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ABSTRACT OF THE THESIS

NEW BIVARIATE LIFETIME DISTRIBUTIONS

BASED ON BATH-TUB SHAPED FAILURE RATE

by

Mengying Li

Florida International University, 2014

Miami, Florida

Professor Hassan Zahedi, Major Professor

A class of lifetime distributions which has received considerable attention in modelling

and analysis of lifetime data is the class of lifetime distributions with bath-tub shaped

failure rate functions because of their extensive applications. The purpose of this

thesis was to introduce a new class of bivariate lifetime distributions with bath-tub

shaped failure rates (BTFRFs). In this research, first we reviewed univariate lifetime

distributions with bath-tub shaped failure rates, and several multivariate extensions

of a univariate failure rate function. Then we introduced a new class of bivariate

distributions with bath-tub shaped failure rates (hazard gradients). Specifically, the

new class of bivariate lifetime distributions were developed using the method of Mor-

gensterns method of defining bivariate class of distributions with given marginals.

The computer simulations and numerical computations were used to investigate the

properties of these distributions.

Keywords: Failure Rate, Hazard Gradient, Lifetime Distribution, Bivariate Bath-tub

Shaped Failure Rate.
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I. Introduction

In many applications in reliability, failure rate function is used for modelling

lifetime data. The aging process can be effectively modelled and described by the

shape of the failure rate functions. Large failure rates imply more chance to fail at

that time point, and small failure rates imply less change to fail at that time point. A

natural progress of aging is reflected by an increasing failure rate, and an improvement

over time is reflected by a decreasing failure rate. If neither wear out or improvement

effect is shown, then the failure rate is flat, which implies a constant failure rate.

In many applications in reliability, the failure rate function can be bath-tub shaped.

A Bath-tub Shaped Failure Rate Function(BTFRF), occurs when the failure rate of

an item decreases at the beginning, then stays constant, and finally increases as an

item ages. That is, the item improves initially, remains stable for some time and

then degrades as time passes (wear-out effect), which occurs in the manufacturing

products. Often the manufacturing process, design, or component defects cause early

failure, which is commonly called the “burn-in” period. Once items pass through

this early critical part of their lifetimes, they have a fairly constant failure rate for

some time. After this period of time, the change point a, the item continues to

age and the failure rate increases reflecting in a “wear out” period. These three

phases can be effectively modelled by a survival distribution which has a bath-tub

shaped failure rate function, usually called bath-tub shaped model. There are many

areas of applications, such as reliability analysis in engineering, survival analysis in

biostatistics, where these results can be used.
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A large number of studies have been done to characterize class of lifetime

distributions which exhibit a bath-tub shaped failure rate function. For example, Xie

and Lai (1995) proposed an additive Weibull model which has a BTFRF, Mudholkar

et al. (1995) introduced the exponential Weibull distribution which has a BTFRF,

and Ghitany (2004) examined a beta distribution which has a BTFRF. All the studies

mentioned were univariate lifetime distributions with a BTFRF. Therefore, it is of

interest to extend this concept to multivariate lifetimes, since in reliability, systems

are usually composed of a plurality of components rather than a single component.

In the present research, a new generalization was made from a univariate lifetime

distribution with a BTFRF to a bivariate class of lifetime distribution with BTFRFs.

In this study, Chapter 1 includes an introduction, a brief review of recent

studies of this topic, and an introduction of the contents of this study. Chapter 2

contains a review of basic concepts and theorems in survival analysis. Especially, the

review of the univariate lifetime distribution with a BTFRF. Chapter 3 introduces

a new class of bivariate lifetime distributions with BTFRFs. In this chapter, two

methods of the multivariate extensions of univariate failure rate function are reviewed,

among which the notion of hazard gradient is used in this research. Afterwards,

the definition and general form of bivariate lifetime distributions with BTFRFs are

derived. Chapter 4 reviews several ways of generating a bivariate distribution with

given marginals. One of the methods (Morgenstern’s method) is chosen for this

research. Using Morgenstern’s method, a new class of bivariate distribution with

BTFRFs is introduced. Chapter 5 contains the main results of the study. It contains

2



an example of this new class of bivariate lifetime distributions, using mixture of

Weibull distributions as its marginals. Furthermore, numerical and graphical results

are used to investigate the properties of this new class of bivariate distributions.

Chapter 6 contains some suggestions for future works that I plan to investigate.
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II. Review of the Definitions and Theorems

1. Introduction

In reliability analysis, various distributions can be used to model lifetime data.

Various ways of modelling lifetime data are available, derived from survival function

or failure rate function. Survival function is the probability that an item is functioning

beyond a specific time. The survival function is defined by:

S(t) = P [T > t] (1)

A survival function is also known as the reliability function in terms of Cumulative

Distribution Function (CDF) is given by:

S(t) = 1− F (t) = F (t) (2)

where F is the CDF of the unit.

Failure rate function (or hazard function) is another important method in

modelling lifetime data. Failure rate function associates the risk to a specific time t.

One can observe the change of risk with time by plotting the failure rate function.

When T is continuous, the failure rate function is defined as:

r(t) =
f(t)

S(t)
(3)

Note that:

r(t) = lim
δ→0

P [T + δ ≤ t|T > t]

δ
(4)

The failure rate represents that, given that an item has survived up to time t, the

rate (or chance) that it will fail instantly after time t. Failure rate is an important
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concept in insurance, finance, commerce, and engineering, and it is fundamental in

analysis of lifetimes in a wide variety of applications.

2. Univariate Lifetime Distribution with BTFRF

The shape of a failure rate function can be usually generalized into four cate-

gories: the first one is monotonic Increasing Failure Rate (IFR), where the shape of

the failure rate is monotonic increasing. The second category is monotonic Decreasing

Failure Rate (DFR), where the shape of the failure rate is monotonic decreasing. The

third one is the Bath-Tub shaped failure rate (BT), where the shape of the failure

rate is decreasing before time t1, stays constant within t1 and t2, and finally increasing

after point t2. The last one is the Upside-down Bath-Tub shaped failure rate(UBT),

where the shape of the failure rate is increasing before time t1, stays constant within

t1 and t2, and finally decreasing after time t2. For the third one and the forth one,

t1 could be equal to t2, which results U-shaped or V-shaped failure rates and inverse

U-shaped or V shaped failure rates.

In reliability, lifetime distribution with bath-tub shaped failure rate (BT) has

been used frequently. Typically, the period that the shape of the failure rate is de-

creasing is called a “burn-in” period, the period that the failure rate stays constant

is called a “constant period”, and the period that the shape of the failure rate is

decreasing is called a “wear-out” period. If in some special case t1 equals t2, then BT

only has a “burn-in” period and a “wear-out” period, which is one generalization of

a bath-tub shaped failure rate.

Definition Let r(t) be the failure rate function of a lifetime distribution F , we have
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the following classes of lifetime distributions:

i. IFR (Increasing Failure Rate) if the failure rate function is monotonic increasing.

ii. DFR (Decreasing Failure Rate) if the failure rate function is monotonic decreasing.

iii. BT (Bath-tub Shaped Failure Rate) if there exists a t1 such that the failure rate

function is nonincreasing when 0 < t < t1, remaining constant when t1 ≤ t < t2, and

nondecreasing when t ≥ t2.

iv. UBT (Upside-down Bath-tub Shaped Failure Rate) if there exists a t1 such that

the failure rate function is nondecreasing when 0 < t < t1, remaining constant when

t1 ≤ t < t2, and nonincreasing when t ≥ t2.

The bath-tub shaped survival functions have been studied extensively. See

E.Halley(1693), R.E Barlow and F.Proschan(1975), B.L. Amstadter(1977), and F.Jensen(1989)

for examples. Some of the studies focus on how to characterize the increasing and

decreasing trend of the failure rate, such as Ronald E. Glaser (1980). He presents

a sufficient condition for a lifetime distribution to result in a bath-tub shaped fail-

ure rate function. Ebeling (1997) expresses bathtub curve as a composite of several

failure distributions. In conclusion, a large number of bath-tub models have been

developed, and typical methods to establish a bathtub curve model involves seeking

an appropriate model, modifying the model by introducing additional parameters,

and transforming the data to achieve compatibility with the well developed and un-

derstood model.
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Figure 1: Bath-tub Failure Rate Curve
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III. New Class of Bivariate Lifetime Distributions with BTFRFs

1. Multivariate Extensions of Univariate Failure Rate Function

1.1 Bivariate Failure Rate

The first bivariate extension of a univariate failure rate function definition is

given in Basu (1971) and is as follows. Given an absolutely continuous bivariate

distribution function H(x, y) with density function f(x, y), the bivariate failure rate

is defined as:

r(x, y) =
f(x, y)

P (X > x, Y > y)
=

f(x, y)

H(x, y)
(5)

Since P (X > x, Y > y) = 1 + F (x, y)− F (x,∞)− F (∞, y), it is very easy to check

that when X and Y are independent, r(x, y) = r(x)r(y), where r(x) and r(y) are

the corresponding univariate failure rates. Furthermore, using this definition given

by equation (5), he showed that no absolutely continuous bivariate distribution with

constant failure rate exists unless in the special case when X and Y are independently

distributed. However, this definition is not used for this research, since the bivariate

failure rate(s) given by equation (5) does not have a bivariate loss of memory property,

and it does not uniquely characterize the joint distribution function of X and Y .

1.2 Hazard Gradients

The extension to bivariate failure rates, called the hazard gradients defined

by Johnson and Kotz (1975), Barlow and Proschan (1975), and Marshall (1975). In

the univariate case, the failure rate function is a measurement of the force or rate of

mortality. When it comes to bivariate and multivariate cases, the rate of mortality

depends on which variable is changed. As a result, the hazard gradient is an suitable
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function for modelling the multivariate lifetime data.

Definition (Johnson and Kotz, 1975) The joint multivariate hazard gradients of m

absolutely continuous random variables X1, ...Xm are defined as the vector:

rx(x) = (− ∂

∂x1
, ...,− ∂

∂xm
) logHx(x) (6)

where Hx(x) = P (Xi > xi, i = 1, ...,m). For convenience we will write

rj(x) = − ∂

∂xj
logHx(x), j = 1, ...,m. (7)

where Hx(x) is the multivariate life distribution. In this research, we restrict our

study to the bivariate case. The definition for the bivariate case can be written as:

Definition The bivariate hazard gradients of two absolutely continuous random vari-

ables X and Y are:

rx(x, y) = − ∂

∂x
logH(x, y) =

− ∂
∂x
H(x, y)

H(x, y)
(8)

and

ry(x, y) = − ∂

∂y
logH(x, y) =

− ∂
∂y
H(x, y)

H(x, y)
(9)

where H(x, y) is the joint survival function for X and Y . According to the definition,

if for each x and y, rx(x, y) and ry(x, y) are increasing (decreasing) functions of

the corresponding variables, then the corresponding bivariate distribution is called a

bivariate IHR (DHR). (IHR = IFR and DHR = DFR)

In the univariate case, it is easy to check that there is a one-to-one relationship

between failure rate function and the survival function. That is,

H(x) = e−
∫ x
0 r(z)dz, t ≥ 0 (10)
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The above equation gives the survival function H(x) in terms of the failure rate func-

tion r(x) and hence there is a one to one correspondence between a failure rate and

its survival function.

For the multivariate case, this relationship holds as well. Note that, the ran-

dom variables are X1, X2, ..., Xm, and the joint survival function H(x) is:

H(x) = P (X1 > x1, X2 > x2, ..., Xm > xm) (11)

defined on the S = {x : H(t) > 0}. Marshall (1975) defines a “hazard function”

corresponding to the survival function H(x) as:

R(x) = −logH(x) (12)

The relationship between hazard function and the hazard gradients is given by:

R(x) =

∫
C

r(z)dz (13)

where the integral is a line integral and C is any sufficient continuous path that begins

at 0 = (0, 0, ..., 0) and ends at X, R(x) is the hazard function, and r(x) is the hazard

gradients for X. It is easy to check that its survival function H(x) can be obtained

by:

H(x) = e
−

∫
C

r(z)dz

(14)

From the above equation, one can choose a path of particular interest from 0 =

(0, 0, ..., 0) to (x1, x2, ..., xm), therefore, the hazard function and the corresponding

10



survival function H(x) can be obtained as follows:

R(x) =

∫ x1

0

r1(z1, 0, ..., 0)dz1 +

∫ x2

0

r2(x1, z2, ..., 0)dz2 + ...

...+

∫ xm

0

rm(x1, x2, ..., xm−1, zm)dzm

(15)

and

H(x) = e−{
∫ x1
0 r1(z1,0,...,0)dz1+

∫ x2
0 r2(x1,z2,...,0)dz2+...+

∫ xm
0 rm(x1,x2,...,xm−1,zm)dzm} (16)

where m = 2, this reduces to the bivariate case. That is, let rx(x, y) and ry(x, y)

be the hazard gradients corresponding to H(x, y), then the joint survival function is

given by:

H(x, y) = e−{
∫ x
0 rx(z1,0)dz1+

∫ y
0 ry(x,z2)dz2} (17)

That is, similar to the univariate case, the hazard gradient characterizes the joint

survival function H(x, y).

2. New Class of Bivariate Lifetime Distributions with BTFRFs

2.1 Introduction and Definition

In the present research, hazard gradients are used to generate a new class of

bivariate lifetime distributions, which extends the BTFRF from the univariate case

to the bivariate case. First, we introduce some existing definitions of bivariate classes

of survival functions.

Definition I Let rx(x, y) and ry(x, y) be hazard gradients of a bivariate lifetime

(X, Y ) with corresponding joint CDF, H(x, y), and joint survival function H(x, y).

We say the:

11



i. IFR (Increasing Failure Rate), if rx(x, y) is monotonic increasing with respect to

x, for all y, and ry(x, y) is monotonic increasing with respect to y, for all x.

ii. DFR (Decreasing Failure Rate) if rx(x, y) is monotonic decreasing with respect to

x, for all y, and ry(x, y) is monotonic decreasing with respect to y, for all x.

New definitions of bivariate classes of survival functions are as follows:

Definition II

i. The bivariate joint survival function H(x, y) has a BT (Bath-tub Shaped Failure

Rates) if:

a) rx(x, y) is bath-tub shaped with respect to x in all y.

b) ry(x, y) is bath-tub shaped with respect to y in all x.

ii. The bivariate joint survival function H(x, y) has a UBT (Upside-down Bath-tub

Shaped Failure Rates) if:

a) rx(x, y) is upside-down bath-tub shaped with respect to x in all y.

b) ry(x, y) is upside-down bath-tub shaped with respect to y in all x.

That is, if H(x, y) and H(x, y) denote the joint CDF and joint survival function for

lifetimes X and Y , and rx(x, y) and ry(x, y) as the corresponding hazard gradients,

then according to definition II, H(x, y) has BTFRFs if:

rx(x, y) =



g1(x, y) 0 < x < t1,∀y ∈ R+

c1(y) t1 ≤ x < t2,∀y ∈ R+

g2(x, y) x ≥ t2,∀y ∈ R+

(18)

where, g1(x, y) is nonincreasing with respect to x where 0 < x < t1,∀y ∈ R+; c1(y)

12



is only a function of y where t1 ≤ x < t2,∀y ∈ R+; and g2(x, y) is a nondecreasing

function of x where x ≥ t2,∀y ∈ R+. And,

ry(x, y) =



g3(x, y) 0 < y < s1,∀x ∈ R+

c2(x) s1 ≤ y < s2, ∀x ∈ R+

g4(x, y) y ≥ s2,∀x ∈ R+

(19)

where g3(x, y) is a nonincreasing function of y where 0 < y < s1,∀x ∈ R+; c2(x) is

only a function of x where s1 ≤ y < s2,∀x ∈ R+, and g4(x, y) is nondecreasing in y

where y ≥ s2, ∀x ∈ R+.

Note equation (18) and (19) imply that rx(x, y) is bath-tub shaped with re-

spect to x, ∀y ∈ R+; and ry(x, y) is bath-tub shaped with respect to y, ∀x ∈ R+. If

any bivariate lifetime distribution H(x, y) has hazard gradients rx(x, y) and ry(x, y)

that satisfy (18) and (19), we say this bivariate lifetime distribution has BTFRFs.

For a special case where t1 = t2 and s1 = s2, the hazard gradient only has

a “burn-in” period and a “wear-out” period. Though the definition of the bivariate

BTFRFs is very similar to the definition of the univariate case, the constant period

parts for hazard gradients are not strict constants in the bivariate case. That means,

c1(y) is an function of Y only, and does not change with the change of X, and c2(x)

is an function of X only, and does not change with the change of Y . For a special

case with strict constant failure rates, one can define c1(y) and c2(x) as two strict

constants instead of two functions.
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2.2 Some Properties of the New Bivariate Lifetime Distributions with BT-

FRFs

In section 3.1.2, we discussed the relationship between hazard gradients rx(x, y)

and ry(x, y) and the survival functions.

Theorem I If survival function H(x, y) has BTFRFs with hazard gradients given by

(18) and (19), the joint survival function is given by:

H(x, y) =



e−{
∫ x
0 g1(z1,0)dz1+

∫ y
0 g3(x,z2)dz2} 0 < x < t1, 0 < y < s1

e−{
∫ x
0 g1(z1,0)dz1+

∫ s1
0 g3(x,z2)dz2+(y−s1)c2(x)} 0 < x < t1, s1 ≤ y < s2

e
−{

∫ x
0 g1(z1,0)dz1+

∫ s1
0 g3(x,z2)dz2+(s2−s1)c2(x)+

∫ y
s2
g4(x,z3)dz3} 0 < x < t1, y ≥ s2

e−{
∫ t1
0 g1(z1,0)dz1+(x−t1)c1(y)+

∫ y
0 g3(x,z2)dz2} t1 ≤ x < t2, 0 < y < s1

e−{
∫ t1
0 g1(z1,0)dz1+(x−t1)c1(y)+

∫ s1
0 g3(x,z2)dz2+(y−s1)c2(x)}t1 ≤ x < t2, s1 ≤ y < s2

e
−{

∫ t1
0 g1(z1,0)dz1+(x−t1)c1(y)+

∫ s1
0 g3(x,z2)dz2+(s2−s1)c2(x)+

∫ y
s2
g4(x,z3)dz3}

t1 ≤ x < t2, y ≥ s2

e
−{

∫ t1
0 g1(z1,0)dz1+(t2−t1)c1(y)+

∫ x
t2
g2(z2,0)dz2+

∫ y
0 g3(x,z3)dz3} x ≥ t2, 0 < y < s1

e
−{

∫ t1
0 g1(z1,0)dz1+(t2−t1)c1(y)+

∫ x
t2
g2(z2,0)dz2+

∫ s1
0 g3(x,z3)dz3+(y−s1)c2(x)}

x ≥ t2, s1 ≤ y < s2

e
−{

∫ t1
0 g1(z1,0)dz1+(t2−t1)c1+

∫ x
t2
g2(z2,0)dz2+

∫ s1
0 g3(x,z3)dz3+(s2−s1)c2+

∫ y
s2
g4(x,z4)dz4}

x ≥ t2, y ≥ s3

(20)

Proof: it follows by using the result that H(x, y) = e−{
∫ x
0 rx(z1,0)dz1+

∫ y
0 ry(x,z2)dz2} for a
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possible region for values of (x, y).

Theorem II If H(x, y) has BTFRFs, then its univariate marginals also have BT-

FRFs, but converse need not to be ture.

Proof: proof is straight forward by letting y = 0 in (18) and x = 0 in (19).

As the equation (20) shows, where t1 < t2, the computations become extremely

difficult. In this research, we consider the special case where t1 = t2 and s1 = s2,

which indicate that hazard gradients are U-shaped or V-shaped BTFRFs without

the constant failure rate periods. In this case, the hazard gradients in (18) and (19)

reduces to:

rx(x, y) =


g1(x, y) 0 < x < t1, ∀y ∈ R+

g2(x, y) x ≥ t1,∀y ∈ R+

(21)

where, g1(x, y) is nonincreasing with respect to x where 0 < x < t1,∀y ∈ R+, and

g2(x, y) is nondecreasing of x where x ≥ t1,∀y ∈ R+. And,

ry(x, y) =


g3(x, y) 0 < y < s1,∀x ∈ R+

g4(x, y) y ≥ s1, ∀x ∈ R+

(22)

where g3(x, y) is nonincreasing of y where 0 < y < s1,∀x ∈ R+, and g4(x, y) is

nondecreasing of y where y ≥ s1,∀x ∈ R+. In this case, the survival function H(x, y)
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is given by:

H(x, y) =



e−{
∫ x
0 g1(z1,0)dz1+

∫ y
0 g3(x,z2)dz2} 0 < x < t1, 0 < y < s1

e
−{

∫ x
0 g1(z1,0)dz1+

∫ s1
0 g3(x,z2)dz2+

∫ y
s1
g4(x,z3)dz3} 0 < x < t1, y ≥ s1

e
−{

∫ t1
0 g1(z1,0)dz1+

∫ x
t1
g2(z2,0)dz2+

∫ y
0 g3(x,z3)dz3} x ≥ t1, 0 < y < s1

e
−{

∫ t1
0 g1(z1,0)dz1+

∫ x
t1
g2(z2,0)dz2+

∫ s1
0 g3(x,z3)dz3+

∫ y
s1
g4(x,z4)dz4}x ≥ t1, y ≥ s1

(23)

The above equation is the general expression of the survival function for the bivariate

lifetime distribution with a V-shaped or U-shaped BTFRFs. Theoretically, with the

equation (20) and (23), one can obtain the survival function of the bivariate lifetime

(X, Y ), if the bath-tub shaped hazard gradients are given. The original design of

the study was to find the joint survival function if the hazard gradients are set to be

of some special cases. That is, one could choose specific g1(x, y), g2(x, y), g3(x, y),

and g4(x, y), afterwards, H(x, y) could be obtained using (20) or (23). However, the

approach that using (20) or (23) requires very complex computations, and could lead

to a result that is too “random” and is beyond the scope of this research. Hence, we

use the following approach.

Since the univariate marginals need to be BTFRFs, we focus on bivariate dis-

tribution for which their univariate marginals are BTFRFs. That is, a permissible

bivariate distribution with given marginals is generated first, then investigation is

needed to see if this bivariate distribution satisfies the definition of the bivariate life-

time distribution with BTFRFs. If the new class of bivariate lifetime distributions
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has hazard gradients that are bath-tub shaped (See Definition II), then it is bivariate

BTFRF survival functions. Certain questions need to be answered: Are the haz-

ard gradients bath-tub shaped? Is this new class of bivariate lifetime distribution

a permissible extension of the univariate case? What happens if X and Y are in-

dependent or correlated? Fortunately, various approaches are available to generate

a proper bivariate distribution with given marginals, which will be discussed in the

next chapter.
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IV. Review of Some Classes of Bivariate Distributions with Given Marginals

In statistics, it is of interest to develop some multivariate distributions with

some given properties. For example, consider a machinery component that consists

part A and Part B. Damage of the component may result from three sources: Dam-

age of A, damage of B, or jointly damage of A and B. Occasionally, the component

may be affect simultaneously from both sources. If we let X represent the working

condition of part A and Y represent the working condition of part B, then (X, Y ) is

a bivariate random variable. Since the performance of Part A and Part B are known

individually, it is of interest to explore the performance of (X, Y ), when we know the

performance of X and Y individually.

There are numerous studies about the ways to generate multivariate distribu-

tion with given properties, especially the studies on the method of defining bivari-

ate distributions using given marginals. For example, using Nataf′s (1962) method

of translation, it is possible to construct families of bivariate distribution whose

marginals, F (x) and G(y), are given arbitrary. Morgenstern (1956) introduced a

system which was extended by Farlie (1960) to generate a bivariate distribution with

given marginals. Statistician R.L. Plackett (1965) introduced a method of construct-

ing a one parameter class of bivariate distribution with given marginals. All methods

could give a permissible class of bivariate distribution with some given desired prop-

erties.

1. Morgenstern’s Class of Bivariate Distributions

Morgenstern(1956) introduced a system of bivariate distribution with given
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marginals. The Morgenstern’s method is the one that we use in this research. Let

F (x) and G(y) be two given univariate CDFs, Morgenstern’s class of bivariate distri-

bution with marginals F (x) and G(y) is given by:

H(x, y) = F (x)G(y)[1 + α(1− F (x))(1−G(y))] (24)

The class of bivariate distributions would have F (x) and G(y) as its univariate

marginals where parameter α is a measure of dependence between X and Y . For

H(x, y) to be a proper continuous bivariate distribution function, the following con-

ditions need to be satisfied:

i. H(x, y) is a differentiable monotonic increasing function of both x and y.

ii. 0 ≤ H(x, y) ≤ 1 for all x and y.

iii. limx,y→+∞ H(x, y) = 1.

iv. H(x, y) is non-decreasing with respect to x and y.

v. H(x, y) must satisfy rectangular inequality.

For H(x, y) to have marginal distribution functions F (x) and G(y), limx→∞ H(x, y) =

G(y) and limy→∞ H(x, y) = F (x) should be further satisfied.

2. Farlie’s Class of Bivariate Distributions

Farlie(1960) extended Morgenstern’s system to the class of bivariate distribu-

tion given by:

H(x, y) = F (x)G(y)[1 + αA{F (x)}B{G(y)}] (25)

where F (x) and G(y) are two given univariate CDFs. A{F (x)} and B{G(y)} are

two functions such that the limit of A{F (x)} is 0 as F (x) goes to 1, and the limit
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of B{G(y)} is 0 as G(y) goes to 1. This class of bivariate distributions would have

F (x) and G(y) as its univariate marginals where again parameter α is a measure of

dependence between X and Y . If in Farlies Model, one takes A{F (x)} = 1 − F (x),

and B{G(y)} = 1− F (y), then this class of bivariate CDF reduces to Morgenstern’s

class of bivariate distributions. As long as A{F (x)} and B{G(y)} satisfy certain

regularity, H(x, y) could be a proper distribution function. Furthermore, this system

contains the independence case when α = 0 as well.

3. Plackett’s Class of Bivariate Distributions

Plackett(1965) introduced a one parameter class of bivariate distributions with

given marginals. The method of construction is by the relationship:

ψ =
H(1− F −G+H)

(F −H)(G−H)
(26)

Plackett showed that, for any fixed ψ in the interval (0,∞), equation (26) has a single

root H in the interval H0(x, y) ≤ H(x, y) ≤ H1(x, y). Therefore, the function defined

is a proper joint distribution function for some random variable X and Y . According

to Delores (1979), equation (26) is equivalent to a quadratic equation in H. That is,

(ψ − 1)H2 − [1 + (F (x) +G(y))(ψ − 1)]H + ψF (x)G(y) = 0 (27)

In both methods, the resulting function H(x, y) is a proper bivariate distribution

function with marginals F (x) and G(y). In addition, this system of bivariate distri-

bution is often referred to as contingency type distribution.
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V. New Class of Bivariate Distribution Based on Weibull Mixture Distri-

bution

1. Review of Univariate Mixture Weibull Distribution with BTFRF

The Weibull distribution is one of the most commonly used distributions in

modelling lifetime data, because of its flexibility. In the present study, Weibull dis-

tribution is used for modelling lifetime data both in the univariate case and in the

bivariate case.

Definition A continuous random variable X is said to have a Weibull distribution if

its probability density function is given by:

f(t) =
β

η

(
t− γ
η

)β−1
e−( t−γη )

β

(28)

where β is a shape parameter, η is a scale parameter, and γ is a location parameter.

In the present research we use the standard Weibull distribution where γ = 0 and

η = 1. As a result, the cumulative distribution function is as below:

F (t) = 1− e−tβ (29)

In the present case, the probability density function is reduced to:

f(t) = β (t)β−1 e−(t)
β

(30)

and the corresponding failure rate function is given by:

r(t) =
f(t)

S(t)
=

β
η

(
t
η

)β−1
e−( tη )

β

e−( tη )
β = β (t)β−1 (31)

Note that in (31), r(t) is increasing in t if β > 1, decreasing in t if β < 1, and it is

a constant if β = 1. Thus, a mixture Weibull distribution can be used to define a
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BTFRF survival function. Considering the case where the change points a and b are

the same, that is, when lifetime only has a “burn-in” period and a “wear-out” period.

If we can define the following failure rate function:

r(t) =


β1t

β1−1 t ≤ a

β2t
β2−1 t ≥ a

(32)

then the failure rate is bath-tub shaped if β1 is less than 1 and β2 is greater than 1.

In addition, since we want the function to be continuous at point a, the change point

a is decided by the relationship β1a
β1−1 = β2a

β2−1.

2. New Class of Bivariate Distribution with Mixture Weibull as Marginals

From chapter 4, a bivariate distribution could be obtained if marginals F (x)

and G(y) are given. Among three methods introduced, the first method, the Morgen-

stern(1956) class of bivariate distributions, was used in this research. Recall, if F (x)

and G(y) are two arbitrary given distributions, then the Morgenstern class of bivari-

ate distribution function, H(x, y), which has the given marginals F (x) and G(y), is

given by:

H(x, y) = F (x)G(y)[1 + α(1− F (x))(1−G(y))] (33)

where parameter α is a measurement of dependence between X and Y .

As a result, the survival function of (X, Y ) could be derived from the joint

cumulative distribution function as follows:

H(x, y) = 1 +H(x, y)−H(x,∞)−H(∞, y)

= 1 +H(x, y)− F (x)−G(y)
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= 1 + F (x)G(y)[1 + α(1− F (x))(1−G(y))]− F (x)−G(y) (34)

Furthermore, using the survival function in (34), one can get the hazard gradients

rx(x, y) and ry(x, y) respectively. The hazard gradients are given by:

rx(x, y) =
− ∂
∂x
H(x, y)

H(x, y)

=
f(x)G(y)[1− αG(y)(F (x)− F (x))]

H(x, y)
(35)

and

ry(x, y) =
− ∂
∂y
H(x, y)

H(x, y)

=
g(y)F (x)[1− αF (x)(G(y)−G(y))]

H(x, y)
(36)

If rx(x, y) and ry(x, y) are bath-tub shaped with respect to x and y, respec-

tively; then H(x, y) will have a bivariate bath-tub shaped failure rate functions. In

the present research, we consider the simplest case where X and Y are identically

distributed. As a result, the change points for X and for Y are the same in this study,

even though change points for rx(x, y) and ry(x, y) do not need to be identical in gen-

eral. Let X and Y are identically distributed as a mixture of Weibull distributions

with the common failure rate function:

r(t) =


β1t

β1−1 t ≤ a

β2t
β2−1 t ≥ a

(37)

where β1 is less than 1 and β2 is greater than 1, which guaranteed that the failure

rate functions for X and Y to be a U-shaped bath-tub shaped; respectively. Since X
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and Y are assumed to be identically distributed, we assume the change points to be

the same. The value of the change points can be derived from the equation:

β1a
β1−1 = β2a

β2−1 (38)

that is,

a =

(
β1
β2

) 1
β2−β1

(39)

In addition, survival function could be obtained from the failure rate function accord-

ing to the relationship of S(t) = e
−

t∫
0

r(t)dt
. Therefore, the survival function is:

S (t) =


e−t

β1 t ≤ a

e−(a
β1−aβ2 )−tβ2 t > a

(40)

Furthermore, the marginal Cumulative Distribution Functions (CDFs) for X and Y

are given by:

F (x) =


1− e−xβ1 x ≤ a

1− e−(aβ1−aβ2 )−xα2 x > a

(41)

and

G(y) =


1− e−yβ1 y ≤ a

1− e−(aβ1−aβ2 )−yα2 y > a

(42)

Using (41) and (42) for F (x) and G(y) in the joint CDF:

H(x, y) = F (x)G(y)[1 + α(1− F (x))(1−G(y))] (43)
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we obtain the following new class of bivariate lifetime distributions:

H (x, y) =



(1− e−xβ1 )(1− e−yβ1 )[1 + αe−(x
β1+yβ1 )] x ≤ a, y ≤ a

(1− e−xβ1 )(1− ce−yβ2 )[1 + cαe−(x
β1+yβ1 )] x ≤ a, y > a

(1− ce−xβ2 )(1− e−yβ1 )[1 + cαe−(x
β2+yβ1 )] x > a, y ≤ a

(1− ce−xβ2 )(1− ce−yβ1 )[1 + c2αe−(x
β2+yβ2 )] x > a, y > a

(44)

where constant c equals e−(a
β1−aβ2 ), β1 is less than 1, and β2 is greater than 1. Note

that H(x, y), the new class of bivariate lifetime distribution, has mixture Weibull

distributions marginals. In the next section we investigate the bath-tub shaped failure

rates property of this new class.

3. Numerical and Graphical Investigation

In order to investigate the bath-tub shaped failure rate property of the new

class of distributions, some numerical and graphical analysis are needed. According

to the definition from Chapter 3.2.1, H(x, y) has BTFRFs when rx(x, y) is bath-tub

shaped with respect to x for all y, and ry(x, y) is bath-tub shaped with respect to y

for all x. Using equation (35), the hazard gradient rx(x, y) corresponding to H(x, y)
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is derived as follows:

rx(x, y) =



β1x
β1−1

(
1 + α e−2xβ1−2yβ1−e−2xβ1−yβ1

(1+α)e−x
β1−yβ1−αe−xβ1−2yβ1−αe−2xβ1−yβ1+αe−2xβ1−2yβ1

)
x ≤ a, y ≤ a

β1x
β1−1

(
1 + α c2e−2xβ1−2yβ2−ce−2xβ1−yβ2

(1+α)e−x
β1−yβ1−αe−xβ1−2yβ1−αe−2xβ1−yβ1+αe−2xβ1−2yβ1

)
x ≤ a, y > a

β2x
β2−1

(
1 + α c2e−2xβ2−2yβ1−c2e−2xβ2−yβ1

(1+α)e−x
β1−yβ1−αe−xβ1−2yβ1−αe−2xβ1−yβ1+αe−2xβ1−2yβ1

)
x > a, y ≤ a

β2x
β2−1

(
1 + α c4e−2xβ2−2yβ2−c3e−2xβ2−yβ2

(1+α)e−x
β1−yβ1−αe−xβ1−2yβ1−αe−2xβ1−yβ1+αe−2xβ1−2yβ1

)
x > a, y > a

(45)

Since X and Y are identically distributed, ry(x, y) can be derived similarly. By

changing the value of β1 and β2, different hazard gradients could be obtained. Since

we are specifically interested in the shape, we use numerical and graphical methods

to investigate this characteristic. First, a plot of H(x, y) (equation (45)) reveals that

this new bivariate distribution has the following form, for β1 = 0.3, β2 = 1.5, and

α = 0.5.
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Figure 2: H(x, y) when β1 = 0.3, β2 = 1.5, and α = 0.5

For this plot, α equals 0.5, indicates that X and Y are positively associated; β1 =

0.3 < 1 and β2 = 1.5 > 1, guarantee that the failure rates for the univariate marginals

to be bath-tub shaped. From the plot, if X →∞ and Y →∞, H(x, y) converges to

1. The plot of H(x, y) gives some information about the shape of the distribution, but

more importantly, it is of interest to analyse the plot of the hazard gradients rx(x, y)

and ry(x, y). Since X and Y are identically distributed, only rx(x, y) is investigated;

ry(x, y) would be symmetric. Two different cases are explored: the first case is when

X and Y are independently distributed, and the second case is when X and Y are

correlated. In the first case, X and Y are independently distributed with α = 0. The

other requirements are β1 < 1 and β2 > 1. Therefore, for plot, we take β1 = 0.3, and
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β2 = 1.5. Other values can be chosen as well as long as β1 < 1 and β2 > 1 . From

values of β1 and β2, the value of change point, a, can be computed, which equals

0.26153. Part of the numerical results were summarized in Table 1 as shown below:

Table 1: Hazard Gradients Value

x 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26

rx(x, y) 0.9594 0.9256 0.8945 0.8658 0.8393 0.8147 0.7917 0.7703

x 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34

rx(x, y) 0.7794 0.7937 0.8078 0.8216 0.8352 0.8485 0.8617 0.8746

where x increases by 0.01 unit from 0.19 to 0.34. Only x and rx(x, y) are given in the

table, since the change of y does not affect the value of rx(x, y) if x is given. Since

X and Y are independent, the hazard gradient rx(x, y) is the same as the univariate

failure rate function r(x), which can be seen in the following:

rx(x, y) =
− ∂
∂x
H(x, y)

H(x, y)
=
− ∂
∂x
F (x)G(y)

F (x)G(y)
=
− ∂
∂x
F (x)

F (x)
=
f(x)

S(x)
= r(x)

As Table 1 shows, rx(x, y) decreases as x increases when x is less than the change point

a = 0.26153, and rx(x, y) increases as x increases for x > a = 0.26153. Therefore,

rx(x, y) is bath-tub shaped with respect to x for all y. Likewise, the same procedure

could verify that ry(x, y) is bath-tub shaped with respect to y for all x. Hence,

H(x, y) is a bivariate lifetime distribution with BTFRFs based on the numerical

results. Besides the numerical results, plot of rx(x, y) could also help us illustrate

how ry(x, y) changes as x and y change. The plot of rx(x, y) is given below:
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Figure 3: rx(x, y) when β1 = 0.3, β2 = 1.5, α = 0

From Figure 3, rx(x, y) decreases when x is less than the change point a and increases

when x is greater than a. The change of y does not affect the value of rx(x, y) if x is

given because α = 0. Since this model does not have a constant failure rate period,

one can regard this as a bath-tub shaped failure rate with only “burn-in” and “wear-

out” periods. For this case, ry(x, y) is exactly the same as rx(x, y), since X and Y are

identically distributed. Figure 3 shows that H(x, y) is a bivariate lifetime distribution

with U-shaped or V-shaped BTFRFs.

Note that, two parameters β1 and β2 affect the shape of the hazard gradient.

If the values of βs are changed, then the rate at which the hazard gradient decreases

during the “burn-in” period and the rate at which the hazard gradient increases
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during the ‘wear-out” period will be changed. In other words, different β1 and β2

could generate different plots with different slopes. For example, if one takes β1 = 0.5

and β2 = 4, a more “curved”, more U-shaped, plot could be obtained:

X
Y

Z

1

2

3

4

5

Figure 4: rx(x, y) when β1 = 0.5, β2 = 4, α = 0

In the example above, X and Y are still independent since α equals zero. However, the

plot is more “curved” than the previous one because of different β values. One thing

remains the same is that the change of y does not affect the shape of rx(x, y) because

of the independence. However, the slope at which the hazard gradient decreases

before the change point a and the slope at which the hazard gradient increases after

the change point a have been changed. For the “burn in” period, the rate of decrease

is more rapid at the beginning, but it gradually becomes less rapid as x increases. For
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the “wear-out” period, the speed of the “wear-out” effect increases as time passes,

whereas, in the previous plot, the speed of the “wear-out” effect seems to not change

too much with the passage of time. In conclusion, the values of β1 and β2 are closely

associated with the mortality rate at each time point, which is similar to the univariate

situation where the β values are closely associated with the failure rate. In conclusion,

β1 and β2 parameters could affect the slope at which the failure rate decreases and

the slope at which it increases; respectively.

Independence is a relatively strict condition, now we investigate the case where

X and Y are not independent, which could be done by assigning a non-zero value

between −1 and 1 to α. Note that α is a measurement of association between X

and Y , but it is not the same as the correlation, which measures the strength of

linear dependence between X and Y . If X and Y are associated, the surface of the

rx(x, y) and ry(x, y) are not as smooth as the previous case. That is, if X and Y are

associated, rx(x, y) and ry(x, y) depend on values of x and y both. Figure 5 shows

one example of the plot of rx(x, y) when α equals 0.5 (βs remain the same).
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Figure 5: rx(x, y) when β1 = 0.5, β2 = 4, α = 0.5

Comparing Figure 5 and Figure 4, it is clear that the new value for the parameter

α has changed the shape of rx(x, y), however, rx(x, y) is still bath-tub shaped with

respect to x for all y, and decreases with respect to y for all x. The numerical values

of rx(x, y) for some selected values of x and y are given in the following table.
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Table 2: rx(x, y) when α = 0.5

rx(x.y)
y

0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62

x

0.46 0.6540 0.6529 0.6519 0.6509 0.6500 0.6489 0.6478 0.6466

0.48 0.6415 0.6405 0.6395 0.6386 0.6377 0.6367 0.6356 0.6345

0.50 0.6298 0.6288 0.6279 0.6270 0.6261 0.6251 0.6241 0.6230

0.52 0.6187 0.6178 0.6169 0.6160 0.6151 0.6142 0.6132 0.6122

0.54 0.6082 0.6073 0.6065 0.6056 0.6048 0.6039 0.6030 0.6019

0.56 0.6291 0.6282 0.6273 0.6264 0.6256 0.6247 0.6237 0.6227

0.58 0.7002 0.6992 0.6983 0.6973 0.6964 0.6955 0.6944 0.6933

0.60 0.7768 0.7757 0.7747 0.7736 0.7727 0.7716 0.7705 0.7692

0.62 0.8590 0.8578 0.8567 0.8556 0.8545 0.8534 0.8522 0.8508

0.64 0.9471 0.9458 0.9446 0.9434 0.9423 0.9411 0.9397 0.9383

Table 2 clearly shows that, at any fixed value of y, rx(x, y) is monotonically decreasing

with respect to x for x ≤ a, where the value of change point a, when β1 = 0.5, β2 = 4,

and α = 0.5, is given by:

a =

(
β1
β2

) 1
β2−β1

=

(
0.5

4

) 1
4−0.5

= 0.55204 (46)

Also, note that, rx(x, y) is a decreasing function of x for x ≤ a and is a increasing

function of x when x > a at each y. Hence, when α = 0.5, again H(x, y) is a BTFRF

distribution. Similar result also holds for ry(x, y) since X and Y are identically dis-

tributed. That is, ry(x, y) is bath-tub shaped with respect to y at each x. Therefore,

the bivariate CDF, H(x, y), is a new class of BTFRF distributions.

Note that for the “burn-in” period, rx(x, y) is decreasing with respect to both

x and y. But, the rate at which rx(x, y) decreases with respect to y is faster than
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the rate at which rx(x, y) decreases with respect to x. That is, for a fixed y, rx(x1, y)

is greater than rx(x2, y), if x1 is less than x2 during the “burn-in” period. However,

rx(x1, y1) could be less than rx(x2, y2), if y1 is significantly greater than y2. Our nu-

merical simulations exhibit similar patterns as long as β1 < 1 and β2 > 1 , regardless

of the value of α. That is, the general shape of failure rates are (U-Shaped) BTFRF,

but the slopes of curvatures are different.

This new class of bivariate lifetime distributions with BTFRFs developed here

is derived from the utilization of a bivariate class of CDF given by Morgenstern.

It will be of interest to define and investigate other classes of multivariate BTFRF

distributions based on other multivariate extensions. This work provides a basis for

many other possible research in this concept.
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VI. Possible Future Work

One important future line of research is to extend the results obtained here to

a more general case where the failure rate has a constant period after the “burn-in”

period. That is, the change points a and b in the model are not equal. Since in

this case, the hazard gradient has three periods; “burn-in”, constant, and “wear-out”

periods. Thus the joint cumulative distribution function will have nine regions as

given by (20) instead of the four regions for the case that we discussed in the previous

section. Obviously, the problem will become more complicated.

Another generalization for the future work is to investigate the characteristics

of this new class of bivariate lifetime distributions when the marginals X and Y are

not identically distributed. The procedures will be the same except the computa-

tions will be more extensive. In the example that is illustrated, X and Y are set

to be identically distributed in order to simplify the computation. However, X and

Y could have different distributions in a more general situation. For example, X

could be a mixture Weibull distribution that has a BTFRF, and Y could be another

existing distribution that has a BTFRF. The question now is that: “Does this class

of bivariate lifetime distribution still have bath-tub shaped failure rate functions?”

The third area for the future research is the investigation of statistical prop-

erties for the new model, which includes the estimation of the parameters of the new

model, confidence intervals, testing hypothesis about the parameters, including the

change points and bivariate BTFRF goodness-of-fit for bivariate failure times.
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