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Professor Jennifer S. Rehage, Major Professor 

 In aquatic systems refuge habitats increase resistance to drying events and are 

necessary for maintaining populations in disturbed environments. However, reduced 

water availability and altered flow regimes threaten the existence and function of these 

habitats. To test refuge function I conducted a capture-mark-recapture (CMR) study, 

integrating citizen science angler sampling into fisheries-independent methods. The 

objectives of this study were twofold: 1) To determine the contribution of citizen science 

anglers to improving CMR research, and 2.) to quantify apparent survival of Florida 

Largemouth Bass, Micropterus salmoides floridanus, in a coastal refuge habitat across 

multiple years of drying severity.  The inclusion of angler sampling was determined to be 

an effective and feasible method for increasing capture probability. Apparent survival of 

Florida Bass varied among hydrologic periods with lowest survival when marshes 

functionally dried (< 10 cm). Overall mortality from drying events increased with the 

duration of marsh drying upstream. 
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I. INTRODUCTION 

 
 Much of the world’s freshwater flows are being altered as a result of 

anthropogenic demands for water resources (Mims & Olden 2013). Highly managed 

water flows have shifted the natural timing, quantity, and variability of freshwater 

delivery to altered and at times novel flow regimes (Poff et al. 1997; Poff & Zimmerman 

2010; Beesley et al. 2014). Altered flows can directly influence disturbance regimes in 

aquatic habitats by interfering with the seasonal patterns of flood and drying events 

(Lytle & Poff 2004). In particular, the intensity and frequency of drying disturbances can 

be impacted by reduced water availability in conjunction with climate change (Lake 

2011).  

 Disturbance regimes are fundamental components of ecosystems, affecting 

population dynamics and shaping ecological and evolutionary processes (Sousa 1984; 

Lake 2003; Turner 2010; Banks et al. 2013). However, despite their importance, there is 

little known about the impact of altered hydrology on mobile organisms such as fishes 

(Magalhães et al. 2002; Davey et al. 2006). This has left numerous gaps in our 

understanding of how fish populations respond to drying events exasperated by 

anthropogenic influences (Matthews & Matthews 2003).  

The ability of fish to persist in the face of disturbance can be influenced by the 

availability and quality of refuge habitats (Sedell 1990; Lake 2003). Refuge habitats refer 

to those that decrease the negative effects of disturbance compared to the surrounding 

area and are necessary for maintaining populations in disturbed environments (Lancaster 

& Belya 1997; Magoulick & Kobza 2003). For example, Creek Chub, Semotilus 
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atromaculatus, can escape drying in perennially interrupted Ozark streams by using 

seasonally-isolated pools that maintain high water quality via interstitial flows (Hodges & 

Magoulick 2011). Access to refuge habitats, such as dry season pools, buffer populations 

from drying events and are necessary for maintaining freshwater fish populations (Rolls 

et al. 2012; Robson et al. 2013; Avery-Gromm et al. 2014). Changing flow regimes 

threaten the existence and function of refuges (Perry & Bond 2009). Understanding the 

function of refuge habitats under altered flow regimes is vital for adaptation and 

management in a future of water scarcity and climate change (Robson et al. 2013; Davis 

et al. 2013). 

A major component of refuge function for fishes and other aquatic biota is an 

increase in population resistance to drought events through a reduction in direct mortality 

(Magoulick & Kobza 2003). Thus, survival in refuge habitats is a fundamental measure 

of refuge quality and buffering capacity. Survival is a key determinant of population 

dynamics (Varley & Gradwell 1960; Buzby & Deegan 2004), and the ability for 

ecologists to link vital rates to environmental factors provides a powerful tool to 

investigate how natural populations respond to changing patterns of disturbance 

(Frederiksen et al. 2008; Frederiksen et al. 2013). Although a number of studies have 

begun incorporating variation in refuge quality to understand the interplay between 

disturbance and refuge habitats (Kobza et al. 2004; DeAngelis et al. 2010; Parkos et al. 

2011; Bond et al. 2015), few directly quantify survival. Instead, most studies infer 

survival through changes in relative abundance over time, which can be problematic, as 

heterogeneity in the probability of individual detection across varying habitats creates an 

inherent bias (Williams et al. 2002).  Further, studies that investigate drying effects on 



 

3 
 

fishes are largely limited to dryland streams and Mediterranean climates, and often focus 

on small-bodied or juvenile fishes dwelling in small pool habitats (Matthews & 

Matthesws 2003; Magalhães et al. 2007; Labbe & Fausch 2000; Hodegs & Magoulick 

2011; Robson et al. 2013).   

In the Everglades, patterns of marsh flooding and drying regimes have been 

highly modified as a result of extensive draining, canalization, and redirection of water 

flow (Light & Dineen 1994). In the southern portion of the ecosystem, these hydrological 

modifications have resulted in an increased magnitude, frequency, and duration of marsh 

drying (Sklar 1999), particularly in Everglades National Park (ENP). Reductions in 

hydrological flows have likely increased the importance of refuge habitats such as 

solution-holes, alligator holes, and coastal mangrove creeks in maintaining fish 

populations (Rehage & Loftus 2007; Parkos et al. 2011; Rehage et al. 2014). In coastal 

habitats, reductions in freshwater inflow have resulted in increased salinity conditions 

and an overall introgression of the ecotone inland (Davis et al. 2005; Saha et al. 2011b). 

As upstream marshes dry, coastal mangrove creeks function as refuge habitats for 

important large-bodied mesoconsumers such as the Florida Largemouth Bass 

(Micropterus salmoides floridanus, here after Florida Bass), which support a highly-

prized recreational sport fishery (Fedler 2009). Understanding how reduced freshwater 

flows, increased salinity and frequency of marsh drying influence the ability of these 

coastal mangrove creeks to buffer Florida Bass populations from drying events is crucial 

to fisheries management of ENP.  

In the present study, I used traditional capture-mark-recapture (CMR) 

methodology in conjunction with an angler citizen science program to estimate survival 
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of Florida Bass across a range of drying severity. The objectives of this study were 

twofold: 1) to determine the contribution of citizen anglers to improving CMR fisheries 

research, and 2) to quantify variation in survival of Florida Bass in a coastal refuge 

habitat. I hypothesized that the inclusion of anglers through citizen science would 

improve CMR data by increasing capture probability, and thus better informing survival 

models. To test this hypothesis, I modeled monthly capture probabilities as a function of 

both electrofishing and angling sampling effort. I then tested alternative candidate open 

Cormack-Jolly-Seber (CJS) survival models (Cormack 1964; Jolly 1965; Seber 1965) 

derived from a priori hypotheses about the function of refuge habitat during seasonal 

hydrological periods and across years of varying severity. I hypothesized that apparent 

survival of Florida Bass in coastal mangrove habitats would be highest in the wet season 

when biotic and abiotic conditions in the refuge were less stressful. As upstream marshes 

dry I expected to see a decrease in survival in refuge mangrove creeks from a 

combination of fishing mortality and natural mortality (e.g., predation, salinity, etc.). I 

also hypothesized that apparent survival should be lowest at the peak of the dry season 

and expected mortality to vary as a function of duration of marsh drying.  

II. METHODS 

Focal species & study system 

I quantified survival of Florida Bass in the upper Shark River Estuary (SRE), 

located in the southwestern region of ENP, Florida, USA (Figure 1). In the Everglades, 

Florida Bass reside throughout freshwater marshes and canals in periods of high water 

levels in the wet season (June-November) (Chick et al 2004; Rehage & Trexler 2006, 
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Parkos & Trexler 2014). In the dry season (December-May), available marsh habitat 

contracts, often completely drying, particularly in the post-drainage system. In the coastal 

Everglades, in response to seasonal upstream marsh drying, Florida Bass move to refuge 

habitats in oligohaline mangrove creeks at the headwaters of coastal creeks. For instance, 

approximately 84 % of the Florida bass caught in the upper SRE were caught in the dry 

season (Rehage et al. 2015).   

The SRE is one of the main drainages of the coastal Everglades into the Gulf of 

Mexico (Childers 2006). Marsh water levels are highly influenced by regional rainfall 

and water management decisions upstream, which result in seasonal and interannual 

variation in marsh inundation (Figure 2) (Sklar et al. 1999; Saha et al. 2011a). In contrast, 

the headwater creeks of the SRE remain inundated year round, and the combination of 

high hydrological connectivity between the marsh and estuarine habitats and their 

location at the southern end of the main drainage in the southern Everglades, the Shark 

River Slough (Childers et al. 2006), make the region an important refuge habitat for 

freshwater fishes in periods of seasonal marsh drying (Rehage & Loftus 2007).  

The use of oligohaline reaches in coastal areas by Largemouth Bass, Micropterus 

salmoides, is well-established, but our understanding of these populations is limited 

(Norris et al. 2010). In the SRE, use of estuarine habitat and its function as refuge habitat 

for Florida Bass may be limited by increasing salinity levels as marshes dry. Salinity 

tolerance of Largemouth Bass varies through ontogeny as well as the origin of the 

population (e.g., inland vs. coastal), but there is a general preference for salinities < 3 ppt 

(Meador & Kelso 1989; Glover et al. 2013). Lethal limits for Largemouth Bass occur at 

12 ppt (Meador & Kelso 1990), while the egg and larval stages cannot survive above 3.6 
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ppt and cessation of reproduction occurs at 3-4.5 ‰ (Meador & Kelso 1989).  Florida 

Bass are a subspecies of M. salmoides and while salinity preferences may be similar, it is 

possible that Florida Bass may have lower tolerances to salinity (Glover et al. 2012). 

Thus, as marshes dry and salinity increases, Florida Bass in the SRE may experience 

mortality in the estuary under high salinity and fishing pressure. Once in the estuary, 

Florida Bass are an important recreational fishery in this region, and angler catch rates 

are strongly affected by the severity of marsh drying (Boucek & Rehage 2013b). 

Study design 

A capture-mark-recapture study was conducted between November 11, 2010 and 

June 2, 2014 at 10 fixed sites across the upper 12 km of the SRE (Figure 1). During this 

3.5 year period, Florida Bass populations were sampled on 32 monthly sampling events 

during both the wet and dry seasons (Appendix A). Sampling was conducted using a 

boat-mounted generator-powered electrofisher (two anode, one‐cathode Smith‐Root® 

GPP 9.0 system), shown previously to be an effective means for sampling larger fishes 

including Florida Bass in the fresh and coastal Everglades (Chick et al. 1999; Boucek & 

Rehage 2013a). Fixed sites consisted of three 100 m replicate transects of shoreline each 

separated by 100 m buffer (see Rehage & Loftus 2007; Boucek and Rehage 2013a for 

additional details). For each transect, a randomly-selected side of the creek was sampled 

at idle speed for 5-minutes of shocking (Rehage & Loftus 2007). Power output was 

standardized to 1500 Watts per ambient temperature and conductance conditions 

(Burkhardt & Gutreuter 1995; Chick et al. 1999). Immobilized Florida Bass were 

collected by two netters at the bow of the boat and placed in a live-well for processing.  
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All Florida Bass >120 mm were tagged with a passive integrated transponder 

(PIT tags, 23 mm HDX, 0.6 g, Biomark®). PIT-tags are microchips encased in 

biocompatible glass, each encoding a unique number used to identify individuals 

(Gibbons & Andrews 2004). Before being tagged, every Florida Bass was scanned using 

a handheld tag reader to check for a previously-inserted tag.  If a tag was detected it was 

noted as a recapture (Appendix A), and its unique identification number was recorded. If 

an individual was not previously marked, it was then tagged intraperitoneally with the 

PIT-tag (Baras et al. 1999). All captured fish were scanned and tagged on all sampling 

occasions and released promptly after processing at the location of capture.  All fish were 

weighed and measured before tagging, and total length (mm) data was used to examine 

variation in size structure among years of varying drying severity. Two estimated age 

classes, age-1 and age-2+, were estimated from length frequency data using the 

Bhattacharya method (Ozen & Noble 2005) and known age-length relationships for 

Florida Bass (Allen et al. 2002). 

Starting in 2011, an angler citizen science program called the Coastal Angler 

Science Team (CAST) was developed to increase recapture information on tagged 

individuals. This program was designed to incorporate anglers who targeted Florida Bass 

in the SRE region (Figure 1). Participating anglers were trained on how to properly scan 

and record recapture data and received data packets (Appendix B). Anglers scanned all 

catches before release and recorded any recapture tag numbers, as well as fish length and 

recapture location.  
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Classification of hydrologic periods 

To compare survival across seasons, four distinct hydrologic periods were defined 

as a function of water levels in marshes upstream of the study region (e.g., Grossman et 

al. 1998; Figure 2). Hydrologic periods were defined as WET, when marsh water levels 

were >30 cm; DRYING when water levels were < 30 cm, but above >10 cm; and DRY 

when marsh levels dropped to < 10 cm. A 10 cm water depth was considered DRY since 

at this depth there is little standing water remaining and low connectivity of the landscape 

for large-bodied fishes such as Florida Bass (Chick et al. 2004; Parkos et al. 2011). Once 

marshes were DRY, a final REFLOOD period was designated for the re-inundation 

period when water levels were > 10 cm, but < 30 cm (Figure 2). Marsh water depths were 

obtained from the US Geological Survey hydrostation MO-215 (Figure 1). A range of 

DRY period severities were captured across the four years of the study, including: 132 

days DRY in year 1, 25 days DRY in year 2, 0 days DRY in year 3, and 62 days DRY in 

year 4.  

Survival model  

 Capture probability	()	and apparent survival (߶) were estimated using an open 

population CJS model (Cormack 1964, Jolly 1965, Seber 1965) in the program MARK® 

(White & Burnham 1999). Open models allow for changes in births, deaths, immigration, 

and emigration (Pine et al. 2003). Thus, apparent survival estimates (hereafter, survival) 

include mortality as well as permanent emigration (Williams et al. 2002).  Multinomial 

encounter histories that included the presence or absence of tagged fish (0 = not captured, 

1 = captured) across all 32 sampling events (Appendix C) were built and used as input for 
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the CJS model  (White & Burnham 1999, Cooch & White 2010). Both  and	߶ were 

estimated on monthly time steps, and sampling intervals were adjusted directly in 

MARK® (White & Burnham 1999) for the few instances when multiple months elapse 

between sampling events.  

In order to incorporate both electrofishing and angling sampling from CAST, the 

capture probability model (electrofishing + citizen science) was used. The logit-link 

function was used to incorporate sampling effort of each method to the capture 

probability model. Electrofishing effort was measured as the total number of days per 

month to complete sampling and angling effort was measured as the sum number of 

angling days per angler (Appendix A). In order to assess how incorporating citizen 

science influenced capture probability, predicted capture probability (̂) was modeled as 

a function of electrofishing effort and of angling effort using the equation: 

ா௧௦ା̂																												(1) = 11 +  (ఉభ∗ாಶೝೞାఉమ∗ாಲ	ఉା)ିݔ݁
where ߚ is the intercept, ߚଵ is the coefficient of electrofishing effort, and ߚଶ is the 

coefficient of angler effort. Using these estimated coefficients, I assessed the efficiency 

of each sampling method (electrofishing vs angling) by comparing these estimated 

coefficients and  comparing predicted capture probabilities (̂) for each method across a 

range of sampling efforts, using days as a common unit of effort.  

To examine how survival of Florida Bass varied across the four hydrologic 

periods of interest, I developed four a priori models (Table 1). The models tested four 

hypotheses of interest that ranged from constant survival over time, heterogeneous 

survival among sampling events, variation in survival among hydrological periods, and as 
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a function of both hydrological periods and years of the study (2011-2014). Final models 

was built to test effect of year 3 of the study, as marshes never fell below the 10 cm 

classification for DRY, but were low enough (12 cm) to have potential impacts on refuge 

function. Models were run using the iterative approach set forth by Lebreton et al. (1992).  

I then ranked models using Akaike’s Information Criterion for small sample sizes 

(AICc). The lowest AICc value indicates the most parsimonious model within the set of 

candidate models (Burnham & Anderson 1998; Anderson 2007). I used goodness-of-fit 

(GOF) tests to test for the violation of model assumptions of equal probability of survival 

and recapture for all marked animals in the population (Lebreton et al. 1992; Williams et 

al. 2002) by using a parametric bootstrap and the RELEASE extension.  

From the top ranking model, I obtained estimates of monthly survival rates for 

each of the four hydrologic periods. Model averaging, between the two top models was 

used to estimate survival in year 3, the non-dry year of the study. By multiplying the 

estimated monthly survival rates by the number of months each hydrologic period lasted 

(i.e., a two month DRY in year four equals(	߶ௗ௬	 ∗ ߶ௗ௬	 = ߶ଶ	)  I was able to compute 

a hydrologic period survival (HS) for each period of the study. I used the delta method to 

calculate variance for each HS (Powell 2007). For all hydrologic periods except DRY, 

survival was expected to be apparent survival, a combination of total mortality (fishing + 

natural mortality) and emigration. But, the study system was effectively ‘closed’ to 

migration during the DRY period, bounded by higher salinity downstream in the estuary 

and dry marshes upstream, and therefore estimates of apparent survival for this 

hydrologic period were assumed to be a function of fishing and natural mortality alone 

and were converted to DRY hydrologic period mortality estimates (Z) with the equation: 
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(2)																																																																ܼ = 1 − ߶ுௌௗ௬ 

where total mortality (Z) can be described as:  (3)																																																																ܼ = ܨ  ܯ+

where F is the instantaneous fishing mortality and M is the instantaneous natural 

mortality (Kerns et al. 2012); however recaptures were too low to distinguish between the 

two. Tag loss and failure were assumed to be negligible, as demonstrated for PIT tagged 

Largemouth Bass in previous studies (Siepker et al. 2012 and references therein). 

Additionally, the volunteer nature of angler participation in CAST eliminated any tag 

reporting biases.  

III. RESULTS 

Over the 3.5 years, a total of 1,727 Florida Bass were marked and 146 were 

recaptured, 106 from electrofishing sampling and 43 from angler recaptures (Figure 3). 

The GOF fit test RELEASE showed that the global model (ϕ(Event), Table 3) had an 

adequate fit (χ2 = 35.7, df = 60, P = 0.99). The second GOF test indicated slight 

overdispersion with a mean variance inflation factor of Ĉ = 1.13, which I addressed by 

using QAICc as our model selection criteria (Burnham & Anderson 2002, Table 3). 

Electrofishing and angling sampling capture probabilities were not significantly 

different. Beta coefficients of capture probabilities from the model (Electrofishing + 

Angling) were β1 = 0.16 and β2 =0.06 for electrofishing and angling respectively (Table 

2). Capture probability was similar between sampling methods at low levels of effort (< 5 

days), but at higher efforts electrofishing (unfeasible) surpassed angling in a nonlinear 
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manner (Figure 5). However, overlapping confidence intervals indicate that there is no 

significant difference between the two methods. These results suggest that the inclusion 

of citizen science anglers to improve CMR capture probabilities can be just as good as 

electrofishing sampling.  

Of the four candidate survival models, the best fit model was the ϕ(Hydrologic 

period) model, with a 0.77 probability of being the best model in the set (Table 3). The 

next best model was ϕ(Hydrologic Year 3), but this model contained less information, 

with a ∆QAICc of 2.7 and a model weight of 0.20. The model results suggest that 

hydrological period has an overwhelming effect on monthly. Additionally, interannual 

variation has little effect on the monthly estimates of each hydrologic period. From the 

top ranking model ϕ(Hydroperiod), parameter estimates indicated that monthly survival 

was  100% in DRYING periods (1.0; 95% CI: 0.99, 1.00). However, confidence intervals 

for the DRYING period are likely larger than reported as limitations of estimating 

standard errors for parameters at their boundary should be taken into consideration 

(Reboulet et al. 1999). Similarly, as a result of the seasonal nature of refuge use by 

Florida Bass, limited tagging data in the WET period make survival non-estimable in this 

time (Reboulet et al. 1999). In contrast, monthly survival was lower, but not different 

from each other in the DRY and REFLOOD periods, 0.73 (95% CI: 0.60, 0.84) and 0.58 

(95% CI: 0.48, 0.68) respectively. 

The estimated HS for the DRYING periods remained consistently at 1 for all 

years of the study, indicating reduced mortality under high water conditions. In contrast, 

HS was significantly lower in the DRY periods in the three years when minimal water 

levels in the DRY period fell < 10 cm (all years but 2013, Figure 5).  The estimated 
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mortalities for the DRY period were 79% in 2011, 27%, in 2012, 5% in 2013, and 46% in 

2014. These mortalities were proportional to the duration of drying, 132 days in 2011 

during the drought, vs. 25 in 2012, 0 in 2013, and 62 in 2014. Notable is the fact that 

mortality was estimated at only 5% when marshes remained above 10 cm and did not dry 

in 2013 (Figure 6).  

The length frequency data indicated a dominance of two age classes in the SRE 

sites, and variation in age structure across the 4 years, which corroborates the survival 

estimates (Figure 7).  In 2011, the frequency of age-1 and age-2+ classes was similar 

whereas in 2012 the 5-month drought the previous year was evident in the frequency 

data, with a truncated size distribution, with no age-1 fish present an absence of the 

largest individuals. This truncation in 2012 agrees with the highest mortality observed in 

the study. Post-drought, in 2013, the largest size distribution was detected, with a 

dominance of the age-1 size class, indicative of recovery. Lastly, 2014 was dominated by 

age-2+ with an overlap in size distribution with age-1 fish. Comparison of 2013 and 2014 

length frequencies show that the 2013 cohort is intact in 2014 and most of it enters the 

next age class, corroborating the zero mortality estimated in the model in 2013.  

IV. DISCUSSION 

Understanding the ability of refuge habitats to buffer populations from 

disturbance is important to predicting how populations may respond to climate change 

and associated conservation efforts (Davis et al. 2013). Further, the need to understand 

the function of refuge habitats will only increase with growing demands on freshwater 

resources and forecasted declines in precipitation in many parts of the world (Lake 2011; 
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Avery-Gromm et al. 2014). In this study, I modeled Florida Bass survival across a range 

of seasonal hydrologic periods and years of drying severity and incorporated citizen 

science recapture data into CJS survival models. Inclusion of angler sampling improved 

recapture probabilities. Apparent survival of Florida Bass in the upper SRE varied among 

hydrologic periods, with the highest survival in periods of high water levels. As 

predicted, across years survival in coastal mangrove refuges was closely tied to the length 

of marsh drying upstream. Mortality over the DRY period peaked at 79% in the drought 

year when marshes were effectively dry for 132 days, but was 46% in a moderate year 

(62 day of dry), and 27% in a mild year (25 days dry). Below a marsh depth of 10 cm, the 

buffering ability of the coastal refuge habitat appeared to diminish and survival 

decreased. However, above 10 cm mortality was much lower, suggesting that only a 

small amount of water on the marsh surface can greatly reduce dry season mortality.   

Citizen science 

 When designing and implementing a CMR tagging, several key aspects must be 

considered. These include tag-shedding, tag-reporting rates, and low capture probabilities 

(Pine et al. 2012). The design of this study aimed to overcome these common pitfalls in 

several ways. The choice of PIT-tags eliminated any tag-shedding bias, as these tag types 

are known to have very high retention rates, low tagging mortality, and last the lifetime 

of the individual tagged (Boucek & Adams 2011). Additionally, the use of PIT-tags in 

conjunction with citizen science eliminated bias arising from reporting rates as tag 

reporting was done exclusively by CAST volunteers actively scanning their catches for 

recaptures.  In open systems it is often difficult to overcome low recapture rates (Hewitt 
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et al. 2010) and most fisheries studies result in capture probabilities of 0.2 and lower 

(Pine et al. 2012). Like other studies capture probabilities were low for both methods 

however the inclusion of angler citizen science was shown to match capture probabilities 

for electrofishing methods and provided direct estimates of their potential to increase 

capture rates.  

 My findings showed that the addition of citizen science into CMR research has 

the ability to improve monthly capture probabilities of tagged fish. This finding supports 

results from forest and avian monitoring programs, where the inclusion of citizen science 

was a powerful complement to conventional monitoring programs (Danielsen et al. 2007; 

Ryder et al. 2010). At low effort, electrofishing and angling sampling were similar; 

however at higher efforts electrofishing capture probability surpassed angling effort and 

increased further in a nonlinear pattern. Model results indicate that angler sampling days 

were not significantly different than electrofishing days and produced more consistent 

capture probabilities. This high consistency by anglers may result from increased spatial 

effort relative to sampling at fixed sites by electrofishing, in addition to anglers 

specifically targeting Florida Bass. Each angler has the ability to cover most of the study 

region in a single day (pers. comm. with CAST members, Figure 1), while electrofishing 

covers much smaller spatial domains per sampling day. Increased spatial and temporal 

coverage is a major advantage for research programs that use citizen science data 

(Devictor et al. 2010), particularly in fisheries research (Fairclough et al. 2014). For 

example, Thorson et al. (2014) built demographic models to analyze previously-untapped 

spatiotemporal data collected solely by citizen science participants, which resulted in 
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important information on demographic trends and habitat associations for two critically-

endangered fish species.  

 In CMR studies, increases in capture probabilities are extremely important and 

efforts should be made to increase these (Hewitt et al. 2010). In addition to increasing 

capture probability, the feasibility of increasing sampling effort is greater through angler 

sampling than routine electrofishing sampling. Additional angler days can be gained by 

increasing the number of angler participants and overlapping angling trips. In contrast, 

increasing the number of electrofishing sampling days within a monthly event may not be 

feasible for most research programs. Furthermore, as the number of sampling days 

increase, the duration of sampling events are no longer discrete relative to the interval 

between sampling events (Pollock et al. 1990). This is a promising result as citizen 

science participants have been shown to collect large amounts of high-quality data at low 

cost in previous studies (Danielsen et al. 2011). Under ever increasing budgetary 

constraints, the application of citizen science can potentially be a cost-effective solution 

to supplement fisheries research (Danielsen et al. 2007; Fairclough et al. 2014). 

Furthermore, recreational anglers are key stakeholders in the conservation and 

management of coastal resources, including the Everglades. Examples from other areas in 

Florida have shown that the exclusion or alienation of stakeholders in resource 

management can lead to stakeholder frustration and a lack of acceptance and compliance 

with management decisions (Suman et al. 1999). The creation of citizen science programs 

similar to this study has the potential to better integrate anglers into restoration and 

conservation efforts (Nelson et al. 2013), with clear benefits in the form of public support 

and improved research results. 
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Variation in survival 

The observed decreases in survival during DRY periods are likely driven by a 

number of biotic and abiotic factors known to affect fish concentrations in refuge habitats 

(Magoulick & Kobza 2003). Concentrated Florida Bass in the upper SRE may experience 

predation from marine and freshwater predators that take advantage of marsh drying and 

accompanying prey pulses. This includes Bull sharks, Carcharhinus leucas (Matich & 

Heithaus 2014), American Alligators, Alligator mississipiensis (Rosenblatt & Heithaus 

2011), Bottlenose dolphins, Tursiops truncates (Sarabia 2012; pers. obs.), and intraguild 

predators such as Common Snook, Centropomus undecimalis (Boucek & Rehage 2013). 

In addition to predation, the concentration of fishes in coastal refuges also increases their 

susceptibility to fishing pressure (Boucek & Rehage 2013b), potentially increasing 

fishing catch-and-release and harvest mortality (e.g., Kerns et al. 2012). Lastly, salinities 

increase rapidly in DRY periods likely intensify concentration by reducing the extent of 

suitable coastal refuge habitats and eventually leading to direct mortality when levels 

exceed lethal limits of salinity. For instance during the 2011 drought, salinities during the 

DRY season reached 13.9 ppt at the most upstream sites and 25 ppt downstream, well 

above the 12 ‰ lethal limit (Meador & Kelso 1990). 

Severity of drying has been shown to be an important hydrological attribute of 

flow regimes that influence ecosystem function (Rolls et al. 2012). In this study, 

mortality from varying durations of DRY periods (Z) ranged as high as 79% in the severe 

5-month 2011 drought, to 27% - 46% in years of moderate drying conditions. These 

mortality estimates agree with previous work in this region indicating that an increased 

duration of marsh drying limits the abundance of large fish species, including Florida 
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Bass (Chick et al 2004; Trexler et al. 2005; Parkos et al. 2011). I expect these estimations 

of DRY period mortality to be a close approximate of increased mortality from seasonal 

drying. In many CMR studies, biases of apparent survival estimates can arise from 

emigration out of the study area (Pollock et al. 1991). In this study, however, emigration 

was not expected to occur during the DRY period, as fish movement out of the study area 

was constrained by high salinity downstream and dried marshes upstream. Conversely, 

the estimated decrease in apparent survival during the REFLOOD period (58%) was 

likely a result of emigration out of refuge habitats back into marshes upon reconnection 

(unpub. acoustic data). 

Yearly differences in DRY period mortality were supported by the length 

frequency data. For instance, the effects of high mortality in 2011 were clearly evident in 

the disappearance of the smallest and largest size classes in 2012. Similarly, estimates of 

zero mortality in 2013 are seen in the intact cohort shown in 2014 with age-1 fish in 2013 

becoming age-2+ in 2014 (Figure 7). While, I was unable to incorporate size-specific 

mortality in the models, these length frequency data shows that there may be a 

disproportionate impact of dry events on larger (and presumably older) individuals. This 

would support previous work on M. salmoides in other estuarine systems that report a 

decreased salinity tolerance in larger fish due to ontogenetic differences in 

osmoregulation (Glover et al. 2012). Other drivers such as susceptibility to fishing 

pressure and increased biotic interactions (Kerns et al. 2012; Magoulick & Kobza 2003), 

could also be responsible for this size-selective mortality.  

 The estimated 5% mortality in the DRYING period in 2013, the year marshes did 

not functionally dry (when water levels remained >10 cm) were surprising. I expected 
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that increasing abiotic and biotic stressors driven by marsh drying would have an effect 

even in years when marshes did not fully dry. This result gives us insight into how 

hydrological variation influences refuge habitat. Abrupt decreases in survival once 

marshes fell below 10 cm point to the notion of a critical level at which the buffering 

capacity of refuge habitat drops and mortality from seasonal drying increases. 

Anthropogenic reductions in water availability have altered disturbance patterns by 

increasing the frequency of dry-down events in the Everglades (McVoy et al. 2011). 

However, it is possible that the intensity of such events have also changed over time, not 

just by increasing frequency and duration, but through alterations of coastal refuges. In 

arid freshwater rivers of Australia, freshwater inputs through groundwater sources can 

decouple refuge habitats from local precipitation patterns, increasing the buffering 

capacity of these habitats for fishes (Davis et al. 2013). In the Everglades, reduced water 

availability has resulted in saltwater intrusion resulting in brackish groundwater discharge 

in the mangrove ecotone (Saha et al. 2011a). Shifts from fresh to saline groundwater 

discharge in the coastal zone have been further documented through shifts in coastal 

vegetation from saline intolerant communities to more saline tolerant species (Saha et al. 

2011b). Groundwater discharge is a significant component of the water budget, with peak 

discharges late in the dry season (May-July, Saha et al. 2011a). In the pre-drainage 

Everglades it is possible freshwater groundwater discharge later in the dry season could 

have potentially prevented dramatic increases in salinity. While restoration efforts may 

decrease the frequency of disturbance by increasing freshwater flows, unless increased 

water flow can reverse saltwater intrusion, the elimination of freshwater sources from 

groundwater discharge may have permanently altered ecotonal refuge habitats. 
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Furthermore, without restored water flows, sea level rise may further promote trends of 

increasing salinity (Karamperidou et al. 2013), potentially shifting coastal refuges into 

sinks and functionally eliminating coastal creeks as dry season refuge. 

Survival while in a refuge habitat can vary greatly depending on the quality of the 

habitat. Labbe and Fuasch (2000) calculated that survival of the threatened Arkansas 

Darter, Etheostoma cragini, varied from 81% in high quality upstream pools connected to 

groundwater flows to only 5% downstream in poor quality pools disconnected from 

freshwater inputs. In the SRE, low survival rates in refuge habitats are likely to have 

important implications for Florida Bass populations. Modeling efforts by Bond et al. 

(2015) on Golden Perch, Macquaria ambigua, in Australian dryland rivers showed that 

variation in survival rates from drought events had a far greater effect on population size 

when compared to effects on fecundity and dispersal. The deleterious effect of low 

survival rates on population persistence is further aggravated as the frequency of 

disturbance events increases (Bond et al. 2015). Thus, currently low survival rates of 

Florida Bass are likely to threaten the long-term persistence of these populations under 

forecasted scenarios of increasing drought disturbance and lower rainfall regimes in the 

Everglades with climate change (Obeysekera et al. 2011).   

In summary, Florida Bass populations in the Everglades currently experience 

frequent pressure from seasonal drying as marshes functionally dried (< 10 cm) three out 

of the four years of the study. However, restoration efforts underway in the Everglades 

aim to reduce the severity of seasonal drying by restoring periods of marsh inundation to 

pre-drainage scenarios (McVoy et al. 2011). The findings of a critical level of 10 cm for 

refuge function has promising implications, as this may be a feasible goal for restoration 
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efforts that should directly reduce mortality over the DRY season. Fisheries in Florida 

contribute $7.5 billion dollars to the economy annually, with 21% of Florida fishermen 

targeting the Greater Everglades Ecosystem (Fedler 2009). Largemouth Bass are the most 

targeted freshwater species (FWC 2011), thus Everglades restoration will have important 

economic impacts on recreational fisheries. Reduction in seasonal drying may increase 

the number of large or trophy-sized Florida Bass in this system, potentially improving 

angler perceptions and recreational activities. The perceived improvement of resource 

quality by stakeholders has been shown to bolster the economic benefits of ecological 

services through an increase in recreational demand (Bhat 2003). A promising area of 

research is better understanding the economic benefits of such reductions in mortality and 

the accompanying benefits to recreational fisheries. 
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TABLE 1. Model structure and description of a priori candidate models for estimating 
survival for Florida Bass in the SRE 

Model notation Hypotheses 

ϕ(Constant) Monthly survival was constant across the study 

ϕ(Event) 
Monthly survival differed between each sampling 
event 

ϕ(Hydrologic period) 
Monthly survival differed between defined 
hydrological periods 

ϕ(Hydrologic period*Year)
Monthly survival differed between defined 
hydrological periods and years 

ϕ(Hydrologic Year 3) 
Monthly survival differed between defined 
hydrologic periods, with the lowest water month in 
year 3 classified as DRY 
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TABLE 2. Estimated beta parameters, standard error, and ± 95% CI of capture 
probability model (Electrofishing + Angling) of Florida Bass for electrofishing and 
angling sampling methods. See equation (1) 

 Coefficient 
estimate  

Standard 
error 

Lower  Upper  

βo(intercept) -5.24 0.31 -5.84 -4.64 

β1(Electrofishing) 0.16 0.10 -0.03 0.35 

β2(Angling) 0.06 0.01 0.03 0.09 
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TABLE 3. Model structure for the four monthly survival (ϕ) models considered, showing 
number of parameters (K), loglikehoood (LL), the difference between the model adjusted 
Akaike’s information criteria, QAICC, and the top model (∆QAICC), and the model 
weight (wi). Models were ranked based on the minimum ∆QAICC. Goodness of fit was 
tested for the global model ϕ(Event).  

Survival Model K LL ∆QAIC
C
 w

i
 

     ϕ(Hydrologic period) 7 1580.72 0.00 0.78

     ϕ(HydrologicYear3) 7 1583.77 2.70 0.20

     ϕ(Hydrologic period*Year) 16 1568.24 7.19 0.02

     ϕ(Constant) 4 1609.82 19.72 0.00

     ϕ(Event) 34 1560.25 37.14 0.00
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FIGURE 1. Map of study region in the Florida Everglades showing the upper SRE. Ten 
fixed coastal riverine sites (circles), were sampled via electrofishing and the larger area 
(grey shading) was sampled by anglers. Marsh water depths were obtained from USGS 
marsh hydrostation MO-215 (square) located in freshwater marshes upstream of study 
sites. 
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APPENDIX A. Details on the 32 sampling events between 2011 and 2014 for this Florida Bass CMR study. Sampling events 
include electrofishing and citizen science angling sampling. 

Even
t 

Start date End date 

Interval 
adjustmen

t (1-
month) 

Total 
mark

s 

Recaptur
e 

(Electro-
fishing) 

Recapture 
(Angling) 

Effort: 
Electro-
fishing 
days 

Effort: 
angler 
days 

Average 
marsh 
depth 
(cm)    

Hydrologica
l  

classificatio
n  

1 11 Nov 10 19 Nov 10 START 33 - - 5 0 START START 
2 16 Dec 10 18 Dec 10 1 31 0 NA 3 0 37.7 WET 
3 22 Jan 11 23 Jan 11 1 23 1 NA 2 0 28.9 DRYING 
4 10 Feb 11 13 Feb 11 0.7 49 2 NA 5 0 24.8 DRYING 
5 4 Mar 11 28 Mar 11 1.4 185 8 NA 7 0 6.3 DRY  
6 15 Apr 11 22 Apr 11 0.8 97 6 NA 4 0 -7.5 DRY 
7  10 May11 15 May 11 0.7 28 2 NA 4 0 -13 DRY 
8 5 Jun 11 6 Jun 11 0.8 20 0 NA 2 0 -7 DRY* 
9 6 Dec 11 8 Dec 11 6.2 13 1 0 3 2 31.4 WET 
10 19 Feb 12 25 Feb 12 2.6 32 2 0 4 4 22.3 DRYING* 
11 18 Mar 12 19 Mar 12 0.8 41 4 0 2 6 19.1 DRYING 
12 13 Apr 12 15 Apr 12 0.9 28 0 0 5 2 8.4 DRY 

13 26 Jun 12 26 Jun 12 2.4 
8 0 0 1 0 27.2 

REFLOOD
* 

14 26 Jul 12 27 Jul 12 1.0 0 0 0 2 2 49.9 WET 
15 23 Aug 12 23 Aug 12 0.9 2 0 0 1 2 48.3 WET 
16 25 Sep 12 29 Sep 12 1.2 1 0 0 2 0 55.4 WET 
17 11 Nov 12 12 Nov 12 1.5 16 2 0 2 1 62.4 WET 
18 9 Dec 12 10 Dec 12 0.9 36 1 1 2 2 50.9 WET 
19 21 Jan 13 26 Jan 13 1.6 61 2 1 2 1 43.3 WET 
20 23 Feb 13 1 Mar 13 1.1 145 5 4 4 8 30 DRYING 
21 15 Mar 13 17 Mar 13 0.5 133 7 5 3 15 24.7 DRYING 
22 16 Apr 13 21 Apr 13 1.2 193 7 14 5 23 14.9 DRYING** 
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23 28 May 13 7 Jun 13 1.6 8 0 2 3 2 28.8 REFLOOD 
24 26 Jun 13 1 Jul 13 0.8 9 0 0 2 3 46.3 WET 
25 23 Jul 13 29 Jul 13 0.9 2 0 0 2 2 55.3 WET 
26 17 Nov 13 18 Nov 13 3.7 46 4 2 2 8 52.1 WET 
27 15 Dec 13 20 Dec 13 1.1 67 5 1 3 4 48.2 WET 
28 21 Jan 14 23 Jan 14 1.1 91 6 1 3 6 41.1 WET 
29 22 Feb 14 4 Mar 14 1.3 123 11 5 4 19 33 WET 
30 22 Mar 14 31 Mar 14 0.9 135 23 1 3 13 23 DRYING 
31 27 Apr 14 5 May 14 1.2 75 7 7 5 22 10 DRY 
32 31 May14 2 Jun 14 0.9 18 3 2 2 4 -4.6 DRY 

* Hydrological transition occurred between missed sampling months. Highest or lower water levels were used for 
hydrological classification.   
** Marshes did not fall below 10cm, indicates the lowest water level of year 
NA= time before CAST began 
Interval adjustment= time between samples/30, all intervals were scaled to 
1-month 



 

 

A
sc
b

APPENDIX B
canner, B) d
atteries, pen

B. CAST da
data collectio
ncils, etc., E)

ata packets fo
on sheets, C)
 Test PIT-ta

43 

or collecting
 zone map o

ags 

g recapture d
of study regio

data. A) hand
on, D) tape m

dheld tag 
measure, ext

 

tra 



 

44 
 

APPENDIX C. m-array summary of capture-recapture histories for each sampling occasion. 
  

Occ 
.  

R(i) 

j
= 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

Tot
al 

1 33 0 0 1 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 6
2 31 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
3 24 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3
4 51 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4
5 190 3 2 0 0 1 2 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0 1 0 1 1 0 0 15
6 103   0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
7 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
8 20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
9 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 34 1 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 5
11 45 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2
12 28 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
13 8 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 2   0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2
16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 18 1 0 1 0 2 0 0 0 1 0 0 0 0 0 0 5
18 35 2 1 1 0 0 0 0 1 0 0 1 0 0 0 6
19 64 4 1 3 0 0 0 1 0 1 0 2 1 0 13
20 145 3 3 0 0 0 0 1 1 3 1 1 1 14
21 144 1 0 0 0 1 1 1 3 3 1 0 11
22 211 1 0 0 1 1 0 0 1 1 0 5
23 10 0 0 0 0 0 0 0 1 0 1
24 9 0 0 1 1 1 0 0 0 3
25 2 0 0 0 0 0 0 0 0
26 52 1 1 0 2 0 1 5
27 61 2 3 4 0 0 9
28 98 4 3 2 0 9
29 137 7 3 2 12
30 159 3 0 3
31 87 1 1
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