
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-10-2014

Delay-Sensitive Service Request Scheduling for
Cloud Computing
Shuo Liu
mercedes1883@gmail.com

DOI: 10.25148/etd.FI14110731
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Electrical and Computer Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Liu, Shuo, "Delay-Sensitive Service Request Scheduling for Cloud Computing" (2014). FIU Electronic Theses and Dissertations. 1619.
https://digitalcommons.fiu.edu/etd/1619

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1619&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.fiu.edu%2Fetd%2F1619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1619?utm_source=digitalcommons.fiu.edu%2Fetd%2F1619&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

DELAY-SENSITIVE SERVICE REQUEST SCHEDULING FOR CLOUD

COMPUTING

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Shuo Liu

2014

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Shuo Liu, and entitled Delay-Sensitive Service Request
Scheduling for Cloud Computing, having been approved in respect to style and
intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Kang K. Yen

Jean H. Andrian

Nezih Pala

Ming Zhao

Gang Quan, Major Professor

Date of Defense: November 10, 2014

The dissertation of Shuo Liu is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2014

ii

c⃝ Copyright 2014 by Shuo Liu

All rights reserved.

iii

DEDICATION

To my family.

iv

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my major advisor,

Dr. Gang Quan, for his endless guidance and help during the last five years of my

doctoral study. His dedication to science and research will inspire me for the rest of

my life.

I would also like to express my deepest appreciation to my Ph.D. committee

members, Dr. Ming Zhao, Dr. Kang K. Yen, Dr. Jean H. Andrian, and Dr. Nezih

Pala, for their insightful suggestions and comments for improving the quality of this

dissertation. It is extremely wonderful to have these fantastic and knowledgeable

professors serving as my committee members.

Next, I want to thank my lab mates, Mr. Qiushi Han, Mr. Tianyi Wang, Mr. Shi

Sha, Dr. Ming Fan, Dr. Vivek Chaturvedi, Dr. Huang Huang, and Dr. Guanglei

Liu, for creating an amazing working environment and life-long friendships.

Additionally, I would like to thank the National Science Foundation (NSF). This

dissertation is supported in part by NSF under projects CNS-0969013, CNS-0917021,

CNS-1018108, CNS-1018731, and CNS-1423137.

Last but not least, thanks to my family for everything.

v

ABSTRACT OF THE DISSERTATION

DELAY-SENSITIVE SERVICE REQUEST SCHEDULING FOR CLOUD

COMPUTING

by

Shuo Liu

Florida International University, 2014

Miami, Florida

Professor Gang Quan, Major Professor

Cloud computing realizes the long-held dream of converting computing capability

into a type of utility. It has the potential to fundamentally change the landscape

of the IT industry and our way of life. However, as cloud computing expanding

substantially in both scale and scope, ensuring its sustainable growth is a critical

problem. Service providers have long been suffering from high operational costs. Es-

pecially the costs associated with the skyrocketing power consumption of large data

centers. In the meantime, while efficient power/energy utilization is indispensable

for the sustainable growth of cloud computing, service providers must also satisfy a

user’s quality of service (QoS) requirements. This problem becomes even more chal-

lenging considering the increasingly stringent power/energy and QoS constraints,

as well as other factors such as the highly dynamic, heterogeneous, and distributed

nature of the computing infrastructures, etc.

In this dissertation, we study the problem of delay-sensitive cloud service schedul-

ing for the sustainable development of cloud computing. We first focus our research

on the development of scheduling methods for delay-sensitive cloud services on a sin-

gle server with the goal of maximizing a service provider’s profit. We then extend

our study to scheduling cloud services in distributed environments. In particular, we

develop a queue-based model and derive efficient request dispatching and processing

vi

decisions in a multi-electricity-market environment to improve the profits for service

providers. We next study a problem of multi-tier service scheduling. By carefully

assigning sub deadlines to the service tiers, our approach can significantly improve

resource usage efficiencies with statistically guaranteed QoS. Finally, we study the

power conscious resource provision problem for service requests with different QoS

requirements. By properly sharing computing resources among different requests,

our method statistically guarantees all QoS requirements with a minimized number

of powered-on servers and thus the power consumptions. The significance of our re-

search is that it is one part of the integrated effort from both industry and academia

to ensure the sustainable growth of cloud computing as it continues to evolve and

change our society profoundly.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Cloud Computing . 2
1.2 Data Centers for Cloud Computing . 3
1.3 Challenges for Cloud Computing Resource Management 4
1.3.1 Revenue and Operational Cost . 5
1.3.2 Delay-Sensitive Service Requests . 7
1.3.3 Heterogeneities of Physical Servers, Data Centers, and Services 8
1.3.4 Dynamics in Cloud Computing . 9
1.4 Research Problem . 9
1.5 Our Contributions . 10
1.6 Structure of the Dissertation . 12

2. RELATED WORK . 14
2.1 Real-Time Scheduling . 14
2.2 Scheduling for Delay-Sensitive Cloud Services 16
2.2.1 Scheduling in a Single Server . 17
2.2.2 Scheduling in a Single Data Center . 18
2.2.3 Scheduling in Multiple Data Centers 23
2.3 Summary . 25

3. SINGLE-TIER SERVICE SCHEDULING ON SINGLE SERVERS 26
3.1 Research Problem Introduction . 26
3.2 Preliminary . 29
3.2.1 Task Model and System Architecture 29
3.2.2 A Motivation Example . 31
3.3 Non-Preemptive Approach . 33
3.3.1 The Opportunity Cost Based Utility Metric 34
3.3.2 The Speculation Based Utility Metric 37
3.4 Preemptive Approaches . 39
3.5 Experiments . 44
3.5.1 Experiment Setup . 45
3.5.2 Overall Performance Comparison . 45
3.5.3 Arrival Burst Impacts . 46
3.5.4 Utility Density Threshold Effect . 48
3.5.5 Effects of Preemption Checking Interval Length Lint and Preemption

Threshold ζ . 50
3.5.6 Preemption vs. Non-Preemption . 51
3.6 Conclusions . 53

viii

4. SINGLE-TIER SERVICE SCHEDULING IN A DISTRIBUTED ENVIRON-
MENT . 55

4.1 Non Queuing Theory Based Approach 55
4.1.1 System Model . 56
4.1.2 Our Approach . 62
4.2 Queuing Theory Based Approach . 66
4.2.1 System Model . 67
4.2.2 Our Approach . 71
4.3 Experiment . 78
4.3.1 TUF Based Approach . 79
4.3.2 Queuing Theory Based Approach . 82
4.4 Conclusions . 91

5. MULTI-TIER SERVICE SCHEDULING IN A DISTRIBUTED ENVIRON-
MENT . 95

5.1 Research Problem Introduction . 95
5.2 Preliminary . 97
5.2.1 Service Model . 97
5.2.2 Problem Definition . 98
5.3 Sub Deadline Assignment . 99
5.3.1 An Application with Two Servers . 99
5.3.2 An Application with Multiple Servers 104
5.3.3 Multiple Applications with Shared Servers 105
5.4 Simulation Study . 108
5.4.1 Single Application without Shared Resources 109
5.4.2 Multiple Applications with Shared Resources 113
5.5 Conclusion . 114

6. POWER MINIMIZATION WITH EFFICIENT RESOURCE SHARING . 116
6.1 Research Problem Introduction . 116
6.2 Preliminary . 118
6.2.1 System Model . 118
6.2.2 Problem Definition . 121
6.3 Preliminaries . 121
6.3.1 Processing Rate Selection for QoS Guarantee 121
6.3.2 Request Multiplexing . 125
6.3.3 Request Packing . 127
6.4 The Request Allocation Algorithm . 132
6.5 Experimental Results . 134
6.5.1 Service Utilization Effect . 135
6.5.2 Capacity Effect . 137
6.5.3 Completion Ratio and Average Response Time 138
6.6 Conclusion . 139

ix

7. CONCLUSIONS AND FUTURE WORK 140
7.1 Summary . 140
7.2 Future Work . 142
7.2.1 Cost of Failures . 142
7.2.2 Failure Classifying . 143
7.2.3 Research Problem . 144

BIBLIOGRAPHY . 146

VITA . 159

x

LIST OF TABLES

TABLE PAGE

4.1 Parameter notation. 93

4.2 Processing capacities of each data center. 93

4.3 Distance among front-end servers and data centers. 94

4.4 Processing cost at each data center for different types of services. 94

4.5 TUFs for each type of request. 94

4.6 Processing capacities of each data center. 94

4.7 Sub-deadlines of the request. 94

4.8 TUF values at different steps of the requests. 94

4.9 Power consumption of the requests in each data center. 94

6.1 Parameter notation. 119

xi

LIST OF FIGURES

FIGURE PAGE

1.1 Amazon EC2’s growth over the years [33]. 3

1.2 The growth of the objects stored in Amazon S3 over the years [103]. . . 4

1.3 Cloud infrastructure revenue growth of several major cloud service providers
[46][111]. 5

1.4 Worldwide spending on servers, power and cooling, and management
and administration [31]. 6

1.5 Response time effects on service providers[50] 7

3.1 Time utility functions. 27

3.2 The architecture for the service provider. 30

3.3 Three different schedules for two real-time tasks τ1 and τ2 arriving at
the same time t = 0. 32

3.4 Preemptive vs. non-preemptive scheduling two real-time requests to
maximize the accrued system utility. 41

3.5 The comparison of total utility, profit, and penalty by different non-
preemptive scheduling approaches. 47

3.6 The total utility with different µ from non-preemptive scheduling algo-
rithms. 48

3.7 The total utility varies with the threshold. 49

3.8 Preemption checking interval effect with λ = 1, tasknumber = 20 each
group, and ζ = 0. 50

3.9 Preemption threshold effect with λ = 1, task number = 20, and Lint = 1. 51

3.10 Comparison between PPS non-preemptive and preemptive scheduling
under the burstiness effect. 52

3.11 Comparison between constrained preemption approach and unconstrained
preemption approach. 53

4.1 Hourly average electricity prices at different locations in a day[120]. . . . 57

4.2 System architecture. 57

4.3 Typical TUFs. 69

4.4 Comparison of accrued retained profit. 80

xii

4.5 Comparison of profit . 81

4.6 Comparison of penalty . 82

4.7 Power consumption comparison . 83

4.8 Comparison of number of completed tasks 84

4.9 Number of task allocation in different data centers. 84

4.10 Request traces . 85

4.11 Net profits obtained by two approaches. 86

4.12 Allocations for request 1. 87

4.13 Net profits obtained by two approaches with two-step TUFs. 89

4.14 Allocations of the requests. 90

4.15 Low/High workload situations. 91

4.16 Computation times of different server sets. 91

5.1 Application model. 97

5.2 A two-tier application with sub deadline assignment. 100

5.3 Application model with more than two servers. 104

5.4 Applications with shared tiers. 105

5.5 Completion ratio comparison. 110

5.6 Average response time comparison. 110

5.7 Completion ratio comparison. 112

5.8 Average response time comparison. 112

5.9 Applications with shared servers. 113

5.10 Comparison for multiple applications with shared resources. 115

6.1 System model. 120

6.2 M/M/1 queue. 122

6.3 M/M/1 with renege. 123

6.4 Processing rate with different combination. 128

xiii

6.5 Power saving performance for requests with different deadline ranges
[lower bound, upper bound]. 136

6.6 Server’s capacity effects on power saving. 137

6.7 Completion ratios and average response times. 138

xiv

CHAPTER 1

INTRODUCTION

Cloud computing realizes a long-held dream of converting computing capability

into a web-based utility. Cloud service providers have been striving to enrich their

product lines since the outset to facilitate people’s lives. People now are able to

share pictures or videos (e.g. DropBox [32], GoogleDocs [44]) and deploy heavy

computation tasks (e.g. Amazon EC2 [5]) easily on the Internet without worrying

about the limit of storage space, computing capacity, and the locations where storage

and computations take place. Meanwhile, IT companies greatly benefit from cloud

computing as well. The elasticity and high accessibility of cloud computing allows

them to deploy their online services (e.g. Google AppEngine [43]) or even their IT

infrastructures (e.g. Rackspace [97]) in an easier, cheaper, and faster way [12].

Cloud computing is drastically changing not only people’s living style, but also

the IT industry landscape. While people are enjoying the advances brought by

cloud computing, cloud service providers are facing challenging resource manage-

ment problems because of growing service demands. Simply increasing servers’ com-

puting capacities is not sufficient for today’s cloud ecosystem. More sophisticated

resource management strategies are urgently needed to achieve multiple objectives

simultaneously.

In this chapter, we first introduce cloud computing and its prosperity, and then

present the opportunities and challenges in the design of effective and efficient re-

source management approaches for delay-sensitive services in a cloud environment.

Whereafter, we define our research problem and summarize our contributions. The

structure of this dissertation is illustrated at the end of this chapter.

1

1.1 Cloud Computing

Cloud computing enables web-based on-demand deliveries of elastic computing re-

sources and applications with “pay-as-you-go” pricing [18][125]. It helps organiza-

tions or IT companies avoid the high capital investments on computing facilities

and the consequent expenses on facility management. At the same time, cloud com-

puting also provides them with reliable accessibility, scalability, disaster tolerance,

etc.

Cloud computing has been widely employed by various participants. The past

decade witnessed an expeditious growth of cloud computing. Based on the statistics

gathered by NSK Inc. [109], banking contributes the most activity in the cloud

(around 64%), especially after the introduction of mobile banking. Web social me-

dia takes second place with around 58% cloud activities, followed by online games,

photos, and file sharing. Even the governmental IT deployment turns towards the

cloud [109]. Because of the scalable and close control over the private cloud environ-

ment, over half of the United States government is using cloud computing services

and around $2 billion is spent on those services annually. Among the surveyed com-

panies, 82% of them saved money by moving to the cloud, and 14% downsized their

IT infrastructures after cloud adoptions.

Another set of statistics showing the popularity of cloud computing comes from

Amazon. Figure 1.1 shows the growth of EC2’s (Amazon’s infrastructure service)

over each year from 2007 to 2010. In 2007, only 2, 643 EC2 launches were recorded.

Since then, this number has been increasing drastically. In particular, from 2008 to

2009, a 375% boost was recorded. Figure 1.2 shows an exponential increase of the

objects stored in Amazon S3 (Amazon’s storage service) over each year from 2006

to 2013. There were around 2 trillion objects stored in Amazon S3 in the second

2

quarter of 2013, which is a tremendous achievement compared to the number of

stored objects in the fourth quarter of 2006 (less than 0.1 trillion).

Figure 1.1: Amazon EC2’s growth over the years [33].

1.2 Data Centers for Cloud Computing

Data centers, as the backbone of service provision, have played a critical role in the

proliferation of cloud computing’s scale and scope. The number of data centers has

grown rapidly for the last decade. Now a service provider may have one or several

geographically distributed data centers (leased from other data center services or

built by the service provider themselves) for the sake of high availability, disaster

tolerance, uniform response time, etc. Take Google as an example, it has data

centers in Portland, Oregon; Houston, Texas; Atlanta, Georgia, etc.

Besides the growing number of data centers, the sizes of newly built data centers

constantly refresh the record. Take Microsoft as an example; its first data center

built in 1989 just occupied 89, 000 sq ft. In 2006, the size of its new data center

increased to 500, 000 sq ft [34]. Around 2013, Google built a data center of approx-

imately 1, 000, 000 sq ft in Mayes county, Oklahoma, which was the largest known

3

Figure 1.2: The growth of the objects stored in Amazon S3 over the years [103].

data center at that time. However, recently SuperNap built a 2, 200, 000 sq ft data

center in Las Vegas, which is more than twice the size of Google’s largest data center

[38].

Data centers provide robust support for the services hosted inside. They help

service providers generate revenue by providing quality guaranteed services. Mean-

while, a significant amount of expenses are incurred to operate these data centers.

1.3 Challenges for Cloud Computing Resource Management

Behind the glory of cloud computing’s prosperity, service providers have to face

several grave challenges which make cloud computing resource management critical

for a service provider’s sustainable growth.

4

Figure 1.3: Cloud infrastructure revenue growth of several major cloud service
providers [46][111].

1.3.1 Revenue and Operational Cost

Service providers are experiencing a fast growth in both their business scales and

their revenues. As reflected by Figure 1.3, in the second quarter of 2014, all the

web giants have an increase on their revenues for cloud infrastructure services. Mi-

crosoft’s revenue shot up with a 164% increase, and took the first place among the

different service providers, followed by IBM, Google, Amazon, and Salesforce. Even

though the annual growth of Amazon dropped to 49% because of the strong rivals,

it could not conceal the vitality of the web service market [46][111].

Behind the business and revenue growth, high operational cost becomes a hard

nut to crack. The increasing rate of computing capacity (Moore’s Law) is greater

than the increasing rate of power efficiency [22]. As shown in Figure 1.4, with

a persistent exponential rise of the number of installed servers in data centers, the

spending on power and cooling, and management and administration in data centers

5

Figure 1.4: Worldwide spending on servers, power and cooling, and management
and administration [31].

has been continuously increasing since 1996. There are a total of 900, 000 servers

running in Google’s data centers and cost approximately 220 megawatts of power.

This number accounts for 0.01% of the world wide electricity use, and is enough to

power 200, 000 homes [45][34]. Google has to pay around 36M annually for their

electricity costs [96].

As a result, the effective resource management for data centers is vital not only

for the survival and continue growth for service providers in the highly competitive

business environment, but also to promote green and environmentally responsible

computing and minimize the adverse impacts on our global environment.

6

Figure 1.5: Response time effects on service providers[50]

1.3.2 Delay-Sensitive Service Requests

While power/energy efficiency is critical for cloud computing, service providers must

provide services that can satisfy the QoS requirements for a user’s service requests.

The service latency, for example, is usually closely related to the QoS.

From the revenue perspective, many cloud services usually consist of interac-

tive applications, which are commonly soft real-time in nature (e.g. online gaming

and stream media). A late response will not cause any catastrophic consequences.

However, it degrades service quality and may lead to low profits and loss of future

customers [93][68]. As shown in Figure 1.5, for Amazon, a 100ms increase in the

web page loading time leads to a 1% drop in sales. In Google, a 500ms delay results

in a 20% drop in traffic. The statistics gathered by TABB GROUP indicate that

1ms may cause a broker to lose $4 million in revenues. Therefore, successfully guar-

anteeing service request response time is critical for a service provider’s reputation

and, ultimately, its revenue.

7

1.3.3 Heterogeneities of Physical Servers, Data Centers, and

Services

The challenges for resource management also come from the large heterogeneities

in the cloud. From the hardware infrastructure perspective, a service provider may

deploy a large variety of computation components [67]. Previously, Xeon almost

monopolized the data center CPU market. Many energy-efficient processors, such

as Atom [52] and ARM [11], are exploring their own places in today’s data cen-

ters. Moreover, newly developed subsystems (e.g. GPU accelerators and solid state

drives) increase the heterogeneities of computing infrastructures.

From the data center perspective, data centers of the same service provider are

usually geographically distributed, and work in different environments with different

electricity prices, computing capacities, and communication costs.

With so many heterogeneities being considered, it is not easy to achieve the

balance of the trade-off between service quality and processing efficiency in terms

of low dollar cost or low power/energy consumption.

Additionally, cloud services impose more heterogeneities from the perspective of

various service level agreements (SLAs). As the contracts decided between cloud

service providers and cloud customers, SLAs define the specific QoS requirements.

In order to make revenue, a service provider has to honor the QoS requirement.

However, how to guarantee the different QoS requirements simultaneously is not a

trivial work, especially in resource stringent situations.

The heterogeneities in cloud computing raise many resource management chal-

lenges for service providers. Meanwhile, the heterogeneities provide service providers

with opportunities to improve their efficiencies by judiciously managing their com-

puting and energy resources.

8

1.3.4 Dynamics in Cloud Computing

Last but not the least, the large run-time dynamics in cloud computing make the

resource management even more challenging for service providers. The dynamics

come from both customers and computing facilities.

Since the service demands change abruptly during a day, traditional long-term

capacity plans with more than enough resources provisioned lead to a consider-

able resource waste. In order to cope with fluctuations of service demands, service

providers need to plan the capacity provisions with more fine-grained time scales

(e.g. hourly based capacity plans). In addition, computing facility dynamics affect

resource management decisions as well. For example, the electricity price at a data

center location may vary notably throughout a day because of the electricity gen-

erating technology and electricity consumption statistics at the location [120]. A

service provider has to judiciously dispatch the workload among its data centers lo-

cations according to the corresponding electricity prices in order to lower its expense

on power consumptions.

As evidenced in the previous work [120][99], to deal with run-time dynamics effec-

tively is not only necessary but also can be extremely lucrative for service providers.

1.4 Research Problem

In this dissertation, we are interested in the research problem of developing ad-

vanced, effective resource management methods and techniques for service providers

to balance the trade-offs among various factors. Specifically, our research problem

can be formulated as the following:

9

Problem. Given:

• the performance characteristics of a cloud platform,

— e.g. number of potentially geographically distributed data centers, servers

in a data centers, network performance, power consumption, etc.

• the specifications of a set of service requests,

— e.g. timing specifications, workload demands, QoS requirements, profit/penalty

features, etc.

• the design objectives and goals,

— e.g. profit maximization, electricity cost minimization, power consumption

minimization, etc.

determine where and how to serve the requests to optimize the design objectives.

1.5 Our Contributions

Towards the research problem, we make the following contributions:

1. First, we studied the scheduling problem for single-tier delay-sensitive ser-

vices on a single server. Specifically, we studied how to employ the profit

and penalty-aware scheduling approaches to maximize a service provider’s net

profit. Each service request is associated with a preferred finishing time. The

earlier a request can be finished, the higher the profit is. Contrarily, the more

delay exceeding the preferred finishing time, the higher the penalty is. Two

time utility functions (TUFs), one for profit and the other for penalty, are

assigned to each request for indicating the priority it has. Based on the pri-

orities, the requests in a server are scheduled in a non-preemptive manner.

Compared to the reference model based on which our methods are built, our

10

methods have a significant improvement on a service provider’s net profit. We

also extended the scheduling approaches to a preemptive one with carefully

designed preemption constraints.

2. Then, we studied the problem of single-tier delay-sensitive service scheduling

in a distributed environment. Specifically, we studied the profit and penalty-

aware request scheduling in a multi-electricity-market environment, in which

the electricity prices at different locations vary significantly. Even for the

same location, its electricity price varies differently throughout a day. By

taking advantage of different processing costs and processing capacities at dif-

ferent data center locations, we devised a request dispatching and scheduling

method, which significantly outperforms the static load dispatching strategy

consistently. We further extended this method by adopting the queuing model

to model the service requests and their processing, which are highly dynamic.

From our simulation study, we found that our method achieved 130% maxi-

mum higher net profit compared to a static workload dispatching method.

3. Next, we studied the scheduling problem for multi-tier services. Different from

single-tier services, multi-tier services have intertwined dependencies among

different tiers. A delay at early stages may result in an unpredictable request

failure at the end. In addition, many services provided in the cloud environ-

ment have finer defined SLAs (e.g. the response time of the service requests

have to be guaranteed statistically instead of just guaranteeing the average

cases). To this end, we designed an algorithm to statistically assign sub dead-

lines to the service tiers. A request is removed from the request queue if it

misses its local deadline. The method is able to discover potential failure re-

quests and remove them at early stages. The precious computing resources

can be saved for other requests that are more likely to be successfully ful-

11

filled. Compared to other traditional methods (e.g. fist come first serve), our

method is able to achieve an 80% shorter average response time with statisti-

cally guaranteed QoS in resource stringent situations. We further considered

the situation in which different multi-tier services share the same processing

units. This problem is more complicated because the sub-deadline decisions

are made interdependently among the different services. Our designed sub-

deadline assignment approach achieves a 50% shorter average response time

compared to traditional methods with statistically guaranteed QoS require-

ments.

4. Finally, we studied the problem of power minimization with statistically guar-

anteed QoS. The study was conducted in a shared environment, in which the

same service requests but with different QoS requirements share the same com-

puting unit. Since a server’s static power takes a large portion (around 70%)

of its total power consumption, we converted the request allocation problem

to a bin packing related problem and devised a method that is able to min-

imize the number of powered-on servers by judiciously packing various types

of requests into the same server. Our solution achieves a 55% maximum in

power saving compared to traditional methods.

1.6 Structure of the Dissertation

The rest of the dissertation is organized as follows. We discuss the related work

in Chapter 2. In Chapter 3, we present our research for the scheduling problem

for single-tier services on a single server in order to maximize a service provider’s

net profit. In Chapter 4, we extend the profit and penalty-aware strategy into a

multi-electricity-market environment. We discuss our study for the multi-tier service

12

scheduling problem in Chapter 5 and devise a sub deadline assignment method to

statistically guarantee each request’s QoS. Chapter 6 presents a power minimization

approach which is able to minimize a service provider’s power consumption with

statistically guaranteed QoS requirements. Finally, we conclude this dissertation

and discuss possible future work in Chapter 7.

13

CHAPTER 2

RELATED WORK

In this chapter, we present the related work. We first discuss traditional real-

time scheduling for embedded systems. Next, we discuss the differences between the

scheduling for embedded systems and the scheduling for cloud systems, followed by

the discussion of extensive scheduling studies that focus on cloud computing. Then,

we make a summary at the end of this chapter.

2.1 Real-Time Scheduling

In real-time systems, the success of an execution depends not only on the correctness

of the logical computational results, but also on the time at which the execution fin-

ishes. An execution in a real-time system is usually associated with a deadline. The

violation of a deadline (i.e. the timing constraint) degrades the quality of service,

and may even result in unexpected catastrophes (e.g. air traffic control) [106][75].

Therefore, scheduling becomes an effective way to avoid the timing constraint vio-

lations.

In general, real-time scheduling studies the problem of judiciously deciding when

and where to start the execution of a task in order to successfully guarantee a

system’s timing constraints. Meanwhile, some other design optimizations can be

achieved (e.g. power/energy minimization).

Real-time scheduling can be categorized into several sub-divisions. For example,

according to the timing constraint property, real-time scheduling can be divided into

hard [74][87][113] and soft [133][100][59][60] real-time scheduling. In hard real-time

scheduling, a request has to meet its timing constraint (i.e. deadline) strictly. No

timing constraint violation is allowed since an violation in hard real-time systems

will cause severe consequences. On the contrary, soft real-time does not have a

14

strict timing constraint. It is allowed to have some deadline violations. However,

the violations will degrade the service quality that the requests receive.

According to when scheduling decisions are made, real-time scheduling can be di-

vided into static [91][21] and dynamic [105][7] real-time scheduling. Static scheduling

methods make the scheduling decisions based on the prior knowledge of a request’s

parameters (e.g. each request’s arrival time, deadline, execution time, etc). Once

such a decision is made, it will not be changed during its execution. An exam-

ple of static real-time scheduling is the rate monotonic scheduling (RMS) [69]. On

the other hand, dynamic scheduling uses run-time information (e.g. the earliest

deadline, the highest profit, the most recent arrivals, etc). The scheduling decision

changes during its execution. The earliest deadline first (EDF) is an instance of

dynamic real-time scheduling.

According to the scheduling mechanism, real-time scheduling can be divided into

preemptive [135][42][123][88] and non-preemptive [17][72][56] real-time scheduling.

If the highest priority request is able to stop the execution of a low priority request

and start its own execution immediately, then the scheduling is called a preemptive

scheduling. Otherwise, it is a non-preemptive scheduling, in which a high priority

request has to wait until its preceding low priority request finishes its execution.

According to the platform, real-time scheduling can be categorized into single-

core [74] and multi-core [106] scheduling. Different from single-core scheduling,

multi-core scheduling not only has to decide task processing sequence, but also

needs to decide where a task should be processed. Therefore, multi-core scheduling

is more complicated than the scheduling for single cores.

15

2.2 Scheduling for Delay-Sensitive Cloud Services

There is no distinct boundary between the scheduling for traditional real-time sys-

tems and the scheduling for cloud computing. However, they have different focuses

in the following perspectives:

• Task Model:

The task model for traditional embedded system can be significantly different

from that in cloud computing. The tasks in embedded systems usually have

well-defined parameters (e.g. arrival times and execution times). To this end,

the scheduling for traditional embedded systems is usually deterministic. On

the contrary, in cloud computing, most parameters of a service request are

statistic ones, and correspondingly, statistic scheduling is needed for cloud

computing in most cases.

• Platform:

The scheduling for traditional embedded systems is commonly conducted on

single-core or multi-core platforms. All the computing components are closely

coupled. Differently, cloud computing takes place in distributed environments

(e.g. in a server farm or geographically distributed data centers), where com-

puting units are loosely coupled. Additionally, more factors have to be consid-

ered (e.g. electricity prices, large heterogeneities of computing units, service

demand dynamics, etc).

• Design Objective:

The scheduling for traditional embedded systems usually works in time critical

situations and is devised according to worst case analyses. Different from the

traditional real-time scheduling, the scheduling for cloud computing is more

16

focused on statistical timing constraint satisfactions (e.g. 90% of the requests

have to be finished before the deadline).

As our research work is focused on cloud computing platform, in what follows,

we survey the scheduling research for cloud platforms. Specifically, we category the

existing work into three groups: (i) scheduling in a single server; (ii) scheduling in

a single data center; and (iii) scheduling among multiple data centers.

2.2.1 Scheduling in a Single Server

We first discuss the related work for single servers. Many of the studies in this

category employ the traditional utility accrual (UA) approach [30][79].

Jensen et al. [57] first introduced the concept of TUFs, which are usually em-

ployed to indicate the fact that the different completion times of a request will

contribute differently to the system. Based on the TUF model, several UA based

[30, 79] scheduling approaches have been developed (e.g. [70, 71, 128, 126, 127]).

For example, Li et al. in [70] proposed an algorithm called “Generic Benefit

Scheduling” (GBS) based on TUF to schedule activities that are subject to various

timing and mutually exclusive resource constraints. Utility density is implemented

as the activity’s priority metric. In their work, only the profit that a request con-

tributes to the system when successfully processed is considered.

Later, a number of methods [16][29][94][53] were proposed to account for the

penalty when a request is discarded or misses its deadline. For example, Bartal [16]

et al. studied the on-line scheduling problem when penalties have to be paid for

rejected real-time tasks. Chun et al. [29] and Irwin et al. [53] adopted an extended

time utility function. A decay rate is associated with each real-time task, reflecting

17

the increasing risk of completing the task late. Therefore, when a real-time task is

completed late, it earns a negative utility, indicating a penalty rather than a profit.

In [132], Yu et al developed a profit and penalty-aware scheduling method.

Specifically, a task is associated with two different TUFs: profit and penalty TUFs.

A profit is assigned to the system if a request completes by its deadline. The

system may suffer from a penalty because of a deadline missing or an early discard.

By considering the potential profit and penalty that the requests may achieve, the

method judiciously schedules the requests to maximize a service provider’s net profit.

2.2.2 Scheduling in a Single Data Center

We then discuss the literature related to the scheduling for a single data center,

which is more complicated than the scheduling for a single server. Several design

parameters have to be decided simultaneously (e.g. workload dispatching, resource

allocation, server working frequencies, etc.). The studies in this category can be di-

vided into two sub-divisions according to the platforms based on which their methods

are designed (e.g. configurable infrastructures and fixed infrastructures).

Configurable Infrastructure:

The studies in this sub-division employ configurable infrastructures. In order to

achieve the desired design criteria, the studies dynamically decide the sizes of virtual

machines, conduct server consolidations, or adjust the number of powered-on servers

and their working frequencies.

• Dynamically Adjust Virtual Machine Sizes:

Chen et al. [26] proposed a new virtual machine sizing approach called “effec-

tive sizing”. They considered various factors that will impact the aggregated

18

resource demand of a physical server, in which the virtual machine will be

deployed. Based on the effective sizing approach, they further designed a set

of polynomial time virtual machine allocation algorithms to minimize the data

center operational overhead (e.g. virtual machine migration).

Liu et al. in [78][9] studied a method for multi-tier architecture that decides the

workload distribution and computing capacity allocation to optimize the SLA-

based profit a data center may achieve. Later, in [134], energy consumption

was considered and an energy consumption control method was proposed to

satisfy certain SLAs and energy constraints.

Similarly, Urgaonkar et al. [115] proposed a method that combines admission

control and routing together with resource allocation to balance the trade-

off between the throughputs of applications and the energy costs of the data

centers.

Different from traditional virtual machine resource provisioning approaches,

in which the size of a virtual machine is usually decided individually, Meng et

al. [86] decided the sizes of multiple virtual machines together based on their

aggregate capacity needs. By exploring the workload patterns in those virtual

machines, their method employs statistical multiplexing to allocate required

computing resources to the virtual machines as a whole.

• Server Consolidation:

Server consolidation has been a common approach to achieve high power/energy

efficiency for data centers. The virtualization technology has enabled multi-

ple virtual machines to be executed on the same physical server. Since a

server’s power consumption is not exactly proportional to its utilization, a

server may consume a significant amount of power even when it is not fully

19

utilized. Therefore, consolidation helps increase the utilization of a physical

server and thus minimize the number of activated physical servers.

For example, in [116], Verma et al. presented consolidation decisions that

are made based on the correlations among different workloads. In [85], Mas-

troianni et al. devised two probability functions to model the effects of the

virtual machine allocation and migration. By statistically analyzing the need

of a virtual machine allocation or migration, they minimized the number of

powered-on servers, and reduced the power consumptions in data centers.

Marty et al. [83] proposed a server consolidation method based on the utiliza-

tion of memory, where most sharing occurs among virtual machines. Their

method maximizes memory accesses for each virtual machine. Meanwhile, it

minimizes interferences among different virtual machines by dynamically re-

assigning virtual machines and supporting content-based page sharing among

the virtual machines.

Besides the above mentioned studies, other work also employs server consoli-

dation to realize its objective [108][84][107][110][23].

• Dynamic Power Management and Dynamic Voltage and Frequency

Scaling:

Extensive research has been conducted for dynamic resource provision by em-

ploying the dynamic power management (DPM) technology (e.g. [121][64][73][77]).

These approaches dynamically modulated the availability of the underlying

computing facilities (e.g. increase/decrease the number of powered-on physical

servers) according to the workload predictions or in response to the workload

changes.

20

Lin et al. [73] analytically formulated their optimal offline solution and devel-

oped the corresponding online algorithm to bound the number of powered-on

servers with respect to certain delay constraints.

In [25], Chase et al. presented an architecture for resource management in a

hosting center operating system. They adaptively provisioned server resources

according to the offered workload. The efficiency of server clusters was im-

proved by dynamically resizing the active server set in accordance with SLAs

to respond to power supply disruptions or thermal events.

Another commonly used approach is to employ the dynamic voltage and fre-

quency scaling (DVFS) in order to dynamically adjust the performance and

the power dissipation of a server. For example, in [19], Beloglazov et al. pro-

posed a two-layer optimization (e.g. global and local layers) to minimize the

power consumption in data centers. The local layer monitors each virtual

machine’s utilization, and dynamically adjusts a physical server’s working fre-

quency through DVFS [119]. The global layer uses bin-packing methods to

find a new destination for the virtual machine that has to be migrated.

Wang et al. [121] proposed a power minimization approach based on the

traditional queuing model. Their method determines the appropriate num-

ber of powered-on servers and their running modes (i.e. execution speeds)

to minimize power consumptions while statistically guaranteeing the QoS re-

quirements.

Sarood et al. [104] proposed a model that takes cooling energy consump-

tions into consideration. By reasonably distributing workloads and employing

DVFS, they successfully lowered the overall energy consumed by their cooling

system while satisfying temperature constraints.

21

Chen et al. [27] developed a metric called “frequency gradient” to study the

impact of changes in processor frequency on the end-to-end response times of

multi-tier applications. Their work makes the end-to-end performance-aware

DVFS strategy capable for multi-tier applications.

Wang et al. in [120] solved a problem of managing power consumption in

multi-tier web clusters equipped with heterogeneous servers. Their method

employs dynamic voltage scaling (DVS). By adjusting the number of powered-

on servers and their working frequencies, they effectively reduced the energy

consumption in their web clusters.

Fixed Infrastructure

The studies in this sub-devision are developed on fixed computing infrastructures.

According to the scheduling technologies applied, they can be divided into three

groups in general.

• Acceptance and Queue Length Control:

To control the requests execution subject to their end-to-end deadlines or

other timeliness requirements, acceptance control and queue length control

via random removal are commonly used [62][122][76][89][36], especially when

a system is under overloading situations.

Wang et al. [122] employed acceptance control to optimize a service provider’s

revenue with the least operational costs for multi-tier services in a virtualized

environment. Liu et al. [76] designed an adaptive acceptance control method to

optimize the performance for web applications by adjusting the queue lengths.

Acceptance control and queue length control help service providers alleviate

the system workload and thus guarantee timeliness requirements.

22

• Sub Deadline Assignment:

Sub deadline assignment is another popular approach for guaranteeing end-to-

end deadlines. For example, Hong et al. [49] introduced a technique to assign a

sub deadline for each service tier. The end-to-end deadline can be guaranteed

if all sub services can meet their sub deadlines.

Yu et al. [130][131][129] proposed a sub deadline assignment method by pro-

portionally dividing the overall end-to-end deadline according to the best or

worst execution times in the service tiers. A similar idea was employed by

Mao et al. in [82].

• Request Mapping and Scheduling:

As applications usually consist of a series of intricate inter-dependent services,

such applications are usually modeled as direct acyclic graphs (DAG). Re-

quest mapping and scheduling sometimes are employed together to optimize

a system’s performance in terms of short makespans or low processing costs.

Kamthe et al. [58], proposed a scheduling approach that accurately estimated

the earliest start time of each sub service in a DAG. Then, the request execu-

tion sequence and thus the makespan were optimized based on those earliest

start times. Similarly, Tang et al. [112], developed a stochastic heterogeneous

earliest finish time (SHEFT) scheduling approach to reduce the makespan of

a DAG. Arabnejad et al. [8] proposed a novel list-based scheduling algorithm

for heterogeneous computing systems to minimize a task’s makespan.

2.2.3 Scheduling in Multiple Data Centers

Different from the scheduling for a single data center, in order to achieve the desired

design criteria (e.g. low operational cost, power/energy consumption), the schedul-

23

ing methods for multiple data centers have to take the geographical information into

consideration (e.g. different electricity prices or energy efficiencies of the different

data centers). Most of the studies in this category focus on designing energy-efficient

resource management approaches on configurable infrastructures. Specifically, they

judiciously dispatch workload among different data center locations, and cautiously

decide the number of powered-on servers and their working frequencies in the cor-

responding data center.

The research in [98][99] extended the work in [120] to a distributed data center

architecture in a multi-electricity-market environment. Rao et al. modeled their

problem as a constrained mixed-integer linear programming formula, and proposed

an efficient approach to approximate the problem using a linear programming for-

mulation.

Le et al. studied the advantages of using green energy (e.g. energy generated

by wind or solar energy). These studies help replace the usage of “brown” energy

(produced via carbon-intensive means) with “green energy” during a data center’s

operation in order to cut down the cost spent on energy consumptions. Frameworks

for multi data center service was introduced in [65][66].

Garg et al. [37] proposed near-optimal scheduling policies that exploit hetero-

geneity across multiple data centers in order to improve energy utilization efficiencies

for benefiting both service providers and our society. Several energy efficiency fac-

tors (e.g. energy cost, carbon emission rate, workload, and CPU power efficiency)

that vary across the multiple data center locations were considered in their work.

Similarly, Chen et al. [28] developed a set of on-line request dispatching and

resource allocation solutions for distributed hosting centers in order to minimize the

energy consumption of the servers and thus the operational costs.

24

2.3 Summary

In this chapter, we first introduced traditional real-time scheduling. Then, we dis-

cussed the differences between the scheduling for embedded systems and the schedul-

ing for cloud computing, followed by the discussion of related work.

In the following chapter, we present our contributions for single-tier delay-sensitive

service scheduling design on a single server.

25

CHAPTER 3

SINGLE-TIER SERVICE SCHEDULING ON SINGLE SERVERS

For real-time services, timeliness is a major criterion of judging real-time service

quality levels. Due to the high variability of the Internet, cloud applications are

more of soft real-time in nature. Guaranteeing hard deadlines for real-time services

would be neither practical nor necessary in most scenarios. In this regard, besides

pre-assigned deadlines, some other timing information that is closely related to QoS

become important metrics when processing delay-sensitive cloud requests, e.g. profit

and cost. In this chapter, we present our research for single-tier service scheduling on

a single server. A set of utility accrual based scheduling approaches for maximizing

a service provider’s profit are discussed.

3.1 Research Problem Introduction

To improve the real-time service performance, one approach is to employ the tra-

ditional UA approach [30, 79]. In [57], Jensen et al. first proposed to associate

each task with a TUF, which indicates that the completion of a task will assign the

system a certain value of utility, and the utility value varies with the time when

the task is finished. Specifically, a TUF as shown in Figure 3.1(a) describes the

value or utility accrued by a system at the time when a task is completed. Based

on this model, there were extensive research results published on the topic of UA

scheduling ([70, 71, 128, 126, 127]). While Jensen’s definition of TUF allows the se-

mantics of soft timing constraints to be more precisely specified, all these variations

of UA-aware scheduling algorithms imply that the aborted tasks neither increase

nor decrease the accrued value or utility of the system.

26

U U U

t 0t t0

0

L(t)G(t)

(a) (b) (c)

Figure 3.1: Time utility functions.

We believe that, to further improve the performance of real-time services over

the Internet, it is important to not only measure the profit when completing a task

in time, but also account for the penalty when a task is aborted or discarded. In

addition, the time at which a real-time service is aborted is also important. First,

the more service requests are discarded and the longer a client waits fruitlessly, the

lower the quality of service client receives. As a result, service providers have to pay

higher cost, either in the form of monetary compensation or losing future service

requests from unsatisfied clients. Second, before a task is aborted or discarded, it

needs to consume system resources, including network bandwidth, storage space, and

processing power, and thus can directly or indirectly affect the system performance.

This is especially true if we assume real-time applications may be dissected and

migrated across an entire cloud infrastructure [24, 63]. Therefore, if a real-time

task is deemed to miss its deadline with no positive semantic profit, a better choice

should be one that can detect it and discard it as soon as possible.

A number of models [16, 29, 94, 53] were proposed to account for the penalty

when a real-time service request is discarded or misses its deadline. For example,

Bartal [16] et al. studied the on-line scheduling problem when penalties have to be

paid for rejected real-time tasks. Chun et al. [29] and Irwin et al. [53] adopted an

extended time utility function as shown in Figure 3.1(b). According to this model,

a decay rate is associate with each real-time task, reflecting the increasing risk of

completing the task late in the future. Therefore, when a real-time task is completed

27

late, it earns a negative utility, indicating a penalty rather than the profit. These

models, however, do not account for different penalties when aborting a real-time

task at different times.

In this research, we study the real-time service scheduling problem based on a

task model similar to the one proposed by Yu et al. [132]. Specifically, a task is

associated with two different TUFs, as showed in Figure 3.1(c), a profit TUF (G(t))

and a penalty TUF (L(t)). The system takes a profit (determined by its profit TUF)

if the task completes by its deadline, and suffers a penalty (determined by its penalty

TUF) if the task misses its deadline or is dropped before its completion. The penalty

to abort a pending real-time service request can be the same or different from that

of missing the deadline, which depends on the characteristics of the penalty TUF.

Different from Yu’s model, we use a novel method to calculate task’s utility and

use utility density to describe a task’s priority. The “critical time” for each task is

more strict, and we add an admission step when there is a new task arrives since

congested ready queue will decrease the system’s performance. It is a waste of

system resources if tasks wait fruitlessly.

We conduct analysis on how to optimize the accrual utility when scheduling a

set of aperiodic real-time service requests. We first assume that the service requests

are scheduled in a non-preemptive manner. Two scheduling methods are presented.

The first scheduling method is developed based on the concept of “opportunity

cost” [20] from economics that can help evaluate the fulfillment of a real-time service

request. The second method employs a more sophisticated but robust method to

formulate the potential system profit by developing a speculated execution order

for the ready tasks. We then extend our scheduling methods to deal with real-

time services that may preempt each other. In addition to carefully choosing the

ready task to run, our scheduling methods judiciously discard pending requests,

28

abort task executions, cautiously preempt current running tasks, and therefore can

achieve better performance. Our experimental results also show that the proposed

algorithms can significantly outperform the traditional scheduling approaches such

as the Earliest Deadline First (EDF), the traditional UA scheduling algorithm i.e.

the Generic Utility Scheduling(GUS) [70], the Risk/Reward algorithm [53], and a

previous scheduling approach based on a similar model, i.e. the Profit Penalty aware

scheduling (PP-aware scheduling) [132].

3.2 Preliminary

In this section, we first introduce the task and architecture models considered in

this paper. We then use an example to motivate our research.

3.2.1 Task Model and System Architecture

In this paper, we consider a single sequence of randomly arrived real-time tasks

Γ = {τ1, τ2, ..., τn}, with τi defined using the following parameters:

• [Bi,Wi]: The best case execution time Bi and the worst case execution time

Wi of τi;

• Di: The relative deadline of τi;

• fi(T): The probability density function for the execution time of τi;

• Gi(t): The profit TUF, which represents the profit accrued when a task is

completed at time t. We assume Gi(t) is a non-increasing unimodal function

before its deadline, i.e. Gi(tp) ≥ Gi(tq) if tp ≤ tq, and Gi(Di) = 0.

• Li(t): The penalty TUF, which represents the penalty suffered when a task is

discarded or aborted at time t. We assume Li(t) is a non-decreasing unimodal

29

Host Manager
(admission/scheduling/

abort)

Ready Queue

Execution
Host

Real-Time
Service

Requests

Abort

Figure 3.2: The architecture for the service provider.

function before its deadline, i.e. Li(tp) ≤ Li(tq) if tp ≤ tq, and a task is

immediately discarded once it missed its deadline.

Note that, even though the deadline of a task can be implicitly defined using

appropriate profit and penalty TUFs, we opt to list the deadline explicitly as a

parameter for ease of presentation. As shown above, a task is associated with both

a profit function and a penalty function with function values varying with time.

Therefore, while executing a task the system has a potential to gain profit, it also

has a potential to encounter a penalty at a later time. The system performance is

therefore evaluated by its total utility after penalty is deducted from profit.

We assume an architecture for the service provider depicted in Figure 3.2. Specif-

ically, the service provider contains two computing components, i.e., the manager

host and the execution host, that can work concurrently. The manager host is in

charge of accepting, scheduling and aborting real-time service requests, and the ex-

ecution host fulfill the selected service requests from the manager host. There may

be one or more execution hosts for each service provider. We limit our research to

one single execution host in this paper.

With the task and architecture model introduced as above, our problem can be

formally formulated as follows.

30

Problem 3.2.1. Given a task set Γ = {τ1, τ2, ..., τn} as described above, develop

on-line scheduling methods such that the total accrued utility is maximized.

3.2.2 A Motivation Example

The problem defined in Problem 6.2.1 is NP-hard since a simpler version of this

problem, i.e. the total weighted completion time scheduling problem [13], is shown

to be NP-hard. To show that the commonly used scheduling policy such as the EDF

or the traditional utility accrual approach such as the GUS [70] become ineffective

to address this problem, consider the example shown in Figure 3.3.

Assume that two real-time service requests arrive at the same time (t = 0) with

their characteristics shown in Figure 3.3. We assume that the actual processor time

of each request is evenly distributed between the interval of its best case and worst

case execution time. To make the example more concrete, we assume that the actual

processing times for these two requests are 50 and 60, respectively.

When EDF is applied, τ1 has a higher priority than τ2 and is executed first. It

completes at t = 50 with profit of G1(50) = 180 − 2 × 50 = 80. Then τ2 starts

its execution. At t = 100, it misses its deadline and will incur more penalty if its

execution continues. Therefore, the execution of τ2 is discarded at t = 100 with

penalty of L2(100) = 2× 100 = 200. The total utility to process these two requests

is therefore 80− 200 = −120.

The GUS algorithm chooses the task with the largest expected profit density to

execute first. Under our task model, the expected profit of τ1 and τ2, i.e. G(τ1) and

31

Figure 3.3: Three different schedules for two real-time tasks τ1 and τ2 arriving at
the same time t = 0.

G(τ2), can be calculated as:

G(τ1) =

 80

20

(180− 2t)× 1

80− 20
dt = 80

G(τ2) =

 120

20

(400− 3t)× 1

120− 20
dt = 190

At t = 0, we have no knowledge of the actual execution time of τ1 and τ2, a

reasonable estimate would be the one using their expected values, i.e. 50 and 70,

respectively. As a result, τ2 is chosen to execute first since its expected profit density

(expected profit divided by expected execution time) 190/70 is higher than that of

τ1, i.e. 80/50. It completes at t = 60 with profit of G2(60) = 400 − 3 × 60 = 220.

Then τ1 starts its execution. At t = 80, it misses its deadline and is aborted to

prevent even higher loss. The total utility to process these two requests is therefore

220− 80 = 140.

32

An astute reader may immediately point out that, after τ2 completes at t = 60,

it is less likely that τ1 can complete by its deadline, given that its best case execution

time is 20. Therefore, τ1 should be immediately aborted at t = 60 with a total utility

profit of 220− 60 = 160. Note that, after τ2 is selected to execute first, its expected

execution time would be 70. Given the expected execution time of τ1 being 50, it

is more likely that τ1 will miss its deadline. Therefore, a better scheduling decision

would discard it at t = 0 with total profit of 220 in this case, as the third schedule

shown in Figure 3.3.

In our example, we can see that the EDF has the worst performance since it

makes scheduling decisions solely based on tasks’ deadlines. The traditional utility

accrual scheduling method takes the individual value function into consideration

and therefore can achieve better performance. The problem, however, is that the

traditional utility accrual scheduling approaches (such as GUS) fail to take the

abortion or discard penalty and the timing for the abortion or discard penalty into

consideration. Clearly, how to select the appropriate task to run so as to maximize

the profit and how to discard real-time tasks as soon as possible in overloaded

situations in order to control the penalty are vital for our research problem.

3.3 Non-Preemptive Approach

In this section, we present our on-line non-preemptive scheduling solutions to address

the problem defined in the previous section. Since the execution of a task may gain

positive profit or suffer penalty and thus degrade the overall computing performance,

judicious decisions must be made with regard to executing a task, discarding or

aborting a task, and when to discard or abort a task. In what follows, we present

33

two metrics to measure the expected utility when executing a real-time task, and

based on which, we develop two scheduling algorithms.

3.3.1 The Opportunity Cost Based Utility Metric

Our first utility metric is built upon the concept of opportunity cost [20] in economics.

In economics, the opportunity cost refers to the value associated with the next best

available choice that one has to give up after making a choice. When scheduling a

set of real-time tasks at t = T , let expected utility of running τi alone be Ui(T) and

its opportunity cost be OCi(T). Then we can conveniently formulate the expected

utility U(τi, T) to run τi at t = T as

U(τi, T) = Ui(T)−OCi(T). (3.1)

The problem becomes how to calculate Ui(T) and OCi(T).

Since the task execution time is not known a prior, we do not know if executing

the task will lead to positive profit or loss. Given its probabilistic distribution, we

can determine the expected profit and loss statistically. Given a task τi with arrival

time of ri, let its predicted starting time be T . Then the expected profit (Gi(T)) to

execute τi can be represented as

Gi(T) =

 ∞

0

Gi(t+ (T − ri))fi(t|t+ T < D)dt

=

 Di

Bi

Gi(t+ (T − ri))fi(t)dt (3.2)

Similarly, the expected loss (Li(T)) to execute τi can be represented as

Li(T) = Li(D)P (t+ T > D)

= Li(D)

 Wi

Di−(T−ri)

fi(t)dt. (3.3)

34

Therefore, the expected utility Ui(T) can be represented as

Ui(T) = Gi(T)− Li(T). (3.4)

When Ui(T) > 0, it means that the probability to obtain positive profit is no

smaller than that to incur a loss if we choose to execute τi at t = T . Since Gi(T) is

a monotonic decreasing function of T , and Li(T) is a monotonic increasing function

of T , Ui(T) must be a monotonic decreasing function of T .

Note that, even though two tasks may have the same expected utility, they may

have different expected execution times. We define a parameter ρi to capture the

expected utility density for task τi as follows:

ρi(T) = Ui(T)/Ci. (3.5)

where Ci is the expected execution time of task τi. There exists a t0 such that

ρi(t0) = 0. (3.6)

The time t = t0 is called the critical point. Apparently, when t > t0, it is more

likely that it will incur a loss rather than a profit if we choose to execute τi. We can

further relax Equation (3.6) by imposing a threshold (δ), i.e.

ρi(t0) ≥ δ. (3.7)

We call δ as the utility density threshold.

We next introduce how to formulate the opportunity cost when choosing to run

task τi at t = T . The original concept of “opportunity cost” is the value for the

next best available choice. It is hard to identify the “next best choice” since the

exact reason we need the opportunity cost is to set up the preference order when

choosing tasks to run. In our metric, the opportunity cost is calculated as the decay

of expected utilities by other tasks. Specifically, let the expected utility of τj at

35

t = T be Uj. Then if we choose τi to execute at t = T and after its completion, the

expected utility of τj is reduced to Uj(T + Ci), where Ci is the expected execution

time of τi. Provided we can remove the task timely when its expected utility is less

than zero, we thus define the opportunity cost to run τi at t = T , i.e. OCi(T), as

OCi(T) =
1

n− 1

n
j=1,j ̸=i

max((Uj − Uj(T + Ci)), 0). (3.8)

With both Ui(T) and OCi(T) formulated, we are now ready to introduce our

scheduling algorithm. Our non-preemptive scheduling algorithm works at scheduling

points that include: the arrival of a new task, the completion of the current task,

and the critical point of the current task. The detailed algorithm is described in

Algorithm 1.

Algorithm 1:The scheduling algorithm based on opportunity cost

Input : Let {τ1, τ2, ..., τk} be the accepted tasks in the ready queue, and let Ci

be the expected execution time of τi. Let current time be t and let τ0
be the task currently being executed, expected execution time of τ0 is
C0. Let the expected utility density threshold be δ.

1 if A new task, i.e. τp arrives then
2 Accept τp if ρp(C0) > δ;

3 Reject τp if ρp(C0) ≤ δ;

4 Remove τj in the ready queue if ρj(C0) ≤ δ;

5 if τ0 is completed then
6 Choose τi with the largest system utility density, i.e. ρi(t) = maxkρk(t);
7 Remove τj in the ready queue if ρj(Ci) < δ;

8 if t = the critical time of τ0 then
9 Abort τ0 immediately;

10 Choose τi with the largest system utility density, i.e. ρi(t) = maxkρk(t);
11 Remove τj in the ready queue if ρj(Ci) < δ;

When a new job arrives, its expected utility density is calculated based on Equa-

tions (3.1), (4.5), and (3.8). If its expected utility density is larger than the pre-set

36

threshold, it is accepted and is rejected otherwise. When the current running task

completes, the task in the ready queue with the highest expected system utility

density is chosen to be executed. When the time reaches the critical point of the

current running task, it implies that it will mostly likely incur utility density less

than the threshold and is thus worthless of continue execution. In that case, the

task is immediately discarded, and a new task will be chosen to execute. At every

scheduling point, the expected utility density of the tasks in the ready queue are

checked. Since the expected utility density decreases monotonically with time, the

task with expected utility density less than the threshold is aborted. The complex-

ity of Algorithm 1 comes from the calculation of the expected system utility values

for the task set, with the complexity of O(n2) where n is the number of tasks in the

ready queue.

3.3.2 The Speculation Based Utility Metric

From Equation (4.3), (4.4) and (4.5), we can clearly see that the expected utility of

running a task depends heavily on variable T , i.e. the time when the task can start.

If we can know the execution order and thus the expected starting time for tasks

in the ready queue, we will be able to quantify the expected utility density of each

task more accurately. In this section, we develop our second utility metric based on

a speculated execution order of the tasks in the ready queue.

The general idea to generate the speculated execution order is as follows. We

first calculate the expected utility density for each task in the ready queue based

on the expected finishing time of the current running task. Then the task with the

largest one is assumed to be the first task that will be executed after the current

task is finished. Based on this assumption, we then calculate the expected utility

37

Algorithm 2: Generating the speculated execution order and the
expected utility for task in the ready queue

Input : Let Γ = {τ1, τ2, ..., τk} be the accepted tasks in the ready queue, and let
ri, Ci represent the arrival time and expected execution time of τi. Let
the current time be t

Output: The new list Γ′ = {τ ′1, τ ′2, ..., τ ′k} with the speculated execution order
and their corresponding expected utility density ρ′j for τ ′j, 1 ≤ j ≤ k.

1 if A task τ0 is being executed then
2 T = r0 + C0;

3 else
4 T = t;

5 while Γ is not empty do
6 for Each task i in Γ do
7 Calculate ρi(T) based on Equations (4.3), (4.4), (4.5), and (3.5);

8 Select τj with the highest ρj(T);

9 Add τj to the end of Γ′;
10 ρj = ρj(T);

11 T = T + Cj;
12 Remove τj from Γ;

38

densities for the rest of the tasks in the ready queue and select the next task. This

process continues until all tasks in the ready queue are put in the order. While

completed, we essentially generate a speculated execution order for the tasks in the

ready queue and, at the same time, calculate the corresponding expected utility

density for each task. The detailed algorithm is described in Algorithm 2.

The scheduling algorithm based on our speculated utility metric is very similar

to Algorithm 1 and is thus omitted. The only difference is that the speculation

expected utility, rather than the opportunity cost based utility, for each task in the

ready queue is calculated at each scheduling point, including the arrival of a new

task, the completion of the current task, and the critical point of the current task.

The complexity of the scheduling algorithm mainly comes from Algorithm 2. It

is not difficult to see that the complexity of Algorithm 2 is O(n2) with n the number

of tasks in the ready queue.

3.4 Preemptive Approaches

In the previous section, we introduce two methods to quantify the potential sys-

tem utility when scheduling a set of real-time requests nonpreemptively. Since a

preemptive real-time scheduling technique tends to be more responsive for a higher

priority request, and can achieve higher schedulability and throughput than its non-

preemptive counterpart, we are interested in studying how to schedule a real-time

task set preemptively to maximize the total accrued system utility.

When employing the preemptive scheduling method to schedule real-time tasks

with the goal of maximizing the accrued utility, a critical issue is to determine when

the preemption should occur. An intuitive approach is to define the priority of a task

based on its expected utility density (Equation (3.5)). Nevertheless, such an uncon-

39

strained preemptive scheduling may or may not improve the system performance,

in terms of accrued system utility, when compared to a non-preemptive one.

Consider the two examples in Figure 3.4. Figure 3.4(a) shows two tasks scheduled

both preemptively (based on the expected utility density) and non-preemptively.

The parameters for both tasks are listed in the figure. In preemptive method, Task

τ1 arrives and starts its execution at arrival time t = 0. At time t = 1 task τ2 arrives.

Note that, at t = 1, we have ρ1(t) = 1.3 and ρ2(t) = 1.6. Therefore, τ2 comes with

a higher expected utility density and preempts τ1. Task τ1 continues its execution

after task τ2 completes. The total utility in this method is 12. In the corresponding

non-preemptive method, task τ2 misses its deadline and the total utility in this

method is 3. This example shows that by processing the higher “priority” job first,

the preemption helps increase the total utility of the system.

Now let us consider the example in Figure 3.4(b). For the two tasks in Fig-

ure 3.4(b), at time t = 1, we have ρ1(t) = 1.6 and ρ2(t) = 2.3. Therefore τ2 has

a higher priority than τ1. When these two tasks are scheduled in the preemptive

manner, task τ1 misses its deadline and the total utility is 3. Both two tasks can

meet their deadlines when they are scheduled in the non-preemptive manner with a

total utility of 12.

This example illustrates that unconstrained preemption does not always help

improve the accrued utility. Note that, since the profit and penalty TUFs of each

task vary with time, its “priority” also varies with time. In this case, all tasks in the

ready queue need to be checked for priority at every time instance. Hence a perfect

preemptive scheduling would be impractical due to its prohibit computational cost,

even if it is theoretically possible. In addition, a large number of unconstrained pre-

emptions disrupts task executions, makes them less likely to complete before their

deadlines, and leaves alone the large overhead coming with the preemptions. Our

40

(a) Preemptive scheduling is better than the non-preemptive schedul-
ing

(b) Non-preemptive scheduling is better than the preemptive schedul-
ing

Figure 3.4: Preemptive vs. non-preemptive scheduling two real-time requests to
maximize the accrued system utility.

41

empirical studies also showed that unconstrained preemptive scheduling can poten-

tially degrade the performance than the corresponding non-preemptive scheduling.

To this end, we want to limit the scenarios of when the preemption can occur to

improve the performance of the preemptive scheduling.

To constrain the preemptions, we first limit the time instances that at when

preemptions can occur. Instead of letting a higher priority task always preempt a

lower priority task, we allow that such a preemption can only happen when a new

task comes or at a regular checking point, which we call preemption checking point.

Let the last preemption occurs at time t = T0. A task can be preempted at t = T

only if new tasks arrive at t = T or

(T − T0) mod Lint = 0, (3.9)

where Lint is the length of the preemption checking point interval.

At a preemption checking point, the higher priority task does not necessarily al-

ways preempt the one with lower priority, if the potential gain to execute the high

priority task is not significantly higher than the gain achieved by continuously exe-

cuting the current running task. We define a parameter called preemption threshold

for this purpose. Let the current running task τ0’s conditional expected accrued util-

ity density be ρ̂0(τ0, t) at time t, and preempting task τp’s expected accrued utility

density be ρp. Task τp preempts τ0 only when the following equation is satisfied

ρp(τp)− ρ0(τ0, t) > ζ. (3.10)

where ζ is the preemption threshold.

To further constrain preemptions, we do not allow the current task be preempted

if it can complete by its deadline even it requires its worst case execution time.

Preempting such tasks can delay the completion of these tasks, and potentially

42

turn the profit into penalty if these tasks miss their deadlines. This constraint is

illustrated by Equation (3.11).

Sτ0 +WEτ0 ≤ Dτ0 . (3.11)

where Sτ0 is the starting time of current running task τ0. WEτ0 means the worst

case execution time of τ0. Dτ0 represents τ0’s deadline.

We summarize our preemption rules and present the preemptive scheduling al-

gorithm in Algorithm 3.

Algorithm 3: Preemption checking

Input : Let τ0 be the task currently being executed, and τp be the task wants
to preempt τ0, current time be t, ρ0(τ0, t) be the conditional expected
utility density of τ0 at time t, ρp(Cp) be the expected utility density of
τp, Cp and C0 are the expected execution time of τp and τ0, respectively;

1 When a new task arrives or it is the preemption checking point;

2 if ρp(Cp)− ρ0(τ0, t) > ζ then
3 Check what is τ0’s worst case finish time;
4 if Sτ0 +WEτ0 ≤ Dτ0 then
5 Preemption not allowed;

6 else
7 Preemption allowed;

From Algorithm 3, when a preemption checking point is reached or when there

is a new task arrives, scheduler first compares the preempting task’s expected utility

density ρp(Cp) with the current running task’s conditional expected utility density

ρ0(τ0, t). If the preempting task’s expected utility density exceeds the current run-

ning task’s conditional expected utility density by a preemption threshold, then the

scheduler further checks if the current running task can completes its execution in

its worst case or not. If the current running task can be completed even in its worst

case, no preemption is allowed in order to protect the current running task, since

43

this current running task will absolutely contribute positive utility to the system.

Otherwise, the preemption may postpone the current running task and result in a

penalty because of missing its deadline.

3.5 Experiments

In this section, we use experiments to investigate the performance of our proposed al-

gorithms. The following six representative scheduling approaches were implemented

and compared:

• EDF: The execution order of tasks are determined based on the EDF schedul-

ing policy;

• GUS [70]: The execution order of tasks is determined by the expected utility

density, or the accrued utility per unit time;

• PP: This is a previous approach developed based on a metric called Risk

Factor [132]. It adopts similar system models as those used in this paper;

• RR: The Risk/Reward approach described in [53]. This is a utility accrual

approach that allows the utility value to be negative (e.g. similar to Fig-

ure 3.1(b));

• PPOC: This is the scheduling approach (i.e. Algorithm 1) built upon the

utility metric that is developed based on the opportunity cost;

• PPS: This is the scheduling approach built upon the speculated utility based

metric as discussed in section 3.3.2.

44

3.5.1 Experiment Setup

The test cases in our experiments were randomly generated. Specifically, each task

τ = ([B,W], f(T), G(t), L(t), D) was randomly generated as below:

• B, W , and D were randomly generated such that they are uniformly dis-

tributed within interval of [1, 10], [30, 50], and [40, 50], respectively;

• The execution time of a task is assumed to be evenly distributed between

interval of [B,W], i.e. f(t) = 1
W−B

• G, L were assumed to be linear functions, i.e. G(t) = ag(−t+D) in the range

of [0, D] and L(t) = alt. The gradient for G(t) and L(t), i.e. ag and al were

randomly picked from the interval of [4, 10] and [1, 5], respectively;

• Task release times follow the Poisson distribution with µ = 1;

• Preemption check interval length Lint is set to be 1;

• Preemption threshold ζ is set to be 0;

• The utility density threshold δ is set to 0.

We conducted several different groups of experiments to study and compare

the performance of different approaches under different conditions. The results are

reported as follows.

3.5.2 Overall Performance Comparison

We first constructed 5 groups of experiments to study the overall performance of

our proposed non-preemptive scheduling algorithms. Each group has 1000 task

sets, each of which consists of 20 tasks. The six different non-preemptive scheduling

algorithms were applied to the same task sets. The overall utility, the total profit,

45

and the total penalty by each scheduling approach were collected and plotted in

Figure 3.5(a), Figure 3.5(b), and Figure 3.5(c), respectively. For ease of presentation,

the experimental results are normalized to that by PPS.

Figure 3.5(a) clearly shows that both PPOC and PPS can significantly outper-

form the other scheduling approaches. It is not surprising that, from Figure 3.5(c),

we can see the penalty conscious approaches, i.e. PP, PPOC, and PPS, are more

effective in control the penalty than the other three, i.e. EDF, GUS and RR. PPOC

and PPS are particular effective in penalty control. It is interesting to note from

Figure 3.5(b) and 3.5(c) that, while the profits obtained by PPOC and PPS are

comparable or even inferior to the other approaches, the penalties are dramatically

decreased. This is because tasks that would potentially lead to high penalty are

declined or discarded at early stages of their execution. As a result, the overall

utilities are significantly higher than other approaches.

When comparing PPOC non-preemptive and PPS non-preemptive, we can see

from Figure 3.5(a) that PPS is slightly better than PPOC. We can tell that the

speculation based utility metric predominant the opportunity cost metric in the

control of penalty. The speculation order plays the major role in predicting the high

risk of penalty.

3.5.3 Arrival Burst Impacts

We next studied the performance of our non-preemptive scheduling methods under

different burst conditions. In this experiment, we set the number of tasks to 20

and varied the expected number of occurrences within an unit interval, µ, from 1 to

5. By changing µ, we essentially changed the interval length between task arrivals.

Figure 3.6 shows the results of the 1000 task sets’ total utility with different values

46

1 2 3 4 5
−10

−8

−6

−4

−2

0

2

Test cases

T
o
ta

l
u
ti
lit

y

EDF−U

GUS−U

PP−U

RR−U

PPOC−U

PPS−U

(a) Total utility

1 2 3 4 5
0

0.5

1

1.5

2

Test cases

T
o
ta

l
p
ro

fi
t

EDF−G

GUS−G

PP−G

RR−G

PPOC−G

PPS−U

(b) Total profit

1 2 3 4 5
0

5

10

15

20

25

30

35

40

Test cases

T
o
ta

l
p
e
n
a
lt
y

EDF−P

GUS−P

PP−P

RR−P

PPOC−P

PPS−P

(c) Total penalty

Figure 3.5: The comparison of total utility, profit, and penalty by different non-
preemptive scheduling approaches.

47

1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

6

µ

T
o
ta

l
u
ti
lit

y

EDF−U

GUS−U

PP−U

RR−U

PPOC−U

PPS−U

Figure 3.6: The total utility with different µ from non-preemptive scheduling algo-
rithms.

of µ achieved by the non-preemptive scheduling algorithms. From Figure 3.6, we

can see that all the methods have a better performance as µ increases, and PPS and

PPOC significantly outperform the other approaches.

When µ increases from 1 to 5, the number of task that come within the same

length of interval decreases, so the ready queue becomes less crowded and the overall

workload reduces. The reduction in workload also helps lower down the deadline

miss rate. More tasks can contribute positive profits instead of negative penalties

to the system. Therefore the total accrued utility is improved.

3.5.4 Utility Density Threshold Effect

We further studied the impacts of the utility density threshold δ on the scheduling

performance. As indicated in Section 3.3, the threshold δ plays an important role

in task admission, abortion, and execution. The larger the threshold, the smaller

the number of tasks can be accepted and executed, and the smaller the penalty the

system will suffer. To study this impact, we conducted another set of experiments.

We generated task sets as before, but changed the threshold from −30 to 30, with

48

Figure 3.7: The total utility varies with the threshold.

an interval of 5. The total utilities were collected and shown in Figure 3.7. It shows

the effects on the 1000 task sets’ total utilities at various threshold values.

It is interesting to see that the highest utility does not always occur at the point

when the threshold equals zero. With the help from the figure, we can tell that the

highest utility seldom occurs at the point with the lowest or the highest threshold

value. The lower the threshold, the more tasks can be accepted to the system and

get executed. This helps to improve the value of potential total profit. However,

having more tasks accepted into a ready queue may potentially increase the potential

penalty cost as many jobs can not meet their deadlines. On the contrary, using a

higher threshold helps control the potential penalty but may limit the potential

total profit that can be obtained. As a result, the total utility is a tradeoff between

the two as shown in Figure 3.7. From Figure 3.7 we can see the significant impact

that the different threshold values may have on the overall performance. How to

choose an appropriate threshold value for a specific task set to strike the balance

between the profit and penalty and hence achieve the optimal accrued utility is an

interesting problem and needs further study.

49

0 5 10 15 20
−0.01

0

0.01

0.02

0.03

0.04

interval length

u
ti
lit

y
 (

×
 1

0
6
)

Figure 3.8: Preemption checking interval effect with λ = 1, tasknumber = 20 each
group, and ζ = 0.

3.5.5 Effects of Preemption Checking Interval Length Lint

and Preemption Threshold ζ

In order to design a proper preemptive approach, we studied the preemption effects

that come from variables Lint and ζ. We want to avoid aggressive preemptions. In

Algorithm 3, when there is a high priority task that wants to preempt the current

running task, our scheduler first tries to protect the current running task and guar-

antee the current running task to finish execution without being preempted. The

first constraint we added on preemptions is the preemption checking interval. In

Figure 3.8, the result shows the effect of Lint. Even though there are bumps in

the figure, it demonstrates a major trend that the smaller the preemption checking

interval, the higher the system utility.

A preemption threshold ζ is another preemption constraint. Its effect is reflected

by Figure 3.9. An optimal preemption threshold for a special task set can be hard

to find. As shown in this figure, similar to the utility density threshold (δ) effect,

the optimal value is seldom achieved at the two extremes. For this particular data

set we tested, the best preemption threshold value ζ is around 2

50

0 5 10 15 20
−0.04

−0.02

0

0.02

0.04

0.06

preemption threshold index

u
ti
lit

y
 (

×
 1

0
6
)

Figure 3.9: Preemption threshold effect with λ = 1, task number = 20, and Lint =
1.

High preemption number does not mean better performance. Besides overheads

generated by preemptions, potential penalties caused by preemptions may also be

large. A set of carefully designed preemption rules can significantly improve the

preemption performance. Results are shown in the next subsection.

3.5.6 Preemption vs. Non-Preemption

Finally we compare our nonpreemptive and preemptive scheduling approaches. Fig-

ure 3.10 shows comparisons in details between non-preemptive and preemptive

scheduling approaches with the same task sets. It illustrates that PPS has the

highest system utility, followed by the preemptive approach, then PPOC obtains

the lowest system utility among these three approaches. Even though from Fig-

ure 3.10(b) we can tell that preemptive approach achieves the highest profit among

them, it does not have a good control on penalty as PPS does. This results in

a lower system utility in the preemptive approach than that in PPS. Nevertheless,

Figure 3.10(b) illustrates the value of constrained preemptions for increasing system

accrued utility, since our preemptive scheduler always selects high priority tasks to

run at proper time.

51

1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

experiment sets

to
ta

l
u

ti
lit

y

ppsU

ppocU

preU

(a) Comparison of total utility.

1 2 3 4 5
0.8

0.9

1

1.1

experiment sets

to
ta

l
p

ro
fi
t

ppsG
ppocG
preG

(b) Comparison of total profit.

1 2 3 4 5
0

2

4

6

8

experiment sets

to
ta

l
p

e
n

a
lt
y

ppsP

ppocP

preP

(c) Comparison of total penalty.

Figure 3.10: Comparison between PPS non-preemptive and preemptive scheduling
under the burstiness effect.

52

1 2 3 4 5
−2

−1

0

1

2
x 10

5

experiment sets
to

ta
l
u

ti
lit

y

ucpreU

preU

Figure 3.11: Comparison between constrained preemption approach and uncon-
strained preemption approach.

Figure 3.11 highlights the importance of preemption constraints. Some improper

preemption instances postpone the running task’s natural execution, in which a task

may meets its deadline constraint without being preempted. In addition, it is hard to

predict the future condition of the postponed task. Preemptions may help maximize

the accrued system utility since the scheduler always runs high priority tasks first,

whereas whether to allow preemptions happen needs prudential measures. The

observation from Figure 3.11 is that by applying constraints on preemptions, we

successfully improve the performance of the preemptive scheduling approach.

3.6 Conclusions

The popularity of Internet has grown enormously, which has presented a great oppor-

tunity for providing real-time services over Internet. Considering the tremendously

large scale of the internet infrastructure, it is necessary that not only the profit but

also the cost of real-time task executions should be taken into consideration during

the resource management process. Our experimental results clearly show that the

traditional utility accrued approaches become ineffective.

53

In this paper, we first present two novel non-preemptive utility accrued schedul-

ing approaches upon a metric developed according to the opportunity cost concept

and a speculation-based metric for expected utility, respectively. Then, a con-

strained preemptive approach is proposed. Our scheduling algorithms carefully

choose highly profitable tasks to execute, and aggressively remove tasks that po-

tentially lead to large penalty. Our extensive experimental results clearly show that

our proposed algorithms can significantly outperform the traditional EDF approach,

the traditional utility accrued approaches, and an earlier heuristic approach based

on a similar profit and penalty aware task model.

In order to accommodate the distributed characteristic of cloud computing, we

extend our research in next chapter to study service scheduling for distributed data

centers in a multi-electricity-market environment.

54

CHAPTER 4

SINGLE-TIER SERVICE SCHEDULING IN A DISTRIBUTED

ENVIRONMENT

In the previous chapter, we studied the single-tier service request scheduling on a

single server. We extend our study to distributed environment in this chapter. We

first discuss a TUF based approach, then in order to handle the large amount of

service request in cloud environment, we extend our solution to a queuing theory

based one.

4.1 Non Queuing Theory Based Approach

In North America market, the electricity prices vary a lot based on the different

power generating technology, delivery method and coverage. Even though in the

same region, the prices may vary significantly during a day. In order to save the

construction and electricity investment, many service provider companies, which

provides storage, processing, or other services, build their data centers in different

locations where there is less population and near to the power plant. Take Google

as an example, it has data centers in Portland, Houston, and Atlanta, etc. This

helps to ensure the power supply and at the same time bring down their energy

consumption dollar cost.

Several researches have been conducted for guaranteeing QoS with energy con-

sumption minimization on data centers. In [98], the authors modeled the service

system based on the Queueing Theory. By optimizing the task allocation and the

number of powered on servers in each data center, their method successfully reduces

the electricity cost in a multi-electricity-market. The authors in [120] presented

a Dynamic Voltage Scaling (DVS) based power control mechanism for heteroge-

55

neous distributed systems. Their approach properly sets the number of servers that

should be powered on and the frequency level at which the working servers should

run. Both works model the delay constraint described based on the classic queueing

model. While delay constraint can be used to model QoS requirement, it is not as

effective for services requests that are sensitive to “timeliness”. To this end, TUFs

can be used to more accurately describe the timing related QoS requirements.

In this research, we propose a new on-line real-time service allocation and schedul-

ing algorithm for distributed data centers in a multi-electricity-market environment

(as shown in Figure 4.1). Service providers gain profit by satisfying service requests

to the level identified based on a certain service level agreement (SLA). At the same

time, service providers need to pay the cost for energy consumed by transferring

and processing requests. We use a model similar to that in [132] to model the pro-

cessing cost at data centers and data transferring cost in Internet service provider’s

networks. Based on this model, we developed a scheduling and allocation method to

balance the trade off between the system’s retained profit and system performance.

The experimental results show that our method can effectively reduce the power con-

sumption and, at the same time, increase the system’s retained profit. It is worth

mentioning that our work is suitable for both homogeneous and heterogeneous data

centers and can be easily extended to accommodate more complex service requests.

4.1.1 System Model

Our system architecture consists of a front end server, a task allocator, and several

data centers at different locations. Figure. 4.2 shows the overall system architecture.

The front end server receives the service requests from the Internet. The task allo-

56

Figure 4.1: Hourly average electricity prices at different locations in a day[120].

Figure 4.2: System architecture.

cator assigns the tasks according to some metrics to different data center locations.

The services are processed and hosted in the data centers. The energy consumption

includes the energy consumption for the computation in data centers and that for

data transferring during the allocation process.

The real-time tasks, similar to the one in [132], consists of a single sequence of

randomly arrived real-time tasks Γ = {τ1, τ2, ..., τn}, with parameters of τi defined

as follows.

• Si: The size of the data that supports the task to be processed;

57

• [Bi,Wi]: The best case execution time Bi and the worst case execution time

Wi of τi;

• Di: The relative deadline of τi;

• fi(T): The probability density function for the execution time of τi;

• Gi(t): The profit TUF, which represents the profit accrued when a task is

completed at time t (relative to its arrival time). We assume Gi(t) is a non-

increasing unimodal function before its deadline, i.e. G(ti) ≥ G(tj) if ti ≤ tj,

and Gi(t) = 0 if t > Di.

• Li(t): The penalty TUF, which represents the penalty suffered when a task

is discarded at time t (relative to its arrival time). We assume Li(t) is a non-

decreasing unimodal function before its deadline, i.e. L(ti) ≤ L(tj) if ti ≤ tj,

and a task is immediately discarded once it missed its deadline.

• PCi(t): The processing energy consumption.

• TCi(t): The data transferring energy consumption.

• Pr(t): The electricity price in a multi-electricity-market, which varies with

locations and times.

For the power consumption in processing and data transferring step, we used the

model provided in [14], the processing power consumption is given in Equation (4.1):

ES = 1.5× TS × PS. (4.1)

where TS is the time for the server to finish the task processing, PS is the power of

the server. The factor of 1.5 is used to account for the cooling energy consumption.

The energy consumed by the data transferring in Internet service provider’s

network is give in Equation (4.2):

EI = 6× (
3Pes

Ces

+
Pbg

Cbg

+
Pg

Cg

+
2Ppe

Cpe

+
2× 9Pc

Cc

+
8Pw

2Cw

). (4.2)

58

where Pes is the Ethernet switches’ power, Pbg is broadband gateway routers routers’

power, Pg is the power of data center gateway routers, Ppe is the power of provider

edge routers, Pc and Pw are the power of core routers and Wavelength Division

Multiplexed (WDM) fiber links transport equipment, respectively. Ces, Cbg, Cg, Cpe,

Cc, and Cw are the capacities of the corresponding equipment in bits per second. The

details of this power model can be found in [14]. They per-bit energy consumption

of transmission and switching for a public distributed system was estimated to be

around 2.7µJ/b.

The tasks in the system are associated with a profit function, a penalty func-

tion, a processing energy cost function, and an Internet data transferring energy

cost function with function values varying with time. Therefore, whenever a task

is allocated to the data centers, it incurs a data transferring cost. While the tasks

are being executed they have a potential to gain profit, it also has a potential to

encounter a penalty at a later time. Once a task starts its execution, a process-

ing energy cost is incurred. The system performance is therefore evaluated by its

retained profit, which is the total profit subtracts the penalty and energy costs.

Our problem can be formally defined as: Given a task set Γ = {τ1, τ2, ..., τn}

as described above, develop an on-line real-time allocation and scheduling method in

order to maximize the retained profit for distributed data centers.

Since the task mode has variable execution times, execution time for a specific

task is not known deterministically. We do not know if executing the task will lead

to positive profit or loss. In order to make a proper task allocation and schedule

policy, we need to generate a metric which is called the expected retained profit to

help us make decisions.

Given a task τi with arrival time of ri, let its predicted starting time be T ,

expected execution time is Ci. Then the potential profit (Gi(T)) to execute τi can

59

be represented as

Gi(T) =

 Di−(T−ri)

Bi

Gi(t+ (T − ri))fi(t)dt. (4.3)

Similarly, the potential loss (Li(T)) to execute τi can be represented as

Li(T) = Li(D)

 Wi

Di−(T−ri)

fi(t)dt. (4.4)

Therefore, the expected accrued utility (Ui(T)) to execute τi can be represented as

Ui(T) = Gi(T)− Li(T). (4.5)

To account for the power consumed in the process and transfer procedures, we

subtract power consumption dollar costs from the expected accrued utility. The

expected retained profit is thus given as below

ERi(T) = Ui(T)− PCi(Ci)− TCi(ri). (4.6)

where PCi is the dollar cost for processing. TCi is the transferring dollar cost. Ci

is task τi’s execution time, and ri is task τi’s arrival time.

A task can be accepted or chosen for execution when ERi(T) > 0, which means

that the probability of to obtain positive retained profit is no smaller than that to

incur a loss. We can further limit the task acceptance by imposing a threshold (δ)

to the expected accrued utility, i.e. a task is accepted or can be chosen for execution

if

ERi(T) ≥ δ. (4.7)

We call δ as the expected retained profit threshold.

Furthermore, since the task execution time is not known a prior, the data centers

need to decide whether to continue or abort the execution of a task. The longer

the task is executed, the closer the data centers are to the completion point of the

60

task. At the same time, however, the longer the task executes, the higher penalty

the system has to endure if the task cannot meet its deadline. To determine the

appropriate time to abort a task, we employ another metric, i.e. the critical point.

Assume task τi starts its execution at T . Then the potential profit at T ′ > T

(i.e.G̃i(T
′)) can be represented as

Gi(T
′) =

 Di−(T−ri)−(T ′−T)

1

Gi(t+ (T − ri))fi(t)dt. (4.8)

Similarly, the potential loss at T ′ > T (i.e. Li(T
′)) can be represented as

L̃i(T
′) = Li(D)

 Wi−T ′

Di−(T−ri)

fi(t)dt. (4.9)

Therefore, the expected accrued utility at T ′ > T (i.e. Ui(T
′)) can be represented

as Ui(T
′) = Gi(T

′)− Li(T
′). (4.10)

And the expected retained profit is

ERi(T
′) = Ui(T

′)− PCi(Ci)− TCi(ri). (4.11)

We can make ERi(t0) = δ and solve for t0. Then when executing task τi to time

t0, the expected profit equals its expected loss plus expected power consumption

dollar cost. We call t0 as the critical point for executing task τi. Due to the

non-increasing nature of Gi(t), the non-negative nature of Pi(t), and the constant

expected process cost PCi(t) and transfer cost TCi(t), ERi(t) is monotonically

decreasing as t increases. Therefore, it is not difficult to see that the continuous

execution of τi beyond the critical point will more likely bring a loss rather than a

positive profit.

61

4.1.2 Our Approach

In Section. 4.1.1, we introduced our system model. Our proposed approach is given

in details in this section. We employ a global−local policy for task allocation and

scheduling. When a new task arrives, the front end server receives it first. Then, it

is sent to the task allocator. The allocator decides which data center is the best one

for the new arrival task, and assigns the task accordingly. In each data center, the

scheduling will be carried out locally for the tasks assigned to the data centers.

Global Task Allocation

Task allocation part works when a new task arrives. It either assigns the task to

one of the data centers, or rejects the task which is estimated that they can not

meet the QoS requirement. The details of the task allocation algorithm are shown

in Algorithm 4. Suppose we have n data center locations.

Algorithm 4: Task allocation

Input : Let τi be the new arrival task, and let taij, Cij, tsij be the arrive time,
expected execution time and estimated starting time of τi in data
center DCj, respectively. Let current time be t. ERij is the estimated
retained profit of the task at data center j. Let the expected utility
density threshold be δ.

1 if A new task, i.e. τi arrives then
2 for Location j = 1 to n do
3 Generate the speculated execution order for τi in DCj, and get its tsij;
4 Calculate its ERij based on its tsij for each data center;

5 Find the maximum ERij;
6 if MaxERij > δ then
7 Assign the task to the location j;

8 if MaxERij ≤ δ then
9 Reject τi;

62

When a new task arrives, a speculated execution order of the tasks allocated to

a specific processor is generated. Based on this order, the new task has an estimated

starting time at this data center. Using this time and the task’s arrival time, we

can calculate out its potential profit and penalty, its processing energy consumption

dollar cost, and the data transferring energy consumption dollar cost during the

allocation procedure. The combination of these values gives the expected retained

profit of the task. The highest expected retained profit is selected and the task

is assigned to the corresponding location. If the highest ER is smaller than the

threshold, the task is rejected immediately. Otherwise, it has a high possibility to

make the system suffer from a loss. The speculated order is generated by using

Algorithm. 5.

Algorithm 5: Speculated execution order

Input : Let Γ = {τ1, τ2, ..., τk} be the accepted tasks in the ready queue, and let
ri, Ci represent the arrival time and expected execution time of τi. Let
the current time be t

Output: The new list Γ′ = {τ ′1, τ ′2, ..., τ ′k} with the speculated execution order

and their corresponding expected retained profit ER(τ ′j) for
τ ′j, 1 ≤ j ≤ k.

1 if A task τ0 is being executed then
2 T = r0 + C0;

3 else
4 T = t;

5 while Γ is not empty do
6 for Each task C in Γ do
7 Calculate ERi(T) based on Equations (4.3), (4.4), (4.5), and (4.6);

8 Select τj with the highest ERj(T);
9 Add τj to the end of Γ′;

10 ER(τ ′j) = ERj(T);

11 T = T + Cj;
12 Remove τj from Γ;

63

When generating the speculated execution order we first calculate the expected

retained profit for each task in the ready queue based on the expected finishing time

of the current running task. Then the task with the largest one is assumed to be

the first task that will be executed after the current task is finished. Based on this

assumption, we then calculate the expected retained profit for the rest of the tasks

in the ready queue and select the next task. This process continues until all tasks

in the ready queue are put in order. When completed, we essentially generate a

speculated execution order for the tasks in the ready queue.

Local Task Scheduling

When tasks arrive at the data centers, the scheduling follows the UA criteria, which

try to maximize the accrued utility of the system by successfully completing the

tasks in time, to schedule the tasks.

The details of our scheduling is described in Algorithm6. The scheduling al-

gorithm works at every scheduling point, which includes new tasks arrival, tasks

completion, tasks critical time, and task’s deadline missing point. When there is a

new job arrives, the scheduler fist checks its expected retain profit at the time when

current running task is expected to be finished. If the expected retained profit is

larger than the threshold, it is accepted. if not, it is rejected directly. After adding

the new task into the ready queue of the data center, the scheduler generates a spec-

ulated execution order by using Algorithm 5, and based on this order removes the

tasks that can not satisfy the system’s requirement. This step is similar to the one

in task allocation procedure. The difference is that in local scheduling, the scheduler

has to take care of the other waiting tasks to see if some of them need to be re-

moved or not. When a task finishes its execution, it contributes to the system with

a positive profit. The finished task also causes processing and transferring cost. At

64

Algorithm 6: Local Task Scheduling

Input : Let {τ1, τ2, ..., τk} be the accepted tasks in the ready queue, and let Ci

be the expected execution time of τi, and ERi be the expected retained
profit. Let current time be t and let τ0 be the task currently being
executed. Let the expected utility threshold be δ.

1 if A new task, i.e. τn arrives then
2 Accept τn if ERn(C0) > δ;

3 Reject τn if ERn(C0) ≤ δ;

4 if τn is added into the ready queue, generate the speculated order for the data
center then

5 Remove the tasks whose ER ≤ δ;

6 if τ0 is completed then
7 Choose the highest expected retain profit task τi to run;

8 Remove τj in the ready queue if ERj(Ci) ≤ δ;

9 if t = the critical time of τ0, or τ0 misses its deadline then
10 Abort τ0 immediately;
11 Choose the highest expected retain profit task τi to run;

12 Remove τj in the ready queue if ERj(Ci) ≤ δ;

65

this time instance, the scheduler selects a new task which has the highest expected

retained profit to run. The scheduler works the same when the task reaches to a

task’s critical time or at deadline missing point. New task selection followed by a

scheduling point check. In this step, scheduler further removes the tasks that can

not satisfy the system’s requirement at the selected task’s estimated finishing time.

4.2 Queuing Theory Based Approach

As cloud computing gets more and more prosperous, the number of service requests

increases dramatically. In order to handle the large amount of service request, we

discuss a queuing theory based approach in this section.

In this research, we present a profit- and cost-aware resource management ap-

proach for distributed cloud data centers to optimize a service provider’s net profit.

By taking advantages of the multi-electricity-market (as shown in Figure 4.1 [98]),

our approach has a high efficiency of energy and computing resource usage by judi-

ciously dispatching service requests to different data centers, powering on an appro-

priate number of servers at different data centers, and adaptively allocating resources

to these service requests. Multiple types of services, with no priority difference, are

considered in our model. Compared with related work, our contributions in this

paper can be summarized as follows:

• We propose a system model that incorporates the multi-electricity-market,

SLA, and net profit into a single unified resource management framework. To

our best knowledge, this is the first work that deals with multi-electricity-

markets, multiple types of requests, and multi-level SLAs, simultaneously.

• Wemodel the profit gained by a service provider as a multi-level step-downward

function, which is capable of simulating various scenarios. We formulate our

66

problem of determining how to dispatch service requests to different data cen-

ters, how many servers should be powered on in each data center, and how

computing resources should be allocated to service requests as a constrained

optimization problem. We also derive a series of constraints to simplify the

implementation of our approach.

• The effectiveness of our proposed approach is validated through simulations

on both synthetic workload and real data center traces with true electricity

price history.

4.2.1 System Model

In this section, we introduce our system model, based on which we develop our

time-slotted profit-aware request dispatching and resource management approach

for distributed cloud data centers in a multi-electricity-market environment. Our

approach periodically runs at the beginning of each time slot T based on the average

arrival rates during a slot since job interarrival times are much shorter compared to

a slot [73]. Requests arrival pattern forecast is not studied in our work. Existing

prediction methods (e.g. the Kalman Filter [124],) or studies (e.g. [40][41]) that

have been conducted can be employed if necessary. The length of T is a pre-defined

constant that is decided by several factors, e.g. adjusting frequencies of electricity

prices (electricity prices stochastically vary over time due to the deregulation of

electricity market [101].) We consider that the electricity prices in a time-slot T

are constant. Constant prices during a time period are widely implemented in prior

work [73][101].

A typical distributed cloud data center system can be illustrated by Figure 4.2.

In our system, service requests come from various places and are collected by S

67

nearby front-end servers, where S = s1, s2, ..., sS. Then, requests are dispatched to

I capable servers in L data centers via network according to a related metric, where

I = I1, I2, ..., II and L = l1, l2, ..., lL.

Virtualization technology, which boosts the realization of the long-held dream

of computing as a utility [12], is employed in our architecture to enable server con-

solidation and simplify computing resource sharing in physical servers. Elasticity of

virtualization helps improve the usage efficiencies of computer resources and energy.

Different types of services can be held in the same server within their own virtual

machines (VMs). The same CPU can be shared by different VMs when necessary.

We assume that once a server is powered on, it always runs at its maximum speed.

In our scenario, the data centers are heterogeneous, and the servers in a data center

are homogeneous. It can be easily extended to heterogeneous data centers with

heterogeneous servers.

Task Model

Requests in our system are soft real-time in nature and may encounter both profit

and cost. Profit comes from successfully guaranteeing the average delay satisfaction

for each type of request [90]. Cost is the dollar cost spent on transferring and

processing requests.

Profit:

TUFs are able to precisely specify the semantics of soft real-time constraints [127].

It indicates that in real-time systems, when tasks are completed with respect to

their time constraints, the system will be assigned values that vary with the finish-

ing times of the tasks. A TUF can be in any shape. Commonly used TUFs include

a constant value before its deadline (Figure 4.3(a)), a monotonic non-increasing

function (Figure 4.3(b)), or a multi-level step-downward function (Figure 4.3(c)),

68

etc. In our scenario, all types of requests desire quick responses. It means that the

earlier the tasks are finished, the more utilities they assign to their system. We em-

ploy TUFs to represent the profits of processing requests, which are non-increasing

functions. Non-increasing TUFs match the SLAs well, since longer delays (beyond

some defined time instances) result in lower profits. We will analyze constant value

TUFs and multi-level step-downward TUFs in the following sections. These two

types of TUFs are representative, especially the multi-level step-downward TUFs.

A monotonic non-increasing TUF can be simulated by using a special multi-level

step-downward TUF, which has an infinite number of steps. A constant TUF can

be simulated as well by using step-downward TUF that only has one step. Conse-

quently, a multi-level step-downward TUF is able to represent a wide range of sce-

narios and it explains why we mainly focus our study on multi-level step-downward

TUFs.

Figure 4.3: Typical TUFs.

Based on the queuing theory, i.e. M/M/1 queue (assuming that the request

arriving follows poisson distribution,) it is not difficult to model the expected delay

time for k-type requests as [61]

Rk =
1

ϕkCµk − λk

(4.12)

where in Equation (4.12), C is a server’s capacity, and is normalized to 1 in our

scenario. In heterogeneous systems, different hardware configurations may have

different capacities. µk is the processing rate for k-type requests with full capacity.

69

Note that a server’s resource may be shared by many different VMs at the same time.

Therefore, its actual processing rate may not be µk. ϕk indicates the percentage of

CPU resource allocated to k-type requests in a single server. λk is the arrival rate

of k-type requests.

Cost:

Cost consists of two parts. One is the dollar cost for processing requests, the other

is the dollar cost for transferring requests.

Processing cost mainly comes from a server’s energy consumption. The energy

consumption in our work follows the model studied by Google [95] instead of tradi-

tional server’s energy model. It is based on the energy consumption for processing

each single service request. We believe this model is closer to the goal of converting

computing ability into one kind of utility in people’s daily lives (e.g. electricity.)

Then, computing capacity usages are converted into utility consumptions. We as-

sume that energy attributions of the requests are profiled, then the dollar cost on

energy consumption for processing requests in a time slot can be expressed as follows:

PCostk = Pk × λk × T × p (4.13)

where PCostk is the dollar cost for processing k-type requests. λk is k-type requests

arriving rate. Pk is the energy attribution of k-type requests. Google’s study shows

that each web search costs 0.0003KWh on average. T and p are the length of a time

slot (e.g. one hour, which is the same as the electricity prices’ changing frequency)

and the electricity price at the data center location in a time slot (as shown in

Figure 4.1,) respectively.

Dollar cost on transferring requests from a front-end server to a corresponding

data center is calculated in a similar method as the one in [96]. As shown in Equa-

tion (4.14), it is the product of unit transferring cost (TranCostk) of each type of

70

request, the distance between the request’s origination and destination (Distancek),

arrival rate λk and the length of a time slot. Since requests may have various char-

acteristics (e.g. sizes,) “TranCostk” is employed to reflect the differences among

requests.

TCostk = TranCostk ×Distancek × λk × T (4.14)

Problem Formulation

With our system architecture and system model defined above, formally, our problem

can be formulated as follows:

Problem 4.2.1. Given service requests and data center architectures as described

above, develop an efficient on-line profit- and cost-aware workload dispatching and

resource allocation approach to maximize net profits for service providers.

4.2.2 Our Approach

In this section, we introduce our approach in detail. For clarity, parameters used in

this work are summarized in Table 6.1. We formulate the solution for Problem 6.2.1

as a constrained optimization problem [55][54]. The results are used to decide re-

quest dispatching, resource allocation, and the number of servers that should be

powered on.

The objective function of Problem 6.2.1 can be mathematically formulated as

follows:

max
S

s=1

L
l=1

M
i=1

K
k=1

{Uk(Rk,i,l)λk,s,i,l − Costk,s,i,lλk,s,i,l}T (4.15)

71

After we substitute the factors in Equation (4.15) with Equations (4.12), (4.13) and

(4.14), it becomes to Equation (4.16):

max

S
s=1

L
l=1

M
i=1

K
k=1

{Uk(Rk,i,l)λk,s,i,l − Pk,lλk,s,i,lpl

−TranCostkds,lλk,s,i,l}T

(4.16)

with following constraints:

1

ϕk,i,lCi,lµk,l − λk,s,i,l

≤ Dk, ∀k, i, s, l (4.17)

S
s=1

L
l=1

M
i=1

λk,s,i,l ≤
S

s=1

λk,s, ∀k (4.18)

K
k=1

ϕk,i,l ≤ 1, ∀i, s, l (4.19)

Constraint (4.17) shows the QoS requirement. The average delay for each type of

request cannot exceed its deadline. Constraint (4.18) assures that the number of

assigned requests does not exceed the number of total service requests coming from

the Internet. Constraint (4.19) bounds the CPU share by various types of services

in a single server.

In our constrained optimization formulae, ϕk,i,l and λk,s,i,l are the two variables

that need to be solved, representing where to assign and how much workload should

be assigned from each front-end server. In addition, as we know how requests are

dispatched, we can determine how many servers should be powered on. Clearly,

when there is no workload on a server, the server should be powered off.

In our model, we assume that server switching costs and durations are negligible

compared to the total energy consumption and time of processing and transferring

requests during a time slot (e.g. one hour.)

72

The complexity of our objective function depends heavily on the format of the

utility function used to reflect a request’s potential profit. Since multi-level step-

downward TUFs are representative and cover a large scenario diversity, in what

follows, we discuss three typical multi-level step-downward utility functions, and

corresponding solutions for each of them. As stair TUFs need “if-else” descriptions,

which are unfortunately not well supported by some popular non-linear mathematic

programming (or some constraint logic programming) solvers, e.g. Prolog, we hence

transform the “if-else” into a set of constraints.

One-Level Step-Downward TUF

The first type of TUF has a constant utility before deadline and can be expressed

as follows:

Uk = TUF (Rk) =

Uk,1 0 < Rk ≤ Dk

0 Rk > Dk

(4.20)

where, Uk is the utility of k-type requests. Uk,1 is a constant value. Before delay

time Rk exceeds deadline Dk, Uk equals to Uk,1.

With one-level step-downward TUF, the objective function (Equation (4.16)) is

simply a linear function. Even though there is a nonlinear component in Equa-

tion (4.17), it can be linearized through simple transformations, i.e. ϕk,i,lCi,lµk,l −

λk,s,i,l ≥ 1
Dk

. The whole problem can be solved by using traditional linear program-

ming solvers [39].

Two-Level Step-Downward TUF

This type of TUF can be expressed as Equation (4.21), where Uk is the utility of

k-type requests. Rk is the delay time of k-type requests. Dk,q is the relative sub-

deadline for each utility level Uk,q, and q is the index of each level (i.e. the q-th

73

sub-deadline of k-type requests to achieve the q-th utility level.) We assume that

Dk is the final deadline for k-type service requests. Executing a request becomes

meaningless once the delay time exceeds Dk.

Uk = TUF (Rk) =

Uk,1 0 < Rk ≤ Dk,1

Uk,2 Dk,1 < Rk ≤ Dk

0 Rk > Dk

(4.21)

Note that when the TUF employs a two-level step-downward function, the ob-

jective function is no longer a linear one. Furthermore, with Equation (4.21), it is

challenging to formulate the objective in one formula. To solve this problem, we

transform Equation (4.21) to a set of extra constraints as follows:

Uk ∈ {Uk,1, Uk,2}, (Uk,1 > Uk,2) (4.22)

(Rk −Dk,1) + ⊎(Uk − Uk,1) <= 0 (4.23)

(Dk,1 + δ −Rk) + ⊎(Uk,2 − Uk) <= 0 (4.24)

where, ⊎ is a large constant. δ is a constant time value which is small enough.

Dk,1 + δ indicates the time instance that immediately follows time Dk,1.

To see the reason that Equation (4.21) can be equivalently transformed to a set

of constraints listed in Equations (4.22), (4.23) and (4.24), consider the following

two cases:

• When 0 < Rk ≤ Dk,1

Under this condition, we readily have Rk −Dk,1 ≤ 0. From Equation (4.22),

Uk can be either Uk,1 or Uk,2. Therefore, to satisfy Equation (4.24), we must

74

have Uk = Uk,1. In the meantime, Equation (4.24) can be easily satisfied as

long as ⊎ is large enough. To this end, Uk = Uk,1 is the only solution when

0 < Rk ≤ Dk,1.

• When Rk > Dk,1

Under this condition, we readily have Dk,1 + δ − Rk ≤ 0. Since Uk can be

either Uk,1 or Uk,2, to satisfy Equation (4.23), we must have Uk = Uk,2. In the

meantime, Equation (4.23) can be easily satisfied as long as ⊎ is large enough.

To this end, Uk = Uk,2 is the only solution when Rk > Dk,1.

While we can transform Equation (4.21) to a set of constraints listed in Equa-

tions (4.22) – (4.24), the problem is not over. Note that Equation (4.22) is still a

constraint that is not formulated properly. To formulate the constraint in Equation

(4.22), we can define an integer variable x with

0 ≤ x ≤ 1 (4.25)

such that

U = xUk,1 + (1− x)Uk,2 (4.26)

With the extra constraints listed in Equations (4.22) – (4.24), it is desirable to

use traditional integer linear programming solver to solve the problem. Unfortu-

nately, this is not feasible. From Equation (4.12), it is not difficult to see that both

Constraints (4.23) and (4.24) are non-linear formulae. To solve this problem, we

need to employ the constraint logic programming solvers or nonlinear mathematic

programming solvers such as ILOG CPLEX [51] and AIMMS [2] to find the near

optimal solutions. With the help of the series of constraints, people may avoid the

75

difficulty of implementing “if, else” statement in some solvers. Similar series can

be derived for multi-level step-downward TUFs.

Three or More Level Step-Downward TUF

This type of TUF can be formulated as follows:

Uk = TUF (Rk) =

Uk,1 0 < Rk ≤ Dk,1

Uk,2 Dk,1 < Rk ≤ Dk,2

Uk,3 Dk,2 < Rk ≤ Dk,3

...

0 Rk > Dk

(4.27)

Similarly, Equation (4.27) can be transformed into a series of new constraints as

listed below:

Uk ∈ {Uk,1, Uk,2, Uk,3, ..., Uk,n}

(Rk −Dk,1) + ⊎(Uk − Uk,1) <= 0

(Dk,1 + δ −Rk) + ⊎(Uk,2 − Uk)(Uk − Uk,3) <= 0

(Rk −Dk,2) + ⊎(Uk,2 − Uk)(Uk − Uk,1) <= 0

(Dk,2 + δ −Rk) + ⊎(Uk,3 − Uk)(Uk − Uk,4) <= 0

(Rk −Dk,3) + ⊎(Uk,3 − Uk)(Uk − Uk,2) <= 0

...

(Dk,n−1 + δ −Rk) + ⊎(Uk,n − Uk) <= 0

(4.28)

where, Uk,1 . . .Uk,n, Dk,1 . . .Dk,n, ⊎, and δ are the same as those in a two-level

step-downward function, and Uk,1 > Uk,2 > · · · > Uk,n. Take n = 3 as an example,

76

we have:

Uk ∈ {Uk,1, Uk,2, Uk,3}, (Uk,1 > Uk,2 > Uk,3) (4.29)

(Rk −Dk,1) + ⊎(Uk − Uk,1) <= 0 (4.30)

(Dk,1 + δ −Rk) + ⊎(Uk,2 − Uk)(Uk − Uk,3) <= 0 (4.31)

(Rk −Dk,2) + ⊎(Uk,2 − Uk)(Uk − Uk,1) <= 0 (4.32)

(Dk,2 + δ −Rk) + ⊎(Uk,3 − Uk) <= 0 (4.33)

Equations (4.30) and (4.33) are very similar to Equations (4.23) and (4.24). The

newly added constraints are Equations (4.31) and (4.32). Note that, similar to

the analysis above, it is not difficult to see that as long as ⊎ is large enough, we

must have Uk = Uk,1 when Rk ≤ Dk,1, and Uk = Uk,3, when Rk > Dk,2 to satisfy

Constraints (4.30) – (4.33).

Now, consider the situation when Dk,1 < Rk ≤ Dk,2 (note that Uk,1 > Uk,2 >

Uk,3.) Under this condition, similarly, Equations (4.31) and (4.32) can be easily

satisfied with any Uk ∈ {Uk,1, Uk,2, Uk,3}. From Equation (4.30), we can conclude

that, to satisfy Equation (4.32), we must have

(Uk − Uk,1) < 0

that is, we have either

Uk = Uk,2 or Uk = Uk,3 (4.34)

77

Meanwhile, to satisfy Equation (4.33), we must have

(Uk,3 − Uk) < 0

that is, we have either

Uk = Uk,1 or Uk = Uk,2 (4.35)

Therefore, to satisfy Equations (4.30) – (4.33), we must have Uk = Uk,2 when

Dk,1 < Rk ≤ Dk,2.

We have shown that Equation (4.27) can be transformed equivalently into Equa-

tion (4.28). The problem becomes how to formulate Uk (Equation (4.29)) using a

general form. Similarly, we can introduce an integer variable x, with

1 ≤ x ≤ n (4.36)

where, n is the number of step levels. Then Uk can be formulated as follows:

Uk =

i≤n
i=1 [Π

j≤n
j=0,j!=i(j − x)]Uk,i

(−1)xx!(n− x)!
(4.37)

As a result, Uk is successfully transformed into a series of constraints as described

in Equations (4.28), (4.36), and (4.37). Same as above, together with our objective

function, this constraint series can be solved by using constraint logic programming

solvers or nonlinear programming solvers.

4.3 Experiment

We use simulation experiments to investigate the performance of our proposed ap-

proach.

78

4.3.1 TUF Based Approach

Experiment Setup

We evaluate our proposed method’s performance based on several known Google’s

IDC locations with real-life electricity prices (Houston, Texas, Mountain View, Cal-

ifornia, and Atlanta, Georgia). The test cases in our experiments were randomly

generated. Specifically, S, B, W , and D were randomly generated such that they are

uniformly distributed within interval of [1MegaByte, 2MegaByte], [1, 10], [30, 50],

and [40, 50], respectively. The execution time of a task is assumed to be evenly

distributed between interval of [B,W], i.e. f(t) = 1
W−B

. G, L were assumed to be

linear functions, i.e. G(t) = −ag(t−D) in the range of [0, D] and L(t) = al(t− ta),

where ta is task’s arrival time. The gradient for G(t) and L(t), i.e. ag and al

were randomly picked from the interval of [0.5, 1] and [0.1, 0.3], respectively. The

power P of the homogeneous servers is set to be 1KW for the computing ease. The

per-bit transferring energy cost is 2.7 µJ/bit. PC(te) = 1.5 × te × P × Pr(ts),

where te is the execution time, ts is the time when the task starts processing.

TC(ta) = 6 × (3Pes

Ces
+

Pbg

Cbg
+ Pg

Cg
+ 2Ppe

Cpe
+ 2×9Pc

Cc
+ 8Pw

2Cw
) × S × Pr(ta), which can

be simplified as TC(ta) = 2.7µJ/bit × S × Pr. We use arrival time here because

once the task arrives, it will be immediately allocated or rejected. Task release

times’ intervals follow the exponential distribution with µ = 2. Pr we used is shown

in Figure. 4.1 comes from [98], they simulate their approach with the real multi-

electricity-market price. It tracks the prices of three Google’s data center locations.

The retained profit threshold δ is set to 0. We conducted several different groups of

experiments to study and compare the performances of different approaches. The

results are reported as follows.

79

0 10 20 30 40 50
−1000

−500

0

500

1000

Task sets

T
o

ta
l
u

ti
lit

y
 (

$
)

Optimized
Average

Figure 4.4: Comparison of accrued retained profit.

Experiment Results

We first conducted an experiment using a thousand task sets, each with a hundred

tasks. We ran our proposed optimized approach and the naive approach on the

same task sets. Our new optimized approach aims at increasing the system’s ac-

crued retained profit by successfully completing tasks and reducing the tasks’ power

consumption dollar costs at the same time.

To show the details clearer, Figure 4.4 displays only the results of the first fifty

sets. We can tell that when compared with the naive approach, our optimized

approach has a much better performance at attaining higher accrued retained profit.

Figure 4.5 compares the profits gotten by two approaches. Our optimized ap-

proach achieves higher profit since the optimized scheduling finishes more tasks in

time successfully than naive scheduling does. Figure 4.6 indicates the penalty com-

parison. From Figure 4.6, we can see that our approach also outperforms the naive

approach in the penalty control by discarding less running tasks and missing less

deadlines. In our approach, the scheduler carefully accepts potential tasks and ju-

80

0 10 20 30 40 50
0

200

400

600

800

1000

Task sets

T
o

ta
l
p

ro
fi
t

($
)

Optimized
Average

Figure 4.5: Comparison of profit

diciously discards running task if it has high possibility to cause loss to the system.

Moreover, in the task allocation process, there is an early screening step at the al-

location step. The tasks which can not find a proper data center location will be

rejected (even the largest expected retained profit for the task is smaller the the

threshold δ). The two approaches transfer different number of tasks. This is the

reason that why data centers in our optimized approach host less tasks and results

in less processing and transferring cost, which is proven by Figure. 4.7(a) and Fig-

ure. 4.7(b). Figure 4.7(a) reflects the higher processing efficiency (less hosting tasks

and higher profit) of optimized approach. Because of the scheduler’s predictability,

the tasks that have potential to bring loss are discarded during execution or removed

while waiting in the queue. On the contrary, the naive approach always try to finish

every executing tasks or keep waiting tasks until they meet their deadline. The lack

of forecast induces low processing efficiency. In Figure. 4.8 we can see our optimized

approach completes more tasks than the naive approach does.

In Figure. 4.9, the histogram shows the number of assigned tasks of three differ-

ent data centers. DC3 has the highest average electricity price. The figure shows

81

0 10 20 30 40 50
0

200

400

600

800

1000

Task sets

T
o

ta
l
p

e
n

a
lt
y
 (

$
)

Optimized
Average

Figure 4.6: Comparison of penalty

the average number of tasks assigned to DC3 in optimized approach is significantly

smaller than that in naive approach, and also smaller than the number of tasks as-

signed into DC1 or DC2 in the optimized approach. As shown in the figure, the total

number of tasks allocated in optimized approach is less than the number assigned

by naive method. As we have explained previously that in the task allocation step,

some tasks, which can not find a proper host data center, are rejected instead of

being sent to the destinations. Some certain amount of energy is saved here because

less task allocations take place in optimized approach. This has already been shown

in Figure. 4.7(b).

4.3.2 Queuing Theory Based Approach

Study with Real Traces using One-Level Step-Downward TUFs

In this study, we employed a real trace of the 1998 World Cup [10] to generate our

service requests. We used a trace that contains requests spanning four different

days as the service requests in a day collected by four front-end servers. There are

three data center locations providing services to three types of requests dispatched

82

0 10 20 30 40 50
25

30

35

40

45

50

Task sets

T
o

ta
l
p

ro
c
e

s
s
in

g
 c

o
s
t

($
)

Optimized
Average

(a) Processing power consumption

0 10 20 30 40 50
100

110

120

130

140

150

160

Task sets

T
o

ta
l
tr

a
n

s
fe

rr
in

g
 c

o
s
t

($
)

Optimized
Average

(b) Transferring power consumption

Figure 4.7: Power consumption comparison

83

Optimized Average
0

5

10

15

20

25

30

Different approaches

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
c
o
m

p
le

te
d
 t
a
s
k
s

Figure 4.8: Comparison of number of completed tasks

Location 1 Location 2 Location 3
0

10

20

30

40

Datacenter locations

N
u
m

b
e
r

o
f
ta

s
k
s
 a

llo
c
a
te

d

Optimized

Average

Figure 4.9: Number of task allocation in different data centers.

84

from the four front-end servers. Each data center has six homogeneous servers.

We simply shifted the request traces at a front-end server by some time units to

simulate the requests of three different service types. The traces generated are shown

in Figure 4.10. Electricity prices, as shown in Figure 4.1, are the real data collected

from three locations, i.e. Houston, TX, Mountain View, CA, and Atlanta, GA.

(a) Request at front-end server 1.

(b) Request at front-end server 2.

(c) Request at front-end server3.

(d) Requests at front-end server4.

Figure 4.10: Request traces

A data center’s processing capacities and distances among front-end servers and

85

data centers are generated randomly and given in Tables 4.2 and 4.3, respectively.

Processing energy costs (Table 4.4) are given based on the data provided by Google’s

research blog [95], which are around 0.0003kWh for each web search request. TUFs

and sub-deadlines for each type of request are collected in Table 4.5. Transferring

costs for the three types of requests are 0.003$/mile, 0.005$/mile, and 0.007$/mile.

Even though parts of the experiment setup were generated randomly, the experiment

does not loss the generality. “Optimized” and “Balanced” approaches are compared.

Net profit:

We first checked the net profits achieved by the two approaches. As explained

in previous sections, our new model takes overall factors into consideration and

provides a flexible request dispatching and resource allocation strategy to obtain a

high net profit. This claim is supported by the results of running real request traces,

as shown in Figure 4.11. Our new proposed approach ran the model once an hour

(the length of a time slot is an hour). It is obvious that our approach significantly

outperforms the static approach in achieving a net profit.

Figure 4.11: Net profits obtained by two approaches.

Request dispatching:

We then studied the request dispatching of these two approaches, which are illus-

trated in Figure 4.12. From the experiment setup, we can see that for Request1,

Datacenter1 and Datacenter2 have the same processing capacity, and Datacenter3

has the highest processing rate. In addition, the distances between Datacenter2 and

86

the four front-end servers are the longest. Taking the transferring cost and process-

ing capacities into consideration, Datacenter1 and Datacenter3 were better choices

than Datacenter2 for Request1. All things considered, Datacenter2 did process some

of the requests to improve the whole system’s performance. However, the number

of requests dispatched to Datacenter2 was still much smaller than the numbers of

requests assigned to Datacenter1 and Datacenter3.

(a) Request1 allocated to datacenter1.

(b) Request1 allocated to datacenter2.

(c) Request1 allocated to datacenter3.

Figure 4.12: Allocations for request 1.

Request2 and Request3 assignments are omitted because of space limit. Similar

to the allocation of Request1 shown in Figure 4.12, in “Optimized” Datacenter1 and

Datacenter3 had a large part of the requests dispatched. Datacenter2 almost had

no request assigned. We can see that all request dispatchings in these figures have

87

similar results at the end of the traces in both “Optimized” and “Balanced.” This

explains why “Optimized” and “Balanced” had similar net profits at the end of the

traces, as shown in Figure 4.11.

Study with Real Traces using Two-Level Step-Downward TUFs

Finally, we conducted an experiment to analyze computing resource allocation and

request dispatching effect for a real Google workload trace that was recorded in 2010

[48]. This dataset traces over a 7-hour period. It consists of a set of tasks, where

each of them runs on a single machine. We duplicated the trace and moved along

time scale to simulate two different types of requests. This time we implemented

two-step TUFs to represent the possible profits that may be achieved by completing

requests successfully. We implemented our equation series derived in Sections 4.2.2

and 4.2.2 in both ILOG CPLEX and AIMMS (constraint logic programming solver

and nonlinear programming solver.) In our experiments, we assumed that two types

of requests come from one single front-end server, and then dispatched to two data

centers. There are six servers in each data center. Electricity prices for the two

locations follow the prices of Houston and Mountain View, as shown in Figure 4.1.

We selected electricity prices in the time period between 14:00 and 19:00, because the

prices in that period are representative in terms of large price vibration. Processing

capacities of the two types of requests in each data center were randomly generated

and are shown in Table 4.6. Sub-deadlines and TUF values are shown in Table 4.7

and Table 4.8, respectively. The power consumptions of the two types of requests in

each data center are summarized in Table 4.9. We simply further assumed that the

distances from the front-end server to those data centers are 1000 miles and 2000

miles. The transferring costs for the two types of requests are 0.00003 and 0.00005

$/mile.

88

Net profit:

Net profit achieved from the real trace using our optimized approach is shown in

Figure 4.13. The optimized approach outperforms the balanced approach signifi-

cantly. It clearly illustrates that our optimization efficiently uses electricity price

difference to establish its superiority. In Figure 4.13, electricity price differences

between Hour2 and Hour4 are larger than those at other times. The advantage of

our approach is boosted at those time instances.

Figure 4.13: Net profits obtained by two approaches with two-step TUFs.

Request dispatching:

The major difference between these two approaches comes from the request dispatch-

ing. As shown in Figure 4.14, it is obvious that “Optimized” rationally dispatched

requests according to electricity prices, transferring costs, and processing capacities

of each data center. All Request1 and Request2 were completed in “Optimized.” On

the contrary, 99.45% request1 and 90.19% request2 were completed in “Balance.”

Even though “Optimized” spent 7.74% more on the cost, it achieved a higher net

profit. This observation is reasonable, since our optimization approach optimizes

the trade off among several target components instead of optimizing each of them.

Workload effect:

We then increased data center capacities in order to simulate a relatively low work-

load situation (i.e. all requests in two approaches can be completed successfully.)

The result is shown in Figure 4.15(a). A relatively high workload situation was

89

(a) Request1 allocation using balanced approach.

(b) Request2 allocation using balanced approach.

(c) Request1 allocation using optimized approach.

(d) Request2 allocation using optimized approach.

Figure 4.14: Allocations of the requests.

tested as well (i.e. no approach can complete all requests.) The result is shown in

Figure 4.15(b). These figures prove that our optimization is superior regardless of

workloads.

Computation time:

We kept the experiment setup except changing the number of servers in each data

center to service randomly generated number of service requests. We ran each server

set five times and their average values were used to represent the computation times.

90

(a) Net profits comparison with a relatively low work-
load.

(b) Net profits comparison with a relatively high work-
load.

Figure 4.15: Low/High workload situations.

Results are shown in Figure 4.16. As can be seen in the figure, the computation

time increased exponentially.

Figure 4.16: Computation times of different server sets.

4.4 Conclusions

Cloud computing systems are proliferating. They provide increasingly diverse network-

based services and applications. A large number of requests increases both the scale

of data centers and their energy consumptions. Efficient request dispatching and

resource allocation algorithms are in urgent need by service providers for achieving

high net profits.

91

In this chapter, we present two optimization-based profit- and cost-aware ap-

proaches to maximize the net profits that service providers may achieve when op-

erating distributed cloud data centers in multi-electricity-market environments. We

developed a system model to effectively capture the relationship among several fac-

tors, such as SLA, cost on energy consumption, service request dispatching and re-

source allocation. By considering overall factors, our approach judiciously dispatches

requests and allocates computing resources. Significant net profit improvement can

be achieved by efficiently using energy and computing resources.

Till now, the scheduling approaches we devised are all for single-tier services.

Considering the fact that today’s cloud applications usually consist of several in-

terdependent services, we move to the study of request scheduling for multi-tier

services in next chapter.

92

Parameters Definations

K number of service types in the system.

S number of front-end servers in the sys-
tem.

L number of data centers in the system.

Ml number of homogeneous servers in data
center l.

Ci,l capacity of server i in data center l.

µk service rate for k-type requests at a
server of capacity 1.

λk,s,i,l k-type requests dispatched to server i
in data center l comes from front-end
server s.

ϕk,i,l CPU share for k-type requests at server
i in data center l.

Rk,i,l delay time for k-type requests at server
i in data center l.

Uk utility function for k-type requests. U q
k

corresponds to the utility in qth level.

Dk,q relative sub-deadline for the qth utility
level.

Dk relative deadline for k-type requests.

Pk,l energy cost for processing k-type re-
quests in data center l.

pl electricity price at data center l at time
t.

ds,l distance between front-end server f
and data center l.

PCostk,l processing cost of k-type requests at
data center l.

TranCostk unit transferring cost of k-type re-
quests.

Table 4.1: Parameter notation.

capacity datacenter 1 datacenter 2 datacenter 3
request1(#/hour) 3000000 3000000 3600000
request2(#/hour) 3300000 3000000 3600000
request3(#/hour) 3000000 3600000 4200000

Table 4.2: Processing capacities of each data center.

93

Distance datacenter 1 datacenter 2 datacenter 3
front− end1(miles) 1000 2000 1500
front− end2(miles) 800 1500 1000
front− end3(miles) 500 1000 1000
front− end4(miles) 1000 1500 1000

Table 4.3: Distance among front-end servers and data centers.

Processing cost datacenter 1 datacenter 2 datacenter 3
request1(kWh) 0.0003 0.0004 0.0006
request2(kWh) 0.0004 0.0003 0.0003
request3(kWh) 0.0006 0.0005 0.0005

Table 4.4: Processing cost at each data center for different types of services.

TUF Max value Deadline
request1 10 ($) 0.016 (hour)
request2 20 ($) 0.023 (hour)
request3 30 ($) 0.048 (hour)

Table 4.5: TUFs for each type of request.

Capacity datacenter1 datacenter2
request1(#/hour) 80000 70000
request2(#/hour) 90000 100000

Table 4.6: Processing capacities of each data center.

Sub-deadline request1 request2
sub− deadline1(hour) 0.001 0.01
sub− deadline2(hour) 0.002 0.02

Table 4.7: Sub-deadlines of the request.

TUF values level1 level2 level3
request1($) 20 10 0
request2($) 30 10 0

Table 4.8: TUF values at different steps of the requests.

Power datacenter1 datacenter2
request1(kWh) 0.0002 0.0003
request2(kWh) 0.0001 0.0003

Table 4.9: Power consumption of the requests in each data center.

94

CHAPTER 5

MULTI-TIER SERVICE SCHEDULING IN A DISTRIBUTED

ENVIRONMENT

As web applications grow tremendously in both scale and scope, more and more

applications employ multi-tier computing infrastructures. Scheduling for multi-tier

services is more complicated than that for single-tier services. In this chapter, we

study the problem of scheduling delay-sensitive multi-tier services with probabilistic

performance guarantee.

5.1 Research Problem Introduction

With the prosperity of cloud computing, the application patterns become more

and more sophisticated. An application request coming from the Internet usually

needs to go through multiple service tiers hosted in different machines at different

locations. Different from single-tier applications, multi-tier applications have more

intricate inter-tier interactions. A change of a request’s execution in a tier may

cause the request’s (or even other requests’) QoS violation.

In addition, there have been an increasing number of time sensitive applications,

such as on-line gaming (e.g. Uncharted 3: Drake’s Deception [114]) or other stream-

ing multimedia (e.g. Adobe Media Server [1]) deployed on the web (e.g. Rackspace

Cloud Media Hosting [97] and AWS [6].) Because of these time sensitive applica-

tions, stringent timing constraints are added to the processing infrastructure for

desired user experience. Besides the timing constraints, in order to fully satisfy a

client’s QoS requirements a service provider must ensure that adequate requests can

be served successfully in time.

In this research, we study the problem of how to efficiently manage a set of multi-

tier, time sensitive application requests with probabilistic guarantee of their end-to-

95

end deadlines. Specifically, the QoS in this paper refers to a constraint described by

the probability of dropping an application’s request with respect to its end-to-end

deadline. While satisfying the QoS, we intend to reduce the average response time

for an application. As response time has become an important performance metric

[93], and since the non-increasing TUFs are widely employed [68] to analyze the

relationship between a request’s response time and its processing profit, scheduling

approaches that have shorter response times are more desirable.

Different from the traditional dynamic resource provisioning approaches [121][64],

we propose a stochastic approach that can judiciously prune the application requests

on a given distributed platform to address this challenging problem for the situa-

tions with and without resource sharing. Previously, many similar studies employed

acceptance control or random deletion to guarantee the end-to-end QoS satisfactions

[62][76]. Instead of targeting on the potential mischievous requests, these methods

randomly selected the requests to reject or remove. We propose a method that iden-

tifies the potential failure requests and terminates these requests. However, how to

find the potential failure requests and when to remove them from the system are not

trivial problems, especially in the situations where computing resources are shared

among different applications.

In our approach, a sub deadline is associated with each service of a time sen-

sitive application. A request is dropped if any of its services miss the associated

sub deadline. The rationale of our approach is that when an application request is

more likely to miss its end-to-end deadline, and thus is of no use to the system, it

is better off to remove the request as early as possible. Dropping a request helps

saving the precious computing resources and energy for requests that are more likely

to be successfully fulfilled, which would most likely be wasted otherwise. However,

requests dropping degrades the QoS of the system. Making the appropriate trade-

96

off is the key to this problem. To this end, we transform the deadline assignment

problem to a queueing problem with reneges [15] and develop an algorithm to deter-

mine sub deadlines for the services analytically in the situations with and without

resource sharing. Our experimental results demonstrate that our approach is able to

statistically guarantee the QoS requirements with higher efficiencies (i.e. achieving

required completion ratios with shorter average response times.)

5.2 Preliminary

In this section we introduce our system model and formulate our problem formally.

5.2.1 Service Model

We assume that our application architecture consists ofm servers, i.e. E = {E1, E2, ..., Em},

each of which provides one dedicated service. The service time of each server, i.e.

Ei, is independent from each other and follows an exponential distribution with the

average processing time of 1
µi
.

(a) A multi-tier services application.

(b) A queue-based view of an application.

Figure 5.1: Application model.

There is a total of k applications S = {S1, S2, ..., Sk} in the system. We assume

that the requests arrival pattern for each application follows the Poisson distribution,

and each application is modeled with a 4-tuple, i.e. Si = {λi, Di, Ri, Li}, where

97

• λi is the arrival rate of requests for Si;

• Di is the end-to-end deadline of Si;

• Ri is the end-to-end deadline satisfaction ratio (aka. the completion ratio) for

Si;

• Li contains an ordered list of servers that Si needs to go through, i.e. Li =

{Ei1, Ei2, ..., Ein}, where Eij ∈ E .

The multi-tier services in an application and their queuing models are illustrated

in Figure 5.1. Note that Ri and Di together quantify the QoS requirements of Si,

and Li represents the dependent services that Si needs to go through. An instance of

Si, triggered by a corresponding service request, is considered successfully completed

only if it goes through all the designated servers and finishes its execution before the

end-to-end deadline. Otherwise, it is deemed as a failure. For different applications

Si and Sj, Li ∩ Lj may or may not be ∅, indicating that different applications may

or may not share the same servers.

5.2.2 Problem Definition

We assume that, for each application Si = {λi, Di, Ri, Li}, a sub deadline (e.g. dij)

is assigned to each server (e.g. Eij ∈ Li) that Si needs to go through. A request is

dropped if any of its services miss the deadline. Removing a request from the queue

helps save system resources for other requests that are more likely to be completed in

time. On the other hand, such an action may lead to violating the QoS requirements

as identified by the deadline miss ratios. The problem is then how to judiciously

determine the sub deadline for each server. These deadlines are local sub deadlines

and the interval between any two adjacent sub deadlines is used to indicate how

long a request is allowed for being processed in that server.

98

With the system model and assumptions introduced above, we formulate our

research problem as follows:

Problem 5.2.1. Given an application platform E and an application set S, deter-

mine the sub deadline dij on each server (e.g. Eij ∈ Li) for application Si such that

no less than Ri percent of Si requests can successfully meet their end-to-end deadline

Di.

5.3 Sub Deadline Assignment

In this section, we present our approach of solving the sub deadline assignment

problem. We first discuss our approach for a simple case in which an application

has only two services. We then extend our approach to the case for an application

with multiple services.

5.3.1 An Application with Two Servers

We first consider the simple case of an application with only two servers. Consider

the application S = {λ,D,R, L(E1, E2)} shown in Figure 5.2. Initially, an appli-

cation request arrives at E1 following a Poisson process with a rate of λ. If a sub

deadline d1 ≤ D is assigned to E1, not all requests can pass through E1 due to

the deadline violations. We assume that the entire system reaches the stable status

and the renege probability is quite small in each server, thus, according to Burke’s

Theorem [102], the request arrivals for E2 is assumed to be a Poisson process as

well. Assuming that the requests are deleted after the first server at a probability

of p1, then, the arrival rate for the second server E2 becomes

λ2 = (1− p1)λ1. (5.1)

99

Figure 5.2: A two-tier application with sub deadline assignment.

Similarly, when a sub deadline is assigned to E2 (i.e. D in this case,) some re-

quests are dropped at a probability of p2 due to deadline violations. Therefore, the

probability for a request to survive both E1 and E2 is 1− (p1 + (1− p1)p2).

Our goal is to determine d1 such that

1− (p1 + (1− p1)p2) ≥ R. (5.2)

The key challenge, however, is to formulate the relations among parameters including

λ1, λ2, p1, p2, D, and R. To this end, we employ the techniques developed for M/M/1

queue with renege [15] to solve our problem. M/M/1 queue with renege is a queueing

model that depicts the impatient customers who leave the queue if not fully served

within a giving time frame on a server. Specifically, let the arrival rate of requests on

a server be λ and the processing rate be µ, and let a customer’s maximum waiting

length be τ (i.e. the interval between two adjacent sub deadlines in our scenario.)

Then the probability that customers renege from the server can be formulated as

p =
(1− ρ)eα(ρ−1)

1− ρeα(ρ−1)
(5.3)

where ρ = λ/µ and α = µ · τ . Similarly, to calculate p1 in our case, we have

p1 =
(1− λ1

µ1
)e

d1µ1(
λ1
µ1

−1)

1− λ1

µ1
e
d1µ1(

λ1
µ1

−1)
(5.4)

Based on Equation (6.9), we calculate p2 by plugging λ = λ2 and τ2 into Equation

(6.9). However, to formulate the renege probability of E2, we have to take the

100

execution status on E1 into consideration. Since the renege probability on each

server will stay small (because of the completion ratio constraint,) we assume that

the request arrivals of E2 still follows a Poisson distribution. Then, another M/M/1

queue can be modeled for E2. Therefore, let d2 = D, we formulate p2 as

p2 =
(1− λ2

µ2
)e

(D−d1)µ2(
λ2
µ2

−1)

1− λ2

µ2
e
(D−d1)µ2(

λ2
µ2

−1)
. (5.5)

Algorithm 7: Sub deadline assignment for a single application with two
servers.

Input : TwoTier(λ,D,R,E1, E2)
Output: The sub deadline for E1, i.e. d1.

1 d∗1 = 0;
2 while d∗1 ≤ D do
3 Calculate p1 and p2 based on Equations (5.4) and (5.5) using d∗1;
4 if p1 + (1− p1)p2 ≤ 1−R then
5 d1 = d∗1;
6 return d1;

7 d∗1 = d∗1 + δ, where δ is the minimum time interval;

8 print: (“No feasible solution for the given constraints!”);
9 exit();

The feasible solution of d1 satisfies Equations (5.2), (5.4), and (5.5). To identify

the solution for d1, we can use sophisticated numerical algorithms when necessary.

For ease of presentation, Algorithm 9 employs a simple search method to find the

solution of d1. Note that Algorithm 9 does not always produce a feasible solution of

d1. When λ1 is extremely large or when µ1 or µ2 is too small, there is no possible sub

deadline assignment that is able to statistically guarantee the QoS requirements. On

the other hand, if Algorithm 9 does produce a solution, we can ensure the probability

to successfully fulfill the requests without violating the end-to-end deadlines. This

conclusion is summarized in the following theorem.

101

Theorem 5.3.1. Given a single application with two servers E1 and E2, i.e. S =

{λ,D,R,E1, E2}, let the processing rates of the two servers be µ1 and µ2, respec-

tively. Assume that the relative error when modeling the servers E1 and E2 using

M/M/1 independent queues is small enough. Then the sub deadline derived from

Algorithm 9 can guarantee the deadline meet ratio no smaller than R.

Proof. Algorithm 9 ensures that the proportion of the total dropped requests is no

more than R (line 7). Also, since d1 is found in such a way that Equations (5.2),

(5.4) and (5.5) are all satisfied. According to [15], this ensures that all remaining

requests can be processed before d1 and D when going through the first and second

server, respectively.

In addition, we have made a number of interesting observations that are listed

in the following theorem.

Theorem 5.3.2. For an application S and one of its servers, i.e. Ei, with processing

rate of µi, let the corresponding request arrival rate be λi, the deadline be di, and

the renege probability at Ei be pi. Then,

• The larger the λi, the larger the pi is;

• The larger the µi, the smaller the pi is;

• The larger the di, the smaller the pi is.

Proof. From Equation (6.9), we have

∂p

∂ρ
= {[(1− ρ)eα(ρ−1)]′[1− ρeα(ρ−1)]−

[(1− ρ)eα(ρ−1)][1− ρeα(ρ−1)]′}/[1− ρeα(ρ−1)]2
(5.6)

Now let

F (ρ) = [(1− ρ)eα(ρ−1)]′[1− ρeα(ρ−1)]−

[(1− ρ)eα(ρ−1)][1− ρeα(ρ−1)]′

102

Simplify F (ρ) we have

F (ρ) = −eα(ρ−1) + [eα(ρ−1)]2 + (1− ρ)αeα(ρ−1)

= eα(ρ−1)[−1 + eα(ρ−1) + (1− ρ)α]

Let x = (1− ρ)α, we have

F (ρ) = e−x(−1 + e−x + x) (5.7)

According to [3], as long as x > −1, −1 + e−x + x > 0. Since x = (1 − ρ)α, and

ρ < 1, then x is always larger than −1 and Equation (5.7) is positive. Therefore,

from Equation (5.6) we have

∂p

∂ρ
> 0. (5.8)

To prove the first two bullet points in the theorem, we only need to note that

∂p

∂λi

=
∂p

∂ρ
× ∂ρ

∂λi

> 0. (5.9)

and

∂p

∂µi

=
∂p

∂ρ
× ∂ρ

∂µi

< 0. (5.10)

To prove the third bullet point in this theorem, we have

∂p

∂d
={[(1− ρ)eµ·d·(ρ−1)]′[1− ρeµ·d·(ρ−1)]

[(1− ρ)eµ·d·(ρ−1)][1− ρeµ·d·(ρ−1)]′}

/[1− ρeµ·d·(ρ−1)]2

={[(1− ρ)µ(ρ− 1)eµ·d·(ρ−1)][1− ρeµ·d·(ρ−1)]

− ρµ(1− ρ)2[eµ·d·(ρ−1)]}/[1− ρeµ·d·(ρ−1)]2

=− µ(1− ρ)2eµ·d·(ρ−1)/[1− ρeµ·d·(ρ−1)]2

<0

(5.11)

103

5.3.2 An Application with Multiple Servers

We now extend our approach to the case of single application with multiple servers.

Similarly, we assume that the system has reached the stable state and each server

can be modeled as a M/M/1 queue.

Figure 5.3: Application model with more than two servers.

Take the three-tier application shown in Figure 5.3 as an example. After the

first server, assume that there will be p1 percent of all requests deleted due to

the sub deadline violations. The arrival rate for the second server is thus λ2 =

(1 − p1)λ1. After the second server, another p2 percent of the requests among the

λ2 are discarded. Then, only λ3 = (1 − p1 − (1 − p1)p2)λ1 are left for the third

server. Equivalently, the arrival rate of the requests for tier n + 1 from tier n can

be formulated as

λn+1 = (1− pn) · λn. (5.12)

The total ratio of requests that have been removed through n (n ≥ 2) servers can

be formulated as

λ1 · {p1 +
n

ti=2

(Πti−1
tj=1(1− ptj) · pti)} (5.13)

Provided that all the remaining requests in the system are able to meet their end-

to-end deadlines, in order to satisfy the probabilistic guarantee of R, we only need

to require that

λ1 · {p1 +
n

ti=2

(Πti−1
tj=1(1− ptj) · pti)} ≤ (1−R) · λ1 (5.14)

104

Figure 5.4: Applications with shared tiers.

For an application consists of n servers, based on Equation (6.9) we have

pn =
(1− λn

µn
)e(dn−dn−1)µn(

λn
µn

−1)

1− λn

µn
e(dn−dn−1)µn(

λn
µn

−1)
. (5.15)

Note that in the equation above, pn is the request removal probability on En, and

(dn−dn−1) is the allowed processing time of a request on server En. We can then for-

mulate the equations recursively for the servers E1, E2,, En. The d1, d2, d3,, dn

that satisfy Equation (5.14) are the sub deadlines for each server.

5.3.3 Multiple Applications with Shared Servers

Due to issues such as software licenses and resource/cost constraints, different ap-

plications usually need to go to the same server for services. We now discuss how

to assign sub deadlines for multiple applications in a shared environment.

In this scenario, some tiers that belong to different applications have to share

the same function unit (hosted on the same server). The sub deadline calculation

is more intricate here. As shown in Figure 5.4, two applications share the same

second service tier. Each application has its own QoS required pair {D1, R1}, and

{D2, R2}. Algorithm 9 cannot be simply applied to calculate the sub deadlines

for the applications. We employ statistical multiplexing to describe the sharing

situation. However, it is worth pointing out that our method is not limited to the

105

statistical multiplexing. Different application requests on the same server share the

same processing queue. Since we assume that the arrival rates of both applications

on the shared server follow Poisson distribution, the combined workload arrival is

still a Poisson process. The processing time of each request on the shared server is

exponentially distributed. Therefore, the shared server can be treated as a M/M/1

queue as well. The response time relationship between the two applications and the

combined workload can be formulated as following [137]:

1

U − (λ12 + λ22)
=

1

µ∗
12 − λ12

=
1

µ∗
22 − λ22

(5.16)

where U is the shared server’s processing rate. λ12 and λ22 are the arrival rates of

the two applications at the second tier. µ∗
12 and µ∗

22 are the corresponding simulated

processing rates of the two applications under the situation in which applications

are processed independently with no resource sharing. The formulations of µ∗
12 and

µ∗
22 can be derived through simple transformations of Equation (5.16).

µ∗
12 = U − λ22

µ∗
22 = U − λ12 (5.17)

With the derived µ∗
12 and µ∗

22 in the shared environment, we can apply Equation

(6.9) to obtain the renege probabilities for each of the applications. Due to the

fact that they share the same service tier, the sub deadline calculations for the two

applications are interdependent. We apply an iterative approach to derive the sub

deadlines for each of the applications.

We first assume that no renege happens for application S2. Then, application S1

can be treated as a serialized application with a middle tier shared with application

S2. With Equation (5.17), we use the method introduced in the previous section

106

(Algorithm 9) to calculate the sub deadlines for S1. Once S1’s sub deadlines are

available (e.g. d11), replace the λ12 in Equation (5.17) with the derived arrival rate

of application S1 (e.g. λ∗
12) in the shared tier using the calculated S1’s sub dead-

lines (e.g. d11). Then, S2’s sub deadlines are calculated following the same method.

These two sub deadline calculation steps for S1 and S2 compose an iteration. After

each iteration, sub deadline calculations for S1 and S2 are conducted again based

on the results derived from the previous iteration. The whole procedure stops when

the maximum sub deadline difference between two adjacent iterations of both appli-

cations are smaller than a pre-defined threshold T (or reach a maximum iteration

number.) The details of our approach for multiple applications with shared service

tiers is summarized in Algorithm 6.

Algorithm 8: Sub deadline assignment for multiple applications with shared
service tiers.

Input : K number of N -tier applications running on M number of servers,
λi, Di, Ri, E1, E2, . . . , Em. ∀i ∈ K, ∀m ∈M .

Output: The sub deadline for applications S1, S2, . . . , SN .

1 for (i = 1; i ≤ K; i++) do
2 for (j = 1; j ≤ N ; j ++) do
3 PreSDij = 0;

4 Initialize Stop to 0;
5 Initialize Loop num to 0;
6 while (!Stop) do
7 for (i = 1; i ≤ K; i++) do
8 Loop num = Loop num+ 1;
9 Assume no renege for applications Si+1, Si+2, . . .SN ;

10 Application S1, . . . , Si−1 have sub deadlines calculated in the previous
loops;

11 Apply Algorithm 9 for application Si to get SDij;

12 if (max[|PreSDij − SDij|] < T , ∀i ∈ K, ∀j ∈ N) &&
(Loop num <= Max loop num) then

13 Set Stop to 1;

14 PreSDij = SDij;

107

5.4 Simulation Study

In this section, we use simulations with synthetic parameters to investigate the

performance of our approach.

We compared our high efficient sub deadline approach (“HESD”) with several

widely used methods. Acceptance control (“ac”), random deletion (“rd”) and First-

Come-First-Server (“fifo”) have no sub deadline constraints. Then, a local sub

deadline calculation method “det” (similar to [49] and [130]) deterministically as-

signs sub deadlines to servers. Finally, a global sub deadline assignment method

“pdf” based on request processing time distribution is employed for comparisons.

The summary of the methods is listed as follows:

• ac: In the acceptance control method, based on the available computing ca-

pacity, a maximum acceptable request arrival rate is provided in order to

guarantee that R percent of the accepted requests can be successfully com-

pleted before their end-to-end deadlines. If a service request is accepted, it

will be processed until it is fully fulfilled.

• rd: In the random deletion method, all the request arrivals are accepted into

the service chain. However, a bottleneck service tier will be identified. Based

on the capacity of the bottleneck tier and the QoS required pair {D, R}, a cor-

respondent amount of requests will be removed randomly from the bottleneck

tier.

• fifo: The first come first serve method processes each request till completion

according to their arrival order.

• det: In the deterministic local sub deadline assignment method, each server is

assigned a local deadline that is proportional to the server’s average response

time.

108

• pdf : This is a method that applies the request processing time probability

density function (PDF) on each server to find out how likely that the server’s

follow-up processing can meet the request’s end-to-end deadline [136]. We ex-

tend their method to a global sub deadline assignment method. The extended

version calculates the sub deadlines backward from the exiting point of the

application. Thereby, the sub deadline calculated for each server is actually

the latest time instance to statistically guarantee that the follow-up servers

can finish the request’s processing before the request’s pre-defined end-to-end

deadline.

In order to show the applicability of our method, we implement FIFO and processor

sharing (PS) scheduling policies in our simulation with the sub deadline constraints

derived by our method.

5.4.1 Single Application without Shared Resources

We tested our method based on a three-tier application. Each tier was assumed

to be hosted in an isolated processing unit. No resource or service sharing ex-

isted among the tiers. The parameters of the three-tier application were randomly

generated. The processing rates of the servers were set to be 120, 115, and 110

requests/second, respectively. The execution times of the requests on the different

servers were randomly generated according to each server’s processing rate, and the

execution times followed exponential distributions. The impacts of different arrival

rates and processing rates on the QoS satisfactions were studied. We ran 200000

requests of each application for 5 rounds to average the randomness in each method.

109

Arrival Rate Effects

We first analyzed the effects of different request arrival rates on the QoS satisfaction.

We set the end-to-end deadline to be 0.4s with a completion ratio requirement

of 90%, and gradually changed the arrival rate from 99 to 107 request/second with

2 request/second intervals.

Figure 5.5: Completion ratio comparison.

Figure 5.6: Average response time comparison.

Figure 5.5 shows the completion ratios achieved by the methods at different ar-

rival rates. Intuitively, the higher the arrival rate, the worse the completion ratio

for most of the methods since the queues are getting more congested with the in-

creasing number of requests. Every request has to experience longer delay in each

server in order to be fully served. The results shown in Figure 5.6 clearly supports

our inference.

110

Our proposed method “HESD fifo” had the lowest average response times while

guaranteeing the required completion ratio. Since it is able to statistically guarantee

the QoS required pair, its completion ratio kept stable around the required value

through out the entire test cases. “HESD ps” had similar results as “HESD fifo”

when the arrival rate was low. As the arrival rate got higher, its performance

degraded slightly. It is interesting to observe that even though “pdf” satisfied the

QoS required pair in the first testing case, its derived sub deadlines had less effect

as those calculated via our proposed method. The number of completed requests

was much larger than the one required to meet the QoS and resulted in significantly

higher average response times. Additionally, the “pdf” method is not flexible to

the parameter changes. When the arrival rate grew higher, “pdf” struggled and

failed to provide sub deadlines for the application. The performance of “det” was

surprisingly good in this test. However, it is not able to statistically guarantee the

QoS required pair as the resources become stringent. On the contrary, our method is

capable of indicating the potential infeasibility when Algorithm 9 could not provide

corresponding sub deadlines. “ac” and “rd” satisfied the QoS requirements while

the arrival rates stayed low. Nevertheless, as the arrival rate got higher (e.g. 107

requests/second in our case,) in order to guarantee that 90% of the accepted requests

could finish before the end-to-end deadline, only around 85% original requests could

be accepted for “ac” and 0% for “rd”.

Processing Rate Effects

We further studied the processing rate effects on different methods.

The end-to-end deadline was set to be 0.5s with a completion ratio requirement

of 90%. Arrival rate was 90 requests/second. The processing rates were set to be

111

120, 115, 110 requests/second initially, and were gradually degraded from 100% to

92% of the full capacities, with 2% degrading intervals.

Figure 5.7: Completion ratio comparison.

Figure 5.8: Average response time comparison.

Figures 5.7 and 5.8 depict the completion ratios and average response times,

respectively. With the full processing capacities, all methods were able to sat-

isfy the QoS requirements. As the processing rate degraded, completion ratios

achieved by all the methods except “HESD” dropped. The changes in processing

rate did not have significant impacts on the completion ratio in our proposed method

(“HESD ps” degraded slightly as the processing capacity dropped.) However, we

can easily tell from the figure that the lower the processing rate, the larger the av-

erage response times for all the methods. “pdf” failed to provide sub deadlines for

the last two settings.

112

5.4.2 Multiple Applications with Shared Resources

We finally studied the performance of our proposed method in a shared environment

based on the architecture shown in Figure 5.9. Since “ac” and “rd” are similar, “det”

has no statistical guarantee, and “fifo” is always the worst on the average response

time, we did not include them into the comparisons.

Figure 5.9: Applications with shared servers.

As shown in Figure 5.9, three different applications share three services. The

requests of the first application λ1 enter the system from node E1. After going

through nodes E2 and E3, the successfully processed requests leave the system from

E3. Similar to the first application, the requests of the second (third) application

enter the system from node E2 (E3), and leave the system from nodes E1 (E2). We

set the processing rate of the three nodes at 350, 360, 370 requests/second, and

gradually degraded the processing capacities of the three nodes simultaneously from

96% to 88% with a degrading interval of 2%. The three applications had the same

arrival rate at 100 requests/second. The QoS required pairs are {92%, 0.5s}, {90%,

0.4s}, and {92%, 0.5s}, respectively. 10000 number of requests of each application

were tested, and the comparisons of the completion ratios and average response

times are illustrated in Figure 5.10.

From 5.10(a) we can tell that the “pdf” method had similar performance as in

the single application situations. The sub deadlines derived were relatively relaxed

113

compared to those calculated by “HESD”. Not many requests were removed in

“pdf”. When the processing capacities degraded to 88% in our case, “pdf” failed

to assign sub deadlines to the applications subject to the desired QoS required

pairs. On the contrary, the completion ratios of “HESD fifo” kept stable around the

required levels at different parameter settings and its average response times were

obviously smaller than “pdf” (Figure 5.10(b).) “HESD ps” had a stable completion

ratio as well but failed to reach the required amount (around 4% lower) even though

it had the lowest average response times. The average response times reflected a

raising trend as the processing capacities degraded in all the methods.

5.5 Conclusion

In this paper, we propose a sub deadline assignment approach for applications with

and without resource sharing. We model the multi-tier time-sensitive applications

as M/M/1 queues with reneges. It is able to statistically guarantee the QoS require-

ments with high efficiencies by judiciously discarding mischievous failure requests

in early stages. Precious computing resources can be used more effectively and

efficiently by the promising requests. Our proposed method has the potential to

increase the net profit for a service provider.

In order to further explore efficient resource sharing mechanisms, in next chapter

we are going to discuss our research on power minimization in an environment where

computing resources are shared by the requests of the same service but with different

QoS requirements.

114

(a) Completion ratio comparison.

(b) Average response time comparison.

Figure 5.10: Comparison for multiple applications with shared resources.

115

CHAPTER 6

POWER MINIMIZATION WITH EFFICIENT RESOURCE

SHARING

As the cloud market gets mature, the service level agreements between service

providers and customers become more and more fine-grained. Different levels of

QoS requirements are defined for various classes of customers. In this chapter, we

study the problem of power minimization with guaranteed QoS. Significant power

saving can be achieved by efficiently sharing computing and energy resources among

requests of the same service but with different QoS requirements.

6.1 Research Problem Introduction

There are extensive studies conducted to improve service provider’s power efficiencies

(e.g. [116][85][19][119][121]). Server consolidation, for example, has been a common

approach to achieve high power/energy efficiency for data centers. The virtualiza-

tion technology has enabled multiple virtual machine instances be executed on the

same physical server. Since a server’s power consumption is not exactly proportional

to its utilization, and server may consume a significant amount of power even at

a very low level of utilization, consolidation helps to increase the utilization of a

server and minimize the number of activated physical servers needed. For example,

in [116], Verma et al. present consolidation decisions that are made based on the

correlations among different workloads. In [85], Mastroianni et al. devise two proba-

bility functions to model the effects of the virtual machine allocation and migration.

By statistically analyzing the need of a virtual machine allocation or migration, they

minimize the number of powered-on servers, and reduce the power consumptions in

data centers. Another commonly used approach is to employ the dynamic voltage

116

and frequency scaling (DVFS) to dynamically adjust the performance and therefore

the power dissipation of a server to achieve power efficiency. For example, in [19],

Beloglazov et al. propose a two-layer optimization (e.g. global and local layers)

to minimize the power consumption in data centers. The local layer monitors each

virtual machine’s utilization, and dynamically adjusts a physical server’s working

frequency through dynamic voltage and frequency scaling (DVFS) [119]. The global

layer uses bin-packing methods to find a new destination for the virtual machine that

has to be migrated. Wang et al. [121] propose an approach for power minimization

by determining the appropriate numbers of powered-on servers and their running

modes (i.e. execution speeds) for the service requests, which can be modeled using

the traditional queuing model.

Power saving techniques usually, if not always, lead to degraded computing per-

formance. However, the quality of service is key to the satisfaction of the client.

Service providers usually provide multiple service level agreements (SLAs) regard-

ing different QoS levels. A database may be queried internally by a company’s

employees or externally by the company’s customers. The external customers may

further be divided into various priority groups. All of the different “visitors” have

their own QoS requirements. The challenges is then how to minimize the power

consumption and guarantee these QoS requirements.

With the virtualization technology, it has been a common approach (e.g. [64]) to

serve the requests with the same QoS on the same server. Since all requests on the

same server has the same QoS requirement, different levels of QoS can be captured

by one single variable such as resource provisions (e.g. [116][85][19]), required pro-

cessing speeds (e.g. [119]) or latency (e.g. [121][64]). While this approach simplifies

the resource management problem to guarantee one specified QoS requirements, the

overall resource usage can be rather inefficient, as shown later in this paper.

117

In this chapter, we study the problem of how to minimize the power consumption

for a data center with the guaranteed QoS levels. We assume that the data center

shall accommodate requests of different kinds of services, as well as requests of

the same service but with different QoS requirements. Different from the previous

studies that employ an individual server (or virtual machine) for the requests with

the same QoS, we develop a method that enables requests of the same service but

with different QoS levels to share the same server, and therefore greatly increase the

resource utilization. To our best knowledge, this is the first approach proposed that

can guarantee different levels of QoS for requests that share the same server. In

addition, we devise a novel approach that can judiciously combine various types of

requests to the same server, and properly discard potential failure requests in time

to minimize the total processing demand and thus the power consumption, while

statistically guaranteeing the QoS. Experimental results show that our proposed

method greatly outperforms other commonly used methods in terms of both QoS

levels and lower power consumptions.

6.2 Preliminary

In this section, we introduce our system model and formulate the problem.

6.2.1 System Model

We assume that a data center provides n different services based on their application

purposes, i.e. S = {S1, S2, ..., Sn}. Each service Si can accommodate different types

of requests Γi = {τi,j, j = 1, . . . , ri}, i.e. requests under different service level

agreements. Each τi,j has its own QoS requirements, denoted as Qi,j. We assume

that different services need to be hosted on different servers but different types of

118

Parameters Definitions

n total number of services.

τi,j the j-type requests in service Si.

ri the total number of request types for
service Si.

Vi,k the k-th server that supplies service Si.

mi the total number of servers that sup-
port Si service.

P d the dynamic power.

P s the static power.

λi,j the arrival rate of τi,j .

Di,j the deadline for τi,j .

Ri,j the completion ratio for τi,j .

Qi,j the quality-of-service requirement of
τi,j .

µi,j the required processing rate for τi,j in
order to guarantee Qi,j .

Ui,k the required processing rate of the k-th
server to provide QoS-guaranteed ser-
vice Si.

Ω the pool rate, the sum of all the servers’
processing rate in a server pool. Ω =

i

k Ui,k.

C the capacity of the servers.

Table 6.1: Parameter notation.

requests in Si can be potentially hosted in the same server. We assume that there

are n types of servers, i.e. {V1, V2, ..., Vn}, and each type (e.g. Vi) may contain

mi servers (e.g. Vi,k, k = 1, . . . ,mi) that support service Si. Our system model is

illustrated in Figure 6.1. In Figure 6.1, τ11 τ14 share server V11, and τ12 τ13 share

server V12.

We assume that the request arrival patterns follow the Poisson distributions [102],

and their response times follow exponential distributions. Different types of re-

quests for the same service may have different arrival times, deadlines, and com-

pletion ratio requirements. Specifically, a request is modeled with a 3-tuple, i.e.

τij = {λi,j, Di,j, Ri,j}, where

119

Figure 6.1: System model.

• λi,j: the arrival rate of the j-type requests in service Si.

• Di,j: the deadline of the j-type requests in service Si.

• Ri,j: the completion ratio requirement of the j-type requests in service Si.

The Qi,j of τi,j is defined by {Di,j, Ri,j}, meaning that at least Ri,j percent of the

τi,j requests have to be served no later than Di,j.

A service provider suffers from high power consumptions while providing QoS

guaranteed services. We adopt a linear power model to describe a server’s power

consumption (e.g. [85]), as shown in Equation (6.1):

P = P dφ+ P s (6.1)

where P s is the static power, and P dφ is the dynamic power. φ is the utilization of

a server, defined as φ = U
C
, where U is the required processing rate of a server, and

C is the capacity limit of a server. For ease of reference, we list some commonly

used notations in Table 6.1.

120

6.2.2 Problem Definition

With the system model defined above, the problem we are to address can be formu-

lated as follows.

Problem 6.2.1. Given service requests Γi = {τi,j : j = 1, ..., ri} for i = 1, . . . , n, de-

termine the server pool, i.e. V = {Vi,k : i = 1, ..., n; k = 1, ...,mi}, the corresponding

processing rate Ui,k, and the allocation of Γi to V , such that the QoS requirements

(i.e. Qi,j, i = 1, ..., n; j = 1, ..., ri) are guaranteed and the power consumption of the

server pool is minimized.

This problem involves with two intertwined problems: how to judiciously pack

service requests to a server and how to determine the proper service rate to minimize

the power consumption while guaranteeing the QoS for all types of requests. In what

follows, we first introduce three preliminary analyses, and then present our algorithm

in details.

6.3 Preliminaries

This section presents three key analyses regarding QoS guarantee, request multi-

plexing, and request packing. These analyses form the basis of our approach.

6.3.1 Processing Rate Selection for QoS Guarantee

Traditionally, people using M/M/1 queue [102] to represent the request processing

procedure [136], as shown in Figure 6.2. Service requests arrive with a rate λ, wait

in a queue with an infinite size, and get processed with a rate µ.

121

Figure 6.2: M/M/1 queue.

Accordingly, the probability density function (PDF) and the cumulative distri-

bution function (CDF) of the response time are listed below:

f(t) = (µ− λ)e−(µ−λ)t (6.2)

F (t) = 1− e−tµ(1−λ
µ
) (6.3)

with a mean response time:

E[t] =
1

µ− λ
(6.4)

The q-percentile of the response time tq (tq is larger than q% of all response

times) has the following relationship:

1− e−tqµ(1−λ
µ
) =

q

100
(6.5)

with simple transformations, we have:

tq =
1

µ− λ
ln[

100

100− q
]

= E[t]ln[
100

100− q
]

(6.6)

Given request τi,j’s arrival rate λi,j, deadline Di,j, and completion ratio require-

ment Ri,j, in order to guarantee Qi,j, the required service rate µi,j (when τi,j is

hosted alone) is:

µi,j =
ln[1

1−Ri,j
]

Di,j

+ λi,j (6.7)

While µi,j defined above can guarantee Qi,j, as much as (1 − Ri,j)% can miss

their deadlines and contribute little or no benefit to the application at all. To save

122

power consumption, it is desirable that we can discard a request if it has a high

probability to miss its deadline but save the precious resource for requests that are

more likely to be successfully fulfilled. The problem is how to discard these requests

without compromising the QoS. To this end, we employ the renege M/M/1 queuing

model [15], as illustrated in Figure 6.3.

Figure 6.3: M/M/1 with renege.

As shown in Figure 6.3, according to the renege model, each request is associated

with a deadline. If a request is not fully served until its deadline, it is removed from

the system. According to this model, there exists an interesting relationship among

the request’s deadline miss probability Pmiss, the request arrival rate λ, processing

rate µ, and deadline D, which can be formulated as:

Pmiss =
(1− ρ)eµD(ρ−1)

1− ρeµD(ρ−1)
(6.8)

where ρ = λ
µ
. Accordingly, for the given λi,j, Ri,j, and Di,j of request τi,j, we can

derive µ∗
i,j that guarantees Qi,j:

1−Ri,j ≥
(1− λi,j

µ∗
i,j
)e

µ∗
i,jDi,j(

λi,j
µ∗
i,j

−1)

1− λi,j

µ∗
i,j
e
µ∗
i,jDi,j(

λi,j
µ∗
i,j

−1)
(6.9)

It is interesting to note that, the processing rate derived using renege queue µ∗
i,j

is smaller than the µi,j in Equation (6.7). It means that, with the renege model

and judiciously remove the request from the queue, we can guarantee the same QoS

with smaller processing rates.

123

We show the proof of µ∗i, j < µi,j as following:

Proof. In order to proof µ∗
i,j < µi,j, we substitute µi,j derived from Equation (6.7)

into the following equation:

R∗ = 1− Pmiss

= 1−
(1− λ

µ
)eµD(λ

µ
−1)

1− λ
µ
eµD(λ

µ
−1)

=
1− e(λD−µD)

1− λ
µ
e(λD−µD)

(6.10)

Then, we have

R∗ =
1− e[λD−(

ln[1
1−R

]

D
+λ)D]

1− λ
µ
e[λD−(

ln[1
1−R

]

D
+λ)D]

=
1− e[−ln(1

1−R
)]

1− λ
ln[1

1−R
]

D
+λ

e[−(ln(1
1−R

)]

=
1− (1−R)

1− λ
ln[1

1−R
]

D
+λ

(1−R)

=
R

1− λ
ln[1

1−R
]

D
+λ

(1−R)

(6.11)

Since (1− λ
ln[1

1−R
]

D
+λ

(1−R)) < 1, we have:

R∗ =
R

1− λ
ln[1

1−R
]

D
+λ

(1−R)
> R (6.12)

Equation (6.12) indicates that using the processing rate µ derived from the tra-

ditional method (e.g. Equation (6.7)) generates a completion ratio R∗, which is

larger than R. To this end, in order to have the same completion ratio (e.g. R),

renege queuing model needs a smaller processing rate, i.e. µ∗ < µ.

124

6.3.2 Request Multiplexing

When service Si has multiple types of requests, e.g. τi,j, one common approach is to

host each type of requests with one individual server or virtual machine. While this

approach simplifies the resource management for guaranteeing specified QoS levels,

the efficiency of resource usage can be rather low, not to mention other possible

problems, such as the cost of software licenses.

Consider three types of requests of the same service τ11, τ12 and τ13. The Ri,j-th

percentile response time tRi,j
of τi,j can be formulated as:

tRi,j
=

1

µi,j − λi,j

ln[
1

1−Ri,j

] (6.13)

When hosting each τ1,j individually on a service pool V = {V1,1, V1,2, V1,3}, we

let the server processing rates as U11, U12, and U13, respectively. Then, to satisfy

each Qi,j, the processing rates can be calculated as follows:

Ui,j = µi,j =
ln[1

1−Ri,j
]

Di,j

+ λi,j (6.14)

Let us define the processing rate of the server pool1 as the sum of all the servers’

required processing rates in a server pool (i.e. V), denoted as Ω(V). Then, we have:

Ω(V) =
3

j=1

µ1,j =
3

j=1

[
ln[1

1−R1,j
]

D1,j

+ λ1,j] (6.15)

When the three types of requests are hosted together in a single server V ′ = V ′
1,1,

the processing rate U ′
1,1 of V ′

1,1 has to satisfy the QoS requirements of τ1,1, τ1,2, and

τ1,3. For example, assume that the required processing rate of V ′
1,1 is u∗

1,1 according

to τ1,1’s QoS requirements (i.e. U ′
1,1 = u∗

1,1). Then, based on Equation 6.13, we have

1

µ1,1 − λ1,1

ln[
1

1−R1,1

] =
1

u∗
1,1 −

3
j=1 λ1,j

ln[
1

1−R1,1

] (6.16)

1The processing rate of the server pool, i.e. Ω, is a parameter for reflecting the overall
physical server utilization in the server pool.

125

We transform Equation 6.16 and have:

U ′
1,1 = u∗

1,1 = µ1,1 − λ1,1 +
3

j=1

λ1,j

= µ1,1 +
3

j=1,j ̸=1

λ1,j

(6.17)

The U ′
1,1 derived by Equation 6.17 guarantees that after the combination, the

processing of τ1,1 is the same as it is hosted separately by a single server. Similarly,

we can derive the V ′
1,1’s required processing rate U ′

1,1 = u∗
1,2 (U ′

1,1 = u∗
1,3, resp.)

according to the QoS requirements of τ1,2 (τ1,3, resp.) as follows:

U ′
1,1 = u∗

1,2 = µ1,2 +
3

j=1,j ̸=2

λ1,j (6.18)

and

U ′
1,1 = u∗

1,3 = µ1,3 +
3

j=1,j ̸=3

λ1,j (6.19)

Therefore, when τ1,1, τ1,2, and τ1,3 are hosted together in V ′
1,1, in order to satisfy

the QoS requirements for all the three types of requests simultaneously, the process-

ing rate U ′
1,1 of V ′

1,1 has to be the maximum among Equations 6.17, 6.18, and 6.19,

i.e.:

U ′
1,1 = max{u∗

1,1, u
∗
1,2, u

∗
1,3} (6.20)

Then, the server pool processing rate is Ω(V ′) = U ′
1,1.

We formally formulate the discussion above in Theorem 6.3.1 to conclude our

analysis.

Theorem 6.3.1. For service requests τi,1, τi,2, . . . , τi,ri hosted in a single server

Vi,1, let

u∗
i,j = µi,j +

ri
q=1,q ̸=j

λi,q (6.21)

126

and let the processing rate of Vi,1 be Ui,1. Then τi,1, τi,2, . . . , τi,r1 can all meet their

QoS if Ui,1 ≥ max µ∗
i,j.

From Theorem 6.3.1, to meet QoS of τ1,1, τ1,2, and τ1,3 when multiplexing a

server, we have Ω(V ′) = µ1,α +
3

j=1,j ̸=α λ1,j (assuming U ′
1,1 = u∗

1,α). Therefore, to

compare Ω(V) and Ω(V ′), we have:

Ω(V)

Ω(V ′)
=

3
j=1 µ1,j

µα +
3

j=1,j ̸=α λ1,j

> 1 (6.22)

which indicates that to guarantee the same QoS level, request multiplexing requires

a smaller processing rate of the server pool (i.e. Ω) than hosting each type of requests

on an individual server separately.

6.3.3 Request Packing

From the discussions above, clustering multiple types of requests into the same

server helps to improve the resource usage. The question is then how to identify the

group of request types for each server that can minimize the server pool processing

rate Ω (i.e. Ω =

i

k Ui,k) and thus maximize the resource usage and minimize

the power consumption. Consider the following example with four types of requests

τ1 . . . τ4:

• λ1 = 60, µ1 = 120.

• λ2 = 40, µ2 = 80.

• λ3 = 50, µ3 = 70.

• λ4 = 20, µ4 = 90.

with µi the minimum processing rate to satisfy its QoS when allocated to a server in-

dividually. All parameters have the unit of (request/second). With the two request

127

combinations shown in Figure 6.4, in order to guarantee all the QoS requirements,

the required server pool processing rates are Ω(V1, V2) = 300 and Ω(V ′
1 , V

′
2) = 280

(derived based on Equation 6.20). This example clearly shows that different service

request allocations can lead to service pools with very different processing rates.

Figure 6.4: Processing rate with different combination.

The service request allocation problem, as we proposed to study here, isNP-hard

in nature. Therefore, we focus on the development of effective and efficient heuristic

solution for this problem. To this end, we have made a number of interesting

observations, which are formulated in the following theorems.

Theorem 6.3.2. Let Γ1,p and Γ1,q be two sets of requests of the same service mapped

to two servers V1,p and V1,q, respectively. Assume that one request type, i.e. τ1,i ∈

Γ1,p, is migrated from V1,p to V1,q. Let U1,p (U1,q, resp.) be the minimum processing

rate for V1,p (V1,q, resp.) that guarantees the QoS requirements for requests allocated

to the server after τ1,i is migrated. Then the processing rate for the server pool, i.e.

Ω(V) = U1,p + U1,q, is minimized when ϕi,1 = µi,1 − λi,1 is the minimum.

Proof. When migrate request type τ1,i from V1,p to V1,q, there are two cases need to

be discussed to derive Ω(V).

128

Case 1. V1,q is empty:

We use Ω and Ω to represent the total processing rate required before and after

the migration. With no loss of generality, we assume that τ1,α has the largest ϕ in

V1,q. Then, Ω = {µ1,α +

j∈V1,p,j ̸=α

λ1,j} (6.23)

Ω = {µ1,α +

j∈V1,p,j ̸=(α,i)

λ1,j}+ {µ1,i} (6.24)

Equation (6.24) can be simply transformed into:

Ω = {µ1,α +

j∈V1,p,j ̸=α

λ1,j − λ1,i}+ {µ1,i}

= {µ1,α +

j∈V1,p,j ̸=α

λ1,j}+ {µ1,i − λ1,i}
(6.25)

Then, Ω− Ω = µ1,i − λ1,i = ϕ1,i (6.26)

From Equation (6.26) we can see that Ω increases with the minimum amount

only when τ1,i has the smallest ϕ. Therefore, if V1,p has to migrate τ1,i to V1,q, Ω has

the minimum increase by migrating from the request type that has the smallest ϕ.

Case 2. V2 is not empty:

With no loss of generality, assume τ1,α and τ1,θ are the request types that has

the largest ϕ in V1,p and V1,q, respectively. τ1,i is the migrating request. Then, the

case can be further divided into two sub-situations to discuss. We use Ω and Ω to

indicate the total required processing rate before and after the migration.

• ϕ1,i < ϕ1,θ

Ω = {µ1,α +

j∈V1,p,p̸=α

λ1,j}+ {µ1,θ +

k∈V1,k,k ̸=θ

λ1,k} (6.27)

129

Ω = {µ1,α +

j∈V1,p,j ̸=(α,i)

λ1,j}+ {µ1,θ +

k∈V1,q ,k ̸=θ

λ1,k + λ1,i}

= {µ1,α +

j∈V1,p,j ̸=α

λ1,j − λ1,i}+ {µ1,θ +

k∈V1,q ,k ̸=θ

λ1,k + λ1,i}

= {µ1,α +

j∈V1,p,j ̸=α

λ1,j}+ {µ1,θ +

k∈V1,q ,k ̸=θ

λ1,k}

(6.28)

Equations (6.27) and (6.28) show that if τ1,i has a smaller ϕ than τ1,θ, the

migration causes no change in Ω.

• ϕ1,i ≥ ϕ1,θ

Ω = {µ1,α +

j∈V1,p,j ̸=(α,i)

λ1,j}+ {µ1,i +

k∈V1,q ,k ̸=(θ,i)

λ1,k + λ1,θ}

= {µ1,α +

j∈V1,p,j ̸=α

λ1,j − λ1,i}+ {µ1,i +

k∈V1,q ,k ̸=i

λ1,k}

= {µ1,α +

j∈V1,p,j ̸=α

λ1,j}+ {µ1,i − λ1,i +

k∈V1,q ,k ̸=i

λ1,k}

(6.29)

From Equation (6.29) we can tell that as long as τi has the minimum ϕ, Ω has

the minimum increase.

Theorem 6.3.2 implies that when migrating requests from one server to another,

selecting the requests with the smallest ϕ helps reduce the overall server pool pro-

cessing rate. In addition, we have the following theorem.

Theorem 6.3.3. Let V1 = {V1,1, V1,2, . . . , V1,p} and V ′
1 = {V ′

1,1, V
′
1,2, . . . , V

′
1,q} be two

server pools that host the same set of requests Γ1. Both V1 and V ′
1 satisfy Γ1’s QoS

requirements. Then Ω(V1) ≥ Ω(V ′
1) if p ≥ q.

Proof. Without any loss of generality, we prove our claim with an example in which

V1 has three servers (V1,1, . . . , V1,3) hosting R types of requests ({τσ, . . . , τσ+m} in

130

V1,1, {τp, . . . , τp+n} in V1,2, and {τα, . . . , τα+γ} in V1,3), where (m + 1) + (n + 1) +

(γ + 1) = R. We further assume that ϕσ > ϕp > ϕα. Then we have:

Ω = {µσ +

j∈V1,1,j ̸=σ

λj}+ {µp +

q∈V1,2,q ̸=p

λq}+ {µα +

θ∈V1,3,θ ̸=α

λθ} (6.30)

If V1,1 and V1,2 have enough residual capacities to host parts of the request set

in V1,3, then we can migrate x types of requests to V1,1 and y types of requests to

V1,2 (x+ y = γ + 1, 0 ≤ x ≤ γ + 1, 0 ≤ y ≤ γ + 1). Then, the server pool becomes

V ′
1 = {V ′

1,1, V
′
1,2}.

The total required processing rate Ω after migration is formulated as following:

Ω = {µσ +

j∈V ′
1,1,j ̸=σ

λj +
x

θ′1,1∈V ′
1,1,θ

′
1,1=1

λθ′1,1
}+ {µp +

q∈V ′

1,2,q ̸=p

λq +

y
θ′1,2∈V ′

1,2,θ
′
1,2=1

λθ′1,2
}

(6.31)

The difference between Ω and Ω is:Ω− Ω = [{µσ +

j∈V1,1,j ̸=σ

λj}+ {µp +

q∈V1,2,q ̸=p

λq}+ {µα +

θ∈V1,3,θ ̸=α

λθ}]

− [{µi +

j∈V ′
1,1,j ̸=σ

λj +
x

θ′1,1∈V ′
1,1,θ

′
1,1=1

λθ′1,1
}+ {µp +

q∈V ′

1,2,q ̸=p

λq +

y
θ′1,2∈V ′

1,2,θ
′
1,2=1

λθ′1,2
}]

= µα +

γ+1
θ∈V1,3,θ ̸=α

λθ −
x

θ′1,1∈V ′
1,1,θ

′
1,1=1

λθ′1,1
−

y
θ′1,2∈V ′

1,2,θ
′
1,2=1

λθ′1,2

= µα − λα > 0

(6.32)

Equation (6.32) indicating that hosting the same set of requests with smaller

number of server achieves smaller total required processing rate.

Theorem 6.3.3 indicates that for a server pool that holds the same set of requests,

the smaller the number of server is, the smaller the processing rate it needs to

guarantee all the QoS requirements. Therefore, to improve the resource usage and

minimize the power consumption, it is beneficial to reduce the number of servers as

best as we can.

131

6.4 The Request Allocation Algorithm

We are now ready to discuss our approach for power consumption minimization in

data centers with guaranteed QoS.

Since the overall power consumption depends on both the processing rate of

the server pool and their static power consumptions (see Equation (6.1)), to solve

Problem 6.2.1, we need to minimize the number of employed servers and their uti-

lizations. As discussed above, when multiple requests are hosted in the same server,

the processing rate of the server pool can be greatly reduced. Also, when requests

with long latency and high possibility of missing its deadline can be judiciously

removed, the demanded server processing rate can also be reduced. Therefore, in

our approach, we adopt the renege model to enable the guarantee of different QoS

levels for requests that share the same server, and also save the power consump-

tion by expunging the requests that have high probability to fail. In the meantime,

Theorems 6.3.2 and 6.3.3 provide valuable insights for the development of heuristic

to minimize the number of servers as well as the processing rate of the server pool.

The detailed algorithm is illustrated in Algorithm 9.

As shown in Algorithm 9, the required processing rate µj for each type of requests

Γ = {τj, j = 1, . . . , r} is calculated using the renege model (line 1). We then sort all

requests based on ϕj, j = 1, . . . , r in a decreasing order, with ϕj = µj − λj, where

λj is the request τj’s arrival rate, and µj is the required processing rate of a server

to satisfy Qj if τj is hosted alone (line 2). Then, we employ the traditional first-fit

bin-packing algorithm to pack requests in the list to servers with a capacity (i.e. the

maximum processing rate) of C (line 3 to line 17). The reason to order the requests

according to the value of ϕ is because, according to Theorem 6.3.2, when a server is

full and new server needs to be allocated, allocating the requests with the smallest

132

Algorithm 9: Request allocation

Input : A set of requests Γ = {τj, j = 1, . . . , r} in service S, each τj has
corresponding λj and Qj ({Dj, Rj}). A set of servers
V = {Vk, k = 1, . . . ,m} with the same capacity C serve the requests in
service S.

Output: The requests allocation.

1 Calculate each µj to satisfy Qj based on Equation (6.9);
2 dif vect ← Sort the ϕ = µ− λ in the decreasing order;
3 for All requests τj, j = 1, 2, . . . , r do
4 for All servers Vk, k = 1, 2, . . . ,m do
5 Add τj into server Vk;
6 Calculate Vk’s required processing rate Uk based on Equation (6.20);
7 if Uk ≤ C then
8 Remove τj from dif vect;
9 Break the loop and pack the next request;

10 else
11 Remove τj from the current server Vk;

12 if Request τj did not fit in any available server then
13 Open a new server and pack request τj;

133

value of ϕ helps reduce the overall processing rate of the server pool. Furthermore,

the bin-packing algorithm minimizes the “bins”, or the number of servers. It thus

also minimizes the processing rate of the server pool as shown in Theorem 6.3.3.

Therefore, Algorithm 1 can potentially achieve high resource usage and thus power

efficiency.

6.5 Experimental Results

In this section, we use simulations to study the properties of our proposed approach.

We assume that requests for different services must be assigned to different

servers. In our experiments, all requests are of the same service but with dif-

ferent QoS levels. The arrival rate of each request type was randomly generated

following a uniform distribution in a range between 120 requests/second and 20

requests/second. The deadline of each request type was also randomly generated

following a uniform distribution in a range between 100ms and 80ms. The comple-

tion ratio was fixed at 95%. The server’s capacity was set to be 250 requests/second.

We compare our approach to four other approaches. All of them apply renege

model to derive the required processing rate for each type of requests.

• split: denoted as “S”, the traditional method that each request type is hosted

in an isolated server [116][35].

• random: denoted as “R”, a method that combines the requests randomly

using request multiplexing.

• first-fit-decreasing: denoted as “F”, a widely employed bin-packing method

[86][4]. Requests are combined using request multiplexing in a decreasing order

of µi,j.

134

• greedy: denoted as “G”, a greedy packing approach. It packs all the requests

into one server, e.g. V1, using request multiplexing. If the required processing

rate of the server exceeds the server’s capacity, the request type that has the

smallest ϕ will be migrated into a new server, e.g. V2. The migration continues

until V1’s required processing rate U1 is smaller than or equals to the capacity

C, i.e. U1 ≤ C. Then, the same procedure works in V2 and stops when all the

servers, e.g. V1, . . . , Vm satisfy their capacity constraints.

• Proposed: denoted as “P”, our proposed method.

6.5.1 Service Utilization Effect

We first conducted a set of tests to study the power saving performance by different

approaches under different request utilizations, i.e. ρi,j =
λi,j

µi,j
. From Equation (6.9),

when the arrival rate is a constant value, the smaller the deadline, the higher the

required processing rate is. Therefore, as the deadline Di,j reduces, the processing

rate µi,j increases, and then the service utilization increases. We therefore varied

request utilization by changing the interval from which we randomly picked the

deadlines. Specifically, we modified the upper bound and lower bound of the interval

simultaneously, from 100ms to 40ms and from 80ms to 20ms, respectively, with an

interval length of 20ms. The test cases in each intervals was tested a thousand

times. The averaged power consumption results were collected, normalized to that

by the approach “split”, and are shown in Figure 6.5.

As shown in Figures 6.5(a) to 6.5(d), our proposed method (denoted as “P”)

has the lowest power consumption ratio across all experiment settings. The fig-

ures clearly illustrate the fact that the power consumption ratio decreases as the

utilization becomes higher (which indicates an increasing resource saving). When

135

(a) Deadline range [20, 40]. (b) Deadline range [40, 60].

(c) Deadline range [60, 80]. (d) Deadline range [80, 100].

Figure 6.5: Power saving performance for requests with different deadline ranges
[lower bound, upper bound].

the number of request types is 10, the power consumption ratio achieved by our

proposed approach increased from 65% to 85% as the utilization increases (e.g. the

deadline range changes from [20ms, 40ms] to [80ms, 100ms]). Since the “greedy”

approach uses a similar allocation strategy that is based on the sorting result of ϕi,j,

its power saving performance is worse than but very close to the results achieved

by our proposed approach. The “first-fit-decreasing” (ffd) derives the request allo-

cations according to the sorting of µi,j, which does not have direct effects on the

processing rate of the server pool (i.e. Ω) and thus has a poor power saving perfor-

mance, especially when the utilization is high (as shown in Figure 6.5(a)). However,

when the utilization is low (as shown in Figure 6.5(d)), “ffd” has a similar perfor-

mance as our proposed approach because the sorting of ϕi,j is similar to the sorting

of µi,j.

136

6.5.2 Capacity Effect

Next, we study the server’s capacity effect on power savings. In this experiment, we

kept the request deadline’s upper and lower bounds at 40ms and 20ms, and gradu-

ally changed the server’s capacity from 250 requests/second to 550 requests/second

with an interval length of 100 requests/second. The completion ratios for all re-

quests were set at 95%. We ran each setting a thousand times.

(a) C = 250 requests/second (b) C = 350 requests/second

(c) C = 450 requests/second (d) C = 550 requests/second

Figure 6.6: Server’s capacity effects on power saving.

The averaged results are shown in Figure 6.6. The server’s capacity increases

from 250 requests/second in Figure 6.6(a) to 550 requests/second in Figure 6.6(d).

Our proposed approach outperforms the others throughout all of the test settings.

However, the improvement of our proposed approach diminishes as the server’s

capacity increases. This is because when the server’s capacity increases, more types

of requests can be hosted together in the same server. All the approaches that

employ request multiplexing can achieve much better energy saving results than

that when each request type is hosted solely on an individual server. If the capacity

137

is large enough that all the requests can be packed into a single server, then all the

approaches that employ request multiplexing have the same results.

6.5.3 Completion Ratio and Average Response Time

Finally, we compare the request completion ratios and average response times achieved

by our proposed approach and the split method. The test was conducted with 5

request types. The deadline’s upper and lower bounds were set to 40ms and 20ms.

The arrival rate’s upper and lower bounds were set as 120 requests/second and 20

requests/second. Completion ratios were set to 95% for all requests. Our proposed

method provided a combination, indicating that {τ4, τ1, τ5} and {τ3, τ2} were hosted

separately in two servers. Each request type had 10, 000 requests. The averaged

simulation results are shown in Figure 6.7.

Figure 6.7: Completion ratios and average response times.

As reflected in Figure 6.7(a), our proposed method not only guarantees the

completion ratios (actually our method achieves even higher completion ratios),

but also obviously reduces the average response times as shown in Figure 6.7(b).

The reason for this phenomenal improvement is because of the request multiplexing

technique, which efficiently utilizes computing resources among different types of

requests.

138

6.6 Conclusion

The expansion of web services in both scope and scale make efficient resource man-

agement extremely challenging for a service provider’s sustainable development. In

this paper, we propose an approach based on request multiplexing and renege queue-

ing techniques to judiciously combine different types of requests for each server and

discard potential failure requests in time. A data center’s power consumption can

be reduced significantly without compromising QoS satisfactions.

139

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this chapter, we first summarize our contributions presented in this disserta-

tion. Then, we discuss the possible directions for our future research work.

7.1 Summary

Today, cloud computing has permeated many aspects of our daily lives. When

people are enjoying the convenience brought by cloud services, service providers

are suffering from tough resource management challenges (e.g. high operational

costs, delay-sensitive service requests, huge heterogeneities from both hardware and

customers, large dynamics in service demands and electricity prices, etc.).

In this dissertation, we studied the problem of delay-sensitive cloud service

scheduling for the sustainable development of cloud computing.

We first developed a set of profit and penalty-aware request scheduling methods

on a single server to maximize a service provider’s net profit. Two non-preemptive

scheduling methods were proposed based on the “opportunity cost” concept and

the speculated execution order. Considering the fact that preemptive techniques

are more responsive to higher priority requests, and more schedulable than their

non-preemptive counterparts, we then extended the non-preemptive methods to a

preemptive one. Our methods carefully chose the ready task to run, judiciously

discard pending requests or abort task executions, and cautiously preempt current

running tasks. They achieve better performance than traditional scheduling meth-

ods. Among the three newly developed methods, speculated order based scheduling

has the best performance. Our preemptive method is 50% worse than the speculated

order based approach but outperforms the opportunity cost based method.

140

Then, in order to accommodate the distributed characteristic of cloud computing,

we studied the request scheduling problem for distributed data centers in a multi-

electricity-market environment. We first devised a request mapping and scheduling

approach to judiciously allocate requests to their corresponding data centers and

decide the execution sequence for the allocated requests. Considering the huge ser-

vice demands in today’s cloud environment, we extended our method by employing

the queuing model. Compared to a static request dispatching method, our approach

achieves 130% more net profits in the best case.

Next, we focused on the request scheduling problem for multi-tier cloud ser-

vices. We developed an algorithm to assign sub deadlines to each service tier in

order to statistically guarantee the QoS requirements. Our method is able to dis-

cover potential failure requests and remove them at early stages. The precious

computing resources can be saved for other requests that are more likely to be suc-

cessfully fulfilled. Compared to other traditional methods (e.g. fifo), our method

can statistically guarantee the QoS while achieving a maximum 80% shorter average

response time. We further extended our method to accommodate the case with re-

source sharing among different services. With the statistically guaranteed QoS, our

method achieves a maximum 50% shorter average response time than a traditional

sub deadline calculation method.

Finally, we studied the power minimization problem in an environment where

computing resources are shared by different types of service requests. By employing

the renege queuing model and the statistic multiplexing technique, the efficiency of

resource utilization is significantly improved. Our solution achieves a 55% maximum

power savings compared to traditional methods with statistically guaranteed QoS.

141

7.2 Future Work

As cloud computing evolves, the cloud environment is becoming more and more

complex. The complexities come from two perspectives: computing infrastructure

and service patterns.

The continuously rising service demands require a tremendous amount of com-

puting nodes (e.g. physical servers) to host the huge workload. Additionally, with

the rapid advancement in hardware technologies, more heterogeneities will be pre-

sented among the various computing nodes. The gigantic computing infrastructures

and their heterogeneities pour a significant amount of complexities into cloud envi-

ronments. Even though the probability of a hardware or software component failure

during its lifetime (typically 3-5 years in industry) can be small, it could be magni-

fied across all computing nodes in a complex environment. At such a large scale, a

hardware/software failure is “the norm rather than an exception” [117].

Additionally, today’s cloud services are usually hosted by multi-tier service ar-

chitectures. Since the service tiers have close inter-tier interactions, the success of

a cloud service heavily depends on the execution in every single service tier. A

malfunction in a sub-service leads to a failure of the whole service architecture. The

intricate inter-tier dependencies aggravate the complexities in the cloud.

Therefore, it is extremely hard to avoid service outages because of hardware/software

or operator failures.

7.2.1 Cost of Failures

Service downtimes attract more and more attention. Significant amount of ef-

fort has already been devoted into the fault tolerance design for service providers

[81][80][117][47]. However, the problem is still one of the immediate challenges that

142

service providers are facing. In 2010, 95% of data centers experienced service down-

times. The number dropped to 91% in 2013. Similarly, the length of downtime

incidents dropped from 97 minutes in 2010 to 86 minutes in 2013. Nonetheless, the

cost of downtime per incident raised from $5, 211 (per minute) in 2010 to $8, 023 (per

minute) in 2013 [118]. The growing trend in downtime cost asks for more effective

and efficient fault tolerance techniques to guarantee a service provider’s sustainable

development in a competitive business environment.

7.2.2 Failure Classifying

The failures that lead to service downtimes can be classified into three groups in

general: hardware failures, software failures, and operator failures.

• Hardware Failure

Among the downtimes experienced by data centers, around 33% were caused

by IT equipment failures [118]. Provided by Vishwanath et al. [117], most

(78%) of the faults were found in hard disks, followed by a few failures (5%)

due to raid controllers. Memory accounted for only 3%. Thus, hard disks are

the most dominant reason behind server failures.

• Software failure

Software failures take different proportions in different applications. They may

cause around 30% of service downtimes in software oriented applications and

only around 8% in hardware focused applications [92]. Many malfunctions

may lead to software failures, among which hangs and loops are two main

types. Sub-service components become unresponsive during a hang waiting for

a resource that never becomes available, or during a loop endlessly repeating

series of instructions [80].

143

• Operator Failure

Patterson et al. [92] conducted two surveys to analyze the causes of service

downtimes, based on the U.S. Public Switched Telephone Network (PSTN)

and three Internet sites. According to the two survey results, around 50% of

service outages are due to operator faults. The researcher claims that as long

as human operators are involved in system operations, they will make errors,

even when they truly know what to do.

The three failure groups discussed above cover most of the service outage reasons.

Even though people are able to categorize the failures with much more fine-grained

metrics, it is impossible for us to avoid the failures. To this end, we would like to

study the problem of how to effectively and efficiently back up the delay-sensitive

cloud services in order to weaken the failure impacts on QoS satisfaction.

7.2.3 Research Problem

There are two possible perspectives from which we can tackle the failure impacts:

check pointing and redundancy.

• Check Pointing

Check pointing is a technique used to help efficiently handle failures by insert-

ing checking points into an application’s execution. At each checking point,

all execution information will be stored in case of a failure in the near future.

Once an application encounters a failure, its execution rolls back to the nearest

checking point for retrieving all the stored execution records. The execution

resumes from the nearest checking point instead of rolling back to the begin-

ning of the execution. Therefore, the processing efficiencies (in terms of short

response time or low power consumption) can be potentially improved.

144

However, the efficiency improvement relies on the number of inserted checking

points. A large number of checking points helps reduce roll back recovering

time. On the contrary, it increases the computing overhead because of the

execution status validations, and the increased overhead can be a burden for

delay-sensitive services.

• Redundancy

Redundancy is a technique to tackle failures by adding redundant components

into the system. In virtualized environments, redundant virtual machines are

configured in anticipation of host server failures [81]. A widely employed ap-

proach is the N+M redundant configuration, which prepares M redundancies

and guarantees that N components work when any M components fail. The

redundancies can be either active backups (i.e. work simultaneously with the

original copies) or passive backups (i.e. work after the original copies fail).

Both redundant backup configurations help QoS satisfactions when failures

occur. However, the price that service providers have to pay is the space

and energy costs (e.g. more storage spaces and power will be consumed).

Under certain space/power budgets, how to efficiently design fault tolerance

configuration for QoS satisfaction is not a trivial problem.

In order to make our designed resource management methods accommodate

failures, we intend to incorporate the fault tolerance concept into our methods from

the two perspectives mentioned above. By balancing the trade-off between QoS

satisfaction and time or space complexity, we can help service providers improve

their service efficiencies and thus achieve sustainable developments.

145

BIBLIOGRAPHY

[1] Adobe media server. http://www.adobe.com/products/amazon-web-
services.html.

[2] Aimms. http://www.aimms.com/.

[3] V. R. Aiyar. On the exponential inequalities and the exponential function.
The Mathematical Gazette, 4(61):pp. 8–12, 1907.

[4] Y. Ajiro and A. Tanaka. Improving packing algorithms for server consolida-
tion. In Int. CMG Conference, pages 399–406. Computer Measurement Group,
2007.

[5] Amazon ec2. http://aws.amazon.com/ec2/.

[6] Amazon web services. http://aws.amazon.com.

[7] M. Andrews. Probabilistic end-to-end delay bounds for earliest deadline first
scheduling. In INFOCOM 2000. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE, volume 2,
pages 603–612. IEEE, 2000.

[8] H. Arabnejad and J. Barbosa. List scheduling algorithm for heterogeneous
systems by an optimistic cost table. Parallel and Distributed Systems, IEEE
Transactions on, 25(3):682–694, March 2014.

[9] D. Ardagna, M. Trubian, and L. Zhang. Sla based resource allocation policies
in autonomic environments. Journal of Parallel and Distributed Computing,
67(3):259–270, 2007.

[10] M. Arlitt and T. Jin. 1998 world cup web site access logs, August 1998.

[11] Arm-the architecture for the digital world. http://www.arm.com/.

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds:
A berkeley view of cloud computing. UC Berkeley, 2009.

[13] I. D. Baev, W. M. Meleis, and A. E. Eichenberger. Algorithms for total
weighted completion time scheduling. In SODA ’99: Proceedings of the tenth
annual ACM-SIAM symposium on Discrete algorithms, pages 852–853, 1999.

146

[14] J. Baliga, R. Ayre, K. Hinton, and R. Tucker. Green cloud computing: Bal-
ancing energy in processing, storage, and transport. Proceedings of the IEEE,
99(1):149 –167, jan. 2011.

[15] D. Y. Barrer. Queuing with impatient customers and ordered service. Opera-
tions Research, 5(5):pp. 650–656, 1957.

[16] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, and L. Stougie.
Multiprocessor scheduling with rejection. In Proceedings of the Seventh An-
nual ACM-SIAM Symposium on Discrete Algorithms, 28-30 January 1996,
Atlanta, Georgia., pages 95–103, 1996.

[17] S. K. Baruah. The non-preemptive scheduling of periodic tasks upon multi-
processors. Real-Time Systems, 32(1-2):9–20, 2006.

[18] A. Beloglazov. Energy-efficient management of virtual machines in data cen-
ters for cloud computing. PhD thesis, Department of Computing and Infor-
mation Systems, The University of Melbourne, February 2013.

[19] A. Beloglazov and R. Buyya. Energy efficient resource management in virtu-
alized cloud data centers. In Proceedings of the 2010 10th IEEE/ACM Inter-
national Conference on Cluster, Cloud and Grid Computing, pages 826–831.
IEEE Computer Society, 2010.

[20] Z. Bodie, R. Merton, and D. Cleeton. Financial Economics. Prentice Hall,
New York, 2008.

[21] C. Boeres, A. Lima, and V. E. Rebello. Hybrid task scheduling: Integrating
static and dynamic heuristics. In Computer Architecture and High Perfor-
mance Computing, 2003. Proceedings. 15th Symposium on, pages 199–206.
IEEE, 2003.

[22] K. G. Brill. The economic meltdown of moore’s law and the green data center.
In Proceedings of the 21th Large Installation System Administration Confer-
ence, LISA 2007, Dallas, Texas, USA, November 11-16, 2007, 2007.

[23] M. Cardosa, M. R. Korupolu, and A. Singh. Shares and utilities based power
consolidation in virtualized server environments. In Integrated Network Man-
agement, pages 327–334. IEEE, 2009.

[24] F. Casati and M.-C. Shan. Definition, execution, analysis, and optimization
of composite e-services. IEEE Data Eng. Bull., 24(1):29–34, 2001.

147

[25] J. S. Chase, D. C. Anderson, P. N. Thakar, and A. M. Vahdat. Managing
energy and server resources in hosting centers. In Proceedings of the 18th ACM
Symposium on Operating System Principles SOSP, pages 103–116, 2001.

[26] M. Chen, H. Zhang, Y.-Y. Su, X. Wang, G. Jiang, and K. Yoshihira. Effective
vm sizing in virtualized data centers. In Integrated Network Management (IM),
2011 IFIP/IEEE International Symposium on, pages 594–601. IEEE, 2011.

[27] S. Chen, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and W. H. Sanders.
Blackbox prediction of the impact of dvfs on end-to-end performance of mul-
titier systems. SIGMETRICS Performance Evaluation Review, 37(4):59–63,
2010.

[28] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam.
Managing server energy and operational costs in hosting centers. In Proceed-
ings of the 2005 ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, SIGMETRICS ’05, pages 303–314,
New York, NY, USA, 2005. ACM.

[29] B. N. Chun and D. E. Culler. User-centric performance analysis of market-
based cluster batch schedulers. In Proceedings of the 2nd IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid, page 30, 2002.

[30] R. K. Clark. Scheduling dependent real-time activities. PhD thesis, Carnegie
Mellon University, 1990.

[31] Demands of the new data center: Consolidate, virtualize, cool.
http://www.crn.com/features/data-center/229301293/demands-of-the-
new-data-center-consolidate-virtualize-cool.htm.

[32] Dropbox. https://www.dropbox.com/home.

[33] Recounting ec2 one year later. http://www.jackofallclouds.com/2010/12/
recounting-ec2/.

[34] Facts and stats of world’s largest data centers.
http://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-worlds-
largest-data-centers/.

[35] E. Feller, L. Rilling, and C. Morin. Energy-aware ant colony based workload
placement in clouds. In Grid Computing (GRID), 2011 12th IEEE/ACM
International Conference on, pages 26–33, Sept 2011.

148

[36] S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. Networking, IEEE/ACM Transactions on, 1(4):397–413, 1993.

[37] S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya. Environment-conscious
scheduling of hpc applications on distributed cloud-oriented data centers. J.
Parallel Distrib. Comput., 71(6):732–749, 2011.

[38] A. Ghiasi and R. Baca. Overview of largest data centers.
http://www.ieee802.org/3/bs/public/14 05/ghiasi 3bs 01b 0514.pdf.

[39] Glpk. http://www.gnu.org/software/glpk/.

[40] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Capacity management
and demand prediction for next generation data centers. In Web Services,
2007. ICWS 2007. IEEE International Conference on, pages 43 –50, july 2007.

[41] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Workload analysis and
demand prediction of enterprise data center applications. In Proceedings of
the 2007 IEEE 10th International Symposium on Workload Characterization,
IISWC ’07, pages 171–180, Washington, DC, USA, 2007. IEEE Computer
Society.

[42] T. Gonzalez and S. Sahni. Preemptive scheduling of uniform processor sys-
tems. Journal of the ACM (JACM), 25(1):92–101, 1978.

[43] Google app engine. https://developers.google.com/appengine/docs/whatis
googleappengine.

[44] Google docs. http://www.google.com/google-d-s/b1.html.

[45] Report: Google uses about 900, 000 servers.
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-
uses-about-900000-servers/.

[46] Microsoft and ibm chase amazon while google falls off the pace.
https://www.srgresearch.com/articles/microsoft-and-ibm-chase-amazon-
while-google-falls-pace.

[47] A. Haeberlen. A case for the accountable cloud. Operating Systems Review,
44(2):52–57, 2010.

149

[48] J. L. Hellerstein. Google cluster data, Jan 2010. Posted at
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html.

[49] S. Hong, T. Chantem, and X. S. Hu. Meeting end-to-end deadlines through
distributed local deadline assignments. In Real-Time Systems Symposium
(RTSS), 2011 IEEE 32nd, pages 183–192. IEEE, 2011.

[50] Forget application response time “standards”–it’s all about the human re-
action. http://www.riverbed.com/blogs/human-reaction-drives-application-
response-time-standards.html.

[51] Ilog. http://www-01.ibm.com/software/websphere/ilog/.

[52] Intel atom processor. http://www.intel.com/content/www/us/en/processors
/atom/atom-processor.html.

[53] D. E. Irwin, L. E. Grit, and J. S. Chase. Balancing risk and reward in a market-
based task service. In Proceedings of the 13th IEEE International Symposium
on High Performance Distributed Computing, pages 160–169, 2004.

[54] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings of
the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, POPL ’87, pages 111–119, New York, NY, USA, 1987. ACM.

[55] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal
of Logic Programming, 19/20:503–581, 1994.

[56] R. Jejurikar. Energy aware non-preemptive scheduling for hard real-time sys-
tems. In Real-Time Systems, 2005.(ECRTS 2005). Proceedings. 17th Euromi-
cro Conference on, pages 21–30. IEEE, 2005.

[57] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven scheduling model
for real-time operating systems. In RTSS, volume 85, pages 112–122, 1985.

[58] A. Kamthe and S.-Y. Lee. A stochastic approach to estimating earliest start
times of nodes for scheduling dags on heterogeneous distributed computing
systems. Cluster Computing, 14(4):377–395, 2011.

[59] B. Kao and H. Garcia-Molina. Deadline assignment in a distributed soft real-
time system. In Distributed Computing Systems, 1993., Proceedings the 13th
International Conference on, pages 428–437. IEEE, 1993.

150

[60] B. Kao and H. Garcia-Molina. Deadline assignment in a distributed soft
real-time system. Parallel and Distributed Systems, IEEE Transactions on,
8(12):1268–1274, 1997.

[61] L. Kleinrock. Queueing systems, volume I: theory. Wiley Interscience, 1975.

[62] K. Konstanteli, T. Cucinotta, K. Psychas, and T. Varvarigou. Admission
control for elastic cloud services. In Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, pages 41–48. IEEE, 2012.

[63] H. Kuno. Surveying the e-services technical landscape. In Advanced Issues
of E-Commerce and Web-Based Information Systems, 2000. WECWIS 2000.
Second International Workshop on, pages 94–101. IEEE, 2000.

[64] P. Lama and X. Zhou. Efficient server provisioning with end-to-end delay
guarantee on multi-tier clusters. In Quality of Service, 2009. IWQoS. 17th
International Workshop on, pages 1–9. IEEE, 2009.

[65] K. Le, R. Bianchini, J. Zhang, Y. Jaluria, J. Meng, and T. D. Nguyen. Re-
ducing electricity cost through virtual machine placement in high performance
computing clouds. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’11, pages
22:1–22:12, New York, NY, USA, 2011. ACM.

[66] K. Le, O. Bilgir, R. Bianchini, M. Martonosi, and T. D. Nguyen. Managing
the cost, energy consumption, and carbon footprint of internet services. In
Proceedings of the ACM SIGMETRICS international conference on Measure-
ment and modeling of computer systems, SIGMETRICS ’10, pages 357–358,
New York, NY, USA, 2010. ACM.

[67] G. Lee. Resource Allocation and Scheduling in Heterogeneous Cloud Envi-
ronments. PhD thesis, EECS Department, University of California, Berkeley,
May 2012.

[68] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou. Profit-driven service
request scheduling in clouds. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pages 15–
24. IEEE Computer Society, 2010.

[69] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:
Exact characterization and average case behavior. In Real Time Systems Sym-
posium, 1989., Proceedings., pages 166–171. IEEE, 1989.

151

[70] P. Li. Utility Accrual Real-Time Scheduling: Models and Algorithms. PhD
thesis, Virginia Polytechnic Institute and State University, 2004.

[71] P. Li, H. Wu, B. Ravindran, and E. Jensen. A utility accrual scheduling
algorithm for real-time activities with mutual exclusion resource constraints.
Computers, IEEE Transactions on, 55(4):454–469, April 2006.

[72] W. Li, K. M. Kavi, and R. Akl. A non-preemptive scheduling algorithm for soft
real-time systems. Computers & Electrical Engineering, 33(1):12–29, 2007.

[73] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska. Dynamic right-sizing
for power-proportional data centers. IEEE/ACM Trans. Netw., 21(5):1378–
1391, Oct. 2013.

[74] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61,
1973.

[75] J. W.-S. Liu. Real-time systems. Prentice Hall, 2000.

[76] X. Liu, J. Heo, L. Sha, and X. Zhu. Adaptive control of multi-tiered web ap-
plications using queueing predictor. In Network Operations and Management
Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, pages 106–114, 2006.

[77] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew. Greening ge-
ographical load balancing. In Proceedings of the ACM SIGMETRICS joint
international conference on measurement and modeling of computer systems,
SIGMETRICS ’11, pages 233–244, New York, NY, USA, 2011. ACM.

[78] Z. Liu, M. S. Squillante, and J. L. Wolf. On maximizing service-level-
agreement profits. In EC ’01: Proceedings of the 3rd ACM conference on
Electronic Commerce, pages 213–223, New York, NY, USA, 2001. ACM.

[79] C. D. Locke. Best-effort decision making for real-time scheduling. PhD thesis,
Carnegie Mellon University, 1986.

[80] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, and P. F. Chan. Leveraging vir-
tualization to optimize high-availability system configurations. IBM Systems
Journal, 47(4):591–604, 2008.

152

[81] F. Machida, M. Kawato, and Y. Maeno. Redundant virtual machine placement
for fault-tolerant consolidated server clusters. In Network Operations and
Management Symposium (NOMS), 2010 IEEE, pages 32–39. IEEE, 2010.

[82] M. Mao and M. Humphrey. Auto-scaling to minimize cost and meet applica-
tion deadlines in cloud workflows. In Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
SC ’11, pages 49:1–49:12, New York, NY, USA, 2011. ACM.

[83] M. R. Marty and M. D. Hill. Virtual hierarchies to support server consolida-
tion. SIGARCH Comput. Archit. News, 35(2):46–56, June 2007.

[84] M. Marzolla, O. Babaoglu, and F. Panzieri. Server consolidation in clouds
through gossiping. In Proceedings of the 2011 IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks, WOWMOM ’11,
pages 1–6, Washington, DC, USA, 2011. IEEE Computer Society.

[85] C. Mastroianni, M. Meo, and G. Papuzzo. Probabilistic consolidation of vir-
tual machines in self-organizing cloud data centers. IEEE T. Cloud Computing,
1(2):215–228, 2013.

[86] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis. Ef-
ficient resource provisioning in compute clouds via vm multiplexing. In Pro-
ceedings of the 7th international conference on Autonomic computing, pages
11–20. ACM, 2010.

[87] A. K.-L. Mok. Fundamental Design Problems of Distributed Systems for the
Hard–Real–Time Environment. Technical Report MIT-LCS-TR-297, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, 1983. Ph.D. Thesis.

[88] R. R. Muntz and E. G. Coffman Jr. Preemptive scheduling of real-time tasks
on multiprocessor systems. Journal of the ACM (JACM), 17(2):324–338, 1970.

[89] S. Muppala and X. Zhou. Cosac: Coordinated session-based admission control
for multi-tier internet applications. In Computer Communications and Net-
works, 2009. ICCCN 2009. Proceedings of 18th Internatonal Conference on,
pages 1–6, 2009.

[90] A. Nair, Jayakrishnan Wierman and B. Zwart. Provisioning of large scale
systems: The interplay between network effects and strategic behavior in the
user base. under submission.

153

[91] H. Oh and S. Ha. A static scheduling heuristic for heterogeneous processors.
In Euro-Par’96 Parallel Processing, pages 573–577. Springer, 1996.

[92] D. A. Patterson. Recovery oriented computing: A new research agenda for a
new century. In HPCA, page 247. IEEE Computer Society, 2002.

[93] Applications performance equals response time, not resource utilization.
http://www.virtualizationpractice.com/applications-performance-equals-
response-time-not-resource-utilization-9916/.

[94] F. I. Popovici and J. Wilkes. Profitable services in an uncertain world. In
Proceedings of the 2005 ACM/IEEE conference on Supercomputing, page 36,
2005.

[95] Powering a google search. http://googleblog.blogspot.com/2009/01/powering-
google-search.html.

[96] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs. Cutting
the electric bill for internet-scale systems. ACM SIGCOMM Computer Com-
munication Review, 39(4):123–134, 2009.

[97] Rackspace cloud media hosting. http://www.rackspace.com/cloud/media/.

[98] L. Rao, X. Liu, M. Ilic, and J. Liu. Mec-idc: joint load balancing and
power control for distributed internet data centers. In Proceedings of the 1st
ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS ’10,
pages 188–197, New York, NY, USA, 2010. ACM.

[99] L. Rao, X. Liu, L. Xie, and W. Liu. Minimizing electricity cost: Optimization
of distributed internet data centers in a multi-electricity-market environment.
In Proceedings of the 29th Conference on Information Communications, IN-
FOCOM’10, pages 1145–1153, Piscataway, NJ, USA, 2010. IEEE Press.

[100] J. Regehr and J. A. Stankovic. Hls: A framework for composing soft real-time
schedulers. In Real-Time Systems Symposium, 2001.(RTSS 2001). Proceed-
ings. 22nd IEEE, pages 3–14. IEEE, 2001.

[101] S. Ren, Y. He, and F. Xu. Provably-efficient job scheduling for energy and
fairness in geographically distributed data centers. In Distributed Computing
Systems (ICDCS), 2012 IEEE 32nd International Conference on, pages 22
–31, june 2012.

154

[102] T. G. Robertazzi. Computer Networks and Systems: Queueing Theory and
Performance Evaluation. Springer-Verlag New York, Inc., New York, NY,
USA, 1990.

[103] Amazon’s cloud on track for $2bn in revenue in 2013.
http://www.theregister.co.uk/2013/04/26/aws revenue analysis/.

[104] O. Sarood and L. V. Kale. A ’cool’ load balancer for parallel applications. In
Proceedings of 2011 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’11, pages 21:1–21:11, New York,
NY, USA, 2011. ACM.

[105] L. Sha, T. F. Abdelzaher, K.-E. rzn, A. Cervin, T. P. Baker, A. Burns, G. C.
Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K. Mok. Real time scheduling
theory: A historical perspective. Real-Time Systems, 28(2-3):101–155, 2004.

[106] K. Shin and P. Ramanathan. Real-Time Computing: A New Discipline of
Computer Science and Engineering. Proc. IEEE, 82(1):6–24, Jan. 1994.

[107] Y. Song, Y. Zhang, Y. Sun, and W. Shi. Utility analysis for internet-oriented
server consolidation in vm-based data centers. In Cluster Computing and
Workshops, 2009. CLUSTER’09. IEEE International Conference on, pages
1–10. IEEE, 2009.

[108] B. Speitkamp and M. Bichler. A mathematical programming approach for
server consolidation problems in virtualized data centers. IEEE T. Services
Computing, 3(4):266–278, 2010.

[109] 7 statistics you didn’t know about cloud computing.
http://blog.nskinc.com/IT-Services-Boston/bid/118077/7-Statistics-You-
Didn-t-Know-About-Cloud-Computing.

[110] C. Subramanian, A. Vasan, and A. Sivasubramaniam. Reducing data center
power with server consolidation: Approximation and evaluation. In High Per-
formance Computing (HiPC), 2010 International Conference on, pages 1–10.
IEEE, 2010.

[111] Synergy research group. https://www.srgresearch.com/.

[112] X. Tang, K. Li, G. Liao, K. Fang, and F. Wu. A stochastic scheduling algo-
rithm for precedence constrained tasks on grid. Future Gener. Comput. Syst.,
27(8):1083–1091, Oct. 2011.

155

[113] K. Tindell and J. Clark. Holistic schedulability analysis for distributed hard
real-time systems. Microprocessing and Microprogramming, 40(2-3):117–134,
1994.

[114] Aws case study: Naughty dog. http://aws.amazon.com/solutions/case-
studies/naughty-dog/.

[115] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely. Dynamic resource
allocation and power management in virtualized data centers. In Network
Operations and Management Symposium (NOMS), 2010 IEEE, pages 479–
486. IEEE, 2010.

[116] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari. Server workload
analysis for power minimization using consolidation. In Proceedings of the 2009
Conference on USENIX Annual Technical Conference, USENIX’09, pages 28–
28, Berkeley, CA, USA, 2009. USENIX Association.

[117] K. V. Vishwanath and N. Nagappan. Characterizing cloud computing hard-
ware reliability. In Proceedings of the 1st ACM symposium on Cloud comput-
ing, pages 193–204. ACM, 2010.

[118] Voice of Uptime. How Downtime Impacts the Bottom Line 2014.
http://www.stratus.com/blog/uptime/?p=1369.

[119] G. von Laszewski, L. Wang, A. J. Younge, and X. He. Power-aware scheduling
of virtual machines in dvfs-enabled clusters. In CLUSTER, pages 1–10. IEEE,
2009.

[120] P. Wang, Y. Qi, X. Liu, Y. Chen, and X. Zhong. Power management in
heterogeneous multi-tier web clusters. In Parallel Processing (ICPP), 2010
39th International Conference on, pages 385 –394, sept. 2010.

[121] S. Wang, W. Munawar, J. Liu, J.-J. Chen, and X. Liu. Power-saving design
for server farms with response time percentile guarantees. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2012 IEEE 18th,
pages 273–284. IEEE, 2012.

[122] X. Wang, D. Lan, X. Fang, M. Ye, and Y. Chen. A resource management
framework for multi-tier service delivery in autonomic virtualized environ-
ments. In Network Operations and Management Symposium, 2008. NOMS
2008. IEEE, pages 310–316, 2008.

156

[123] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemp-
tion threshold. In Real-Time Computing Systems and Applications, 1999.
RTCSA’99. Sixth International Conference on, pages 328–335. IEEE, 1999.

[124] G. Welch and G. Bishop. An introduction to the kalman filter, 1995.

[125] What is cloud computing? http://aws.amazon.com/what-is-cloud-
computing/.

[126] H. Wu. Energy-Efficient utility Accrual Real-Time Scheduling. PhD thesis,
Virginia Polytechnic Institute and State University, 2005.

[127] H. Wu, U. Balli, B. Ravindran, and E. D. Jensen. Utility accrual real-time
scheduling under variable cost functions. In Embedded and Real-Time Com-
puting Systems and Applications, 2005. Proceedings. 11th IEEE International
Conference on, pages 213–219. IEEE, 2005.

[128] H. Wu, B. Ravindran, and E. D. Jensen. Energy-efficient, utility accrual real-
time scheduling under the unimodal arbitrary arrival model. In Proceedings
of the conference on Design, Automation and Test in Europe-Volume 1, pages
474–479. IEEE Computer Society, 2005.

[129] J. Yu and R. Buyya. A budget constrained scheduling of workflow applications
on utility grids using genetic algorithms. In Workflows in Support of Large-
Scale Science, 2006. WORKS ’06. Workshop on, pages 1 –10, june 2006.

[130] J. Yu and R. Buyya. Scheduling scientific workflow applications with deadline
and budget constraints using genetic algorithms. Sci. Program., 14(3,4):217–
230, Dec. 2006.

[131] J. Yu, R. Buyya, and C. K. Tham. Cost-based scheduling of scientific work-
flow application on utility grids. In Proceedings of the First International
Conference on e-Science and Grid Computing, E-SCIENCE ’05, pages 140–
147, Washington, DC, USA, 2005. IEEE Computer Society.

[132] Y. Yu, S. Ren, N. Chen, and X. Wang. Profit and penalty aware (pp-aware)
scheduling for tasks with variable task execution time. In Proceedings of the
2010 ACM Symposium on Applied Computing, SAC ’10, pages 334–339, New
York, NY, USA, 2010. ACM.

157

[133] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time cpu scheduling
for mobile multimedia systems. ACM SIGOPS Operating Systems Review,
37(5):149–163, 2003.

[134] L. Zhang and D. Ardagna. Sla based profit optimization in autonomic comput-
ing systems. In ICSOC ’04: Proceedings of the 2nd international conference
on Service oriented computing, pages 173–182, New York, NY, USA, 2004.
ACM.

[135] W. Zhao, K. Ramamritham, and J. A. Stankovic. Preemptive scheduling
under time and resource constraints. IEEE Trans. Computers, 36(8):949–960,
1987.

[136] M. Zivkovic, J. Bosman, J. L. Van den Berg, R. Van der Mei, H. Meeuwissen,
and R. Nunez-Queija. Dynamic profit optimization of composite web services
with slas. In Global Telecommunications Conference (GLOBECOM 2011),
2011 IEEE, pages 1–6, Dec 2011.

[137] M. Zukerman. Introduction to queueing theory and stochastic teletraffic mod-
els. arXiv preprint arXiv:1307.2968, 2013.

158

VITA

SHUO LIU

2006 B.S., Electrical Engineering
Beihang University
Beijing, China

2009 M.S., Electrical Engineering
Utah State University
Utah, USA

2014 Ph.D., Electrical Engineering
Florida International University
Florida, USA

PUBLICATIONS

Shuo Liu, Soamar Homsi, Ming Fan, Shaolei Ren, Gang Quan, Shangping Ren,
(2015). Power Minimization for Data Center with Guaranteed QoS, 2015 Design
Automation and Test in Europe (DATE). (accepted)

Shuo Liu, Soamar Homsi, Ming Fan, Shaolei Ren, Gang Quan, Shangping Ren,
(2014). Scheduling Time-Sensitive Multi-Tier Services with Probabilistic Perfor-
mance Guarantee, The 20th IEEE International Conference on Parallel and Dis-
tributed Systems (ICPADS). (accepted)

Ming Fan, Qiushi Han, Shuo Liu, Shaolei Ren, Gang Quan, Shangping Ren, (2014).
Enhanced Fixed-Priority Real-Time Scheduling on Multi-core Platforms by Exploit-
ing Task Period Relationship, Journal of Software Systems. (accepted)

Ming Fan, Qiushi Han, Shuo Liu, Gang Quan, (2014). On-Line Reliability-Aware
Dynamic Power Management for Real-Time Systems, 16th International Sympo-
sium on Quality Electronic Design (ISQED). (accepted)

Ming Fan, Shuo Liu, Gang Quan, (2014). Energy Calculation For Periodic Multi-
Core Scheduling in System Thermal Steady-State With Consideration Of Leakage-
AndTemperatureDependency, Journal of Supercomputing. (under review)

159

Shuo Liu, Shaolei Ren, Gang Quan, Ming Zhao, and Shangping Ren, (2013). Profit
Aware Load Balancing for Distributed Cloud Data Centers, 2013 27th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), 611–622.

Shuo Liu, Gang Quan, Shangping Ren, (2012). On-Line Real-Time Service-Oriented
Task Scheduling Using TUF, ISRN Software Engineering, doi:10.5402/2012/681985.

Shuo Liu, Gang Quan, Shangping Ren, (2011). On-Line Real-Time Service Allo-
cation and Scheduling for Distributed Data Centers, 2011 8th IEEE International
Conference on Services Computing (SCC), 528 – 535.

Shuo Liu, Gang Quan, Shangping Ren, (2011). On-Line Preemptive Scheduling of
Real-Time Services with Profit and Penalty, 2011 Proceedings of IEEE Southeast-
con, 287–292.

Shuo Liu, Gang Quan, Shangping Ren, (2011). On-Line Scheduling of Real-Time
Services with Profit and Penalty, 2011 26th ACM Symposium on Applied Comput-
ing (SAC), 1476–1481.

Shuo Liu, Gang Quan, Shangping Ren, (2010). On-Line Scheduling of Real-Time
Services for Cloud Computing, 2010 6th IEEE World Congress on Services (Ser-
vices), 459–464.

160

	Florida International University
	FIU Digital Commons
	11-10-2014

	Delay-Sensitive Service Request Scheduling for Cloud Computing
	Shuo Liu
	Recommended Citation

	Delay-Sensitive Service Request Scheduling for Cloud Computing

