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ABSTRACT OF THE DISSERTATION 

UV-INDUCED MELANOMA MOUSE MODEL DEPENDENT ON ENDOTHELIN 3 

OVER-EXPRESSION 

by 

Ana Paula da Silva Benaduce 

Florida International University, 2014 

Miami, Florida 

Professor Lidia Kos, Major Professor 

Melanoma is one of the most aggressive types of cancer. It originates 

from the transformation of melanocytes present in the epidermal/dermal junction 

of the human skin. It is commonly accepted that melanomagenesis is influenced 

by the interaction of environmental factors, genetic factors, as well as tumor-host 

interactions. DNA photoproducts induced by UV radiation are, in normal cells, 

repaired by the nucleotide excision repair (NER) pathway. The prominent role of 

NER in cancer resistance is well exemplified by patients with Xeroderma 

Pigmentosum (XP). This disease results from mutations in the components of the 

NER pathway, such as XPA and XPC proteins. In humans, NER pathway 

disruption leads to the development of skin cancers, including melanoma. Similar 

to humans afflicted with XP, Xpa and Xpc deficient mice show high sensibility to 

UV light, leading to skin cancer development, except melanoma. The Endothelin 

3 (Edn3) signaling pathway is essential for proliferation, survival and migration of 

melanocyte precursor cells. Excessive production of Edn3 leads to the 

accumulation of large numbers of melanocytes in the mouse skin, where they are 
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not normally found. In humans, Edn3 signaling pathway has also been implicated 

in melanoma progression and its metastatic potential. The goal of this study was 

the development of the first UV-induced melanoma mouse model dependent on 

the over-expression of Edn3 in the skin. The UV-induced melanoma mouse 

model reported here is distinguishable from all previous published models by two 

features: melanocytes are not transformed a priori and melanomagenesis arises 

only upon neonatal UV exposure. In this model, melanomagenesis depends on 

the presence of Edn3 in the skin. Disruption of the NER pathway due to the lack 

of Xpa or Xpc proteins was not essential for melanomagenesis; however, it 

enhanced melanoma penetrance and decreased melanoma latency after one 

single neonatal erythemal UV dose. Exposure to a second dose of UV at six 

weeks of age did not change time of appearance or penetrance of melanomas in 

this mouse model. Thus, a combination of neonatal UV exposure with excessive 

Edn3 in the tumor microenvironment is sufficient for melanomagenesis in mice; 

furthermore, NER deficiency exacerbates this process. 
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I. INTRODUCTION 

Cells in an organism are regulated by several external and internal 

pathways leading to the maintenance of homeostasis. Disruption in pathways 

related with cell cycle and cell differentiation trigger unrestrained cell proliferation 

and abnormal differentiation which, consequently, lead to cancer. As a result, 

transformed cells, lose their original finality, invade and disturb adjacent tissues, 

forming new tumors called metastases. Skin cancer is a very common type of 

cancer (American Cancer Society, 2014a). The different types of skin cancer are 

associated to their cells of origin: aberrant melanocytes give rise to malignant 

melanoma (MM), while aberrant keratinocytes give rise to non-melanoma skin 

cancer (NMSC), which is divided into basal cell carcinoma (BCC) and squamous 

cell carcinoma (SCC). Sunlight exposure is the most important environmental risk 

factor of skin cancer development. Ultraviolet (UV) rays can directly and indirectly 

damage DNA and cause immunosuppression (de Gruijl et al., 2001; Welsh et al., 

2008). In normal human cells, depending on the type of DNA damage, different 

types of repair pathways are activated. When excessive DNA damage that 

cannot be repaired occurs, the apoptotic pathway is activated causing cells to 

undergo programmed cell death. Genetic factors also contribute to UV-mediated 

skin cancer development. Individuals who have defects in the pathways 

mentioned above and/or are immunosuppressive are greatly more susceptible to 

skin cancers. In this chapter, an overview of epidemiological and genetic links of 

UV radiation and skin carcinogenesis are described. Skin cancer diagnoses, 
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available treatments for the most aggressive type of skin cancer and mouse 

models are also reviewed. 

1.1 Skin Cancers 

Skin cancer, or cutaneous carcinogenesis, is the most frequent form of 

cancer diagnosed in white populations and it is, by far, the most common of all 

types of cancer (American Cancer Society, 2014b; Diepgen and Mahler, 2002; 

Rogers et al., 2010). Skin cancers are mainly divided into three types: Basal Cell 

Carcinoma (BCC), Squamous Cell Carcinoma (SCC) and Cutaneous Melanoma. 

BCC and SCC are referred together as non-melanoma skin cancer (NMSC) 

whereas the cutaneous melanoma is referred as malignant melanoma (MM) or 

just melanoma. The occurrence of NMSC is 20 times higher than melanoma; 

however melanoma is responsible for most of the skin cancer mortalities 

(American Cancer Society, 2014b; Diepgen and Mahler, 2002). 

Non-melanoma skin cancer and melanoma are derived from different 

types of cells: NMSC arises from transformed epidermal keratinocytes, while 

melanoma arises from transformed melanocytes. Melanocytes produce melanin, 

a pigment that helps to protect the genetic material in the epidermis basal cells 

against light-induced damage. Therefore, melanocytes decrease the lethality of 

NMSC (Markovic et al., 2007). Melanocytes are uniformly dispersed in the basal 

layer of the epidermis in human skin. They correspond between 1-2% of the cell 

population, whereas, keratinocytes represent about 95% of the total cells present 

in human epidermis (Figure 1) (Holbrook et al., 1989; Yaar and Gilchrest, 2001).  
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Reporting of NMSCs to the cancer registries is not a requirement, making 

it challenging to precisely estimate their occurrence. An analysis of the incidence 

of NMSCs in the United States population estimated that over 3.5 million cases 

were diagnosed and more than 2.2 million individuals were treated for the 

disease in 2006 (Rogers et al., 2010).  Basal cell carcinoma constitutes 

approximately 80% of the NMSCs and is characterized by slow growth and 

infrequent metastasis, whereas SCC comprises the remaining 20%, shows quick 

growth and, when neglected, can metastasize (American Cancer Society, 

2014c). The major part of all NMSC cases is highly curable, especially if 

diagnosed in early stages (American Cancer Society, 2014a).  

Melanoma is the most aggressive of the three main types of skin cancer 

and, this aggressiveness is attributed to its high capacity to metastasize. For the 

last 30 years, melanoma incidence rates have been increasing. In 1935, the 

lifetime risk of developing melanoma was 1 in 1500. Currently, the risk is 1 in 59 

(Rigel, 2010). Melanoma incidence increases with age and shows an altered 

pattern between women and men (Rigel, 2010). In 2014, in the United States, it 

is estimated that 76,100 new cases of melanoma will be diagnosed and that 

9,710 patients will die from the disease (American Cancer Society, 2014a). 

Metastatic melanoma presents an unpredictable biological behavior, frequently 

metastasizing in brain, bones, liver, lungs and viscera (Tas, 2012). Melanoma 

metastasis is characterized by rapid dissemination making its treatment very 

challenging. The 5-year survival rate for patients with metastatic melanoma is 

only 16% (American Cancer Society, 2014a). Most recurrences occur in the 
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period of the first three years, and rare cases have been described of over 30 

years of latency (Geisler et al., 2013). 

1.2 Ultraviolet Radiation 

Solar UV radiation has a broad spectrum: low-energy UVA band 

(wavelengths of 320 to 400 nm, visible light of 400 to 700 nm), high-energy UVB 

band (280 to 320 nm) and UVC band (below 280 nm). The UVC band is totally 

absorbed by the ozone layer. Most of the UVB rays are absorbed while passing 

through the ozone layer; however the UVA rays are almost not affected. 

Therefore, 5 to 10% of UVB and 90 to 95% of UVA arrives at the earth’s surface 

level and are capable of reaching human skin (Figure 1) (Daya-Grosjean and 

Sarasin, 2005). While UVB is filtered by window glass, UVA is not affected by it. 

It is estimated that 50 % of UVA exposure happens in the shade (Schaefer et al., 

1998). 

Earth’s radiation depends on the solar altitude which varies according to 

the geographic location, time of the day and season (Holzle and Honigsmann, 

2005). It is important to point out that with the depletion of the ozone layer, higher 

amounts of UV rays, mainly UVB, are reaching the Earth’ surface (McKenzie et 

al., 2011; United Nations Environment Programme et al., 2012).  

Compared to UVB rays, UVA rays possess the longest wavelengths and 

thus penetrate deeper into the skin. As such, UVA rays have a higher chance of 

reaching the basal layers where melanocytes and dividing stem cells are located 

(Halliday and Cadet, 2012) (Figure 1). The UVB rays penetrate superficially into 

the skin and have higher absorption rate by DNA than UVA, as well as being 
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considered more mutagenic and cytotoxic than UVA (Cadet et al., 1997; Jhappan 

et al., 2003). Additionally, a UVA dose has to be 1000 times stronger than that of 

UVB to produce the same level of erythema (Parrish et al., 1982). 

Ultraviolet radiation is responsible for several different chronic and acute 

effects on the skin.  Chronic responses include photoaging and 

photocarcinogenesis, both caused by cumulative damaged effects of UVA 

(mostly formation of reactive oxygen species) and UVB (formation of pyrimidine 

dimers) radiation in the cells. The acute responses are very diverse and include 

erythema, DNA photodamage, apoptosis, immunosuppression, synthesis of 

vitamin D and increased pigmentation (Burke, 2010; Fisher et al., 2002; Ichihashi 

et al., 2003; Mason and Reichrath, 2013; Min et al., 2014; Ullrich, 2002; 

Yamaguchi et al., 2008). 

1.3 Role of UV Radiation in Skin Cancer 

In the human body the primary and largest target for UV radiation is the 

skin. The ozone layer filters UV waves before it reaches the earth’s surface. 

Since the early seventies, concerns about ozone layer depletion have gained 

considerable attention and different studies have tried to predict its detrimental 

effects on skin cancer incidence (Kelfkens et al., 1990) as well as other impacts 

on the earth. As a result of the depletion of the ozone layer, the filtration of UV 

rays is less efficient and, the human skin is exposed to a higher amount of UV 

rays (Lemus-Deschamps and Makin, 2012; Norval et al., 2011; United Nations 

Environment Programme et al., 2012). As a consequence of the high intensities 

of UV radiation that humans experience, more damage is being caused to the 
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cells in a shorter period of time than it did before (Lemus-Deschamps and Makin, 

2012).  

The incidence of NMSC and melanoma are mainly related to the 

interaction of environmental factors (such as UV light) and genetic factors (such 

as skin type, gender, inherited disorders) (Agbai et al., 2014; Barrett et al., 2014; 

Goldstein and Tucker, 2001; Pennello et al., 2000; Tamura et al., 2014; Vogel et 

al., 2014). Ultraviolet radiation has an important influence in skin cancer 

development in two ways: directly, by causing DNA damage (mutations in cellular 

DNA) in skin cells and, indirectly, by suppressing the anti-tumor immune 

response, which promotes cancer development and facilitates metastasis (Figure 

2) (Bald et al., 2014; Chacon-Salinas et al., 2014; Del Bino et al., 2013; Ichihashi 

et al., 2003; Katiyar and Mukhtar, 2001; Meeran et al., 2008; Russo et al., 2008; 

Welsh et al., 2008). For these reasons, UV is considered the major etiological 

factor of skin cancer (Daya-Grosjean and Sarasin, 2005).  

People living in world areas with elevated annual sunlight average or 

increased erythemogenic UV rays show higher risks of skin cancers, especially 

SCC followed by BCC and then melanoma (Armstrong and Kricker, 2001). 

Recent studies showed that the incidence of SCC and BCC, in outdoor workers, 

increases with proximity to the equator (Bauer et al., 2011; Schmitt et al., 2011).  

Chronic, cumulative lifetime UV exposure is the major risk factor for SCC, 

whereas intermittent UV exposure is considered to be primarily important in the 

pathogenesis of BCC (Armstrong and Kricker, 2001; Rosso et al., 1996). 

Melanoma development is related to intense, intermittent solar UV radiation 
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exposure and blistering sunburns in childhood and adolescence leading to 

cumulative DNA damage in skin cells (Armstrong and Kricker, 2001; Kauffmann 

et al., 2008; Rigel, 2010; Whiteman et al., 2001).  Skin cancer risk is associated 

with the amount of UV radiation exposure and the skin pigmentation level  

(Figure 3) (Armstrong and Kricker, 2001; Del Bino et al., 2013; Diepgen and 

Mahler, 2002; Rosso et al., 1996). 

Individuals with fair skin and red hair (pigmentation phenotype I of 

Fitzpatrick scale), characterized by high pheomelanin (red/yellow pigment) to 

eumelanin (black/brown pigment) ratio, have the tendency to burn easily rather 

than tan and are associated with higher risks of developing skin cancer than 

other pigmentation types (Diepgen and Mahler, 2002; Fitzpatrick et al., 1977; 

Pathak et al., 1980; Rigel, 2010). Genetically, inactivating polymorphisms of the 

melanocortin 1 receptor (MC1R)1  gene are, in particular, correlated with this 

phenotype (Valverde et al., 1995). The melanocyte stimulating hormone (MSH) 

and its antagonistic agouti protein are MC1R ligands on melanocytes. Increased 

MC1R activity by MSH stimulates the production of eumelanin, whereas minimal 

receptor activity either by the binding of the agouti protein or by MC1R 

inactivating polymorphisms, leads to the production of pheomelanin pigment    

(Lu et al., 1994; Valverde et al., 1995). Population studies of MC1R variant 

alleles have shown strong genetic associations between red hair/ fair skin 

phenotypes and an increased risk of all forms of skin cancer (Sturm, 2002). This 

                                                           
1  Formatting of gene and protein nomenclature according to The Jackson 

Laboratory, 2014 and Wain et al., 2002. 
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link is believed to be associated with the fact that pheomelanin has weak 

shielding capacity against UV radiation in comparison to eumelanin and also that 

pheomelanin has a high potential to generate free radicals upon UV radiation and 

was shown that its presence increases the sensibility to UVA-induced DNA 

damage (D'Orazio et al., 2006; Ranadive et al., 1986; Wenczl et al., 1998). 

Furthermore, recent data suggest that pheomelanin is carcinogenic for 

melanoma development via oxidative damage even independently of UV 

radiation (Mitra et al., 2012).  

1.4 Role of UV Radiation in DNA Damage and DNA Repair 

The DNA photodamage is one of the major acute effects caused by UV 

radiation. Ultraviolet radiation can cause molecular DNA rearrangements directly 

by formation of base dimers and indirectly by oxidative base damage (de Gruijl et 

al., 2001). Damaged DNA can in turn lead to the generation of defective proteins, 

which can disrupt signaling pathways and, later on, result in skin cancer. Luckily, 

most of the DNA damage is efficiently and accurately repaired in normal cells. 

Ultraviolet radiation A and UVB, by different mechanisms, can cause DNA 

damage and so both are considered to have important roles in skin 

carcinogenesis. The UVB rays that reach earth’ surface can easily be absorbed 

by DNA bases, mainly by the pyrimidine bases, such as cytosine (C) and thymine 

(T), leading to the formation of pyrimidine dimers. It can also be absorbed by 

some proteins that have aromatic amino acids, such as tyrosine and tryptophane 

(Young, 1997). As a consequence, UVB photon absorption leads to chemical 

reactions that can alter DNA structure and composition (de Gruijl et al., 2001). 
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The UVA effects, on the other hand, are mainly mediated by the formation of 

radicals; therefore, it causes indirect damage to DNA (Kullavanijaya and Lim, 

2005). Recently, UVA was also shown to lead to pyrimidine dimers lesions on 

DNA by direct absorption (Jiang et al., 2009; Mouret et al., 2006; Mouret et al., 

2010). 

Non-DNA endogenous photosensitizers such as melanin, quinone, flavins 

and porphyrins, absorb UVA rays and by photochemical interaction produce 

reactive oxygen species including hydrogen peroxide, hydroxyl radical, 

peroxynitrite and singlet oxygen (Cadet and Douki, 2011; Cadet et al., 2009). 

Reactive oxygen species are extremely unstable and reactive molecules that can 

lead to DNA strand breaks, oxidation of nucleic acids and cause damage to 

cellular proteins (Peak and Peak, 1991; Wenczl et al., 1997). Guanine (G) is the 

main oxidized DNA base upon UVA irradiation. Guanine oxidation gives rise to 8-

oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) (Cadet et al., 2009), which causes 

transversion G:C to T:A mutations. This happens because the 8-oxodG is paired 

with adenine (A) instead of cytosine (C) during replication (Shibutani et al., 1991).  

 The DNA oxidized bases are removed either by the nucleotide excision 

repair (NER) or by the base excision repair (BER) pathways. The NER pathway 

plays a secondary role repairing this type of damage while BER plays a crucial 

role. The BER pathway is divided into two subpathways: short-patch BER 

(excision of one nucleotide) and long patch BER (excision of two or more 

nucleotides) (Matsumoto et al., 1999; Pascucci et al., 1999). The first step of the 

BER pathway is the action of a DNA glycosylase. This enzyme removes the 
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oxidized DNA base leaving a non-instructive apurinic/apyrimidinic (AP) site.  The 

remaining sugar fragments are removed by AP endonucleases. The repair is 

finalized by the action of DNA polymerase β, δ or ε and DNA ligase (Matsumoto 

et al., 1999; Pascucci et al., 1999). 

The most common photoproduct of UV radiation exposure is pyrimidine 

dimers (Brash and Haseltine, 1982). Ultraviolet rays, especially shortwave such 

as UVB, are absorbed by two neighboring pyrimidine bases in the DNA, leading 

to the formation of di-pyrimidine sites resulting in either 6-4 photoproduct (6-4PP: 

thymine-cytosine dimers) (Varghese and Patrick, 1969) or cyclobutane 

pyrimidine dimer (CPD: thymine dimers, cytosine dimers) (Setlow and Carrier, 

1964). Interestingly, after 60 minutes of sun exposure at noon in Kobe, Japan, 

during the summer, approximately 100,000 CPD molecules per cell are produced 

in human epidermis (reviewed by(Ichihashi et al., 2003). Formation of pyrimidine 

dimers disrupts the double strand DNA helix (Park et al., 2002). This bulky lesion 

in the DNA is recognized and repaired by the NER pathway (Rastogi et al., 2010; 

Setlow and Carrier, 1964). It has been reported that the excision of 6-4 PP is 

faster than CPD (Rastogi et al., 2010). 

Nucleotide excision repair malfunction is one important step for UV 

radiation to cause skin cancer development (Pfeifer and Besaratinia, 2012; 

Yarosh et al., 2005). For instance, Xeroderma Pigmentosum (XP) is a rare 

autosomal recessive disease characterized by a deficient NER system. As a 

result, the photoproducts induced by UV radiation are not repaired, resulting in a 

malignant phenotype (Cleaver et al., 2009; Stary and Sarasin, 2002). Xeroderma 
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Pigmentosum patients are extremely sensitive to sun exposure and, compared 

with unaffected individuals under 20 years of age, they have a 1,000-fold 

elevated risk of UV-induced skin cancers, including cutaneous melanoma 

(Kraemer et al., 1994). 

Nucleotide excision repair has two distinct subpathways: the transcription-

coupled repair pathway (TCR) which rapidly repairs DNA regions that are 

transcriptionally active, and the global genome repair pathway (GGR) which 

works less quickly than TCR pathway but repairs both transcriptionally active and 

inactive regions (Hoeijmakers, 2001). Both subpathways are a multi-step process 

where at least 25 proteins are involved, including the seven XP complementation 

group of proteins (XPA, XPB, XPC, XPD, XPE, XPF, and XPG) (Wood et al., 

2005; Wood et al., 2001). Briefly, the NER pathway recognizes DNA 

photoproducts via distinct protein complexes, depending on whether the TCR or 

the GGR pathway is used. After DNA damage recognition, the transcription factor 

IIH (TFIIH) together with two DNA helicases, XPB and XPD, unwind the double 

stranded DNA, creating single-stranded DNA. Two endonucleases, the ERCC1-

XPF complex and XPG, make respective incisions 5’ and 3’ at the sides of the 

lesion releasing a 25-27 nucleotide fragment containing the photoproduct 

(Friedberg, 2001; Hoeijmakers, 2001). As in the BER pathway, DNA polymerase 

and DNA ligase complete the repair. 

 Ultraviolet radiation can lead to genomic mutations, which threaten the 

genomic integrity of the cell and can contribute to tumorigenic processes. 

Mutation in critical genes that encode for proteins related to cell cycle control, 
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DNA repair or apoptosis, affecting the function of these important proteins, are 

strongly connected with early stages of skin cancer (Ortonne, 2002; Pfeifer and 

Besaratinia, 2012). 

1.5 Role of UV Radiation in Immunosuppression and Skin Cancer 

 More than 30 years ago Fisher and Kriple (1977) demonstrated that 

inoculating UV-irradiated mice with lymphoid cells from another UV-exposed 

mice made the recipients unable to reject tumor transplantation, whereas UV-

irradiate mice inoculated with lymphoid cells from non-UV-irradiated mice 

became resistant to tumor grow (Fisher and Kripke, 1977). Their main conclusion 

was that UV radiation exposure could affect the immune system and prevent host 

anti-tumor response (Fisher and Kripke, 1977).  

Ultraviolet-induced immunosuppression is strongly linked with the 

development of melanoma and NMSC (Chapman et al. 1995). The suppression 

of the immune system by UV radiation assists skin cancer development and 

progression, enabling an easier dispersion of cancer cells throughout the body. 

The ability of tumor cells to escape immune system detection is called tumor 

immune escape (Pardoll, 2003).  

Immune system responses can be divided into two main categories: 

innate, which act rapidly and has a non-specific response; and, adaptive, which 

takes more time because of the response specificity to each antigen and, in 

many cases, the antigen is picked up and processed by antigen-presenting cells, 

such as langerhans cells, macrophages and dendritic cells. Afterwards, antigen 



 

 14

portions are recognized by T-lymphocytes, which then are triggered to proliferate 

and produce immune cytokines (Sirisinha, 2014). 

Ultraviolet radiation has multiple negative effects in the immune system 

and, since early years, it was found to be capable to suppress adaptive immune 

responses (Kripke, 1974).  Some of these effects include: (1) suppression of the 

amount and functionality of antigen-presenting cells (Hill et al., 1999; Nghiem et 

al., 2002); (2) induction of the release of immunosuppressive cytokinesis (Bald et 

al., 2014; Nghiem et al., 2002); and, (3) induction of T-lymphocytes into 

apoptosis (Hill et al., 1999; Ozawa et al., 1996). 

Ultraviolet radiation is capable of downregulating already established 

immune responses (Damian et al., 1998; Narbutt et al., 2005; Wang et al., 2008). 

Increasing amounts of UVB radiation exposure was shown to have a direct 

relationship with increasing levels of immune suppression (Matthews et al., 

2010a; Noonan and De Fabo, 1990). On the other hand, UVA exposure displays 

a bell-shaped dose response for immune suppression (Matthews et al., 2010b). 

The cellular and molecular mechanisms through which UVA and UVB 

radiation affect the immune system depends on the amount of exposure. Upon 

sub-inflammatory doses of UVB radiation, regulatory B-lymphocytes are 

activated (Byrne et al., 2005; Byrne and Halliday, 2005), whereas regulatory T-

lymphocytes generally require inflammatory doses (Gorman et al., 2007). Low 

doses of UVA exposure has been shown to trigger the alternative complement 

pathway inducing systemic immunosuppression (Stapelberg et al., 2009), while 

greater doses of UVA was associated to immune protection due to the activation 
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of heme oxygenase (enzyme related to oxidative stress protection) (Reeve and 

Tyrrell, 1999) and interferon γ (immune system cytokine) (Reeve et al., 1999). 

Also, UVA and UVB radiation exposure were shown to have interaction effects 

that are far superior than the addition of their effects individually (Poon et al., 

2005).  

Skin of newborn children is immunologically immature. There has been 

speculations that immune responses from early life stage could determine 

melanoma outcomes later in life (Muller et al., 2008). Exposure of neonatal 

mouse skin to UV radiation induces a poor inflammatory response compared to 

adult skin response, which has an acute inflammatory response within minutes, 

thus limiting the development of immunity and promoting a tolerogenic 

environment (Muller et al., 2008). Additionally, UV-exposed neonatal mouse skin 

revealed microenvironment modifications that can lead to the generation of 

antigen-specific regulatory T-lymphocytes, which persists for life. Thus, these 

early modulating events may be relevant for the UV-induced melanomagenesis 

during adulthood (Muller et al., 2008). 

Induced immunosuppression therapy, common in organ transplant 

patients, significantly increases skin cancer risk (Feuerstein and Geller, 2008; 

Garg et al., 2009; Jemec and Holm, 2003; Tessari and Girolomoni, 2012; Ulrich 

et al., 2004). These individuals develop skin cancer more often and typically a 

more aggressive form with quicker metastases than normal individuals with a 

non-suppressed immune system (Jemec and Holm, 2003). Moreover, skin 

cancer rates decrease when the immune suppressive therapy is decreased 
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(Jemec and Holm, 2003). Interestingly, while the ratio of SCC:BCC in non-

transplanted population is 1:4, this ratio in transplanted population is 4:1, the 

complete inversion (Tessari and Girolomoni, 2012). 

1.6 Skin Cancer Diagnoses 

Macroscopically, a useful clinical evaluation for pigmented lesions is the 

so-called ABCDE rule - Asymmetry, Border irregularity, Color variation, 

Diameters greater than 6mm and Elevation (Rigel et al., 2005). There is no 

similar detection rule for NMSC (Soyer et al., 2012) 

It is well established that melanoma tumor thickness is the greatest 

prognostic indicator; superficial tumors can be easily cured with a simple surgery, 

whereas mortality is closely correlated with increasing in tumor depth (Rigel and 

Carucci, 2000; Sahin et al., 1997). Besides the depth measurement of 

melanoma, other histological prognostic factors include ulceration (absence of an 

intact epidermal layer overlying the melanoma), mitotic rate (an indicator of tumor 

proliferation in the dermis) and lymphatic invasion (Balch et al., 2009). Both 

ulceration and mitotic rate have a direct relationship with metastasis and lethality; 

the worse ulceration and the higher mitotic rate, the higher the risk for metastasis 

and subsequent death (Edge and Compton, 2010; Grande Sarpa et al., 2006).  

Histopathologically, cutaneous melanoma is classified into four main 

types: superficial spreading melanoma, lentigo maligna melanoma, acral 

lentiginous melanoma and nodular melanoma (Crowson et al., 2006). World 

Health Organization (WHO) includes rare melanoma variants, such as 

desmoplastic melanoma, in their classification (LeBoit et al., 2006). Very briefly, 
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superficial spreading melanoma is characterized by single or nested malignant 

melanocytes spreading within the epidermis; lentigo maligna melanoma usual 

pattern is the proliferation of atypical melanocytes, single or nested, along the 

epidermal-dermal junction, that frequently extends deeply into the appendageal 

epithelium; acral lentiginous melanoma is a relatively rare type of melanoma that 

arises on non hair bearing plantar, palmar and subungual skin sites, 

characterized by atypical melanocyte proliferation, single or nested, along the 

epidermal-dermal junction; nodular melanoma share several histological features 

with superficial spreading melanoma with the significant difference that they are 

very sharply circumscribed (Smoller, 2006). Desmoplastic melanoma is 

characterized by the proliferation of single or nested atypical melanocytes (with 

spindled morphology) that tends to extend deeply into the reticular dermis (lower 

layer of the dermis), and is very poorly circumscribed (Magro et al., 2006). 

All main types of melanomas exist as in situ lesions (non-invasive) or 

invasive, with the exception of nodular melanoma (Geisler et al., 2013). Also, 

nodular melanoma lacks the radial growth phase, which leads to the sudden 

appearance of a malignant neoplasm in previously normal skin (Crowson et al., 

2006). Radial growth phase (RGP) involves neoplastic melanocytes, located 

intraepidermally, multiplying and dispersing as single or small group of cells. 

Without further events, RGP is not capable of generating metastatic events, and 

it is virtually always curable through surgery with rare exceptions (Crowson et al., 

2006). On the other hand, vertical growth phase (VGP) implies the ability of a 

melanoma to metastasize. Early VGP is differentiated from the RGP by the 
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occurrence of a dominant nest (25-50 cells) within the papillary dermis 

(uppermost layer of the dermis); this nest has to be larger than any nest within 

the epidermis or the neighboring dermis, and cytologically distinct (shape, size, 

cytoplasmic or nuclear features, absence or presence of pigment) from 

intraepidermal group of cells (Crowson et al., 2006). Presence of mitotic figures, 

and of dominant nest that fills and wide the papillary dermis, extends to the 

papillary–reticular dermal interface or into the reticular dermis and/or 

subcutaneous fat are particular characteristics of fully evolved VGP (Crowson et 

al., 2006). Furthermore, VGP is subclassified by cell phenotype: spindle cell 

vertical growth phase (less tendency to widespread metastasis) and epithelioid 

vertical growth phase (most commonly associated with widespread metastases) 

(Crowson et al., 2006). 

Systematic meta-analyses of melanoma risks revealed that physical 

attributes such as blue eyes, fair skin and red hair have, respectively, 1.47, 2.06, 

3.64 higher relative risk of developing melanoma than dark colors (Gandini et al., 

2005). High density of freckles showed a relative risk of 2.10 (Gandini et al., 

2005). The presence of a dysplastic nevus leads to a slight increase (2-fold) in 

overall risk for melanoma (Tucker et al., 1997), but the annual risk of any single 

nevus becoming melanoma is quite small, less than 1 in 200,000 for both men 

and women younger than 40 years old (Tsao et al., 2003). Having a primary 

family member with melanoma or a parent with multiple melanomas are also 

associated with higher relative risks (1.74 and 61.78, respectively) (Hemminki et 

al., 2003).  
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Histologically, basal cell carcinoma is derived from the basal lamina and/or 

the root sheaths of the outer hair follicle (Kolk et al., 2014). The morphological 

classification of BCC includes: nodular (including micronodular), infiltrative 

(including sclerosing or morphemic), superficial and mixed subtype (Rippey, 

1998). The WHO’s classification uses differentiating patterns to classify BCC 

types: superficial, nodular, micronodular, infiltrating, fibroepithelial, basal cell 

carcinoma with adnexal differentiation, basosquamous carcinoma, keratotic basal 

cell carcinoma and other variants which includes cystic, adenoid, 

sclerosing/morpheiform, infundibulocystic, pigmented and miscellaneous 

(Kossard et al., 2006). From the point of view of simplicity and good 

reproducibility, Rippey’s (1998) classification is the most acceptable. Some of the 

histological features common to all these types of tumor are: basaloid cells with a 

thin cytoplasm surrounding round or oval nuclei that is bigger and darker than 

nuclei of epidermal keratinocytes. Mitosis and apoptotic cells are frequent. 

Excluding the rare pleomorphic (giant cell) type of BCC, the majority of BCC 

cases do not present cellular atypia (Calonje et al., 2012).  

Basal cell carcinoma is a malignant tumor with a low mortality rate, slow 

growth and rare metastasis events. However, they can be very destructive 

causing, in particular, extensive local tissue damage and have a high recurrence 

rate after treatment (Cockerell et al., 2011). The risk factors for BCC recurrence 

include: body location (specially central part of the face, such as periocular, 

perioral and nasal); large size (over 2cm); perineural and/or perivascular 

invasion; prior recurrence (Samarasinghe et al., 2011). Based on the main and 



 

 20

most frequent histological types, infiltrative and superficial types of BCC show 

higher probability of aggressive local behavior, recurrence and subclinical 

spread, in comparison to the nodular type (Rippey, 1998; Vantuchova and Curik, 

2006).  

Histologically, squamous cell carcinoma consists of nests, sheets and 

strand of keratinocytes with variable squamous differentiation; these cells arise 

from the epidermis and can extend superficially or deeply into the dermis 

(Weedon et al., 2006). Squamous cell carcinoma spreads by local infiltration and 

may follow tissue conducts and planes such as blood vessels, lymphatics and 

nerves (Weedon et al., 2006). According to WHO, SCC subtypes are: 

acantholytic, spindle-cell squamous cell carcinoma, verrucous, pseudovascular 

and adenosquamous carcinoma (Weedon et al., 2006). Acantholytic SCC is 

histologically defined by the loosening of the keratinocytes intercellular 

attachments resulting in acantholysis (separation of keratinocytes from each 

other within the epidermis); pseudovascular SCC is a very aggressive type of 

SCC characterized by marked acantholysis resulting in angiosarcoma-like areas; 

adenosquamous carcinoma arises from pluripotent cell related to acrosyringia 

(epidermal keratinocytes around sweat gland ducts), characterized by the 

formation of mucin secreting glands; spindle-cell is an uncommon type of SCC 

that exhibit prominent spindle-cell morphology and is poorly differentiated; 

verrucous is a rare variant of well-differentiated SCC with low metastatic 

probability (Weedon et al., 2006).  
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Squamous cell carcinoma is a malignant tumor responsible for the 

majority of NMSC deaths. It grows relatively rapidly, with an invasive nature that 

may progress to lymph nodes and distant organs metastasis (Weinberg et al., 

2007).  The risk factors for SCC recurrence include tumor location (face specially 

lips, and ears), size, depth, poor differentiation, perineural invasion, acantholytic 

features, prior reappearance (Weedon et al., 2006; Weinberg et al., 2007). 

1.7 Current Available Treatments for Melanoma 

 Treatment options for melanoma are based on the stage of the disease at 

the time of diagnoses and include surgery, possibly followed by adjuvant therapy.  

Surgery is the optimal approach and, currently, it is the only potential curative 

treatment for melanoma (Geisler et al., 2013). Until recently, no adjuvant therapy 

had demonstrated to be life extending. Different treatments and combinations of 

treatments had been tested and none had ever demonstrated survival 

improvement. Luckily, in recent years, completely new medical options have 

dramatically changed melanoma treatment (Geisler et al., 2013). 

 Chemotherapy regimens, such as Dacarbazine (DTIC) and 

Temozolomide, are considered “standard therapy” for advanced melanoma. 

Dacarbazine, an alkylating agent that interferes with tumor cell growth, is 

considered the most active single agent in patients with melanoma, and it is the 

only chemotherapeutic agent approved by the Food and Drug Administration 

(FDA) for treatment despite its low response rates and no indication of survival 

advantage (Ives et al., 2007; Serrone et al., 2000). Whereas DTIC is 

administrated intravenously, Temozolomide is an oral alkylating agent that differs 
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from DTIC by its ability to penetrate the blood-brain barrier; yet a trial comparing 

both drugs showed similar response rates, progression-free survival slightly 

prolonged in the Temozolomide treatment (1.9 months vs. 1.5 months) but no 

statistical difference in survival (7.7 months vs. 6.4 months) was observed 

(Middleton et al., 2000). 

Immunotherapy is a very promising idea that consists of increasing 

immune mechanisms responsible for naturally eradicating cancer cells (Mansh, 

2011).  Interleukin-2, a T-lymphocyte cytokine, was the first immunotherapy to be 

approved by the FDA for treatment of advanced melanoma. Interleukin-2, like the 

chemotherapy drug DTIC, shows low response rates even at high doses of 

treatment (Agarwala, 2009; Atkins et al., 2000; Atkins et al., 1999). Furthermore, 

it is associated with substantial toxicity including capillary leak syndrome, 

hemodynamic instability and, high risk of infection (Antony and Dudek, 2010). 

Interferon α 2-b, an adjuvant immunotherapy drug, received FDA approval in 

2011 for treatment of melanoma with microscopic or gross nodal involvement. 

Clinical trials showed that in patients with high-risk cutaneous melanoma, this 

adjuvant treatment lead to a significant improvement in both disease-free survival 

and overall survival (Mocellin et al., 2010). However, a more recent analysis did 

not find a significant long-term overall survival benefit (Petrella et al., 2012).  

In 2011, Ipilimumab, the first anti-CTLA-4 monoclonal antibody, was 

approved by the FDA for treatment of metastatic melanoma (Traynor, 2011). 

Ipilimumab enhances T-lymphocyte activity and tumor infiltration by blocking 

Cytotoxic T-lymphocyte Antigen 4 (CTLA-4) inhibitory signals, which allows 
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unregulated and prolonged activation of T-lymphocytes in a non-specific manner. 

Fundamentally, this drug enhances patient’s antitumor response by blocking 

immune-regulatory mechanisms, which are responsible for suppressing host 

responses to tumor-associated antigens (Mansh, 2011). Clinical trials 

demonstrated an overall survival improvement in patients that had been 

previously treated for metastatic melanoma; the median survival rate was 10.1 

months in the Ipilimumab therapy group vs. 6.4 months in the control group (Hodi 

et al., 2010). Side effects of this drug include enterocolitis, hepatitis, and 

dermatitis (Hodi et al., 2010). 

Another novel treatment based on directing the immune system to activate 

T-lymphocytes against cancer cells is the PD-1/PDL-1 pathway inhibitors, such 

as nivolumab (Patnaik et al., 2012). This anti-PD-1 monoclonal antibody is 

showing promising clinical trial results, however it is not currently FDA-approved. 

The ligand PDL-1 (Programmed Death Ligand-1) binds to the PD-1 

(Programmed Death-1) receptor expressed in T-cells. Activation of this pathway 

blocks T-cell identification and the subsequent destruction of the tumor cells (Keir 

et al., 2008), which it is believed to be of advantage in tumor survival (Hirano et 

al., 2005). Nivolumab phase I clinical trial revealed increase in antitumor activity 

in patients with advanced malignancy, including melanoma (Brahmer et al., 

2010). Advanced melanoma patients showed a medium overall survival of 16.8 

months, with 40% of patients alive at 3 years (Sznol et al., 2013). These 

promising results encouraged further clinical trials. Currently, there is an ongoing 
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phase III clinical trial comparing Nivolumab versus DTIC in patients with 

metastatic melanoma (ClinicalTrials.gov, 2014).  

Targeted therapy is characterized by the development of a drug that 

inhibits specific proteins, enzymes and pathways related to cancer development 

and progression. The Ras/Raf/mitogen activated protein kinase (MAPK) pathway 

is one of the major signaling networks involved if melanomagenesis and 

progression (Hocker et al., 2008). The B-raf proto-oncogene serine/threonine 

protein kinase (BRAF) is found constitutively active in the majority of human 

melanomas. BRAFV600, the most common mutated form of the BRAF gene, is 

known to play a role in proliferation and survival of melanoma cells via MAPK 

pathway activation (Besaratinia and Pfeifer, 2008; Davies et al., 2002). 

The BRAF inhibitors are drugs that work by inhibiting the mutated BRAF 

protein. Vemurafenib (PLX4720) was the first FDA-approved agent that targets 

mutated BRAF (Heakal et al., 2011). It is an oral inhibitor of the mutated 

BRAFV600 kinase domain that leads to a decrease in cell proliferation through the 

phosphorylation of ERK (Extracellular signal regulated kinase) and Cyclin D1 

(Jang and Atkins, 2013; Tsai et al., 2008). In a phase III clinical trial, untreated 

patients carrying the BRAFV600E mutations received either Vemurafenib or DTIC. 

Vemurafenib treatment led to significant reduction in the risk of death (63%) and 

in the risk of either death or disease progression (74%) (Chapman et al., 2011). 

Despite the success of Vemurafenib, most, if not all, patients ultimately develop 

resistance resulting in disease progression at a median time of approximately 6 

months. Multiple resistance mechanisms have been considered including the 
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reactivation of MAPK pathway, which is downstream of BRAF, in a BRAF-

independent manner (Swaika et al., 2014; Wagle et al., 2011). 

Dabrafenib (GSK2118436) is another inhibitor of mutated BRAFV600, 

recently approved by the FDA (Ballantyne and Garnock-Jones, 2013). Its 

mechanism of action is similar to Vemurafenib, but it has a shorter half-life 

(Hauschild et al., 2012). A clinical trial carried out in untreated patients carrying 

the BRAFV600 mutations demonstrated that Dabrafenib significantly improved 

progression-free survival compared with DTIC (5.1 vs. 2.7 months, respectively) 

(Hauschild et al., 2012).  

 The MAPK pathway is immediately downstream of BRAF. For this reason, 

MAPK pathway inhibitors have been investigated as monotherapy as well as in 

combination with BRAF inhibitors. Trametinib (GSK1120212) a selective oral 

inhibitor of MEK (Mitogen-extracellular signal regulated kinase), approved by the 

FDA in 2013, showed to increase the progression-free survival in patients 

carrying mutated BRAFV600 (Falchook et al., 2012). A phase III trial comparing 

Trametinib with chemotherapy drugs (DTIC or Paclitaxel) showed a significant 

improvement of both median progression-free survival (4.8 months vs. 1.5 

months) and overall survival (81% vs. 67%) when Trametinib was used (Flaherty 

et al., 2012b).  

 Based on the evidence that the resistance to therapy with BRAF Kinase 

inhibitors is associated with reactivation of MAPK pathway, a combined treatment 

of Dabrafenib (a selective BRAFV600 inhibitor) and Trametinib (a selective MAPK 

inhibitor) was started. Results showed that this combination increased median 
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progression-free survival (9.4 months vs. 5.8 months in the monotherapy group), 

and improved the rate of complete or partial response (76% vs. 54% with 

monotherapy) (Flaherty et al., 2012a). Because of these results, the use of these 

two drugs in combination has received accelerated FDA approval this year 

(Menzies and Long, 2014).  

Endothelin receptor B (EdnrB) and Endothelin receptor A (EdnrA) are the 

two G-coupled protein receptors (GPCR) that mediate physiological responses 

upon endothelin ligand binding (Saldana-Caboverde and Kos, 2010). The EdnrB, 

an important protein in melanocyte development, has been implicated in the 

progression and metastatic capability of melanoma cells (Demunter et al., 2001; 

Lahav, 2005). Blockage of this receptor by small molecule inhibitors has shown 

to affect the growth and survival of melanoma cells (Bagnato et al., 2004; Lahav 

et al., 1999; Lahav et al., 2004). Bosentan, a targeted drug that competitively 

inhibits specific ligand binding to EdnrA and EdnrB is, consequently, an EdnrA 

and EdnrB antagonist (Clozel et al., 1994). Human melanoma cell lines treated 

with Bosentan showed decreased melanoma cell viability and DNA synthesis, 

inhibition of proliferation, and induction of apoptosis (Berger et al., 2006). These 

results instigated the testing in a clinical setting. Bosentan monotherapy was 

tested in stage IV metastatic melanoma patients and it appeared to be of benefit, 

achieving disease stabilization in 6 out of the 32 (19%) patients at week 6, with 

confirmation at week 12; five patients were still stable after 24 weeks and two 

persisted stable for longer than 2 years on study treatment (Kefford et al., 2007). 

As a consequence of these positive results, a phase II randomized clinical trial 
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was carried out, in a similar patient population, in combination with first-line DTIC 

chemotherapy. This study revealed no beneficial effect on time to tumor 

progression, progression-free survival and overall survival when Bosentan was 

combined with DTIC (Kefford et al., 2010). Failure of this trial could be attributed 

to the abnormally high time to tumor progression observed in the control group 

and/or the strict selection criteria of patients (Kefford et al., 2010). 

Advances in immunotherapy and targeted therapy have positively 

transformed malignant melanoma treatment. Even though there has been 

remarkable progress in the management of this disease, no existing treatment 

has been completely successful. Therefore, much is needed to be learned, and 

optimizations of existing therapies along with innovative therapies for recurrent 

and metastatic melanoma are still necessary.   

1.8 UV-Induced Melanoma Mouse Models 

Experimental animal models create a unique platform that enables the 

development of strategies to further elucidate pathogenesis. Genetically 

engineered mouse models opened the doors for further investigations on the 

relevance of UV radiation on melanomagenesis, and important information was 

gained from studies employing these models. A description of available UV-

induced melanoma mouse models and the rationale for their creation is reviewed 

here. 

Mutations in the tumor suppressor locus CDKN2A (cyclin-dependent 

kinase inhibitor 2A), located at 9p21, have been mostly linked to familial 

melanoma (Haluska and Hodi, 1998; Soufir et al., 2004). Yet, the CDKN2A is 
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also found functionally inactivated in a significant percentage of non-familial 

(sporadic) melanomas (Castellano and Parmiani, 1999). This locus encodes two 

proteins, p16INK4a and p14ARF (Sharpless, 2005). p16INK4a is a Cyclin-dependent 

kinase (CDK) inhibitor that specifically inhibits Cyclin-dependent kinase 4 (CDK4) 

or  Cyclin-dependent kinase 6 (CDK6) complexes, consequently blocking 

Retinoblastoma (RB) phosphorylation and preventing G1/S cell cycle progression 

(Chin et al., 1998). p14ARF promotes p53 stabilization, which in turn can promote 

cell cycle arrest in Growth phase 1 (G1) and apoptosis in response to 

oncogenic  stimuli (Zhang et al., 1998). Absence of functional p16INK4a and 

p14ARF proteins, disrupts tumor suppression by RB and p53 pathways, and is 

believed to contribute to melanomagenesis.  The ablation of these proteins could 

be one of the reasons why P53 protein is found mutated in a small percentage of 

human melanomas (Meier et al., 1998). Furthermore, most of the melanoma 

cases that have p53 mutations had no concurrent mutations in p16INK4a or p14ARF 

(Hodis et al., 2012). 

The first UV-induced melanoma mouse model reported used a transgenic 

mouse in which the melanocyte-specific tyrosinase promoter drives expression of 

the Simian virus 40 tumor antigen (SV40 T-antigen) (Klein-Szanto et al., 1994). 

Expression of the transgene resulted in the inactivation of both p53 and RB 

pathways, which is functionally equivalent to the loss of the CDNK2A locus 

(Klein-Szanto et al., 1994). High expressers of the transgene were UV irradiated 

for up to 4 consecutive days, starting at 4 days of age. These mice developed 

melanomas, particularly ocular melanomas (Klein-Szanto et al., 1994). Due to 
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the aggressiveness of the ocular tumors, mice did not live long enough to allow 

the investigation of cutaneous melanoma with full progression (Klein-Szanto et 

al., 1994). Mice that were low expressers of the transgene provided a more 

significant model in which chronic neonatal UV exposure for 5 days starting at 3 

days of age resulted in 26% incidence of cutaneous malignant melanoma (Kelsall 

and Mintz, 1998).  

The Rat sarcoma (RAS) proteins are small GTPases localized on the 

internal side of the plasma membrane. They function as critical mediators of cell 

growth, proliferation and differentiation (Lowy and Willumsen, 1993; Trahey and 

McCormick, 1987). RAS activity is controlled through cycling between a 

guanosine triphosphate (GTP)-bound state (active) and guanosine diphosphate 

(GDP)-bound state (inactive) (Downward, 1996). GTP-bound RAS is able to 

trigger the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) signaling 

pathway and to activate the RAS associated protein BRAF. Activated BRAF, in 

turn phosphorylates and triggers the ERK signaling pathway (Marais et al., 1995; 

Rodriguez-Viciana et al., 1994). Through the activation of these effectors, RAS 

proteins regulate cell survival, proliferation and differentiation. Neuroblastoma 

RAS viral (v-ras) oncogene homolog (NRAS) is the most commonly mutated 

RAS isoform in human melanoma (15-20%) whereas Harvey rat sarcoma viral 

oncogene homolog (HRAS) and Kirsten rat sarcoma viral oncogene homolog 

(KRAS) mutations are rare (1-2%) (Milagre et al., 2010). The most frequent RAS 

mutations are found at codons for glycine 12 (G12), glycine 13 (G13) or 

glutamine 61 (Q61). These mutations lead to the disruption of RAS intrinsic 
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GTPase activity, locking it into a constitutively activated state in which RAS 

stimulates downstream effectors, even in the lack of ligands that bind specific 

membrane receptors (Barbacid, 1987; Bos, 1989). Approximately 77% of the 

KRAS mutants involve G12, whereas over 80% of the NRAS and HRAS 

mutations involve Q61 (Milagre et al., 2010). Mutations in BRAF gene are found 

in approximately 66% of human melanomas (Davies et al., 2002). In melanomas 

carrying BRAF mutations, 92% occurs in a single codon valine 600 (V600) 

(Besaratinia and Pfeifer, 2008). 

The Tyr::HrasG12V (Tpras) mouse also serves as a UV-induced melanoma 

mouse model. This transgenic mouse has the activated human T-24 Ha-ras gene 

expressed under the control of the tyrosinase promoter, which targets the 

transgene to melanocytes (Powell et al., 1995). The Tpras mice exhibit 

melanocytic hyperplasia and/or hyperpigmentation. Although they do not develop 

spontaneous cutaneous melanoma (Powell et al., 1995), a low percentage 

develop ocular melanoma (Kramer et al., 1998). The Tpras mice are highly prone 

to developing malignant melanoma even after a single neonatal dose of UV 

radiation (Hacker et al., 2005); however, they do not develop melanoma by 

chronic adult UV exposure (Broome Powell et al., 1999). Neonatal exposure of 

Tpras in a CDK4R24C/R24C -null background (mutation that makes this kinase 

insensitive to p16/Ink4a inhibition) (Rane et al., 1999) greatly decreases age of 

onset and enhances melanoma aggressiveness (Hacker et al., 2006). Another 

Tyr::HrasG12V transgenic mouse (the regulatory region used to create the 

transgene was slightly different than the one used for the Tpras mouse)  on a  
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p19ARF (p14ARF mouse analog)-null background showed a significant decrease in 

melanoma latency and an increase in penetrance upon neonatal UV-exposure 

when compared to non UV-exposed mice (Kannan et al., 2003). In sharp 

contrast, this enhancement was not observed in neonatal UV-exposed 

Tyr::HrasG12V homozygous for p16INK4a deficiency (Kannan et al., 2003), 

suggesting that a defect in the p53 pathway may be required for UV-induced 

melanoma. However, analyses of melanoma lesions from Tyr::HrasG12V; p19ARF-/- 

revealed that nearly 50% of the tumors presented amplification of CDK6 and loss 

of p16INK4a, leading to the conclusion that UV-induced melanoma arises 

exclusively on Tyr::HrasG12V when both p53 and RB pathways are disrupted 

(Sharpless et al., 2003). 

Analyses of hereditary melanomas that carry germline p16INK4a mutation 

revealed that 95% of these patients presented NRAS mutation at codon Q61 

(Eskandarpour et al., 2003). A mouse model with NRASQ61K mutation was 

developed and it consists of melanocytic expression of NRASQ61K under the 

control of the tyrosinase promoter, Tyr::NrasQ61K (Ackermann et al., 2005). This 

transgenic mouse presents a hyperpigmented skin phenotype and, at low 

percentages (29%) and long latency (~1 year), develops spontaneous melanoma 

(Ackermann et al., 2005). A significant increase in melanoma penetrance (94%) 

and a decrease in melanoma latency (~6 months) are observed when     

Tyr::Nras Q61K is on a CDKN2A-deficient background (Ackermann et al., 2005). 

Tyr::Nras Q61K carrying a CDK4R24C/R24C null homozygous mutation also develops 

spontaneous melanoma, and a single neonatal UV dose significantly decreases 
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the age of onset and increases tumor penetrance (Hacker et al., 2010). 

Treatment of Tyr::NrasQ61K; CDK4R24C/R24C neonatal mice with Dimericine (a T4 

endonuclease V liposome lotion known to accelerate the removal of DNA 

damage induced by UV radiation) prior to UV-exposure do not lead to significant 

difference in the onset of melanoma development (Hacker et al., 2010), 

suggesting that neonatal UV-initiated melanomas may be driven by other 

mechanisms besides the large CPD load and/or their inefficient repair (Hacker et 

al., 2010). 

Mutations in proteins of the NER pathway such as XPA and XPC, and 

subsequent reduced DNA photodamage repair capacity, result in high indices of 

skin cancer, including melanoma (Kraemer et al., 1987). In view of that, attempts 

to generate UV-dependent melanoma mouse models based on NER deficiency 

were made in order to elucidate the underlying pathogenic mechanisms. Chronic 

UVB exposure of Xpa null homozygous adult mice did not lead to melanoma 

development, however it did lead to the development of other forms of skin 

cancer (Nakane et al., 1995). When Xpa and Ink4a/Arf targeted mutations were 

combined in a pigmented hairless background mouse and subjected to different 

UVB exposure regimens, an increased amount of UV-induced nevi was 

observed, but none of the Xpa-/-; Ink4a/Arf-/- developed melanoma (van Schanke 

et al., 2006). In another study, Stem Cell Factor transgenic (SCF-Tg) mice, which 

have epidermal melanocytes and are hyperpigmented, carrying a homozygous 

null Xpa mutation were repeatedly exposed to UV radiation (3 times a week for 

10 weeks, starting at 8-10 weeks of age). Melanoma was observed in 33% of the 
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irradiated mice and, out of those, 55% showed local metastasis (Yamazaki et al., 

2005).  

In an Ink4a/Arf deficient background, the loss of Xpc protein leads to a 

significant increase in melanomagenesis rates after a single neonatal dose of UV 

radiation (Yang et al., 2007). A recent study carried out with transgenic mice that 

have BRAFV600E mutated gene expressed under the mouse tyrosinase enhancer 

and promoter, revealed that loss of p19ARF enhances neonatal UVB-induced 

melanomagenesis by transcriptionally repressing Xpc and, consequently 

reducing DNA repair damage (Luo et al., 2013). 

In a very recent published study, BRAFV600E melanocytic expression was 

induced in transgenic mice at 2 months of age with the intention of representing 

somatic mutation acquisition (Viros et al., 2014). One month later these mice 

started to be UV-exposed weekly, mimicking mild sunburn in humans, for a 

period of 6 months. During these exposures, some mice had their back partially 

covered with UV-proof cloth or topically treated with sunscreen. Results revealed 

that UV radiation significantly increases melanomagenesis in mice carrying the 

BRAFV600E mutation, that application of UV-proof cloth or sunscreen delayed the 

onset of UV-induced melanoma, and sunscreen protection leads to reduction in 

the number of melanomas in UV-exposed BRAFV600E transgenic mice. In 

addition, some p53 mutations that were previously identified in humans are found 

in the melanoma lesions of these mice, suggesting a direct role of UV radiation in 

the creation of p53 mutations in melanomas (Viros et al., 2014). In humans, 

primary and metastatic melanomas have low incidences of p53 point mutations 
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or allelic loss; however p53 loss is frequently associated to melanoma 

progression (Yang et al., 2001). 

One of the most well recognized UV-induced melanoma mouse models is 

the Hepatocyte Growth Factor/Scatter Factor (HGF/SF) transgenic mouse 

(Noonan et al., 2000; Noonan et al., 2001). This model is very successful 

because of the amount of major similarities it has with human melanoma, such 

as the requirement of neonatal UV radiation recapitulating the critical childhood 

sunlight exposure in melanoma development (Whiteman et al., 2001), adult 

exposure as an additional factor (Autier and Dore, 1998) and general melanoma 

histopathological features (Smoller, 2006). In the HGF/SF transgenic mouse, the 

metallothionein-gene promoter drives the overexpression of HGF/SF to a wide 

variety of tissues. The HGF/SF binds to the receptor tyrosine kinase Met, 

promotes melanocyte proliferation and migration, which leads to accumulation of 

large numbers of melanocytes in the dermis, epidermis and dermal–epidermal 

junction, similar to their distribution in human skin (Takayama et al., 1996). These 

mice spontaneously develop melanoma with the mean age onset of 

approximately 21 months. Chronic UV-exposure of these transgenic mice do not 

accelerate melanomagenesis in comparison with non UV-exposed mice; 

however it induces the development of non-melanocytic tumors such as 

squamous cell carcinomas, squamous papillomas and sarcomas (Noonan et al., 

2000). In contrast, a single neonatal erythemal dose to 3.5 day old HGF/SF mice 

induces cutaneous melanoma with significantly reduced latency and most of 

these lesions histologically resemble human lesions at various stages of 
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progression, including metastasis (Noonan et al., 2001). Exposure of HGF/SF 

neonates to a second UV erythemal dose at 6 weeks, does not accelerate 

melanomagenesis, however it significantly increases the number of melanocytic 

lesions arising per mouse as well as the incidence of non-melanocytic tumors 

(Noonan et al., 2001). The rates of neonatal UVB-induced melanoma 

appearance in pigmented HGF (Noonan et al., 2012) and albino HGF transgenic 

mice (De Fabo et al., 2004) are not significantly different. However, melanomas 

are initiated by UVA in pigmented HGF (Noonan et al., 2012) but not in albino 

FVB-HGF mice (De Fabo et al., 2004). These results suggested that the initiation 

of melanoma by UVB is pigment independent whereas melanoma induction by 

UVA is completely pigment dependent. Analyses of direct DNA damage in 

pigmented and albino mice after either neonatal UVB-exposure or UVA-exposure 

revealed that amounts of CPD formation were not significantly different between 

pigmented and albino mice, suggesting that UV-induced CPD formation was not 

the reason for the difference in melanoma induction between pigmented and 

albino animals. Analyses of indirect DNA damage revealed a strikingly increased 

amount of oxidative DNA damage in pigmented mice after UVA-exposure but not 

in albino mice; and the production of oxidative DNA damage required both UVA 

and melanin (Noonan et al., 2012).  In conclusion, these results showed that the 

presence of melanin (> 90% eumelanin and < 10% pheomelanin) is a 

requirement for melanoma induction by UVA, but not UVB in HGF/SF transgenic 

mice (Noonan et al., 2012). The inverse of this result was observed when albino 
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HGF/SF transgenic neonatal mice are UV-exposed; in this case UVB, but not 

UVA, was found to be the melanomagenic waveband (De Fabo et al., 2004).  

Deletion of the Nonmetastatic 23 (Nm23) gene, the first metastasis 

suppressor gene to be described, in neonatal UV-exposed HGF/SF transgenic 

mice led to the development of melanomas with aggressive metastatic potential 

especially to the same organs observed in human melanoma metastasis, such 

as lymph nodes, lung and liver (Jarrett et al., 2013). Another study showed that a 

single neonatal erythemal UV dose of HGF/SF mice carrying a null Ink4a/Arf 

mutation, significantly decreased melanomagenesis median onset to just 50 days 

versus the 238 days observed in HGF/SF mice with wild type Ink4a/Arf (Recio et 

al., 2002). An experiment carried out in HGF/SF transgenic mice with 

CDK4R24C/R24C null mutation, revealed that a single neonatal UV dose decreases 

the latency and accelerates the growth of primary melanomas resulting in a 

significant reduction in the time between melanoma onset and death (61 days vs. 

96 days). Moreover, lung metastases are more frequently observed in UV-

irradiated than in the untreated cohort of HGF/SF; CDK4R24C/R24C mice (73% vs. 

47%) (Gaffal et al., 2011). In a recently published study, the carcinogen DMBA 

(7,12-dimethylbenz(a)anthracene) was applied in the dorsal skin of adult 

HGF/SF; CDK4R24C/R24C mice to first initiate melanomagenesis and afterwards 

these primary cutaneous melanomas were UV-exposed twice a week for a period 

of 6 weeks (Bald et al., 2014). Results revealed that UV radiation of the skin 

stimulates keratinocytes to release the High Mobility Group 1 (HMGB1) cytokine 

leading to the recruitment and activation of neutrophils to the skin and initiation of 
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inflammatory response. This inflammatory environment is believed to stimulate 

angiotropism and promote the migration of melanoma cells, which results in 

metastasis (Bald et al., 2014). This result complements the findings that UVR-

induced inflammation promotes melanomagenesis in neonatal mice via 

interferon-γ secretion by recruited macrophages (Zaidi et al., 2011). interferon-γ 

was believed to be beneficial to an innate immune system defense against 

cancer, however now it is believed that, under specific circumstances, it may 

instead promote melanomagenesis (Zaidi and Merlino, 2011). 

Twenty years ago, the first UV-induced melanoma mouse model (Klein-

Szanto et al., 1994) was reported. Since then, several models were developed 

based on different signaling pathways that have been associated to 

melanomagenesis. Studying these models revealed different mechanisms by 

which these specific pathways could lead to melanomagenesis. An important 

pathway that, up to now, has not been explored for the creation of a melanoma 

mouse model is the Endothelin signaling pathway. The signaling pathway of 

Endothelin 3 (Edn3) ligand and its seven-transmembrane receptor EdnrB is 

essential for many aspects of melanocyte development. In vitro studies 

demonstrated that Edn3 markedly increases the proliferation of pluripotent neural 

crest cells, stimulates the production of large numbers of melanocyte precursors 

and eventually leads to their differentiation as pigmented cells (Lahav et al., 

1996; Opdecamp et al., 1998; Reid et al., 1996; Stone et al., 1997). Many studies 

infer that the Edn3/EdnrB signaling pathway regulates several processes in the 

development of different types of cancers such as ovarian, pulmonary, colorectal, 
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cervical, breast cancer, and also malignant melanoma (Bagnato et al., 2004). 

The association of this pathway with the progression and metastatic potential of 

melanoma cells has been reported (Bagnato and Natali, 2004; Lahav et al., 

2004; Rosano et al., 2004). Melanoma cell lines treated with the EdnrB specific 

antagonist BQ788 showed increased apoptosis and increased Vascular 

Endothelial Growth Factor gene expression. In vivo, administration of BQ788 to 

immunocompromised mice slowed down human melanoma tumor growth by 

decreasing cell viability (Lahav et al., 1999; Lahav et al., 2004). Treatment of 

melanoma cells with Endothelin 1 (Edn1) and Edn3 results in downregulation of 

E-cadherin, and upregulation of N-cadherin and matrix metalloproteinases, which 

are important for cell-cell adhesion and cell-cell communication. These results 

could be linked to the disruption of normal tumor-host interactions and 

progression of cutaneous melanoma (Bagnato et al., 2004; Rosano et al., 2004). 

Gene expression analysis of metastatic melanoma cells from tissue biopsies 

revealed an abnormal upregulation of the EDN3 gene. Further, an increase in 

metastatic melanoma cell survival was observed Edn3-treated cells in vitro (Tang 

et al., 2008). 

 Although experiments on genetically modified mice have provided us with 

a better understanding of how UV radiation can initiate and stimulate progression 

in melanoma, novel UV-induced mouse models are in need to be developed to 

help fill out the vast amount of gaps that still exists, in order to optimally fight this 

life-threatening malignancy. 
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1.9 Research Questions 

Melanomagenesis is influenced by environmental and genetic factors as 

well as tumor-host interactions. There is great amount of evidence that UV 

radiation exposure has a major impact in DNA damage and other molecular 

events, and that UV acts as a carcinogen with both initiating and promoting 

properties. It is commonly accepted in cancer biology that transcription factors 

and signaling pathways that direct the development of a specific cell lineage will 

most likely be deregulated in transformed cells that descend from that cell 

lineage during the process of tumorigenesis. One of the critical pathways that 

regulate various aspects of melanocyte development, the Edn3/EdnrB signaling 

pathway, has also been associated with melanoma progression (Saldana-

Caboverde and Kos, 2010). The NER pathway repairs photoproducts induced by 

UV radiation and its disruption leads to skin carcinogenesis, including melanoma 

(Yarosh et al., 2005). Given that over-activation of the Edn3/EdnrB signaling 

pathway may be involved in the malignant progression and metastatic spread of 

melanoma and that DNA damage caused by UV radiation is a causative agent in 

melanoma development, my research questions directly address if UV radiation 

exposure combined with NER loss and over-activation of the Edn3/EdnrB 

pathway can lead to melanomagenesis: 

Question #1: Is UV exposure of transgenic mice that express Endothelin 3 under 

the Keratin 5 (K5) promoter sufficient for melanoma development? 

Our laboratory generated transgenic mice that produce excessive Edn3 by 

epidermal keratinocytes throughout development (K5-Edn3) (Garcia et al., 2008). 
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These mice have hyperpigmented skin as a result of the accumulation of large 

numbers of melanocytes in the epidermal/dermal junction where they are not 

normally found (Garcia et al., 2008). This condition could serve as the basis for 

melanocytic tumor formation and, upon neonatal UV exposure, I hypothesize that 

K5-Edn3 transgenic mice will develop melanoma. 

Question #2: Does NER disruption affect melanoma penetrance and latency in 

UV-exposed transgenic mice that express Endothelin 3 under the K5 promoter? 

The Xpa and Xpc proteins have important roles in the NER pathway 

(Cleaver et al., 2009; Ortonne, 2002). It is well established that mutations in this 

pathway reduces DNA photodamage repair capacity, resulting in high indices of 

skin cancer, including melanoma (Kraemer et al., 1987). Thus, I hypothesize that 

Xpa or Xpc deficiency will result in increased penetrance and a decreased 

latency in the UV-induced melanoma mouse model. 

Question #3: What is the mutation profile of melanoma lesions that arise in UV- 

exposed transgenic mice that express Endothelin 3 under the K5 promoter? 

UV-induced DNA damage causes typical genetic mutations, C to T and CC to 

TT transitions, called "UV signature mutations”. This type of mutations is prominently 

found in human cutaneous melanoma (Berger et al., 2012; Pleasance et al., 2010). 

Several human cancers, including melanoma, present mutations in the three human 

RAS genes (NRAS, KRAS, HRAS) (Ball et al., 1994; Omholt et al., 2002) and, 

mutations in the RAS effector protein BRAF have been identified in 66% of melanoma 

patients (Davies et al., 2002). Interestingly, mutations found in BRAF and NRAS 

genes in human melanomas are not UV-signature mutations (Hodis et al., 2012). I 
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hypothesize that lesions removed from K5-Edn3 UV-induced melanoma mouse 

model will present, but not restrictively, UV signature mutations in some of these 

genes. 

Question #4: How does the timing of UV exposure affect melanomagenesis? 

Epidemiological data suggest that melanoma development results from 

intense and intermittent UV doses, particularly during childhood (Whiteman et al., 

2001). Results obtained from various mouse models support the notion that 

childhood sunburns constitute a major melanoma risk factor (Hacker et al., 2005; 

Noonan et al., 2001). Since neonatal murine skin has higher percentage of 

melanocytic progenitor cells than the skin of adult mice (Hirobe, 1984), when UV-

irradiated, these cells can acquire DNA photodamage that would lead to DNA 

mutations, resulting in melanomagenesis later on in life. I hypothesize that a 

single neonatal UV dose is essential for melanoma development and that a 

second exposure, during adult stage, will cause an increase in melanoma 

penetrance and, mainly a decrease in melanoma latency. Further, I expect that 

mice exposed to UV radiation only at the adult stage will not develop melanoma. 
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Figure 1.1 The effects of UV radiation on the human skin. Schematic of UV rays 
passing through the ozone layer and reaching the human skin. Keratinocytes 
represent 95% and melanocytes represent 1-2% of the cells that constitute 
human epidermis. UV light is subdivided in three wavelengths: UVC, UVB, and 
UVA. UVC (below 280 nm) is completely blocked by the ozone layer. Minimum 
amounts of UVB (280-320m) are capable of passing through the ozone layer and 
penetrate the first layers of skin. Most of UVA (320-400nm) is able to reach earth’ 
surface and it can penetrate deeply into the skin. UVA and UVB can directly lead 
to the formation of pyrimidine dimers, whereas indirect absorption by UVA can 
lead to reactive oxygen species formation. Localization of different types of cells 
that give rise to melanoma (melanocytes) SCC and BCC (keratinocytes). 
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Figure 1.2 Ways in which UV radiation can give rise to skin cancer. Genetic 
predisposition added to the harmful UV radiation effects enhances the probability 
of skin carcinogenesis development.  
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Figure 1.3 Relationship of skin type, UV radiation and skin cancer risk. 
Individuals with fair skin have low epidermal melanin levels, almost never tan, 
and burn easily after UV exposure. These phenotypes are associated with high 
predisposition of skin cancer development. Individuals with darker pigmented 
skin tend to tan easier rather than burn and are less likely to develop skin 
carcinogenesis. 
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II. NOVEL UV-INDUCED MELANOMA MOUSE MODEL DEPENDENT ON 
ENDOTHELIN 3 SIGNALING 
 
2.1 Published Paper Information 

 This chapter has been published as a Letter to the Editor in the Pigment 

Cell and Melanoma Research Journal volume 27 issue 5, pages 839-842. 

2.2 Letter to the Editor 

Dear Editor, 

Melanomagenesis is closely associated with early exposure to ultraviolet 

(UV) radiation and the development of UV-responsive animal models has 

contributed to the elucidation of UV radiation effects on carcinogenesis. To our 

knowledge, all previously established mouse models of neonatal UV-induced 

melanoma, carry loss or gain of function mutations in the melanocytes, and 

develop lesions spontaneously that are enhanced by UV exposure (Kannan et 

al., 2003; Noonan et al., 2001). Hence, it is important to generate a mouse model 

that develops lesions exclusively upon neonatal UV exposure, and whose 

melanocytes are not transformed a priori. 

Here we report the development of a melanoma mouse model dependent 

solely on the presence of Endothelin3 (Edn3) in the tumor microenvironment and 

neonatal UV radiation. 

The Endothelin 3 (Edn3) - Endothelin receptor B (EdnrB) pathway is 

essential for melanocyte development, and has been associated with increased 

risk of different types of cancers including melanoma (Bagnato et al., 2004). 

Previously, our laboratory reported the generation of the K5-tTA; TRE-Edn3-lacZ 
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(for simplicity, K5-Edn3) mice (Garcia et al., 2008). The skin of newborn and 

adults K5-Edn3 mice is extremely dark when compared to non-transgenic 

littermates. This hyperpigmentation is due to the over-activation of Edn3 under 

the control of the K5 promoter, which consequently led to the accumulation of 

large numbers of melanocytes in the dermis and dermal-epidermal junction of the 

skin where they are not normally found. 

Photoproducts induced by UV radiation are, in normal cells, repaired by 

the nucleotide excision repair (NER) pathway. Malfunction of this pathway is an 

important factor in UV-induced skin cancer. Xeroderma Pigmentosum (XP) 

patients have a defective NER and are at a much higher risk, up to 1,000 times, 

of developing skin cancers, including melanoma (Kraemer et al., 1994). This 

disease results from mutations in the components of the NER pathway, such as 

XPA. Interestingly, mice lacking the Xpa gene were highly sensitive to UV-

induced nevi and exhibited a high incidence of squamous cell carcinoma after 

exposure to UVB, however UVB exposure alone did not lead to 

melanomagenesis (Nakane et al., 1995; van Schanke et al., 2006). 

To determine if neonatal UV-exposure would lead to melanomagenesis in 

mice that have over-activation of Edn3 and Xpa deficiency, a total of 76 mice, 39 

experimental (Xpa-/-; K5-Edn3, Xpa+/-; K5-Edn3, Xpa+/+; K5-Edn3), and 37 

controls (Xpa-/-, Xpa+/-, Xpa+/+) (Table 1), were exposed to UV radiation (see 

Supporting Information 2.3). Melanocytic lesions were not observed in the control 

group. Animals carrying the K5-Edn3 transgene developed lesions that were 

diagnosed by histopathology and immunofluorescence as melanoma (Figure 1B-
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D) or blue nevi (Figure 1F-H). Grossly, melanoma lesions appeared as 

hyperpigmented spots that began to grow and often became ulcerated (Figure 

1A). These lesions were found on the ventral (46.7%) and dorsal (33.3%) 

aspects of the torso, as well as on the face (20%) of the mice, and their 

localization was independent of the genotype. Similarly, blue nevus-like lesions 

(Figure 1E) were found on the ventral (33.3%) and dorsal (50.0%) torso, and face 

(16.7%) of the mice.  

The histopathological analysis of the lesions revealed that melanomas 

appeared to have arisen from blue nevus-like lesions. The foci of most 

melanomas were comprised of atypical cells in clusters extending into the 

subcutis. The cells were crowded, with overlapping large nuclei and one to few 

nucleoli. The melanocytes contained fine melanin granules and there were 

several associated melanophages.  One case showed a nevoid melanoma, fairly 

well circumscribed, and composed of a cluster of melanocytes in nests. The cells 

were uniform and bland and did not show maturation. Pigment was present in the 

deep aspect of the lesion and several mitotic figures were found. Blue nevus-like 

lesions were broad based and comprised of horizontally oriented dendritic 

melanocytes predominantly confined to the dermis. Frequently they wrapped 

around appendages. The melanocytes contained fine melanin granules and 

small bland nuclei. Most cases were comprised predominantly of melanophages, 

which were polygonal in shape and contained coarse melanin granules.  

Immunostaining analysis using antibody against S100 revealed that 

melanoma lesions were heavily stained in comparison to blue nevus-like lesions 
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(Figure 1C, G). Since proliferation rates are frequently used as a cancer 

prognosis marker, we verified if there was a quantitative difference between the 

melanoma and the blue nevus-like lesions. The mean proliferation rate, assessed 

by quantification of Ki67 positive cells out of the total number of cells, was 

significantly higher (p=0.034) in melanoma lesions (1.31  ± 0.37) than in blue 

nevus-like lesions (0.22 ± 0.05) (Figure 1D, H, J). 

Exposure of neonatal Xpa+/+; K5-Edn3 transgenic mice to UV radiation 

was sufficient to induce melanomagenesis. However, the percentage of Xpa-/-; 

K5-Edn3 melanoma-bearing animals was remarkably higher (60%) than the 

Xpa+/-; K5-Edn3 (46.2%) and Xpa+/+; K5-Edn3 (18.75%) (Table 1). Additionally, 

the average time of melanoma appearance was significantly different (p=0.013) 

between Xpa-/-; K5-Edn3 (29.62 ± 5.47) and Xpa+/-; K5-Edn3 (43.81 ± 10.08), 

although a significant difference was not observed in comparison to Xpa+/+; K5-

Edn3  (56.57 ± 31.64). 

The melanoma free-survival period of Xpa-/-; K5-Edn3 mice was 

significantly shorter (p=0.029, Kaplan-Meier with log-rank test) than that of 

Xpa+/+; K5-Edn3. However, the melanoma free-survival period for Xpa+/-; K5-

Edn3 was not significantly different from that of Xpa-/-; K5-Edn3 or Xpa+/+; K5-

Edn3 (p=0.231 and p=0.358, respectively) (Figure 1I). Blue nevus like lesions, 

bearing a striking similarity to human blue nevi, were observed in 10% of Xpa-/-; 

K5-Edn3, 30.8% of Xpa+/-; K5-Edn3 and 43 .75% of the Xpa+/+; K5-Edn3 (Table 

1). Nodal nevi were observed in 58.33% of the mice with blue nevi (Figure S1C, 

D). All mice that developed melanoma also presented enlarged and 
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hyperpigmented lymph nodes that contained several clusters of Trp1 positive 

cells (Figure S1A, B). These findings indicate that the combination of UV, Xpa 

deficiency and over-expression of Edn3 in the skin lead to the formation of 

melanomas that have the capacity of local metastasis. 

The impact of UV radiation on the development of nevi and melanoma 

lesions has also been studied in mice lacking Xpa in combination with Ink4a/Arf 

deficiency. Pigmented hairless Xpa-/-; Ink4a/Arf-/- mice developed many blue nevi 

but rarely melanoma even after neonatal or repetitive adult UVB exposure (van 

Schanke et al., 2006). In another study, pigmented Xpa-/-; SCF-Tg mice were 

found to develop melanoma after repetitive exposure to high doses of UV 

radiation during adulthood; however, melanomas infrequently metastasized to 

lymph nodes (Yamazaki et al., 2005). In our study, after one neonatal dose of UV 

radiation, K5-Edn3 with and without Xpa deficiency developed melanoma and 

fully penetrant lymph node metastasis. Although Xpa deficiency was not 

essential for melanomagenesis, it did have a major impact on the frequency and 

time of appearance of melanoma lesions.  

In order to better understand the relationship between DNA repair 

deficiency, apoptosis, and cancer susceptibility, we analyzed UV-induced 

apoptosis in Xpa-/-; K5-Edn3 and Xpa+/-; K5-Edn3 mice. Neonatal mice (3.5 days 

of age) were exposed to UV radiation and their dorsal skin was removed after 24 

hours. Cleaved Caspase-3 positive cells were quantified in the epidermis and 

dermis (Figure S2A, B.). Results revealed that the total numbers of epidermal 

apoptotic cells in Xpa-/-; K5-Edn3 were significantly greater (p=0.00032) than 
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those of Xpa+/-; K5-Edn3; however, this difference was not significant when the 

dermal numbers of apoptotic cells were compared. Interestingly, the dermal 

number of apoptotic melanocytes, and more dramatically the epidermal numbers, 

were significantly higher (p=0.02675 and p=0.00429, respectively) in Xpa-/-; K5-

Edn3 than in Xpa+/-; K5-Edn3 mice (Figure S3C). The unexpected large number 

of apoptotic cells in the animals carrying the K5-Edn3 transgene may result from 

the phototoxic and photosensitizing effects of melanin (Noonan et al., 2012; 

Wood et al., 2006). Our findings suggest that in our heavily pigmented mouse 

model, melanin did not act as a protective factor; instead it acted in a harmful 

way accelerating melanoma development and progression.  

Higher penetrance and decreased latency of melanomas were observed 

in the mice carrying heterozygous or homozygous mutations in Xpa, despite of 

the fact that the numbers of apoptotic melanocytes were also larger in these 

animals. These results suggest that the apoptotic differentiated melanocytes may 

not be the cell of origin of the melanomas. One possibility is that these tumors 

arise from undifferentiated cells residing in the skin or hair follicles and follow the 

stem cell hypothesis of tumorigenesis (Grichnik, 2008). Furthermore, 

undifferentiated melanocyte precursors present in the skin or hair follicles may 

respond to the higher levels of apoptosis by increasing their proliferation rate to 

compensate for dying cells. This would in turn lead to a higher frequency of 

mutations in these highly proliferative Xpa deficient cells and result in earlier 

melanoma appearance (Queille et al., 2001). 
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This new model of melanomagenesis will serve as a useful tool to further 

explore the deleterious effects of UV radiation in tumorigenesis and for the 

evaluation of possible therapeutic agents. 
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Table 1. Lesions observed in UV-irradiated neonatal mice of different genotypes 

  H&E/ IHC Diagnosed 

Genotype n Melanoma 
Lymph Node 
Metastasis 

Blue 
Nevus 

Nodal 
Nevus 

Others 
A B C D

Xpa-/-; K5-Edn3 10 6 6 1 1 0 1 0 0 

Xpa+/-; K5-Edn3 13 6 6 4 2 0 0 1 0 

Xpa+/+; K5-Edn3 16 3 3 7 4 0 0 0 0 

Controls 37 0 0 0 0 1 0 0 2 
 A- Squamous cell carcinoma; B- Sarcoma; C- Fibroma; D- Fibrohistiocytic Tumor
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Figure 2.1 Lesions in UV-irradiated K5-Edn3 transgenic mice. (A) 
Representative melanoma skin lesion found in the ventral torso of a 12 month-old 
Xpa+/-; K5-Edn3 mouse. (E) Representative blue nevus lesion found in the dorsal 
torso of an 18 month-old Xpa-/-; K5-Edn3 mouse.  Hematoxylin and eosin staining 
of a 5μm paraffin section of a melanoma (B) and blue nevus lesion (F) (higher 
magnification in insets). Immunofluorescence staining of melanoma (C, D) and 
blue nevus (G, H) 10μm cryosections with S100 (1:200, Dako, Carpinteria, CA) 
and Ki67 (1:100, Abcam, MA) , respectively. Propidium iodide (PI) (C, G) and 
Hoechst (D, H) were used as counterstain. (I) Cumulative survival of melanoma-
free mice as a function of age (Kaplan–Meier analysis) in UV-irradiated K5-Edn3 
and non-K5-Edn3 mice with and without Xpa deficiency. The melanoma free-
survival period of Xpa-/-; K5-Edn3 (n=10) mice was significantly shorter (p=0.029, 
Kaplan-Meier with log-rank test) than that of Xpa+/+; K5-Edn3 (n=16). The 
melanoma free-survival period for Xpa+/-; K5-Edn3 (n=13) was not significantly 
different than that of Xpa-/-; K5-Edn3 or Xpa+/+; K5-Edn3 (p=0.231 and p=0.358, 
respectively, Kaplan-Meier with log-rank test). In the absence of K5-Edn3 
transgene (n=37), mice failed to develop melanoma. (J) Quantification of Ki67 
positive cells in melanoma (n=3) and blue nevus-like (n=3) lesions. Bars 
represent means ± SD. Statistical differences were calculated by one-way 
ANOVA (p<0.05, n=3 per melanocytic lesion). 
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2.5 Supporting information 

2.5.1 Materials and Methods 

2.5.1.1 Mice 

K5-tTA; TRE-Edn3-lacZ (for simplicity, K5-Edn3) mice were generated in 

our laboratory (Garcia et al., 2008). The skin of newborn K5-Edn3 mice is 

extremely dark when compared to non-transgenic littermates, and remains 

hyperpigmented into adulthood. This hyperpigmentation is due to the 

accumulation of large numbers of melanocytes in the epidermis, dermis and 

junction of the skin where they are not normally found. 

Xpa knockout mice (courtesy of Dr. Friedberg, University of Texas 

Southwestern Medical Center, Dallas, Texas) were crossed with K5-Edn3 

double-transgenic mice to generate Xpa+/-; K5-Edn3 mice. Treatment and control 

mice were produced from Xpa+/-; K5-Edn3 intercrosses. Genotyping was carried 

out according to previously published protocols (de Vries et al., 1995; Garcia et 

al., 2008). All mice used in this study were housed in the Animal Care Facility at 

Florida International University (Miami, FL). All animal studies were carried out in 

accordance with Institutional Animal Care and Use Committee (IACUC) 

regulations.  
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2.5.1.2 Induction of Skin Tumors by UV Radiation 

A bank of six Phillips F40 UV lamps (Q Panel Lab Products, Cleveland, 

OH) was used. The UV dose was continuously monitored with a IL1700 

radiometer (UV Process Supply, Inc., Chicago, IL).  Neonatal mice (3.5 days old) 

were subjected to a single erythematous dose of UV radiation in single wells of a 

6-well Falcon plastic tissue culture plate (Becton-Dickinson, NJ) without the lid 

(Noonan et al., 2001). Following UV exposure, animals were monitored weekly 

for skin lesions and tumor development during a period of 18 months. The time of 

appearance of the first skin lesion that subsequently became melanoma was 

recorded for each mouse and used in a Kaplan-Meier survival analysis. 

2.5.1.3 Histological and Immunostaining Analysis of Tumors 

At the time of necropsy, mice were grossly assessed for the presence of 

metastases. Melanomas and melanoma metastases were diagnosed based on a 

combination of histomorphology and immunostaining. For histomorphology, 

tissues were fixed in 10% buffered formalin, paraffin-embedded, sectioned at 5 

microns, and stained with hematoxylin and eosin. For immunostaining analyses, 

tissues were fixed in 4% paraformaldehyde, embedded in freezing medium (OCT 

Compound for Cryostat Sectioning, Ted-pella, USA), and cryosectioned 

longitudinally at 10 microns. Cryosections of skin lesions were stained with 

antibodies against S100 (1:200 dilution, Dako, Carpinteria, CA) and Trp1 (1:50 

dilution, α-PEP1 antibody, Dr. Vincent Hearing - NIH) whereas lymph nodes were 

only stained with antibody against Trp1. Sections were visualized on a Leica 

Leitz DMRB fluorescent microscope. Digital pictures were captured with a Leica 
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DC 500 camera. Pathological analysis was carried out blind with respect to the 

animals’ genotype. 

2.5.1.4 Proliferating Cells 
 

Melanoma and blue nevus-like skin biopsies were cryosectioned 

longitudinally (10μm) and immunostained with the antibody against Ki67 (dilution 

1:100, Abcam, MA). Ki67 positive cells were counted in 25 sections of each skin 

biopsy (n=3 per melanocytic lesion type). 

2.5.1.5 Apoptotic Cells 

Neonatal mice (3.5 days old) were UV-irradiated for 15 minutes, as 

previously described, and sacrificed 24 hours later. Dorsal skin biopsies were 

cryosectioned longitudinally (10μm) and immunostained with the antibody against 

cleaved Caspase-3 (dilution 1:100, Cell Signaling, Boston, MA). Apoptotic cells in 

the epidermis and dermis were counted in 30 sections for each genotype (n=3 

per genotype). 

2.5.1.6 Statistical Analysis 

Kaplan-Meier curves were generated for the analyses of tumor incidence 

between genotypes. Statistical differences were calculated by log-rank test and 

one-way ANOVA. Sunburn cells results were analyzed using a one-way ANOVA. 

Values of p<0.05 were considered statistically significant. 

 

 
 

 



 

 82

 

Figure S1. Lymph nodes in UV-irradiated K5-Edn3 transgenic mice. (A) 
Hyperpigmented and enlarged cervical lymph node diagnosed as local 
metastasis removed from Xpa+/-; K5-Edn3 mouse showed in Figure 1A. (C) 
Hyperpigmented and enlarged brachial lymph node diagnosed as nodal nevus 
removed from Xpa-/-; K5-Edn3 mouse showed in Figure 1E. Immunofluorescence 
staining of lymph nodes cryosections with antibody against TRP1 (B, D). 
Propidium iodide (PI) was used as counterstain. 
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Figure S2. Distribution of melanin and quantification cleaved Caspase-3 positive 
cells in neonatal UV-irradiated dorsal skin. Newborns (3.5 days old) were 
exposed to 15 minutes of UV radiation and sacrificed 24 hours later for dorsal 
skin removal. Melanin (A, dark) and cleaved Caspase-3 (B, green) distribution in 
a dorsal skin cryosection of an Xpa-/-; K5-Edn3 mouse. Hoechst was used as 
counterstaining. Double labeled cells (arrows) were counted as apoptotic 
melanocytes. (C) Quantification of cleaved Caspase-3 positive cells in epidermis 
and dermis of Xpa-/-; K5-End3 (n=3) and Xpa+/-; K5-End3 (n=3). Bars represent 
means ± SD. Statistical differences were calculated by one-way ANOVA (p<0.05, 
n=3 per genotype).  
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III. NUCLEOTIDE EXCISION REPAIR DEFFICIENCY ENHANCES MELANOMA 
PHOTOCARCINOGENESIS IN TRANSGENIC K5-EDN3 MICE 
 

3.1 Abstract 

Melanomagenesis is influenced by the interaction of environmental and 

genetic factors, as well as, tumor-host interactions. Mice with Xpc deficiency 

show high sensitivity to ultraviolet (UV) light, leading to skin cancer development, 

except melanoma. The Endothelin 3 (Edn3) signaling pathway is essential for the 

development of melanocyte precursor cells. In humans, this pathway has also 

been implicated in melanoma progression and its metastatic potential. The 

purpose of the present study was the development of a UV-induced melanoma 

mouse model that combines Xpc deficiency with the over-activation of the Edn3 

pathway. To this end, transgenic mice over-expressing Edn3 under the control of 

the Keratin 5 promoter (K5-Edn3) and carrying a targeted mutation in Xpc were 

exposed to a single suberythemal neonatal dose of UV radiation. A subgroup of 

mice was additionally exposed to a second dose of UV radiation at 6 weeks of 

age. One more group of animals was exposed to a single dose of UV only at 6 

weeks of age. Animals were monitored weekly for skin lesion development during 

the period of at least 18 months. Histomorphology and immunostaining were 

used to confirm the melanocytic origin of primary skin tumors. Melanoma was 

only found in animals with the K5-Edn3 transgene. Increased penetrance and 

decreased latency were observed in animals exposed to one dose of UV 

radiation that were Xpc null in comparison to Xpc heterozygous or Xpc wild type. 

Animals exposed to two doses of UV radiation (at 3.5 days and 6 weeks of age) 
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did not reveal significant differences in melanoma penetrance or average time for 

melanoma appearance between Xpc null, Xpc heterozygous or Xpc wild type. 

Mice exposed to UV radiation only at 6 weeks of age did not develop melanoma. 

Quantification of UV-induced photodamage in the dorsal skin of 3.5 days old UV-

irradiated mice revealed a decreased number of thymine-dimer positive cells in 

the K5-Edn3 skin in comparison to the skin of non K5-Edn3. Next generation 

sequencing of two melanoma skin lesions revealed several mutations in Braf, 

Nras, Kras and Hras amplicons. These results indicate that combination of 

neonatal UV exposure with over-activation of the Edn3 pathway is sufficient to 

lead for melanomagenesis in mice, and lack of Xpc enhances its development. 

3.2 Introduction 

Melanoma is the most aggressive form of skin cancer, notorious for its 

high propensity to metastasize and poor response to current treatment 

modalities. The incidence rates of melanoma have considerably increased for the 

past several decades and it is estimated that approximately 65% of the 

worldwide and 90% of North America cutaneous malignant melanoma are linked 

to ultraviolet (UV) radiation as a causal agent (Armstrong and Kricker, 1993).  

Development of UV-responsive animal models has contributed to the 

elucidation of the interactions between UV effects and melanoma formation and 

progression. Transgenic mice expressing either activated H-ras (Broome Powell 

et al., 1999) or SV40 T-antigen (Kelsall and Mintz, 1998; Klein-Szanto et al., 

1994) under the regulation of a melanocyte specific promoter (TPras or Tyr-

SV40Tag) capable of developing melanocytic hyperplasia or spontaneous 
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melanoma, respectively, showed an increased melanoma penetrance when 

submitted to chronic UV exposures. These transgenic mice were 

hyperpigmented with accumulation of melanocytes in the skin. This seems to be 

a requirement for UV-induced melanomagenesis in mice, most likely because in 

adult skin, melanocytes are normally restricted to hair follicles where they are 

protected from the damaging effects of UV. 

One of the most successful UV-induced melanoma mouse models is the 

transgenic mouse that over-expresses the tyrosine kinase receptor Met ligand, 

Hepatocyte Growth Factor/Scatter Factor (HGF/SF), ubiquitously under the 

control of the metallothionein promoter. These mice are hyperpigmented with 

large numbers of melanocytes found at or near the dermal-epidermal junction, 

similar to their distribution in human skin. They develop metastatic melanomas 

spontaneously, but at very low incidence and long latency (Takayama et al., 

1997). Chronic suberythemal UV exposure of these mice did not alter the kinetics 

of melanomagenesis (Noonan et al., 2000). However, a single neonatal dose of 

suberythemal UV was sufficient to induce melanomas with high penetrance, 

short latency, and histopathological features that resembled those of human 

melanomas (Noonan et al., 2001). Additionally, other studies using the same 

neonatal UV exposure regimen showed that TPras (Hacker et al., 2005) and Tyr-

Hras: Arf-/- (Kannan et al., 2003) mice have a dramatic increase in melanoma 

penetrance in comparison to chronic UV treatments or unexposed adult mice 

with the same genotype, respectively. These studies validated retrospective 

epidemiological data suggesting that in contrast to other skin cancers that are 
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linked with cumulative lifetime UV exposure, cutaneous malignant melanoma is 

caused by intense intermittent UV exposure, especially during childhood 

(Whiteman et al., 2001). A recent study addressing the role of UV radiation in a 

mouse model in which melanocytes express BRAFV600E demonstrated that UV 

protection, such as sunscreen and UVR-proof cloth, does help against UV-

induced melanoma. The use of sunscreen was shown to delay the onset age and 

to reduce the number of melanomas in UV-exposed BRAFV600E transgenic mice. 

Furthermore, p53 gene was identified as a UV-targeted gene in melanoma 

lesions removed from these mice, and p53 mutations were often linked to faster 

melanoma formation (Viros et al., 2014). 

The DNA damage caused by UV radiation can lead to mutations in critical 

genes encoding for proteins related to DNA repair, apoptosis and cell cycle 

control. Malfunction of these important proteins are strongly connected with early 

stages of skin cancer (Ortonne, 2002). Photoproducts induced by UV radiation 

are, in normal cells, repaired by the nucleotide excision repair (NER) pathway, 

highlighting its essential role in the maintenance of integrity of genomic DNA after 

it has been exposed to environmental damage (Friedberg et al., 1995). Indeed, 

NER malfunction is an important factor in UV-induced skin cancer (Yarosh et al., 

2005). The prominent role of NER in cancer resistance is well exemplified by 

patients with Xeroderma Pigmentosum (XP). The XP disease is an autosomal 

recessive disease where patients have a defective NER and a much higher risk, 

up to 1,000 times, of developing skin cancers, including melanoma (Kraemer et 

al., 1994). This disease results from mutations in the components of the NER 
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pathway, such as Xpa and Xpc. Mice lacking the Xpa gene were highly sensitive 

to UV-induced nevi and exhibited a high incidence of squamous cell carcinoma 

after exposure to UVB (Nakane et al., 1995; van Schanke et al., 2006). However, 

melanomas only developed when the skin of Xpa-/- mice was topically treated 

with DMBA and chronically exposed to UV (van Schanke et al., 2006). Mice 

lacking the Xpc gene are likely to develop esophageal, bladder and lung cancer 

when exposed to chemical carcinogens (Hollander et al., 2005). They are also 

very susceptible to UV-induced basal and squamous cell carcinomas (Friedberg 

et al., 1999; Sands et al., 1995; Venema et al., 1991).  

Several human cancers, including melanoma, present mutations in the three 

human RAS genes (NRAS, KRAS, HRAS) (Ball et al., 1994; Omholt et al., 2002). 

Additionally, mutations in the RAS effector protein BRAF have also been identified in 

66% of melanoma patients (Davies et al., 2002). Disrupted NER pathway allows UV 

radiation to trigger gene mutations. Studies carried out in XP patients showed that 

approximately 50% of the patients present RAS mutations in skin cancers. This is 

twice of the percentage observed in skin cancer patients that do not have XP 

disease (Daya-Grosjean et al., 1993). 

The Endothelin 3 (Edn3) cytokine and its seven-transmembrane receptor 

Endothelin receptor b (Ednrb) are essential for melanocyte development, and 

have been associated with increased risk of different types of cancers such as 

breast cancer, prostate cancer, and malignant melanoma (Bagnato et al., 2004). 

Experiments using the Ednrb specific antagonist, BQ788, showed that 

decreasing Ednrb levels in malignant melanoma can inhibit the growth of 
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melanoma cell lines both in vitro and in vivo by enhancing apoptosis and 

stimulating angiogenesis via upregulation of Vascular Endothelial Growth Factor  

(Lahav et al., 1999; Lahav et al., 2004). The activation of Ednrb by Endothelin 1 

(Edn1) and Edn3 in melanoma cell lines led to changes in cadherins, connexins, 

integrins and matrix metalloproteinases that are associated with the disruption of 

normal host-tumor interactions and progression of cutaneous melanoma 

(Bagnato and Natali, 2004; Rosano et al., 2004). 

In order to further understand the relationship among UV radiation, genetic 

factors and tumor microenvironment, we established a novel UV-induced 

melanoma mouse model that depends exclusively on the presence of Edn3 in 

the tumor microenvironment and it is exacerbated by Xpa deficiency (Benaduce 

et al., 2014).  In this study we describe how Xpc deficiency affects melanoma 

initiation and progression and how important the timing of UV radiation exposure 

is to melanomagenesis.  

3.3 Materials and Methods 

3.3.1 Mice 

K5-tTA; TRE-Edn3-lacZ (for simplicity, K5-Edn3) mice were originally 

developed in our laboratory (Garcia et al., 2008). The K5-Edn3 newborn skin is 

extremely dark when compared to non-transgenic littermates, and remains 

hyperpigmented into adulthood. This hyperpigmentation is the result of the 

accumulation of large numbers of melanocytes in the epidermis, dermis and 

epidermal-dermal junction of the skin where they are not normally found. 
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The Xpa and Xpc knockout mice (courtesy of Dr. Friedberg, University of 

Texas Southwestern Medical Center, Dallas, TX) were crossed with K5-Edn3 

transgenic mice to generate Xpa+/-; K5-Edn3 and Xpc+/-; K5-Edn3 mice, 

respectively. Treatment and control mice were produced from intercrosses of 

Xpa+/-; K5-Edn3 and Xpc+/-; K5-Edn3. DNA was extracted from tail biopsies and, 

genotyping was performed according to previously published protocols (Cheo et 

al., 1997; de Vries et al., 1995; Garcia et al., 2008). All mice used in this study 

were housed in the Animal Care Facility at Florida International University 

(Miami, FL). All animal experiments were carried out in accordance with 

Institutional Animal Care and Use Committee (IACUC) regulations.  

3.3.2 Induction of Skin Tumors by UV Radiation 

A bank of six Phillips F40 UV lamps (Q Panel Lab Products, Cleveland, 

OH) was used in the experiments. The UV radiation dosage was continuously 

monitored with a IL1700 radiometer (UV Process Supply, Inc., Chicago, IL).  

Neonatal mice (3.5 days old) were exposed to a single erythematous dose of UV 

radiation in single wells of a 6-well Falcon plastic tissue culture plate (Becton-

Dickinson, NJ) without the lid (Noonan et al., 2001). A group of mice was further 

exposed to a second dose of UV radiation of 30 minutes at 6 weeks of age; 

whereas another group of mice was exclusively exposed to a 30 minutes dose of 

UV radiation at 6 weeks of age. Twenty-four hours prior to the 6 weeks of age 

exposure, the dorsal aspect of the animals were gently depilated with Veet 

(Reckitt Benckiser Inc., Parsippany, NJ). Following UV exposure, animals were 

monitored weekly for skin lesions and tumor development for at least 18 months. 
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The time of appearance of the first skin lesion that subsequently became 

melanoma was recorded for each mouse and used in a Kaplan-Meier survival 

analysis. 

3.3.3 Histological and Immunostaining Analysis of Tumors 

At the time of necropsy, mice were meticulously evaluated for the 

presence of melanoma metastases. Melanoma was diagnosed based on a 

combination of histomorphology and immunostaining. For histomorphology, 

tissues were fixed in 10% buffered formalin, paraffin-embedded, sectioned at 5 

microns, and stained with hematoxylin and eosin. For immunostaining analyses, 

tissues were fixed in 4% paraformaldehyde, embedded in freezing medium (OCT 

Compound for Cryostat Sectioning, Ted-pella, USA), and cryosectioned 

longitudinally at 10 microns. Cryosections of skin lesions were washed with PBS 

pH 7.4, incubated 10% goat serum (Life Technologies, NY), 0.1% Triton X-100 

(Sigma, MO) in 1X PBS (pH 7.4) for 1 hour and 15 minutes at room temperature. 

Sections were then incubated overnight, at 4oC, with antibody against S100 

(1:200 dilution) (Dako, CA; cat#Z0311). Cryosections were then washed three 

times with PBS (pH 7.4) and incubated for 1 hour, at room temperature, with 

Alexa Flour 488 Goat Anti-Rabbit (1:200, Invitrogen, NY; cat#A11008) and 

counterstained with Propidium Iodide. Sections were visualized on a Leica Leitz 

DMRB fluorescent microscope. Digital pictures were taken with a Leica DC 500 

camera. Pathological analysis was carried out blind with respect to the animals’ 

genotype. 
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3.3.4 Thymine-Dimer Detection 

Neonatal mice (3.5 days old) were UV-irradiated for 15 minutes, as 

previously described, and sacrificed 24 hours later. Dorsal skin biopsies were 

fixed in 4% paraformaldehyde, embedded in freezing medium (OCT Compound 

for Cryostat Sectioning, Ted-pella, USA), and cryosectioned longitudinally at 10 

microns. Antigen-retrieval was performed by heating 5mM Tris – 1mM EDTA 

buffer solution (pH 8.0) for two minutes in the microwave, followed by addition of 

slides to the boiling buffer and cooking them for 20 minutes in a 100oC water 

bath. After cooling down for 60 minutes at room temperature, slides were washed 

with PBS and incubated with 10% fetal bovine serum, 10% goat serum, 5% BSA 

and 0.1% Triton X-100 in PBS (pH7.4) for 1 hour and 15 minutes. Subsequently, 

cryosections were incubated overnight, at 4oC, with anti-thymine dimer 

monoclonal antibody (dilution 1:50) (Kamiya Biomedical, Seattle, WA; cat#MC-

062) and washed three times with PBS (pH7.4). Following 1 hour incubation with 

Alexa Flour 488 Goat Anti-mouse (1:1000, Invitrogen, NY; cat#A011001) and 

counterstained with Hoechst. Sections were visualized on a Leica Leitz DMRB 

fluorescent microscope. Digital pictures were taken with a Leica DC 500 camera. 

Thymine-dimer positive cells were counted in 10 different sections, 5 fields of 

view (magnification of 200X) per section, for each genotype (n=3 per genotype). 

ImageJ software (Schneider et al., 2012) was used to count thymine dimer 

positive cells and also the total number of cells identified by Hoechst. 
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3.3.5 Detection and Analyses of Melanoma Mutations 

Two skin lesions diagnosed as melanomas removed from two different K5-

Edn3 transgenic mice exposed to two doses of UV radiation were sequenced. RNA 

was extracted from frozen biopsies using TRIzol Reagent (Life Technology, NY). 

Concentration and purity of RNA was assessed using a nanodrop 

spectrophotometer (ND-3000, NanoDrop, Thermo Scientific, IL).  RNA samples 

were subjected to reverse transcription’-PCR (Maxima First Strand cDNA Synthesis 

Kit for RT-qPCR, Thermo Scientific, IL), following the manufacturer’s protocols. 

Bovine serum albumin (500μg/mL, New England BioLabs, MA) was added to the 

reaction to counteract possible melanin PCR inhibition effects. Polymerase chain 

reaction was used to amplify regions of Braf, Kras, Nras, Hras genes, using the 

following primers: Braf (369bp) (forward 5’-TCATGGGCTATTCTACAAAGCCACA 

AC-3’; reverse 5’-CGTCTGACTGAAAGCTATACGGGTTTTTA-3’), Kras (432bp) 

(forward 5’-CGCGGCGCGGAGAGAG-3’; reverse 5’-CCTTGCTAACTCCTGAGC 

CTGTTTC-3’), Nras (428 bp) (forward 5’-GGAGTTTGAGGTTTTTGCTGGTGTG-

3’; reverse 5’-GCCAGTTCGTGGGCTTGCTTT-3’), Hras (420 bp) (forward 5’-

GATTGGCAGCCGCTGTAGAAGCT-3’; reverse 5’-GGTCCTGGGCCTGCCGA-

3’). The correct sizes of the amplicons were confirmed on 2% agarose gels with DNA 

visualized with Ethidium Bromide (Fisher Scientific, MA; cat#BP1302). DNA 

concentration and quality was determined using a nanodrop spectrophotometer 

(ND-3000, NanoDrop, Thermo Scientific, IL). Braf, Kras, Nras, Hras gene mutations 

were detected by Ion-Torrent next generation (Ion Torren Personal Genome Machine, 

Life Technology, NY) sequencing of the PCR products. 
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Data were analyzed using NextGENeTM software (v2.3.4, SoftGenetics 

LLC, State College, PA).  The raw data from Ion Torrent were quality-filtered and 

trimmed to remove bad-quality reads and adaptors.  The high-quality sequence 

reads were aligned to reference sequences of the PCR amplified regions used in 

Ion panel.  The alignment was then performed using a parameter of a 85% 

minimum read match to reference sequence with 30bp seed size.  A >=5% 

mutant read coverage was selected for variant identification.  NextGENeTM 

assigns a Phred-like confidence score to each variant.  This score takes into 

account multiple variables to calculate the likelihood of a given variant being true 

instead of being caused by sequencing or alignment error.  A minimum 

confidence score of 10, which corresponds to an accuracy of 90% that the 

variant is true, was applied as a threshold for the mutations in this study.  

3.3.6 Statistical Analysis 

Kaplan-Meier curves were generated for the analyses of tumor incidence 

between genotypes. Statistical differences were calculated by log-rank test and 

one-way ANOVA. Thymine-dimer cells results were analyzed using a one-way 

ANOVA. Values of p<0.05 were considered statistically significant. 

3.4 Results  

3.4.1 NER Deficiency Exacerbates UV-Induce Melanomagenesis in Neonatal 

K5-Edn3 Transgenic Mice 

In accordance with previously published data, exposure of neonatal K5-

Edn3 transgenic mice to one erythemal dose of UV radiation was sufficient for 
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melanoma development (Benaduce et al., 2014). Additionally, melanomagenesis 

was independent of the subsequent erythemal dose at 6 weeks of age (Table 1). 

Diagnosis of melanocytic lesions as melanoma (Figure 1) was carried out 

via histopathology and confirmed by immunofluorescence using the S100 

marker. Mice in the control group, that did not carry the K5-Edn3 transgene, did 

not present any type of melanocytic lesion (Table 1).  

At the gross anatomical level, melanoma lesions on mice exposed to a 

single neonatal erythemal dose of UV radiation, started as hyperpigmented spots 

that kept growing overtime and frequently became ulcerated. These lesions were 

situated on the dorsal (64.29%) and ventral (35.71%) aspects of the torso. Body 

localization of lesions was genotype-independent. 

The histopathologic analysis revealed three patterns. There were two 

cases of in-situ melanomas, two nevoid melanomas and the vast majority 

appeared to have originated from blue nevus like dermal lesions. As a result of 

extensive ulceration, the epidermis and dermal epidermal junction was not 

available for evaluation in most cases. In one case of invasive melanoma, the 

dermal epidermal junction was preserved. There were foci of confluent 

melanocytes at the dermal epidermal junction with upward migration, pagetoid 

spread, of the melanocytes. The invasive component showed atypical cells 

extending into the subcutis (Figure 1N, O). Other cases of invasive melanoma 

showed extension to the underlying skeletal muscle. The cells were crowded with 

overlapping large nuclei and few nucleoli. Fine melanin granules were present 

and mitoses were infrequently found (Figure 1B, C). The nevoid melanomas 
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were composed of nests of melanocytes in a cluster. The cells were deceptively 

bland with abundant amphopilic cytoplasm, centrally located nuclei with small 

nucleoli. Features favoring the malignant nature of the lesions were lack of 

maturation, mitotic figures and pigment at the base (Figure 1F, G). The two 

cases of in situ melanoma showed clusters of atypical melanocytes, some of 

which showed pigmentation, along the junction of the hair follicle and dermis, 

which is comparable to the same phenomenon at the dermal epidermal junction 

(Figure 1J, K). 

In animals exposed to two doses of UV radiation, melanocytic lesions also 

started as hyperpigmented spots that began to grow; however these lesions 

ulcerated much faster and were more severe. Because most of the melanocytic 

lesions removed from these animals were extremely excoriated, it was not 

possible to accurately diagnose these lesions as melanoma or not. As a result, 

melanoma penetrance was remarkably reduced in animals exposed to two doses 

of UV radiation and did not show any significant differences between treatments 

(Table 1).  

In 3.5 day old mice exposed to a single UV radiation dose, the percentage 

of Xpc-/-; K5-Edn3 melanoma-bearing animals was extremely higher (66.67%) 

than the Xpc+/-; K5-Edn3 (31.58%) and Xpc+/+; K5-Edn3 (15.38%) (Table 1). Yet, 

the average time of melanoma appearance was not significantly different 

between treatments, Xpc-/-; K5-Edn3 (19.40 ± 12.57), Xpc+/-; K5-Edn3 (23.33 ± 

7.44), Xpc+/+; K5-Edn3 (41.07 ± 24.95).  
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 The melanoma free-survival period of Xpc-/-; K5-Edn3 mice exposed to a 

single neonatal dose of UV radiation was significantly shorter than that of Xpc+/-; 

K5-Edn3 (p=0.020) and Xpc+/+; K5-Edn3 (p=0.001) exposed to one single dose 

(Kaplan-Meier with log-rank test). Furthermore, the melanoma free-survival 

period of the neonatal exposed Xpc-/-; K5-Edn3 was significantly shorter than that 

for Xpc+/-; K5-Edn3 (p=0.029) and for Xpc+/+; K5-Edn3 (p=0.018) exposed to two 

doses of UV radiation (3.5 days and at 6 weeks of age) (Kaplan-Meier with log-

rank test). Melanoma free-survival period for Xpc-/-; K5-Edn3 exposed to a single 

neonatal dose or to two doses of UV radiation was not significantly different 

(p=0.058, Kaplan-Meier with log-rank test) (Figure 2). The average time of 

melanoma appearance on mice exposed to two doses of UV radiation was also 

not significantly different among Xpc-/-; K5-Edn3 (16.48 ± 10.97), Xpc+/-; K5-Edn3 

(20.05 ± 10.00), Xpc+/+; K5-Edn3 (27.85, just one case was observed).  

Similar to the trend observed in our previously published data (Benaduce 

et al., 2014), the average time of melanoma appearance on mice exposed to two 

doses of UV radiation was significantly shorter in Xpa-/-; K5-Edn3 (19.52 ± 6.97) 

in comparison to Xpa+/-; K5-Edn3  (35.19 ± 3.07) and Xpa++-; K5-Edn3  (74.19 ± 

0.54) (p=0.023 and p= 0.005, respectively). Additionally, a significant difference 

was also found between Xpa+/-; K5-Edn3 and Xpa+/+; K5-Edn3  (p=2.69E-05). On 

the other hand, the melanoma free-survival period was not significantly different 

between these treatments (Figure 3). 

Melanoma development was not observed in any of Xpa-/-; K5-Edn3 (n=4), 

Xpa+/-; K5-Edn3 (n=4) or Xpa+/+; K5-Edn3 (n=5) mice exposed to UV radiation 
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just at 6 weeks of age. This result confirms the importance of neonatal UV 

radiation exposure for melanoma initiation.  

Our data suggest that the combination of neonatal UV radiation with Xpc 

deficiency intensifies melanoma development in mice over-expressing Edn3 in 

the skin. 

3.4.2 K5-Edn3 Transgenic Mice Skin Shows Decreased Levels of Direct 

DNA Photodamage 

Given that only mice carrying the K5-End3 transgene with the 

hyperpigmentation phenotype developed melanoma, we decided to compare the 

amount of DNA photodamage in the skin by comparing the levels of the thymine-

dimer formation in K5-Edn3 and non K5-Edn3 UV-exposed mice. Neonatal mice 

(3.5 days of age) were exposed to a single erythemal dose of UV radiation and 

their dorsal skin was removed after 24 hours. Quantification of thymine-dimer 

positive cells revealed that the total numbers of photodamaged cells in K5-Edn3 

newborn skin were significantly smaller (p=0.00084) than those of non K5-Edn3 

skin (Figure 4I). In K5-Edn3 dorsal skin the majority of CPDs were found in areas 

with low melanin levels and mostly concentrated in the epidermis with few 

positive cells found in upper layers of the dermis (Figure 4A, C, E, G). Non K5-

Edn3 skin showed CPD formation throughout the epidermis and dermis (Figure 

4B, D, F, H). 

3.4.3 Melanoma Mutations Screening 

 We screened two melanoma lesions removed from two distinct K5-Edn3 

mice exposed to two doses of UV radiation, for mutations in Braf, Kras, Nras and 
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Hras genes. Twenty-eight mutations, with mutation score above 25, were found 

(Table 2). Increased amount of mutations were observed in Hras gene (60.71%) 

in comparison to Braf (14.29%), Kras (14.29%) and Nras (10.71%). Kras gene 

presented the only UV-signature mutation found; however this mutation did not 

lead to an amino acid modification. Insertion (71.43%) or deletion (25%) of a 

single nucleotide was the most frequent form of mutation found. All of these 

mutations led to early stop codons and, possibly, to non-functional proteins.  

3.5 Discussion 

Over the past two decades, the influence of UV radiation on melanoma 

development has been assessed using different light sources and protocols to 

promote the malignant transformation of melanocytes in organisms carrying 

different genetic modifications. Previous studies using the same neonatal UV 

exposure used in this study showed a dramatic increase in melanoma 

penetrance of exposed mice in comparison to unexposed mice of the same 

genotype (Hacker et al., 2005; Kannan et al., 2003; Noonan et al., 2001; Recio et 

al., 2002). The K5-Edn3 mouse model differs greatly from previous published 

models because it neither carries oncogenic Ras-related genes in their 

melanocytes nor spontaneously develops melanoma. Most importantly, it 

develops cutaneous melanoma exclusively upon neonatal UV radiation. 

The results obtained with the K5-Edn3 mouse model further corroborates 

epidemiological data which suggest a link between childhood sunburn and the 

development of malignant melanocytic lesions later on in life (Whiteman et al., 

2001).  
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Epidemiological studies also indicate that dark human skin is less 

sensitive to UV-induced carcinogenesis, including melanoma, when compared to 

fairer skin (Del Bino and Bernerd, 2013; Del Bino et al., 2013; Diepgen and 

Mahler, 2002). The K5-Edn3 mice are highly pigmented and still capable of 

developing melanoma. At first this would seem to contradict the epidemiological 

data but it is possible that K5-Edn3 mice on an albino (no melanin) or lethal 

yellow background (low levels of eumelanin) will be more prone to developing 

melanoma than the ones used for this study. 

Consistent with the epidemiological studies demonstrating that NER 

deficiency leads to significant higher levels of skin carcinogenesis (DiGiovanna 

and Kraemer, 2012), the K5-Edn3 mice with Xpc deficiency exposed to a single 

neonatal dose of UV radiation showed enhanced melanoma penetrance and 

decreased latency in comparison to animals that had partial (Xpc+/-) or 

completely functional (Xpc+/+) NER pathway. The impact of Xpc loss on 

melanoma development was studied in mice carrying Ink4a/ARF deficiency. In 

these neonatal UV-exposed mice, Xpc loss lead to a significant increase in 

melanomagenesis rates in comparison to the wild type equivalent (Yang et al., 

2007). A recent study reported that loss of ARF sensitizes BRAFV600E mice to 

neonatal UVB-induced melanomagenesis by reducing NER due to the inhibition 

of XPC expression (Luo et al., 2013). In the UV-induced K5-Edn3, Xpc deficiency 

was not a requirement for melanomagenesis after neonatal UV exposure; 

however it did influence the melanoma penetrance and age of onset. 



 

 103

Ultraviolet-exposure of adult K5-Edn3 (6 weeks) did not lead to 

melanomagenesis and, unexpectedly, when it was associated with previous 

neonatal exposure, higher melanoma penetrance was not observed. We believe 

that there might have actually been a decrease in melanoma latency but the 

speed and level of tumor ulceration was so high that proper diagnosis was 

jeopardized. It is also important to point out that animals exposed to two doses of 

UV radiation, at 3.5 days and at 6 weeks, presented more severe inflammation 

than animals exposed with a single neonatal dose. Recent published results 

have demonstrated how inflammatory response may underlie melanoma initiation 

and progression (Bald et al., 2014; Zaidi et al., 2011). Inflammatory environment 

was linked to angiotropism stimulation, promotion of melanomagenesis via 

interferon-γ secretion by macrophages and the migration of melanoma cells, 

which results in metastasis (Bald et al., 2014; Zaidi et al., 2011). 

Ultraviolet radiation induces the formation of di-pyrimidine lesions, such as 

cyclobutane pyrimidine dimers (CPDs: thymine-dimer, cytosine-dimer) (Setlow 

and Carrier, 1964), and this type of DNA damage is repaired by the NER 

pathway (Rastogi et al., 2010). The dorsal skin of K5-Edn3 newborn mice 

exposed to UV had markedly reduced number of thymine-dimer positive cells 

when compared to non K5-Edn3 skin. There are two possible explanations for 

this result: (1) overexpression of Edn3 in the skin stimulates DNA repair and/or 

(2) the protective effects of melanin. Previous studies demonstrated an 

association between the Endothelin axis and DNA repair. Endothelin 1 (Edn1), 

another EdnrB ligand such as Edn3, is believed to reduce UV-induced DNA 
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photoproducts, thus implying an involvement of this cytokine in enhancement of 

NER (Vlachostergios and Papandreou, 2013). Experiments carried out in mice 

revealed that upon UV exposure, numbers of CPD positive cells were greatly 

inhibited in Xpa null; SCF-Tg in comparison to Xpa null mice. No significant 

differences were observed between these mice when chemically treated with 

DMBA, instead of exposed to UV radiation. These results showed that epidermal 

melanin has a protective effect against UVB-induced DNA damage but not 

against chemical damage (Yamazaki et al., 2004). It appears tough that the 

amounts or types of melanin may modulate its protective role and even change it 

into a harmful factor (Cadet and Douki, 2011; Cadet et al., 2009). Recent studies 

analyzing the effects of UV radiation in albino and pigmented HGF/SF transgenic 

mice revealed that the presence of melanin is a requirement for UVA-induction of 

oxidative DNA damage and this indirect DNA damage is the cause of melanoma 

development in pigmented HGF/SF mice (Noonan et al., 2012). No differences 

were observed in the amount of DNA damage between these two groups of mice 

when exposed to UVB radiation (Noonan et al., 2012). These results revealed 

that melanin presence could be the cause for melanoma initiation upon UVA 

exposure, but not UVB (Noonan et al., 2012). 

 Ultraviolet-induced DNA damage causes typical genetic mutations, C to T and 

CC to TT transitions, called UV-signature mutations. These types of mutations are 

prominently found in human cutaneous melanoma (Berger et al., 2012; Pleasance et 

al., 2010). Next generation sequencing of melanoma lesion biopsies removed from 

K5-Edn3 exposed to two doses of UV radiation revealed one UV-signature mutation 
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in the Kras gene. This mutation did not lead to amino acid modification and, 

consequently, did not affect protein structure. All other mutations found were either 

insertions or deletions and led to early stop codon formation. A more extensive 

mutational analysis of the lesions in the K5-Edn3 by whole exome sequencing is 

necessary. We expect that such analysis may reveal mutations in other well known 

melanoma related genes such as Pten, p53 and Cdkn2a, and possibly, in genes that 

have not previously been associated with melanoma. The K5-Edn3 neonatal model 

will serve as an excellent tool to guide the identification of molecular UV targets and 

further our understanding of the role played by UV in the process of tumorigenesis. It 

will also be a useful platform for testing the efficacy of new compounds against 

melanoma in pre-clinical studies. 
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Table 1. Lesions observed in UV-irradiated neonatal mice of different 
genotypes  

H&E/ IHC Diagnosed 

UV Genotype n Melanoma Melanoma % 
Others 

A B C D E 

1X Xpc-/-; K5-Edn3 9 6 66.67 0 1 0 0 0 

1X Xpc+/-; K5-Edn3 19 6 31.58 0 0 0 0 0 

1X Xpc+/+; K5-Edn3 13 2 15.38 0 0 0 0 0 

1X Controls 34 0 0 0 0 0 0 2 

2X Xpc-/-; K5-Edn3 12 3 25 0 0 0 0 0 

2X Xpc+/-; K5-Edn3 13 3 23.08 0 0 0 0 0 

2X Xpc+/+; K5-Edn3 8 1 12.50 0 0 0 0 0 

2X Controls 22 0 0 1 0 1 0 0 

2X Xpa-/-; K5-Edn3 14 3 21.43 1 0 0 0 0 

2X Xpa+/-; K5-Edn3 14 3 21.43 0 0 0 0 0 

2X Xpa+/+; K5-Edn3 15 3 20 0 0 0 0 0 

2X Controls 25 0 0 1 0 0 0 0 

A- Squamous Cell Carcinoma; B- Sarcoma; C- Fibroma; D- Fibrohistiocytic Tumor;       
E- Pilomatrichoma 
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Figure 3.1 Melanoma lesions in UV-irradiated K5-Edn3 transgenic mice. (A) 
Representative melanoma skin lesion found in the dorsal torso of a 7 month-old 
Xpc-/-; K5-Edn3 mouse exposed to a single neonatal dose of UV radiation. (B) 
Hematoxylin and eosin staining of a 5μm paraffin section of the lesion showing 
eroded epidermis, dermis with a dense collection of pigmented melanocytes 
extending beyond the subcutis into the underlying skeletal muscle. (C) Higher 
magnification of B showing melanoma invading between muscle bundles. (D) 
Substantial amount of immunofluorescence staining observed in the melanoma 
cryosection stained for the S100 melanoma marker (green). Propidium iodide 
(PI) (red) was used as counterstain. (E) Representative melanoma skin lesions 
found in the dorsal torso of a 4 month-old Xpc-/-; K5-Edn3 mouse (I) and in the 
face of 9 month-old Xpc+/+; K5-Edn3 a mouse exposed to UV radiation at 3.5 
days of age and at 6 weeks of age. (F, G and H) Hematoxylin and eosin staining, 
and S100 immunofluorescence staining displaying the nevoid melanoma found in 
E and the (J, K, L and P) in situ melanoma found in I. (F) Beneath an ulcerated 
epidermis is a nodule composed of nests of deceptively bland melanocytes 
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extending into the subcutis. Cells have abundant cytoplasm with small centrally 
located nuclei. There is lack of maturation. (G) Higher magnification of F displays 
nuclei with nucleoli and mitotic figure (black arrow). (H) S100 
immunofluorescence staining of the melanoma cryosection showing heavy S100 
staining. (J) The epidermis overlying the hair follicle is eroded. Confluent clusters 
of atypical melanocytes, many of them heavily pigmented, at the junction 
between the hair follicle and dermis; atypical cells are morphologically similar to 
those in B. (K) Higher magnification of J showing overlapping and crowded 
melanocytes with prominent nucleoli. (L and P) S100 immunofluorescence 
staining of the melanoma cryosection showing S100 positive cells at the junction 
between the hair follicle and dermis. (M) Representative melanoma skin lesions 
found in the left lateral of a 15 month-old Xpa+/-; K5-Edn3 mouse exposed to UV 
radiation at 3.5 days of age and at 6 weeks of age. (N) Hematoxilin and eosin 
staining confluence of melanocytes with pagetoid spread (yellow arrow). The 
dermis shows a blue nevus like lesion.  (O) Higher magnification of N shows 
dermis replaced by atypical melanocytes which extend into the subcutis. 
Pigmented cells are present at the base of the lesion. 
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Figure 3.2 Cumulative survival of melanoma-free mice as a function of age 
(Kaplan–Meier analysis) in UV-irradiated K5-Edn3 and non-K5-Edn3 mice with 
and without Xpc deficiency. The melanoma free-survival period of Xpc-/-; K5-
Edn3 mice exposed to a single neonatal UV dose was significantly shorter than 
that of Xpc+/-; K5-Edn3 (p=0.020) and Xpc+/+; K5-Edn3 (p=0.001) (Kaplan-Meier 
with log-rank test). The melanoma free-survival period for Xpc-/-; K5-Edn3 was 
also significantly different than that of Xpc+/-; K5-Edn3 or Xpc+/+; K5-Edn3 that 
were exposed to UV radiation at 3.5 days and at 6 weeks of age (p=0.029 and 
p=0.018, respectively, Kaplan-Meier with log-rank test). In the absence of K5-
Edn3 transgene, mice failed to develop melanoma. 
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Figure 3.3 Cumulative survival of melanoma-free mice as a function of age 
(Kaplan–Meier analysis) in UV-irradiated K5-Edn3 and non-K5-Edn3 mice with 
and without Xpa deficiency. The melanoma free-survival period for Xpa-/-; K5-
Edn3 exposed to two doses of UV radiation (3.5 days and 6 weeks of age) was 
not significantly different than that of Xpa+/-; K5-Edn3 or Xpa+/+; K5-Edn3 
(p=0.883 and p=0.470, respectively, Kaplan-Meier with log-rank test); Xpa+/-; K5-
Edn3 was also not significantly different from Xpa+/+; K5-Edn3 (p=0.632, Kaplan-
Meier with log-rank test). In the absence of K5-Edn3 transgene, mice did not 
develop melanoma. K5-Edn3 mice with and without Xpa deficiency exposed to 
an UV erythemal dose at adult stage (6 weeks of age), also failed to develop 
melanoma. 
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Figure 3.4 Distribution and quantification of melanin and thymine-dimer positive 
cells in neonatal UV-irradiated dorsal skin. Newborns (3.5 days old) were 
exposed to 15 minutes of UV radiation and sacrificed 24 hours later for dorsal 
skin removal. Melanin (A, B dark brown) and thimine-dimers (C, D green) 
distribution in a dorsal skin cryosection of K5-Edn3 and non K5-Edn3 mice. (G, 
H) overlapped pictures of thymine-dimer (C, D) staining and Hoechst (E, F) used 
as countersating. (I) Quantification of thymine-dimer positive cells in the skin of 
K5-End3 (n=3) and non K5-End3 (n=3). Bars represent means ± SD. Statistical 
differences were calculated by one-way ANOVA (p<0.05, n=3 per genotype).  
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IV. CONCLUSIONS, FUTURE DIRECTIONS AND IMPLICATIONS 

4.1 Conclusions and Future Directions 
 

Unlike many other cancers, melanoma affects people of all ages. 

Melanoma incidence increases with age. Although pediatric cases are very rare, 

melanoma is recognized as one of the most common cancers affecting a relative 

young population. As in all cancers, melanoma initiation, progression and 

metastasis is influenced by genetic and environmental factors as well as by 

tumor-host interactions. Melanoma is notorious for its propensity to metastasize 

and for its poor response to therapeutic regimens.  In spite of all the efforts aimed 

at elucidating the initiation and progression of this malignancy, it continues being 

the most deadly form of skin cancer and its occurrence does not seem to be 

decreasing anytime soon. 

 Mice are commonly used as disease models, however because of 

structural differences between mice and human skin, in many of the attempts to 

establish UV responsive mouse models, UV alone did not seem to be sufficient 

to trigger melanoma development. In human skin, melanocytes are localized in 

the basal layer of the epidermis. They make dendritic connections with 

neighboring keratinocytes and transfer melanin to these cells, which provides 

skin pigmentation and sunlight protection. In mouse skin, melanocytes 

predominantly reside at the base of the hair follicles inside the dermis and are 

only found in the epidermis in hairless areas, such as ears and tails (Fitch et al., 

2003; Hirobe, 1988). However, at specific periods, such as embryonic and 

neonatal stages, melanocytes can be found in the epidermal-dermal junction 
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(Hirobe, 1984). One possible explanation for wild type mice being highly resistant 

to melanoma induction by UV irradiation is the protected location of melanocytes 

inside the hair follicle deep into the mouse skin dermis rather than the epidermis 

as in humans. 

The K5-Edn3 double transgenic mice have a more “humanized” skin. The 

production of excess Edn3 by epidermal keratinocytes leads to the accumulation 

of large numbers of melanocytes in the skin, more specifically in the dermis and 

epidermal-dermal junction, throughout their lifetime. As a consequence of the 

presence of extra-follicular melanocytes, K5-Edn3 mice display a 

hyperpigmented skin phenotype (Garcia et al., 2008). Because of the 

resemblance with the human skin, we hypothesized that K5-Edn3 mice would 

develop melanomagenesis upon UV radiation. I showed that, even though K5-

Edn3 mice do not develop spontaneous melanoma, a single neonatal UV 

erythemal dose was capable of inducing melanomagenesis and its metastasis. 

Unexpectedly, when K5-Edn3 mice were exposed to UV radiation neonatally as 

well as during adulthood, a significant increase in melanoma penetrance was not 

observed. One possible explanation for this surprising outcome is that the 

majority of the lesions removed from K5-Edn3 mice exposed to both neonatal 

and adult UV erythemal doses were very ulcerated. These lesions were very 

excoriated with no residual epidermis, therefore only the dermal component 

could be evaluated making it impossible to accurately diagnose them. 

Interestingly, when adult mice (6 weeks of age) were exposed to a single 

erythemal dose of UV radiation, they did not develop melanoma. This result 
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underscored the importance of neonatal UV exposure in order for K5-Edn3 mice 

to develop melanoma. Furthermore, it provided further support to the 

epidemiological data indicating that early sun exposure is critical and sufficient 

for melanomagenesis (Whiteman et al., 2001). 

The reason for the neonatal sensitivity and lack of adult sensitivity to UV 

radiation is not clear but it could be related to (1)- the fact that neonatal mice 

have immune response distinct from adult mice, which can result in tolerance in 

adults to antigens produced by UV exposure (Muller et al., 2008); and/or (2)- the 

acquisition and retention of DNA damage by melanocyte progenitor cells found in 

higher amounts in post-natal skin than in adult skin, resulting in 

melanomagenesis later on in life (Wolnicka-Glubisz and Noonan, 2006).  

Given that only K5-Edn3 mice develop melanoma upon neonatal UV 

exposure, it is possible that Edn3 overexpression not only allows for the survival 

of melanocytes in the extra-follicular skin but also affects the skin 

microenvironment making it more susceptible to the development and 

progression of melanoma. The latter is based on in vitro studies that showed 

that, in melanoma cell lines, Edn3 alters the expression of cell adhesion proteins 

and metalloproteinases that are associated with the disruption of normal tumor-

host interactions and progression of cutaneous melanoma (Bagnato et al., 2004; 

Rosano et al., 2004). 

The K5-Edn3 mouse uses the tetracycline regulatory system to drive the 

overexpression of Edn3 under the control of Keratin 5 promoter (Garcia et al., 

2008). Taking advantage of this system, it would be interesting to determine if 
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overexpression of Edn3 in the skin of adult mice is a requirement for UV-induced 

melanomagenesis and metastasis. The simple addition of doxycycline to the 

drinking water of these mice, leads to the blockage of the Edn3 transgene. Since 

overexpression of Edn3 in the skin is a requirement for extra-follicular 

melanocyte persistence, K5-Edn3 transgenic mice would initially undergo the 

same UV exposure regimen at 3.5 days of age, before the K5-Edn3 transgene 

was turned off beginning at 21 days after birth. Doxycycline treatment would be 

continued for 18 months and mice would be weekly checked for melanoma 

appearance. 

The Nucleotide Excision Repair (NER) pathway repairs photoproducts 

induced by UV radiation; Xpa and Xpc proteins have important roles in this 

pathway. Xpa deficiency and, in a higher magnitude Xpc deficiency, enhanced 

melanoma penetrance and decreased melanoma latency in the neonatal K5-

Edn3 UV-induced mouse model. This result was expected and it is in accordance 

with previously published data in humans and also in mouse models which links 

NER pathway disruption to high indices of skin cancer, including melanoma 

(Kraemer et al., 1987; Luo et al., 2013; Nakane et al., 1995; van Schanke et al., 

2006; Yamazaki et al., 2005; Yang et al., 2007). 

Neonatal K5-Edn3 dorsal skin exposed to UV-radiation revealed a 

decrease in thymine-dimer formation and a larger number of apoptotic cells in 

comparison to neonatal non K5-Edn3 dorsal skin exposed to the same dose of 

UV radiation. These observations can result from the effects caused by the 

higher levels of Edn3 and/or larger amounts of melanin present in the skin of the 
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K5-Edn3 mice. In order to isolate the contributions of Edn3 and melanin, K5-

Edn3 transgenic mice could be placed in an albino background, exposed to the 

same regimen of UV radiation at 3.5 days of age, and monitored for a period of 

18 months for melanoma development and metastasis. Wood et al. (2006) 

reported on the possible involvement of melanin in phototoxic reactions 

responsible for UV-dependent causation of melanoma in Xiphophorus (Wood et 

al., 2006).  A recent study showed that the presence of melanin is a requirement 

for melanoma induction by UVA, but not UVB, in HGF/SC transgenic mice 

(Noonan et al., 2012). Taking these results into account, I would expect that K5-

Edn3 on the albino background mice would not develop or would have a lower 

incidence of melanomagenesis upon neonatal UV exposure. 

Next generation sequencing of Braf, Kras, Hras and Nras PCR amplicons 

did not reveal any mutations that would lead to constitutive activation of these 

oncogenes in UV-induced K5-Edn3 melanoma lesions. In a recent published 

paper, UV-induced p53 gene mutation was found to be the cause of 

melanomagenesis acceleration in BRAFV600E mice (Viros et al., 2014).  In light of 

this, it would be of great interest to perform whole exome sequencing of K5-Edn3 

melanoma lesions to find out which genes, if any, are the UV-targeted genes in 

the K5-Edn3 model. This would help to further understand the molecular basis for 

melanoma development in the UV-exposed K5-Edn3 mice. 

Previously established neonatal, UV-induced melanoma mouse models 

carried loss or gain of function mutations in the melanocytes and spontaneously 

developed skin lesions that were enhanced by UV exposure. Most of the existing 
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models are based on disruption of tyrosine kinase receptor mediated signaling 

pathways. The K5-Edn3 UV-induced melanoma mouse model is the first model 

based on the over-activation of a G-coupled receptor. Additionally, the K5-Edn3 

model has two very distinguishable features: (1)- melanocytes are not 

transformed a priori and, (2)- the tumorigenic process depends exclusively on 

neonatal UV radiation. Therefore, testing new chemical compounds, as well as 

current and new melanoma therapies in this model would be of great relevance. 

It will provide a very different platform for the evaluation of the efficacy of novel 

drugs and, as such, be considered a new standard for pre-clinical studies. 

4.2 Implications 

Ultraviolet radiation is known to be the major environmental risk factor for 

melanoma, but it is still unclear exactly how UV affects melanoma initiation, 

progression and metastasis. The effects of UV radiation on organisms are very 

broad making the solution to this puzzle particularly complex. Recently, with the 

use of experimental animal models, some progress towards elucidating the 

mechanisms at work in UV-induced melanomagenesis has been made.  

The UV-induced K5-Edn3 melanoma mouse model developed in this 

project establishes a new paradigm for the role of Edn3 in melanoma risk. 

Further understanding of the precise cellular, biochemical and molecular 

mechanisms employed by this pathway in the K5-Edn3 melanoma model will 

substantially help in the advance of our understanding of the interactions 

between UV radiation and skin carcinogenesis. In the near future, this model may 
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serve as a useful tool in the identification of new molecular targets for 

intervention and also in the assessment of the efficacy of therapeutic agents. 
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