 1.29) and found to have 

a non-significant difference (p-value = 0.09) in R2 from that of Model 2 and also showed 

significance in the ability to describe that variance in student post-instruction MBEX 

results. While following Occam’s razor would suggest that the simpler of the two models 

(Model 2) is sufficient for the purposes of this study, using Model 3 allows us to answer 

additional questions of significance regarding gender and statistical representation status. 

Model 3 is comprised of the intercept, pre-score, course type, student gender, and 

statistical representation status. Of these factors involved in Model 3, significance at a p-

value = 0.05 was found in the intercept, pre-score, and course type. These significant 

factors indicate that, for example, for every one point a student scored favorable on the 

pre-instruction MBEX survey, their post score would be 0.755 points higher.   

However, when we check the assumptions of the model regarding the 

homogeneity of variance for the course type predictors we find that it violates the 

assumption that the two groups were not significantly different to begin (p-value = 0.005 

using Levene’s Test for Homogeneity). 
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2.3.4. Student Success - Drop, Fail, or Withdraw 

 Odds of success ratios comparing the online course and web-assisted lecture 

based course found 57 out of 75 successful students and 134 out of 228 successful 

students, respectively. Compared to the WALB, the odds of being successful in the online 

course were significantly higher, with an odds ratio of 2.22 with a 95% confidence 

interval of 4.015 – 1.229.  

 Odds Ratio 95% Confidence 
Interval 

Online vs. Web Assisted Lecture 
Based* 

2.221* 1.229 – 4.015* 

Male vs. Female (All Formats) 0.948 0.589 – 1.525 
Statistically Represented vs. 
Statistically Underrepresented (All 
Formats) 

0.8846 0.469 – 1.66 

Male vs. Female (Online) 1.758 0.55 – 5.606 
Male vs. Female (WALB) 0.845 0.495 – 1.44 
Statistically Represented vs. 
Statistically Underrepresented 
(Online) 

3.478 0.412 – 29.354 

Statistically Represented vs. 
Statistically Underrepresented 
(WALB) 

0.713 0.351 – 1.447 

Table 7. Odds ratio results comparing the odds of success based on course type and 
student demographics. The results show that the odds of success were only 
significantly different when comparing the two different course types, with the odds 
of being successful 2.22 times higher than the odds of being successful in the WALB 
course. 

 

 There were no significant differences when comparing overall differences in 

gender success, statistical representation differences in success, or course specific success 

for either of the demographic disaggregation (Table 7).  
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2.3.5. Formation of Student Networks - Social Network Analysis 

The mid-semester survey of students study partners had a total of 115 respondents 

in the WALB section and 53 respondents in the online section, response rates of 50% and 

70% respectively. This response rate is appropriate for an ungraded optional survey 

(Russell 2014; Grunspan, Wiggins, and Goodreau 2014). Within each of these courses, a 

total of 155 and 60 individuals were named (either taking the survey themselves, or 

selected as connections by people who did). This translates into 155 out of a possible 228 

nodes “present” in the WALB course and 60 out of a possible 75 nodes for the online 

course (Figures 1 and 2). The degree centrality—the number of reported connections a 

student has—averages 3 study partners for the WALB section and 2 for the online 

section. However, an average difference of one study partner may be due to the 

differences in class size alone. Therefore, we calculated the probability of having k study 

partners, also referred to as the probability of degree distribution. It was found that there 

were no significant differences in these probabilities in the range of k=0 to k=6 (Figure 

Figure 1 Sociogram for the Web-Assisted 
Lecture Based Section of General Biology I 

Figure 2 Sociogram for the Online 
Section of General Biology I 
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3). The probability of students reporting that they had at least zero study partners (k=0) 

was 100% for either course type, by definition. The probability dropped dramatically, to 

50%, when we looked at students naming at least two of their peers as learning 

community members who they worked with to learn biology. At k=6 the probability 

drops to ~12% for either course type. 

 

Figure 3 Cumulative degree distribution of the two course formats of General 
Biology I. The vertical axis is a measure of probability and the horizontal axis is the 
number of study partners. Results show that both course types are similar in terms 
of the probability of having up to 6 study partners or less.  

  For the WALB course, this means that out of the 228 students enrolled, only 28 

students selected having at least 6 members of their learning community. For the online 

course, only 9 out of the possible 75 students selected at least 6 study partners.  

2.4 Discussion  

 Online education as a replacement to in-person courses has seen considerable 

growth in university settings across the US. As online courses proliferate, a 

simultaneously growing body of work explores the perceptions held by administration, 



 

 46

faculty, and students regarding online education. However, there seems to be a lack of 

measured student outcomes in such course types, especially when we look at biology 

education. With the aim of filling this gap in the literature, we investigated differences 

between students enrolled in an online section of General Biology I and a web-assisted 

lecture based section of General Biology I, both taught by the same instructor. The 

measurements conducted were on student conceptual understanding, epistemological 

expectations, DFW rates, and the formation of student-to-student networks. With these 

combined measurements, we can begin to capture the complexity of the students’ 

learning environments, be they physical or digital.  

2.4.1. Student Conceptual Understanding (BCI)  

We found no significant differences between the course formats when comparing 

students’ post-instruction scores on the BCI and controlling for pre-instruction score. 

There was a significant gain found in the web-assisted lecture based course format and no 

significant gain detected in the online section. However, when we analyzed these results 

using regression analysis to control for the students’ pre-instruction scores and account 

for the differences in population between the two courses formats, there is no significant 

difference in terms of gains between the course types. When disaggregating these results 

to look at student characteristics, we also found no significant difference in the post-

instruction BCI score between male and female students, or between statistically 

represented and statistically underrepresented students in either course type. These results 

show a lack of difference between students of varying demographics while enrolled in 

either course format, suggesting that either course type is equally likely to have the same 

impact on student conceptual understanding of General Biology I concepts. These results, 
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combined with a lack of differences between both gender and statistical representation 

status, contradict the results of Summers, Waigandt, and Whittaker (2005) and Eddy, 

Brownell, and Wenderoth (2014), which found gender disparity within the similar 

context of introductory biology courses. It is also important to note that there is a possible 

explanatory mechanism for the lack of difference between gender and representation 

status. This explanatory mechanism may be instructor’s gender (female) and statistical 

representation (statistically underrepresented), and the role it plays in student conceptual 

understanding (Anstine and Skidmore 2005; Price 2010; Bettinger and Long 2005). One 

way to explore this mechanism is by conducting a cross-instructor study looking at all 

sections of the General Biology I course, regardless of format, at this large-Hispanic 

serving university. In comparing the results of this study to those of Eddy et al. (2014), it 

is important to consider the differing contexts between the study sites. The student 

population surveyed by Eddy et al. (2014) was drawn from a university of majority 

statistically represented students, while this study surveyed students at a majority 

statistically underrepresented university.  

 

2.4.2. Formation of Student Networks (SNA) 

This study also found that there was no significant difference between the course 

types when it came to the development of student-student networks/study partnerships. 

This result is one that we found counterintuitive, as we expected the students enrolled in 

the online format to be significantly more isolated than the students enrolled in the 

WALB section. The presence of a student community has long-term consequences, as 

explored in research by Tinto (1997), showing that the formation of a community of 



 

 48

students and the participation within these communities has been linked to persistence 

through a major and retention through a course in general. Thus it might be argued that 

the students of either course format are equally as likely to be retained throughout the 

course. Our results indicate that both course formats are equally successful in providing 

students opportunities to form a learning community. However, it is possible that these 

study groups formed during the mandatory in-person laboratory taken by all students, 

regardless of course format type. This effect could be investigated by factoring in co-

enrollment of the listed study partners in the same laboratory sections. However, this 

course enrollment information was not made available to the research team. Nonetheless, 

it seems highly unlikely that students only form networks during lab sessions and do not 

form new networks in their online or WALB sections.  

 2.4.3. Student Success (DFW) 

This study did find a significant difference in the odds of success, that is the odds 

of receiving a passing grade (C or better) rather than failing (C- or worse), dropping, or 

withdrawing, between the two course formats. We found that online course students were 

two times as likely to be successful in their General Biology I course. When broken down 

by gender and ethnic representation, no significant differences between the course types 

emerged based on gender, statistical representation status, or interaction of these two 

student demographic factors. One possible explanation for the difference in student 

success between the two different course types is that there are different demographics 

between the two student populations that were not considered, such as years in college or 

student age. These factors would be important to consider for this analysis, because many 

of the students enrolled in the web-assisted lectured based format were in their first year 
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of college and thus adjusting to the multifaceted differences between high school 

courses/coursework and university level courses/coursework. Student age is also 

important to consider, because older students may be more successful in an online course 

(Allen and Seaman 2013; Anstine and Skidmore 2005).  

Another important factor that may influence these results is the existence of pre-

course student differences. These pre-course differences were observed in our BCI and 

MBEX results, and controlled for using regression analysis. However, we were unable to 

control for these pre-course differences using an odds-of-success analysis, and thus this 

could be an additional influencing factor on finding that the online course students are 

more likely to succeed in General Biology I.  

 2.4.4. Student Epistemological Attitudes (MBEX) 

The Maryland Biology Expectations Survey (MBEX) also showed significant 

differences between the two different course types in this study. The results of the 

regression analysis found that both Model 2 (Intercept, Pre-score, and Course format) and 

Model 3 (Intercept, Pre-Score, Course format, student gender, and student 

representational status) were significant predictors of students’ post-instruction scores. 

However, it is important to note that once the additional factors (gender and statistical 

representation status) were included in Model 3, the course type shifted from non-

significant to a significant predictor of student outcomes. This result suggests that there is 

something more on the student-level that is not factored into the analysis, but also shows 

that there is a significant difference between course types in predicting student post-

instruction MBEX scores. These statistically significant differences between the two 

course types, as indicated by regression Models 2 and 3, are likely due to the fact the 
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assumption of homogeneity of variance is violated for course type. Taking this into 

consideration it is also important to consider that we also detected a significant difference 

between course format when examining the odds of success.  

This significant difference between the course types is also evident in the shift of 

MBEX scores for each course type. The web-assisted lecture based course has a 

significant negative shift; students have epistemological expectations that shift away from 

the favorable. The online course has no significant difference between students’ pre-

instruction and post-instruction MBEX scores. However, when studying student 

epistemological expectation and attitudinal survey scores, it is important to consider the 

fact that a non-significant shift between pre- and post- instruction scores is often viewed 

as a positive result. We emphasize this fact because it is often the case that students’ 

epistemological expectations of science courses and content decreases as the progress 

through a course (Brewe, Traxler, de la Garza, and Kramer. 2013; Cooper 2011; Brewe, 

Kramer, and O’Brien 2009; Hall 2013).  

 Collecting four different measures – spanning conceptual, 

attitudinal/epistemological, social, and overall outcomes – allows us to begin to measure 

the complexity of a classroom. In our study, we see that the course types are not 

distinguishable on two of the four measures (BCI and SNA), but that there are significant 

differences between the course types on two of the other measures (MBEX and DFW). 

While the course type differences on MBEX may violate homogeneity, it does suggest 

that we look deeper into differences between these two course types because the 

differences are likely linked to student level factors not considered in this study, such as 

age, years in college, and/or full-time or part-time enrollment (Klymkowsky, Underwood, 
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and Garvin-Doxas 2010; Paulsen and Wells 1998). A major question stemming from the 

significant differences found in this study is: if we were to factor in these other student 

demographics, would this explain enough of the variance in these significant measures to 

shift the significant differences found between the course types to a non-significant 

difference?  One promising possibility for addressing this question is through the use of 

propensity score matching (Hall 2013; Dehejia and Wahba 1998; Caliendo and Kopeinig 

2005).  

 2.4.5. Educational Implications 

 Our study has found that the course types were generally equivalent for the 

outcome measures that we selected. However, one difference occurred in a measurement 

closely tied to the course – odds of earning a grade of C or higher. These differences, as 

previously discussed, may be due to pre-course differences between the two student 

populations, or differences in un-measured student demographic characteristics such as 

age. One additional factor that may have influenced the difference in odds of success is a 

change in the clarity of expectations. When a student enrolls in an online course, there is 

likely a certain set of expectations about how to be successful in the course he or she 

understands at the moment of enrollment, but in a course that has a more traditional face-

to-face meeting these expectations can vary dramatically, such as the traditional sage-on-

stage in contrast to an active learning environment using think-pair-share. Providing 

students with a clearer set of expectations of how to be successful in face-to-face courses 

before students enroll may help establish no statistically significant difference in the odds 

of getting a C or better between instructional formats.  
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In describing these two course types as essentially equally effective, the additional 

factor of course size must be considered. Our section here, 75 students, although large for 

an online course, it is considered a small section compared to face-to-face class size (228 

students). This smaller size allowed opportunities for higher instructor involvement and 

interaction with the students. This could lead to the instructor having a high social 

presence, which has been seen to influence students experiences in online courses 

(Brewe, Kramer, and O’Brien 2010; Richardson and Swan 2003; Brewe, Kramer, and 

Sawtelle 2012). These results also beg the question of what course sizes these results 

might extend to—both in absolute numbers, and in ratio to a WALB course. Is the limit at 

equal sizes to the WALB class, or at a scale more like that of MOOCs?  

 Finally, both courses showed no significant difference between them on the BCI 

and probability of degree distribution using Social Network Analysis. However, it is still 

important to address these aspects of the course. Regarding the formation of student-to-

student learning groups, it is likely beneficial for the students to have a higher probability 

of having a network consisting of more than 2 peers. It would be productive to consider 

how to encourage the formation of a larger peer learning community in our courses. As 

students interact with a greater number of peers, they are given more opportunities to 

engage with and discuss course materials in a learning community (Picciano 2002; Tinto 

1997; Brewe, Kramer, and O’Brien 2010; Goertzen, Brewe, and Kramer 2011; Brewe, 

Sawtelle, Kramer, O'Brien, Rodriguez, and Pamela 2010). Participation in community, 

already a factor of known importance in face-to-face university student success, may 

change form but will remain equally important as online courses and MOOCs change the 

educational landscape.  
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When we look at the conceptual understanding, these courses had an average of 41% 

and 45% correct on the post-instruction BCI for the web-assisted lecture based course 

and the online course, respectively. These scores, however, are still less than 50% of the 

items correct on the BCI. At this point, we might question if either of these course 

formats are the most productive when it comes to content learning gains in students. 

Freeman, Eddy, McDonough, Smith, Okoroafor, Jordt, and Wenderother (2014) have 

found that lecture based courses, which we found are not significantly different than 

online based courses, are likely to be less productive than reformed instructional practices 

regarding student content knowledge gains. What these reformed instructional practices 

and course formats look like specifically is still open for debate. But it is one that will 

hopefully see increased odds of success; greater conceptual understanding gains and 

positive epistemological expectation shifts; and a higher probability of students forming 

larger student-student networks.  
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CHAPTER 3 TOWARDS UNIVERSITY MODELING INSTRUCTION – 
BIOLOGY: ADAPTING CURRICULAR FRAMEWORKS FROM PHYSICS TO 

BIOLOGY 
 
 3.1  Abstract 

University Modeling Instruction (UMI) is an approach to curriculum and 

pedagogy that focuses instruction on engaging students in building, validating, and 

deploying scientific models. Modeling Instruction has been successfully implemented in 

both high school and university physics courses. Studies within the physics education 

research (PER) community have identified UMI’s positive impacts on learning gains, 

equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach 

has been recognized within the physics community, the use of models and modeling 

practices is still being developed for biology. Drawing from the existing research on UMI 

in physics, we describe the theoretical foundations of UMI and how UMI can be adapted 

to include an emphasis on models and modeling for undergraduate introductory biology 

courses. In particular, we discuss our ongoing work to develop a framework for the first 

semester of a two-semester introductory biology course sequence by identifying the 

essential basic models for an introductory biology course sequence. 

3.2  Introduction 

The American Association for the Advancement of Science (AAAS) has issued a 

call for the reform of undergraduate biology and has identified six student competencies as 

essential to this reform (AAAS, 2011). One of these competencies is for students to gain 

skills at developing, implementing, and evaluating scientific models, because “modeling is 

a standard tool for biologists” (AAAS, 2011). 
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Not only has the AAAS made an explicit call for the inclusion of modeling 

abilities and skills as one of the core competencies, but the National Academy of 

Sciences (NAS) has made it one of the scientific practices that comprise A Framework for 

K–12 Science Education (National Research Council [NRC], 2012). The framework 

even goes as far as to say “curricula will need to stress the role of models explicitly and 

provide students with modeling tools . . . so that students come to value this core practice 

and develop a level of facility in constructing and applying appropriate models” (p. 59).  

Even before AAAS and the NAS made model development and use a core 

competency and practice for biology students, there was considerable research by 

biology educators on models and modeling (Stewart et al., 2005; Lehrer and Schauble, 

2006; Windschitl et al., 2008; Odenbaugh, 2009; Passmore et al., 2009; Schwarz et al., 

2009; Svoboda, 2010; Svoboda and Passmore, 2011). However, there is no consensus on 

what models are, what constitutes the practice of modeling, and how to develop modeling 

skill while also delivering content. 

Students’ development and use of models has been well-researched in other 

fields of science, particularly within physics (Hestenes, 1987; Schauble et al., 1991; 

Wells et al., 1995; Desbien, 2002; Halloun, 2006; Brewe, 2008). It is from this work that 

we shape our argument for the adaptation of a pedagogical and curricular framework 

known as UMI to biology. 

The aim of this paper is to discuss how models and modeling have been described 

within the different scientific disciplines, introduce the components of UMI, and 

provide examples of a basic model from the UMI viewpoint. We will then provide a 



 

 60

framework to structure the curriculum around the essential basic biological models for the 

application of UMI to first-semester introductory biology. 

3.3 Background on Models and Modeling Within Biology Education 

Biology education research has investigated the use of models and the process of 

modeling in biology. However, this work tends to lack explanation of how to implement 

the pedagogical technique and descriptions of the organizing biological models needed 

for introductory university courses. 

3.3.1. Arguing for the Use of Models 

Researchers have called for models to be used in science courses, because this 

more closely aligns with authentic scientific practice. Windschitl et al. (2008) argue for 

the use of what they call “model-based inquiry” (p. 2) to become the new focus of 

science courses, as opposed to the traditional scientific method. Using the biology 

classroom as the context for their argument, they state that the traditional scientific 

method “emphasizes the testing of predictions rather than ideas, focuses learners on 

material activity at the expense of deep subject matter understanding, and lacks 

epistemic framing relevant to the discipline” (p. 1). Windschitl and colleagues contend 

that “model-based inquiry” is superior to the traditional scientific method, because it 

allows students to engage in an authentic practice of scientists, which is the 

“development of coherent and comprehensive explanations through the testing of 

models” (p. 5). Passmore et al. (2009) argue that models should be used in science 

courses, because models are the central practice of all scientific disciplines: “The 

development, use, assessment, and revision of models and related explanations play a 
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central role in scientific inquiry and should be a prominent feature of students’ science 

education” (p. 395). 

3.3.2. Functional Role of Models 

Models are a prominent component of all scientific disciplines, although their 

roles vary across disciplines and within the discipline of biology. Passmore et al. (2009) 

state that a model gathers “theoretical objects and the processes they undergo and thus 

serves as a mechanism that can be used to explain why something in the natural world 

works the way it does” (p. 395). That is to say, models explain scientific theories. 

Odenbaugh (2005), while agreeing with Passmore and colleagues, believes that 

models serve to do much more. He argues that they allow the biological community to 

explore possibilities, investigate more complex systems, provide conceptual frameworks, 

create accurate predictions, and generate explanations (Odenbaugh, 2005). Odenbaugh 

says the models allow scientists to explain and reason within specifics that may have 

previously been unknown, and Svoboda and Passmore (2011) add that models “facilitate 

the communication of ideas” (p. 2). Thus, scientists use models to discuss, modify, 

manipulate, and expand their understanding. Odenbaugh’s argument that models allow 

scientists to investigate more complex systems is one that we view as fundamental. 

Biological systems range from internal cellular systems to whole ecological systems. 

These systems comprise many intertwined components. To develop models of these 

complex systems, scientists must identify simplifying assumptions, while attending to the 

relevant components. This process reduces the scale students and scientists must use in 

order to effectively reason about these complex systems. 
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To demonstrate the functional role of models within biology, we now present a 

contextualized argument using Listeria monocytogenes as a multipurpose specific model. 

L. monocytogenes, the Gram-positive bacterium responsible for diseases such as 

meningitis, septicemia, and gastroenteritis, has been used as a model organism—a specific 

model—for cellular biologists to describe many complex phenomena. One of the 

complex phenomena that L. monocytogenes has been used to model is that of the 

invasion of macrophages. Through the development of this L. monocytogenes–specific 

model of macrophage invasion, researchers have been able to generalize to a basic 

pathogenic bacteria model for these complex phenomena (Hamon et al., 2006). 

The use of a L. monocytogenes–specific model has allowed researchers to 

“suggest the need for [further] empirical studies” (Svoboda and Passmore, 2011, p. 2). 

For example, while modeling the phenomenon of the listeriolysin O pore-forming 

mechanism, researchers found that this toxin exhibits optimal activity at a lower pH than 

other pore-forming toxins, which suggests a direction for future studies (Hamon et al., 

2006). 

Thus, modeling is a beneficial practice for students, because it is an authentic 

practice of biology. Several questions remain concerning the use of modeling in the 

classroom: What are the basic models in an introductory biology class? How do we 

systematically engage students in the construction, validation, deployment, and 

modification of these models? It is our aim to provide answers to these questions. 

3.3.3. Models and Modeling in the Classroom 

Moving from the field and into the classroom, Lehrer and Schauble (2006) 

describe the act of modeling in the classroom, saying, “one cannot engage in the activity 
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of modeling without modeling something, and the something (the content and domain) is 

critical with respect to the questions raised, the inquiry pursued, and the conclusions 

reached. At the same time, modeling is a practice, not a predigested heap of facts” 

(Lehrer and Schauble, 2006, p. 383). The specific model of L. monocytogenes discussed 

above demonstrates the value of modeling something. If the researchers had explored the 

macrophagic invasion mechanisms or pore-forming toxins phenomena without using L. 

monocytogenes as the specific model, the information they learned would simply have 

be- come a generic list of facts, rather than a contextualized, validated, and applied model 

separate from the phenomenon. 

While we agree with Lehrer and Schauble (2006) regarding the importance of 

modeling something, they also argue that models function as analogies (p. 372). These 

analogies allow students to have a representation of phenomena, such as the solar system, 

that are otherwise too large to easily understand. We argue that, for Lehrer and Schauble, 

models function as a way for students to interact with learned content and not as a way for 

students to both learn and engage with the content. However, we believe their perspective 

needs to be expanded to include having students use and develop models. By using and 

developing models, students are not only exploring content but also developing a deeper 

and richer understanding of the phenomena. We think that students also learn through 

modeling the foundational knowledge elements and their structure, as valued within a 

discipline. 

These arguments on the function and benefit of models and modeling in biology 

show the importance of identifying the models within introductory biology. The 

identification of these models would allow the full development of a two- semester 



 

 64

introductory biology sequence. The difficulties of developing model-based courses can 

be alleviated by drawing upon research from the physics education community on their 

use of models in physics classrooms. 

3.4 Modeling Within the Physics Classroom Context 

There is much overlap between scientific disciplines on the practice of using 

models. However, there are differences be- tween the disciplines in employing models as 

the curricular focus. Hestenes (1987, 1992) describes models as being one of the integral 

parts of scientific knowledge. He defines a scientific model as “a surrogate object, a 

conceptual representation of a real thing” (Hestenes, 1987, p. 4) and a physics model as a 

mathematical model. This is one of the major differences between biology and physics 

models. We reject these strict definitions of scientific and physics models and expand 

these definitions of models, particularly scientific models, to better function for biology. 

Halloun (2006) defines a scientific model as “a conceptual system mapped, within the 

context of a scientific theory, onto a specific pattern in the structure and/or behavior of a 

set of physical systems as to reliably represent the pattern in question and serve specific 

functions in its regard” (p. 24). While this definition of a scientific model is more in line 

with modeling in biological systems, it is insufficient to shape how models can be used 

in a classroom. With this in mind, we define a scientific conceptual model as a 

coordinated set of representations (e.g., graphs, equations, diagrams, and/or written 

descriptions) of a particular class of phenomena that exist in the shared domain of 

discourse. In addition, we contend that students should first model specific situations by 

constructing specific models and then abstract out to basic models (Nersessian, 1995, 

2002). Basic models are models that cover all fundamental conceptions, but that are not 
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tied to specific phenomena or systems. In the example of L. monocytogenes, a specific 

model of how L. monocytogenes invades cells was first constructed. This was later 

generalized to a more basic model of pathogenic bacteria. Basic models are both 

descriptive and explanatory, while being general enough to apply to multiple similar 

phenomena (Halloun, 2006). The procedural knowledge that Hestenes refers to as the 

scientific method can be incorporated into the biology classroom through the process of 

developing specific models that are then abstracted out to more basic models (Hestenes, 

1987). 

Windschitl et al. (2008) also aver that modeling and model-based reasoning can, 

and in fact should, serve as the new norm within science classrooms. UMI is a 

curricular framework that establishes 

modeling as the science classroom norm. UMI 

is composed of three aspects: modeling 

theory of science (Hestenes, 1987; Wells et al., 

1995; Halloun, 2006), modeling theory of 

instruction (Hestenes, 1987; Wells et al., 1995; 

Brewe, 2008), and modeling discourse 

management (Desbien, 2002; Durden et al., 

2011). We draw on University Modeling 

Instruction — Physics (UMI-Physics) to scaffold the development of UMI in biology, and 

we provide an overview of these theoretical foundations in the following section. 

 

Figure 1 UMI is considered the nexus of 
modeling theory of science, modeling theory 
of instruction, and modeling discourse 
management 
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3.5 University Modeling Instruction 

UMI represents the juncture of the modeling theory of science, the modeling theory 

of instruction, and modeling discourse management, as seen in Figure 1. We will now 

describe each of these three components in further detail. 

3.5.1. Modeling Theory of Science 

The modeling theory of science is the basic premise that scientific paradigms, such 

as biology, progress through an ongoing process of model construction, validation, 

deployment, and revision (Halloun, 2006). This basic premise also states that disciplinary 

knowledge is generated through this same on- going process. Thus, UMI rests on the 

epistemological foundation established by the modeling theory of science. In the 

modeling theory of science, a scientific theory is a set or family of models and a “set of 

particular rules and theoretical statements that govern model construction and 

deployment and that relate models to one another ” (Halloun, 2006, p. 17). This perspective 

places models in the middle of a hierarchical structure, below laws and theories but above 

concepts, and argues that models are the way in which scientists understand and 

conceptualize science (Hestenes, 1987). This middle level between theories and concepts 

allows models to serve a critical function within science; they act as the bricks and mortar 

of a theory and are the basis for how scientists argue. Therefore, they serve as the ideal 

level for the development of student of understanding of both concept and theory. 

3.5.2. Modeling Theory of Instruction 

The modeling theory of instruction serves as a framework for the application of 

the modeling theory of science to the classroom. The modeling theory of instruction 

asserts that building, validating, deploying, and revising models is the central activity of 



 

 67

scientists, and students therefore should be engaged in a similar pursuit. Models should 

be the focus of the content and modeling should be the primary activity in which 

students are engaged throughout a science course. The modeling theory of instruction 

suggests a pedagogy that is student-centered, and it intentionally creates a community of 

learning through student-to-student communications. This pedagogy also explicitly asks 

students to create, validate, deploy, and revise these scientific models. The process of 

creating and developing models “focuses on qualitative and quantitative model 

development and testing” (Brewe, 2008, p. 1155) and follows a specific path called the 

modeling cycle that Brewe describes as “introduction and representation, coordination of 

representations, application, abstraction and generalization, and refinement” (Brewe, 

2008, p. 1156). 

3.5.3. Modeling Discourse Management 

While both the modeling theory of science and the modeling theory of instruction 

may together establish a classroom that engages students in authentic scientific practice, 

we believe that it is also important to structure the discourse to support the development 

of models and the process of modeling. Modeling discourse management shapes in-class 

discourse by providing instructors with a set of discourse management tools to guide 

students so that authentic science discourse occurs. These discourse management tools 

range from the intentional lack of closure, which can cause “students to wrestle with the 

issues outside class and return with new ideas to share” (Desbien, 2002, p. 84) to Socratic 

questioning. Other modeling discourse management tools are small-group work, whole-

class discussions, and “seeding” (Desbien, 2002, p. 83). Seeding is the introduction of a new 

concept, idea, or question into an intentionally chosen small group that allows them to 
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create their own interpretation of the concept, idea, or question (Durden et al., 2011). The 

small group then presents the created interpretation to the whole class. Classroom 

discussion is generated, because students, rather than the instructor, present the idea, and 

this leads to a resolution. 

3.5.4. Research on UMI-Physics 

UMI has been developed and researched in the PER community, whose research 

has explored the effects of UMI on the gender and ethnicity gaps (Brewe et al. 2010), 

students’ attitudes about science (Brewe et al., 2009), and students’ self- efficacy (Sawtelle 

et al., 2010). These research results are one of the motivating factors in adapting UMI to 

biology. 

Using the Force Concept Inventory (FCI; Hestenes and Wells, 1992), Brewe et al. 

(2010) explored the odds of success effects that UMI-Physics had on the ethnicity and 

gender gaps that exist within the physics discipline. They also investigated the 

performance differences between students in traditional lecture courses versus those 

enrolled in UMI- Physics. The results were that students in UMI-Physics out-performed 

students on the post instruction FCI (61.9% vs. 47.9%, respectively, p < 0.001). In 

addition, UMI-Physics students had higher (6.73-fold) odds of success (a grade of C− or 

higher) than those in traditional lecture. However, these positive results become mixed 

when broken down to examine gender and ethnicity. UMI-Physics did not widen the 

ethnicity gap in FCI scores, the ethnicity gap in odds of success, or the gender gap for 

odds of success, but it did widen the gender gap for FCI score (Brewe et al., 2010). 

UMI-Physics classes not only have predominantly positive results with regard to 

conceptual understanding of physics topics (Brewe et al., 2010), but they also have the 
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first published positive results  for  reformed introductory physics courses on the 

Colorado Learning Attitudes about Science Survey (CLASS-Phys; Brewe et al., 2009). 

This survey targets students’ attitudinal beliefs and compares them with expert attitudinal 

beliefs, such as “viewing physics as a coherent, connected group of topics and seeing 

problem solving as a conceptually grounded search through the knowledge base, rather 

than as a hunt for equations” (Adams et al., 2006; Brewe et al., 2009, p. 013102-1). It was 

found that UMI-Physics had significant positive shifts overall and positive shifts in four of 

the subcategories that make up the CLASS-Phys (Brewe et al., 2009). 

Self-efficacy, one’s confidence in one’s ability to perform a task, is another area 

that has been explored within the context of UMI-Physics. Traditional lecture classrooms 

had negative impacts on the self-efficacy of all students, a result in contrast with that of 

UMI-Physics, which had neutral impacts when evaluating all students. However, when 

the results were broken down by gender, the study shows distinct differences between the 

components of self-efficacy interactions with gender (Sawtelle et al., 2010). Using the 

results of Brewe et al. (2009, 2010) and Sawtelle et al. (2010), we argue that the UMI 

framework of UMI-Physics should be used to adapt and reform undergraduate biology 

courses. 

3.6 University Modeling Instruction—Biology 

3.6.1. Adapting University Modeling Instruction to Biology  

One of the major challenges faced in adapting a UMI frame- work from physics to 

biology lies in the need to adapt model-centered epistemology to authentically represent 

the discipline of emphasis. This is due to the fact that physics is a discipline with 

clearly defined and distinguishable laws and theories, while biological theories and laws 
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are difficult to distinguish. To adapt the model-centered epistemology for biology, we are 

adapting the middle-out hierarchical structure described by Halloun (2006). This 

structure places models at the basic level—the middle—of the “conceptual hierarchy, 

between theory and concept” (p. 21). We propose adapting this hierarchy by replacing 

theory with what we will refer to as theoretical structure. This change allows us to 

account for the elements that comprise the ontological and epistemological assumptions—

the things, relationships, and mechanisms that make up the model of situation—across the 

disciplinary boundaries that are serving to shape the middle-out hierarchical structure of 

models and modeling. 

Representations used in constructing the model must also be altered when 

adapting UMI from physics to biology. Representations play a vital role within the 

modeling process, as it is through the addition and refinement of these representations 

that a model’s robustness is developed. In UMI, as in science, the representations used 

within the model must coordinate with one another, which is what allows models to 

explain phenomena. 

In adapting UMI to biology, we have chosen to feature some of the cross-disciplinary 

representations from UMI-Physics in conjunction with biology-specific representations 

from both primary literature and representative textbooks. However, for the purposes of 

this paper, we will focus on these cross- cutting representations. These cross-cutting 

representations not only cross the boundaries for UMI, but also are those that allow us 

to define a common theme that ties together scientific disciplines. 

An example of a UMI representation that can be used across disciplinary boundaries 

is the energy pie chart. Energy pie charts are representations used to describe the storage 
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and transfer of energy within a given system, such as the system of a ball dropping to the 

ground or energy transfer from coral zooxanthellae to the coral polyps and continuing 

throughout the food web in a coral reef biome. The incorporation and use of the energy 

pie chart representational tool allows for students to describe the substance-like flow of 

energy within a specific ecosystem. For a further discussion on the use of energy pie 

charts, see Brewe (2011). This representational tool is able to cross-cut from the 

introductory physics models to the introductory biology models; featuring it in both 

types of courses shows energy to be a common thread in both disciplines. 

3.6.2. Content Organization 

Much like the organization of UMI-Physics as described by Brewe (2008), UMI–

Biology (UMI-Bio) organizes its content for introductory biology around a small number 

Table 8 Comparison of content in UMI-Bio and a more standard biology course – Adapted from 
Brewe (2008) 
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of basic models. This is beneficial, because “the organization matches ex- pert knowledge 

organization in which a few fundamental principles are viewed as requisite for a very 

broad understanding” (Brewe, 2008, p. 1156). Not only does this organization reflect 

expert knowledge organization, but it also allows students to see this small number of 

basic models as a manageable amount of knowledge to understand. This is unlike a 

traditional two-semester sequence of introductory biology that focuses on covering 20-

plus chapters containing a large number of principles, concepts, and topics. Further 

differences between UMI-Bio and a traditional introductory biology course can be seen 

in Table 8, modified from Brewe (2008). 

3.6.3. Short Theoretical Vignette of UMI-Bio 

Another way to envision UMI-Bio is through a short description of an idealized 

class activity in which a plant cell model is discovered to be inadequate to explain 

phenomena and an animal cellular model is introduced. Prior to the class, students will 

have worked extensively with prokaryotic cells, plant cells, cell stains, and light 

microscopes, and should have an understanding of scale, structure and function, and 

energy pathways. Students will first be asked to create descriptive models of a new cell 

type presented to them on a prepared microscope slide. Students can use the basic 

prokaryotic or plant cellular models as a template, but will quickly find that neither of 

these models can be applied to the current phenomena, as the scale and many of the 

structural elements are different. Working in small groups, students would then collect 

observations to begin developing and refining their new descriptive cell model. While the 

students collect data, the instructor would ask one group why either of the basic models 

developed so far in the class (prokaryotic or plant cell model) do not apply to this current 
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cell phenomenon. Students are likely to respond with “This is not a prokaryotic cell” or “It 

is not stained the same as a plant cell.” Once the students have introduced these ideas, the 

instructor would encourage them to pursue these ideas by asking what other organisms 

they believe this cell could be. This would lead to a discussion about organism types, 

with commonsense questions, such as, “What other organisms exist on this planet?” The 

need to consider other organisms would cause the instructor to intro- duce an animal 

cellular model. As a result of this interaction, the instructor will have seeded the group 

with the concept of an animal cell model. During the whole-class discussion, this group 

will be asked to introduce the general animal cell model to the whole class. This would 

allow for students as a whole class to build a more robust theoretical structure of cellular 

biology, with minimal input from the instructor. 

3.6.4. Identifying Basic Models in Biology—Methods 

Identifying the basic models within introductory biology required a metalevel 

analysis of the content of introductory biology. While models have been described in 

various ways within biology, there are few descriptions that are aligned with the 

definition of a basic model provided by Halloun (2006). With this in mind, we 

undertook a three-part model and theoretical structure identification effort involving 

exploratory interviews with experts in the domain and a review of two representative 

introductory biology textbooks, returning with a member check of our proposed basic 

models. The first part of the process was exploratory interviews with two biology 

professors, Charles and Gregor (all names are pseudonyms). Charles holds a PhD in 

population biology and conducts research that focuses on conservation and restoration 

and evolutionary and tropical biology. Gregor, a PhD in ecology and evolution, is 
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currently focusing on plant conservation genomics and evolutionary ecology. Both 

Charles and Gregor are members of large research universities. These interviews were 

conducted to elicit the participants’ expectations about models and theoretical structures 

they expect their students to understand after completing an introductory biology course 

sequence.  

The interviews were conducted using a semistructured interview format, as 

described by Rubin and Rubin (2004). Each of the interviews lasted approximately 1 h. 

These interviews were then transcribed and analyzed to identify areas of theoretical 

structure, basic models, or areas that needed further refinement through review of 

representative textbooks. 

Following our analysis of the interviews, a review of representative textbooks was 

conducted to further develop, refine, and support proposed theoretical structures and basic 

models identified in the interviews. If an additional basic model was identified during the 

textbook review, it was added to the identified models noted for further consideration in 

the curricular sequence. The reviewed textbooks included widely used and accepted 

textbooks from biology courses (Raven et al., 2011; Reece et al., 2011). These 

combined results were presented to biology faculty for additional feedback and can be 
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found in Table 9.

 

Table 9 Essential model-centered hierarchies for the first semester of a two-semester 
general biology UMI-Bio sequence 

These combined results after the interview and textbook analysis were presented 

to biology faculty and to the interview participants for additional feedback. The 

combined results can be found in Table 9. The interview participants were presented with 

these results to allow for a member-checking process during which they were encouraged 

to verify correct interpretations, correct any incorrect interpretations, and expand on any 

quotes they felt necessary. 

3.6.4.1. Interview Results 

During the analysis of the interview transcripts, we were able to identify multiple 

basic models and theoretical structures that participants viewed as essential components 

of an introductory biology course. One of the models that emerged from both interviews 

was a basic model of transcription and translation. This model emerged from Charles’s 

statement that the process of DNA becoming RNA and then becoming proteins is even 
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“[the] central paradigm of molecular biology.” He continued on to say that one could 

“teach from the ‘central dogma’ and then take examples of how RNA is turned back into 

DNA” by reverse transcription. Gregor echoed the importance of this model, saying, 

“[you can] get them to model [transcription and translation], go the reverse direction with 

reverse transcriptase, RNA to DNA.” 

We identified a model of evolution as a focal aspect of an introductory biology 

course, according to both participants. Gregor said that, “evolution is its own model,” 

while Charles discussed the historical nature of models within the study of evolution. On 

our member check, Gregor expanded his statement regarding evolution’s role as a model to 

say that, “evolution by natural selection has a long history as a central model for 

explaining several phenomena that were challenges to non-evolutionary paradigms that 

preceded Darwin.” Further evidence of evolution as a basic model was biology’s goals of 

understanding “what creates, maintains, and leads to the loss of genetic variation with 

populations” (Charles) and “trying to predict changes in allele frequency over time” 

(Gregor). In addition, during member check, Gregor mentioned that it is important to 

consider how evolution has been phrased through various models over time. 

3.6.4.2. Textbook Review Results 

We saw the need to draw upon resources beyond the interviews and thus 

reviewed appropriate biological texts so that we could identify robust models for the 

intended two-semester introductory course sequence. This sequence can be found in Table 

9. 

To expand upon the central dogma and the importance of transcription and 

translation as identified by both participants, we examined both Reece et al. (2011) and 
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Raven et al. (2011). In Reece et al., this model and phenomenon is the focus of an entire 

chapter (chap. 17), in which it is further broken into the processes of DNA becoming RNA 

through transcription and RNA becoming protein through translation. Raven et al. focus 

on this model in chapter 15, and include a distinction between prokaryotic transcription 

and eukaryotic transcription, an important element to consider while developing our 

curriculum. In both textbooks, the discussions of the transcription and translation 

phenomena are connected with a discussion of reverse transcriptase processes in 

retroviruses. 

Refining the transcription and translation basic model to include the phenomena of 

retroviruses, such as the AIDS virus, allows students to see the application of this model 

to a major phenomenon of disciplinary importance. The curriculum is also aimed at 

having students learn that transcription can also be reversed, taking RNA to DNA, though 

the use of reverse transcriptase, thus expanding the functionality of the basic model. 

We identified an important representation within the model of evolution. As 

discussed previously, representations are essential to a robust of a model. During our 

review of Raven et al. (2011) and Reece et al. (2011), we identified the Hardy-

Weinberg principle and its associated equation as adding to the robustness of the model 

of evolution. This principle states: “in a large population with no selection and random 

mating, the proportion of alleles does not change through the generations” (Raven et al., 

2011, p. 401). This representational tool provides students with a way to quantitatively 

describe and predict the genetic variance and frequencies, which are essential abilities of 

the basic evolutionary model. Both Charles and Gregor discussed the importance of 

evolution and the Hardy-Weinberg principle/equation. 
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During our review of textbooks, we identified additional theoretical structures and 

basic models that did not arise from the interviews. One of the theoretical structures was 

cellular biology. This was justified by the principles of cell theory, which states that, “all 

organisms are composed of cells, life’s basic units” (Raven et al., 2011, p. 12). 

Moreover, “the cell theory, one of the basic ideas in biology, is the foundation for 

understanding the reproduction and growth of all organ- isms” (Raven et al., 2011, p. 12). 

Cell theory helped us identify the basic model of mitosis and meiosis, which is included 

be- cause “all cells arise only from preexisting cells” (Raven et al., 2011, p. 12). 

While it is important to identify the theoretical structures and basic models for a 

UMI course, it is necessary to consider how to organize the content. Drawing upon these 

identified theoretical structures and basic models, we now propose a course framework 

for the first semester of a two-semester introductory biology sequence and outline a 

modeling cycle for each of the basic models. 

3.6.5. Framework for the First-Semester Curricular Content of UMI-Bio 

Here, as well as in Table 9 above, we present the results of our ongoing work on 

identification of the theoretical structures, basic models, and specific models within 

introductory biology. We view these elements of a model-centered biology epistemology 

as essential components of introductory biology, and they are a synthesis of results of 

our interviews of biology faculty and textbook analysis. We present these results as the 

framework for the content of the first semester of an introductory biology sequence. 

The first theoretical structure that is essential for students to encounter is cellular 

biology, which comprises the ontological assumptions of structure and function and 

pathways and transformation of energy and matter, as described in Vision and Change 
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(AAAS, 2011). This theoretical structure is com- posed of the basic model of a 

prokaryotic cell, which allows for a refined model in future classes to distinguish 

between an archaea cell model and a bacterial cell model. Additional models in the 

cellular biology theoretical structure are the plant and animal cells. Students will first 

engage with the prokaryotic cell model by building a specific model of an Escherichia 

coli cell. This specific model will introduce students to cellular structure, scale, and 

energy obtainment. 

Following the construction of this E. coli–specific model, students will explore 

other bacterial and archaea species, looking at these same phenomena of scale, energy 

obtainment, and structure. The aim is for students to be deploying and revising their 

model until a point is reached at which they are able to generalize these specific models to 

a basic model of a prokaryotic cell. Students will then be presented with a plant cell and 

asked to deploy their prokaryotic cell model. However, the students’ basic model of a 

prokaryotic cell cannot explain the cellular structure or scale, and the modeling cycle 

must begin anew for the development of a basic plant cellular model. This basic cellular 

model, as well as the animal cell model, again focuses students on the structure, scale, and 

energy obtainment of these basic cell types. The same process of model development, 

model deployment, and model revision is repeated for the animal cell as described in the 

vignette above. The descriptive representations of cell structure for each of these cellular 

biology models came from the text- book review, specifically from Raven et al. (2011, 

pp. 67–68) and Reece et al. (2011, pp. 100–101). 

The theoretical structure of cellular biology is concluded when students have 

developed three robust basic models that describe three of the major categories of life-
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forms. Students should be able to deploy these models to describe, predict, and explain 

the basic cell types and to compare and contrast these basic models. The model-centered 

hierarchical structure for this theoretical structure can be found in Table 9. 

Genetics is the second theoretical structure students will encounter during the first 

semester of introductory biology. The genetics theoretical structure comprises the basic 

models of transcription and translation, mitosis and meiosis, and evolution. This structure 

also focuses on the ontological elements of information flow, exchange, and storage; 

evolution; mutation; and reproduction and replication. 

To begin, the curriculum will have students learn the basic model of mitosis and 

meiosis by developing specific models of the stages of yeast cells and cell division, as 

well as these same stages in lily anther and ovulary cells, as seen in Table 9. In 

developing these specific models, students will interact with the ontological elements of 

information flow and exchange, and evolution. In particular, evolution raises the ideas of 

the “three mechanisms that contribute to the genetic variation arising from sexual 

reproduction: independent assortment of chromosomes, crossing over, and random 

fertilization” (Raven et al., 2011, p. 257). Through the development of these models, the 

curriculum will guide students toward the need to develop a basic model for transcription 

and translation. 

As part of the genetics theoretical structure, students will also develop a basic 

model of evolution. To do this, students will develop a specific model for the rock pocket 

mouse (Chaetodipus intermedius) evolutionary phenomenon. The rock pocket mouse has 

evolved via genetic mutation and natural selection pressures and is found in two distinctly 

different colors that match its native habitat: tan, the color of sand, or dark gray, the color of 
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volcanic rock. Rock pocket mouse evolution is one of the most straightforward examples 

of evolutionary phenomena; it allows students to develop a model of evolution that 

includes but is not limited to the Hardy-Weinberg principle, genotypic mutation, and 

phenotypic trait expression. Once a basic model of evolution is developed, students will 

deploy this model to explore cheetah genetic diversity, and evolution in Darwin’s classic 

example of finches. 

The full sequence and list of theoretical structures, basic models, and examples of 

specific models for each of the basic models are found in Table 9. 

3.7 Conclusions 

In response to the call for increased attention to students’ ability to model (AAAS, 

2011; NRC, 2012), we have presented an argument regarding the importance of models 

and modeling within biology. We aver that modeling is the essential way in which 

scientists reason, argue, and structure their knowledge, and that the process of modeling is 

the central activity of scientists. 

Because modeling is a central activity of scientists, it is essential for our 

students—our future scientists—to engage in the activity of modeling. To provide 

students with some- thing to model, we have presented a curricular framework for the 

first semester of a two-semester sequence of introductory biology. This framework, the 

product of faculty interviews and textbook review, presents the foundations of the 

theoretical structures, basic models, and specific models that are to shape the first 

semester. It aims to engage students in developing and deploying several essential basic 

biological models. This format adapts the model-centered epistemology described by 

Halloun (2006) and is shaped around the four theoretical structures of cell biology, 
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genetics, organismal biology, and ecology. The curricular framework presented here is 

adapted from a currently implemented and successful curricular framework from physics 

known as UMI-Physics. 

3.8 Future Directions 

We plan to continue the identification, explanation, and development of the 

essential basic introductory biology models identified here, as well as those for the 

second semester of introductory biology. We also intend to further validate these 

proposed biology models through additional inter- views and surveys of biology faculty 

and to further develop the course materials for UMI-Bio. On further development of these 

course materials, the efficacy of the curriculum will be tested by exploring both 

conceptual understanding changes and attitudinal belief shifts in students. We also want to 

extend this work by further exploration of the synergy and coherence between the themes 

and content in UMI for physics and biology. This will include the development of 

interdisciplinary representations, similar to the example of energy pie charts, which should 

aid conceptual transfer across disciplines. Exploring the interdisciplinary nature of 

representations establishes a link between the disciplines for students’ understanding of 

energy conservation and transfer. In addition, it is consistent with the field of biology, 

which has become more interdisciplinary. 
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Krajcik J (2009). Developing a learning progression for scientific modeling: 
making scientific modeling accessible and meaningful for learners. J Res Sci 
Teach 46, 632–654. 

 

Stewart J, Cartier JL, Passmore CM (2005). Developing understand- ing through model-
based inquiry. In: How Students Learn: Science in the Classroom, ed. MS 
Donovan and JD Bransford, Washington, DC: National Academies Press, 515–
565. 

 

Svoboda  J     (2010).  Modeling  science:  supporting  a  more  au- thentic epistemology 
of science. PhD Dissertation, Davis, CA: University of California–Davis. 
http://udini.proquest.com/view/ modeling-science-supporting-a-more-
goid:757364075 (accessed  22 March 2012). 

 

Svoboda J, Passmore C (2011). The strategies of modeling in biology education. Sci and 
Educ 22, 119–142. 

 

Wells M, Hestenes D, Swackhamer G (1995). A modeling method. Am J Phys 63, 606–
619. 

 

Windschitl M, Thompson J, Braaten M (2008). Beyond the scientific method: model-
based inquiry as a new paradigm of preference for school science investigations. 
Sci Educ 92, 941–967. 

 

 
 

 



 

 86

CHAPTER 4 TEACHING SCIENTIFIC MODELS: COMPARING 
RECOMMENDATIONS AND CLASSROOM PRACTICE THRU A 

PHENOMENOGRAPHIC LENS 
 

4.1 Introduction 

 For more than a decade there has been a push from policy makers to reform the 

curricular and pedagogical practices that comprise the undergraduate biology major 

curricula (Brenner, 2003; National Research Council, 2003). As part of this reform effort 

there is a focus on integrating the epistemological practices of scientists, specifically the 

use of scientific models and modeling. Vision and Change in Undergraduate Biology 

Education: A Call to Action (Science, 2011) recommends  that the “ability to use 

modeling and simulations” is a necessary skill students should have upon completion of 

an undergraduate degree because “modeling is a standard tool for biologists”. Not only 

have models and modeling been one of the central focuses of undergraduate biology 

education reform, but as seen in the Discipline Based Education Research: Understanding 

and Improving Learning in Undergraduate Science and Engineering (National Research 

Council, 2012) they play a part in the larger call to reform the curricula and pedagogy for 

all scientific disciplines. 

Models and modeling have gained such standing within these national reform 

efforts because they have been described as a major component in the advancement of 

science. Nersessian’s work (1992, 1995) on conceptual change pays particular attention 

to Maxwell and his process of model use to move physics from being able to only explain 

Newtonian mechanics and to being able to explain phenomena that behave in a non-

Newtonian manner. That is to say his process of advancing physics was through “actively 
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[constructing] representations by employing a problem-solving procedure”, which is one 

of the primary components of model building. Passmore, Gouvea, and Giere (2014) show 

that scientific models play a role in conceptual change amongst scientists as well, arguing 

that “ models play a central role in scientific sense-making”. They even go as far to say 

that there is a “clear sense that models are at the center of the day-to-day work of science; 

they are the functional units of scientific thought”.   

Odenbaugh (2005) draws upon the Lotka-Volterra predator-prey models to 

describe ways in which scientists can apply models and modeling to their discipline as a 

way to show how scientists use models and that models are at the center of scientific 

work. These model/modeling applications include the abilities to: a) explore possibilities, 

b) investigate more complex systems, c) provide a conceptual framework, d) generate 

accurate predictions, and e) generate explanations. He continues to point out that within 

the field of theoretical ecology there are many critics of a model-based approach. This is 

because these critics believe that in order for a model to be successful they must be able 

to provide mathematically accurate predictions. Odenbaugh (2005) disagrees, arguing 

that even models that are not fully accurate in their predictions are still useful. He argues 

that their utility comes from their ability to fulfill the other functions of models – to 

describe and/or explain phenomena. This notion that models function strictly to provide 

mathematical predictions, accurate or inaccurate, is one that we will draw upon later 

when looking at model use within the classroom.  

The differences between model/modeling uses in the classroom as compared to 

the model/modeling practices of scientists are important to consider. While many of these 

differences may not be easy to identify, it is essential that we help students’ practices to 
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develop to reflect the practices of scientists. Therefore it is important for us to focus on 

the process by which we aid students in achieving this practice. Much of the work on 

scientific models/modeling within the classroom is set within a learning environment that 

has an explicit focus on scientific models, and model building (Brewe, 2008; Svoboda & 

Passmore, 2010; Windschitl, Thompson, & Braaten, 2008). Previously, we have argued 

for the development of a General Biology I course with an explicit model-centered focus 

(Manthey & Brewe, 2013) that follows a Modeling approach successful in physics. 

However while reviewing this previous work, we found ourselves returning to the 

question – do students still use models when it is not an explicit focus of their course? 

 This paper argues that students are using scientific models and that they are 

already applying the functions of scientific models – describe, explain, predict aspects of 

the natural world (P. S. Oh & Oh, 2011) – despite lacking specific emphasis on the 

teaching of scientific models. We illustrate this point by presenting interviews with 

students enrolled in General Biology I about their ideas regarding plant, animal, and 

general eukaryotic cells, which are exemplars of scientific models that exist within this 

first undergraduate course. We further our argument to say that while students are already 

applying some of the functions of scientific models when models are not an explicit part 

of the instruction, students are primarily taking advantage of only one of the functions – 

describe. However, if models are the functional unit of science practice, it is important 

for students to apply the additional functions of models early in their academic careers. 

Using the same models of plant, animal, and eukaryotic cells, we argue that a curriculum 

should be designed so that students are utilizing at minimum two of the three functions, 

in this case describing and explaining, to these models when asked about their ideas.  
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4.2 Background 

4.2.1. What are scientific models?  

Scientific conceptual models are “coordinated sets of representations (e.g., 

graphs, equations, diagrams, and/or written descriptions) of a particular class of 

phenomena that exist in the shared domain of discourse” (Manthey & Brewe, 2013, p 

208). These conceptual models are used by scientists to describe, explain, and predict 

aspects of the phenomenon of focus (P. S. Oh & Oh, 2011). Halloun (2006) argues that 

models are so central to scientific practice that they are the connection between theory 

and concept within a conceptual hierarchy. Scientific models can take two forms, each 

with their own level of generalizability; the first is referred to as a specific model. A 

specific model is that of a specific situation and serves as a starting point for the 

development of a basic scientific conceptual model. A basic conceptual model is the 

second form of models. It is the generalized form of the specific model, is useful across 

multiple situations, and encompass the overall concept while remaining situation 

nonspecific (Manthey & Brewe, 2013; Nersessian, 1995). It can be said that scientific 

models are multifaceted in that they are both comprised of something as well as for 

something (Passmore & Stewart, 2002). While the idea of a model of something may 

seem relatively straightforward, the idea of a model for something, we believe, garners 

further discussion. 

4.2.2. What are the purposes of scientific models?  

Scientific models have a variety of functions. These functions range from 

providing a way for scientists to interact with more complex phenomena that would 

prove otherwise difficult to manipulate – such as Watson and Crick’s model of the DNA 
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molecule – to generating predictions of a given phenomenon (Odenbaugh, 2005). Not 

only are models used by scientists to advance their work, but models are also used to 

communicate the ideas about the phenomenon of focus (Krell, zu Belzen, & Krüger, 

2012). For the purposes of this paper, we have defined the functions of scientific models 

as being to provide a description, explanation, and prediction of a phenomenon (Halloun, 

2006; Manthey & Brewe, 2013; P. S. Oh & Oh, 2011). 

The descriptive function of a model can be seen through the use of 

representations, be they visual or verbal. These representations can include diagrams, 

drawings, 3-D objects, verbal descriptions, and/or written words. These representations 

allow scientists to engage with those complex phenomena, particularly with those that are 

too large (solar systems), too small (animal cells), or nontangible (electromagnetic forces; 

Odenbaugh, 2005). Oh and Oh (2011) argue that the descriptive function of models is to 

provide “answers to the ontological question of what exists”. While a simple description 

of what exists is valuable, it is important to note that a representation alone is not enough. 

Passmore, Gouvea, and Giere (2014) argue that a representation of something is not 

enough and that each representation used, such as the 3-D representation of DNA, has to 

be used for something, particularly “for developing a deeper understanding”.  

Using these representations of something fulfills the descriptive function of 

scientific models, whereas when we have representations for something we begin to 

address the explanatory function of scientific models. As Oh and Oh (2011) describe, this 

functions as the “answers to the causal question of why things happen”. They also claim 

that way one scientists draw upon models is to provide explanations through the use of 

analogy. For example in an ecological model of a coastal marine ecosystem, we are able 
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to develop a descriptive explanation using food webs to illustrate the structure of the 

system, which can include descriptions of energy, biomass, and/or indirect effects. This 

same food web, however, can also be used to formulate causal explanations for why there 

would be a sudden increase in the population of sea urchins, decrease in sea kelp, and 

decrease in sea otter, when a new law regarding the protection of orcas was passed. 

While most may not have had experience with this ecosystem and/or particular food web, 

it is analogous to a variety of terrestrial food webs that scientists are able to draw upon to 

explain the particular phenomena of population fluctuation. 

The third model function of focus in this paper is that of the ability of a model to 

have predictive power. Odenbaugh (2005) points out that many authors argue that within 

the field of ecology it is essential for models to provide accurate predictions about the 

phenomenon of focus. These accurate predictions include “using the model to make and 

test predictions, solve intellectual problems and test ideas” (Treagust, Chittleborough, & 

Mamiala, 2004). Brewe (2008) argues that instructionally, the true predictive power of 

models comes at the point quantitative tools are added to the representation toolbox. 

These quantitative tools include equations that can be manipulated to allow for 

measureable predictions regarding the manipulation of various aspects of the phenomena. 

For example, in the Lotka-Volterra model it is not until we include the equation and 

begin manipulating the number of predators in the system that we can make predictions 

regarding the dynamics of the predator-prey system. Further discussion regarding the 

range of functional role or purpose of scientific models can be seen in the work of Oh and 

Oh (2011), Krell et al. (2012), Grünkorn, Belzen, and Krüger, (2014), and Treagust, 

Chittleborough, and Mamiala, (2002).  
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It is evident that there exists a considerable amount of research regarding what 

models are and what the purposes of models are. Much of this work in fact has been 

completed in learning environments and classrooms that were designed to have a model 

and/or modeling centered curriculum (Brewe et al., 2010; Brewe, Traxler, la Garza, & 

Kramer, 2013; Chiel, McManus, & Shaw, 2010; Svoboda & Passmore, 2010). Passmore 

and Stewart’s (2002) work looking at approaches to teaching evolutionary biology within 

a high school. They found that through the use of a modeling approach to teaching 

evolution by natural selection there is “enormous potential to deepen and broaden 

students understanding”. These potentials can be achieved when curricula are designed 

with a goal of model building in mind. Grünkorn et al. (2014), Krell et al. (2012), and 

Treagust et al. (2002) have examined student understanding of the roles of models. 

Treagust et al. (2002) found that “a large majority of [the] students understood the 

descriptive role of models” (p. 366), but there was room to improve student 

understanding regarding the prediction making role of models. Despite all of this work 

exploring on models, modeling, the purposes of models, and student understanding of 

these purposes, our question remains – do students use models when it is not an explicit 

focus of their course, and if so are they drawing upon the multi-functionality of scientific 

models? To aid in answering this question we conducted a phenomenological study 

exploring student’s scientific conceptual models of plant cells, animal cells, and 

eukaryotic cells and their ability to apply the functions – to describe, explain, predict – to 

these models.   
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4.3 Methods and Data 

4.3.1. Analysis Framework  

For this work I conducted a preliminary qualitative study using a 

phenomenographic, approach, as described by Marton (1981), to help answer our 

research question of interest. Phenomenography is a qualitative research method aimed at 

providing an “experiential description” (Marton, 1981) through analysis of several 

individuals’ shared experience. In order to establish this experiential description of a 

shared experience, the researcher conducted individual interviews lasting approximately 

one hour each with three students that were enrolled in a flipped format General Biology 

I course. A flipped course is intentionally designed so that the majority of the course 

work is done outside of a formal meeting time. For this course this coursework included 

reading the assigned textbook, watching video lectures, taking online quizzes, and 

completing group assignments. Also for this course there was a required in-person 

meeting section that met once per week for 75-minutes. During these sessions students 

worked in teams of six to complete activities ranging from quizzes to simulations of 

various cellular processes.  

The interviews that comprise this study focused on students’ ideas about three of 

the essential models – plant cell, animal cell, and eukaryotic cell – which undergraduate 

students should be able to utilize upon completion of General Biology I as identified in 

our previous work (Manthey & Brewe, 2013). These interviews asked participant 

questions aimed at eliciting their ideas about the cell types such as, “What do you know 

about plant cells?” and “What can you tell me about animal cells?” These questions were 

chosen with the intent of leaving them open ended, following the suggestions of 
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(Limberg, 2008) and allow for students to provide any and all of their ideas, knowledge, 

and understanding about each of the cellular model types. For our analysis of these 

interviews our goal was to “identify the qualitatively different ways in which different 

people experience, conceptualize, perceive, and understand” (Richardson, 1999) the 

phenomenon of cellular models upon the participants’ completion of the unit in General 

Biology I. 

To analyze these data, the interviews were transcribed and photographs of student 

drawings were collected. Following phenomenographic methodology (Limberg, 2008) 

the transcripts were examined to identify “quotes that provide an understanding of how 

the participants experienced the phenomenon” (Creswell, 2012). We then organized these 

quotes into broader thematic categories. These categories allow for us to provide a 

description of how the participants interact with and experience the phenomenon. In 

order to examine how the participants experienced the phenomenon of interest, 

statements showing evidence of students’ model use were focused on. However, before 

we can provide a complete account of the participants’ experiences with cellular models, 

we must first provide a description of both the course and the participants of the study.   

4.3.2. Course Context 

 This study was conducted at Florida International University (FIU), a large, 

urban, public Hispanic-serving university. This university is ranked number one in terms 

of awarding Bachelors and Masters degrees to Hispanics (Cooper, 2011). The student 

population has a demographic break down of 61% Hispanic, 13% Black, 15% White, 4% 

Asian or Pacific Islander, and 7% other (Florida International University, 2013). It also is 

a commuter school, with 91% of all students residing in the three counties closest to 
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campus. The course had recently had a shift in pedagogical practice, which was part of a 

university-wide effort to reform the introductory courses, often considered gateway 

courses, across the STEM disciplines. 

 The participants in this study were drawn from one section of General Biology I. 

At this university General Biology I covers biomolecules and cells, metabolism and cell 

cycle, central dogma (DNA -> RNA -> proteins), and evolution. As part of the 

university-wide reform effort this course had been converted to follow a “flipped” course 

design, as previously discussed. During the formal weekly meeting sessions, which for 

each of the four separate sections of approximately 96 students, was 75 minutes in length, 

students worked in groups of 6 to complete in-class quizzes and activities.  

4.3.3. Participants 

Three individuals were recruited from General Biology I, the first course in the 

Biological Sciences Bachelor’s of Science degree. All three participants were enrolled in 

one of four sections of this course that were taught using a flipped-course design model. 

All participants were enrolled as freshman, however two of the three had completed their 

Associates degree during a dual enrollment program with their respective high schools. 

All names are pseudonyms.  

Maria, a biology major, is one of the two students interviewed who entered the 

course with her Associates degree. She intends to apply to and enroll in medical school 

upon completion of her undergraduate degree. Maria is also a typical representative 

example of a student drawn from the population of the institution, as she self-identifies as 

Hispanic and was raised in the area. At the time of the interview, she had previously 
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completed two biology courses – her high school level biology and a university-level 

introduction to biology course as part of her AA degree.  

The second participant that had completed an Associates degree is Alex. Alex, 

who self-identifies his ethnic group as Black, is enrolled as a biomedical engineering 

major. He, like Maria, intends on applying to medical school upon the completion of his 

degree. It is worth noting that he chose biomedical engineering opposed to a standard 

biology degree or pre-med degree as it allowed him to have an established plan B of 

becoming a biomedical engineer. While completing his Associates degree he elected to 

not enroll in any biology courses and instead completed both Chemistry and Physics, so 

while his background in science is strong, he was taking a Biology course beyond the 

high school level for the first time.  

Thomas, who identifies his ethnicity as Hispanic, was the third participant in the 

study. He hoped for his major to be “ecology, earth science, or something like that”. 

Thomas is a returning student to his undergraduate studies, and his last biology course 

work was in high school, 20 years ago.  

4.3.4. Interviews 

 Each interview was conducted on a one-on-one basis and lasted approximately 

one hour. The interviews were video recorded to capture the moments during which the 

participants were providing drawings of each of the cellular models of focus. During 

these semi-structured interviews each participant was asked similar questions, such as 

“What do you know about plant cells?” and “What can you tell me about animal cells?” 

These questions were chosen with the intent of leaving them open ended, following the 

suggestions of (Limberg, 2008) and allow for students to provide any and all of their 
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ideas, knowledge, and understanding about each of the cellular model types. If follow-up 

questions were needed to help gain further detail following a student response, they were 

asked. During these interviews a small portable whiteboard and markers were made 

available to students if they chose to use it. Each interview was conducted during the 

semester students were enrolled in the course and after each of the participants had 

completed the section of the course on cellular structure, processes, and functions.  

 Following the interviews a transcript was prepared. These transcripts were read 

and the research team identified statements of significance such as, “plant cells are like a 

rectangle-ish I’d say something like that because of the cell wall…” (Alex). Statements, 

such as this, were selected as significant because they displayed evidence that students 

were experiencing the phenomenon of focus for this work. The identified statements from 

each other the three participants were then gathered together and we attempted to develop 

thematic categories that were present across all the participants through, as Limberg 

(2008) describes, “an abductive type of analysis, moving between empirical data 

[interviews] and theoretical concepts [model use] to let one illuminate and contribute to 

the other”. It is these identified thematic categories that illuminate the students’ 

experience of the phenomenon under study, scientific model use. 

4.4 Results and Discussion 

We now present the results of our preliminary phenomenographic analysis of the 

student interviews. These results show that there is a commonality across participants in 

how and what they understand about plant, animal, and eukaryotic cells following their 

completion of the cellular biology unit of General Biology I. Following the 

phenomenology methodology described by Creswell (2012), as previously discussed, we 
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first identified statements of significance from students regarding our phenomenon of 

focus. Subsequently, we categorized the statements into two common themes: describe 

and explain. It is these themes and their key exemplars that we now present. 

4.4.1. Theme One - Describe 

 One of the major themes we identified through our analysis was that 

students often simply listed features and facts about the cell types. We found that this 

theme closely paralleled the descriptive model function. This is evident through students 

primarily providing both verbal and drawn representations of each cellular type. Each of 

the participants took advantage of the available whiteboards to provide a drawing of both 

plant and animal cells as seen in Figure 1.  
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Figure 1 (Clockwise). a) Alex’s drawings of a plant cell and of an animal cell; b) 
Maria’s drawings of a plant, animal, prokaryotic, and eukaryotic cell; c) Thomas’s 
drawing of a plant cell; and d) Thomas’s drawing of an animal cell.  
 

While each student was working on providing a drawing of the cell of focus, they 

were also providing a verbal representation for each. For example, in all three instances 

when providing a drawing of a plant cell, the participants stated that these cells are 

rectangular in shape due to the existence of the cellular wall. Thomas, while beginning 

his drawing of a plant cell, “roughly rectangular with that being the cell wall…”; Alex, 

“plant cells are like a rectangle-ish I’d say something like that because of the cell 

wall…”; and Maria, “So plant cells are like, they’re like rectangular right, because they 

have a cell wall.” 

This pattern of providing both a verbal representation and drawn representation 

continued throughout the interviews. However, there do exist portions of the interviews 

where the participants provided descriptive aspects without providing (or adding to) a 

drawn representation. When discussing a comparison between plant and animal cells, 

Maria goes on to describe a list of organelles both have in common. “They share a bunch 

of organelles like the mitochondria, nucleus, like they both have nucleuses. They are like 
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membrane bound. They have the ER [endoplasmic reticulum], the golgi apparatus, the 

lysosomes and stuff like that… they have the same organelles.” Thomas also provided 

lists of cellular organelles, but in this instance he was referring to and labeling organelles 

he had previously drawn. The majority of the significant statements we identified fit into 

the first theme of lists and facts regarding descriptive elements of the cells. However, we 

were able to identify a second theme.  

4.4.2. Theme Two - Explain 

During the interviews when participants were asked the intentionally open 

prompts like, “what can you tell me about plant cells”, they primarily provided 

descriptive features of the cell as previously discussed. However, there were a few 

statements made by the students that we grouped together as a second thematic category. 

These statements when analyzed together formed a theme that again paralleled one of the 

three primary model functions. This second theme is one where students explained the 

function of the cellular components they had listed previously. 

In multiple instances it was not until prompted by the interviewer to explain the 

purpose of a specific descriptive aspect, organelles for example, of the cell did the 

participants begin to deploy the explanatory power of their model. When providing 

details regarding the features of plant cells, Maria said “they have chloroplasts. They 

have mitochondria.” However, she didn’t provide any explanation of the function of these 

organelles without the interviewer prompting, “okay so they have mitochondria and 

chloroplasts, the purposes of those are?” It was at this point that Maria began discussing 

their role as energy producers for the cells. This explanation of mitochondria and 

chloroplasts existing inside plant cells for energetic purposes came up later when 
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comparing the cellular models of plant and animal cells. “Animal cells, so mitochondria 

have to have something come in. Plant cells they have chloroplasts to produce the sugars 

for the mitochondria to use.” This statement from Maria shows that this second theme 

identified by the research team paralleled one of the three primary model functions – to 

provide explanations. As a reminder, the explanatory model function that is paralleled by 

this second theme is that explanations answer the question of why things happen (P. S. 

Oh & Oh, 2011) and that they allow the model to not just be of something but instead for 

something (Passmore et al., 2014). Maria is applying the explanatory feature of the 

models because she is able to have a model for something by being able to explain the 

functions of the organelles within these cell types.  

While in the majority of the cases students did not deploy the explanatory 

function of models until promoted by the interviewer, all three participants provided an 

explanation of the cellular walls function without needing a prompt. Maria states that the 

cell wall exists for the purpose of maintaining “the structure so that the cell doesn’t just, 

like, do its own thing”. Thomas provided a similar explanation regarding the purpose of a 

cell wall in plant cells in that they are present to provide structural integrity to for the cell, 

particularly in response to environmental pressures. “Cell wall on the outside of the plant 

cell keeps it from lysing, but they can still crenate. That was the other one, crenation, and 

all of the water leaves and it all shrinks up.” In fact when Alex provided an explanation 

for the purpose of cell walls he actually was discussing the same phenomenon as 

Thomas, “we water plants a lot because when a [plant] cell is inside a hypotonic solution 

it will swell up. Usually, if it was an animal cell it would burst, but plant cells actually 

need to be in a hypotonic solution”. Alex also references that cell walls provide a “sturdy 



 

 102

structure” to support both the single cell and the whole organism. As seen from the 

student statements above, there were moments during the interview where students 

deployed the explanation function of models, however these moments were infrequent 

and often required prompting. We identified the two major themes discussed above, both 

of which paralleled two of the three model functions – describe and explain. Noticing this 

pattern we looked at the statements that we identified as significant and found that one 

statement reflected the third model function of prediction.  

4.4.3. Model Function – Predict 

While we did not find enough evidence to identify a third common theme across 

all student participants, we did identify one of significant statement as continuing the 

pattern of paralleling the three functions of models. This one key exemplar identified was 

of a student deploying the third function of model to predict. However, it was only when 

significantly prompted and then prompted again with follow up questions that Maria 

drew upon the predictive function of scientific models in to help “solve [an] intellectual 

problem” (Treagust, Chittleborough, & Mamiala, 2004).  

Interviewer: Think of conditions where, like, plants can’t 
survive and how that relates back to the features of 
the cell 

Maria: Where they can’t survive, I guess somewhere 
where there is no light and water 

Interviewer: So no light. No water. 
Maria: So like in a room where there is no light and no 

water or outer space, maybe. I mean there is light 
but there is no water. 

Interviewer: Or oxygen.. 
Maria: Yeah, or oxygen.. 
Interviewer: And so those all relate back to what feature of 

the plant cell then? 
Maria: To the chloroplast. Because the chloroplast because 

plants they take small components, so like O2, H2O, 
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and like CO2 and they make it into a large 
component like glucose where as compared to 
animal cells we get glucose and we’re breaking it 
down into the smaller components. So then yeah, 
they need those smaller components to be able to 
like function.  

  

As can be seen from this series of prompts, it required the interviewer asking 

Maria directly to relate environments suitable to plants to the features of a plant cell she 

had previously described. Even once Maria did apply the predictive power of the cellular 

model, it could be argued that she only was applying this at the most basic level. As 

previously discussed, Brewe (2008) argues that instructionally the power of the predictive 

function comes from the inclusion of quantitative elements. In this case, Maria could 

have provided a quantitative element through a discussion of ATP production under 

various conditions (normal, no light, no water, etc.). From this combination of being able 

to only identify a single statement of significance regarding predictive model function, 

need for significant prompting during the interview, and lack of quantitative element 

when predicting, we argue there is a lack of emphasis on the predictive power of models.  

4.5 Reforming Curriculum for a Model-Centered Focus 

 From our preliminary phenomenographic analysis of student interviews, it is 

evident that these students have developed models of plant, animal, and eukaryotic cells 

upon completing the unit of General Biology I on cellular biology. However, when the 

students deployed their models in the interviews they typically were only using one of the 

basic functions of models, to provide description. While these results may be a product of 

the phenomenon of focus – cellular features, functions, and structure – and the initial 

questions asked during the interviews – “What do you know about plant cells?” and 
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“What can you tell me about animal cells?” –  we believe that if both the curriculum and 

pedagogy take a more explicit focus on model development and use, students would 

apply the various functions of models more evenly.  

One of the primary aims of an explicit model focus in the General Biology I 

courses would be to have students complete the course with models that allow them to 

describe, explain, and predict in the same manner as practicing scientists. There are 

instances and specific content areas within General Biology I, such as cells, where there 

needs to be a distinction between the scientific practice model functions and the school 

science model functions. That is to say there are instances when it is instructionally 

advantageous to have students interact with models that only draw upon two of the three 

model functions. These models are to serve as scaffolds from which students, as they 

advance in their science careers, are able to draw upon to aid in the development and use 

of models that complete all three model functions. For example, if students have 

developed eukaryotic cellular models that describe the features of the cell and provide an 

explanation for why the features exist and how the mechanisms work then they will be 

able to apply them to phenomena in the future. One example of a phenomenon where this 

could be applied is being able to predict what would happen to a cell if the cellular 

membrane proteins, such as the sodium-potassium pump, suddenly allowed a different 

ratio across the membrane. This specific model of the sodium-potassium pump 

phenomenon does first require the foundational descriptive and explanatory model of 

cells.  
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4.6 Conclusion 

 In this study we have argued that even without an explicit focus on models and 

modeling students, when interviewed, still deploy some of the functions of model use. 

Seeing that students are deploying the functions of models it can also be claimed that 

students are, in fact, developing the practice of using scientific models. We argue, 

however, that there would be additional benefits to following the recommendations of 

both the National Research Council (2012) and the AAAS (2011) to having an explicit 

focus on developing model and modeling based competencies in the next generation of 

scientists. Not only is it recommended to have an explicit focus, but also it has been 

found that physics students have greater conceptual understanding in courses and 

programs that have this explicit focus (Brewe et al., 2010; Passmore & Stewart, 2002; 

Svoboda & Passmore, 2010).  
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CHAPTER 5 CONCLUSIONS 
 
 In this chapter I provide a summary of the findings from the previously discussed 

chapters in reference to the research questions of which this dissertation lays its 

foundation, explore the implications of these findings, and discuss the future directions of 

this work.  

5.1.  Summary of Findings 

 This dissertation focused on developing a data and theory driven argument for the 

need to reform traditional General Biology I courses to one that takes an explicit model-

centered focus. The studies that developed this argument are three-fold: first, a multi-

measure quantitative analysis of current instructional practices of the introductory course 

General Biology I at a large, public, Hispanic-serving university (Chapter 2). The second 

study employed qualitative methods and identified models that faculty and current 

textbooks found essential for General Biology I (Chapter 3). A third study explored 

students’ use of models, as models are an essential scientific practice, developed during a 

course that does not take a model-centered focus (Chapter 4).  Not only did these linked 

studies focus on the central argument for this dissertation, but they also established a 

framework for asking and answering bigger questions about reformed biology 

curriculum. These studies provided the framework for the development of a model-

centered biology curriculum. Here, I provide a summation of the major findings of the 

studies that comprise this dissertation and lay the framework for future work, as 

organized by research question.  
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5.1.1. Current Instructional Practices in General Biology I – Online and  

Lecture Formats   

1) How do students enrolled in a traditional face-to-face lecture format of 
General Biology I compare to their peers enrolled in an online format of 
General Biology I on the Biological Concept Inventory?  
 

Previous work that studied reformed STEM courses specifically, a model-

centered curriculum in physics (Brewe, Sawtelle, Kramer, O’Brien, et al., 2010) has 

found at the same university where the investigations included in this dissertation was 

carried out, that students enrolled in this model-centered course had significantly greater 

conceptual gains when compared to those in traditional lecture format courses. 

Conceptual gains serve as one of the key measures on all reform efforts; therefore, if I am 

going to argue for the need to reform General Biology I it was important to establish a 

baseline of the conceptual gains of current instructional practices for this course.  

Chapter 2 of this dissertation completed this evaluation of course efficacy. In 

Chapter 2 I evaluated and compared current instructional practices through a comparison 

of the online and web-assisted lecture based formats of General Biology I at a large, 

public, Hispanic-serving university. This study of current instructional practices allowed 

me to establish a baseline for all future work on reformed General Biology I curriculum 

developed at this university. One way I studied current instructional practices was 

through the use of the Biological Concepts Inventory (BCI; Klymkowsky, Underwood, & 

Garvin-Doxas, 2010) to collect data regarding student’s conceptual understanding. To 

analyze this data, which was collect pre- and post- instruction, I used statistical model 

building thru linear regression analysis. I found from this analysis that there were no 

significant predictors of the variance of student post-instruction BCI score beyond the 
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pre-instruction BCI score, which was able to explain 40% of the variance in student post-

instruction BCI score. Other factors that were considered in this regression analysis were 

student gender, course type, and representational status. I found no significant difference 

between students in either course format, either gender, or between statistically 

represented and statistically underrepresented populations in regards to conceptual 

understanding. I also found that in both course types on the post-instruction BCI 

assessment student scores were lower than 50% correct. With these type of conceptual 

inventory gains and scores it is evident that there are areas that we can improve 

instructionally that would benefit students’ conceptual understanding. One way of 

instructional reform is through the development and implementation of a model-centered 

curriculum as argued for throughout this work. Implementing a curriculum of this type 

would provide the opportunity to improve upon these scores. However, I found it 

important to not only measure conceptual understanding and instead apply a multiple 

measure analysis to study the instructional practices due to the complex nature of a 

learning environment.      

2) How do students enrolled in a traditional face-to-face lecture format of 
General Biology I compare to their peers enrolled in an online format of 
General Biology I on the Maryland Biology Expectations Survey? 
 

Part of understanding the complex nature of a learning environment is asking 

questions regarding students’ epistemological expectations. To answer these questions I 

used the Maryland Biology Expectations Survey (MBEX; Hall, 2013) as a pre- and post-

instruction measure of students’ epistemological attitudes about biology. On this measure 

students were found to have post-instruction MBEX score that was 53% and 59% 

favorable in the web-assisted lecture based and online formats, respectively, which were 
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shifts of no statistical significance from their pre-instruction scores. While statistically 

neutral shifts for each course type from pre- to post- instruction attitudinal scores are a 

good result to find because it is common to see negative shifts in student attitudes in 

STEM courses (Adams et al., 2006; Brewe, Kramer, & O’Brien, 2009).   

Considering it positive to see that we have a non-significant impact on students’ 

attitudinal beliefs when we examine their MBEX scores, it is worth discussing the 

method of instruction. Our results showed that there was a significant difference between 

course types when it came to explaining the variance in students’ post-instruction MBEX 

score. However, these results did violate the assumption of homogeneity of variance 

using a Levene’s Test, showing that these student groups were significantly different to 

begin with. These results do suggest though that there may be factors that predict student 

post-instruction score that are imbedded within course format differences, such as student 

age or understanding of the discipline. I would argue that we, as educators, could 

continue to improve our instruction so that we move from having neutral shifts towards 

having positive attitudinal shifts from pre- to post- instruction. This is essential because it 

aids in students becoming central members in the Community of Practice (Wenger, 

1999). In biology education it is important to help students develop attitudes about 

science more in line with those of experts. One way to do this is through the development 

and implementation of a model-centered curriculum based off of University Modeling 

Instruction. This framework has been successful across multiple semesters and multiple 

instructors in introductory physics courses to have positive shifts in students’ attitudes 

towards science (Brewe, Traxler, la Garza, & Kramer, 2013). 
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These results discussed for both conceptual understanding and attitudinal shifts 

are not the only significant differences between an online course, and a more traditional 

instructional format course. Odds-of-success is another area where I found a significant 

difference between course formats furthering the argument that instructional format is 

important. In fact, previous work suggests that there is likely a difference between a 

traditional format course and a model-centered course. Students from Modeling 

Instruction – Physics have been found to have high odds of success than their peers in 

traditional format classes (Brewe, Sawtelle, Kramer, O’Brien, et al., 2010), thus my 

interest in establishing a baseline for future comparisons in the introductory biology 

course context.  

3) How do students enrolled in a traditional face-to-face lecture format of 
General Biology I compare to their peers enrolled in an online format of 
General Biology I in terms of the odds of success, measured using retention 
rates (drop-fail-withdraw)? 

 
Using student course grades as a proxy measure for student success, I conducted 

an odds ratio analysis. For this analysis I compared the odds of students receiving a grade 

of C or better, a success, versus the odds of students receiving a grade of C- or lower, 

dropping, or withdrawing from the course, a nonsuccess. For the analysis I compared 

course formats, gender, representation status, and any interaction between course format 

and student demographics. I found that the only odds ratio comparison to show a 

statistically significant difference in the odds of success was the comparison between the 

odds of being successful in the online course and the odds of being successful in the web-

assisted lecture based course. I found that students were approximately two times as 

likely to be successful when enrolled in the online format of General Biology I.  
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4) How do students enrolled in a traditional face-to-face lecture format of 
General Biology I compare to their peers enrolled in an online format of 
General Biology I in the development of student-to-student networks? 
 

Additionally, I looked at the formation of student-student peer networks as 

another measure by which to compare the two current instructional practices. These study 

networks have been linked to student retention and persistence (Tinto, 1997) and also 

provides opportunities for students to become more central members within their 

community of practicing future biologists. Using surveys of students that asked, “Who do 

you study with to learn biology?” at a mid-semester point, I used social network analysis 

to analyze student responses. I used these student responses to measure degree centrality 

for both of the course types. I did find that there was a difference in degree centrality 

between the two course formats, however, this may be due simply to the fact that there 

were 2.5x as many responses in the web-assisted lecture based format than the online 

format. Taking this into account I calculated the probability of degree distribution, which 

calculates the probability of students having a certain number of study partners. I found 

that when calculating the probability of degree distribution there was no significant 

difference between course types in students having anywhere from 1 to 6 study partners.  

With such a low probability of having more than two study partners from the mid-

semester survey of both course types it is worth arguing for reforming current 

instructional practices. I again argue for the development of a course that follows the 

University Modeling Instruction framework. Brewe et al. (Brewe, Kramer, & O’Brien, 

2010; Brewe, Kramer, & Sawtelle, 2012) found that the introductory physics courses that 

followed this framework had students forming larger peer-to-peer study networks.  
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It is with these combined results of current instructional practice that I see 

significant room for improvement thru curricular and pedagogical form efforts, as 

discussed throughout my review of these results. It has been argued by Freeman et al. 

(2014) that we, as educations, are in fact doing a disservice to our students and should 

move entirely towards active learning (reformed) courses. The argue that if our classroom 

studies were anything like clinical trails that we would be obligated to cease instruction 

through traditional formats due to their overwhelmingly poor results in comparison to 

active learning across the STEM disciplines. It is these next sections that I provide a 

summary of my proposed approach to provide an active learning, evidence-based, reform 

curricular format. This format is one that places scientific models and modeling at its 

primary core. 

5.1.2. The Structure of a Model-Centered General Biology I Course 

5)   What are the essential basic models identified by faculty and general biology 
textbooks for a general biology one course? 

 
While this work was unable to measure the efficacy of a model-centered Biology 

course, I was able to identify models specific to General Biology I to help the 

development of a model-centered biology I course in study two. In addition, as part of 

this dissertation I explored how students use scientific models in study three, discussed 

later, with the aim of furthering the argument for a model-centered Biology course. This 

model-centered course would follow the evidence based University Modeling Instruction 

framework developed and found to be successful in introductory physics across multiple 

measures. However, this is not the only reason it is advantageous to develop a curriculum 

around this framework. The University Modeling Instruction framework also coincides 
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with the recommendations of the American Association for the Advancement of Science 

(Science, 2011) and the National Research Council (National Research Council, 2003; 

2012) to  reform the undergraduate biology curricula and pedagogical practices 

nationwide. These national calls suggest that one of the central focuses of all reformed 

STEM curriculums include students developing their skills in model use and modeling 

practices. It is with this in mind that I propose the framework of a curriculum for General 

Biology I to serve as the structure to develop curricular materials for a University 

Modeling Instruction – Biology course around. This proposed structural framework 

serves as Chapter 3 of this dissertation.  

As part of this curriculum, which relies on scientific models to serve as an 

organizing frame, I turned to answering the question about what are the essential models 

students should understand upon completion of General Biology I in study two. To 

answer this question I interviewed biology faculty and analyzed current textbooks from 

which I was able to identify six essential models for General Biology I. These models are 

prokaryotic cells, plant cells, animal cells, mitosis and meiosis, transcription and 

translation, and evolution. The identification of these six essential models serves as the 

foundational element to develop a model and modeling centered course. These six 

models alone are not enough to argue for the development of a course. Drawing upon 

previous work that describes a curricular and pedagogical framework for an introductory 

physics course (Brewe, 2008; Desbien, 2002; Halloun, 2006; Hestenes, 1987), I described 

the adaptation process of this successful curriculum from physics to biology.  

6)   How does the University Modeling Instruction theoretical framework 
developed for university physics function when applied to the development of 
University Modeling Instruction – Biology? 
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There are disciplinary differences between physics and biology, but despite that 

modeling and scientific models lay at the foundation of both disciplines. In study two, I 

found that when trying to adapt this curricular framework across disciplines challenges 

arose due to differences in epistemological and ontological differences, such as in 

biology it is challenging to distinguish between theories and laws whereas in physics 

these are clearly distinct.  Additionally, in adapting this framework I found that it was 

important to consider the representational tools that were to be used in model 

construction.  In order to help unify student’s epistemologies of science as connected 

across the disciplines, I argue that various representations can be used across disciplines 

under a University Modeling Instruction framework. One of these representations that 

can go across disciplines is energy pie charts, as it they can be used as representations in 

the cellular models of General Biology I and the kinematic models of introductory 

physics.  

5.1.3. Students’ Use of Models 

7)    Do students apply the functions of models (describe, explain, predict) in 
courses without an explicit model focus? 

 
Not only is the identification of models and designing a framework important for 

this argument, but exploring students use of models when models are not part of the 

explicit focus of the course were used to strengthen this argument. As model and 

modeling serve as a central scientific practice (Nersessian, 1999; Odenbaugh, 2005; P. S. 

Oh & Oh, 2011; Passmore, Gouvea, & Giere, 2014; Science, 2011) it is important to 

explore if instructional practices that do not focus on models are aiding students in their 

development of one of the AAAS’s core competencies. In order to explore students use 
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of models I conducted interviews with three students enrolled in General Biology I. 

These interviews focused on student’s ideas about plant, animal, and eukaryotic cells, 

which I had previously identified as essential models of General Biology I. From this 

analysis I was able to identify that when discussing these cell types students were not 

drawing upon all the functions of models. I found that student’s predominately were 

using the descriptive function of scientific models when discussing plant, animal, and 

eukaryotic cells. There were instances when students did use either the explanatory or 

predictive function of models, but these instances were limited.  

Since modeling is focused on the development, deployment, and revision of 

scientific models to provide descriptions, explanations, and predications of phenomena it 

is important that curriculum allow for this. As argued in Chapter 4 of this dissertation, I 

have encouraged that biology educators make the modeling practices and use of scientific 

models much more explicit in biology courses, and I argue that following the University 

Modeling Instruction framework to develop a General Biology I curriculum would do 

this very thing. A central feature of the University Modeling Instruction framework is the 

modeling cycle (Brewe, 2008) and it is through this cycle where students abilities to 

utilize three of the primary functions – describe, explain, and predict – can be developed.  

The University Modeling Instruction framework, based off of the evidence 

provided in the introductory physics context, is an ideal candidate to base the 

development of reformed biology curriculum around. In this dissertation I have shown 

that there is much room for improvement of current instructional practices for General 

Biology I at a large, urban, public, Hispanic-serving university. I have also laid out the 



 

 119

structural backbone of a curriculum that would follow the University Modeling 

Instruction framework. 

 5.2   Implications of This Research 

 5.2.1.   Implications for Biology Instructors 

 Having described and discussed the major findings of this research, I now turn my 

focus towards a discussion of the implications of this research for biology instructors. 

These results provide evidence that as instructors we have been successful providing 

multiple course formats that are of equal efficacy for the formation of student social 

networks and conceptual understanding. While the results of this work do show 

differences between course formats on two measures, epistemological expectations and 

odds of success, these results show for all measures and course formats there are no 

significant differences based on student gender or student race/ethnicity representational 

status. These results are important for instructors because in regards to increasing the 

participation of underrepresented populations, the instructor of focus for this research at 

the large, public, Hispanic-serving university has done no statistically significant harm 

towards underrepresented students ability to continue to participate as members of the 

biology community of practice.  

 The results found in this dissertation suggest that there are areas to improve the 

instructional practices within General Biology I. As previously discussed students in both 

course formats scored <50% correct on the post BCI, had neutral epistemological attitude 

shifts, and had a low probability of having more than two study partners. These three 

results indicate specific areas that we, as instructors, can improve upon. One way of 

improving these results is through curricular reform efforts, a point that Freeman et al. 
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(2014) have argued through a meta-analysis comparing lecture-based courses to active 

learning course formats. Additionally, the results of this study suggest that instructors can 

explicitly focus their reformed curriculum on models to aid in students deploying more 

than just one function of scientific models. 

 These results of this study not only argue for the need to develop reform based 

undergraduate General Biology I curricula, but they also provide a framework that 

instructors can use to address the suggestions of Freeman et al. (2014), as well as the 

nationwide calls for reform (National Research Council, 2012; Science, 2011). This 

framework not only provides a way to implement many of these suggestions it is based 

off of an evidence-based framework that has been developed for physics. In physics this 

framework has been found to increase student’s conceptual understanding to a post score 

that is significantly higher than traditional instruction (Brewe, Sawtelle, Kramer, 

O’Brien, et al., 2010), has had positive attitudinal shifts across instructors (Brewe et al., 

2013), and increased participation in student-student networks (Brewe, Kramer, & 

O’Brien, 2010).    

 5.2.2.   Implications for Researchers 

 One of the implications for researchers that has emerged from this study lie within 

the question regarding student use of model functions that serves as the basis for Chapter 

4. The research question of focus here is one that can be implemented across disciplines, 

as well in courses that focus on models and modeling. While Treagust et al. (2002) have 

quantitatively explored student understand of the function of scientific models, the 

phenomenographic methodology used in this study allows for a more nuanced look into 

how students actually use scientific models. This mechanistic look into student use of 
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model functions as part of their courses is one that would be complimentary to much of 

the work that explores research scientists use of these model functions (Odenbaugh, 

2005).  

 5.3   Directions for Future Work 

 Future work that stems from this research is primarily focused on the development 

and implementation of curricular materials based off of the suggested University 

Modeling Instruction framework. The development of these curricular materials is the 

first step in efforts to provide a reformed curriculum for General Biology I. However, 

developing and implementing these materials is not enough as it is important to research 

these materials with two purposes.  

 One of these purposes is to collect data regarding the efficacy of these developed 

materials. Studying the efficacy of these materials allows for the use an evidence-based 

approach to refine and further develop these materials. Another purpose of collecting data 

on these materials is it allows for me to continue arguing for the need to analyze the 

complex nature of learning environments from a multi-measure approach. I intend to take 

this multi-measure approach not only to a developed University Modeling Instruction 

curriculum for General Biology I, but to apply this practice to further study other reform 

efforts across the biology education research community. 

 In this work I have developed a question and applied an appropriate research 

methodology to also examine a more mechanistic question regarding how students are 

using scientific models. I believe it would help advance the various fields within 

Discipline Based Education Research to continue exploring this question across various 

instructional methods. Conducting this analysis in the future would allow for researchers 
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to aid in the identification of pedagogical practices that aid in student use of the three 

primary model functions.  

 As part of this work I have provided a methodological practice, of multi-measure 

assessment, that can be used to analyze the efficacy of additional General Biology 

courses. I have argued for the development of curricula and pedagogies that would 

engage students in the scientific practice of model building, deploying, revising, and use. 

Additionally, I have provided a framework for instructors and curriculum developers to 

draw upon for the development of curricula that would allow students to participate in 

these authentic practices.  
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APPENDIX A 

 This Appendix includes the Biological Concept Inventory survey given to 

students to evaluate conceptual understanding. We dropped question 23 from the original 

instrument due to disagreement regarding the face-validity of the question when final 

scores were calculation. 

Biological Concept Inventory - BCI 
 
Q1: Many types of house plants droop when they have not been watered and quickly 
"straighten up" after watering. The reason that they change shape after watering is 
because ... 
 

A. Water reacts with, and stiffens, their cell walls. 
B. Water is used to generate energy that moves the plant. 
C. Water changes the concentration of salts within the plant. 
D. Water enters and expands their cells. 

 
Q2. In which way are plants and animals different in how they obtain energy? 
 

A. Animals use ATP; plants do not. 
B. Plants capture energy from sunlight; animals capture chemical energy. 
C. Plants store energy in sugar molecules; animals do not. 
D. Animals can synthesize sugars from simpler molecules; plants cannot. 

 
Q3: In which way are plants and animals different in how they use energy? 

A. Plants use energy to build molecules; animals cannot. 
B. Animals use energy to break down molecules; plants cannot. 
C. Animals use energy to move; plants cannot. 
D. Plants use energy directly, animals must transform it. 

 
Q4: How can a catastrophic global event influence evolutionary change? 
 

A. Undesirable versions of genes are removed. 
B. New genes are generated. 
C. Only some species may survive the event. 
D. There are short term effects that disappear over time. 
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Q5: There exists a population in which there are three distinct versions of the gene A (a1, 
a2, and a3). Originally, each version was present in equal numbers of individuals. Which 
version of the gene an individual carries has no measurable effect on its reproductive 
success. As you follow the population over a number of generations, you find that the 
frequency of a1 and a3 drop to 0%. What is the most likely explanation? 
 

A. There was an increased rate of mutation in organisms that carry either a1 or a3. 
B. Mutations have occurred that changed a1 and a3 into a2. 
C. Individuals carrying a1 or a3 were removed by natural selection. 
D. Random variations led to a failure to produce individuals carrying a1 or a3. 

 
Q6: Natural selection produces evolutionary change by… 
 

A. changing the frequency of various versions of genes. 
B. reducing the number of new mutations. 
C. producing genes needed for new environments. 
D. reducing the effects of detrimental versions of genes. 

 
Q7. If two parents display distinct forms of a trait and all their offspring (of which there 
are hundreds) display the same new form of the trait, you would be justified in 
concluding that ... 
 

A. both parents were heterozygous for the gene that controls the trait. 
B. both parents were homozygous for the gene that controls the trait. 
C. one parent was heterozygous, the other was homozygous for the gene that 

controls the trait. 
D. a recombination event has occurred in one or both parents. 

 
Q8. You are doing experiments to test whether a specific type of acupuncture works. This 
type of acupuncture holds that specific needle insertion points influence specific parts of 
the body. As part of your experimental design, you randomize your treatments so that 
some people get acupuncture needles inserted into the "correct" sites and others into 
"incorrect" sites. What is the point of inserting needles into incorrect places? 
 

A. It serves as a negative control. 
B. It serves as a positive control. 
C. It controls for whether the person can feel the needle. 
D. It controls for whether needles are necessary. 

 
Q9. As part of your experiments on the scientific validity of this particular type of 
acupuncture, it would be important to ... 
 

A. test only people who believe in acupuncture. 
B. test only people without opinions, pro or con, about acupuncture. 
C. have the study performed by researchers who believe in this form of acupuncture. 
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D. determine whether placing needles in different places produces different results. 

Q10: What makes DNA a good place to store information? 
 

A. The hydrogen bonds that hold it together are very stable and difficult to break 
B. The bases always bind to their correct partner. 
C. The sequence of bases does not greatly influence the structure of the molecule. 
D. The overall shape of the molecule reflects the information stored in it. 

 
Q11: What is it about nucleic acids that makes copying genetic information 
straightforward? 
 

A. Hydrogen bonds are easily broken. 
B. The binding of bases to one another is specific. 
C. The sequence of bases encodes information. 
D. The shape of the molecule is determined by the information it contains. 

 
Q12: It is often the case that a structure (such as a functional eye) is lost during the course 
of evolution. This is because ... 
 

A. It is no longer actively used. 
B. Mutations accumulate that disrupt its function. 
C. It interferes with other traits and functions. 
D. The cost to maintain it is not justified by the benefits it brings. 

 
Q13: When we want to know whether a specific molecule will pass through a biological 
membrane, we need to consider ... 
 

A. the specific types of lipids present in the membrane. 
B. the degree to which the molecule is water soluble. 
C. whether the molecule is actively repelled by the lipid layer. 
D. whether the molecule is harmful to the cell. 

 
 
Q14: How might a mutation be creative? 
 

A. It could not be; all naturally occurring mutations are destructive. 
B. If the mutation inactivated a gene that was harmful. 
C. If the mutation altered the gene product's activity. 
D. If the mutation had no effect on the activity of the gene product. 

 
 
Q15: An allele exists that is harmful when either homozygous or heterozygous. Over the 
course of a few generations the frequency of this allele increases. Which is a possible 
explanation? The allele ... 
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A. is located close to a favorable allele of another gene. 
B. has benefits that cannot be measured in terms of reproductive fitness. 
C. is resistant to change by mutation. 
D. encodes an essential protein. 

 
Q16: In a diploid organism, what do we mean when we say that a trait is dominant? 
 

A. It is stronger than a recessive form of the trait. 
B. It is due to more, or a more active gene product than is the recessive trait. 
C. The trait associated with the allele is present whenever the allele is present. 
D. The allele associated with the trait inactivates the products of recessive alleles 

 
Q17: How does a molecule bind to its correct partner and avoid “incorrect” interactions? 
 

A. The two molecules send signals to each other. 
B. The molecules have sensors that check for "incorrect" bindings. 
C. Correct binding results in lower energy than incorrect binding. 
D. Correctly bound molecules fit perfectly, like puzzle pieces. 

 
Q18: Once two molecules bind to one another, how could they come back apart again? 
 

A. A chemical reaction must change the structure of one of the molecules. 
B. Collisions with other molecules could knock them apart. 
C. The complex will need to be degraded. 
D. They would have to bind to yet another molecule. 

Q19: Why is double-stranded DNA not a good catalyst? 
 

A. It is stable and does not bind to other molecules. 
B. It isn't very flexible and can't fold into different shapes. 
C. It easily binds to other molecules. 
D. It is located in the nucleus. 

 
Q20: Lipids can form structures like micelles and bilayers because of ... 
 

A. their inability to bond with water molecules. 
B. their inability to interact with other molecules. 
C. their ability to bind specifically to other lipid molecules. 
D. the ability of parts of lipid molecules to interact strongly with water. 

 
Q21: A mutation leads to a dominant trait; what can you conclude about the mutation's 
effect? 
 

A. It results in an overactive gene product. 
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B. It results in a normal gene product that accumulates to higher levels than normal. 
C. It results in a gene product with a new function. 
D. It depends upon the nature of the gene product and the mutation. 

 
Q22: How similar is your genetic information to that of your parents? 
 

A. For each gene, one of your alleles is from one parent and the other is from the 
other parent. 

B. You have a set of genes similar to those your parents inherited from their parents. 
C. You contain the same genetic information as each of your parents, just half as 

much. 
D. Depending on how much crossing over happens, you could have a lot of one 

parent's genetic information and little of the other parent's genetic information. 
 
Q23: An individual, "A", displays two distinct traits. A single, but different gene controls 
each trait. You examine A's offspring, of which there are hundreds, and find that most 
display either the same two traits displayed by A, or neither trait. There are, however, 
rare offspring that display one or the other trait, but not both. 
 

A. The genes controlling the two traits are located on different chromosomes. 
B. The genes controlling the two traits are located close together on a single 

chromosome. 
C. The genes controlling the two traits are located at opposite ends of the same 

chromosome. 
 
Q24: A mutation leads to a recessive trait; what can you conclude about the mutation's 
effect? 
 

A. It results in a non-functional gene product. 
B. It results in a normal gene product that accumulates to lower levels than normal. 
C. It results in a gene product with a new function. 
D. It depends upon the nature of the gene product and the mutation. 

 
Q25: Imagine an ADP molecule inside a bacterial cell. Which best describes how it 
would manage to "find" an ATP synthase so that it could become an ATP molecule? 
 

A. It would follow the hydrogen ion flow. 
B. The ATP synthase would grab it. 
C. Its electronegativity would attract it to the ATP synthase. 
D. It would be actively pumped to the right area. 
E. Random movements would bring it to the ATP synthase. 

 
Q26: You follow the frequency of a particular version of a gene in a population of 
asexual organisms. Over time, you find that this version of the gene disappears from the 
population. Its disappearance is presumably due to … 
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A. genetic drift. 
B. its effects on reproductive success. 
C. its mutation. 
D. the randomness of survival. 

Q27: Consider a diploid organism that is homozygous for a particular gene. How might 
the deletion of this gene from one of the two chromosomes produce a phenotype? 
 

A. If the gene encodes a multifunctional protein. 
B. If one copy of the gene did not produce enough gene product.. 
C. If the deleted allele were dominant. 
D. If the gene encoded a transcription factor. 

Q28: Gene A and gene B are located on the same chromosome. Consider the following 
cross: AB/ab X ab/ab. Under what conditions would you expect to find 25% of the 
individuals with an Ab genotype. 
 

A. It cannot happen because the A and B genes are linked. 
B. It will always occur, because of independent assortment. 
C. It will occur only when the genes are far away from one another. 
D. It will occur only when the genes are close enough for recombination to occur 

between them. 
 
Q29: Sexual reproduction leads to genetic drift because ... 
 

A. there is randomness associated with finding a mate. 
B. not all alleles are passed from parent to offspring. 
C. it is associated with an increase in mutation rate. 
D. it produces new combinations of alleles. 

 
Q30: How is genetic drift like molecular diffusion? 
 

A. Both are the result of directed movements. 
B. Both involve passing through a barrier. 
C. Both involve random events without regard to ultimate outcome. 
D. They are not alike. Genetic drift is random; diffusion typically has a direction. 
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APPENDIX B 
 

 This Appendix includes the Maryland Biology Student Expectations Survey given 

to students to evaluate their attitudes towards biology. Question 24 served as a filtering 

question requiring students to select an answer of 4 on the 1-5 Likert scale. Questions 28 

– 32 responses on the Likert-scale indicated which option, A or B, students agreed with 

the most. Questions 6, 9, 12, 13,17, 25, 27, and 30 were scored in reverse meaning that a 

response of 5 on a Likert scale was the favorable response. 

Maryland Biology Student Expectations Survey 
 
1. Biology courses should focus on biological subjects and should not present much 
chemistry and/or physics. 
 
2. All I need to do to understand most of the material in a biology class is to memorize 
the basic facts, read the textbook, and/or play close attention in class. 
 
3. Knowledge in biology consists of many unrelated facts. 
 
4. I believe it is possible to get a "C" or better in this course without understanding the 
course topics very well. 
 
5. If biology professors gave really clear lectures, then most good students could learn the 
material without having to spend a lot of time thinking outside of class. 
 
6. I am more interested in general biological principles than the specific facts that 
demonstrate those principles. 
 
7. The knowledge of evolutionary processes is relatively unimportant for understanding 
human biology. 
 
8. Using mathematics to explain biological phenomena is more confusing than helpful to 
students. 
 
9. The knowledge that I acquired in this biology class is directly applicable to important 
issues currently facing the world. 
 
10. When studying for a biology exam, the key thing is knowing all the facts about the 
topics to be covered on the exam. Understanding the big ideas might be helpful for some 
essay questions, but not for most of the exam. 
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11. Studying the simple organisms in this class, like sea urchins, jellyfish, and snails, tells 
me very little about how human systems work. 
 
12. Even if this class were not a requirement for my major, I would still take it. 
 
13. Learning biology requires that I substantially rethink, restructure, and reorganize the 
information that I am given in class and/or in the text. 
 
14. Although math in biology provides another way of describing biological phenomena, 
it does not really help provide a deeper understanding. 
 
15. I don't need to be good at math to be good at biology. 
 
16. Biology classes should be designed to help the students master the factual material for 
doing well on the MCATs, GREs, and other professional exams. 
 
17. This biology class gives me knowledge and skills to think critically about biological 
topics in current events. 
 
18. Learning biology is mostly a matter of acquiring the factual knowledge presented in 
class and/or in the textbook. 
 
19. I don't need to be good at physics to be good at biology. 
 
20. Biology class should just present all the different facts. Trying to present the unifying 
theories doesn't really help us understand anything. 
 
21. I find that I often forget the material I've learned for a biology test soon after the 
exam. 
 
22. I don't need to be good at chemistry to be good at biology. 
 
23. Memorizing all of my lecture notes in this class verbatim is all I need to do to get an 
"A" in this course. 
 
24. We use this statement to discard the survey of people who are not reading the 
questions. Please select agree - option 4 - for this question to preserve your answers. (do 
not mark option 5) 
 
25. The benefits of learning to be proficient using math and physics in biology are worth 
the extra effort. 
 
26. Physics is relatively unimportant for understanding most biological processes. 
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27. I expect my exam performance in biology courses to reflect how well I can: 
A. recall course materials the way they are presented in class. 
B. apply course materials in situations not discussed in class. 
 
28. Justin and Dave are studying together for an upcoming test and discussing the best 
way for them to study. 
Justin: When I'm learning biology concepts for a test, I like to put things in my own 
words, so that they make sense to me. 
Dave: But putting things in your own words doesn't help you do well in the class. The 
textbook and lectures were written by people who know biology really well. You should 
learn things the way the textbook and lectures present them. 
 
A. Justin's study method is most effective. 
B. Dave's study method is most effective. 
 
29. Brandon and Jamal are discussing how a good biology textbook should be organized. 
Brandon: A good biology textbook should show how the material in one chapter relates 
to the material in other chapters. It shouldn't treat each chapter as separate because they're 
not really separate. 
Jamal: But most of the time, each chapter is a bout a different topic and those topics don't 
always have much to do with each other. The textbook should keep everything separate, 
instead of blending it all together. 
 
A. Brandon's textbook organization is best. 
B. Jamal's textbook organization is best. 
 
30. Of the following test formats, which is best for measuring how well students 
understand the material in biology? 
 
A. A large collection of short-answer or multiple-choice questions, each of which covers 
one specific fact or concept. 
B. A small number of longer questions and problems, each of which covers several facts 
and concepts. 
 
31. Samantha and London are studying for an upcoming test on evolution. 
Samantha: In order to do well on this test, I'm just going to concentrate on understanding 
the few underlying principles, which I will be able to apply to different situations. 
London: I don't think understanding the principles tells you enough about every situation, 
I think I'm going to focus on memorizing as many different ways that organisms have 
evolved as I can. 
 
A. It is best to study like Samantha. 
B. It is best to study like London. 
 
32. Biology and physics are: 
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A. related to each other by common principles. 
B. are separate and independent of each other. 
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