
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

10-12-1999

Domain specific architecture development for
enterprise systems based on common object
request broker architecture (CORBA)
Vidya G. Bhat
Florida International University

DOI: 10.25148/etd.FI14051143
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer Sciences Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Bhat, Vidya G., "Domain specific architecture development for enterprise systems based on common object request broker
architecture (CORBA)" (1999). FIU Electronic Theses and Dissertations. 1673.
https://digitalcommons.fiu.edu/etd/1673

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1673&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fetd%2F1673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1673?utm_source=digitalcommons.fiu.edu%2Fetd%2F1673&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

DOMAIN SPECIFIC ARCHITECTURE DEVELOPMENT FOR ENTERPRISE

SYSTEMS BASED ON COMMON OBJECT REQUEST BROKER ARCHITECTURE

(CORBA)

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Vidya G. Bhat

1999

To: Dean Arthur W. Heriott
College of Arts and Sciences

This thesis, written by Vidya G. Bhat, and entitled Domain Specific Architecture
Development for Enterprise Systems based on Common Object Request Broker
Architecture (CORBA), having been approved in respect to style and intellectual content,
is referred to you for judgment.

We have read this thesis and recommend that it be approved.

Paul Attie

Raimund Ege

Yi Deng, Major Professor

Date of Defense: October 12, 1999

The thesis of Vidya G. Bhat is approved.

Dean Arthur W. Heriott

College of Arts and Sciences

Dean Richard L. Campbell
Division of Graduate Studies

Florida International University, 1999

ii

ACKNOWLEDGMENTS

I would like to thank Dr. Yi Deng, my advisor, for having the faith and confidence in me

to do this project and for his constant guidance and support throughout the thesis. I would

also like to express my gratitude and appreciation to the following people:

To my thesis committee members, Dr. Ege and Dr. Attie. To Kent Wreder, Eric Novarro,

Eric Butler and everyone else at Baptist Health Systems for all their answers to my

unending questions, their time and patience. To my colleagues and friends at CADSE

George McGivan, Luis Espinal, James Goolsby, Nikhil Iyer and Jinny Uppal for their

constant support, motivation, encouragement and for reading through my thesis for all

those corrections. To all my friends here in Miami for being my personal cheerleading

squad. To my parents and brother for their constant support and their trust in me. To

Karthik Madhyanapu, for always being there for me.

iii

ABSTRACT OF THE THESIS

DOMAIN SPECIFIC ARCHITECTURE DEVELOPMENT FOR ENTERPRISE

SYSTEMS BASED ON COMMON OBJECT REQUEST BROKER

ARCHITECTURE (CORBA)

by

Vidya G. Bhat

Florida International University, 1999

Miami, Florida

Professor Yi Deng, Major Professor

Large business organizations with enterprise wide systems have followed an ad hoc

incremental growth pattern. They are either monolithic, that are difficult to replace and

maintain, or are components with little or no interoperability between them. Such systems

suffer from lack of uniformity and definition in their information technology

infrastructure. To migrate from this state, to systems that are extensible, interoperable and

non-redundant in functionality it is very important to focus on the architecture. We use

the healthcare enterprise system as a case study for the purpose of this thesis. It is indeed

difficult, if not impossible to construct the overall architecture of the system without

identifying the individual components of the system. Hence we follow an incremental

methodology in identifying and developing each component. One such component is

Order management, which is an essential component of a healthcare information system

that offers enterprise wide functionality.

Iv

TABLE OF CONTENTS

CHAPTER PAGE

I. IN TRO D U CTIO N ... 1

1.1 PROBLEM STATEM ENT ... 1
1.2 THE SOFTW ARE D EVELOPM ENT PATH ... 3
1.3 CA D SE - BH S PROJECT .. 4
1.4 CAUSES OF THESE PROBLEM S ... 5
1.5 CONTRIBUTION OF THE THESIS ... 6

II. BA C K G RO U N D ... 7

2.1 SOFTW ARE A RCHITECTURE..7

2.2 W HY IS SOFTW ARE ARCHITECTURE IM PORTANT?................................. .. 11
2.3 COM PONENT-BASED SYSTEM D EVELOPM ENT...13

2.4 LARGE-SCALE ENTERPRISE-W IDE SYSTEM S .. 14
2.5 D OM AIN SPECIFIC A RCHITECTURE... 16

III. STATE AND ISSUES OF HEALTHCARE INFORMATION SYSTEMS 18

3.1 D OM AIN A NALYSIS .. 19
3.2 H EALTHCARE ENTERPRISE SYSTEM S..20

3.3 CURRENT INFRASTRUCTURE IN H EALTHCARE..22

3.4 THE CO RBA M ED EFFORT 28

IV . O RD ER M A N A G EM EN T ... 31

4.1 SIGNIFICANCE OF O M .. 33

V . PRO BLEM S A N D TH EIR CA U SES ... 35

5.1 PROBLEM S IN THE ENTERPRISE .. 35
5.2 CAUSES OF THESE PROBLEM S...37

5.3 O UR A PPROACH ... 40

V I. PRO PO SED SO LU TION ... 44

6.1 THE O RDER M ANAGEM ENT B USINESS W ORKFLOW ... 44

6.2 U SE CASE FOR O RDER M ANAGEM ENT ... 45

6.3 THE INFORM ATION V IEW POINT OF O RDER M ANAGEM ENT .. 58

V II. A N EN TERPRISE V IEW ... 73

7.1 SOLUTION: A 'G OOD' A RCHITECTURE .. 73

7.2 O RDER SERVICE ... 74

7.3 A RCHITECTURE FOR AN O RDER SERVICE ... 81

7.4 SUM M ARY .. 82

VIII. CONCLUSION ... 86

FUTURE ISSUES/ POTENTIAL ... 87

LIST OF REFERENCES .. 89

A PPEN D ICES...94

v

LIST OF FIGURES

FIGURE PAGE

FIGURE 1 THE PROBLEM OF INTEGRATING COMPLEX SOFTWARE... 15

FIGURE 2 DEVELOPMENT PROCESS ... 19

FIGURE 3 INTERFACE ENGINE ARCHITECTURE FOR SYSTEM INTEROPERABILITY.. 24

FIGURE 4 THE CHANGING PARADIGM OF HEALTH INFORMATICS .. 29

FIGURE 5 BUSINESS PROCESSES RELATED TO ORDER MANAGEMENT.. 33

FIGURE 6 MOVING TOWARD STANDARD-BASED ARCHITECTURE... 42

FIGURE 7 USE CASE FOR ORDER M ANAGEMENT... 49

FIGURE 8 SUB-U SE CASE FOR PLACE O RDER .. 54

FIGURE 9 INITIAL DATA MODEL FOR ORDER MANAGEMENT.. 59

FIGURE 10 CONCEPTUAL VIEW OF ORDER M ANAGEMENT ... 61

FIGURE 12 DEPENDENCY DIAGRAM FOR ORDER SERVICE .. 75

FIGURE 13 SEQUENCE DIAGRAM FOR PROCESSING A RADIOLOGY ORDER .. 78

FIGURE 14 CREATE AN ORDER .. 79

FIGURE 15 GENERATING CHARGES AFTER AN ORDER IS PLACED .. 80

FIGURE 16 NOTIFICATION AFTER PATIENT DISCHARGE ... 80

Vi

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Many of today's corporate systems were developed and/or acquired in a piecemeal

fashion, incorporating a component on a per need basis. A large-scale organization often

possesses multiple fragmented applications. Each software system performs some limited

range of useful functions, but the systems do not interoperate effectively, and very often

duplicate functionality. Integration between the components is based mostly on

proprietary solutions. Such ad hoc integration usually produces undocumented brittle

systems that are expensive to maintain and costly to upgrade. Such stovepipe or

monolithic systems also resist adaptation to changes in user requirements, business

processes and commercial technology. Poor integration leads to substantial organizational

inefficiencies such as redundant data entry, unnecessary and ad hoc data conversion and

file transfers, and inability to effectively integrate and utilize enterprise-wide data and

knowledge. The result is redundancy in information and poor functionality among the

systems.

Systems in large business organizations have followed an incremental growth pattern and

are either monolithic (difficult to replace and maintain) or consist of components with

little or no interoperability between them. Integration of these components to achieve

business objectives has often been inefficient. These large-scale systems suffer from lack

of uniformity and definition in their information technology infrastructure. Changing

requirements (user and business processes) are the major cost drivers in software

development and maintenance [Hor93]. Due to a lack of overall software architecture

and a well-defined business model, the infrastructure inhibits future evolution and

adaptability to change. As a result, maintainability becomes a major issue in these

systems.

To migrate from this state, to systems that are extensible, interoperable, maintainable and

non-redundant in functionality it is very important to focus on software architecture.

Systems with "good" architecture [4] (i.e. having well defined modules, well-defined

interfaces and uniform interaction patterns) can alleviate and/or avoid the drawbacks

stated above. To achieve enterprise-wide systems that are open, interoperable and

integrable, system development must follow a uniform architectural model for composing

and integrating different systems, and is based on established and accepted technology to

ensure long term stability and extensibility. OMG's (Object Management Group) Object

Management Architecture (OMA) and Common Object Request Broker Architecture

(CORBA) provide a common architectural solution to support component-based

integration and evolution under the notion of distributed objects. But this architecture is

not sufficient to support domain-specific functionality. Domains usually have various

specific functionality and requirements. Applying architectural techniques at a domain

level expands the reuse potential of architectural components to multiple, related systems.

Architectures play an important role in facilitating domain-specific reuse by defining

implementation frameworks for constructing systems within a domain [x].

2

We contend that an overall infrastructure (as it relates to basic services and interfaces

between software components on which applications can be developed and integrated)

for any domain based on OMA/CORBA (i.e. healthcare) will solve these problems and

issues. The scope of this thesis is to identify and model a component within healthcare

that contributes to the overall healthcare architecture framework. It proposes a service for

this component and illustrates that several ills faced by the current systems can be

alleviated.

1.2 The Software Development Path

Because of the success of network computing concepts and web-based Intranets, legacy

software components are often required to be integrated into new and novel

configurations. This has facilitated enterprises to inter-connect previously isolated

business domains and use tools to streamline business processes, reduce administration

efforts and decrease operating costs. This has in turn resulted in maximizing productivity.

But very often different business domain systems have been inter-connected through

customized proprietary solutions whenever it has been required. This has resulted in

stovepipe systems that are monolithic, lack discernable software architecture, lack

provision for reuse and extension and are expensive to maintain. Enterprises that have

built generations of loosely (or uncoupled) information systems are now scrambling to

integrate them into an organic whole.

3

This involves the integration of components drawn from disparate systems. This

introduces problems that are referred to as 'architectural mismatch' [GA095]. This refers

to situations in which software components are resistant to integration because they

exhibit one or more forms of incompatibility, or "mismatch".

1.3 CADSE - BHS Project

The CADSE (Center for Advanced Distributed Software Engineering) - BHS (Baptist

Health Systems) project is an effort to address the problem of integrating disparate

systems together such that migration of existing systems to systems that are open and

more interoperable is simplified. The purpose is to collaboratively develop an

architecture-centered methodology and domain specific system architecture for the

development of the next generation distributed enterprise systems by combining latest

software engineering research and industry-wide standard OMA/CORBA. The goal of

the research is not only to develop a uniform architectural model for enterprise system

development and integration, but also to advance the state of knowledge and research on

complex system development. For the purpose of this research we consider the healthcare

domain and the large complex systems within this domain.

BHS (Baptist Health Systems of South Florida) is a large health care organization

comprised of five major hospitals, multiple outpatient clinics and multiple physician

offices throughout South Florida. A large healthcare organization is composed of

multiple smaller distinct business units and each may require a system provided by one or

more different vendors. Each individual system provides functionality e.g. access to

4

patient demographic and admission information, create, manipulate and access patient

medical record, and some form of workflow engine that support the business flow within

the department. The objectives are to integrate data and functionality from multiple

clinical and business systems such that the enterprise business process is optimized as a

whole. Such an enterprise healthcare information system is commonly referred to as a

Computerized Patient Record (CPR).

In the past, healthcare systems were developed or acquired in a piecemeal fashion based

on individual business needs and integrated [often] using proprietary solutions. Although

each individual system maybe put in place based on a well defined and planned process

based on departmental business goals, collectively from enterprise (or CPR) point of

view, the systems are acquired in a disparate fashion and tightly coupled together through

ad hoc means. The problem is further intensified by the merge of hospitals and healthcare

organizations, each of which comes with its own set of systems that are normally not

interoperable. These together have resulted in stovepipe systems that have many

duplicated functions and are monolithic, non-extensible and not interoperable.

1.4 Causes of these problems

The thesis examines in detail, different causes of these problems. There is no underlying

infrastructure in building an enterprise-wide information system in large-scale industries

like healthcare. Lack of an explicit data model for the components within the system

makes integration of these components a difficult issue. There is no predictable

interaction pattern between the components as also there is a lack of definition of their

5

behavior. There is also no concept of a global architecture for the enterprise, especially in

the healthcare domain. These causes are explained in detail in chapter 5.

1.5 Contribution of the thesis

The present work represents a step on a road towards a comprehensive architecture for

open, modular, patient-based health information and communication systems. There is a

need to record the analysis and design information for further use and research since the

application of software architecture principles to the healthcare domain is very new. This

thesis is a record of such information required to further a service-based architecture in a

particular domain i.e. Healthcare. Moreover, the concept of software architecture has

been previously applied to single systems but hardly ever to large-scale enterprise

systems [GA094]. Some work done in large-scale environment is strictly confined to

domains based on sound engineering principles and where application of information

technology is advanced [ABH93] [Cle95] [Cza97].

6

CHAPTER 2

BACKGROUND

2.1 Software Architecture

The field of software architecture has only recently emerged as an explicit focus for

research and development, and there is not yet a [standard] universally accepted

definition for the term. In spite of that, the importance of software architecture in

government, industry and academia is widely acknowledged. This emergence of its

importance is evidenced by a large body of recent work in areas such as module interface

languages, domain specific architectures, architectural description languages, formal

underpinnings for architectural design, and architectural design environments [CN96]

[GP94]. In addition, an implicit body of work exists in the form of descriptive terms used

informally to describe systems. But there is no well-defined terminology or notation to

characterize architectural structures. Good software engineers commonly use

architectural principles that have emerged as rules of thumb or patterns informally over a

period of time. Some other principles are carefully documented as industry or scientific

standards.

The term architecture is commonly used in many different ways; some of them are

[GP95]

7

(a) the architecture of a particular system, (e.g. "the architecture of this system consists

of the following components"),

(b) an architectural style (e.g. "this system adopts a client-server architecture"),

(c) the general study of architecture (e.g. "the papers in this journal are about

architecture").

Within software engineering, most uses of the term "software architecture" focus on the

first of these interpretations. The recent emergence of interest in software architecture has

been prompted by two distinct trends. The first is the recognition that over the years

designers have begun to develop a shared repertoire of methods, techniques, patterns and

idioms for structuring complex software systems. The structure of software has long been

recognized as an important issue of concern. For example, the box and line diagrams and

explanatory prose that typically accompany a high-level system description often refer to

such organizations as a 'pipeline', a 'client-server system' etc. These terms permit complex

systems to be described using abstractions such that it can be interpreted in a intelligent

fashion. Moreover, they provide significant semantic content that informs others about

the kinds of properties that the system will have, the expected paths of evolution, its

overall computational paradigm, and its relationship to similar systems.

The second trend is the concern with exploiting specific domains to provide reusable

frameworks for product families. Such exploitation is based on the idea that common

aspects of a collection of related systems can be extracted so that each new system can be

built at relatively low cost by instantiating the shared design. Familiar examples include

8

the standard decomposition of a compiler, standardized communication protocols, fourth

generation languages etc.

We claim that most of the problems faced by enterprise wide systems is due to lack of

architecture and architectural vision during development of the subsystems and overall

systems. A critical aspect of any complex, large-scale enterprise-wide system is its

architecture [GA094]. At an architectural level of design a system is typically described

as a composition of high-level, interacting components.

Software Architecture is a field that has generated widespread interest and has grown in

importance not only in academia but also in the industry. As the size and complexity of

software systems increases, the design problem goes beyond the algorithms and data

structures of the computation: designing and specifying the overall system emerges as a

new kind of problem. Some of the issues involved in the structure of systems include

gross organization and global control structure; protocols for communication,

synchronization, and data access; assignment of functionality to design elements;

composition of design elements; scaling and performance; and selection among design

alternatives [GS94]. This is considered the software architecture level of design.

What exactly, then is software architecture? There is no standard universally accepted

definition of the term, for software architecture is a field in its infancy, although its roots

run deep in software engineering. Though there is no standard definition, there is also no

shortage of different ideas and concepts for the term. According to Bass et al, in

9

'Software Architecture in Practice' [BCK97], the software architecture of a program or

computing system is the structure or structures of the system, which comprise software

components, the externally visible properties of those components, and the relationships

among them. "Externally visible" properties refer to the assumptions other components

can make of a component, such as its provided services, performance characteristics,

fault handling, shared resource usage etc.

Architecture defines components. The architecture embodies information about how the

components interact with each other. Architecture specifically omits content information

about components that does not pertain to their interaction i.e. the components are

expected to encapsulate all information except that which is required to interact with

other components. Systems can comprise more than one structure and the architectural

component can be anything from an object, a process, a library to a commercial product;

all these and more. This also means that every software system has an architecture,

because every system can be shown to be composed of components and relations among

them. The behavior of each component is part of the architecture, as long as that behavior

can be observed or discerned from the point of view of another component. This behavior

is what allows components to interact with each other, which is clearly part of the

architecture. More details of this concept and its applicability to the present work is dealt

with in detail in the next chapter.

10

2.2 Why is software architecture important?

Architectural design of large systems has always played a significant role in determining

the success of a system. Choosing an inappropriate architecture can have a disastrous

effect on the final system. A principled use of software architecture can have a positive

impact on the following aspects of software development. [GP95]

" Understanding: Software architecture simplifies our ability to comprehend large

systems by presenting them at a level of abstraction at which a system's high-level

design can be understood. A good description of the overall system architecture

exposes the high-level constraints on system design and helps provide the rationale to

make specific architectural choices.

" Reuse: Architectural descriptions support reuse at multiple levels such as in the form

of component libraries, reuse of large components and frameworks into which

components can be integrated.

" Evolution: Software architecture can expose the dimensions along which a system is

expected to evolve. Architectural descriptions can also separate the functionality of a

component from the way it interacts with other components. This facilitates changes

to the interaction mechanism whenever there are evolving concerns about

performance, interoperability, prototyping and reuse.

" Analysis: Architectural descriptions provide new opportunities for analysis, including

high-level forms of system consistency checking, conformance to an architectural

style, conformance to quality attributes, and domain-specific analyses for

architectures that conform to specific styles [GP94].

11

* Management: During the development of industrial software, achieving a viable

software architecture is a key milestone and this involves specifying a software's

initial requirements, its anticipated growth dimensions etc. And if these conditions are

not satisfied then there is a significant risk that the system will be either inadequate or

unable to accommodate change.

Software architecture has a broad impact on market drivers that are important for

software-intensive businesses. Software has become an integral part of a wide variety of

products and many of these products have been out in the market for some time. Hence,

there is a broad base of existing and well-tested software. These products involve

significant investment in terms of time and money and the reuse of these software

products in different environments would be of fiscal importance to software producers.

Software architecture, to some extent focuses on domain-specific abstractions and

use/reuse of various existing software elements at varying degree of granularity and in

doing so, impacts one of the market drivers.

A skeletal framework is needed to achieve conceptual integrity. Conceptual integrity in

terms of software architecture means unity in design and uniformity in terms of the

underlying concepts and paradigms [1]. This infrastructure design will be used to identify

the decomposition of the overall functionality into various subsystems, act as a guideline

for developing the systems and used for integrating various elements of the system. This

infrastructure can also be used to unite and leverage various existing applications and

systems while providing flexibility to adopt best-of-breed solutions. Software architecture

can effectively establish a common framework across domain-related products and thus

12

aid in achieving interoperability between components across product lines. This is

another market driver that adds to the successful exploitation of a company's software

products. Software development is moving significantly in the direction of component-

based development, which means that significant portions of software systems are

procured instead of being produced. Large systems can be rapidly built and deployed by

buying/importing externally developed components.

2.3 Component-Based System Development

A component is an executable unit of code that provides physical black box

encapsulation of related services. Its services can only be accessed through a consistent,

published interface that includes an interaction standard. A component must be capable

of being connected to other components, through a communications interface, to form a

larger group that serves a larger set of functionality. Components provide an effective

granularity of reuse through consistent published interfaces that encapsulate the

implementation.

Components can be defined and understood at different levels of granularity. At the

lowest level, components can be program (object) modules where as at the very highest

level they can be complete systems that provide certain functionality. Here we consider

components as being various subsystems within an enterprise. For example, a healthcare

organization consists of several independent subsystems serving specific purposes. From

the enterprise point of view these are components. Development in the field of software

architecture is shifting the focus to assembling components that were built independently

13

from each other. And this focus is justified as far as enterprise systems are concerned.

Enterprise systems consist of large-scale systems consisting of numerous independently

developed systems especially for different purposes. From an end-user's perspective, the

focus is on 'putting' these systems together. This is the view that we take during the

course of this work.

2.4 Large-scale enterprise-wide systems

Within a typical enterprise, there are many applications that have been developed without

considering how the applications will interoperate. This applies to both custom and

commercial applications. For example, some commercial off-the-shelf (COTS)

applications provide an all-encompassing set of functionality to the users while they are

working within the application. The application source code is seldom available from the

vendor, and even if it is available, it is undesirable to modify it due to support costs. In

most applications, data are stored in a unique, proprietary format with limited conversion

capabilities. Even the more advanced applications within an organization, huge custom

applications incorporating hundreds of classes and developed using state-of-the-art GUI

builders and automatic code generators, only provide interoperability between

applications using the same tools and framework classes. The goal of interoperability is

further compromised by the existence of long-lived legacy applications that provide some

degree of custom capability within an organization. Often, these legacy applications have

no application program interface (API) for use by other applications. If required to

communicate they do so using low-level communication mechanisms, such as, files,

Dynamic Data Exchange (DDE) or an operating system specific protocol. Within a

14

distributed computing environment, this problem is compounded by the interconnectivity

of the environment where the number of applications, data formats, and communication

mechanisms is so numerous that no single application can be prepared to handle all of the

various mechanisms interacting within the environment.

A typical situation in many large-scale organizations is depicted in Figure 1.

Object-Oriented Legacy Application Object-Oriented
Application Application

(No API, not 00, uses
(Hundreds of classes) files) (Hundreds of classes)

Integration?

Commercial Commercial
Application Application

(Proprietary data
(Proprietary API, No format)

Source Code)

Figure 1 The problem of integrating complex software

There are several groups of applications developed with different technology and if they

interoperate at all it is through mechanisms only available in small subset of applications

within an organization. Some of these systems are legacy systems, which have been a

part of the corporate infrastructure since some time and they perform their tasks well.

There is little or no incentive to re-engineer and/or redevelop them. There are other

15

systems based on component technology (COTS packages) and contain proprietary API's

with no access to source code. Often, they use RPC's, or whatever was the popular

communication technique at the time of their development. Object-oriented applications

are developed using different tools, class libraries, and frameworks, and provide limited,

if any, means of communicating with applications not sharing identical set of

components. A general-purpose method of integrating software systems seemed elusive

to the industry, and most of the developers/ end-users have settled for point-to-point

integration devoid of an overall architecture to guide system evolution.

A standard middleware like CORBA provides a better solution to the recurring problem

of software integration and interoperability. The OMA/CORBA architecture can be used

as an underlying infrastructure to develop as well as integrate distributed software and

applications.

2.5 Domain Specific Architecture

There is research being done in the field of domain-specific architecture [Cza97]. In this

case, the research on software architecture is specific to a particular domain or a group of

systems that have something in common. Having a sound architecture for a large-scale

system makes for better development process and results in a better product. If this

architecture is enhanced by domain specific requirements, it creates a better model for

reuse and product development. Time to market for new services is crucial for survival

and prospering in a highly competitive market. This situation is observed in domains like

Telecommunication, healthcare and several similar domains. In order to cut development

16

time and cost, the vision of component-based development has to be pursued. A domain

specific architecture provides a common framework for component interoperability

within a domain.

This thesis contributes to a domain specific architecture based on a standard technology,

CORBA. Having such a domain-specific architecture for a particular domain enhances

the advantages the CORBA provides for system interoperability and integration.

17

CHAPTER 3

STATE AND ISSUES OF HEALTHCARE INFORMATION SYSTEMS

Our example of a large-scale enterprise system is the Healthcare information system.

Enterprises in Healthcare domain suffer from similar problems as any large-scale

complex enterprise. Our analysis of the domain revealed several problems, which is

discussed below. Our analysis is based on extensive review and research conducted with

the help of BHS.

Baptist Health Systems of South Florida (BHS) is comprised of four acute care hospitals

as well as various other units. Each of these hospitals is huge and serves more than a

hundred thousand patients every year. More than one hundred and fifty information

systems serve the entire enterprise and the annual budget on information systems is

approximately fifteen million. All these information systems process more than ten

terabytes of data per year with the amount of data increasing every year. This puts the

enterprise wide information systems in BHS under the category of large-scale

information systems. To study the systems in detail and understand them, the first step in

the thesis was domain analysis.

18

3.1 Domain Analysis

Domain analysis (first introduced in the 1980s) is the process by which information used

in developing systems in a domain is identified, captured, and organized with the purpose

of making it reusable when creating new systems [Pri90]. Analysis is essential to

understand the domain as well as the information relevant to the domain. This was the

first step in understanding the requirements and specifics of the healthcare domain.

Analysis was carried out by a series of interviews and meetings with the experts in this

domain from BHS. They provided us with the basic business workflow of a typical

Healthcare Facility (HCF). These results are discussed in detail in the following chapters.

We followed the development process showed in Figure 2.

Domain Document Document

analysis analysis Design

*Realize problems Use case Class diagram/
*Understand Causes diagram data model

Figure 2 Development Process

The initial part as described in this section includes domain analysis and understanding

the problems and their causes. The result of this domain analysis is documenting these

19

problems and their causes. This is captured is Chapter 5: Problems and their causes. The

other two steps of the process are covered in Chapter 6: Proposed Solution.

Along with the interviews and meetings, we studied the current systems deployed at

BHS. In particular, I studied the Order Management System, a system that manages

orders within a HCF. This system is described in detail in Chapter 4. Lack of any detailed

document for the design of this system hindered the understanding. This in one of the

common problems encountered during system integration and is responsible for a number

of mismatches [GA095]. My study of the system not only helped me understand how the

current systems are deployed and how they exist but it also revealed several problems

that they face. We discuss the healthcare industry in general and then shift our focus to a

particular enterprise system and its problems in the next section.

3.2 Healthcare Enterprise systems

The goal of the healthcare industry (especially that of BHS) is to have a Computer-based

Patient Record (CPR). A computer-based patient record (CPR) is electronically

maintained information about an individual's lifetime health status and health care. Apart

from being automated forms of today's paper-based medical records, CPR systems

facilitate the capture, storage, processing, communication, security, and presentation of

non-redundant health information [i].

Our analysis studied the current practice, which we discuss in detail below moving from

the enterprise level to specific system level. Healthcare is a complex domain with varied

20

and vastly differing yet inter-related business processes. Hence, the information and

computer systems used in this domain are also complex and very often play critical roles

in the business processes. They link together geographically distributed hospitals, clinics,

physician offices and other business units with distinct business functions. And as in any

other domain with a number of varied business processes using information systems, this

domain too suffers from all the problems and more: the reason being that information

technology in the healthcare domain is still in its infancy and very immature unlike other

domains such as Telecommunications.

A large healthcare organization is composed of multiple smaller distinct business units

like Radiology, Laboratory, Pharmacy etc. They interact with either one or a small select

handful of systems to perform their job functions. A multitude of systems exists in the

marketplace to select from in an attempt to automate departmental areas. Each has

varying cost and effectiveness and most of them are mature and perform well within their

own distinct business unit. A single vendor solution for all these varied needs is often

impractical and inefficient. The best choice is to opt for best of breed systems based on a

vendor's ability to meet user needs. System acquisition in BHS has been ad hoc, done on

a per need basis. This has been the choice of most large healthcare organizations but has

unfortunately resulted in monolithic systems that are neither flexible nor extensible and

has resulted in either vendor lock-in or expensive custom programming required in

getting these disparate systems to work together. Systems are built in an incompatible

fashion by vendors without concern to preserve or even allow an overall well-defined

architecture for the organization [BNW98].

21

Another issue is the merger of hospitals. BHS is made up of several hospitals acquired

one after another. Each hospital brings with it a complete set of information systems that

perform functions identical to the already existing systems introducing loss of integrity.

Systems being integrated across hospitals or healthcare facilities are a far off issue;

systems within a single hospital are not integrated efficiently. Several standards exist

within healthcare to ease interoperability between systems and hence aid in system

integration (DICOM, CCOW, HL7) [iii] [iv] [v]. However, most of these standards are

message-based, since they were meant for systems that communicated via explicit

messages.

The approach based on these message-based standards (HL7) to achieve interoperability

is explained in detail in the next section where some of the problems in the current

practice are also discussed.

3.3 Current Infrastructure in Healthcare

The current practice in Healthcare systems is defined with reference to the issues and

problems summarized at the end of this chapter. Systems need to be interoperable to

exchange information. Integration of systems within the healthcare facility to achieve

interoperability, in particular in BHS, is achieved through several different means.

A point-to-point connection achieves a level of interoperability enough to aid basic

exchange of information but creates a number of problems. This is basic communication

22

level of interoperability. The number of point-to-point connections could blow up

exponentially as the number of systems increase. Designing and developing each point-

to-point interface requires vendors, sometimes competing vendors, to work closely with

each other. The interfaces are very expensive to develop and they do not scale in terms of

functionality. If a systems requirements change, or a system is replaced, new interfaces

must be developed. Taking an example from Baptist Hospital, there is a point-to-point

interface between CareFlowlNet (transcription system) and CinStar Patient Care System

for Orders/results where communication takes place through HL7 messages.

Another solution uses a central server to do all the interfacing. This central server, also

called interface engine is responsible for data translation and routing between a source

and one/more destination(s).

The interface engine consists of two main components: the server, which receives

messages, performs needed translations, and routes messages to their destinations; and

communication clients, which carry messages to and from the server.

23

BAPTIST HEALTH SYSTEMS
BHM Interface Engine System

HBOC/FDC Interfaces HBOC CLINaTAR
The Precision Alternative Patient Care

-> Adrft&WUfWorurs

--- Ad--mAdomWTtenfnu
.- .R v ri,. C ~ d .A rm o lr

D.-Dcdwgaa

ChageCrmad Datagate Interface
c-Infokc Engine
<- Mad Reda CodftAngua

* <--Rawrtu. Cod. Amourns ES Mom Mgm

-" Mad Rada Cadn

-- Adm*Wowne -AdmWsm&Ondlawages
CCMStCADCARS D'aree MW

STur -qAdmh r

Pathology

PHS SchedulingEmafar7 ITrrrafa 1

Apache QogIc
Omega Document VIP

STX Managemnent System Transportation

Figure 3 Interface Engine Architecture for system interoperability

The server's responsibilities are:

Receiving and validating messages from the communication clients

* Translating and routing messages

P Managing message queues to outbound communication clients

The server is connected to the communication clients (basically, a process) which in turn

connects to the external systems. These systems are the sources and destinations of all

24

messages . Clients connect to the external system through a network or serial port.

Clients are responsible for:

* Initiating communication with the external systems.

" Validating messages at the communication level (checking data stream block

structure, sequence numbers, etc. and acknowledging message receipt status).

" For some inbound clients, managing an inbound message queue to the server.

This approach alleviates a lot of disadvantages faced by the point-to-point approach like:

" In place of custom point-to-point interfaces that increase exponentially with the

number of systems, data translation and routing happens only in one place: the

interface engine.

" If a system is upgraded or replaced, interface changes can be made without

suspending the entire network. This solution is far less expensive than the earlier

solution.

In spite of several advantages that the interface engine approach has over the traditional

point-to-point approach, many systems in the healthcare environment are currently

integrated using the point-to-point approach. The biggest disadvantage with this approach

is system evolution and flexibility. Though the approach of using interface engine seems

to solve several problems, it has drawbacks of its own, such as:

Message here means either a stream of data, a batch file or an HL7 message i.e. a message in HL7 standard format.

25

" The Interface Engine (IE) just routes messages from source to destination, with some

translation, if required. In essence, it does not give query-retrieve capability to any

system using it. It is either configured to send information from one source to

destination or it is not.

" It does not allow for systems to share functionality, though it allows sharing of data.

This creates redundancy in functionality across systems.

" There is also redundancy of information or replication of data.

" There is no way to know if the destination system has processed the data passed to it.

E.g. suppose system 'A' sends a message to system 'B'. Though system B receives

data, it is not able to process it due to various reasons. For example, this happens

when system 'B' does not understand the data that it received and it simply discards

the data. There is no way to indicate to 'A' that the information has not been used and

that the data may need to be resent. This may result in inconsistencies in data across

systems.

Many of the systems used in the healthcare environment are adopting the HL7 messaging

standard. HL7 was founded in 1987 to develop standards for the electronic interchange of

clinical, financial and administrative information among independent health care oriented

computer systems; e.g., hospital information systems, clinical laboratory systems,

enterprise systems and pharmacy systems [iii]. Systems using this standard use HL7

standard messages to communicate with each other. HL7 being a messaging standard is

very good for data transfer but it does not capture the functionality of the system. It also

defines extra fields at the end of each message template, which can be used as desired by

26

the implementing vendor. These extra fields were placed to give flexibility but it also

introduces the problem of inconsistencies in the message format as implemented by two

different systems and incompatibility in data models when systems are integrated.

Either means (using IE or point-to-point) to achieve interoperability between these

systems does not reflect business logic. Each of these systems has it's own proprietary

data model. The resulting environment has multiple incompatible data models. Each

system then makes assumptions about the other systems data model. This creates data and

functional redundancy.

Systems are proprietary; hence they are not 'open'. Due to vendor lock-in, systems are not

easily adaptable. Since the system is not open, a user organization (like BHS) has to

depend on the vendor to make changes to the system, if desired or if the user

requirements change. This could be expensive in terms of cost and time.

There is a lack of uniformity in design and overall infrastructure, which is other words, is

a lack of conceptual integrity. This makes system integration difficult and inefficient.

Rapid deployment is not possible due to lack of uniform underlying infrastructure.

Hence, there is a need to have a basic infrastructure, an architecture that is domain

specific to healthcare. Our approach to this is based on a standard architecture

framework, CORBA. As mentioned earlier, CORBA solves many of the problems faced

with system integration. Our efforts are aligned with those of the CORBAmed group.

27

3.4 The CORBAmed effort

CORBAmed is the Healthcare Domain Task Force of the OMG, the Object Management

Group, a non-profit international organization indented to the promotion of Object

Oriented methodologies. Task Forces deal with the specific aspect of various application

domains, which have common interest in the same interface technologies. Task Forces

are specialized in various domains as Electronic Commerce, Manufacturing, etc. and

CORBAmed in health care applications.

CORBAmed defines standardized interfaces to many healthcare "Object Oriented

Services", across most usual platforms, and available in the public domain. One of the

goals of CORBAmed is to enable immediate significant achievements to be achieved by

clearly defining the scope and boundaries of, and the relationships between the

components in, one or more sub-sections of the vast domain of healthcare.

The business case for the healthcare industry is that participating institutions need to

interoperate by sharing their information; but as individual business entities, each

institution in an Integrated Delivery System (IDS) or hospital must maintain ownership of

their important patient-centered records. Neither centralized systems (like mainframe

systems) nor client-server systems can meet these needs. However, distributed object

technology seems ideal for this purpose. The object oriented (00) principle of

encapsulation is ideal for the protection of data ownership while allowing controlled

access to the information by external clients. Distributed object technology (such as

CORBA) allows healthcare related objects to communicate over a network; in particular

28

across physical computer boundaries. CORBA, specifically, as a platform and language

independent standard for distributed object technology, seems to offer the best migration

path from the current systems to interoperable IDS's [Roadmap].

This paradigm shift in healthcare is seen to be toward "horizontally oriented" (across the

enterprise) business objects rather than the current "vertical oriented" departmental

systems. The figure below gives an idea of this trend.

Departmental View Enterprise View

"BRling

ura Access WorktIow 'Healthcare
adi ogy fr Control ' Mgmt Record

Lab Order Scheduling'\ /Person Id
entry

f -- Ph rm c _A, -'N -/ -

Present Future

Figure -The changing paradigm of Health Informatics

Figure 4 The changing paradigm of Health Informatics

Instead of viewing the IDS as radiology, cardiology, laboratory, etc., the object-oriented

view is of common services, e.g.: order entry, enterprise scheduling, results reporting,

29

etc. These services have many operations (methods) in common across the clinical

departments. If they are created on an enterprise basis, they can be sub-classed to meet

any detailed needs or nuances of specific clinical departments. A lot of duplicated

functionality (in operations, staffing and software) could be eliminated with this

approach. Technology users in Healthcare industry recognize the need for a standards-

based, service-oriented approach to systems integration that enables continuous managed

migration of computing technology. Architecture with a high level of common services

across the system components, like the services to control and communicate professional

activities, to identify patients, and to access knowledge secures a high degree of modular

reusability.

The issues as described above are some of the issues facing enterprise systems and are

addressed in this work. A system's architecture can serve as a "complete picture" for

integrating the various subsystems and also serve to alleviate several of the above

mentioned issues. In the following sections, we discuss how the notion of software

architecture can be deployed for a framework in this context.

This thesis concentrates on one significant component in healthcare called 'Order

Management'. This component is such that its functions span over all the different

departments of healthcare and it interacts with several components within healthcare

information system.

30

CHAPTER 4

ORDER MANAGEMENT

The current infrastructure has many monolithic systems with each system providing a

number of functionalities. One such module of functionality is order management. Order

management is required by a number of systems in various departments in a healthcare

facility. We describe this component in this section and use this as a case study.

As described before, there has been no documentation for any of the components within

healthcare. The only available document for Order Management was the User Manual for

the current system in use. From Chapter 3, we gathered that Order Management by itself

has not been developed as a separate component or system but it exists within another

system (e.g. The STAR patient Care system). Hence, I had to study the use manual for

the entire system and gather from it, the requirements of an order management

component.

An order is a request for material or services, usually for specific patient. These services

include medications from the pharmacy, clinical observations (e.g., vitals, I&O's) from

the nursing service, tests in the laboratory, food from dietary, films from radiology, linens

from housekeeping, supplies from central supply, an order to give a medication (as

opposed to delivering it to the ward).

31

Orders are generated by physicians, and fed into the computer system by nurses or an

application. Any person [or application] that places the order is called placer. A

Healthcare facility is made up of different departments like Radiology, Laboratory etc.

An order is placed for a test/ exam/ material from/ for a particular department. Once

orders are placed they have to be communicated to the required department or filler (In

HL7 terminology - a person or entity that carries out the order). This may involve

interaction between two or more different systems. Hence, orders have to move between

different systems, that could mean different environments in terms of information

systems.

All clinical orders share a few common features:

" are for a patient.

" require some of the patient demographic information like ones name, sex, date of

birth, medical record number (or identification number) etc.

" are always associated with some type of priority

" specify a requested date, time and/or shift

" are always issued by a physician.

" are also given some level of confidentiality (by the health care institution or the

physician)

32

4.1 Significance of OM

An order is the central part of healthcare in terms of both business and clinical workflow.

It not only triggers the clinical part of providing healthcare but is also responsible for

initiating the financial workflow of the healthcare facility (HCF). Due to its

characteristics, a system managing orders and its related functions has to interact with

other systems handling registration (patient information), financial information and

systems meant for specific departments. In other words an order management component

'interfaces' with all these other systems. But the current infrastructure does not recognize

order management as an enterprise level component. It is always embedded within other

systems and strongly coupled with other applications.

C IiuraloCQ I~h jsi to Credential
Authoiration erification Scheduling

Admission -_

Orderine testlesirfn vQidc r n Suppli

Trnse (kedln Ohewtin~eneraring chartrs

Figure 5 Business Processes Related to Order Management

33

Figure 4 indicates the business processes related to Order Management. The dotted

arrows denote the dependency. The solid arrows indicate the order of flow of the business

processes.

All the systems that have a need for this functionality implement the order management

module. These systems are typically obtained from not one but various vendors. These

systems need to interact with each other to achieve the business process of the

organization. Hence system integration becomes an important and challenging issue and

the healthcare organization, as an end-user has to invest in solving system integration

issues and the maintenance of these integrated systems.

As explained in section 3.4, the goal is to have enterprise wide business objects or

components that provide the required functionality. Order management is one such

functionality and the following chapters describe the method to achieve this goal.

34

CHAPTER 5

PROBLEMS AND THEIR CAUSES

Our study of the enterprise in the healthcare industry revealed several distinct problems.

Some of the problems addressed in this thesis are described below with respect to Order

Management.

5.1 Problems in the Enterprise

The most common problems encountered during system integration are that of

incompatibility between the components underlying hardware, operating system,

programming language, and so forth. The current infrastructure uses the traditional point-

to-point solution or the interface engine approach to solve these problems. Though this

does achieve interoperability between systems in terms of sharing data, functionality is

not shared between systems. This causes duplicated functionality and this makes the

overall infrastructure inefficient. The end-users (HCF) end paying more for the

duplicated functionality. The systems do not work together to achieve a common

business goal because one system is not aware of the existence of another in terms of

business functions.

There is often the problem of data mismatch even though interoperability is achieved

through some means. The data that is communicated is often not explicit and causes

35

messages to be discarded if not properly understood. Though standard HL7 messages are

used for communication, the way these messages are constructed can be made proprietary

due to the flexibility that HL7 provides. This flexibility was provided to allow every HCF

to add their necessary fields. But this very flexibility causes problems. There is also no

easy method to track errors or loss of data. The only way this can be done is to check the

log file that is created in the interface engine at the end of the day. This does not capture

all errors like when a message is lost in the network, or when the receiving system

discards a message.

There is too much dependency on the vendor from the user perspective. Any change

required in the system in terms of interfaces is expensive and often requires too much

time.

Since each of the systems in a Healthcare Facility (HCF) is proprietary, there is no

enterprise knowledge of the functionality provided by the system. For example, the

STAR patient care system contains the functionality for order management but this is not

accessible to any other system that requires using this functionality. The functionality is

not available across the enterprise and this also causes redundancy in functionality. We

summarize the problems that are of prime importance to us.

Interoperability.

There are several means to achieve interoperability in terms of simple exchange of data

without qualifying it or applying any type of semantics to it. But the existing

36

infrastructure does not achieve integration at a level of interoperability that ensures not

only information sharing but also sharing of functionality and synchronization between

components towards a common business objective.

Functional Redundancy.

This indicates replication of the same function in more than one component. This occurs

due to the fact that systems are developed independent of each other for a particular need.

For example, a healthcare organization procures an ancillary system like radiology

information system (RIS) to handle radiology orders, which contains an order

management module. But the central Patient care system also has an order management

module existing within it that has the functionality to handle orders. Then the

functionality to create orders and store order information is duplicated in subsystems,

which together form one conceptual system. Organizations have to invest more money to

obtain systems and pay for functions that they already have, since it comes so strongly

coupled with the new functionality.

An end-user organization would obtain maximum benefit if it were possible to share data

and functionality across different vendors' systems and integrate them to preserve their

(the organization's) business logic and infrastructure.

5.2 Causes of these Problems

There are several reasons for the causes of these problems in the healthcare information

system.

37

Lack of underlying infrastructure.

There is no underlying infrastructure for the healthcare systems. The systems have been

acquired and integrated on ad hoc basis. Due to lack of an overall architecture the

components within healthcare are not identified explicitly and this causes development of

systems to be haphazard. During the development of a particular system there can be no

assumption made about the infrastructure, hence the system incorporates all the required

functionality. For example, the STAR patient care system and the RIS, both implement

the order management component since the existence of the component in the enterprise

infrastructure is not made explicit. This causes functional redundancy and high

expenditure on the parts of the enterprise.

Lack of a common data model.

There is no common data model for the order management component that can state its

functionality explicitly. Without a clear understanding of the component, integration of

this component with other components is difficult. The subsystems within healthcare

were not developed in an orthogonal fashion (they were not developed to be reused or

integrated with other components). In general, it is very difficult to separate these

systems into modules or change the way the modules work together. The end result is

large monolithic systems with modules like order management embedded inside the

system with no external access to its functionality.

38

Lack of component behavior structure.

There is no explicit definition or specification of the behavior of any of the components

within healthcare. The order management component is embedded within monolithic

systems and its behavior is neither well understood nor defined in a systematic way.

Hence, even if other systems require use the functionality offered by order management,

there is no explicit assumption about the component that they can make in order to use it.

Lack of common interaction pattern and common communication data model.

There is no explicit assumption about the nature of data communicated. Though most of

the systems within healthcare use the standard HL7 messages to interoperate, these

messages are not consistent across all implementations. This causes data mismatch when

messages are communicated to systems that expect one type of format but get a

completely different type of format. Since most of the systems were not built to interact

with each other, there is no explicit definition of interaction patterns between

communicating systems. This is another reason for ad hoc integration and custom

solutions to achieving interoperability.

Lack of global architecture structure.

The Healthcare industry is far behind in the application of software architecture to their

information systems. There is no concept of global architecture for an enterprise. Lack of

such an architecture prevents the end-user from having a blue-print for system

integration. Without architectural vision the order management component does not have

a well-published interface that specifies the services required of the component. The

39

current architecture also never addresses the issue about how this component should

interact with other components.

This work concentrates on the data model for order management seen as a component in

the overall global architecture for healthcare. The requirement for the order management

component is a well-defined component architecture and well defined interface

architecture. We also outline future work that can be done to enhance this model to

provide a more concrete solution to the problems stated above.

5.3 Our Approach

We are using an architecture-centered approach to address the complex and difficult

problems in distributed healthcare system design, integration, and migration from legacy

systems based on standard-based distributed object technology. The importance of

software architecture in the development of systems has been emphasized earlier in

chapter 2. Based on that and our requirements, we are using a service-centric architecture

view that views the enterprise as a collection of services working together. It has been

proven time and again, that systems with a good architecture (and with well-documented

specifications) can withstand the vagaries of extension, modifications, and technology

changes better than systems without one [CN96][2]. An architecture-driven approach will

help us identify components in the system and their interdependencies. With proper

abstraction at the analysis and design phase, a system may be built so that it is extensible,

flexible and manageable, even when huge. We use 00 concepts during the analysis and

design phase and this brings with it the advantages of 00 technology.

40

Systems in healthcare are typically distributed in nature. The requirements of an

enterprise level system are that systems should be interoperable, flexible, legacy system

compatible, and integrable. None of the existing solutions meet all the above

requirements. Most systems from vendors are built independent of the other existing

systems. Due to the sheer number of vendors, and in the absence of a universal standard

or interoperability language, it is difficult to build functionality that lets one system talk

to all others. Our solution is based on standard technology (CORBA) to build standard

APIs. CORBA offers a standard interoperability language for systems with requirements

such as above to be interoperable.

As mentioned in section 3.4, the current infrastructure in healthcare is that of vertical

departmental systems that are bulky in terms of providing all required functionality

within themselves. Our approach is aligned with the approach of the healthcare industry

i.e. to have an object-oriented view of common services, e.g.: order entry, enterprise

scheduling, results reporting, etc. These services have many operations (methods) in

common across the clinical departments. If they are created on an enterprise basis, they

can be sub-classed to meet any detailed needs or nuances of specific clinical departments.

A lot of duplicated functionality (in operations, staffing and software) could be

eliminated with this approach.

This type of architecture has several important implications if systems are implemented

properly based on it. First, it can significantly simplify individual application

41

development. The common domain-specific services represents underlying concepts

essential for conceptual integrity (in terms of service specifications), for vendors who

want to develop an application (component), reducing development time and product

costs. Second, it will significantly reduce the complexity of system integration and

interoperation. This is because standardized interfaces and building blocks not only

simplify integration between any two given applications, but also avoid potentially large

number of customized mappings between the applications that could blow up

exponentially (Figure 4). It significantly reduces the redundancy in functionality between

different applications because common functions are implemented as shared services, and

this also facilitates more effective software reuse.

Application
0 Domain Specific Implementation0Applications Ipeetto

O O O

Domain Vertical O m
Applications omain Services like

(9 Specific Order Service
Infrastructure

(TIME 0
O 0 O

Domain Specific
O Infrastructure Platfor 9 CORBAServices &

Infrastructure CORBAFacilities

Platform Infrastructure 0

Today's Environment Future Environment

Figure 6 Moving toward standard-based architecture.

For example, such an architecture in the healthcare domain would define services for

significant business processes like Patient Identification service, Clinical Observation

Access Service, Lexicon Query Service and Order Service. The use of such an

42

architecture is further enhanced by building it based on a well-accepted architectural

standard like CORBA. CORBA-based domain specific standard specifications leverage

development through design reuse, commercially supplied software services, and

interoperability. But since an enterprise system is comprised of numerous independent

subsystems the complete set of requirements for the enterprise required to design the

architecture for such a framework may not be fully understood at the start. Hence we take

an incremental and iterative approach to develop this framework.

As new functions and components are identified and incorporated into the model, the

service architecture will mature. The goal is to finally have an overall architectural

framework for this domain industry (healthcare enterprise) such that it serves as a

blueprint for enterprise level system integration, development of individual components,

and component reuse. The following chapters describe such an approach with respect to

the order management component.

43

CHAPTER 6

PROPOSED SOLUTION

Our solution is based on the outlined approach. This solution is use-case driven and is

based on object-oriented analysis and design. Initial analysis helped understand the

functionality of order management and workflow associated with orders.

6.1 The Order Management Business Workflow

This is a brief description of the order management business workflow. Without going

into too many details at this point, this does give an overall view of what behavior is

expected of this component and the environment that it is in. Once registration is

complete and a patient is admitted to a healthcare facility, the patient is within the clinical

context of the healthcare domain. Then a physician requests one or more orders for a

patient. Then there is verification with the insurance company, which is usually done

manually by a person. Once authorization is obtained from the insurance company, the

order can be completed. To do so, the patient information obtained during registration is

required. This is obtained from the registration system. The credential of the ordering

physician is verified before the orders are placed within the system. Then the orders have

to be sent to the respective departments for completion i.e. execution of the request. Once

the orders are processed, financial charges are generated which lead to billing

information. This cycle continues till the patient is issued a 'discharge' order, which is a

44

special order that indicates the end of that particular 'encounter'/episode of medical care.

An encounter/episode is the period from an admission to a discharge for a particular

patient when admitted in a HCF.

Our approach to tackle the problem in this domain has been to follow an object-oriented

approach. In keeping with the approach, the first part of the analysis involved the use

case analysis.

6.2 Use Case for Order Management

When a design is use case driven the whole system architecture will be controlled by

what the users wish to do with the system. Having a use case diagram that reflects these

requirements of the users, lets the modifications be reflected in the use case as a direct

change in the user requirements. The use case model controls the formation of all other

models and this facilitates traceability through all models.

Figure 7 shows a Use Case for Order Management. This was derived from the Healthcare

business domain after extensive interviews with several domain experts within BHS and

is a reflection of the business workflow described in the earlier section. This final use

case is a result of several iterations starting with a basic simplistic use case. The use case

diagram identifies several use cases within order management. These use cases constitute

a strong tool for defining the system functionality. They also act as support when

developing subsequent models, since these models are based on the use cases.

45

The initial use case was created based on the primary use case i.e. 'Place Order'. This is

the first use case that was identified. Eventually, through discussions, several more use

cases became apparent. There had to be one to take care of generating charges, one that

was responsible for delivering orders to the departments and one that would be used to

modify orders. These were the first few that were obvious from the requirements and

business case that I studied. As I generated use cases they were presented in front of

experts and users from BHS. Based on their comments, I made further modifications to

the use case model. We went through this cycle several times till we arrived at the current

use case model. After one iteration, we found the need to add a separate use case for

'transfer' and 'discharge' order. Though these use cases are very similar to the 'Place

Order' use case, they differ in the interaction with some actors. Hence, I created separate

use case for them, which extends the behavior of the parent use case. The relationship

between 'Place Order' use case and the actor 'Insurance' was at first designed as

'authorize'. But after some discussion with some experts, it was concluded that all orders

need not be authorized by the Insurance e.g. a discharge order. Hence the relationship has

been changed to 'may authorize'. The names of the use cases have been modified after

some suggestions to reflect the view from outside i.e. from an actor's viewpoint.

Following is the description of the final use case that was designed as a result of several

iterations and discussions. The description is based on a Use Case Template borrowed

from a Use Case Template draft [Col98].

46

Table 1 Description of Actors from the Use Case

Actor Description

A person or system who places an order into the information system. An

order once place could generate further orders and thus take the role of a

Placer placer.

A person or system that executes the order. This could be technicians,

physicians or systems that are deployed to perform certain tests or

Filler exams.

A business process during which most of the encounter management

- related actions are triggered and encounter information is captured. The

component[s] providing this information to the order management
Registration

component in order to place a order, is termed Registration in the above

Use Case.

A system [department] that keeps track of the housekeeping facilities

within the healthcare facility like beds and rooms to be allocated etc.

Housekeeping Some orders that affect the housekeeping need to be communicated to

the department.

A system that keeps track of the billing information and the financial

charges incurred by a patient, when an order is placed or processed.

Financial System

47

A system responsible for scheduling the execution or processing of

orders (in this case) by indicating a date/ time for the orders to be

Scheduling processed and allocating a resource for the order to be processed.
System

A system that deals with transporting facilities like a stretcher, a

wheelchair etc. and is responsible for assigning a facility to a patient as

Transportation and when required. This could be required for any order.
Department

A person or system that acts as a contact with the insurance company.

This is required to authorize the execution of certain orders.

Insurance

Use Case 1. Place Order

Description Placer creates an order into the system after the physician has placed an

order.

Assumptions none

Actors Placer

Insurance

Steps 1. Placer receives order to be placed (from the physician). Placer may be a

designated nurse, a technician, a person specifically assigned for that

purpose or in some cases the physician himself.

2. Placer starts the process to place the order (Refer to Sub-Use Case 1.1).

3. The order may be authorized by the Insurance Company.

4. The details of the order are entered into the system.

48

[may] authorize

- -7 Place Order Insurance

- --- extends>>
Placer

--- ,,---- '--. IPlacer
«extends

Place Transfer Order Housekeeping

Place Discharge Order -

1 - Registration

Filler
Modify Order

Financial System Obtain Charges Receive Order Scheduling
System

Transportation
Department

Figure 7 Use Case for Order Management

Use Case Extension Place transfer order extends Place Order

Change A transfer order is a special order that is placed for the transfer of a patient

admitted into the Healthcare Facility (HCF), from one room to another.

Actors Housekeeping

49

Registration

Steps 2.1. Confirm transfer order with housekeeping regarding room/space for

the transfer.

2.2. Communicate the order with registration so they know of the change.

Use Case Extension Place Discharge Order extends Place Order

Change A discharge order is issued when the patient is ready to leave the HCF.

This order closes the encounter or the current episode of the patient.

Actors Registration

Steps 2.1. The issuance of this order is conveyed to the registration department.

This has to be done so that registration can update their records regarding

the information of the patient.

Rationale The reason for having a use case called 'Place Order' is obvious since a

Physician 'places' an order. This order is then placed into the system. We

describe this process here as place order. The other two similar processes

are derived naturally from the main use case.

Use Case 2. Receive Order

Description The order that is placed into the system is communicated to the various

actors interacting the environment.

Assumptions none

Actors Scheduling System

50

Filler

Transportation Department

Steps 1. Order is scheduled through the scheduling system.

2. IF transportation required THEN 2.1 Notify Transportation Department

2.2 Confirm availability of

transportation

3. Order is delivered to the Filler (the person and/or system that executes

the order).

Issues none

Rationale Every order has to be sent to a particular department or 'filler' who would

then complete or execute the order. The order is thus 'received' by the

'filler'. Hence the other departments or components receive the order from

the order management component. This can be achieved in one of two

ways: either the order management component sends the orders or the

other component requests the orders. Either way, the other components

receive it. Hence, we require a use case that describes this process.

Use Case 3. Modify Order

Description An order may be modified at any point in time. The modifications could

be changes made specifically to the order such as change in the date and

time requested for the order. Or the order could be cancelled if there is

found to be a lack of need for it. The status of the order changes when it is

51

scheduled and after it is executed. This has to be indicated with respect to

the order.

Assumptions none

Actors Placer

Filler

Steps 1. The order to be modified is identified.

2. The modification is recorded.

3. The information regarding the person/system making the modifications

is noted.

Rationale Every process goes through stages of modifications. And order also goes

through several states. Certain values are attributed to the order during this

modification and this has to be recorded. This gives rise to a separate

activity in which an order is modified and the parameters associated with

it are recorded. Hence, we have a use case called 'Modify Order'.

Use Case 4. Obtain Charges

Description After the order is placed or after it is processed (depending on the

requirements of the business), charges are generated for every order that

was placed. These charges are then fed into the financial system where it

is processed.

Assumptions none

52

Actors Financial system

Steps 1. Charges generated for each order.

2. Generated charges communicated with the financial department.

Issues When are the charges exactly generated? After the order is placed but

before it is executed? Or after it is executed?

Rationale As orders generate a clinical workflow, they also give rise to a financial

workflow by generating charges. Every order is associated with a charge

or the cost of performing the test/exam. This is generated once the order is

placed into the system or once it is executed depending upon the policies

of the Healthcare Facility (HCF). Either way, the financial system or

component needs to access these charges. Hence a use case called 'Obtain

Charges'.

As we can see from this use case, the Order Management component interacts with

various other components (Systems) like Registration, Housekeeping, Financial system,

Scheduling system, transportation system etc. The following table gives a description of

each of these actors.

This use case model aims to define the limitations of the component and specify its

behavior. This gives an explicit definition of the behavior of the system that will also be

reflected in the other models for order management. This information can be used by

other systems during system integration to ensure correct behavior.

53

The 'Place Order' use case was the first use case that was identified. The use case was

then identified to be composed of several sub-use cases or activities. These are specific

activities that have to take place before an order can actually be placed in the system.

These activities have been considered significant enough to entail a sub-use case diagram

to depict the dependency. The following figure (Figure 8) shows the Place Order use case

and identifies the activities involved in placing an order.

N, 7

Identify Patient

Get Demographics

_N 7 Identify Physician

Place Order

Verify Physician Credentials

Insurance Authorization

7

Create Order

Figure 8 Sub-Use Case for Place Order

54

Place order use case is composed of several activities that can be described by a sub-use

case as shown in the figure. The arrow drawn from Use Case Place Order to the sub-use

cases denotes a 'include' relationship.

To complete the process of placing the order, first the patient has to be identified in the

context of the healthcare facility. This could be done using his name, his patient

identification number (or any ID that is used in the HCF), or the floor (if he is admitted

into the HCF). Once the patient is identified, getting his demographic information is the

next step. Then the Physician who has placed an order for the patient is identified using

either the physician ID within the context of the HCF or the name of the physician. The

next step is to verify the credentials of the physician: is he/she allowed to place such an

order, his/her authorization etc. Once this is clarified, all that is needed is the

authorization from the Insurance company for placing particular orders. This is true

within the context of US healthcare in most cases though it may vary and be completely

non-existent in certain countries and healthcare infrastructure.

The following is a brief description of each of the sub-use cases or activities as shown in

Figure 7.

Sub-Use Case 1.1 Identify patient.

Description This is a use case in which the operator identifies the patient

(Identification number). This could use the PIDService that has been standardized by

OMG.

Use Case Referenced By Use Case 1. Place Order

Steps 1. A patient is identified using his/her unique identification number.

55

2. The search can also be done by other parameters related to the patient is

if the unique identification number is not known or does not exist for some

reason.

Sub-Use Case 1.2. Get Demographics

Description In this process, the related demographic information (name, sex, etc.) is

retrieved from the relevant system. This could use the proposed Demographic service.

Use Case Referenced By Use Case 1. Place Order

Steps 1. The demographic information for the identified patient is retrieved.

Sub-Use Case 1.3. Identify Physician.

Description The operator is required to identify the physician who is responsible for

generating the order. This generates a relationship between a physician (ordering

physician) and the order that was generated. We may need a service that manages this

relationship.

Use Case Referenced By Use Case 1. Place Order

Steps 1. Identify Physician from a list of physicians using the physician

identification number; or any other parameter designated by the

Healthcare Facility like the last name of the physician.

Sub-Use Case 1.4. Verify Physician Credentials.

Description Once the physician is identified, his credentials need to be verified. This

includes verifying whether the physician is authorized to give that particular order.

56

Use Case Referenced By Use Case 1. Place Order

Steps 1.

Sub-Use Case 15. Insurance Authorization.

Description Before the order can be processed or even placed in the system, there has

to be authorization from the insurance provider. This is also done by the operator though

there may be some orders which do not need this verification (e.g. Discharge order).

Use Case Referenced By Use Case 1. Place Order

Steps 1. Call the insurance company.

2. Obtain authorization for specific orders.

Sub-Use Case 1.Create order.

Description This is where the operator actually enters the data specific to the order like

the test/ exam for which the order has been made, the priority of the test, the date and

time requested, and other information specific to the type of order.

Use Case Referenced By Use Case 1. Place Order

Steps 1. Create an order for a particular patient with a unique identification

number.

2. Enter all the specific data to the Order into the system.

This use case diagram for Order Management gives explicit description of the

architectural context of the component. It describes the interaction of the component

(Order management) with the other components or subsystems of the Healthcare

57

Enterprise wide system. This facilitates understanding of the context of Order

Management and aids in system development. It also helps define the boundary' that

separates the 'external' components that interact with orders from the information that

resides within the component.

6.3 The Information Viewpoint of Order Management

Figure 9 is the RM-ODP2 information viewpoint model for the Order management

component in the healthcare information framework.

The data model that is detailed below consists of entity objects or classes identified from

the use cases discussed in the earlier section. Some of the entity objects are obvious while

others are not. The entire model went through several iterations similar to the use case

model. The initial version looked like the following figure (Figure 9). As the figure

shows, it has an object representation of a person, who might have one or more

encounters, where each encounter would have one or more orders. An order is either a

simple order for a test/exam or could be of composite nature where it contains several

orders within itself. This has been modeled using the composite pattern [8- pg. 163].

Furthermore a simple order can be of two types, one-time (that occurs only once) and

recurring (occurs repeatedly at fixed time intervals). This has been modeled as sub-

classes of Atomic orders. Since an order can be in several states, there was a need to

represent the state of an order, hence the object representation 'ObjectState'. This model

was presented in front of the experts from Baptist Health Systems (BHS) and found to be

2 RM-ODP stands for The Reference Model for Open Distributed Processing [xi]

58

lacking in several important features. The final model is shown in Figure 10, and the

description of the model is detail follows that.

Person

Item

Encounter t 1ame : String

Order
OrderLocation

erderNumber : Integer
ordered at

OrderState AtomicOrder CompositeOrder

Recurring Onetime

Figure 9 Initial Data Model for Order Management

Deriving from the comments by the experts there was found to be the need for

representing the person responsible for placing the order, as well as the person changing

the state of the order. Furthermore, the two object representations for 'Person' and

'Encounter' were collapsed into one, now called 'SubjectOfCare'. This was done because

59

orders can be placed not only on persons but also on specimen, which have no

relationship with Orders. Also the notion of encounters is not global, so it may or may not

exist. Instead of directly sub-classing atomic orders, a better way to design the typing of

orders is to create a new class called 'Type' and then sub-class this class. This class is

then related to 'AtomicOrder'. Now all the type related information could be abstracted

from the order information. These descriptions will be clarified further in the following

few sections.

Since order is the primary entity identifiable from the use case, it is modeled as an object.

Class name 1. Order

Description The request for material or services like tests, exams etc. Each order can

be just a single order or a composition of multiple orders. An order also

triggers the workflow to care for the person (patient).

Assumptions Every order is placed for a subject (usually a person or in some cases a

specimen, organ etc.).

Attributes Order number: Integer

Variations AtomicOrder: A single order that performs one and only one request for

some material or a service for a patient like a single test, e.g. a chest x-ray.

CompositeOrder: A Composition of multiple orders that contains more

than one single order - it could be a composition of more than one

AtomicOrder or CompositeOrder.

60

AtomicOrder and CompositeOrder inherit from Order, all the characteristics that are

typical of an order. CompositeOrder exists for the sake of convenience in the medical

realm. These are orders that seem like a single order but actually disintegrate into a

number of AtomicOrders.

Person R o le SubjectOfCare (Person)

Item
;name: String,

for

Person for- 0..1
Order .0..*
Order 0.. 1 Location

dorderNumber : Integer r
ordered at

personjesponsible

\ \Location Type

OrderState _ _ AtomicOrder CompositeOrder

Chas

Type Assignment

Recurring Onetime Resource Resource Type

Figure 10 Conceptual view of Order Management

61

Rationale An order as described earlier is the primary entity in the order

management component. An order can be atomic or composite. And since

they are only types of orders, they are designed as 'is-a' relationship.

Traceability Use Case 'Place Order', 'Modify Order'.

Dependencies SubjectOfCare - requires this class to be associated, since orders are

always for some subject.

Example Methods

CreateOrder() - Used to create an order with given parameters.

GetOrder() - Retrieve an order based on some logic like a particular

order number or all orders for a particular patient.

Class name 2. SubjectOfCare

Description This is the person (patient) for whom the request is being made and who is

being cared for or who is being served by the Healthcare provider.

Information about the patient is required when an order is created and

might be obtained from the respective service or data source. (E.g.

Demographics service).

Assumptions A lot of information regarding the patient is collected at the beginning of

an encounter, for example during registration.

Variations None.

Rationale The need to capture the information about the subject for whom the order

is being placed gives rise to this class. It is designed as a separate class

62

since the information it carries comes from another component. So it is not

tightly bound to this particular component.

Traceability Use Case 'Place Order', Sub-use case 'Identify Patient' and 'Get

Demographics'. These use cases would require a class called

SubjectOfCare.

Dependencies It provides support for Class Order.

Example Methods

GetSubjectName() - Returns the name of the subject.

GetSubjectDescription() - Could be used to find out some kind of

description of the subject, for example, inpatient or outpatient.

GetSubjectParamaters() - Where depending on the parameters the

function could be changed i.e. a function could be defined to return the

patient's address based on his identification number. Different logic could

be used to return different parameters.

Class name 3.Person

Description This is the person responsible for the order in different ways such as

physician (who is responsible for generating the order), nurse/ clerk (who

is responsible for placing the order into the system and also for making

any changes to the order) etc. Information about the physician who makes

the request (authorizes the creation of the order) might be obtained from a

different data source or service. (E.g. PHiDS - Physician Identification

63

service). This person can exist in different roles, which is qualified by

Person Role.

Assumptions Information about any such person associated with the system is always

available.

Variations None.

Rationale There is a need to capture the information of the person responsible for a

number of activities (use cases) within order management like the person

responsible for placing the order, the person updating the status of the

order etc.

Traceability Use Case 'Place Order', Sub-use case 'Identify Physician'. Use Case

'Modify Order', 'Receive Order'

Dependencies Person Role - requires this to describe the role played by a particular

instance of the class

Example Methods

GetAllRoles() - Used to find all the roles a particular person had with

respect to the system.

GetPersonRole() - Could be used to find a particular role that a person is

playing at a given instance.

Class name 4. Person role

Description Identifies the role of the person instantiated through Class Person. This

class has an 'association'relationship with class Person.

64

Rationale Since the role of the person could vary depending on the context, we have

a class called 'Role', which would let the HCF decide which roles are

important enough to be recorded.

Traceability Use Case 'Place Order', Sub-use case 'Identify Physician'. Use Case

'Modify Order', 'Receive Order'

Dependencies Provides a role for a person.

Example Methods

CreateRoleo - Create a specific type of role for a person.

Class name 5. Item

Description This is the actual test/ exam/ material for which the request is being made.

This could be maintained as a separate data source (database).

Assumptions None.

Variations None.

Rationale Every order is associated with a type of test or exam and each of these

have a fixed charge associated with it. Maintaining this as a separate class

gives the flexibility to implement this in different ways such as having a

separate database for it or having the charge value incorporated in the

class.

Traceability Use case 'Obtain Charges' and 'Place order'

Dependencies None

Example Methods

Createltem() - Could be used to create an item.

65

GetltemnPrice() - Could be used to get the price of a test/ exam.

Class name 6. Location

Description Every order is placed at some location. There might be a need to record

this depending on the business needs of the healthcare provider (HCP).

There can different locations that might be important enough to be

recorded, depending on the context.

Assumptions None.

Variations None.

Rationale The location may or may not be recorded depending on the needs as

defined by the HCF. Defining this a separate class gives the flexibility to

either use it or not.

Traceability Use Case 'Place Order', 'Modify Order' and 'Receive Order'

Dependencies LocationType - Required this to define the type of location that is

specified in this class.

Example Methods

GetLocationType() - Get the location type for a particular location

Class name 7. Location type

Description The need of recording different types of locations necessitates another

class called LocationType, which qualifies the type of the location. So if

the location that is to be recorded is an office of a physician, the Location

66

object will contain the actual location of the office while the LocationType

object will describe the type of location as being 'office of physician'.

Assumptions None.

Variations None.

Rationale LocationType can be used to describe the type of location.

Traceability Use Case 'Place Order', 'Modify Order' and 'Receive Order'

Dependencies Provides type for class Location.

Example Methods

CreateLocationType() - Used to create a new location type.

Class name 8. OrderState

Description The status of the order during the workflow of providing care to a person

keeps changing. And it is required to record the status of the order at every

stage. Some of the different statuses that an order can have are

'Requested', 'Scheduled', and 'Completed'. Depending again on the needs

of the HCP, OrderState can be sub-classed to define more statuses.

Assumptions None.

Variations None.

Rationale As described in the use case, every order will go through different states.

This has to be recorded along with associated parameters. OrderState is

used to record the state along with certain parameters. OrderState can be

further sub-classed to get certain types if states which require specific

parameters to be recorded.

67

Traceability Use Case 'Modify Order'.

Dependencies Provides state for class Order. Associated with class Person responsible

for changing the state.

Example Methods

ModifyState() - change the state of a particular order.

Class name 8. Type

Description Every order has a type that can be either a one-time order or recurring.

Recurring order indicates an order that repeats after a certain time interval;

this could be several hours or several days. A one-time order is executed

only once.

Assumptions None.

Variations Type is sub-classed into One-time and Recurring orders.

Rationale Since orders can be of different types, there has to be provision for taking

care of it. We consider only atomic order to be either recurring or one-

time. After several discussions with clinical experts it was concluded that

composite orders did not recur as a whole. Either individual order within

the Composite order recurred or did not. Hence, we have Type as a

association relationship with AtomicOrder and then have sub-classed it to

give two more classes.

Traceability Use Case 'Place Order'.

Dependencies Required by class Order to identify the type of order.

Example Methods

68

CreateType() - Create the type of order.

GetRecurlnterval() - this could be used for type recurring order to find out

the period of recurrence for the order.

Class name 9. Resource

Description For an order to be executed, it might require the use of certain resources

like an X-ray room, certain modalities like a cat-scan machine or other

specialty technicians (who for the purpose of this model are considered

resources). This class captures resource information, which can used to

schedule a particular order.

Assumptions None.

Variations None.

Rationale Resources are definitely required during clinical workflow.

Traceability Use Case 'Place Order' and 'Receive Order'.

Dependencies Resource Type - requires this in order to classify its type.

Example Methods

GetResourceType() - Returns the type of the resource.

RequestResource() - ask for a particular resource to be assigned for an

order.

ResourceGranted() - When a resource is granted this can be used to

convey the schedule for the resource.

ListResources() - Can be used to list all the resources.

69

Class name 10. Resource Type

Description Since each resource can be of different types as described above (like

rooms, modalities or technicians), a class is used to qualify the resource.

Assumptions None.

Variations None.

Rationale To describe the resource and its type we define two different classes, once

again for flexibility.

Traceability Use Case 'Place Order' and 'Receive Order'.

Dependencies Provides type for class Resource.

Example Methods

CreateResourceType() - Creates a resource type.

Class name 11. Assignment

Description These resources have to be assigned for a particular order and have to be

scheduled to do so. During this frame the orders have some association

with resources. This class captures the relationship between orders and

resources when a resource is scheduled for a particular order.

Assumptions None.

Variations None.

Rationale This is derived from a design pattern called 'Business Patterns of

Association Objects' [9]. This relationship is captured as a separate object

so that information related to the association between orders and resources

can be recorded. For example, an order may be placed and this order may

70

require a particular resource. At that time the association between the

order and the resource is that of requirement. Once the order is scheduled

and a resource is assigned to the order the relationship changes.

Traceability Use Case 'Place Order' and 'Receive Order'.

Dependencies Acts as an association between class AtomicOrder and class Resource.

Example Methods

GetSchedulelnformation() - Used to get the information associated with

the resource when it is scheduled for an order

This is an intuitive idea of a conceptual view of order management obtained after

extensive in-depth study of the domain of healthcare using the expertise at Baptist Health

Systems of South Florida (BHSSF). The business information for order management is

captured in this data model. The data model is a generic framework, which can be (re-

)used for the development of this component.

The work in developing the data model entails distributing the behavior specified in the

use case descriptions among the objects in the data model. An object can be common to

several different use cases. Any change in the user and/or business requirements is

reflected in the use case and this can easily be mapped to data model. The data model can

also be used to develop the interface diagram that will help generate the interface

specification. The interface specification for a component providing such information

should define the interaction between systems [components] that wish to communicate

71

order information. The specification must also state the functionality supported or

provided, thus making it explicit.

72

CHAPTER 7

AN ENTERPRISE VIEW

In the last chapter, we looked 'into' Order Management. In this chapter, we look at Order

management with respect to other components in the overall enterprise and Order Service

as part of the service architecture for healthcare.

7.1 Solution: A 'Good' Architecture

A good architecture means well-defined modules, well-defined interfaces and uniform

interaction patterns. If a system is developed with well-defined modules and well-defined

interfaces, other components have explicit assumptions to deal with. A component with

well-defined modules will have only the relevant functionality and information

encapsulated within itself. This will ensure that functionality is not duplicated in different

components within the same large-scale system. Uniform interaction patterns will ensure

that the behavior of the component is consistent. Without a well-defined architecture,

order information resides in different systems (due to redundancy in functionality) and

information often becomes inconsistent. Other systems/ components do not have access

to the required order information and very often do not know how to obtain it.

The problem is that of integrating existing legacy components into new and novel

configurations. A large-scale system, like healthcare will always follow an incremental

approach to development. It is indeed difficult, if not impossible to construct the overall

73

architecture of the system without identifying the individual components of the system.

Identifying and developing each component is the first step in achieving an architecture

centric approach to system development. Order management has been identified as one

essential component of a healthcare information system that offers enterprise wide

functionality. It has been shown how this component can be developed efficiently using

object-oriented methods and an architecture has been developed for it. This architecture

can be further complimented by the following work, which is to be developed via

CORBAmed efforts.

The use cases and the data model described in Chapter 6 provide the groundwork to

further develop an Order Service based on CORBA but domain specific to healthcare.

This service would be part of the service-based global architecture for the healthcare

domain. The following sections detail on how such a service can be built and fit into the

overall architecture.

7.2 Order Service

Order Service would define the set of interface specifications in CORBA IDL and would

specify the functionality provided and the interaction between all components that need

or provide order information. Clinical Order Service is a mechanism for co-ordination of

data about clinical orders between information repositories and different applications.

This service should also provide for write access to the clinical information. A system

may use the Order Service to send clinical order information to other systems or a system

74

that needs to share order information may notify other applications/ systems about it via

Order Service.

«future
«adopted>> Physician

HRAC Credentialing

«proposed>>
Demographic

«future Service

Order Service
«future>>
Workflow

«adopted
PIDS

«adopted <<future>>
COAS PHIDS

Figure 11 Dependency diagram for Order Service

All such dependencies would be described in the architectural description of the order

service as shown in figure 10. Order management component depends on several other

systems for information; hence order service would depend on other services that offer

such information. One such service would be the proposed Demographic service which

would let one access demographic information regarding a patient. The Order

management component would then use the services offered by the demographic service

75

to get the required information. Similarly, the component could use services offered by a

service like PIDS (Patient Identification Service) to lookup the patient based on his

identification number across more than one domain. The security issues like who would

be allowed to access certain information regarding the patient could be resolved using the

HRAC service (Healthcare Resource Access Control - now called RAD, Resource Access

Decision). RAD takes care of information access issues. COAS (Clinical Observation

Access Service) is a service that lets one access observations and its related information.

A component implementing such a service would need to access order information. This

can be done using the Order Service.

For example, the Order Service might provide an interface service called

'GetOrderlnformation', which provides the order information such as test/exam

name and order number based on the Patient ID. A component using COAS would need

this information. Hence such a component (like a software package built for the physician

to gather information and check the status of his patient) would use Order Service via

COAS. Similarly, a component requiring the use of Order Service to place an order will

have to use services offered by RAD, PIDS, Demographic Service. Other foreseen

services include PhiDS (Physician Identification Service) which could be used to identify

physicians based on certain parameters and Physician Credentialing Service, which

would be used to verify physician authorization and credentials. Order Service is seen to

be dependent on these services. Workflow service and its relationship to Order Service is

explained in further detail in Appendix B.

76

The following sequence diagram (figure 11) shows an instance of where an Order Service

would fit into the workflow of the healthcare business process. This is a specific instance

of placing a radiology order and then its execution. The example has been considerably

simplified for ease of understanding.

1. First a Radiology order is placed i.e. created by an operator using the Order Service.

2. Then the order is scheduled by a scheduling system. The scheduling system uses the

Order Service to obtain the orders.

3. The Information system at the Radiology (RIS) receives the scheduled orders via the

Order Service. Order Service could use CORBAservice such as Event Notification

Service to notify such peripheral systems of scheduled orders.

4. The ancillary system notifies the Order Management system through the Order Service

about the updated status of the order.

77

: OrderService

Scheduling Radiology : Filler
:Placer S stem

1: CreateOrder(Radiology I

12: RequestSchedule(Order)

3: SetOrderState(Scheduled)

4: GetOrder(...)

T -
-

5: List of Orders for that 'filler' f

6: ExecuteOrder

7: SetOrderState(Completed)

Figure 12 Sequence Diagram for processing a Radiology Order

There are more such instances since Order Management system interacts with several

other critical business systems and all of them share order information. The following

figures show all the other interactions.

78

PI05. PHiDS PCS OrderSeR~ce
Placer Demographics :Insurance

11: findCandidate(...)

2: CandidateSequence

1 3: GetDemogaphiclnb ru on(PID

4: Demographic Information

5: FindPhysician

6: Physicianldentification

7: VerfyPhysicianCredentials

8: VerificationResult

9: Request lnsuranceAuthorzation

10 AuthorizationGranted

... . . 11: CreateOrder _ __

Figure 13 Create an order

This is the possible sequence to place an order using an Order Service. PhiDS and PCS

are services to identify physicians and verify physician credentials respectively. These

services are not proposed yet.

79

OrderSerNce
: Financial

S tern

1: Generate charges

1.1

2: ObtainCharges

2

Figure 14 Generating charges after an Order is placed

The order management system is responsible to generate charges based on the orders.

This information is communicated to the financial system via Order Service.

:OrderSer\ice

: Registration

1: NotifyDischargelnformation

Figure 15 Notification after patient discharge

The following diagram is the interaction of order service with the registration system.

80

An encounter comes to an end with the discharge order for the patient. This information

is communicated to the registration system via Order service.

Hence, we conclude that there is a need for a service that provides and manages order

information. This service reflects the business logic behind order management. This

business logic can then be embedded in the middleware (CORBA) and this enables

systems to adapt to changing business requirements. The service also explicitly states the

assumptions made about the semantics of component functionality and interfaces. The

use cases and the data model developed earlier should be used as the basis to develop the

interface model for Order Service.

7.3 Architecture for an Order Service

Since healthcare is distributed in nature, existence of a service based architecture

describing services like the Order Service and the dependencies will ensure that end-users

(like a healthcare facility) have a blueprint for system acquisition from different vendors.

By following the framework during development, vendors can guarantee that their

systems are compatible with other systems in the enterprise.

The existence of Order Service as part of the overall infrastructure would ensure that

vendors developing systems that need to use the functionality provided by this service

need not include it as part of their system. This not only saves development time and cost

but maintains conceptual integrity of the overall system.

81

Architecture specifies the dependencies between this service and other healthcare domain

services. Thus, once specified, this will add to the overall 'horizontal' framework across

the enterprise and help refine it with more details. Figure 10, as described above, shows

the dependency relationship between the Order Service and the other services that are (or

might be) part of the overall healthcare service architecture.

This infrastructure acts as a skeletal structure for the healthcare domain. A healthcare

organization that needs a Healthcare Information System can derive from this basic

architecture, the components that are specific to its needs, and then start development or

deployment of available systems that were also developed conforming to this

infrastructure. Since this domain-specific architecture is based on CORBA, it inherits all

the advantages that CORBA provides for distributed object computing. It provides the

infrastructure for integrating components with legacy systems and common

interoperability language for communication between systems.

7.4 Summary

We summarize the justification of this framework with respect to the issues discussed

earlier.

Interoperability

The CORBA infrastructure provides basic interoperability: the platform and common

language for communication of information. The framework for healthcare based on

CORBA provides the business functionality and logic required for healthcare. By

82

standardizing an Order Service, integration of components could be simplified. Each of

the components requiring the use of this functionality would have to conform to the

standard interface and this could be achieved at the time of development of these

components. Since integration is simplified, the healthcare organization can now afford

to acquire components that best suit a particular need like a Radiology system developed

using the latest technology. The use case diagram helps understand and describe the

functionality of the order management component explicitly.

Redundancy

Order information could continue to reside in the different systems. The CORBA

Notification Service could be used within the Order Service to notify other systems when

data in one system changes. This is one of the ways that inconsistencies in data can be

avoided.

The overall framework for healthcare will ensure that there is reduced functional

redundancy as systems develop over time. Since, the framework would define a clean

division of functionality; the components would be developed without duplicating other

functionalities. The Order Service provides a set of interfaces for one such functionality.

The functionality of this component is clearly indicated by the generic data model that

was designed.

The above work contributes a step towards achieving an overall framework for

healthcare. There have been numerous attempts at defining architecture for large-scale

83

systems. But there has been no significant effort at studying or researching and enterprise

level systems where numerous heterogeneous systems interact in the scale as described

earlier. This work contributes partially towards such an effort. By accumulating such

pieces of work over time a generic architecture for the healthcare enterprise can be

developed. This architecture would then be used for system development, system

acquisition and system integration.

The core part of this work will be used to enhance the CORBAmed Healthcare System

Template (CHST) being developed by CORBAmed as the guideline for healthcare

information systems [vi]. An Order Service would fit into the 'Provider Centered

Services' within a CHST. As defined in the CHST document, these services are chiefly

aimed at provider support. This package is seen to provide the following services:

" Creation of a plan of clinical and administrative activities (or events) that may be

executed by the care plan execution service

" Invokes the establishment, request, performance and other states of work items

" Utilizes information about planned activities to develop worklists for specific agents

The descriptions of these functions partially match the description of an order service.

Hence, an order service would definitely contribute to the structure of the template.

But what is different about this design as compared to the traditional or existing methods

of solving the same problem? The object-oriented method of analysis and design is

definitely more systematic and organized way to approach a problem. Traditional

methods have always relied on incremental but ad hoc development. With organized

84

design where dependency is traceable, development become more methodical and

maintenance in turn is simplified to a large extent. One noticeable element that has been

missing in development efforts thus far has been good documentation. With the writing

of this thesis serving as a base, further development for the healthcare framework will

have documentation to guide the process. The methodology of arriving at the solution is

organized in such a way that solution seems clearer.

As addressed before, having a standard-based service infrastructure (described by CHST)

will also make development and system deployment easier. The dependency of the

components is better defined when this approach is followed. The use case diagram and

the data model give a clear picture to any developer who wants to either start

implementing the system from scratch or for a person who is looking to deploy a system

that uses the order management component.

One of the existing ways to integrate systems and/or components is CORBA. But what

this architectural design adds to it is a framework for healthcare systems. Healthcare

systems can be built and integrated using CORBA and it will definitely work. But to have

an overall picture of the healthcare system and to be able to see the dependency between

is an added asset to the advantages of CORBA. This thesis is a contribution to the

development of such a framework.

85

CHAPTER 8

CONCLUSION

It is clear that enterprises are moving toward open, standard based architecture and there

is a need to build next generation information system. Though architecture models like

OMA/ CORBA prove to be extremely beneficial in solving several architectural issues

(like certain types of low-level mismatches), providing specific extensions for domains

could further enhance the benefits. For complex systems within particular domain, the

architecture can be extended with domain specific standards and specifications. These

specifications are for Services that define business objects that can be applied

horizontally across the domain. The idea is to shift from department-based vertical

systems to 'horizontal' services that can be used across the domain.

Using the Healthcare domain as an example, we realize that identifying key components

within the domain is a starting point in developing such an architectural framework. We

identify one such component, which can be used as a horizontal service across the

healthcare domain and propose defining standard specifications for it.

Identifying such components within the entire enterprise will eventually help develop an

infrastructure that can be used and reused to build domain specific large-scale systems. It

could also serve as a guideline for long term enterprise development.

86

Future issues/ potential

There is much effort required to build an overall framework for the healthcare domain

similar to architectures that exist for other domains like Telecommunications [TINA]. We

recognized one approach to doing this as being based on CORBA. This thesis has

concentrated on providing information and an object framework for one business

component of healthcare. Further work is needed to define the service and the set of

interfaces and standardize them. This would probably be the next issue on the agenda of

the OMG meeting of CORBAmed. During the course of the work, a relationship was also

realized between Order Management and Act Management, which is the European Union

effort towards healthcare information systems [Appendix A]. This relationship needs to

be investigated further. Orders are central to every workflow that occurs within the

clinical context. So is there a direct relation between Orders and workflow? Yes, this

definitely seems to be the case. There is already a Workflow Management Facility within

OMG drafted by the Workflow Management Coalition group (WfMC). Applying this to

healthcare domain seems natural and beneficial. So is there a need for a separate service

for Order management or should it part of Workflow Service? This is being investigated

currently in a separate piece of work [Appendix B]. And this issue would be brought up

in front of the WfMC and CORBAmed, with the help of BHS.

Other efforts required in this effort include a methodology to validate this model. Since

the whole idea of applying software architecture to large-scale systems is in its infant

stage, certain methods or tools to help validate this idea would be beneficial. Recording

every piece of information in the form of a repository that can be accessed by every IT

87

professional, not only in Healthcare but in other domains like Telecommunications, and

Defense would be useful to the IT industry. Such an incentive is being carried out by the

Interoperability Clearinghouse consortium [].

88

BIBLIOGRAPHY

Web References

[i] http://www.cpri.org - Computer-based Patient Record Institute page contains

high-level description of the core element (CPR) and functionality (CPR system)

for the CPR environment.

[ii] http://www.mcis.duke.edu/standards/guide.htm - Health Informatics Standards

page. Contains links to other useful health informatics sites.

[iii] http://www.mcis.duke.edu/standards/HL7/hl7.htm - Health Level-7 standards

page. History of HL-7, mission, and other HL-7 related information.

[iv] http://www.snomed.org/sdm/sdm.htm - DICOM (The Digital Imaging and

Communications in Medicine) related information.

[v] http://www.mcis.duke.edu/standards/CCOW/index.html - The Clinical Context

Object Workgroup Web page.

[vi] http://www.omg.org/homepages/corbamed/Roadmap/roadmap.htm - The

CORBAmed roadmap page. It gives the business case for healthcare information

systems, the place of CORBA in healthcare and the progress of CORBAmed.

[vii] http://www.omg.org - The Object Management Group's home page.

[viii] http://www.omg.org/corbamed - The CORBAmed home page i.e. the

Medical/Healthcare domain Task Force's home page.

[ix] http://www.sei.cmu.edu - The Software Engineering Institute (SEI) at Carnegie

Mellon University (CMU).

[x] http://source.asset.com/stars/lm-tds/Papers/ReusePapers.html - Papers describing

the relationship between architecture, domain-specific architecture and reuse.

89

[xi] http://www.dstc.edu.au/AU/research-news/odp/refmodel/ref_model.html -

Description of RM-ODP and related concepts.

Books

[1] Brooks, F.: The Mythical Man-Month - Anniversary Edition, Addison-Wesley,

1995.

[2] Bass, L., Clements, P., and Kazman, R.: Software Architecture in Practice,

Addison-Wesley, 1997.

[3] Shaw, M. and Garlan, D.: Software Architecture: Perspectives on an emerging

discipline, Prentice Hall, 1995.

[4] Mowbray, T. and Zahavi, R.: The Essential CORBA, John Wiley & Sons, 1995.

[5] Rechtin, E. and Maier, M.: The Art of Systems Architecting, CRC Press, 1997.

[6] Edited by Andy Carmichael, Developing Business Objects, Cambridge University

Press, 1998.

[7] Allen, P. and Frost, S., Component-Based Development for Enterprise Systems,

Cambridge University Press, 1998.

[8] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1994.

[9] Edited by Martin, R., Riehle, D. and Buschmann, F.: Pattern Languages of

Program Design 3, Addison-Wesley, 1998.

[10] Mowbray, T. and Malveau, R., CORBA Design Patterns, John Wiley & Sons,

1997.

90

Papers and Publications

[GAO95] Garlan, D., Allen, R. and Ockerbloom, J.: Architectural Mismatch or Why

it's hard to build systems out of existing parts, Proceedings of the

Seventeenth International Conference on Software Engineering, 1995.

[GS94] Garlan, D. and Shaw, M.: An Introduction to Software Architecture, CMU

SEI Technical report, CMU/SEI-94-TR-21, ESC-TR-94-21, 1994.

[GP95] Garlan, D. and Perry, D.: Introduction to the Special Issue on Software

Architecture, IEEE Transactions on Software Engineering, April 1995.

[GA094] Garlan, D., Allen, R. and Ockerbloom, J.: Exploiting Style in Architectural

Design Environments, Proceedings of the ACM SIGSOFT '94 Symposium

on Foundations of Software Engineering, New Orleans, December 1994.

[GP94] Garlan, D. and Perry, D.: Software Architecture: Practice, Potential and

Pitfalls, Panel Introduction, 16th International Conference on Software

Engineering, Sorrento IT, May 1994.

[AAG93] Abowd, G., Allen, R. and Garlan, D.: Using Style to Understand

Descriptions of Software Architecture, Proceedings of ACM SIGSOFT '93

Symposium on Foundations of Software Engineering, Software Engineering

Notes, pg. 9 - 20, December 1993.

[Sha96] Shaw, M.: Truth vs. Knowledge: The difference Between What a

Component Does and What We Know It Does, Proceedings of 8'

International Workshop on Software Specification and Design, March 1996.

91

[PW92] Perry, D. and Wolf, A.: Foundations for the Study of Software Architecture,

Software Engineering Notes, ACM SIGSOFT, vol. 17 no. 4, pg. 40 - 52,

1992.

[KLBK] Kazman, R., Lung, C., Bot, S. and Kalaichelvan, K.: An approach to

Software Architecture Analysis for Evolution and Reusability.

[Cle94] Clements, P.: From Domain Models to Architectures, Workshop on software

Architecture, USC Center for Software Engineering, LA, 1994.

[Cle95] Clements, P.: Understanding Architectural Influences and Decisions in

Large-System Projects, First International Workshop on Architectures for

Software Systems, Seattle, April 1995.

[WCI97] Wolf, A., Compare, D. and Inverardi, P.: Uncovering Architectural

Mismatch in Component Behavior, University of Colorado, Dept. of CS

Technical Report, CU-CS-828-97, Feb. 1997.

[Par72] Parnas, D.: On the criteria to be used in decomposing systems into modules,

Communications of the ACM, vol. 15, pg. 1053-1058, December 1972.

[ABH93] Abowd, G., Bass, L., Howard, L. and Northrop, L.: Structural modeling: An

Application Framework and Development Process for Flight Simulators,

CMU SEI Technical Report, CMU/SEI-93-TR-14 ESC-TR-93-192, Aug.

1993.

[KC97] Kazman, R. and Carriere, J.: [Playing Detective:] Reconstructing Software

Architecture from Available Evidence, CMU SEI Technical Report,

CMU/SEI-97-TR-010, 1997.

92

[BBG99] Baum, L., Becker, M., Geyer, L., Molter, G.: A Process View on

Architecture-Based Software Development, Proceedings of first Working

IFIP Conference on Software Architecture (WICSA-1), San Antonio, Feb.

1999.

[BBG98] Baum, L., Becker, M., Geyer, L., Molter, G.: The Role of Architecture for

Complex Systems Development, Proceedings of 11" international

Conference on Software engineering and its applications, Paris, France,

Dec. 1998.

[BBM98] Baum, L., Becker, M., Molter, G., and Geyer, L: Using Software

Architecture as a Catalyst for Reuse, Proceedings of European Reuse

Workshop, Madrid, Spain, Nov. 1998.

[CN96] Clements, P. and Northrop, L.: Software Architecture: An Executive

Overview, CMU SEI Technical Report, CMU/SEI-96-TR-003 ESC-TR-96-

003, Feb. 1996.

[Pri90] Prieto-Diaz, R.: Domain Analysis: An Introduction, Software Engineering

Notes 15, 2 (April 1990): 47-54.

[BNW98] Butler, E., Navarro, E., and Wreder, K.: "HealthCare that really delivers!",

Distributed Computing, Vol. 1, Issue 9, September 1998.

[Cza97] Czarnecki, K.: Leveraging Reuse through Domain-Specific Software

Architectures, Eighth Annual Workshop on Institutionalizing Software

Reuse (WISR), Ohio State University, March 23-26, 1997.

[Co198] Coleman, D.: A Use Case Template: draft for discussion, Hewlett-Packard

Software Initiative, June 19, 1998.

93

APPENDIX A

ACT MANAGEMENT [RICHE PROJECT]

Act Management was first used in the ESPRIT RICHE project in the development of an

open hospital systems architecture [NF95]. It is being used in several projects in the

European Union and the act management model has been incorporated into Version 2 of

the UK NHS's Common Basic Specification (CBS).

Act management comprises two main components: act state and the requester-performer

relationship. An act is a provision of care. The definition of an act covers any activity

provided in a hospital, for the benefit of a patient, requested by a "Requester" and

performed by a "Performer". This definition is illustrated in the following Entity-

Relationship model:

94

PATIENT

For

A CT

Requested Performed
by by

REQUSTERPERFORMER

Communication between
Requester and Performer

Figure A - i Acts as basic elements of the requester-performer relationship

This definition covers the acts requested by a physician in a clinical ward and performed

in a medical support unit as well as "technical nursing acts" requested by a physician and

performed by a nurse in the same unit. An act may change the patient status or the

knowledge about his status, for example:

Consultation Surgical operation and associated anaesthesia

Visit Drug administration

Lab test and associated sampling Meals

95

X-ray examination Bandages

Collection of vital signs Admission to a care unit

This definition of Act is very similar to the definition of order within US healthcare,

except that it covers more than an order like admission to a care unit.

Elementary acts and protocols

An elementary act represents an activity at the lowest level. Its performance requires a set

of resources such as time, staff members, location and equipment. It uses consumable

objects such as drugs or small equipment (needles, tubes, etc.). A protocol is a cluster of

elementary acts answering to a well-known medical need and is composed of elementary

acts or protocols, such as Coloscopy or Glucose tolerance test, etc.

This is the same as composite and atomic orders where a composite order is a cluster of

atomic orders.

The act life cycle

An act can be followed throughout its life cycle. It changes its status according to

different events such as:

" The request of an act for a patient, by a "Requester" (physician, nurse, etc.) to a

"Performer" (physician of a specialist consultation, medical support unit, the

requester himself, nurse, etc.),

96

" the acceptance of the requested act, its suspension or its refusal by the performer (for

technical reasons for example),

* the scheduling of acts, usually by the performer, by the requester himself, or by a

special third party (e.g. central reservation office),

" the performance of the act by the performer that provides uninterpreted results which

are available to the requester,

" the validation/interpretation of the results by the performer which is used to produce

the report.

An order goes through exactly the same life cycle and changes it status accordingly.

Class of acts and Actual acts

In the Act Manager, distinction is made between the class of act (or act type) and the

actual act performed for the benefit of a patient. The class of act provides the theoretical

and pragmatic description of the provision of health care. The description of the classes

of act and their environment corresponds to the "knowledge" information as opposed to

the daily activities information attached to the patients and to the acts.

The Requester-Performer Relationship

Act management makes a distinction between requesters and performers of acts and

establishes a relationship between them. In some cases, the requester and the performer

may be the same person, but the distinction still applies because the requester-performer

97

relationship defines roles, not individuals. Requesters and performers co-operate to

perform the act at each step of the act life cycle. This is illustrated in Figure A-1.

Act Management is part of the RICHE reference architecture for Hospital Information

Systems, which was developed from the recognition that Europe requires an open

approach to healthcare information systems to overcome the language and cultural

barriers that prevent the European market being larger than it is. An open framework

allows hospitals to mix and match their system components from competing suppliers

who nonetheless are collaborating on the definition of the architectural standards. This

architecture is well accepted in Europe and it has received good response from the user

group as well.

It would be beneficial to study the relationship of Acts and orders and the application of

the RICHE reference architecture with respect to the US healthcare industry. Is 'order' a

sub-type of an 'Act'? Act Management is very similar to 'Order Management' and this

needs to be investigated further. This is being done under the concept of Task

Management' discussed in Appendix B.

[NF95] Nicklin, P. and Frandji, B.: Act Management and Clinical Guidelines, Health

Telenatics for Clinical Guidelines and Protocols, IOS Press, 1995

98

APPENDIX B

TASK MANAGEMENT FOR HEALTHCARE

There is an attempt being made by the CORBAmed DTF to assess its requirements

against the work of OMG Workflow group and the work on Act Management which has

been going on in the European Union [Appendix A]. CORBAmed has adopted the term

"task management" to cover this area in order to differentiate itself from other, similar,

work. Tasks with respect to the healthcare means an activity provided in a healthcare

facility, for the benefit of a patient.

Workflow

Workflow is concerned with the automation of procedures where information and tasks

are passed between participants according to a defined set of rules to achieve, or

contribute to, an overall business goal3 . Workflow Management Facility specification

introduces a workflow framework and interfaces to enable workflow aware applications

and different workflow products to interoperate and work together. This specification is

based on the reference model and architecture developed by a large group of workflow

vendors and users under the umbrella of Workflow Management Coalition (WfMC). It is

intended that such specifications will enable interoperability between heterogeneous

workflow products and improve integration of workflow applications with other services,

thereby improving the opportunities for effective use of workflow technology within the

IT market, to the benefit of both vendors and users of such technology.

3 Reference: OMG Document Number - bom/98-06-07, Workflow Management Facility

99

The following is a brief description of the WfRM as described by the WfMC:

Process
Definition

Interface 1

Workflow API and Interchange

Workflow Workflow

Administration & w Engine(s) Engine(s)
Monitoring Toals

C 41

Interface 2 Interface 3

i Workflow Invoked
f Client Applications

Application

Figure B - i Diagram of WfRM

Interface 1: Deals with establishing an interface to process definition tools (CASE tools,

UML. etc.). This allows business process modeling to occur within specialized tools and

for workflow aspects of those business process models (BPM) to be defined into a

process definition which can be passed into a Workflow Enactment Service (WfMF).

Interface 2: Deals with the passing of workflow information to client applications for

manual tasks. The interface would allow the workflow enactment service to pass tasks to

the client application for further human intervention. (i.e. When a task is completed, send

message to client for next action)

100

Interface 3: Deals with the workflow enactment service invoking outside applications to

finish any tasks/processes/activities that are part of the workflow (i.e. Once a report is

finished, the workflow enactment service invokes a fax service to send the report).

Interface 4: Deals with workflow interoperability. This will allow for different workflow

vendors to pass work items between one another. Due to the different types of workflow

products in the market, the WfMC foresees different levels of interoperability.

Interface 5: Deals with the administration and monitoring of workflow within the

workflow enactment service. This will allow for a centralized workflow administration

tool that can view the status of work flowing throughout an organization regardless of

what workflow product is being administered.

The OMG WfMF implements Interfaces 2,3 and 4 and part of 5. The following indicates

the applicability of each of these interfaces in the healthcare domain.

Interface 1 deals with the process definition or protocol, i.e. to allow process definitions

for the workflow aspects of the BPM's to be passed into the service. A method is required

to define (dynamically or customized to the HCP) process definitions (protocols or

clinical pathways). These protocols indicate a fixed path of care for certain ailment. For

example, there is a fixed protocol to deal with hip replacement called "Primary" Total

Hip CareMap TM within BHS. This defines all the orders that are to be placed for a patient

with this ailment and its timeline. The idea is to automate this into a protocol that can

then be implemented by the Workflow engine in the Workflow management system.

101

Interface 2 would deal with the user (filler), that would require the client application

(handled by the user) to execute orders. This interface is responsible for interacting with

humans for execution of manual activities required for the workflow.

Interface 3 would deal with invoking outside applications; with respect to orders it

would mean invoking processes in ancillary systems like Radiology, Laboratory etc.

Interface 3 would deal with issues of notifying the other systems of orders (tasks) ready

to be performed, scheduling the orders, checking the status of the tasks, and updating or

modifying the status (due to ancillary systems/ applications). For example, when a

Radiology order is executed, the RIS modifies the status of the order to 'done' and this

change is reflected through the service interface.

Interface 5 would probably deal with the user (Placer), that would require the client

application (handled by the user) to place orders.

Workflow Management Systems

A Workflow Management System provides procedural automation of a business process

by management of the sequence of work activities and the invocation of appropriate

human and /or IT resources associated with the various activity steps.

Healthcare involves several different business processes that are important to achieving

its final goal i.e. providing care to the patient. But by far, the most important business

process is the clinical workflow or the actual provision of care. When we talk about "task

102

	Florida International University
	FIU Digital Commons
	10-12-1999

	Domain specific architecture development for enterprise systems based on common object request broker architecture (CORBA)
	Vidya G. Bhat
	Recommended Citation

	tmp.1421346732.pdf.CUoih

