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ABSTRACT OF THE THESIS

EFFECTS OF LIGHT AND NUTRIENT SUPPLY ON STATBLE ISOTOPE

COMPOSITION AND FRACTIONATION IN NITROGEN-LIMITED SEAGRASS

BEDS

by

Rebecca Jane Bernard

Florida International University, 2010

Miami, Florida

Professor James W. Fourqurean, Major Professor

This experiment investigated causes of seasonality of 615N and 613C values in Thalassia

testudinum leaf tissue by manipulating plant demand and nutrient supply in situ for 13

months. I clearly demonstrated that seagrass elemental content, stable C and N isotopic

content, morphology and the concentration of NH4 + in seagrass porewaters directly

respond to manipulations of resources and also by the plant demand for nutrients to

support growth. Isotopic values displayed marked seasonality with heavier values found

in summer (615N=5.0%o 613C=-5.7%o) and lighter values in winter (615 N=1.7%o 613 C=

-9.4%o). Calculations of A (615N source DIN- 615 N plant product) indicate that T.

testudinum is able to strongly fractionate against source pool DIN. Interpretation of an

enriched 615 N signature as pollution-derived must first recognize the isotopic seasonality

of the plant demand relative to the nutrient supply. Only when these links have been

explained can the full relevance of 615N values be applied.
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1. Introduction

Coastal eutrophication and global climate change share a common pedigree;

human populations are adroitly changing Earth's environmental systems. Humans are

changing the planet through changes in atmospheric and hydrogeochemistry, changes in

rates and balance of biogeochemical processes such as the components of the nitrogen

cycle, and the diversity of life (Vitousek et al. 1997a; Vitousek et al. 1997b). Nearshore

marine areas are especially affected by global climate change and anthropogenic nutrient

inputs (Smith et al. 1999) with ecosystem productivity, distribution, and function

markedly altered (Cloem 2001; Harley et al. 2006; Halpern et al. 2007).

Seagrasses--a group of about sixty species of marine angiosperms--are a critical

component of the nearshore marine environment and can be described as the "canary" of

the marine ecosystem because they are sensitive to both nutrient and light alteration that

result from anthropogenic and climate perturbations. Inhabitants of shallow marine and

estuary environments of all the world's continents except Antarctica (Green and Short

2003), seagrass populations are experiencing an accelerated rate of decline worldwide

(Short and Wyllie-Echeverria 1996; Waycott et al. 2009) because they are sensitive to

overexploitation, physical environment modification, nutrient and sediment pollution,

and global climate change (Duarte 2000; Waycott et al. 2009). Seagrasses are primary

producers that have a key role in ecosystem function and services and since they are fixed

to the substratum seagrasses are very good indicators of their local environments. The

carbon (C), nitrogen (N), and phosphorus (P) content of seagrass leaves may reflect

relative nutrient and light availability (Duarte 1990; Grice et al. 1996) for a particular

species in a particular place at a particular time. It is necessary to understand the
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relationship between seagrasses and coastal eutrophication because of increased

anthropogenic nutrient loading not only to promote the progress of science, but also to

develop effective coastal management strategies and restorative measures that improve

nearshore marine ecosystem health in the face of global climate change.

2. Objective of Study

Recently there has been increased use of stable isotopes of nitrogen to trace and

discriminate among anthropogenic N inputs to ecosystems (Kendall et al. 2007). Studies

have shown signals of nitrogen enriched with 15N relative to 14N in various ecosystems

may be a result of anthropogenic N sources (McClelland et al. 1997; Lepoint et al. 2004;

Risk et al. 2009); however, seasonal variations in nitrogen isotope fractionation may

exhibit the same pattern of enrichment in summer months and confound results

interpreted as pollution-derived (Anderson and Fourqurean 2003; Vizzini et al. 2003). It

is paramount to understand the amount of natural variation in nitrogen isotope ratios from

natural systems so the signal is not interpreted as pollution derived, when other factors

such as seasonality or biological fractionation could be at work. Marine plants, including

seagrasses, can indicate the stable isotopic signature of source dissolved inorganic

nitrogen (DIN) -ammonium (NH4+) and nitrate (NOj) in the water column for leaves

and NH4+ in sediment porewater for roots-through the 615 N values in their leaf tissue

(Udy and Dennison 1997; Lee and Dunton 1999). Ratios of 615 N in seagrasses have been

shown to be more enriched (10 %o) when source N was from anthropogenic sewage inputs

(Costanzo et al. 2001) and lower (0%o) when source N was from biological N 2

fractionation (Lajtha and Marshall 1994). Conversely, an enriched 615N signature is also

possible as a result of high light intensity promoting high photosynthetic rates in seagrass
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on a seasonal basis. When rates of irradiance and productivity are high at N-limited sites,

especially during the summer, plant N demand can exceed supply and lead to less

isotopic discrimination against the heavier isotope (Fourqurean et al. 1997; Fourqurean et

al. 2005). Thus, changes in light availability or N demand by the plant-that result from

natural or anthropogenic influences-could affect nitrogen isotope fractionation as

uptake rates by seagrasses change on a seasonal basis. Since biological isotope

fractionation is a function of demand relative to supply, this experiment manipulated both

supply (fertilization) and demand (light) of N to test whether observed 1
5N seasonality

can be explained by increased plant demand relative to supply in the summer months or

conversely as function of the seasonality of 5 N of the source nutrients. Seagrass stable

carbon isotope content has been shown to display marked seasonality also (Vizzini et al.

2003; Fourqurean et al. 2005) based upon the degree of carbon demand relative to the

degree of carbon supply. At oceanic pH, carbon dioxide (CO 2) is limiting for seagrass

photosynthesis (Beer 1989; Schwarz et al. 2000), but carbon becomes non-limiting if

light levels are reduced to levels that limit photosynthesis (Durako and Hall 1992).

Reduced light levels and subsequent reduced photosynthetic rates change the plant

discrimination against 13C as demand for C decreases and result in depleted carbon

isotope signatures (Cooper and Deniro 1989). Increased carbon demand resulting from

increased photosynthetic rates can result in reduced discrimination against 1C and

heavier isotope signatures. Similarly, enriched carbon isotope signatures can also be a

product of decreased carbon supply (Durako and Sackett 1993) with changes in pH

affecting carbon supply, and when plant demand outpaces supply there is less

discrimination against 13 C. I hypothesize that the stable isotope composition and



fractionation of seagrass is regulated by the source nutrients and level of irradiance

available to the plants and use stable isotopes from plant tissue, porewater, and water

column to test this hypothesis.

3. Materials and Methods

Subjects and Setting-The in situ experiment and material collection was

performed in a seagrass meadow dominated by Thalassia testudinum Banks ex K6nig at

Grassy Key Bank, Florida Bay, Florida, United States of America. Grassy Key Bank

(N24 49.328' W80* 54.663') (Figure 1) is located inside the boundary of the Florida

Keys National Marine Sanctuary (FKNMS) which adjoins Biscayne National Park and

Everglades National Park to the north and Dry Tortugas National Park to the west.

Florida Bay is characterized as a shallow, saline, high light and low nutrient subtropical

bay divided by shallow carbonate mud banks into discrete sub-basins located south of the

Florida mainland and west of the Florida Keys (Fourqurean and Robblee 1999). The

dominance of T. testudinum and interesting spatial patterns of nutrient limitation and

availability (Fourqurean and Zieman 2002) and 615N ratios (Fourqurean et al. 2005)

directed me to work in Florida Bay.

Experimental Design-I manipulated the demand for inorganic nutrients to

supply the needs for seagrass growth by manipulating the intensity of light that drives

photosynthesis using shade screens, and I manipulated the supply of inorganic N by

fertilizing seagrass plots with nitrogen. To examine the interactions of changing supply

and demand of resources on the performance of seagrass ecosystems and the fractionation

of the inorganic nutrients on uptake, manipulations of both light and nutrient supply were

4



applied in a fully factorial design. Light and nitrogen treatments were randomized in a

3x3 factorial grid demarcated with 27 0.25m2 polyvinyl chloride (PVC) quadrat frames

secured to the benthos at 2m apart in a T. testudinum dominated seagrass meadow.

Nitrogen levels (control, low, and high additions at a loading rate of 1.43 g N m- d-

(MCSM 2001; Ferdie and Fourqurean 2004) in the form of slow release nitrogen

fertilizer, PolyonTM, Pursell Technologies Inc., 38-0-0 (615N=0.0 %o), evenly sprinkled

over the sediment surface (Armitage et al. 2006) and light levels (control, 25% light

reduction, 75% light reduction with InterNet# xb 1131 aquatic netting attached to a 1m 2

PVC frame positioned over the quadrats, see Figure 2) were experimentally manipulated

at the study site. The shade net was replaced biweekly to minimize the effect of

biofouling on the light penetration through the shades. Light measurements in the PAR

waveband of 400 to 700 nm were made with a LI-COR 1400 data logger with a 4pi

quantum sensor placed under and then outside the shade net at respective quadrats.

I hypothesized that plant morphology, plant growth rates, plant elemental, isotope,

and chlorophyll content and fractionation of stable isotopes of C and N would be

regulated by both the demand for resources to support growth and the supply rate of those

resources to the plants. I sampled these response variables monthly for 13 months

following the establishment of the experimental plots. I collected two Thalassia

testudinum short shoots from each quadrat for stable isotope and elemental analysis and

short-shoot morphology. Seasonal seagrass productivity was measured using the leaf-

mark technique (Zieman 1974) during the growing season. A modified Braun-Blanquet

(BB) survey (Braun-Blanquet 1972; Fourqurean et al. 2002) was performed at each
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quadrat on a monthly basis to assess seagrass density. Water column samples filtered at

0.45 pm were collected in six 2 L amber high-density polyeythlyene (HDPE) narrow

mouth bottles on a monthly basis for isotope and ammonium analysis. Porewater was

collected by multiple 60 ml syringes modified to act as a coring apparatus (Brandsberg

and Piggott 1968) from the root zone of T. testudinum (~40 cm) at each of the twenty-

seven quadrats on a monthly basis until month seven of the project. The sediment cores

were pressed for porewater using a hydrologic sediment press at the Stable Isotope

Laboratory at University of Miami Rosenstiel School of Marine and Atmospheric

Science (RSMAS). Following month seven, porewater was collected via sediment

sippers (Fourqurean et al. 1992b) (Figure 3) into 60 ml syringes. The syringes were then

filtered through GF/F filters (Whatman 1825-025) into evacuated collection bottles on the

boat. Sample volumes were based on preliminary bench top ammonia colorimetric

analysis (Hansen and Koroleff 1999) and the minimum amount of N needed for isotope

analysis (25 pg in this case). All samples were stored on ice on the dive boat, Research

Vessel "Halophila", and then deep frozen until analysis with changes in porewater

ammonia concentration of the sample because of freezing deemed to be non-significant

(Worm and Reusch 2000). Abiotic measurements included temperature, salinity, and

turbidity. All fieldwork was conducted using Self Contained Underwater Breathing

Apparatus (SCUBA).

Seagrass Analysis-At the lab, T. testudinum blades were gently scraped of

epiphytes using a razor blade and measured for morphology. Seagrass samples, separated

into the first 30 cm of the youngest leaf and all older leaf material, secured in pre-
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weighed tares, were dried at a constant temperature (700 C) for 3 d in a laboratory oven.

Sample dry weight was taken using a microbalance and samples were then homogenized

into a fine powder using a Fritsch pulverisette. Using the homogenized samples, C and N

nutrient composition were measured in duplicate in-house on a Fisons Carlo Erba

Elemental Analyzer. Total phosphorous was determined in duplicate by a dry-oxidation,

acid hydrolysis extraction followed by a colorimetric analysis of phosphate concentration

in the extract (Fourqurean et al. 1992a). Elemental content was calculated on a dry

weight basis; elemental ratios were calculated on a mole:mole basis.

Productivity samples were marked on randomly chosen short shoots in each

treatment just above the bundle sheath with an 18 gauge hyperdermic needle and

collected after 7 days. Leaf production rate per shoot was determined by dividing the dry

weight of new leaf tissue produced by the number of days since marking. Areal leaf

production rates were obtained by multiplying shoot leaf production rates by shoot

density.

Short shoots of T. testudinum were harvested on the last collection day of the

experiment from all treatments. Leaves were kept in a dark cooler with ice and

transported to the laboratory for processing. To extract leaf chlorophyll approximately

30 mg of wet blade material was immersed in 5 ml of N, N-dimethylformamide (DMF)

(Dunton and Tomasko 1994). Epiphytes were gently removed with a razor blade prior to

immersion in DMF. The samples were placed in the dark at room temperature (~251 C)

for 24 h and then analyzed on a Shimadzu 160 UV spectrophotometer at 664 nm and 647

nm. Absorbances were used to calculate the concentration of chl a, chl b, and total chl
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using the following equations (Porra et al. 1989; Wellburn 1994) where OD is optical

density:

Chl a ( g ml-')= 11.65(OD 664)-2.69(OD 647)

Chl b (pg ml-')= 20.8 1(OD 647)-4.53(OD 664)

Values were reported on a dry weight basis. A subset of leaf material was used to

calculate a wet to dry conversion factor.

Isotope Analysis-Stable isotopes of carbon and nitrogen from the homogenized

youngest leaf Thalassia testudinum samples were measured using standard elemental

analyzer isotope ratio mass spectrometer (EA-IRMS) procedures (Fry et al. 1996). The

EA is used to combust organic material forming N 2 and CO 2, which were measured on a

Finnigan MAT Delta C IRMS coupled to a Conflo II and a Carlo Erba NC 1500

Elemental Analyzer in continuous flow mode at Florida International University's

Southeast Environmental Research Center (SERC) Stable Isotope Laboratory. Nitrogen

consists of two stable isotopes 14N and "N ( 14N: 99.64% 15N: 0.36% (Nier 1950)). N2 is

measured for 15N/14N isotopic ratio and referred against the international standard of

atmospheric nitrogen (AIR). CO 2 is used for 13C/' 2 C isotopic ratio measurements against

the international standard of Vienna Pee Dee Belemnite (V-PDB). The accepted unit of

isotope ratio measurement is the delta value (6 given in per mil (%o). The 6 value is

defined as:

6 in %o =[(Rsample/Rstandard)-I]* 1000
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where R represents the measured isotope ratio. Using this convention, an increase in

615N value indicates the presence of a larger amount of the heavier isotope relative to the

lighter isotope and such a sample is considered enriched. Isotope fractionation occurs in

any thermodynamic reaction because of differences in the rates of reaction for molecular

species of different mass. Standard A notation 1N A-B indicates the simple isotopic

difference of the 6'5 N values between two phases A and B typically in positive per mil

(%o) units. These calculations were used to determine the biological fractionation

between plant nutrient source (A) and product (B) at varying light and nutrient

conditions.

Nitrate was isolated for isotopic measurement from monthly water column

samples by the passive ammonia diffusion method (Sigman et al. 1997). Two Liters of

sample containing roughly 0.5 to 1 pM NO3- was filtered into incubation bottles with 6g

magnesium oxide (MgO) and incubated at 65 C for 5 d in a lab oven to raise the pH

above 9.7 in order to remove traces of ammonia. After preincubation, samples were

evaporated at 95 C to reduce the volume to -250 ml and concentrate NO3~ and remove

NH4 + by volatilization. Samples were sealed after an addition of a NH 3 trap and

Devarda's Alloy (75 mg per 100 ml initial sample volume) which reduced NO3 to NH4+

and absorbed NH3 onto the trap. The NH 3 trap consists of an acidified precombusted

Whatman GF/D filter sandwiched between two Teflon membranes with 10 pm pore size.

Samples were incubated for 5 d at 65 C in a lab oven and 5 additional days on a shaker

table. After a total incubation time of 15-18 d, the NH 3 traps were removed, placed in

individual scintillation vials and dried in a desiccator with an open container of sulfuric
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acid (H 2 SO 4) for 2 d with the lids off, after which each filter was packed into a silver

capsule and pelletized for EA-IRMS analysis.

Ammonium was isolated for isotopic measurement from monthly water column (2

L) and porewater (125 ml) samples following an adaptation of the ammonia diffusion

method (Holmes et al. 1998). Filtered sample water was transferred to incubation bottles

to which MgO (0.3 g per 100 ml) and the ammonia trap (as described above) were added.

Samples and a standard curve of ammonium chloride (NH4 Cl) were incubated for 14 d on

a shaker/incubator (Precision Shaking Water Bath Model 50) at 40 C. After incubation

filter packages were removed from the incubation bottles and placed into individual

scintillation vials and dried in a desiccator with an open container of H2SO 4 for 2 d with

the lids off. Once dry the filters were packed in silver capsules and pelletized for EA-

IRMS analysis. Fractionation of standards (observed 6 5 N-actual 61N) were calculated

and added to the observed sample delta values to correct for fractionation. A

fractionation of 4.03%o was found to be associated with these methods. Calculation of A

was made for porewater 6' 5N-NH 4+ minus 615N T. testudinum tissue, water column 6' 5N-

NH4+ minus 615N T. testudinum tissue, and water column 615N-NO3 minus 65 N T.

testudinum tissue.

Ammonium Concentration-Manual colorimetric methods for determining

ammonium concentration (Hansen and Koroleff 1999) in the porewater and water column

samples showed a range between 2.52 and 1165 pM for the porewater (from the sediment

sippers) and 0.14 to 6.66 pM for the water column over the duration of the study.

Eastern Florida Bay water column ammonium levels from other studies were found to
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average 3.41 pM (Boyer et al. 1999). These concentrations were used to calculate the

minimum volume of water sample needed for isotope analysis.

Data Analysis-Significant differences in C:N:P ratios, elemental content,

morphometric parameters, Thalassia testudinum tissue and source N (water column and

porewater) isotope content, porewater ammonium concentration, T. testudinum

abundance, and leaf productivity were tested using repeated measures analysis.

Chlorophyll content of leaf tissue and chl a:b ratios were tested using full factorial

analysis of variance (ANOVA). When the assumption of sphericity for repeated

measures was violated, the p-values of Greenhouse-Geisser were used. Two-sample t-

tests were used to determine if clean and fouled shade screens were statistically different

treatments. All analyses were performed in SPSS 16.0.

4. Results

Site and Treatment-Salinity at the study site was marine and averaged 36.1

0.44 with highest salinity found in Aug08 and the lowest in Dec08. Water temperature

( C) at the study site was the lowest in Feb09 (13 C) and highest in Aug09 (33 C).

Turbidity averaged 0.3 0.06 NTU for the duration of the study and reached a maximum

in Dec08 and minima in April09 and May09 (Figure 4). The light reduction for the two

treatments was found to be significantly different for clean screens as well as fouled

screens (two-sample t-test, p<0.01 for clean and fouled screens).

Water Chemistry Porewater ammonium concentration averaged 296.9 pM

53.4 pM for the duration of the study. Maximum porewater NH4 + concentrations were
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observed in Jan09 and minimum NH 4+ concentrations were observed in May09.

Porewater NH 4+ concentration was affected by both nutrient and the interaction of light

and nutrients (ANOVA, Nutrient main effect p<0.001 and Light x nutrient main effect

p=0.017, respectively) (Table 1). The high N addition treatments had the greatest

influence on porewater NH4+ concentration and light reduction through time also exerted

influence on porewater NH 4+ concentration (Figure 5). Time also had an effect (time

interaction p=0.024) on porewater NH4+ concentrations and data from the core syringe

and sediment sipper collection methods showed similar trends that N addition to

treatment plots significantly increased NH 4+ concentration in the porewater through time

relative to the controls. The high N addition treatments had the highest porewater NH4+

concentration (Figure 6 and Figure 7). Though light reduction treatments did not have a

statistically significant effect on porewater NH4+ concentration, they did show a similar

trend, with shade treatments increasing the NH4+ concentration in the porewater relative

to the controls, evidence for change in supply and demand of NH4+ by Thalassia

testudinum with light reduction. Plant demand for NH 4+ was highest in the controls

where light levels were ambient and NH4+ concentrations were the lowest. Water column

NH4+ concentrations averaged 1.51 pM 0.58 pM for the duration of the study.

Maximum water column NH4 + concentrations were observed in March09 and minima in

Nov08 (Figure 8).

Porewater 6' 5 N-NH 4+ ranged from 5%o (+0.91) in the winter to -14%o (+2.45) in

the summer and the isotope composition became more depleted during the growing

season. Only N addition was found to have a significant effect (p=0.005) on porewater
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6 5N-NH 4+ values (Table 1). As N fertilization continued, 615N-NH 4+ values in the

porewater became more enriched relative to the controls, likely reflecting the 615N value

of the fertilizer, but during the growing season (March09-Aug09), the overall trend was a

decrease in the isotopic composition of the porewater (Figure 9). Water column 615N-

NH 4+ ranged from -5 .2 %o in the late summer to -13%o in the spring. Water column 6 5N-

NO 3- ranged from -10%o in late summer to -21%o in the late spring.

Isotope Content-The 613 C values of Thalassia testudinum leaves significantly

decreased in the light reduction plots (ANOVA, Light main effect p<0.001 Figure 10)

(Table 2). The carbon isotope values in the leaf tissue also changed over time (ANOVA,

Time main effect p<0.001), and there was a significant time by light interaction (p=0.00)

for carbon isotope values indicating that light reduction affected the seasonality of 613 C

values in T. testudinum tissue with maximum enrichment reached in Oct08 and maximum

depletion reached in March09. There was no significant effect of light or nutrient

treatments on 615 N of T. testudinum leaf tissue but there were indications that 615 N values

were influenced by time (ANOVA, Time main effect, p<0.001), time and nutrient

(Nutrient by time interaction, p=0.014), as well as the interaction of time, light, and

nutrient (Light by nutrient by time interaction, p=0.014) (Figure 11) with 615 N values of

the treatment plots showing a trend toward less enrichment through time compared to the

controls. Post hoc tests revealed no significant differences between treatments, and time

was the main controlling factor. However, when the data were split seasonally and

analyzed for summer values only, nutrient addition was the main effect (p=0.007) on

615 N values in T. testudinum tissue, and the interactions of time and time, light, and
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nutrient were significant also (p<0.001 and p=0.036, respectively). Post hoc tests

revealed that the controls were significantly different from the high nitrogen addition

treatments (p=0.005). Adding N resulted in more depleted T. testudinum 615 N new leaf

tissue values relative to the controls. No significant differences between the light

treatments suggest no supply-demand driven fractionation.

Calculation of biologicalfractionation A-The differences between the isotope

ratios of the plant material and the source DIN (A) were computed from T. testudinum N

source and tissue product for porewater 615N-NH 4+, water column 615N-NH 4+, and water

column 615N-NO3-. Nutrient addition was found to have a significant effect on the

fractionation between porewater 615N-NH 4+ values and T. testudinum 615 N tissue content

(ANOVA, Nutrient main effect, p<0.001) (Table 3). With N addition, less fractionation

occurred between porewater 615N-NH 4+ and T. testudinum 615N values than for those of

the controls. Fractionation increased in summer months (June09-Aug09) and ranged

from less than 1%o ( 1.58) to 18%o (+1.05) (Figure 12). Neither light reduction nor

nutrient addition had a significant effect on isotope fractionation between T. testudinum

and its water column source nutrients, but there was a secondary interaction of time and

nutrients (p=0.014 and p=0.002 for water column NO3- and NH4+ respectively) indicating

that the nutrient addition treatments behaved differently through time. Adding N slightly

decreased the fractionation between water column 615N-NH 4+ and T. testudinum 615 N

content as well as water column 6' 5N-NO3- and T. testudinum 615N content (Figure 13

and Figure 14).
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Elemental Content-The nutrient content of Thalassia testudinum leaves was a

function of light treatment, with C:N decreasing (ANOVA, light main effect p<0.001),

C:P decreasing (p<0.001), and N:P decreasing (p<0.001) with light reduction (Table 4).

Nutrient addition also influenced elemental content. C:N declined (ANOVA, nutrient

main effect p=0.028) and N:P increased (p=0.033) with N addition. Nutrient content also

changed over time (ANOVA, time main effect p<0.001 for all ratios), and there was a

significant time by light interaction for all nutrient ratios indicating that the nutrient

addition affected the seasonality of nutrient content. For the duration of the study, light

reduction decreased elemental ratios for C:N, C:P and N:P toward "seagrass Redfield

Ratios" of 474:24:1 (Redfield 1958; Duarte 1990) compared to the controls, and faster

seagrass growth rate affected plant demand for N resulting in the control plots being N

limited. All elemental ratios followed similar trends with a peak ratio occurring in Feb09

(Figures 15-17).

Plant Responses-Seagrass species and composition was dominated by Thalassia

testudinum at the experimental site for the duration of the study. Braun-Blanquet scores

for T. testudinum density were between 2 and 5 with an average of 3 (25 to 50% cover).

Maximum density occurred in May09 and June09. Minimum density occurred in Feb09

but also decreased in July09. Overall light and nutrient treatments did not have

significant main effects on T. testudinum abundance, but there was indication that T.

testudinum density responded to the light treatments differently through time (light x time

interaction p=0.002) (Table 5) as the 75% light reduction treatment had lower BB scores

than the other light treatments at the end of the study (Figure 18).
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Morphometric characteristics of T. testudinum showed plasticity in their response

to light and nutrient treatments. Leaf area (cm 2 SS-1) and leaf mass (mg SS-) showed

similar trends with a decrease in winter months that reached a minimum in Dec08 and a

peak for all treatments in June09. Light treatment significantly influenced both leaf area

and leaf mass (Light main effect in ANOVA p=0.031 and p=0.030, respectively) (Table

5), and light reduction affected leaf area and leaf mass through time (Light x time

interaction p=0.001 and p<0.001, respectively) with the least amount of leaf area (23.52

cm 2 SS-1) and leaf mass (116.33 mg SS-1) in the 75% light reduction treatment by the end

of the experiment (Figure 19 and Figure 20). Leaf length (mm) and width (mm) followed

similar patterns with minimum values in winter and peak values in June09. Overall, light

and nutrient treatments did not have a significant effect on T. testudinum size, but there

was indication that leaf length and width responded to light treatments differently through

time (Light x time interaction p=0.004 and p=0.011, respectively) with lower length (110

cm) and width (8.5 cm) in the 75% light reduction treatment at the end of the study

(Figure 21 and Figure 22).

Growth rates for T. testudinum were significantly influenced by light levels

(ANOVA Light main effect, p<0.00l) (Table 6) and areal leaf production (g dw m-2 d-1)

responded differently to the different treatments through time (ANOVA time main effect

p<0.001) with the least amount of production (0.27 g dw m-2 d-1) found in the 75% light

reduction treatment at the end of the study. Areal leaf production was at a minimum in

Feb09 and increased during the warmer months of the growing season (Figure 23). There

were no significant effects of light or nutrient treatments on specific productivity (mg g-1
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d-'), but there was indication that specific productivity was influenced by time (Time

main effect p<0.001) as the measured specific productivity increased through the growing

season (Figure 24).

Total chlorophyll (mg g-1 dw), chlorophyll a (mg g-1 dw), and chlorophyll a.b

ratios were not affected by nutrient or light treatments. Nutrient addition significantly

affected chlorophyll b values (ANOVA Nutrient main effect p=0.001) (Table 7) with the

highest measurements found at the highest N addition treatments (1.60 mg g- dw).

Chlorophyll a.b ratios showed a decreasing trend with light reduction and the lowest

value (2.52) coincided with the 75% light reduction treatment (Figure 25), however, this

trend was not statistically significant.

5. Discussion

The experiment presented here clearly demonstrates that seagrass elemental

content, stable C and N isotopic content, morphology and the concentration of NH4 + in

seagrass porewaters directly respond to manipulations of not just supply of resources to

the ecosystem, but also by the demand for nutrients and CO 2 to support plant growth.

These findings are in agreement with previous studies in seagrass systems and expand the

understanding of the seasonality of the stable isotope signature in Thalassia testudinum

tissue in relation to the plant's source nutrients. Seasonality was expected to be due to

either seasonal variation of 615N in source DIN or differential fractionation as plant N

demand exceeded supply of DIN source with a constant 615N. This experiment changed

the isotopic composition of the porewater by adding slow release fertilizer with constant

615 N and changed the degree of fractionation of the ammonium pool by changing the
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balance between nutrient supply and plant demand with reduced light levels. Given

reduced light levels or high N availability the 615N composition of T. testudinum leaves

were expected to be depleted relative to the source DIN while an enriched signature

relative to the source DIN was expected at low N availability or summer light levels.

When supply of DIN, accomplished by N fertilization, exceeds plant demand nitrogen

fractionation in T. testudinum should shift in favor of the lighter isotope. Fractionation

between source nutrients and plant tissue product was expected to increase as plant

demand for N exceeds supply of DIN.

Calculations of biological fractionation i-Fractionation of the isotopic

composition of the source CO 2 and DIN changes as a function of the balance of plant

nutrient supply and demand as expressed by a seasonal pattern between diminished light

levels or N addition and Thalassia testudinum tissue product. There was a trend of more

isotopic separation between source N and plant product during the summer when plant

demand outstripped supply, but with N amelioration the isotopic separation between DIN

source and plant product was less pronounced compared to the control plots (Figure 12)

for porewater 61 5N-NH 4+ and water column 615 N-NH 4+. In the winter isotope

fractionation followed our expectations with separation between plant tissue product and

DIN source more pronounced in the light reduction and N addition treatments compared

to the controls for 6' 5 N-NH 4+ and water column 6' 5 N-NH 4+, indicating that by increasing

supply of DIN or changing plant demand for N, the plant can be more selective against

5N.
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As porewater 6' 5 N-NH 4+ became more depleted in the summer months, the

isotope separation between source N and plant product became larger. N addition caused

less fractionation between plant product and nutrient source relative to the controls,

indicating that plant demand could be amended with N supply, but still displayed large

fractionation during the summer and less during the winter. Water column 61 5N-NO3-

showed a fractionation pattern that may be related to the relative supply of NO3 available

to the seagrasses in the water column. Variation in source DIN is due to seasonality of

rainfall (Lapointe 1997), bottom water and interstitial water concentration (Yamamuro et

al. 2003), nitrogen fertilization (Udy et al. 1999), anthropogenic inputs into marine

systems (McClelland et al. 1997; McClelland and Valiela 1998a), as well as seasonal

rates of denitrification and nitrification which leave the residual DIN pool enriched with

"N (Mariotti et al. 1981). Composition of the DIN pool is a complex function of supply

(e.g. deposition, N fixation, and reminerialization), utilization (e.g. plant uptake and

denitrification), and losses both advective and diffusive which all influence the 615N

composition of the DIN source (Figure 26). It is possible that the DIN isotope values

show seasonal depletion in the summer due to competition for NH4+ by both nitrifiers and

primary producers as well as competition for NOj by primary producers and denitrifiers

(Cornwell et al. 1999) that fractionate the DIN source pool. If active nitrification was

occurring the most during the summer months and the urea fertilizer was reduced as fast

as it was added, it is possible that in conjunction with the competition for the source

nutrients, the residual pool would become highly deplete. The T. testudinum 615N

content was generally more enriched in 1
5N compared to its source DIN indicating the

possibility of nutrient limitation regulating N uptake, plant source nitrogen from DON
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which this study did not account for, other processes such as dissimilatory nitrate

reductase acting on DIN leaving the residual pool highly deplete in 15 N, or inefficiencies

in the sampling method for DIN. The lack of 15N enrichment in the residual N source

may also be the result of sedimentary denitrification caused by diffusion-limited NO3~

flux within the reactive microsites of the sediments (Brandes and Devol 1997).

Isotope Content-Both 613 C and 615 N values for Thalassia testudinum displayed

seasonal enrichment and depletion patterns with maximum enrichment occurring in

summer to early fall. Interannual variation of 613 C ranged from -9.4%o (March09) to

-5.7%o (Aug08) and was found to be most influenced by light levels. Light manipulations

depleted the 613 C values relative to the controls and resulted in greater discrimination

against the heavier isotope than non-shaded plots. By changing light levels without

changing the isotopic composition or abundance of source CO 2 , the plant demand for

CO 2 (aq) was reduced and this led to greater discrimination against 13C and lighter isotope

value for T. testudinum tissue content. This observation is in agreement with other

studies that report light limited seagrasses fractionate the dissolved inorganic carbon

(DIC) pool by preferentially discriminating against the heavier isotope which results in

isotopic depletion of the seagrass tissue and show that as light is reduced to levels that

limit photosynthetic rates of T. testudinum carbon becomes non-limiting (Durako and

Hall 1992; Hemminga and Mateo 1996; Lee and Dunton 1997). What is interesting

about the carbon isotope values in relation to the reduced light levels is the application to

longer lived seagrass species such as Posidonia oceanica that could record light history

in its rhizome tissue (Ruiz and Romero 2001; Vizzini et al. 2003) as the plant meets its
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CO 2 (aq) nutrient requirements. As light becomes limiting carbon becomes less limiting

because of a decrease in diffusion-limited carbon demand at sub-saturating

photosynthetic rates by affecting CO 2 (aq) acquisition mechanisms (Schwarz et al. 2000;

Nayar et al. 2009). This then leads to an increase in enzymatic discrimination against "C

at lower irradiances resulting in more negative 613C (Grice et al. 1996; Ralph et al. 2007).

Interpretation of the 613 C values in the rhizome tissue could reconstruct a light history for

the life of the plant. Further implications of a reconstructed light history would give

baseline benchmarks for water clarity restoration in euotrophic nearshore areas.

Anthropogenic nutrient perturbations into aquatic systems affect seagrasses on the

internal level and combined actions of nutrient uptake and assimilation processes that are

photosynthetically dependent may result in a more dramatic impact on seagrass survival

(Moore and Wetzel 2000; Ibarra-Obando et al. 2004).

Seasonality of Thalassia testudinum 615N values have been postulated to be the

result of seasonal variation in the 615N of the DIN or seasonal differences in the

fractionation of the DIN pool during uptake (Fourqurean et al. 1997; Anderson and

Fourqurean 2003; Fourqurean et al. 2005) or the result of an increased uptake of land-

derived DIN with high 61"N values (Yamamuro et al. 2003). The likely cause is thought

to be decreased fractionation in summer when plant growth demands outstrip N supply

and draw down the pool of available N. My study corroborates the thought that plant

supply and demand are driving the seasonality of 61 5N values in the leaf tissue. Thalassia

testudinum in the control plots had heavier tissue 615 N values in the summer to late fall

and lighter 6SN values in the winter and with N addition or light reduction, the plant
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could be more selective against 15N (Figure 11). Variations in 615 N values ranged from

1.7%o (Feb09) to 5.0%o (Aug08) and were most influenced by N addition with N addition

plots having relatively low 615N seagrass tissue values compared to controls (Figure 27).

These findings indicate the importance of understanding the seasonality of T. testudinum

standing crop production in relation to its source nutrients especially during the summer

growing season when plant demand exceeds DIN supply-likely because seagrass

growth rate is high enough to be nutrient limited-and the summer 615N values of the

plant begin to reflect the 615 N of source nutrients (0 %o for fertilizer). Experimental

studies that do not take into account the seasonality of the plant or only sample during

one season may not detect seasonal cycles of increased fractionation in summer when

plant growth demands exceed nutrient supply and may erroneously conclude

anthropogenic pollution based on the isotope value of the plant tissue.

Elemental Content-"Seagrass C:N:P Redfield Ratios" have been reported as

474:24:1 (Duarte 1990) and deviation away from this ratio expresses nutrient limitation.

C:N:P elemental ratios for Thalassia testudinum tissue peaked in Feb09 and C:N ratios

indicated that light reduction and N addition reduced N limitation. C:P and N:P ratios

indicated P limitation, and as more N was added over the duration of the study, P

limitation gave way to light limitation. Changes in nutrient availability resulted in

changes in T. testudinum elemental ratios. As N content increased, C:N ratios decreased,

indicating N amerloration. Average nutrient concentrations (as % DW) for the duration

of the study were 37.04 for carbon, 2.03 for nitrogen and 0.096 for phosphorus and this

agreed with P limitation and adequate supply of N to fulfill plant demand found in the
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elemental ratios. Seagrass nutrient deficiency is more significant in the growing season

because of the increased demand for nutrients (Pedersen and Borum 1997) as

photosynthetic demand increases and because of the low availability of nutrients in the

environment as well as competition with other organisms like macroalgae ,

phytoplankton, epiphytes, and bacteria. My study shows that with N addition or light

reduction, plant N demands were met during the growing season, and the %N content in

the tissue was highest in the 75% light reduction treatments and the high N treatments.

Ecological theory of resource limitation and partitioning has long been debated in the

literature (Grime 1977; Tilman 1985) and this study indicates the need to understand the

chemical nature of plant resource sources as well as their fates to better understand

resource limitation and competition among primary producers and nitrifiers and

denitrifiers in a whole ecosystem context.

Plant Responses-In coastal areas nearshore seagrass beds are susceptible to

anthropogenic nutrient inputs such as septic effluent, land and agricultural drainage, and

municipal sewage which lead to an increase in nutrient concentrations and a decrease in

available light in the water column as excessive phytoplankton growth (eutrophication)

results in a sharp decline in submerged aquatic vegetation communities (Herbert 1999).

In this experiment N amelioration was a proxy for anthropogenic nutrient inputs and the

shade treatments were a proxy for decreased available light due to an increase in algae

abundance from the increased nutrients. Morphometric parameters of the leaves

generally decreased in the winter and increased with the summer growing season,

reaching a maximum in June09. Light reduction and nitrogen addition treatments caused
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the leaf width to increase as a response to abundant nutrients and as a measure to

effectively capture light at lower irradiance levels. Specific productivity provides an

indication of the plant's physiological state as evidenced by rate of growth of individual

plants; areal productivity measurement is an indication of the production of new organic

matter in the ecosystem and is a function of specific growth rate and plant density. As

specific productivity and areal productivity increased over the growing season the 615N

and 613 C values of the plant tissue became more enriched indicating that as the plant

growth outstripped its source nutrient pool during the summer, its 65N and 613 C values

reflected less discrimination against the heavier isotope (Figure 28 and Figure 29).

Seagrasses are able to adapt their photosynthetic process to low-light

surroundings (Drew 1978; Baker and Mckiernan 1988) by shifting their photosynthetic-

irradiance response (Dennison and Alberte 1982) and photosynthetic pigment content

(Major and Dunton 2002). At the end of the experiment chl a and chl b concentrations

were highest in the 75% light reduction and high N addition treatments compared to the

controls. Increases in accessory pigments (chl b) relative to antenna pigments (chl a) in

low light (Lamote and Dunton 2006) serve to increase the photosynthetic efficiency by

harvesting a larger range of wavelengths since chl b absorbs wavelengths not absorbed by

chl a (Mcpherson and Miller 1987) and this study is consistent with other studies that

document a decrease in the chl a:b ratio in response to light reduction (Czerny and

Dunton 1995; Lee and Dunton 1997). This study also documents a decrease in the chl

a:b ratio in response to nutrient addition as well.
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Water Chemistry-S eagrasses take up N by both leaves and roots in amounts

depending on the relative availability in the sediment and the water column (Stapel et al.

1996; Lee and Dunton 1999). Seagrass leaves have been shown to prefer inorganic N

sources and urea as a dissolved organic nitrogen source (DON) over amino acids while

roots can take up amino acids at comparable rates to NH 4+ and prefer those N sources to

urea and NO3- (Vonk et al. 2008). Porewater NH 4+ concentration increased with N

addition but was not as pronounced in the treatments that had both N addition and light

reduction. This may be due to the seagrass depleting the local source nutrient pool to

maintain metabolic function in response to light reduction. Porewater NH4+

concentrations were influenced by light level, with lower ammonium concentration in the

25% light reduction plots, suggesting that highly productive seagrasses drew down the

NH4+ pools in the porewater or that light reduction led to more nitrification or anammox.

Higher NH4+ concentrations were found in the 75% light reduction treatments indicating

lower utilization by T. testudinum could drive resource repletion (Lee and Dunton 1997).

As available NH4 + increased in the porewater, the 615N values in Thalassia testudinum

tissue became more isotopically depleted which indicated that by changing the amount of

source N available to a seagrass, the plant could preferentially discriminate against the

heavier isotope. Porewater 6'5 N-NH 4 + became more enriched relative to the controls

with both N addition and light reduction as T. testudinum fractionated the source pool in

favor of the lighter isotope. Even with the relative enrichment compared to the controls,

the porewater 615N-NH 4+ values became more deplete in the summer months. The

decrease of the porewater 615N-NH 4+ values during the growing season could be

explained by Thalassia testudinum not exhibiting any isotopic discrimination against the
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heavier isotope during nutrient uptake or the plant metabolizing the heavier isotope and

preferentially respiring 1
4 N. Water column '5"N-NH 4+ and 6'N-NO3 values were very

deplete in 'N and may be attributed to newly produced NO3 arising from nitrification

(Sugimoto et al. 2008). To fully understand the seasonality of the nutrient content in

seagrass leaves, it is important to understand the seasonality of the source N being

utilized by the plant.

Experimental Restrictions-This study documented that seagrass elemental

content, stable C and N isotopic content, morphology and the concentration of NH4+ in

seagrass porewaters directly respond to manipulations of not just supply of resources to

the ecosystem, but also to the demand for nutrients and CO 2 to support plant growth.

However, this study only sampled one specific species in one specific area over a given

amount of time, and while potentially useful in the understanding of seagrass ecology, its

broad applicability may be limited. Other locations such as isolated basins with long

water retention times may not display the same patterns of isotopic depletion and

enrichment observed here. Caution should be taken with broad application of results

from one species-specific study to other seagrass species even in the same sampling

location. Other studies have observed species-specific variability in seasonal isotope

content (Fourqurean et al. 2007; Campbell and Fourqurean 2009) indicating that

interpretation of elemental and isotope content needs to be species specific. There is also

limitation with our methods used to calculate A as a large fractionation (about 10%o) is

reported with the ammonia diffusion method. As of yet, it is the best method we have to
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work with until a laser isotope machine that can speciate N isotopes from a water sample

is available to the masses.

6. Conclusion

Anthropogenic influences into a coastal ecosystem are a key source of increased

nutrient loads into the marine realm and these nutrients have the potential to shift marine

ecosystem function through algal blooms and decreases in water column clarity. To

understand effects of global climate change and anthropogenic nutrient perturbations on

shallow oligotrophic coastal systems, a better understanding of the relationship between

aquatic primary producers such as Thalassia testudinum and their source nutrients is

warranted. Stable isotopes of carbon and nitrogen are a good tool to elucidate this

relationship but caution must be made on general interpretation and application. It is

necessary to understand the cycles and processes controlling naturally occurring or

anthropogenically derived source nutrients as well as the nutrient product in the plant

tissue. The T. testudinum isotope values presented here are not as enriched as land-

derived source N 65N values have been reported (McClelland and Valiela 1998b) but

still indicate the need to understand N as a source and its fate in nearshore marine

systems. This study has demonstrated that . testudinum is able to strongly fractionate

the source pool DIN, so it is necessary to determine the relationship between plant and

source. An enriched 61'N signature interpreted as pollution-derived is out of context

without first understanding the 6 1'N of the source nutrients and the seasonality of the

plant demand relative to the nutrient supply. Only when these links have been explained

can the full significance of 61'N values be applied.
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Tables

Table 1. Repeated Measures ANOVA for water chemistry constituents. Significance

shown in bold. t indicates sphericity assumptions were violated and all interactions used

the Greenhouse-Geisser values.

Main Effects df F p Interactionst df F p

pw NH4+ conc. Light 2 1.266 0.307 Time 3.498 3.183 0.024

(pM) Nutrient 2 18.988 <0.001 Time x light 6.997 0.506 0.826

Light x 4 4.108 0.017 Time x 6.997 0.875 0.532

nutrient nutrient

Error 17 Time x light x 13.993 0.497 0.926

nutrient

Error 59.471

Main Effects df F p Interactionst df F p

pw 6 5 N-NH 4+ Light 2 0.170 0.845 Time 3.827 27.314 <0.001

Nutrient 2 7.331 0.005 Time x light 7.654 0.750 0.642

Light x 4 1.311 0.303 Time x 7.654 1.624 0.137
nutrient nutrient

Error 18 Time x light x 15.309 0.739 0.739

nutrient

Error 68.890
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Table 2. Repeated Measures ANOVA performed on Thalassia testudinum isotope

content. Significance shown in bold. t indicates sphericity assumptions were violated

and all interactions used the Greenhouse-Geisser values.

Main Effects df F p Interactions df F p

Tt 613C Light 2 77.928 <0.001 Time 12 40.946 <0.001

Nutrient 2 0.165 0.849 Time x light 24 7.285 <0.001

Light x nutrient 4 0.652 0.633 Time x nutrient 24 0.854 0.665

Error 18 Time x light x nutrient 48 1.074 0.357

Error 216

Main Effects df F p Interactions df F p

Tt 65 N Light 2 677.878 0.189 Time 12 18.589 <0.001

Nutrient 2 1.828 0.071 Time x light 24 0.647 0.932

Light x nutrient 4 3.075 0.930 Time x nutrient 24 1.812 0.014

Error 18 0.209 Time x light x nutrient 48 1.592 0.014

Error 216

Main Effects df F p Interactionst df F p

Tt Light 2 1.984 0.166 Time 4.138 4.344 0.003
61"N-
summer

Nutrient 2 6.729 0.007 Time x light 8.276 0.660 0.729

Light x nutrient 4 0.303 0.872 Time x nutrient 8.276 1.010 0.437

Error 18 Time x light x nutrient 16.552 1.867 0.036

Error 74.482
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Table 3. Repeated Measures ANOVA performed for A. Significance shown in bold.

t indicates sphericity assumptions were violated and all interactions used the

Greenhouse-Geisser values.

Main df F p Interactionst df F p
Effects

pw 6"N-NH4+ Light 2 0.543 0.590 Time 4.271 21.926 <0.001
- 615N Tt

Nutrient 2 18.674 <0.001 Time x light 8.543 0.586 0.797

Light x 4 2.072 0.127 Time x 8.543 1.762 0.093
nutrient nutrient
Error 18 Time x light 17.085 0.680 0.813

x nutrient
Error 76.883

Main df F p Interactions df F p
Effects

WC 615N- Light 2 1.341 0.287 Time 5 224.230 <0.001
NH 4- - 615N
Tt Nutrient 2 3.055 0.072 Time x light 10 0.298 0.980

Light x 4 0.632 0.646 Time x 10 3.106 0.002
nutrient nutrient
Error 18 Time x light 20 1.628 0.063

x nutrient
Error 90

Main df F p Interactions df F p
Effects

WC 615N-NO3  Light 2 1.826 0.190 Time 12 196.184 <0.001
- 615N Tt

Nutrient 2 3.075 0.071 Time x light 24 0.598 0.932

Light x 4 0.209 0.930 Time x 24 1.813 0.014
nutrient nutrient
Error 18 Time x light 48 1.593 0.014

x nutrient
Error 216
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Table 4. Repeated Measures ANOVA performed on Thalassia testudinum elemental

content. Significance shown in bold. t indicates sphericity assumptions were violated

and all interactions used the Greenhouse-Geisser values.

Main Effects df F p Interactionst df F p

C:N Light 2 73.078 <0.001 Time 5.990 21.388 <0.001

Nutrient 2 4.408 0.028 Time x light 11.980 3.581 <0.001

Light x 4 0.575 0.684 Time x nutrient 11.980 0.784 0.666
nutrient

Error 18 Time x light x 23.960 0.974 0.540
nutrient
Error 107.821

Main Effects df F p Interactions df F p

C:P Light 2 129.510 <0.001 Time 12 12.039 <0.001

Nutrient 2 0.381 0.689 Time x light 24 6.994 <0.001

Light x 4 0.948 0.459 Time x nutrient 24 1.251 0.202
nutrient
Error 18 Time x light x 48 0.897 0.666

nutrient
Error 216

Main Effects df F p Interactions- df F p

N:P Light 2 44.533 <0.001 Time 4.878 8.152 <0.001

Nutrient 2 4.140 0.033 Time x light 9.755 5.722 <0.001

Light x 4 0.761 0.564 Time x nutrient 9.755 1.340 0.224
nutrient
Error 18 Time x light x 19.511 1.171 0.300

nutrient
Error 87.798
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Table 5. Repeated Measures ANOVA performed on Thalassia testudinum plant

responses. Significance shown in bold. t indicates sphericity assumptions were violated

and all interactions used the Greenhouse-Geisser values.

Main Effects df F p Interactionst df F p

BB Light 2 1.286 0.301 Time 4.837 16.554 <0.001
abundance

Nutrient 2 0.612 0.553 Time x light 9.675 3.239 0.002

Light x 4 0.241 0.991 Time x nutrient 9.675 0.156 0.985
nutrient
Error 18 Time x light x 19.350 0.324 0.927

nutrient
Error 87.074

Main Effects df F p Interactionst df F p
Leaf Area Light 2 4.262 0.031 Time 5.947 25.267 <0.001

(cm 2 SS-) Nutrient 2 0.312 0.736 Time x light 11.895 3.089 0.001
Light x 4 0.914 0.477 Time x nutrient 11.895 1.213 0.284
nutrient
Error 18 Time x light x 23.789 0.843 0.674

nutrient
Error 107.052

Main Effects df F p Interactions df F p
Leaf Mass Light 2 4.312 0.030 Time 12 20.457 <0.001

(mg SS-') Nutrient 2 0.357 0.704 Time x light 24 3.200 <0.001
Light x 4 0.728 0.584 Time x nutrient 24 1.341 0.140
nutrient
Error 18 Time x light x 48 0.823 0.787

nutrient
Error 216

Main Effects df F p Interactionst df F p

Leaf Length Light 2 0.405 0.673 Time 6.062 28.918 <0.001

(mm) Nutrient 2 0.182 0.835 Time x light 12.123 2.658 0.004
Light x 4 0.682 0.613 Time x nutrient 12.123 1.455 0.152
nutrient
Error 18 Time x light x 24.246 0.891 0.614

nutrient
Error 109.109

Main Effects df F p Interactions df F p

Leaf Width Light 2 2.840 0.085 Time 12 9.102 <0.001
(mm) Nutrient 2 0.848 0.445 Time x light 24 1.869 0.011

Light x 4 2.272 0.101 Time x nutrient 24 1.100 0.346
nutrient
Error 18 Time x light x 48 1.015 0.454

nutrient

Error 216
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Table 6. Repeated Measures ANOVA performed on Thalassia testudinum plant

productivity. Significance shown in bold. t indicates sphericity assumptions were

violated and all interactions used the Greenhouse-Geisser values.

Main Effects df F p Interactions df F p

Areal Light 2 20.968 <0.001 Time 2 34.722 <0.001
Productivity
(g dw m-' d-) Nutrient 2 0.213 0.810 Time x light 4 15.083 <0.001

Light x 4 2.706 0.063 Time x nutrient 4 1.755 0.159
nutrient
Error 18 Time x light x 8 0.713 0.678

nutrient
Error 36

Main Effects df F p Interactions df F p

Specific Light 2 2.745 0.091 Time 2 37.685 <0.001
Productivity
(mg g1 d-) Nutrient 2 0.032 0.969 Time x light 4 1.408 0.251

Light x 4 0.364 0.831 Time x nutrient 4 1.732 0.164
nutrient
Error 18 Time x light x 8 0.616 0.759

nutrient
Error 36
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Table 7. Two-Way ANOVA performed on Thalassia testudinum leaf chlorophyll

content. Significance shown in bold.
df F p

chi a Light 2 0.721 0.490

(mg/g dw) Nutrient 2 0.585 0.560

Light x nutrient 4 1.380 0.250

Error 72

df F p

chi b Light 2 0.969 0.384

(mg/g dw) Nutrient 2 7.563 0.001

Light x nutrient 4 2.241 0.073

Error 72

df F p

total chi Light 2 0.037 0.964

(mg/g dw) Nutrient 2 0.242 0.785

Light x nutrient 4 0.891 0.474

Error 72

df F p

chi a:b Light 2 1.488 0.233

Nutrient 2 0.928 0.400

Light x nutrient 4 0.494 0.740

Error 72
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Figure 1. Grassy Key Bank
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Figure 2. Experimental Treatments. From 1 to r: control/HN/LN; 2500 light
reduction/25% light reduction +LN/25% light reduction +HTN; 75% light reduction/75%

light reduction +LN/ 7500 light reduction +H-N.

Figure 3. Sediment Sipper
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Figure 5. Porewater NH4+ concentration with N treatment
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Figure 6. Porewater NH4+ concentration in the sediment (cores). A: light treatments

showing 3 light levels. B: nitrogen treatments showing control, low N (LN) and high N

(HN)
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Figure 7. Porewater NH4+ concentration in the sediment (sippers). A: light treatments

showing 3 light levels. B: nitrogen treatments showing control, low N (LN) and high N

(HN)
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Figure 9. Porewater 6 15N- NH4 time series. A: light treatments showing 3 light levels.

B: nitrogen treatments showing control, low N (LN) and high N (HN)
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Figure 10. Thalassia testudinum 613C content of new leaf tissue. A: light treatments

showing 3 light levels. B: nitrogen treatments showing control, low N (LN) and high N

(HN)
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Figure 11. Thalassia testudinum 615N content of new leaf tissue. A: light treatments

showing 3 light levels. B: nitrogen treatments showing control, low N (LN) and high N

(HN)
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Figure 12. A (porewater 6"N-NH4+ - 615N Thalassia testudinum). A: light treatments

showing 3 light levels. B: nitrogen treatments showing control, low N (LN) and high N

(HN)
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Figure 13. A (water column 81"N-NH 4+ - 615N Thalassia testudinum). A: light treatments

showing 3 light levels. B: nitrogen treatments showing control, low N (LN) and high N

(HN)
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Figure 14. A (water column 615 N-NO3~ - 615N Thalassia testudinum). A: light treatments

showing 3 light levels. B: nitrogen treatments showing control, low N (LN) and high N

(FIN)
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Figure 15. Thalassia testudinum C:N ratio. A: light treatments showing 3 light levels.

B: nitrogen treatments showing control, low N (LN) and high N (HN)
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Figure 16. Thalassia testudinum C:P ratio. A: light treatments showing 3 light levels. B:

nitrogen treatments showing control, low N (LN) and high N (HN)
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Figure 17. Thalassia testudinum N:P ratio. A: light treatments showing 3 light levels.

B: nitrogen treatments showing control, low N (LN) and high N (H-N)
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Figure 18. Braun-Blanquet abundance scores. A: light treatments showing 3 light levels.
B: nitrogen treatments showing control, low N (LN) and high N (H-N)
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Figure 19. Thalassia testudinum leaf area (cm 2 SS-1). A: light treatments showing 3 light

levels. B: nitrogen treatments showing control, low N (LN) and high N (1N)
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Figure 20. Thalassia testudinum leaf mass (mg SS 1 ). A: light treatments showing 3 light

levels. B: nitrogen treatments showing control, low N (LN) and high N (HN)
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Figure 21. Thalassia testudinum leaf length (mm). A: light treatments showing 3 light

levels. B: nitrogen treatments showing control, low N (LN) and high N (HN)
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Figure 22. Thalassia testudinum leaf width (mm). A: light treatments showing 3 light

levels. B: nitrogen treatments showing control, low N (LN) and high N (HN)
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Figure 23. Areal leaf production of Thalassia testudinum (g dw m-2 d-1). A: light
treatments showing 3 light levels. B: nitrogen treatments showing control, low N (LN)

and high N (H-N)
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Figure 24. Specific productivity of Thalassia testudinum ( mg g-1 d-1). A: light

treatments showing 3 light levels. B: nitrogen treatments showing control, low N (LN)

and high N (H-N)
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Figure 25. Thalassia testudinum blade chlorophyll content. A: light treatments showing

3 light levels. B: nitrogen treatments showing control, low N (LN) and high N (HN)
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Figure 27. C:N ratio and Thalassia testudinum new leaf 615N values. A: light treatments

showing 3 light levels. B: nitrogen treatments showing control, low N (LN) and high N
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Figure 28. Thalassia testudinum productivity and 615N values. A: light treatments
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