
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

2014

The Development of a Hybrid Optimization
Algorithm for the Evaluation and Optimization of
the Asynchronous Pulse Unit
Eric Inclan
eincl001@fiu.edu

DOI: 10.25148/etd.FI14110709
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer-Aided Engineering and Design Commons, and the Other Mechanical
Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Inclan, Eric, "The Development of a Hybrid Optimization Algorithm for the Evaluation and Optimization of the Asynchronous Pulse
Unit" (2014). FIU Electronic Theses and Dissertations. 1582.
https://digitalcommons.fiu.edu/etd/1582

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1582&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1582&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1582&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/297?utm_source=digitalcommons.fiu.edu%2Fetd%2F1582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/304?utm_source=digitalcommons.fiu.edu%2Fetd%2F1582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/304?utm_source=digitalcommons.fiu.edu%2Fetd%2F1582&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1582?utm_source=digitalcommons.fiu.edu%2Fetd%2F1582&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

THE DEVELOPMENT OF A HYBRID OPTIMIZATION ALGORITHM FOR THE

EVALUATION AND OPTIMIZATION OF THE ASYNCHRONOUS PULSE UNIT

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE

in

MECHANICAL ENGINEERING

by

Eric Inclan

2014

ii

To: Dean Amir Mirmiran
 College of Engineering and Computing

This thesis, written by Eric Inclan, and entitled The Development of a Hybrid
Optimization Algorithm for the Evaluation and Optimization of the Asynchronous Pulse
Unit, having been approved in respect to style and intellectual content, is referred to you
for judgment.

We have read this thesis and recommend that it be approved.

Leonel Lagos

Igor Tsukanov

George S. Dulikravich, Major Professor

Date of Defense: September 12, 2014

The thesis of Eric Inclan is approved.

 Dean Amir Mirmiran

 College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2014

iii

DEDICATION

This thesis is dedicated to my wife, and my mother, as well as the Blake, Elviro, and

Babyak families.

iv

ACKNOWLEDGMENTS

First, I would like to thank Dr. George S. Dulikravich, my major professor, for

inspiring me, for challenging me to go farther than I have ever gone before, and for

giving me so many opportunities to expand my learning. Also, thank you for guiding me

toward optimization research, and for giving me the tools I needed to succeed.

 I would like to thank Dr. Leonel Lagos for extending to me the opportunity to

work at the Applied Research Center, for opening doors for me, and for believing in my

potential. I would like to thank Dr. Seckin Gokaltun for providing me with the resources I

needed to help start my research. I would like to thank Mr. Stephen Wood for helping me

work through his MOC code. I would also like to thank Mr. Amer Awwad, and Mr. Jairo

Crespo for their camaraderie, and guidance with all matters experimental. Finally, I

would like to thank all my friends at the Applied Research Center. It just would not have

been the same without you.

 I would like to thank Dr. Igor Tsukanov for his keen instruction and help.

I would also like to thank Dr. Benjamin Wylie for his kindness, patience, and

responsiveness to my questions. Your guidance was invaluable.

I would like to thank Dr. Klaus Schittkowski for his kindness and willingness to

assist me with his computer code.

I would like to thank Dr. Marcelo Colaço for his help with OPTRAN. Muito

obrigado!

v

ABSTRACT OF THE THESIS

THE DEVELOPMENT OF A HYBRID OPTIMIZATION ALGORITHM FOR THE

EVALUATION AND OPTIMIZATION OF THE ASYNCHRONOUS PULSE UNIT

by

Eric Inclan

Florida International University, 2014

Miami, Florida

Professor George S. Dulikravich, Major Professor

 The effectiveness of an optimization algorithm can be reduced to its ability to

navigate an objective function’s topology. Hybrid optimization algorithms combine

various optimization algorithms using a single meta-heuristic so that the hybrid algorithm

is more robust, computationally efficient, and/or accurate than the individual algorithms

it is made of. This thesis proposes a novel meta-heuristic that uses search vectors to select

the constituent algorithm that is appropriate for a given objective function. The hybrid is

shown to perform competitively against several existing hybrid and non-hybrid

optimization algorithms over a set of three hundred test cases. This thesis also proposes a

general framework for evaluating the effectiveness of hybrid optimization algorithms.

Finally, this thesis presents an improved Method of Characteristics Code with novel

boundary conditions, which better characterizes pipelines than previous codes. This code

is coupled with the hybrid optimization algorithm in order to optimize the operation of

real-world piston pumps.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION .. 2

1.1. Personal Contributions ... 4

2. LITERATURE REVIEW ... 6

2.1. General Optimization Theory ... 6
2.1.1. Designs as Vectors ... 6
2.1.2. Objective Functions.. 6
2.1.3. Constraints .. 7
2.1.4. Performance Benchmarking ... 8

2.2. Passive Pure Optimization Algorithms .. 9
2.2.1. Local Optimization ... 10
2.2.2. Global Optimization ... 10

2.3. Hybrid Optimization Algorithms ... 14
2.3.1. No Free Lunch .. 15
2.3.2. Hybrid Algorithm Architectures .. 16
2.3.3. Switching Logic ... 17

3. SEARCH VECTOR BASED HYBRID OPTIMIZATION ALGORITHM 21

3.1. A Global-Global Hybrid ... 21
3.1.1. Single Objective – Multiple Topologies .. 21
3.1.2. Search Vectors .. 23
3.1.3. Constituent Algorithm Search Vector .. 29

3.2. Search Vector Based Hybrid .. 30
3.2.1. Constituent Algorithm Selection Criteria ... 32
3.2.2. Hybrid Algorithm Architecture .. 34
3.2.3. Ramifications of Hybrid Algorithm Architecture .. 39

3.3. Proposed Multi-Objective Extension of Hybrid ... 42
3.3.1. Multi-Objective Search Vectors ... 42

4. HYBRID ALGORITHM BENCHMARKING .. 45

4.1. Benchmark Case Set Up and Reporting ... 46
4.1.1. Establishing Statistical Significance .. 46
4.1.2. Impact of Floating Point Arithmetic .. 48
4.1.3. Computational Expense .. 49

4.2. Comparison of Blind Hybrid Optimization Algorithms ... 50
4.2.1. Comparison of Constituent Algorithm Selection Methods 50
4.2.2. Constituent Algorithm Selection Preference .. 51
4.2.3. Blind Hybrid Performance ... 54

4.3. Comparison of All Search Vector Hybrids... 57
4.3.1. Revisiting Constituent Algorithm Selection Preference 58
4.3.2. Search Vector Hybrid Performance ... 59

vii

4.3.3. Impact of Problem Dimensionality .. 64
4.4. Comparison of Auto Hybrid to Non-Search Vector Hybrids 66

4.4.1. Comparison of Execution Times .. 74
4.5. Discussion of Results ... 78

4.5.1. Characterizing Hybrid Performance ... 78
4.5.2. Search Vector Hybrid Characterization ... 82

5. OPTIMIZATION OF THE ASYNCHRONOUS PULSE UNIT 86

5.1. Pipeline Simulation Software ... 87
5.1.1. Existing Codes.. 87
5.1.2. Updated Method of Characteristics .. 88

5.2. Verification ... 97
5.2.1. Steady State Results ... 97
5.2.2. Transient State Results ... 108

5.3. Validation ... 109
5.3.1. Experimental Set Up and Boundary Conditions .. 113
5.3.2. Simulation Results.. 114

5.4. Evaluating and Optimizing the APU .. 118
5.4.1. Optimization Problem Set Up .. 118
5.4.2. Optimization Results .. 120

6. CONCLUSIONS... 124

REFERENCES ... 126

APPENDIX ... 133

viii

LIST OF TABLES

TABLE PAGE

Table 1: Number of Test Cases per Dimension Number .. 9

Table 2: Categories of Search Vector Based Hybrids .. 31

Table 3: Constituent Algorithm Selection Usage ... 34

Table 4: Legend of Acronyms .. 45

Table 5: Sample of Student’s t-test Results .. 46

Table 6: Total Number of Hypothesis Rejections... 47

Table 7: Hypothesis Rejections – DE ... 47

Table 8: Sample of Student’s t-test Results .. 48

Table 9: Various Numerical Results by Operating System .. 48

Table 10: Probability of Violating Constraints ... 64

Table 11: Time Required for Convergence - OPTRAN, AUTO2, and PSO 76

Table 12: Probability of Correct Constituent Selection .. 84

Table 13: Errors for Steady State Pressure BC ... 100

Table 14: Errors for Steady State Volume Flow BC .. 104

Table 15: Optimal Piston Schedules ... 123

Table 16: Selection of Test Cases – Exceptionally Good Algorithm Performance 139

Table 17: Selection of Test Cases – Similar, Good Performance: DE Algorithms 150

Table 18: Selection of Test Cases – Similar, Bad Performance: DE Algorithms 151

Table 19: Selection of Test Cases – Varying Performance: DE Algorithms 153

Table 20: Selection of Test Cases – Varying Performance Among DE OAs 156

Table 21: Selection of Test Cases – Modifications to DN3 .. 160

ix

Table 22: Selected Test Case – Improvement to STD Due to Modifications 162

Table 23: Relative Performance of Standard and Modified STD 162

Table 24: Relative Performance of Standard and Modified BST 162

Table 25: Relative Performance of Standard and Modified DN3 162

Table 26: Relative Performance of Standard and Modified TDE 162

Table 27: Relative Performance of PSO and PRD ... 163

x

LIST OF FIGURES

FIGURE PAGE

Figure 1: Various Sections of Rastrigin Function... 22

Figure 2: Example of Global Best Vector ... 24

Figure 3: Example of Population Weighted Average ... 25

Figure 4: Example of Negative of the Global Worst Vector .. 26

Figure 5: Example of Population Movements and their Accompanying Centroids Using
Two Fictitious Algorithms CA1, and CA2 ... 29

Figure 6: Utopia vector for two-objective minimization problem 43

Figure 7: Relative Performance of Blind Hybrids with Different Constituent Selection
Methods... 51

Figure 8: CKO Selection Preference of PWA Blind hybrid ... 52

Figure 9: CKO & DN3 Selection Preference of IBWA Blind hybrid 53

Figure 10: Selection Preferences of GB and PGB Blind hybrids 53

Figure 11: Selection Preferences of NGW and AV1 Blind hybrids 54

Figure 12: Relative Performance of Blind hybrids and their Constituent algorithms 55

Figure 13: Convergence Histories for Modified BST on TC 110, and GB Blind hybrid
Constituent Algorithm Selection ... 56

Figure 14: Convergence Histories for TC 110 – Blind hybrids .. 56

Figure 15: Relative Performance of Blind hybrids ... 57

Figure 16: Selection Preferences of AUTO1 and AUTO2 Hybrids 58

Figure 17: Selection Preferences of DIR Hybrids .. 58

Figure 18: Best Performance of DIR, AUTO1, AUTO2, and their Constituent
Algorithms .. 59

Figure 19: Worst Performance of DIR, AUTO1, AUTO2, and their Constituent
Algorithms .. 60

xi

Figure 20: Best Performance of DIR, AUTO1, AUTO2, and Constituent Algorithms
(By Iteration) ... 61

Figure 21: Relative Performance of All Search Vector Hybrids 61

Figure 22: Relative Performance of DIR, AUTO1, and AUTO2 62

Figure 23: Relative Performance of All Optimization Algorithms 62

Figure 24: Relative Performance of All Optimization Algorithms (By Iteration) 63

Figure 25: High Dimensional Test Case Convergence Histories – DIR, AUTO1,
AUTO2 ... 65

Figure 26: Increasing Dimensionality Test Case Convergence Histories – DIR,
AUTO1, AUTO2 .. 66

Figure 27: Convergence History Comparison – Levy9 .. 67

Figure 28: Convergence History Comparison – Griewank ... 68

Figure 29: Griewank – Successful Trials .. 68

Figure 30: Convergence History Comparison – Levy .. 69

Figure 31: Convergence History Comparison – Rosen .. 70

Figure 32: Convergence History Comparison – Schwefel ... 71

Figure 33: Schwefel – Successful Trials ... 71

Figure 34: Convergence History Comparison – Schubert .. 72

Figure 35: Best Performance of OPTRAN and AUTO2 (Unconstrained Cases) 73

Figure 36: Convergence Histories over Time (a) AUTO2 (b) OPTRAN 77

Figure 37: Depiction of Set of Objective Functions A, B, and D 80

Figure 38: Example of Possible Worst Case X ... 80

Figure 39: Example of Typical Performance .. 80

Figure 40: Ideal Performance .. 81

xii

Figure 41: Relative Performance of Auto2 vs. its Constituents....................................... 83

Figure 44: Comparison of Steady-State Simulations with Pressure BC – Flooded
Pipeline ... 99

Figure 45: Comparison of Steady-State Simulations with Pressure BC – Flooded
Pipeline ... 100

Figure 46: Comparison of Steady-State Simulations with Volume Flow BC – Flooded
Pipeline ... 101

Figure 47: Comparison of Steady-State Simulations with Volume Flow BC, MOC –
Flooded Pipeline ... 103

Figure 48: MOC code with BC computed from Eq. 5.32 – Flooded Pipeline w/ Tees .. 104

Figure 49: Comparison of Steady-State Simulations with Pressure BC – Pipeline with
Air ... 105

Figure 50: Comparison of Steady-State Simulations with Volume Flow BC – Pipeline
with Air ... 106

Figure 51: Comparison of Steady-State Simulations with Volume Flow BC – Pipeline
with Air ... 107

Figure 52: Steady-State MOC Simulation with Volume Flow BC – Pipeline with Air . 108

Figure 53: Comparison of Transient Simulation with Pressure BC – Pipeline with Air 109

Figure 54: Experimental Pipeline Simplified Diagram (Not to Scale) 110

Figure 55: Photos of Tee Fittings.. 110

Figure 56: Photo of Inlet Tee Fitting and Piston Pump .. 111

Figure 57: Photo of Plug ... 111

Figure 58: Validation of MOC code – Volume Flow BC – Fully Flooded Pipeline, 500
mesh elements ... 114

Figure 59: Validation of MOC code – Pressure BC – Fully Flooded Pipeline, 50 mesh
elements .. 115

Figure 60: Validation of MOC code – Volume Flow BC – Half Stoke of Air, 50 mesh

xiii

elements .. 115

Figure 61: Validation of MOC code – Pressure BC – Half Stoke of Air, 50 mesh
elements .. 116

Figure 62: Validation of MOC code – Volume Flow BC – Full Stoke of Air, 50 mesh
elements .. 116

Figure 63: Validation of MOC code – Pressure BC – Full Stoke of Air, 50 mesh
elements .. 117

Figure 64: Optimization of Piston Operation - Fully Flooded Pipeline 120

Figure 65: Optimization of Piston Operation – Pipeline with Air on Upstream Side of
Plug ... 122

Figure 66: Optimization of Piston Operation – Asynchronous (a) Single Phase (b)
Pipeline with air on Upstream Side of Plug .. 122

Figure 67: Best Performance of Unmodified Optimization Algorithms 138

Figure 68: Convergence Histories, Test Case 4 .. 141

Figure 69: Convergence Histories, Test Case 45 .. 141

Figure 70: Convergence Histories, Test Case 220 .. 142

Figure 71: Convergence Histories, Test Case 234 .. 143

Figure 72: Convergence Histories, Test Case 236 .. 144

Figure 73: Convergence Histories, Test Case 238 .. 145

Figure 74: Convergence Histories, Test Case 239 .. 146

Figure 75: Convergence Histories, Test Case 242 ... 147

Figure 76: Convergence Histories, Test Case 331 .. 148

Figure 77: Convergence Histories, Test Case 378 .. 149

Figure 78: Convergence Histories - Similar, Good Performance: DE Algorithms 150

Figure 79: Convergence Histories –Curse of Dimensionality Among DE Algorithms.. 152

xiv

Figure 80: Convergence Histories – Varying Performance Among DE Algorithms 154

Figure 81: Convergence Histories – Curse of Dimensionality Among PSO Algorithms155

Figure 82: Convergence Histories – Varying Performance of PSO Algorithms 156

Figure 83: Convergence Histories – Varying Performance of Yang/Simon Algorithms 157

Figure 84: Best Performance of Unmodified vs Modified Optimization Algorithms 158

Figure 85: Convergence Histories – Modified DN3 ... 159

Figure 86: Convergence Histories – PSO and PRD .. 160

Figure 87: Convergence Histories – Various Improvements Due to Modifications 161

2

CHAPTER 1

1. INTRODUCTION

 The past 30 years have seen a wave of novel global optimization algorithms

published. Many of these algorithms draw inspiration from natural processes, while

others combine successful features from different algorithms into a single, more robust

algorithm through a process called hybridization. One powerful approach to hybridization

is to develop a meta-heuristic that performs automatic switching among a collection of

constituent optimization algorithms. This approach is attractive in part because it is

modular. That is, new modular optimization algorithms can be added or removed from

the hybrid algorithm at any time, making it easy to update the hybrid with the latest

methods. Furthermore, the meta-heuristic itself can be modified without making changes

to the constituent algorithms. In essence, this approach is one of the most customizable

approaches to optimization algorithm development. This thesis proposes a new meta-

heuristic scheme for hybridization based on search vectors that serve as guides to aid in

the selection of a constituent algorithm that is appropriate for the given problem.

 The selection of an optimization problem for a given problem, however, raises a

variety of concerns regarding the quality of the criteria used. Specifically, there needs to

be a mechanism that relates the topology of an objective function to some feature of the

optimization algorithm such that the algorithm selected for the problem is likely to be the

best performing algorithm of all constituent algorithms available to the hybrid. This

thesis explores some of the theory surrounding this topic, and demonstrates how using

search vectors provides a good first indication about which global search algorithm is

appropriate for a specific problem.

3

 In light of the sheer volume of optimization algorithms presented, this thesis also

explores questions relating to how the performance of hybrid optimization algorithms

ought to be evaluated. Many authors select a small set of test cases with which to

benchmark the performance of their algorithms. While this approach is simple, a small

set of test cases is prone to produce misleading results because it is possible to tailor an

optimization algorithm to a class of problems. Specialization is an undesirable quality for

hybrid algorithms, because the primary goal of hybridization is to increase the number

and type of problems that can be solved by the algorithm. This thesis evaluates the

proposed hybrid optimization algorithm using a set of nearly three hundred test cases, so

that any specialization in the algorithm will be revealed. After evaluating the hybrid

optimization algorithm using standard techniques, this thesis proposes a general

framework for evaluating the performance of hybrids that use automatic switching meta-

heuristics.

 After benchmarking the hybrid algorithm against other popular algorithms, the

hybrid algorithm is applied to a real-world problem. The Applied Research Center at

Florida International University has been engaged in research for the Department of

Energy including the evaluation of pipeline unplugging technologies. One such

technology proposed by the Applied Research Center is called the Asynchronous Pulse

Unit. The goal of this pipeline pressurization technology is to build up a large enough

pressure to dislodge plugs that form within the pipeline. In order to assist in this effort,

this thesis presents an improved Method of Characteristics code using novel boundary

conditions that accurately model the experimental set ups used by the Applied Research

Center over the past two years. The code models the propagation of pressure transients in

4

black-iron pipelines created by piston pumps connected to their inlet. By coupling the

Method of Characteristics code to the hybrid optimization algorithm, this thesis

demonstrates that the hybrid algorithm can predict optimal piston pump operation

schedules that produce high pressures across the plug while simultaneously operating

within the specified safety limitations of the pipeline. This information, generated

inexpensively using widely available desktop computers, can be used to help guide

experimental efforts in obtaining the best possible piston pump operation schedule for the

pipelines at their disposal.

1.1. Personal Contributions

As a member of the DOE Fellows program at the Applied Research Center, I

assisted in the construction of experimental pipelines, as well as gathering experimental

data. Additionally, I performed computational fluid dynamics simulations of the pipeline

using ANSYS Fluent in addition to writing an updated Method of Characteristics code

based on [1]. As a member of the MAIDROC Laboratory, I proposed the hybrid

presented in this thesis and wrote the computer code for the hybrid using C++ and

OpenMPI. I translated 300 standard optimization test cases (used for benchmarking

optimization algorithm performance) originally written in Fortran 77, into C++. I

benchmarked the performance of the hybrid and other optimization algorithms (listed

below) on MAIDROC’s 240-core cluster named Tesla, as well as a shared-memory

architecture platform, and interfaced the hybrid with Method of Characteristics code for

the optimization of the Asynchronous Pulse Unit. I wrote the post-processing code used

to create most of the figures and tables in this thesis using MATLAB R2010a. I evaluated

optimization algorithms developed by other authors including Biogeography-Based

5

Optimization, five variations of Differential Evolution, Particle Swarm, two variations of

Quantum Particle Swarm, the Firefly Algorithm, Cuckoo Search, and the Bat Algorithm.

I also proposed modifications to Differential Evolution and Particle Swarm that led to

improvements in their performance. Those modified algorithms were subsequently

incorporated into the hybrid optimization algorithm. I also compared the hybrid

developed in this thesis to a hybrid named OPTRAN, which was previously developed by

researchers at MAIDROC.

6

CHAPTER 2

2. LITERATURE REVIEW

2.1. General Optimization Theory

Engineering problems are inherently optimization problems. The task is never

merely to design a product, but to design a product that meets a specific set of goals in

the best possible way. Therefore, it is possible to formulate engineering problems at a

higher level of abstraction so that algorithms can generate a design that satisfies these

goals.

2.1.1. Designs as Vectors

In optimization literature, vectors are often used to represent designs. For

example, the shape of a molecule can be represented by the collection of positions of

each atom in three-dimensional space. For a diatomic molecule, this would require a six-

dimensional vector. The vector representing the design is called the “design vector” [2],

although it can take on names such as “habitat” [3], “individual” [4], “bat” [5], or

“decision variable” [6] depending on the author. The space created by the set of all

possible designs for a given problem is called the design space. This thesis only deals

with designs that can be expressed as vectors, therefore, all design spaces are also

assumed to be vector spaces. The goal is to locate a vector in this space that satisfies the

goals of the design process to the greatest possible extent. This vector is called an

“optimal” solution or design.

2.1.2. Objective Functions

The goal of an engineering problem is associated with a metric (e.g. cost, or

weight). These metrics are functions of the design parameters (e.g. a larger beam will

7

cost and weigh more than a smaller one). Thus, an engineering problem can be

represented by a mathematical function called an “objective function,” that is designed to

reflect the goal of the optimization process (e.g. minimize cost). By convention, the

objective function is written such that the goal is always met by minimizing the function

[7],

)(xUUMinimize


 (2.1)

where U is the objective function and x

 is the design vector.

Although a simple engineering problem may only have a single objective

function, that objective function can have more than one minimum. The lowest possible

value of the objective function is called the global minimum, while other minima with

higher values are called local minima. A function with a single global minimum is called

“unimodal,” while a function with multiple global minima is called “multimodal” [8].

Real-world engineering problems are usually multi-objective. If the objective

functions have distinct global minima (i.e. the objectives are conflicting) the problem has

a cardinality greater than one, and there is no single solution to the problem [8].

Therefore, there exists a set of solutions called the “Pareto optimal set,” or “Pareto Front”

that satisfies each objective such that no improvement can be made in one objective

without diminishing performance in another objective [8].

The optimization algorithms considered in this thesis are designed for a single-

objective optimization problem, but often have multi-objective extensions.

2.1.3. Constraints

Real-world engineering problems also have constraints. These constraints may be

limitations on the value of an objective function (e.g. cost cannot exceed a given value),

8

the value of a design parameter (e.g. wing span must remain below a given value), or

some combination thereof. Constraints can be expressed as inequalities or equalities, as

follows,

 0)(xg
 (2.2)

 0)(xh
 (2.3)

For example, an equality constraint for the composition of a metal alloy would be that the

sum of the percentages of all alloying elements must equal 100%. Due to precision issues

that arise from floating point arithmetic, equality constraints are often recast as,

 )(xh


 (2.3a)

where ε is a small number (e.g. 10-7).

Many optimization algorithms lack explicit mechanisms for handling constraints.

Therefore, several methods have been developed including the Lagrangian and

Augmented Lagrangian Methods [7], Exterior and Interior Penalty Functions [7], Rosen’s

Projection [9] [10] and others. This thesis utilizes a modified exterior penalty function,

which is discussed in Chapter 3.

2.1.4. Performance Benchmarking

When developing optimization algorithms, it is desirable to compare its

performance to that of other algorithms because this provides an indication of the

algorithm’s relative speed, accuracy, and robustness. It is common practice to use a

handful of standard test cases for performance benchmarking. Some authors have pointed

out that benchmarking in this way can be misleading because many standard functions

contain symmetries or other features (convexity, unimodality, etc.) that can be taken

9

advantage of by a specialized algorithm [11]. Such algorithms perform well for the

problem at hand but poorly for other types of problems. The algorithm presented in this

thesis is intended for simply-connected-domain, black-box problems, and so must not be

specialized.

The Schittkowski & Hock test cases [12] [13] is a set of over 300 test cases

ranging from unconstrained, smooth and continuous objective functions to heavily

constrained, discontinuous objective functions. The dimensionality of the problems

ranges from two to one hundred, as shown in Table 1 below.

Table 1: Number of Test Cases per Dimension Number

Dimension 2 3 4 5 6 7 8 9 10 11

Quantity 89 51 39 27 17 9 6 6 16 1

Dimension 12 13 14 15 16 20 30 48 50 100

Quantity 1 3 1 10 2 6 5 1 5 3

This set is large and diverse enough to be considered useful and representative of a wide

range of real-world problems. Therefore, this set of test cases can reveal when an

optimization algorithm is tailored excessively in favor of one class of problems.

2.2. Passive Pure Optimization Algorithms

Most optimization algorithms converge to a solution in an iterative fashion based

on some mathematical formula. This systematic procedure will be referred to as the

search logic of the algorithm. In this thesis, a passive optimization algorithm denotes an

algorithm whose search logic is static for every iteration. A dynamic algorithm changes

logic based on information from the objective function, or some other scheme. A pure

algorithm (here, a heuristic, and sometimes also referred to as a metaheuristic) will refer

to an algorithm that uses a single logic, while a hybrid combines more than one search

10

logic. Hybrids are classified as metaheuristics.

2.2.1. Local Optimization

 For well over 80 years, myriad algorithms have been devised for finding the local

minimum of a function. Most of these methods begin with a point assumed to be near a

minimum (the “initial guess”), formulate a search direction and a step size, and search

along the resulting line toward the minimum. Two of the most widely used methods in

this category, the DFP Conjugate Gradient Method [14] and BFGS Quasi-Newton

Method [15], are called Gradient-Based Methods because they use gradient information

to determine the search direction and step size. Local optimization methods suffer the

drawback that they are only guaranteed to find the global optimum when the objective

function is convex, because in this case the sole local optimum is also the global

optimum. Otherwise, local optimization algorithms simply converge to the nearest

minimum and stop searching once they locate it. Gradient-based methods have the

additional drawback that the function must be differentiable.

2.2.2. Global Optimization

 Global optimization algorithms are designed to search large portions of the design

space in order to locate the region containing the global minimum. This is usually

achieved using a set of design vectors (often called a “population” of design vectors).

Many of these algorithms are inspired by observations from biology. One of the first of

these algorithms to be developed, Genetic Algorithms (GA) [16], is inspired by

evolutionary changes in DNA and is a combinatorial algorithm. Other algorithms are

designed for continuous domains and use linear combinations of design vectors in their

search logic. Two very popular methods used in the hybrid developed for this thesis are

11

presented below. The remaining algorithms considered for this thesis are briefly

presented in the Appendix.

2.2.2.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) has become very popular due to its simplicity

and speed. It is based on the social behavior of various species and uses linear

combination of design vectors to form a new design [17]. Going forward, the equation

used to modify the designs will be referred to as the update equation. The basic PSO

algorithm is given below.

1) Create initial set (population) of design vectors.
2) Evaluate objective function(s) for each design vector.
3) Store copy of initial population to serve as individual best vectors and store the

global best.
4) Begin main loop:

a. For each solution in the population,
i. Apply update equation (2.4).

ii. Evaluate objective function(s) using new design vector.
iii. Replace individual best with new solution if new solution is superior.
b. Replace global best if best new solution is superior to previous global best.

5) End main loop once population converges or maximum number of iterations is
reached.

The update equations are,

g
i

g
i

g
i VXX


1 (2.4)

   iGbestiibest
g

i
g

i XXRXXRVV


 
,2,1

1  (2.5)

where V


 is the so-called “velocity vector,” α and β (0.5 and 2, respectively) are user

defined scalars, g is the iteration number, and R1 and R2 are uniformly distributed random

numbers ϵ [0,1]. The vector ibestX ,


 corresponds to the best value ever held by the ith

12

design vector (referred to here as the “individual best”, and GbestX ,


 is the best solution

ever found (also known as the “global best”). The first term on the right of Eq. 2.5 is the

“inertia,” which is effectively a scalar multiple of the velocity from the previous

iterations. In this thesis, the velocity is initially set to zero.

2.2.2.2. Differential Evolution

Differential Evolution (DE) utilizes an update equation in order to generate a new

design vector, and replaces an existing design vector with the new one if the new design

vector is superior. The standard DE algorithm can be described as follows:

1) Create initial population of candidate design vectors.
2) Evaluate objective function(s) for each design vector.
3) Begin main loop:

a) Copy original population to temporary population.
b) For each design vector in the temporary population,

i. Create a new design vector:
1. Randomly select one dimension, j, of design vector and apply update

equation.
2. For each dimension (excluding j) of the current design vector,

a. If R < CR, apply update equation, otherwise, leave unchanged.
ii. Evaluate objective function(s) for new design vector.

iii. Compare new design vector to corresponding design vector from original
population

iv. If new design vector is superior to original design vector, replace the original
with the new design vector.

4) End main loop once population converges or maximum number of iterations is
reached.

In the above algorithm, CR is a user-defined scalar ϵ [0,1] known as the “crossover rate,”

and R is a uniformly distributed, random number ϵ [0,1].

There are many forms of DE currently in use, several of which vary only by the

update equation used. Three particularly successful forms are the so-called rand/1/bin,

and best/2/bin proposed in [18] as well as Donor3 proposed in [19]. Their respective

update equations are as follows,

13

  krkrkrk XXFXY ,3,2,1  (2.6)

  krkrkrkrkbestk XXXXFXY ,4,3,2,1,  (2.7)

  krkr
krkrkr

k XXF
XXX

Y ,3,2
321

,33,22,11 





 (2.8)

where Y is the resulting coordinate in the kth dimension of the new design vector, and F is

a weighting factor (a user-defined scalar ϵ [0,2]). The variable X denotes a coordinate

from an existing design vector vector, and the subscript r indicates that it was randomly

selected. Therefore, the component Y in Eq. 2.6, for rand/1/bin, is a linear combination of

components from three distinct, randomly selected design vectors, while Eq. 2.7, for

best/2/bin is the linear combination of four distinct, randomly selected design vectors and

the global best design vector. The Donor3 method utilizes a weighted average of three

components, where λ1, λ2, and λ3 are uniformly distributed, random numbers ϵ [0,1]. The

fourth variation of DE is called Trigonometric DE, or TDE [4]. Its mutation equation also

contains an average, but here it is the arithmetic mean. The right-hand difference term is

replaced with three differences, whose scalar coefficients are determined by the objective

function values corresponding to the respective design vectors. The update equation is,

  

     13313223

2112
321

3

rrrr

rr
rrr

i

XXppXXpp

XXpp
XXX

Y













 (2.9)

where,

      321' rrr XUXUXUp


 (2.10)

and,

14

 
 
  '

'

'

33

22

11

pXUp

pXUp

pXUp

r

r

r













 (2.11)

Clearly, if all three p values equal zero, this method will yield an undefined value.

Therefore, as a precaution, the following condition was added to this algorithm,

4010')0'( ppif (2.12)

This condition was implemented in lieu of the more common practice of adding a small

constant to p’ so that the algorithm’s performance will not be biased when the values of p

are small. Apart from a distinct update equation, this method differs from the previous

method in that it also contains an additional condition,

a) For each dimension (excluding j) of the current design vector,
i. If R1 < CR,

1. If R2 < Mt use Eq. 2.9 to create mutant, else use Eq. 2.6

where R1 and R2 are distinct, random numbers ϵ [0,1], and Mt is a user-defined scalar ϵ

[0,1]. The method’s developers suggested that Mt be set to 0.05, because TDE is a

“greedy” search method [4]. Lampinen and Fan also remarked that if Mt were set to zero,

this method would reduce to DE rand/1/bin.

Global optimization algorithms often have the drawback that they require many

function evaluations (sometimes thousands or more) to locate the region containing the

global minimum, and can require just as many evaluations to converge to the solution

itself once within that region.

2.3. Hybrid Optimization Algorithms

Depending on the objective function topology, some algorithms perform better

15

than others. Thus, it is desirable to combine algorithms into a more complex, hybrid

algorithm so that their strengths can be leveraged and their weaknesses mitigated.

Algorithms that make up the hybrid are called “constituent algorithms.” For example,

using a global optimization algorithm to locate the region containing the global minimum

and switching to a local optimization algorithm dramatically improves the likelihood of

reaching the global minimum in a computationally efficient manner. Such a hybrid is

classified as a “global-local” hybrid (for example, see [20]).

2.3.1. No Free Lunch

 The question then becomes, is it possible to create a black-box optimization

algorithm (hybrid or not) with competitive or even superior performance against all other

algorithms for all possible optimization problems? In other words, is it possible to create

an effective general-purpose optimization algorithm? Some authors have said no (given

certain assumptions). Wolpert and Macready [21] claim that “the average performance of

any pair of algorithms across all possible problems is identical.” Their “No Free Lunch”

(NFL) theorem indicates that if one algorithm is superior to another for a given set of

optimization problems, it must then be inferior over another set of optimization problems.

Droste, Jansen, and Wegener, [22] show that while this is true under some circumstances,

it is not absolutely applicable because there are instances where an algorithm can perform

in an above-average sense. They propose an “Almost No Free Lunch” (ANFL) theorem,

which states that an algorithm is efficient at solving a certain class of problems because it

implicitly utilizes information about the structure of the function. Therefore, “it is

possible to describe other simple functions which are closely related to functions easy for

[the algorithm] and which, nevertheless, are hard for [the algorithm].” Yang [23] points

16

out that Wolpert and Macready’s NFL theorem is based on assumptions that do not

always apply: (1) the design space is countable and finite, and (2) the algorithm does not

revisit the same region. It has been shown that if the problem domain is continuous

(uncountable), or not closed under permutation (revisiting), that the NFL theorem does

not hold [24] [25] [26]. Therefore, under certain real-world conditions it appears possible

to develop a black-box optimization algorithm with above-average performance.

2.3.2. Hybrid Algorithm Architectures

 There currently exist a great many optimization algorithms in literature, and there

are untold thousands of ways to combine them. Talbi [27] developed a taxonomy,

referenced below, to categorize hybrid algorithm architectures, which was later expanded

upon by authors including Raidl [28]. For the purpose of this thesis it suffices to say that,

in general, there are three noteworthy approaches to hybridization, each based on the way

in which the population of design vectors is operated on. A global-local hybrid can be

created from any one of these architectures simply by passing some or all of the

population to a local optimization algorithm at some stage of the optimization process.

2.3.2.1 Competitive

Competitive hybrids (high-level, relay [27]) switch between constituent

algorithms such that only a single constituent algorithm operates on the entire population

at a time. For example, the competitive hybrid might begin with PSO, and then switch to

DE once some criterion is met. The hybrid presented in this thesis is of this type.

Additional examples will be discussed in greater detail below.

2.3.2.2 Cooperative

Cooperative hybrids (high-level teamwork [27]) allow multiple constituent

17

algorithms to operate on subsets of the population simultaneously during each iteration.

Unlike competitive hybrids, the switching logic pertains to the size of the population

passed to each constituent algorithm, which may be constant. An example of such

hybrids can be found in [29].

2.3.2.3 Merged

Merged hybrids (low-level, relay [27]) combine the essential components of

different constituent algorithms into a single algorithm. In this way, the basic operations

of all constituents are executed on the entire population during each iteration of the

hybrid algorithm. Thus, the population is updated multiple times during a single iteration.

This is different from a competitive hybrid in that competitive hybrids may not execute a

given constituent at all, and it is different from the cooperative hybrid in that the entire

population is operated on. Examples of such hybrids can be found in [30] [31] [32].

2.3.3. Switching Logic

 Within the scope of a competitive hybrid, the essence of the algorithm is the way

it switches from one constituent algorithm to another. Since each constituent algorithm

has its own search logic, the switching mechanism may override that logic by interrupting

the sequence of events that would naturally follow. Over several years, researchers

affiliated with MAIDROC have developed and tested several hybrid algorithms with

automatic switching that do not override the constituent algorithm’s search logic [33]

[34] [35]. Rather, these hybrids allow the constituent algorithm to proceed until it triggers

some failure mode or convergence criterion, and then switch to another algorithm in

order to perform an efficient local search, or perform a new global search. The interested

18

reader is referred to [36] [37] [38] for a discussion of multi-objective hybrids developed

by MAIDROC.

 The first in the series was simply a global-local algorithm made up of GA and

DFP [33]. Once GA’s convergence rated slowed to a certain value, the hybrid would

switch to DFP and converge to the nearest minimum. Once DFP converged, the hybrid

would restart GA and this cycle would repeat a number of times in order to increase the

likelihood of finding the global minimum.

 The second in this series [34], combined three local optimization algorithms

[DFP, the Nelder-Mead (NM) simplex method, and simulated annealing (SA)], and used

GA to perform a global search. It enforced constraints using Rosen’s projection, feasible

searching, and random design generation. The additional local search algorithms enabled

the hybrid to switch from GA to NM in the event of a failure (a bad mutation or lost

generation). If the objective function variance was small, the hybrid would switch from

GA to SA. If the design vector variance was small, the hybrid would switch from GA to

DFP. NM and SA would switch to DFP in the event of a stall or insufficient energy,

respectively. SA would switch to NM if it exceeded a predetermined number of

iterations.

 The third and fourth hybrids in the series were very similar. They each included

DFP, GA, NM, and sequential quadratic programming (SQP). The fourth generation [39]

added a second global optimization algorithm (DE), and replaced SA with a Quasi-

Newton algorithm by Pshenichny-Danilin (LM). The hybrid would begin with GA and

cycle through NM, or SQP. SQP’s convergence would trigger LM, which would

similarly trigger DFP. DFP’s convergence would trigger the activation of DE. Once DE’s

19

convergence stalled, the algorithm would switch back to GA and repeat for a given

number of loops.

 The fifth and sixth hybrids in the series utilized only three constituent algorithms

(PSO, DE, and BFGS), where the sixth included the use of response surfaces (surrogate

models that approximate the value of the objective function but are computationally

faster to execute) in order to improve its overall speed [33]. The global optimization

search would begin with PSO, and would switch to DE once a certain percentage of the

population appeared to converge. If the search executed by DE produced an improvement

in the current minimum, the hybrid would switch back to PSO. Otherwise, it would

switch to BFGS to rapidly locate the nearest minimum. Once BFGS converged, the

hybrid would switch back to PSO and loop as the previous hybrids did.

Each of these hybrids calls their constituent optimization algorithms in a

predetermined sequence based on a set of rules (triggers). This style of hybrid

architecture development uses inductive reasoning that proceeds roughly as follows:

If algorithm X behaves in manner A, this implies B.

Given B, use algorithm Y.

Otherwise, use algorithm Z.

All global-local hybrids are based on this logic (if the global optimization algorithm

appears to converge, the hybrid switches to the local optimization algorithm). In cases

like these, the architect of the hybrid has assumed certain characteristics about the nature

of the design space, the objective function space, and the search logic of the constituent

algorithms, and developed rules intended to capitalize on these characteristics. Thus, it

follows that if any of the assumptions are wrong (A does not imply B), or if the rules are

20

inadequate (e.g. Y should not always be used given B), the hybrid risks converging to a

local minimum. While the additional search logic of hybrid algorithms may increase the

risk of poor convergence beyond those of its constituent algorithms, hybrid algorithms

possess the greatest potential in obtaining as close to a free lunch as possible. The hybrids

discussed above have been shown to outperform their constituent algorithms [33].

Therefore, a properly crafted switching mechanism is the key to a competitive hybrid’s

success.

21

CHAPTER 3

3. SEARCH VECTOR BASED HYBRID OPTIMIZATION ALGORITHM

3.1. A Global-Global Hybrid

 The motivation behind the hybrid developed in this thesis is based on two

observations. The first comes from the statement in [22]: “Each search heuristic which is

able to optimize some functions efficiently follows some idea about the structure of the

considered functions.” Therefore, a hybrid that intelligently switches between global

optimization algorithms (a global-global hybrid) can efficiently optimize a wider range of

objective functions without requiring input from the user. That is, it serves as a better

black-box algorithm than its constituent algorithms (in the global optimization sense).

3.1.1. Single Objective – Multiple Topologies

It is easy to read the above statement and mistakenly assume that a single

objective function must have a single structure. While this is true from a strictly

theoretical standpoint, this is not really the case in practice when no a priori knowledge

of the problem is available. Global optimization is an inherently statistical process that

begins with a sample of designs. Determinations regarding the topology of an objective

function depend entirely on the distribution and size of the sample, which can be

misleading because it is incomplete. The second motivation for the hybrid presented here,

and the stronger statement made for it in this thesis is that, from the “perspective” of the

optimization algorithm, the topology of most objective functions appears to change

throughout the optimization process. That is, most objective functions have multiple

“effective” topologies. Therefore, for the broader set of optimization problems there

should be no expectation that any single algorithm will perform in an above-average

22

sense. A hybrid, on the other hand, has the potential to do so (within the scope of real-

world scenarios discussed in Chapter 2).

For example, consider the 2-dimensional Rastrigin Function shown in Figure 1.

Figure 1: Various Sections of Rastrigin Function

A sample taken over the square domain bounded by either x1,x2 ϵ [-50,50] or [-0.5,0.5]

would likely indicate that the Rastrigin Function is convex. If the sample was taken over

the domain [-5,5], however, the function would appear to be noisy with a vaguely convex

trend. Finally, a sample taken over [-1.5,1.5] would result in a function that appears to be

periodic in all directions. Assuming the algorithm begins with the largest domain, and

assuming it is designed for convex functions, it will converge rapidly from the [-50,50]

region into the [-5,5] region, and then slow down dramatically and probably converge to

a local minimum. This is because the convexity assumption is approximately valid so

23

long as the population is spaced very far apart. Once the population converges to a

smaller space (i.e. the distribution of the sample decreases), the assumption is no longer

valid and the algorithm becomes ill-suited for the effective topology it is navigating.

Therefore, the hybrid presented here, and previously briefly introduced in [33],

does not wait for a constituent algorithm to converge. Rather, it uses other indicators to

determine if, and when, to use a constituent algorithm.

3.1.2. Search Vectors

 In local optimization, many algorithms fall into the category of line search

algorithms, whose basic equation takes the form,

 sxx initialfinal

  (3.1)

where s


 is the search direction, and α is the scalar step size that enables the algorithm to

“step” from the initial design to a final design. The hybrid presented here utilizes a

population-based analogy of the search direction called a “search vector” with the

following general form,

 centroidsamplesearch vvv


 (3.2)

Where v


search is the search vector, and v


centroid is the arithmetic mean of the population.

The sample point (also a vector), v


sample, is any vector taken from the population or

calculated from some formula that is used to guide the search. In this analogy, rather than

moving a single design from one location to another within the design space, the entire

population is moved from one region in space to another. This movement is represented

by the displacement of the population’s centroid, as follows,

 searchinitialcentroidfinalcentroid vvv


 ,, (3.3)

24

The distribution of the population is not considered in this calculation, indicating that the

population can disperse from or converge toward its centroid without affecting the

hybrid’s switching logic. The following subsections discuss the formulas for the eight

sample points used to create search directions in this thesis:

3.1.2.1. Global Best Vector

The Global Best vector (GB) is the fittest design vector of the population (i.e. has

the lowest objective function value). An example of this vector is shown in Figure 2

below in red.

Figure 2: Example of Global Best Vector

3.1.2.2. Population Weighted Average

To calculate the Population Weighted Average (PWA), the population is ranked

from best to worst, with the best receiving a rank equal to the population size, and the

worst having a rank of one. This operation is given by (3.4) below.

  
  













dim

1 1
,

1

, ˆ
1

i

N

j
ijijN

j
j

iPWA exr
r

y (3.4)

where yPWA,i represents the ith coordinate of the PWA, dim represents the dimensionality of

25

the design space, N is the population size, rj represents the rank of the jth design vector in

the population, ê i is the unit vector in the ith direction, and xi,j is the ith coordinate of the jth

design vector. This vector is not originally a part of the population.

3.1.2.3. Individual Best Weighted Average

Another vector called the Individual Best Weighted Average (IBWA) is

conceptually identical to the PWA but uses the individual best population stored for

Particle Swarm. In the first iteration, this vector is equal to the PWA. An example of the

PWA is shown in Figure 3 below in red. For alternative (conceptually similar)

combinations of individual best vectors, the interested reader is referred to [40].

Figure 3: Example of Population Weighted Average

3.1.2.4. Negative of the Global Worst Vector

The Negative of the Global Worst vector (NGW) is constructed by reflecting the

global worst vector (the design with the highest objective function value) across the

center of the domain, according to the equation below:

 GWULNGW xddy


 (3.5)

where y


NGW represents the NGW, d


L represents the lower limit of the domain, d


U is

26

the upper limit of the domain, and x


GW is the global worst vector. In Figure 4 below, the

blue vector is the global worst, and the vector in red is the “negative of the global worst.”

This vector is not originally a part of the population.

Figure 4: Example of Negative of the Global Worst Vector

3.1.2.5. Population Centroid

As discussed above, the Population Centroid (PC) is the arithmetic mean of the

population. This vector is not originally a part of the population.

3.1.2.6. Individual Best Population Centroid

Another vector called the Individual Best Population Centroid (IBPC) is

conceptually identical to the PC but uses the individual best population stored for Particle

Swarm. In the first iteration, this vector is equal to the PC. This vector is not originally a

part of the population.

3.1.2.7. Projected Global Best

The definition of the Projected Global Best (PGB) borrows from classical

dynamics. The PGB is based on the formula for projectile motion under constant

acceleration, as shown below.

 2
00 2

t
a

tvxx  (3.6)

27

where x represents position, x0 is the initial position, v0 is the initial velocity, a is the

acceleration, and t is time. Time, here, is understood to be the number of iterations. This

concept was implemented due to its mathematical simplicity and because it strives to

predict the location of the next GB, rather than relying strictly on population values from

the current iteration. Given the GBs for the previous two iterations and the current

iteration, x0, x1, and x2, respectively, the PGB, represented by x3, can be derived from the

following linear system of equations:

 00 xx  (3.6a)

2001

a
vxx  (3.6b)

 avxx 22 002  (3.6c)

This leads to a system of two equations with two unknowns, namely the initial velocity

and acceleration. Using matrix notation and combining (3.6b) with (3.6c),





























02

010

22

5.01

xx

xx

a

v
 (3.6d)

Inverting the coefficient matrix yields,

































02

010

12

5.02

xx

xx

a

v
 (3.6e)

Thus, v0 and a can be expressed in terms of the previous positions.

 0120 5.125.0 xxxv  (3.6f)

 012 2 xxxa  (3.6g)

At the third iteration, the position equation becomes,

28

 avxx
2

9
3 003  (3.6h)

Substituting (3.6f) and (3.6g) into (3.6h) and simplifying yields the final result,

 0123 33 xxxx  (3.6i)

This equation is computed separately for each component of the PGB, as though each

dimension were under its own constant acceleration. This vector is not originally a part of

the population.

3.1.2.8. Average Vector 1

The Average Vector 1 (AV1) is the arithmetic mean of the GB, PWA and NGW,

and was found to be advantageous in certain objective function topologies after some

experimentation.

During early development of this hybrid, only a single sample point was used throughout

the entire optimization process. This way, the sample point could be calculated without

being evaluated (unless it was already part of the population), reducing the total number

of objective function evaluations required by the algorithm. After some experimentation,

it was decided that all sample points should be evaluated and compared. The sample

point with the lowest objective function value was then selected for use by the hybrid. It

is clear from Equation 3.3 that,

 samplefinalcentroid vv


, (3.3a)

Therefore, for each iteration, the sample point is the desired final destination for the

population centroid. The sample point is one of the indicators that guides the global

search (during early development, it was the only indicator). Each iteration, the goal of

the hybrid switching mechanism is to shift the population toward the sample point

29

because this point is assumed the correct direction for the population to move to in order

to locate the global minimum. Therefore, the hybrid must select a constituent algorithm

that is most likely to produce this result.

3.1.3. Constituent Algorithm Search Vector

 Each constituent algorithm has some mechanism (an equation, etc.) to produce

new candidate design vectors for the next iteration. The set of new candidate designs

shall be called the “temporary population.” The objective function is not executed for

these points (i.e. the temporary population is not evaluated), and contains as many design

vectors as there are in the primary population used by the hybrid. The arithmetic mean of

the temporary population shall be called the “temporary centroid.” In order to select a

constituent algorithm, the hybrid will execute a constituent algorithm ten times, so that

ten temporary populations are created. The temporary centroid for each temporary

population is computed, and then averaged to produce one final vector (a centroid of all

ten temporary populations).

Figure 5: Example of Population Movements and their Accompanying Centroids Using Two

Fictitious Algorithms CA1, and CA2

30

This final result is called the “centroid of the constituent algorithm,” or simply the CCA.

For example, suppose the hybrid has two constituent algorithms called CA1 and CA2

(see Figure 5). It is possible that CA1 will update the current population (black dots) in

one direction (red dots), while CA2 will update the population in another direction (blue

dots). The vectors in Figure 5 represent the centroids of each population. Since each

constituent algorithm contains random parameters, it is executed ten times so that its CCA

has some statistical significance without excessively increasing the method’s

computational cost. The CCA represents the location that the population centroid would be

moved to if that constituent algorithm were used. This process is repeated for every

constituent algorithm so that a CCA is computed for each (e.g. a CPSO, CDE, etc.). During

early stages of development, the CCA’s were compared to the sample point using some

equation (discussed below) in order to determine which constituent algorithm to use, but

never evaluated. Dr. Dulikravich suggested that the CCA’s be evaluated and used as the

sole indicator for constituent algorithm switching. After more experimentation, it was

later decided that both CCA’s and sample points be evaluated and used as indicators, and a

more sophisticated switching logic was devised. In order to facilitate certain

comparisons, the “constituent algorithm search vector” was defined as follows,

 centroidCACA vcv


 (3.7)

where c


CA is the CCA, and v


CA is the CCA translated so that it originates at the centroid

of the population. When needed, the CCA can be compared directly to the sample point,

and the search vector can be compared directly to the constituent algorithm search vector.

3.2. Search Vector Based Hybrid

One of the goals in developing the Search Vector Based Hybrid was to minimize

31

the number of additional objective function evaluations required by the hybrid beyond

those performed by the constituent algorithms (minimize overhead).

Table 2: Categories of Search Vector Based Hybrids

Category
Evaluate & Compare

Search Vector
Evaluate &

Compare CCA
Blind No No
Direct N/A Yes
Auto Yes Yes

Therefore, during the early stages of development, none of the search vectors or CCAs

were evaluated unless they were already part of the population. Since these vectors guide

the population without any information about the objective function at that location, this

category of search vector hybrid is called a “Blind Hybrid Optimization Algorithm.” The

“Direct Hybrid Optimization Algorithm” does not compute search vectors at all, but at

the suggestion of Dr. Dulikravich, computes and evaluates the CCAs and uses their values

to compare each constituent algorithm directly. Both the Blind and Direct hybrids have

an automatic constituent algorithm switching mechanism, but do not automatically switch

between search vectors. That is, the Blind and Direct hybrids use a single search vector

throughout the entire optimization process. The “Auto Hybrid Optimization Algorithm”

evaluates the sample points so that it can automatically switch between search vectors

and constituent algorithms each iteration.

 In order to achieve this functionality, the search vectors and constituent

algorithms are implemented as modules. This provides the added benefit that the hybrid

can utilize any set of algorithms, whether it is the same algorithm tailored for different

problems (e.g. multiple modules of Differential Evolution with different parameters for

32

different classes of problems), or a variety of different methods including newly

published algorithms.

3.2.1. Constituent Algorithm Selection Criteria

Although the hybrid’s search logic assumes that the sample point is the best

direction to move in, there are several ways to use this information when selecting a

constituent algorithm. The following five selection methods have been developed for this

thesis:

3.2.1.1. Lowest Distance

This method calculates the Euclidean distance between the CCA and the sample

point. This distance is calculated in the design space; therefore, the objective function

value is not taken into consideration.

  



dim

1

2
,,

i
iCAisample cvd

 (3.8)

The constituent algorithm whose CCA is closest to the sample point will be selected.

3.2.1.2. Highest Dot Product

This method calculates the dot product between the search vector and the

constituent algorithm search vector. That is,

   

centroidCAcentroidsample

centroidCAcentroidsample

CAsearch

CAsearch

vcvv

vcvv

vv

vv













 (3.9)

Again, the objective function value is not taken into consideration. The constituent

algorithm whose centroid is closest to parallel to the search vector will be selected. This

formulation cannot be used when the sample point is the population centroid (the lowest

distance can be used instead).

33

3.2.1.3. Lowest Scaled Distance

Similar to the lowest distance, this method uses the following equation below,

  
































 1

2

1
^1

pop

temp

pop

temp
s dd







 (3.10)

where ds is the “scaled” distance between the sample point and the CCA, while d is the

Euclidean distance from Eq. 3.8. The term in brackets is the exponent of the d+1 term,

and contains the ratio between the standard deviation of the temporary population, σtemp,

and the current population standard deviation, σpop. The standard deviation are based on

the distances between the populations under consideration and their respective centroids.

The exponent rewards constituent algorithms whose standard deviation is less than the

existing population’s standard deviation, or greater than 50% of that value. This was

developed in an effort to penalize methods that converge too quickly or cause the

population to spread out further. The constituent algorithm with the lowest scaled

distance is selected.

3.2.1.4. Direct CCA Comparison

This method, proposed by Dr. George Dulikravich, ignores the objective function

values of sample points. Instead, it evaluates the CCAs generated by the constituent

algorithms and selects the algorithm with the minimum CCA.

3.2.1.5. Pareto Ranking Method

This method treats the Lowest Distance and Direct Comparison methods as two

distinct objectives. The constituent algorithms are ranked using the Pareto dominance

scheme in [8]. The constituent algorithm is then randomly selected from the Pareto

optimal set (the constituent algorithms that are non-dominated in terms of lowest distance

34

and minimum CCA). Although developed independently, and applied differently, the

concept of using multi-objective processes in a single objective problem appears in [41],

and its references.

The various search vector based hybrids developed for this thesis use one of these

constituent algorithm selection methods depending on the information available. During

early development, three methods were tested with the Blind hybrid. The results are

discussed in Chapter 4.

Table 3: Constituent Algorithm Selection Usage
Category Selection Methods Used

Blind
Lowest Distance

Highest Dot Product
Lowest Scaled Distance

Direct Direct CCA Comparison
Auto Pareto Ranking Method

The latest version of the hybrid (Auto) currently utilizes six constituent algorithms: PSO,

PSO with Random Differences (PRD), Modified Quantum Particle Swarm (MQP), DE

best/2/bin with randomized parameters (BST), DE Donor3 with randomized parameters

(DN3), and Cuckoo Search (CKO). See the Appendix for descriptions of each algorithm.

Early versions of the Blind hybrid used the Firefly Algorithm (FFA) in lieu of DN3 in

order to diversify the collection, but it was replaced due to its high computational

expense (overhead).

3.2.2. Hybrid Algorithm Architecture

 It is now possible to describe the search vector based hybrid algorithm in detail.

The basic steps (automatic switching) performed by this hybrid during each iteration can

be summarized as follows:

35

I) Calculate each sample point
i) Evaluate each sample point (Auto only)

II) Calculate each CCA
i) Evaluate each CCA (Direct and Auto only)

III) Perform constituent algorithm selection
IV) Operate on population using constituent algorithm

Therefore, this hybrid does not have any rules or equations enabling it to generate new

designs of its own. Rather, the initial population is created using a random number

generator, and the constituent algorithms generate every subsequent population. The

hybrid architecture “wraps around” the constituent algorithms.

3.2.2.1. Random Number Generator

The hybrid is equipped with two random number generators: the ran2 function

given in [42], as well as Sobol’s Algorithm [43] downloaded from [44]. Ran2 is the

hybrid’s default random number generator due to its speed.

3.2.2.2. Population Size

A typical global optimization algorithm only operates on its population once per

iteration, but the search vector hybrid executes its constituent algorithms a total of 10M +

1 times per iteration, where M is the number of constituent algorithms. This means that

the current version of the hybrid loops over the population 61 times per iteration (the first

60 times are simply to generate temporary populations). For this reason, and due to the

high computational expense typical of objective function evaluations, it is desirable to

reduce the population size.

One popular approach to determining the population size is to vary it linearly with

the dimensionality of the problem. For example, the following might be used,

 dim10N (3.11)

36

where dim is the dimensionality of the problem, and N is the population size. In order to

reduce the size of the population for problems with high dimensionality, the following

nonlinear function was developed after several tests,

 






 


3

log(dim)5.65dim142.14dim59.12 3/2

ceilN (3.12)

where ceil is a function that rounds a number up to the nearest integer. Both (3.11) and

(3.12) result in a population size of 20 for a 2D problem.

3.2.2.3. Constraint Enforcement

For simplicity, the hybrid uses a modified objective function based on a type of

exterior penalty function. Since the global minima of the Schittkowski and Hock test

cases are published, the objective function is first modified to reflect the error (E), that is

the difference between the current value and the published minimum value (U*), as

follows,

 *)()(UxUxE 
 (3.13)

This is then combined with a penalty function. The standard form given for an exterior

penalty function given in [7] is,

  



l

j
j

m

i
i xhxgxp

1

2

1

2)()](,0max[)(


 (3.14)

where m is the number of inequality constraints, and l is the number of equality

constraints. This penalty function modifies the objective (error) function as follows,

)()()(xprxExW p


 (3.15)

where W is the modified objective function, and rp is a user-defined scaling factor. The

scaling factor serves to increase or decrease the magnitude of the penalty generated by

37

the penalty function. If the penalty is too small relative to the magnitude of the objective

function, this form of constraint enforcement can easily yield infeasible results, but if it is

too large, it may yield suboptimal results. The greater concern, however, is feasibility.

Because the scaling factor is user-defined its value often depends on the user’s intuition,

or is tailored to suit a specific class of problems or algorithms. To alleviate this issue

(letting rp = 1), the following penalty function is used,

 



l

j
j

m

i
i xhxgxEnxp

11

)()](,0max[)()(


 (3.16)

where n is the total number of constraints violated. This formula ensures that the penalty

function always has a magnitude at least as large as that of the objective function. It is

important to note that this form of constraint enforcement changes the effective topology

of the objective function, often making a function non-differentiable.

3.2.2.4. Blind Hybrid Algorithm Steps

The earliest of the search vector based hybrids developed, this hybrid requires the

fewest additional objective function evaluations. Its primary advantage, however, is not

in its computational cost, but its utility as a research tool. By forcing the search to

proceed in a particular direction, it is possible to gain insights into the relationship

between the effective topology of the objective function and the optimization algorithm

that is ultimately selected. The algorithm is as follows,

I) Initialize population of design vectors
II) Evaluate objective function for all design vectors
III) Begin Hybrid Loop

i) Calculate sample point
ii) Calculate all CCAs
iii) Perform constituent algorithm selection
iv) Operate on population using constituent algorithm
v) If convergence detected, end loop, otherwise return to step i)

38

IV) End algorithm

As demonstrated in the algorithm, the objective function is only evaluated following

initialization and during step (iv).

3.2.2.5. Direct Hybrid Algorithm Steps

The second of the search vector based hybrids presented, this hybrid uses CCAs in

lieu of search vectors and evaluates them. Therefore, it requires additional objective

function evaluations (equal to the number of constituent algorithms used).

I) Initialize population of design vectors
II) Evaluate objective function for all design vectors
III) Begin Hybrid Loop

i) Calculate all CCAs
ii) Evaluate all CCAs
iii) Select constituent algorithm with minimum CCA
iv) Operate on population using constituent algorithm
v) If convergence detected, end loop, otherwise return to step i)

IV) End algorithm

Apart from the direct comparison in step (iii), the CCAs are never used again. Future

versions of the hybrid may incorporate these vectors into the population to improve the

diversity of the population, or to replace inferior design vectors.

3.2.2.6. Auto Hybrid Algorithm Steps

The latest version of the search vector hybrid has the greatest overhead cost, but also

the greatest amount of information with which to make a decision. The algorithm is as

follows,

I) Initialize population of design vectors
II) Evaluate objective function for all design vectors
III) Begin Hybrid Loop

i) Calculate all sample points
ii) Evaluate all sample points
iii) Select minimum sample point
iv) Calculate all CCAs

39

v) Evaluate all CCAs
vi) Select constituent algorithm using Pareto Ranking Method
vii) Operate on population using constituent algorithm
viii) If convergence detected, end loop, otherwise return to step i)

IV) End algorithm

The first version of the Auto hybrid did not incorporate the sample points or CCAs into

the population. Certain constituent algorithms utilize the “global best” vector in their

search (e.g. DE and PSO). Since the selected sample point may be superior to the best

design vector in the population, the second version of the hybrid passed the sample point

to these constituent algorithms. The results are discussed in Chapter 4.

3.2.3. Ramifications of Hybrid Algorithm Architecture

 This section will discuss the implications of the structure of the Auto hybrid

optimization algorithm. The Auto hybrid will simply be referred to as “the hybrid.”

3.2.3.1. Search Logic

The hybrids discussed in Section 2.3.3. allow their global optimization constituent

algorithms to converge, which suggests that these hybrids assume there is a “good match”

between the constituent algorithm and the objective function topology. The search vector

based hybrid switching mechanism often prohibits any one constituent algorithm from

running completely to convergence. Rather, the hybrid compares the constituent

algorithm to the search vector and assumes that a good match between the CCA and the

search vector indicates that the constituent algorithm is a good match for the effective

topology (which changes each iteration). Therefore, the search logic inherent in the

constituent algorithm is overridden by the search logic of the hybrid.

Like all algorithms, the hybrid’s structure is well suited for certain classes of

problems. For example, the hybrid assumes that the sample point with the lowest

40

objective function value is the best. Therefore, if there exists a class of “deceptive”

functions for which this assumption is invalid, this approach may impair the hybrid. An

improvement on this hybrid could include the addition of statistical metrics that could

warn against misleading functions, and give the hybrid a means by which to select other,

more appropriate sample points. For the purpose of this thesis, however, a random

parameter was introduced in the algorithm. Each iteration after the first, there is a 10%

chance that the hybrid will reselect the constituent algorithm used in the previous

iteration. Another way to implement a similar feature could be to introduce a probability

that the hybrid will select a random constituent algorithm rather than the previous one,

but that is beyond the scope of this thesis

3.2.3.2. Constituent Algorithm Implementation

Although the hybrid algorithm is simple, the proper incorporation of constituent

algorithms and maintenance of auxiliary vector populations, such as the velocity of PSO,

is not trivial. Algorithms like BST, DN3, and CKO do not utilize information from

previous iterations and can be treated as independent modules. The PSO and PRD

algorithms, however, utilize a velocity vector population that is a function of the previous

iteration’s velocity. As long as one of these modules is called sequentially, the velocity

vector can be computed normally. However, if the hybrid switches from PSO or PRD to

another method and then back to PSO or PRD, the velocity must be reinitialized. Since

the inertia term is a vital part of PSO, the manner in which this is done dramatically

affects its performance. As a first attempt, the velocity is re-initialized according to the

following equation,

41

   jLjUjLgj DDRDV ,,,02.1

2.0
 (3.17)

where Vj is the jth coordinate of the velocity vector, DL,j and DU,j are the lower and upper

limits of the search domain in the jth direction respectively, R is a uniformly distributed

random number ϵ [0,1] and g is the generation (iteration) number.

Additionally, algorithms with DE-style comparisons have an implicit form of

elitism. These comparisons prohibit the superior design vectors like the global best

design vector from being replaced by inferior design vectors. This feature is not present

in algorithms like PSO. Therefore, if the hybrid algorithm switches from DE to PSO and

back to DE it is possible to lose superior design vectors. Therefore, the hybrid stores the

global best design vector separately, which partially remedies this problem. Nevertheless,

the hybrid allows the other vectors to be overwritten by constituent algorithms.

3.2.3.3. Computational Expense

Since many real-world problems have objective functions that require hours to

evaluate, generating the search vectors and CCAs is relatively computationally

inexpensive. Evaluating them, in these cases, is not. However, if the objective function is

inexpensive to evaluate (such as when surrogate models are used) the hybrid’s overhead

becomes an important contributor to the overall computational expense. Accordingly, the

hybrid was written using OpenMPI in order to benefit from a parallel computing

environment.

The global optimization algorithms utilized in the hybrid are embarrassingly

parallel. Therefore, in parallel environments, the populations are subdivided among

nodes, reducing the time required for generating temporary populations. For problems of

42

low dimensionality, communication costs between nodes can exceed the costs related to

the population size. When run on Tesla (in serial), the hybrid completes the average 2D

problem (200 iterations) in roughly 2.4 seconds. On Tesla, in parallel (20 nodes), the

communication costs increase this time to 6 seconds. One hundred dimensional problems,

however, take on the order of hours to days in serial, but only minutes to hours in

parallel.

3.3. Proposed Multi-Objective Extension of Hybrid

The notion of a search direction along a given topology is already well

established. When the problem becomes multi-objective, and the objective function space

grows in cardinality, the notion of a single search direction must change to accommodate

the principles of Pareto optimality [8].

3.3.1. Multi-Objective Search Vectors

 Some search vectors present in this hybrid, such as the population centroid, can be

used in a multi-objective context without modification. Others, such as the population

weighted average and negative of the global worst, must take on a new meaning and new

formulation. In the context of multi-objective optimization, rankings no longer refer to

single vectors, but rather, refer to sets of vectors. Non-dominated vectors have a rank of

one (the Pareto-optimal set). Vectors dominated only by those in the Pareto Front have a

rank of two, and the ranks increase in a similar fashion for inferior vectors. The negative

of the global worst, therefore, would originate at the centroid of the worst set of vectors

and pass through the centroid of the population. The formula for the population weighted

average could take the form,

43

  
  





















B

i

A

j
j

i
B

i

PWA

i

x
iA

i

y
1 1

1

1

1

1 
 (3.18)

where y


PWA represents the population weighted average, B represents the number of

distinct ranked sets in the population (as well as the value of the rank itself), Ai represents

the number of vectors in each set, and x


j is a design vector. Equation (3.17) is roughly

equivalent to finding the centroid of each set, and then obtaining a weighted average of

those vectors. The global best vector can be randomly selected from the Pareto Front or

defined as the centroid of that set.

 The projected global best vector can remain the same. However, it is also possible

to capitalize on a feature unique to multi-objective optimization: the utopia vector

(depicted in Figure 6 below).

Figure 6: Utopia vector for two-objective minimization problem

The utopia vector is a projection of the Pareto Front vectors whose values are the current

global minimum for one of the objectives. Determining x


utopia from x


1 and x


2 is non-

trivial. One way to approximate it is to identify the global worst vector (most dominated

44

point), and assume x


utopia is located at the point that forms a parallelogram with the

global worst, x


1, and x


2. Alternatively if a surface is constructed from the Pareto

Front, as in [45], the utopia vector can be projected onto this surface, and that new point

can be used as the projected global best vector.

45

CHAPTER 4

4. HYBRID ALGORITHM BENCHMARKING

 As previously stated, the search vector hybrids presented in this thesis utilize six

constituent algorithms. These six were selected from a pool of twenty possible

algorithms: 11 distinct algorithms, and 9 modifications to those algorithms. All

algorithms evaluated for this thesis are given in Table 4 below.

Table 4: Legend of Acronyms

Acronym / Symbol Algorithm Modification
PSO Particle Swarm n/a
PRD Particle Swarm With Random Differencing
QPS Quantum Particle Swarm

n/a

MQP Modified QPS
FFA Firefly Algorithm
BAT Bat Inspired Metaheuristic
CKO Cuckoo Search
STD DE - rand/1/bin

STD – R DE - rand/1/bin With randomized parameters

STD – R,S DE - rand/1/bin
With randomized parameters, and sorted

comparisons
BST DE - best/1/bin n/a

BST – R DE - best/1/bin With randomized parameters

BST – R,S DE - best/1/bin
With randomized parameters, and sorted

comparisons

BST – SPC DE - best/1/bin
With randomized parameters, sorted comparisons,

special vectors and dynamic mutation
DN3 DE - Donor3 n/a

DN3 – R DE - Donor3 With randomized parameters

DN3 – R,S DE - Donor3
With randomized parameters, and sorted

comparisons
TDE Trigonometric DE n/a

TDE – R Trigonometric DE With randomized parameters
GB Blind Hybrid

n/a

PGB Blind Hybrid
IBWA Blind Hybrid
AV1 Blind Hybrid
PWA Blind Hybrid
NGW Blind Hybrid
DIR Direct Comparison Hybrid

AUTO1
Automatic Switching

Hybrid

AUTO2
Automatic Switching

Hybrid
Passes sample point to constituent algorithms

rather than global best

The Blind hybrids are named after the sample points that they use (see Chapter 3). Prior

46

to selection, the algorithms listed above were compared, and their relative performance is

reported in the Appendix. Two-hundred and ninety-six of the Schittkowski & Hock test

cases were used to benchmark the candidate algorithms, as well as the hybrids presented

below.

4.1. Benchmark Case Set Up and Reporting

 In order to compare the algorithms, each algorithm was executed for a certain

number of iterations, and the final value of the objective function was used as the

measure of performance. In order for this approach to be statistically meaningful, these

numerical experiments must be repeated a certain number of times. Each numerical

experiment is called a “trial.” For each trial, the optimization algorithm was executed for

200 iterations on a given Schittkowski & Hock test case.

4.1.1. Establishing Statistical Significance

The number of trials needed to establish a statistically significant result is not

known a priori. In order to establish a guideline, a search vector hybrid was executed on

the full set of test cases for 50, 60, 70, 80, and 90 trials. The mean accuracy and standard

deviations were calculated and used to perform Student’s t-tests on each pair of trials.

The table below contains a small sample of the data from the Student’s t-tests.

Table 5: Sample of Student’s t-test Results

TC Dim 50 vs. 60 60 vs. 70 70 vs. 80 80 vs. 90

1 2 0 0 0 0

2 2 0 0 0 0

3 2 1 0 0 0

4 2 1 0 0 0

5 2 1 0 0 0

6 2 0 0 0 0

7 2 1 1 0 0

8 2 1 0 0 0

47

Table 5 shows the test case number (TC), the dimensionality of the problem (Dim), and

the result of the t-tests for each pair of successive trial numbers. A zero represents cases

when the null hypothesis is accepted at the 5% significance level, and a one represents

cases when the null hypothesis is rejected. The hybrid performs the same in TCs 1, 2, and

6 for any number of trials. On TCs 3, 4, 5, and 8, however, the hybrid requires 60 trials

before its performance converges statistically. For TC 7, the hybrid requires 70 trials

before its performance converges. Since each trial is computationally expensive, we seek

a trade-off between the statistical significance of the results, and the time required to

generate them. Table 6 summarizes the results of the Student’s t-tests.

Table 6: Total Number of Hypothesis Rejections

50 vs. 60 60 vs. 70 70 vs. 80 80 vs. 90

61 16 16 17

There is a very clear gain in statistical significance by increasing the number of trials

from 50 to 60. After that, however, there are no more significant gains. Therefore, this

thesis will use 60 as the number of trials for benchmarking results. Oddly, the number of

rejections does not monotonically decrease for the hybrid. Therefore, the tests were

repeated using DE rand/1/bin with randomized parameters.

Table 7: Hypothesis Rejections – DE

50 vs. 60 60 vs. 70 70 vs. 80 80 vs. 90
43 13 15 13

Table 7 shows a similar trend, which suggests that the algorithm architecture does not

significantly impact the result of the Student’s t-test.

48

Table 8: Sample of Student’s t-test Results

TC Dim 50 vs. 60 60 vs. 70 70 vs. 80 80 vs. 90

18 2 1 0 0 0

19 2 0 0 0 0

20 2 0 1 0 0

21 2 1 0 0 0

22 2 0 0 0 0

23 2 0 0 0 1

18 2 1 0 0 0

19 2 0 0 0 0

Table 8 shows there is no clear trend from one pair of trials to another for certain test

cases. This is true for DE as well as the hybrid used above. The common connection

between algorithms is their random number generator. The random number generators

create near-uniform distributions of points, and there is no guarantee that the distribution

of points of the converged, final result will be normal.

Given that there is no monotonic trend in terms of population size, and

inconsistent results from one pair of trials to another, it is likely that the normal

distribution assumption of the Student’s t-test is being violated in some cases.

Nevertheless, it appears that 60 trials are enough to establish a trend in performance.

4.1.2. Impact of Floating Point Arithmetic

Despite the fact that the global minimum is known, floating point arithmetic

(FPA) introduces errors to the evaluation of the objective function. FPA error varies by

operating system, and by possibly compiler code optimization. For example,

Table 9: Various Numerical Results by Operating System

TC Design Vector Result Operating System
4 X1 = 0, X2 = 1 0 Windows 7 – 64 Bit
4 X1 = 0, X2 = 1 0 Ubuntu 12 – 32 Bit
4 X1 = 0, X2 = 1 -1.48102e-16 Rocks 5.1

49

While the result in Table 9 might seem trivial, such small differences in computational

accuracy can determine whether or not a constraint violation penalty is applied, which

ultimately affects the apparent accuracy of the algorithm. Complete FPA optimization is

beyond the scope of this thesis. Nevertheless, steps were taken during post processing to

partially address these issues. For example, any final result less than 10-20 or greater than

-1x10-15 was set equal to 10-20. Final results less than -1x10-15 were considered erroneous

if there was a difference between the C++ code and the published test cases. If not, they

were considered to be an FPA error.

4.1.3. Computational Expense

Since objective function evaluations are typically the most computationally

expensive part of the optimization process, they will be used as the metric of an

algorithm’s speed. The number of objective function evaluations performed by an

algorithm is fixed each iteration, therefore, the following multipliers can be used to

convert from algorithm iterations to evaluations:

BST N + 2 evaluations (4.1)

CKO 2*N evaluations (4.2)

Blind Hybrids N*(1 + CKO call) evaluations + 2*BST call (4.3)

Direct Hybrid N*(1 + CKO call) evaluations + 2*BST call + 6 (4.4)

Auto Hybrids N*(1 + CKO call) evaluations + 2*BST call + 13 (4.5)

All Other Algorithms N evaluations (4.6)

where N is the population size, “CKO call” stands for the number of times the hybrid

calls CKO to update the population, and, similarly, “BST call” stands for the number of

times BST is called. Since CKO requires double the evaluations and yet performs like

50

PSO in many cases (see Appendix), Blind hybrids that use the minimum distance

constituent algorithm selection method will check to see if there is a tie between PSO and

CKO, and select PSO as the tie breaker.

4.2. Comparison of Blind Hybrid Optimization Algorithms

The Blind hybrids are the least computationally expensive hybrids created for this

thesis. This benefit is balanced by the fact that they gather the least information from the

search domain.

4.2.1. Comparison of Constituent Algorithm Selection Methods

 Recall from Chapter 3 that for each sample point Blind hybrids used, there are

three possible formulations for constituent algorithm selection: minimum distance,

maximum dot product, and minimum, scaled distance. The goal of the Blind hybrid is to

utilize search vectors to enhance the optimization process without requiring additional

objective function evaluations. A comparison of Blind hybrid performance for each

constituent algorithm selection type is given in Figure 7. The Blind hybrids are scored

based on having the best accuracy and fastest convergence rate (calculated using

objective function evaluations) for each test case. The minimum distance selection

method performs at least 50% better than other methods for every sample point. Since it

is also the simplest method to compute, it is used again for the Auto hybrids. It is worth

noting that the minimum distance method works best with sample points that are not

based on the main population (PGB, AV1, IBWA, and NGW).

51

Best Speed and Accuracy

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7: Relative Performance of Blind Hybrids with Different Constituent Selection Methods

This suggests that search directions derived directly from the population (using its

members or an average of its members) provide a slightly better indication of the

direction in which to search, whereas the more exotic sample points provide better

information regarding the local neighborhood in which to search, relative to the search

vector in use.

4.2.2. Constituent Algorithm Selection Preference

The Blind hybrid strategy provides useful insight into potential correlations

52

between search vectors, optimization algorithms, and objective function topologies. For

example, the PWA Blind hybrid selects CKO at least one order of magnitude more

frequently than any other algorithm (see Figure 8). Furthermore, in 33 test cases CKO

search is the only constituent algorithm selected by the BWA Blind hybrid.

CKO-Only Test Cases:
4, 101, 102, 103, 104, 117, 118, 119,
220, 234, 236, 239, 242, 292, 293,
297, 298, 299, 301, 302, 303, 304,
305, 368, 379, 380, 381, 382, 383,

384, 388, 391, 394

Figure 8: CKO Selection Preference of PWA Blind hybrid

There is an approximate pattern in the location of the global minima of the above-

referenced test cases. They tend to be near/at the edge of the domain, the center of the

domain, or in some pattern (such as a sequence of integers that increase with dimension),

which suggests CKO seeks symmetries in the problem. However, as a reminder that

correlation is not causation, it must be noted that there is no clear pattern in the

topologies of the above-mentioned test cases. Therefore, the interaction between CKO

and the topologies represented in this set is more involved than mere symmetries.

 Similar to the PWA Blind hybrid, the IBWA Blind hybrid also selects CKO over

other methods. However, it selects DN3-R with similar frequency (FFA is not used here

to reduce computational expense). Furthermore, the IBWA Blind hybrid selects only

CKO and DN3-R in 43 test cases (see Figure 9).

53

CKO & DN3-R Test Cases:
45, 101, 102, 103, 104, 110, 117, 118, 119,

234, 236, 237, 239, 280, 284, 285, 286, 287,
288, 292, 293, 298, 299, 301, 302, 303, 304,
305, 378, 379, 380, 381, 382, 383, 384, 385,

386, 387, 388, 389, 391, 393, 394, 395

Figure 9: CKO & DN3 Selection Preference of IBWA Blind hybrid

Therefore, it appears that in a wide range of test cases, CKO and DN3 tend to search near

the weighted average of the population or weighted average of the individual best

population. Particularly in the test cases 101, 102, 103, 104, 234, 236, 239, 292, 293, 298,

299, 301, 302, 303, 304, 305, 379, 380, 381, 382, 383, 384, 388, 391, and 394, which

make up the intersection of the two sets presented above.

Figure 10: Selection Preferences of GB and PGB Blind hybrids

 The GB and PGB Blind hybrids clearly prefer BST-SPC over other methods. This

is no coincidence since all forms of BST use the global best as the design vector to be

perturbed. After BST-SPC, the hybrids select PSO, which also uses the global best design

vector in its formulation. Unlike IBWA, or PWA, the PGB Blind hybrid rarely relies on

54

one or two optimization algorithms for a given topology. In fact, there are only four cases

where the PGB Blind hybrid predominantly selects a subset of constituent algorithms: TC

45, 234, 236, and 239. In these cases, the hybrid selects two or more of BST-SPC, PSO,

PRD, and MQP.

 Similar to the PGB Blind hybrid, the NGW and AV1 Blind hybrids rarely select a

subset of constituent algorithms for a given topology. The NGW and AV1 blind show

only a marginal preference for PSO (Figure 11).

Figure 11: Selection Preferences of NGW and AV1 Blind hybrids

Recall that the AV1 sample point is an average that includes the NGW. The lack of

selection preference suggests the NGW frequently moves across the domain so that there

is no clear trend. The six sample points discussed here were also used in the Auto hybrid.

4.2.3. Blind Hybrid Performance

Although their primary purpose is to examine relationships between search

vectors and constituent algorithms, these hybrids were compared to their constituent

algorithms in order to determine the effectiveness of their switching logic.

55

4.2.3.1. Hybrid vs. Constituent Algorithms

Figure 12 shows the results of comparing Blind hybrids to one-another and their

constituent algorithms. Interestingly, the GB hybrid is the most accurate and fastest in

nearly 18% of the test cases. If speed is not considered, it is as accurate as or better than

other optimization algorithms in over 23% of the test cases. From this, and the

overwhelming success of BST-SPC, it can be concluded that a strategy as simple as

moving the population toward the global best each iteration is enough to perform well in

one-fifth of the Schittkowski & Hock test cases.

Figure 12: Relative Performance of Blind hybrids and their Constituent algorithms

None of the Blind hybrids outperform BST-SPC in any metric (speed, robustness,

etc.) over the set of test cases because the Blind hybrid switching strategy is too

simplistic to be robust. However, there are specific cases, such as TC 110, where the

hybrid outperforms its constituent algorithms.

56

The GB Blind hybrid, which selects BST-SPC over 10 times more frequently than

any other method, converges faster than all other optimization algorithms considered,

although it is only slightly faster than BST-SPC (Figure 13).

Figure 13: Convergence Histories for Modified BST on TC 110, and GB Blind hybrid Constituent
Algorithm Selection

The IBWA Blind hybrid, which only alternates between CKO and DN3, converges faster

than CKO alone (Figure 14), but much slower than DN3-R, which converges in a manner

similar to BST-SPC but requires 9,000 objective function evaluations to do so.

Figure 14: Convergence Histories for TC 110 – Blind hybrids

Special cases such as these raise the question: under what conditions can a hybrid be

considered “good” when compared to its constituent algorithms? This topic will be

discussed in Section 4.5.

57

4.2.3.2. Hybrid vs. Hybrid

Figure 15 shows the results of comparing Blind hybrids to one-another, using the

minimum distance formulation.

Figure 15: Relative Performance of Blind hybrids

It is clear that the two most computationally efficient search methods, which account for

the best results in roughly 82% of all test cases, are the GB and PGB search vectors.

Once again, the simpler formulations are usually the best. It is worth noting that the class

of test cases for which the PGB Blind hybrid is the best does not intersect with other

hybrids. That is, if speed is not taken into consideration, it will still perform well in

exactly 35.14% of test cases.

4.3. Comparison of All Search Vector Hybrids

The three remaining hybrids are DIR, AUTO1, and AUTO2. Unlike AUTO1, the

AUTO2 hybrid passes the sample point to the constituent algorithm in lieu of the global

best vector (Table 4). These hybrids were designed to improve upon the performance of

the Blind hybrids by using additional information about the objective function topology.

58

4.3.1. Revisiting Constituent Algorithm Selection Preference

Like the GB and PGB Blind hybrids, AUTO1 and AUTO2 select BST-SPC more

frequently than other constituent algorithms, but MQP is selected more often than PSO.

Figure 16: Selection Preferences of AUTO1 and AUTO2 Hybrids

AUTO2 utilizes a single constituent algorithm in only two test cases: TC 234, and 239. In

fifteen other test cases, it may rely on three or four out of the six constituent algorithms.

These test cases are: TC 4, 17, 33, 45, 95, 96, 221, 226, 236, 238, 262, 278, 279, 353, and

366. For the remaining test cases, however, AUTO2 uses all six constituent algorithms.

Figure 17: Selection Preferences of DIR Hybrids

The DIR hybrid has a trend very similar to the Auto hybrids, but calls BST-SPC less

frequently. The striking similarity of the selection preferences is clearly due to the

inclusion of CCAs, and the repeated use of the GB sample point by the Auto hybrids.

59

4.3.2. Search Vector Hybrid Performance

4.3.2.1. Hybrid vs. Constituent Algorithms

Comparing DIR, AUTO1, and AUTO2 against their constituent algorithms,

AUTO2 is clearly the dominant hybrid, but BST-SPC is still the most robust algorithm.

Figure 18: Best Performance of DIR, AUTO1, AUTO2, and their Constituent Algorithms

AUTO2 and BST-SPC could be considered ideal for different classes of test cases,

despite the fact that AUTO2 utilizes BST-SPC. See section 4.5 for a more detailed

discussion of this topic.

 In addition to accuracy and speed, another indicator of an algorithms’

performance is the frequency with which it converges to a local minimum. Since all of

the algorithms presented here converge to a local minimum in one problem or another, it

is instructive to count the number of times an algorithm produces the single worst result

for a given test case.

60

Figure 19: Worst Performance of DIR, AUTO1, AUTO2, and their Constituent Algorithms

Figure 19 shows that the AUTO2 hybrid and BST-SPC are least likely to produce the

worst result. Since AUTO2 incorporates constituents including BST-SPC, this

demonstrates that the AUTO2 switching logic dramatically reduces the likelihood of

producing a terrible result in spite of its constituents. On the other hand, the DIR hybrid

still possesses a fairly high likelihood of yielding a poor result, indicating that switching

search directions and constituents is a better strategy than switching based only on CCAs.

If the convergence rate is calculated based on iterations rather than objective

function evaluations, BST-SPC and AUTO2 switch roles. Situations like this might arise

when surrogate models are used in lieu of objective function evaluations, greatly

reducing the computational expense of the optimization process. In these cases, AUTO2

is the more robust algorithm.

61

Figure 20: Best Performance of DIR, AUTO1, AUTO2, and Constituent Algorithms (By Iteration)

4.3.2.2. Hybrid vs. Hybrid

Compared to the Blind hybrids, the DIR, AUTO1, and AUTO2 hybrids converge

faster, are more accurate, and more robust (Figure 21).

Figure 21: Relative Performance of All Search Vector Hybrids

AUTO2, in particular, is faster and more accurate than any other hybrid in over half of

the test cases. AUTO2 obtains the single worst answer in 6.08% of test cases, superseded

only by the AV1 Min Dist hybrid at 4.73%.

62

Figure 22: Relative Performance of DIR, AUTO1, and AUTO2

Comparing DIR, AUTO1, and AUTO2 exclusively, AUTO2 again significantly

outperforms the other hybrids, reinforcing the conclusion that automatically switching

search directions and constituents is better than switching based solely on CCAs.

4.3.2.3. Hybrid vs. All

Figure 23: Relative Performance of All Optimization Algorithms

Figure 23 shows the relative performance of every optimization algorithm used in

this thesis except Blind hybrids using the maximum dot product and minimum scaled

63

distance formulations. The four dominant methods in accuracy and speed are BST-R,

BST-R,S, BST-SPC and AUTO2. AUTO2 obtains the single worst result in only 1.35%

of test cases. The remaining 25 methods are well suited to very small percentages of test

cases.

Figure 24: Relative Performance of All Optimization Algorithms (By Iteration)

If we again relax the assumption that the objective function evaluation dominates the

computational expense of the optimization process, then the AUTO2 hybrid becomes the

most robust algorithm. If speed is not taken into consideration, then within 200 iterations

AUTO2 obtains the best accuracy in 46.6% of test cases.

4.3.2.4. Feasibility of Results

Due to the use of an exterior penalty function, the accuracy of the hybrid includes

the penalty of the constraint violation. Since the penalty function alters the topology of

the objective function, it can mislead the hybrid (as well as the other optimization

algorithms described in this thesis), causing it to converge to a local minimum outside of

the feasible space. The results in Table 10 reflect the probability that the solution will be

64

infeasible after 200 iterations.

Table 10: Probability of Violating Constraints

Number of
Constraints

Number of
Test Cases

Mean Probability of
Constraint Violation

Standard
Deviation

1 67 55.97% 49.65%
2 49 33.63 % 36.42%
3 30 51.40% 39.23%
4 18 39.59 % 34.58%
5 10 32.04% 28.79%
6 10 35.83% 37.11%
≥ 8 26 31.25% 26.27%

The standard deviations tend to be large because in some test cases the converged

solution is infeasible for all trials, while in others the solution is always feasible

(particularly for cases with a low number of constraints). The convergence trend suggests

that 200 iterations may not be enough to locate a feasible solution for some test cases.

Over the set of all trials and all test cases, the hybrid has a 39.01% chance of obtaining a

feasible solution (no constraint violations). This performance is typical of unconstrained

methods [7], and strongly indicates that a better approach to constraint enforcement is

required.

4.3.3. Impact of Problem Dimensionality

AUTO2 clearly outperforms other optimization algorithms in higher dimensional

test cases. Like other algorithms, the number of objective function evaluations required to

locate the global minimum increases, but to a lesser degree than other algorithms. In the

plots below, HOA stands for “Hybrid Optimization Algorithm.” The rapid drop in error

shown in Figure 25 during the first few objective function evaluations is due to the use of

the PC sample point.

65

Figure 25: High Dimensional Test Case Convergence Histories – DIR, AUTO1, AUTO2

Although AUTO2 does not locate the global minimum of TC 302 or TC 305, it

outperforms all other optimization algorithms in accuracy and speed (see Appendix). This

suggests one of three things: (1) new search vectors may be needed to speed up

convergence, (2) new constituent algorithms may be useful, or (3) it might be necessary

to incorporate a new operation (such as the random generation of new points, or a new

selection method) to improve the hybrid’s robustness with increasing problem

dimensionality.

66

Figure 26: Increasing Dimensionality Test Case Convergence Histories – DIR, AUTO1, AUTO2

Figure 26 shows the change in hybrid performance with increasing

dimensionality. It clearly outperforms all other optimization algorithms in this thesis (see

Appendix), but again, this is partially due to the hybrid’s ability to utilize the PC as a

sample point. Problems lacking this form of symmetry might show an inferior trend.

4.4. Comparison of Auto Hybrid to Non-Search Vector Hybrids

Researchers at MAIDROC have compared previously developed hybrids to the

commercial optimization program IOSO [46]. Figures Figure 27 - Figure 34 present the

performance of the AUTO2 hybrid (its convergence history and constituent algorithm

selection histograms) alongside the convergence history of these hybrids on a set of six

test cases. The figures showing performance for hybrids other than AUTO2 are taken

from [46]. The number of trials used to generate the results given in [46], and whether or

67

not these plots are an average of those trials, or simply the best result from all trials is

unknown. The AUTO2 results (excluding Figure 29) are the arithmetic mean of 60

convergence histories.

Figure 27: Convergence History Comparison – Levy9

 Results for the 4-dimensional Levy9 test case are shown in Figure 27. The

AUTO2 hybrid roughly matches the Dulikravich, Martin, Colaço (DMC) hybrid’s

performance at the first 2,000 objective function evaluations, and then rapidly surpasses

it. The Colaço BFGS-based optimizer outperforms both in terms of speed, but appears to

converge to a local minimum. IOSO is much more efficient, but also incorporates highly

advanced surrogate modeling techniques. The surrogate model evaluations are not

included in IOSO’s convergence history.

68

Figure 28: Convergence History Comparison – Griewank

 Only 17 of the 60 trials AUTO2

hybrid trials converged to the global

minimum (Figure 28), and the DMC

hybrid converges to similar local minima.

In these 17 trials (Figure 29), the hybrid

locates the global minimum to single-

precision accuracy within roughly 2,250

objective function evaluations. The

performance of AUTO2 relative to the other optimizers is approximately unchanged.

Figure 29 uses the “average of the log” of the convergence histories (rather than the “log

of the average,” or, logarithm of the arithmetic mean), given by Eq. 4.7, below.

Figure 29: Griewank – Successful Trials

69

 



N

t
tH

N
H

1
10

*)(log
1 

 (4.7)

where tH


 is the vector representing the convergence history for a given trial, t, and *H


is the “average of the log” of the N convergence histories (N trials). This representation

was selected because it reflects the change in order of magnitude of several convergence

histories better than a simple arithmetic mean.

Figure 30: Convergence History Comparison – Levy

 The AUTO2 hybrid converges to the global minimum of the Levy function

(Figure 30) in less than 3,000 objective function evaluations. No results were reported for

IOSO. This Levy function is 7-dimensional, and varies slightly in form from the Levy9

function. This is an excellent illustration of the ANFL theorem’s claim that a small

change in an objective function can cause a big change in an algorithm’s performance.

70

Figure 31: Convergence History Comparison – Rosen

 The AUTO2 hybrid converges to the global minimum of the Rosen function

(Figure 31) within 300 objective function evaluations, which is on par with the

MAIDROC hybrids.

71

Figure 32: Convergence History Comparison – Schwefel

 Figure 32 illustrates a case in

which the AUTO2 hybrid, and

coincidentally IOSO, converges to a local

minimum. Only 34 of the 60 trials

converged to the global minimum. As

with the Griewank function, this is

probably due to AUTO2’s aggressive

search strategy (see discussion in Section

4.5.2). When AUTO2 does converge to the global minimum, it generally does so in fewer

than 500 objective function evaluations, as shown in Figure 33.

Figure 33: Schwefel – Successful Trials

72

Figure 34: Convergence History Comparison – Schubert

 In Figure 34, the AUTO2 hybrid converges to the global minimum in less than

2,000 objective function evaluations, and does so monotonically. While monotonic

convergence can be practical because it is predictable, it is no guarantee of superiority

(recall the ANFL theorem). In fact, algorithms like SA and GA (without elitism) rely on

hill-climbing mechanisms to perform global design space exploration. Nevertheless,

AUTO2’s convergence rate is on par with the other MAIDROC hybrids, and retains its

order-of-magnitude difference with IOSO typical of the test cases presented here.

73

Figure 35: Best Performance of OPTRAN and AUTO2 (Unconstrained Cases)

 AUTO2 was also compared with a hybrid developed at MAIDROC called

OPTRAN. Different versions of OPTRAN exist. The one used here is the 4th generation

of MAIDROC hybrids discussed in Section 2.3.3. The following steps were taken to

minimize the bias in their comparison:

1. OPTRAN does not use a penalty function for constraint enforcement, therefore,

the unconstrained subset of the Schittkowski & Hock test cases were used.

2. Each optimizer has a different population initialization technique. OPTRAN

possesses the built-in capability to read in a single design, while AUTO2 can read

in an entire population. Therefore, OPTRAN was provided with the global best

design from the same initial population used by AUTO2.

On an objective-function-evaluation basis, AUTO2 dramatically outperforms OPTRAN

(Figure 35). This is important because, unlike AUTO2, OPTRAN is a global-local

hybrid. Therefore, this performance suggests that OPTRAN often converges to local

minima that the AUTO2 hybrid can avoid.

74

4.4.1. Comparison of Execution Times

Although using objective function evaluations is a practical, implementation-

agnostic, platform-agnostic measurement of an algorithm’s speed, another common

practice is to compare their execution times. This method provides some indication of

how an algorithm performs when the computational cost of evaluating the objective

function is relatively low. Unfortunately, this approach can be biased by a large number

of factors. Some biasing factors relevant to this thesis include:

 Bias due to the method of implementation

o OPTRAN, and the Auto hybrid have different input/output (I/O)

subroutines. They store different numbers of files, and different amounts of

data within those files. Furthermore, the Auto hybrid performs some basic

file clean up tasks (compressing and deleting files) once the optimization is

complete. Also, OPTRAN prints a substantial amount of text to standard

output, while the Auto hybrid does not. For the purpose of this thesis,

OPTRAN’s standard output was redirected to a file (these files reached

hundreds of megabytes for 100-dimensional problems).

o All search vector hybrids presented in this thesis run in parallel. In order to

minimize bias, the time comparisons are performed using a single processor

which causes the MPI function calls to unnecessarily increase the Auto

hybrid’s computational expense.

o OPTRAN was written in FORTRAN, while the other algorithms were

written in C++. The two languages handle tasks such as file I/O and passing

75

variables to functions in very different manners, all of which impact

performance.

o OPTRAN is used in conjunction with a C++ version of the Schittkowski &

Hock test cases, and so must be cross compiled (FORTRAN and C++).

Furthermore, the Auto hybrid and the PSO implementation used for this

section use a compiler containing wrappers for MPI. Therefore, OPTRAN

uses gfortran and g++, while the Auto hybrid and PSO use mpic++ (a

wrapper for g++).

 Bias due to time measurement approach

o In addition to differences between languages, within C++ there are several

ways to measure time, each with significant consequences. For the purpose

of this thesis it suffices to say that each optimization algorithm executable is

timed from the beginning of its execution until the end using the high

resolution clock in the <chrono> library with millisecond accuracy. The

interested reader can learn more about timing from [47] [48] [49].

o Although OPTRAN contains a timing subroutine, it is not active in the

version used for this thesis, therefore, the method stated above is used.

An algorithm’s computational expense also depends on the skill of the programmer, and

the number of processes being executed in the background by the operating system at the

time of testing. Setting all these factors aside, an algorithm’s execution time will also

vary from system to system. In this thesis, the algorithms were executed on an Ubuntu

13.10 virtual machine (Parallels 9) with 8GB of dedicated memory and 4 available cores.

The virtual machine is hosted on a MacBook Pro (OS version 10.8.5) with a 2.8GHz Intel

76

Core i7 processor, 16GB 1600MHz DDR3 RAM, and a solid-state hard drive. Recall that

the algorithms were executed on a single processor.

TC Dim Algorithm
Times (s)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

300 20

OPTRAN 4.065 1.229 3.287 4.294 3.254

AUTO2 8.578 8.605 8.917 9.322 8.837

PSO 0.289 0.288 0.289 0.297 0.289

301 50

OPTRAN 54.858 15.224 40.122 67.406 72.437

AUTO2 34.660 33.898 33.958 34.988 34.069

PSO 0.973 0.962 0.960 0.972 0.982

302 100

OPTRAN 495.488 578.954 604.631 527.000 597.81

AUTO2 94.454 93.508 95.987 94.580 94.657

PSO 2.585 2.548 2.584 2.550 2.602

Table 11 shows that OPTRAN’s required computational time increases by roughly one

order of magnitude with each increase in problem dimensionality. This is likely due to

the vast amounts of output OPTRAN generates. OPTRAN’s results vary significantly due

to its various convergence criteria, which do not trigger at the same time: (1) reaching the

maximum number of iterations, (2) reaching the maximum number of objective

evaluations, (3) failing to decrease the objective function after executing every

constituent algorithm [50].

Table 11: Time Required for Convergence - OPTRAN, AUTO2, and PSO

77

(a) (b)
Figure 36: Convergence Histories over Time (a) AUTO2 (b) OPTRAN

78

AUTO2, on the other hand, runs for a fixed number of iterations (here, 200).

AUTO2 clearly outperforms OPTRAN for test cases with higher dimensionality in terms

of execution time. The slight variability comes in the number of objective function

evaluations per iteration as discussed in Section 4.1.3, Eq. 4.5. PSO’s computational cost

is roughly one-thirtieth that of AUTO2 due to its simplicity.

Figure 36 shows the convergence history of OPTRAN and AUTO2 over time. In

this test case (as well as TC300 and TC302) OPTRAN converges to a result more

accurate than AUTO2. The smooth convergence profile occurring after the first ten

seconds is probably the result of its use of the DFP constituent algorithm. This is an

example of the advantage of global-local hybridization.

4.5. Discussion of Results

4.5.1. Characterizing Hybrid Performance

Having benchmarked the algorithms, the Auto hybrid is clearly a competitive

alternative to other optimization algorithms. While this may be sufficient to establish a

case for its use, there is one question that benchmarking alone cannot answer:

What makes a hybrid “good”?

Recall from [22] that any algorithm that efficiently solves a problem does so because it

implicitly contains a heuristic that is compatible with the objective function’s topology.

In the case of a pure optimization algorithm, metrics such as speed and accuracy provide

an adequate characterization of this compatibility. Since a single algorithm cannot be

ideally suited for all problems, an implicit goal of hybrids with switching mechanisms is

to correctly match an objective function topology to a compatible constituent algorithm.

Therefore, the true measure of a hybrid’s quality is not merely its speed and accuracy, but

79

also its ability to identify the constituent algorithm required to best solve a problem. In

light of the “effective topology” concept presented earlier, the quality of the search vector

hybrids is determined by its ability to perform this match during each iteration of the

optimization process. Thus, a new metric for quality is introduced: the probability of

selecting the most compatible constituent algorithm for a given objective function.

This new metric naturally raises another question: Over the set of all optimization

problems, what is the upper limit of a hybrid’s performance? In order to answer this

question, let us say that there are two optimization algorithms C1, and C2 that are ideally

suited for two disjoint sets of objective functions A, and B, respectively. The sets of

objective function topologies represented by A, and B are denoted TA and TB

respectively. Let set D be a set of objective functions disjoint with respect to A and B,

containing objective function topologies, TD, that are distinct from, and not reducible to

combinations of TA and TB. An example of a function whose topology is reducible to a

combination of others is the sine function, which can be thought of as an infinite series of

piecewise convex and concave sections. Another (impractical) example would be to

consider all continuous functions to be an infinite series of infinitesimal linear sections.

Let U be the set of all objective functions, as shown in Figure 37 below:

80

Figure 37: Depiction of Set of Objective Functions A, B, and D

Now say there is a hybrid optimization algorithm H that automatically switches between

C1 and C2 and is ideally suited to solve the set of objective functions X. In the worst case

scenario, the set X will be a proper subset of A and/or B (Figure 38). It is likely, however,

that X will be a subset of A, B, and D (Figure 39), as a natural consequence of the ANFL

theorem. This will be referred to as “typical” performance.

Figure 38: Example of Possible Worst Case X Figure 39: Example of “Typical” Performance

The typical case is drawn deliberately to suggest that the hybrid converges as quickly and

accurately as C1 and C2 wherever X intersects A and B respectively, because the term

“ideally suited” should not be construed to mean that an algorithm’s superiority in one

class of problems is mutually exclusive with all other algorithms. In fact, in practice there

would be no guarantee that C1 and C2 are ideally suited for disjoint sets, which could

adversely affect the hybrid’s performance.

81

 A hybrid with “satisfactory” performance is one in which X is the union of A and

B. Now, consider a set of objective functions, E, whose topologies can be decomposed

into some combination of topologies in TA and TB. A hybrid is considered to have “ideal”

performance if X is the union of A, B, and E as shown in Figure 40.

Figure 40: “Ideal” Performance

A hybrid with “utopian” performance is one in which X is the union of A, B, D, and E.

Although it is trivial to stipulate that such levels of performance are attainable, in

practice it may not be possible to create an ideal or utopian hybrid. It is obvious that a

simple global-local hybrid, which allows its global algorithm to converge and then passes

the best solution to the local algorithm, can have satisfactory performance. The precise

condition utilized in such hybrids could cause its performance to deviate from

satisfactory, but this is easy to remedy with some experimentation. The higher levels of

performance, however, are more difficult to obtain.

82

4.5.2. Search Vector Hybrid Characterization

The premise of this thesis is that given the existence of a set E (described above),

there exists a hybrid that can match its constituents to a series of effective topologies such

that its performance is ideal. Underlying this statement is the assumption that the

sequence of effective topologies the hybrid encounters during the optimization process

can correctly represent the topologies into which the problem should be decomposed.

Since the quality of the effective topology depends on the population size and

distribution, it is easy to imagine circumstances in which the assumption may be invalid.

Nevertheless, the validity of the premise alone is not sufficient to guarantee that the

hybrid’s performance will be ideal. Consider a case where PSO is the single best

constituent algorithm for a given problem, and the Auto hybrid consistently selects PSO.

Although the hybrid is making the correct decision, it will always converge more slowly

than PSO, on an objective function evaluation basis, due to the additional computational

expense of evaluating the sample points and CCAs.

In this sense, the Auto hybrids have typical performance by definition, except that

here typical performance includes a subset of E. If the Auto hybrid utilized C1 and C2,

one could say it exchanges convergence speed in subsets of A and B for improved overall

robustness (the ability to solve problems in D and E). In order for a hybrid to have ideal

performance, it would have to switch between algorithms without requiring any

additional objective function evaluations. Alternatively, if the hybrid algorithm uses

surrogate models to perform its constituent selection operations, and if the surrogate

model adequately represents the objective function, and if the computational expense of

evaluating the surrogate is negligible compared to that of the objective function, then

83

ideal performance is also attainable. Given the strict requirements for ideal performance,

utopian performance is clearly challenging to obtain, even if D only contains one

objective function.

 The statement that a particular algorithm is ideally suited for a test case is relative.

A hybrid’s performance is relative to its constituents, and its constituent’s performance is

relative to all other optimization algorithms. Since only some optimization algorithms

were examined for this thesis, there is epistemic uncertainty in the evaluation of a hybrid

using test cases. Consider a hybrid that replaced its first constituent algorithm C1 with a

new algorithm C3. It is then possible that objective function topologies in A could move

to E, and the hybrid’s performance would appear to change relative to C1.

Figure 41 below, shows the percentage of problems for which the AUTO2 hybrid

and its constituents are ideally suited in terms of performance. Based on this, one can say

that the AUTO2 hybrid correctly selects among constituents in 38.46% of the test cases.

Figure 41: Relative Performance of Auto2 vs. its Constituents

However, it is important to analyze the quality of the Auto hybrid’s search logic

independent of its performance. Therefore, Table 12 below shows the probability that the

84

hybrid will select the most compatible constituent algorithm in the test cases for which it

is not ideally suited (i.e. the remaining 61.54% of cases in which it is not the fastest). In

Table 12, the hybrid is assumed to have selected the correct constituent algorithm (i.e. its

search logic is valid) if it selects the algorithm identified in Figure 41 as being ideally

suited for that given test case.

Table 12: Probability of Correct Constituent Selection

Correct Constituent
Mean Probability of

Selection
Standard Deviation

BST-SPC 90.28% 2.96%
DN3 1.74% 0.37%
PSO 1.49% 1.03%
PRD 1.96% 1.04%
MQP 2.79% 1.08%
CKO 2.60% 1.78%

Overall, there is a 79.86% chance that the hybrid will select the correct constituent

algorithm. However, there is a strong selection preference for BST-SPC, even in

problems where other constituent algorithms are the correct choice. Although this is

likely due to AUTO2 passing the search vector to BST-SPC for use as its global best, it

also suggests one or both of the following:

1. Search vectors alone do not provide enough information to characterize the

effective topology.

2. The aggressive search strategy employed by this hybrid favors local exploitation

over global exploration.

Recall that the aggressive search strategy (see Section 3.2.3.1) stipulates that a good

match between CCA and the minimum sample point implies a good match between the

constituent algorithm and the effective topology. This is reasonable for functions that

have clear global

85

trends, but can be misleading for objective functions that have large, apparently favorable

neighborhoods located far from one another within the design space.

Given the high probability of correct constituent algorithm selection and the hybrid’s

competitive performance, automatic switching between search vectors appears to be the

beginning of a good foundation for the development of a hybrid that operates on

continuous domains. Including statistical measures of the objective function’s

distribution, as well as the population’s distribution over the course of the hybrid’s

convergence, could help it detect the presence of misleading neighborhoods and other

important topology features. This information could be used to probabilistically select

sample points and constituent algorithms. Furthermore, it is possible to stop evaluating

CCAs, and simply use their proximity to the sample point as part of the selection

mechanism. This would reduce the hybrid’s computational expense and bring its

performance closer to ideal.

86

CHAPTER 5

5. OPTIMIZATION OF THE ASYNCHRONOUS PULSE UNIT

 During World War II and the Cold War, the United States built a number of

nuclear weapon research and manufacturing facilities across the country. These facilities

produced massive amounts of high-level waste (HLW), which were stored in large single

and double-shelled tanks. One such site, called the Hanford site, [51] contains:

“more than 53 million gallons of radioactive and chemically hazardous

waste in 177 underground storage tanks, 2,300 tons (2,100 metric tons) of

spent nuclear fuel, 9 tons (8 metric tons) of plutonium in various forms,

about 25 million cubic feet (750,000 cubic meters) of buried or stored

solid waste, and groundwater contaminated above drinking water

standards, spread out over about 80 square miles (208 square kilometers),

more than 1,700 waste sites, and about 500 contaminated facilities” [52].

As part of the cleanup process, some of this waste is transported through underground

pipelines that can run over 8 miles in length [53]. Sometimes these pipelines become

clogged, which leads to costly delays in waste removal [54] as well as environmental

concerns.

 Since 2007, the Applied Research Center (ARC) at Florida International

University (FIU) has been testing and evaluating the efficacy of several pipeline-

unplugging technologies including an erosive-wave-action technology by NuVision

Engineering, and sonic resonance system by AIMM Technologies [55]. Additionally,

FIU has proposed and developed two technologies: a pneumatic crawler [56], and a

pressure-pulse system called the Asynchronous Pulse Unit (APU) [57].

87

In order to test the APU, the researchers at ARC have constructed a number of

small-scale pipelines, and clogged them using non-radioactive simulant blockages made

from a variety of materials. These experiments are time-consuming to set up, and limited

in the data that can be extrapolated from them. Therefore, ARC has chosen to supplement

these experiments with numerical simulations using software developed in-house [53] as

well as commercially available computational fluid dynamics (CFD) software [58].

Although efforts to simulate the APU using the commercial program ANSYS Fluent at

ARC are ongoing, they are beyond the scope of this thesis.

This chapter briefly reviews one pipeline simulation program developed at ARC,

as well as a similar program presented in [59]. It then presents a new pipeline analysis

program developed for this thesis. The software is verified, and validated. The operation

of the APU is then cast as an optimization problem. Finally, the new software is coupled

to the hybrid optimization algorithm presented in Chapter 3, and the optimization

problem is solved.

5.1. Pipeline Simulation Software

5.1.1. Existing Codes

In 2012, researchers at ARC modified the Method of Characteristics (MOC)

described in [60] to serve as a simplified computer model of the experimental set up. This

method reduces the governing partial differential equations to a set of ordinary

differential equations, whose solution can then be approximated. The interested reader is

referred to [53] and [60] for a complete discussion. The so-called “Modified Method of

Characteristics” (MMOC) is used in [53] to characterize pipelines, model their transient

behavior, and optimize the operation of the piston pumps acting on the pipeline. Going

88

forward, this code will be referred to as “Wood’s code,” after its author. It will be used to

verify the results of the code developed for this thesis.

Recently, Dr. Mambretti of the State University of Campinas in Brazil published a

textbook on the topic of water hammer simulations [59]. The computer codes provided

with this textbook will also be used to verify the code developed for this thesis. Going

forward, this will be referred to as the “WHS code,” which stands for “Water Hammer

Simulation” after the title of the book.

5.1.2. Updated Method of Characteristics

An MOC code based on the updated version of Wylie’s textbook [1] was written

for this thesis. The new textbook contains several changes to the numerical procedure in

[53]. The most notable changes are:

 The use of a staggered grid: nodes are now evaluated every other time step,

beginning with odd numbered nodes during the first time step. This requires that

each pipeline have an even number of “reaches” (mesh elements).

 The final forms of the equations for various pipeline elements have changed.

Furthermore, the code developed for this thesis differs from the code in [53] in a number

of ways:

 It does not use interpolations in the numerical solution.

 It automatically adjusts the time step such that the Courant Condition is always

satisfied.

 It is capable of modeling tee fittings, with and without air.

 It does not utilize geometric friction coefficients.

89

 New boundary conditions are proposed (see Section 5.1.2.5). Furthermore, it can

utilize either mass-flow or pressure boundary conditions.

Going forward, the MOC code developed for this thesis will be referred to as “the MOC

code.” The derivations of various equations used in the MOC code are presented in the

subsections that follow.

5.1.2.1. Material Properties

The pipeline is divided into an even number of pipe sections of length dx.

Although the pressurization of the pipeline does cause the pipes to expand/contract

radially, a quick calculation of the hoop stress in the pipeline shows that the deformation

of the pipe wall is negligible. The hoop stress, σθ, for a thin-walled cylinder is given by

the equation in [61],

e

rP
 (5.1)

where P is the internal pressure, r is the pipe radius, and e is the pipe wall thickness.

Using Hook’s Law, the hoop strain, εθ, for a pipe (open-ended cylinder) is,

eE

rP
 (5.2)

where E is the Young’s Modulus of the pipe. Given that E = 29,002,666 psi [62], the

internal radius is 1.534 inches (ANSI Sch. 40), the pipe wall thickness is .216 inches

(ANSI Sch. 40), and the maximum allowed internal pressure is 300psi, the maximum

hoop strain is 7.35x10-5. The maximum change in internal diameter is 7.17x10-5 inches.

Therefore, the pipe cross-sectional area is assumed constant throughout the simulation.

Pipeline elasticity and the manner in which the pipeline is supported have a

significant impact on the wave speed of a pressure transient. This effect is captured in the

90

modified wave speed equation [1],

  eDEKc

K
a

11


 (5.3)

where a is the wave speed, ρ is the fluid density, K is the bulk modulus of the fluid, D is

the pipeline inner diameter, and c1 is a scalar that accounts for the effect of the pipeline’s

anchoring. For a pipeline anchored throughout against longitudinal movement [1],

    
eD

D

D

e
c





2

1

1
1

2  (5.4)

where μ is the Poisson’s Ratio for the black-iron pipe (here assumed to be 0.31).

5.1.2.2. Straight Pipe

Among the equations in [1] that are different than those in [60] are the equations

for a straight section of pipe. The derivation below fills in steps left out from [1]. The

pipeline characteristic impedance, B, is given as,

gA

a
B  (5.5)

where A is the pipe’s cross-sectional area, and g is the acceleration due to gravity (here,

32.2 ft/s2). The pipeline characteristic resistance, R, is given as,

 22gDA

fdx
R (5.6)

The C+ and C- characteristic equations are,

ippi QBCH  (5.7a)

 immi QBCH  (5.7b)

where,

91

 1 ip QRBB (5.8a)

11   iip BQHC (5.8b)

 1 im QRBB (5.8c)

 11   iim BQHC (5.8d)

In the above equations, H represents the pressure head, Q represents the volumetric flow

rate, and the subscripts i, i-1, and i+1 refer to the given pipe segment, the upstream pipe

segment, and the downstream pipe segment respectively.

Subtracting equation 5.7a from 5.7b yields,

   ipmpm QBBCC 0 (5.9a)

Thus the flow rate can be solved for, resulting in,

mp

mp
i BB

CC
Q




 (5.9b)

Adding equation 5.7a and 5.7b yields,

   ipmmpi QBBCCH 2 (5.10a)

Substituting in equation 5.9b yields,

  
mp

mp
pmmpi BB

CC
BBCCH




2 (5.10b)

which simplifies to,

mp

pmmp
i BB

BCBC
H




 (5.10c)

It is clear from the above equations that flows and pressures in straight pipe sections

depend only on the flow rates of adjacent sections from the previous time step.

92

5.1.2.3. Flooded Tee

The derivation of the equations for a flooded

tee, based on the governing equations in [1] is now

presented. For the sake of simplicity, flooded tees

and tees with air bubbles were assumed to be

located at the midpoint of the pipe element whose length they fell within. Therefore, the

pipeline characteristic resistance was adjusted to,

 RRhalf 2

1
 (5.11)

The C+ and C- equations remain the same. Here, the subscripts are changed to up

(upstream) and down (downstream) for simplicity.

upoupop BQHC ,,  (5.12a)

downodownom BQHC ,,  (5.12b)

 upohalfp QRBB , (5.12c)

 downohalfm QRBB , (5.12d)

When under H or Q, subscript o indicates the value at the beginning of the time step,

while p indicates the value at the end of the time step. The upstream flow is split between

the tee and the downstream section of pipe. This separation is captured in the following

junction equation,

downpTpupp QQQ ,,,  (5.13)

where the subscript T refers to the tee. The tee volume expands as given by,

Figure 42: Flooded Tee [1]

93

  dtQQV TpTo ,,  (5.14)

where ∆V is the change in volume, and dt is the change in time (size of time step).

Per [1] the tee is modeled as a lumped capacitor, meaning that friction and inertia

effects can be neglected, and elastic effects dominate. Therefore, the liquid and tee wall

elasticity are combined, and the change in pressure within the tee is given by,

  TpTo
T

T
ToTp QQ

gV

dtK
HH ,,,, 


 (5.15)

where VT is the volume of the tee. The bulk modulus of the tee, KT, is given by,

   eDEKc

K
K

w

w
T

11
 (5.16)

where Kw is the bulk modulus of the water in the tee. The pressure in the tee is assumed

equal to that pipe section it is connected to, therefore,

pdownpTpupp HHHH  ,,,
 (5.17)

This results in a system of four equations and four unknowns. The pressure head and

flows at the end of the time step are given by,

 






















dtK

gV

BB
QH

dtK

gV

B

C

B

C
H

T

T

mp
Too

T

T

m

m

p

p
p

 11
, (5.18)

p

uppp
upp B

HC
Q ,

,


 (5.19)

m

downpm
downp B

HC
Q ,

,


 (5.20)

   ToToTp
T

T
Tp QHH

dtK

gV
Q ,,,, 


 (5.21)

94

The volume and tee compressibility are updated each iteration. The compressibility of the

water in the tee is varied as a function of pressure (temperature is assumed constant)

based on the empirical relation given in [63],

  
 22

21

2
2

0

PAPABV

PABV
K

Pw



 (5.22)

where B = 21504.59, A1 = 3.314, A2 = -7.388E-06, P is gage pressure in bars, V0 is the

specific volume of water at atmospheric pressure, and VP is the specific volume of the

pressurized fluid. For ease of calculation, VP is assumed equal to V0, which introduces a

small error.

5.1.2.4. Tee With Air

 A tee with an air bubble (modeled as

an air chamber in [1]) utilizes the same

junction and characteristic equations.

However, the compressibility of the water in

the tee is assumed negligible compared to

that of the air bubble. Thus, the change of

pressure within the tee is modeled using the reversible polytropic relation,

 A
n

atmatm
n
pTp CVHVH , (5.23)

where the subscript atm refers to ambient conditions (here, sea level at standard

temperature). Per [1], the change in volume is now negative, rather than positive, to

reflect that the air is compressed when water enters the tee.

  dtQQV TpTo ,,  (5.24)

Substituting the above equation into the polytropic relation yields,

Figure 43: Tee with Air Bubble [1]

95

      A
n

ToTpatmTp CQQdtVzHH  ,,, (5.25)

where z represents the head of the air bubble above or below the ambient. From the

characteristic equations, the flows in the adjoining pipe sections are given by Eq. 5.19

and 5.20, as before. Using the junction equation (5.13), the flow in the tee is,

m

m

p

p
Tp

mp
Tp B

C

B

C
H

BB
Q 










 ,,

11
 (5.26)

Thus the polytropic relation (5.23) can be expressed as,

   0
11

,,, 
































 A

n

Tp
mp

To
m

m

p

p
atmTp CH

BB
dtQ

B

C

B

C
dtVzHH (5.27)

This equation must be solved iteratively for Hp,T. The method of choice in the textbook is

Newton’s Method. Therefore, the equation is recast as,

   A

n

Tp
mp

To
m

m

p

p
atmTp CH

BB
dtQ

B

C

B

C
dtVzHHF 

































 ,,,

11 (5.28)

Collecting terms,

n

Tp
mp

To
m

m

p

pn
p H

BB
dtQ

B

C

B

C
dtVV

































 ,,

11 (5.29)

Thus, the derivative can be written as,

 











mpp

An
p BBV

ndtC
V

dH

dF 11
 (5.30)

Therefore, the equation,

 0 H
dH

dF
F (5.31)

can now be solved iteratively for the pressure head of the tee. As before, the pressure

96

head is assumed the same in the tee and the pipe section it is connected to. The air

volume and z are updated each iteration.

5.1.2.5. Boundary Condition Equations

 For the experiments discussed below, there is only one applicable downstream

boundary condition, while there are two applicable upstream conditions. The downstream

condition is a wall, which mimics the behavior of a rigid plug. In this case, the flow rate

at the wall is zero and the C+ characteristic equation, Eq. 5.7a, reduces to Hp,wall = Cp. If

there is an air pocket at the wall, the reduced C+ characteristic equation is combined with

Eq. 5.23 as shown in [53] and [1].

 The first applicable inlet condition is a pressure variation at the inlet, also known

as a “reservoir at upstream end” [1]. Here, the inlet pressure is specified as a function of

time, and the pressure head is solved for using the C- characteristic Eq. 5.7b. Like many

other standard approaches, this formulation is valid for an idealized case. It assumes the

flow rate at the inlet can take on any value resulting from Eq. 5.7b. It will be shown in

Section 5.3, however, this is not the case for the experimental set up. Therefore, the

following pressure inlet boundary condition is proposed for this thesis,

 H0 = H(t) (5.32a)

 Q0 = 0 (5.32b)

where the 0 subscript represents the inlet. It is shown in Section 5.3 that this boundary

condition provides a good approximation of the flow regime in the experimental pipeline.

The second applicable inlet condition is a volume flow inlet, also known as a

velocity inlet, or “discharge at the upstream end” [1]. In this case, the flow rate is

specified as a function of time, and the pressure head is solved for using the C-

97

characteristic equation 5.7b. Since Eq. 5.7b only uses information at the inlet as well as

downstream information, it does not take the pressure of the incoming fluid into account.

The development of an improved volume-flow inlet condition is a topic of future

research. Nevertheless, a fair approximation of the experimental boundary condition is,

 H0 = H1 (5.32c)

 Qinlet = Q(t) (5.32d)

where the subscript 1 denotes the next element downstream of the inlet.

5.2. Verification

 Since the MOC code is more versatile than Wood’s code and the WHS code, the

performance of each code will first be established by comparing them to steady-state

cases whose results are easy to compute. Afterwards, the MOC code will be compared to

Wood’s code for a transient case, and as well as cases for which Wood’s code had to be

modified. In each case presented in this section, the geometric friction factor in Wood’s

code was set to zero.

5.2.1. Steady State Results

The first two cases are fully flooded pipelines. If the bulk modulus of the fluid in

the pipeline is assumed constant, which is valid for small changes, the change in pressure

due to the injection of a certain volume of fluid is given by the following equation [1],

 K
V

V
p


 (5.33)

Here the change in volume is positive because an inflow (positive flow) of fluid is equal

to a decrease in the total volume of the fluid.

98

It is a little more difficult to relate pressure changes to inflows for multiphase

flows. However, the solution is trivial for steady pressure boundary conditions,

 inlet
t

pp 


lim (5.34)

 This relation can be used for pipelines with air, as well as fully flooded pipelines.

5.2.1.1 Fully Flooded Straight Pipe

Assume a fully flooded pipeline that is 278ft long, is 3 inches in diameter.

Assume the fluid has a wave speed of 4,512.17ft/s, and the pipeline has a Darcy friction

factor of 0.021. Now apply a constant pressure head of 164.04ft of water. The response of

the pipeline according to each code is shown in Figure 44 below.

99

(a)
(b)

 (c)

(d)

Figure 44: Comparison of Steady-State Simulations with Pressure BC – Flooded Pipeline
(a) results from the MOC code with BC computed from Eq. 5.7b, (b) results from the MMOC code
with BC computed from Eq. 5.7b, (c) the set up menu for the WHS code, (d) results from the WHS

code

In this figure and those that follow, the acronym BC will be used for “boundary

conditions.” Each code used a mesh size of eight elements. The MOC and Wood’s code

clearly demonstrate a large unsteady response, centered about and converging to the

analytical solution. The WHS code, however, shows a perfectly steady response. This is

because the WHS code was set up so that a negligible amount of water was allowed to

escape through the inlet (it was impossible to set the steady flow discharge to zero).

100

(a) (b)
Figure 45: Comparison of Steady-State Simulations with Pressure BC – Flooded Pipeline

(a) results from MOC code with BC computed from Eq. 5.32, (b) results from Wood’s code with BC
computed from Eq. 5.32

Using the proposed boundary conditions in Eq. 5.32, the MOC code and Wood’s code

produced results nearly identical to those of the WHS code, as shown in Figure 45.

Table 13: Errors for Steady State Pressure BC

 Time-Averaged
Pressure (psi)

Relative Percent
Error

Analytical Result 71.173
MOC Code (Eq. 5.7b) 71.173 0%
MOC Code (Eq. 5.32) 71.173 0%
Wood’s Code (Eq. 5.7b) 71.714 0.76%
Wood’s Code (Eq. 5.32) 71.173 0%
WHS Code 71.173 0%

The one difference between results was that both codes show the pressure rising within

the first few time steps to the final solution, whereas the pressure rise in the WHS code is

instantaneous. An instantaneous rise is only valid for incompressible flow; therefore, the

MOC code and Wood’s code are consistent with the behavior of compressible flows. The

error in of the average pressure given by each code is shown in Table 13. It should be

noted that the time averaging excludes the initial transient portion of the simulation. The

apparent accuracy of Wood’s code (using Eq. 5.7b) changes depending on which time

101

step is used to begin the time averaging. As the initial time step is moved closer to

maximum time, error decreases monotonically, becoming more and more negative.

(a) (b)

(c)

Figure 46: Comparison of Steady-State Simulations with Volume Flow BC – Flooded Pipeline
(a) MOC code with BC computed from Eq. 5.7b using 8 mesh elements, (b) MOC code with BC

computed from Eq. 5.7b using 50 mesh elements, (c) Wood’s code with BC computed from Eq. 5.7b
using 8 mesh elements

This suggests that the upper peaks are being decreasing faster than the lower limits are

increasing. In other words, if left to run longer, Wood’s code would ultimately

underestimate the steady-state solution.

For the same pipeline, assume the inlet boundary condition is now a volumetric

flow condition. A volume 6.335in3 of water is added to the pipeline (total volume of

23,580.79in3) originally at atmospheric pressure, over the course of 0.63 seconds. As

102

shown in Figure 46 (a) and (b), the range of pressures calculated by the MOC code using

the textbook boundary condition formula changes very little with increased mesh size.

The average pressure, however, changes substantially (see Table 14). In addition, it

shows very little dampening of the pressure transient. Wood’s code, on the other hand,

shows relatively significant dampening, and a much higher initial peak pressure.

 No results are reported for the WHS code because it does not include a means of

specifying a volume flow inlet boundary condition. Note also that Wood’s code was

modified to use the volume flow inlet boundary condition. Figure 47 shows the results of

the MOC code with the proposed boundary condition (Eq. 5.32). Although the MOC

code consistently underestimates the steady state solution, it converges to it

monotonically with increasing mesh size. The results are very poor when the number of

mesh elements is small because the assumption given in Eq. 5.32a is inaccurate for large

sections of pipe (i.e. large mesh elements).

103

(a) (b)

(c)

Figure 47: Comparison of Steady-State Simulations with Volume Flow BC, MOC – Flooded
Pipeline

(a) BC computed from Eq. 5.32 using 8 mesh elements, (b) BC computed from Eq. 5.32 using 50
mesh elements, (c) BC computed from Eq. 5.32 using 500 mesh elements

Assuming an equivalent bulk modulus (including the effect of the pipe walls)

equal to 271,331.3psi, the errors of the simulations in Figure 46 and Figure 47 are,

104

Table 14: Errors for Steady State Volume Flow BC

 Time-Averaged
Pressure (psi)

Relative Percent
Error

Analytical Result 73.681
MOC Code Fig. Figure 46 (a) 59.071 -19.83%
MOC Code Fig. Figure 46 (b) 70.698 -4.05%
Wood’s Code Fig. Figure 46 (c) 79.808 8.32%
MOC Code Fig. Figure 47 (a) 49.242 -33.17%
MOC Code Fig. Figure 47 (b) 67.950 -7.78%
MOC Code Fig. Figure 47 (c) 72.929 -1.02%

Therefore, the MOC has been verified for a straight pipeline.

5.2.1.2. Fully Flooded Pipeline with Tees

Flooded tees behave in a manner analogous to capacitors in a circuit. As the

pressure around it increases, the pressure in the tee rises effectively storing the excess

energy. Once the pressure in the connecting pipeline decreases, the tee releases energy

into the adjacent fluid causing its pressure to rise again. With regard to steady-state

solutions, however, the only difference between a straight pipe and a pipe with tees is the

time required for the transient to vanish. Since there is no way to calculate this using

Wood’s code or the WHS code, the results from the MOC code will be compared against

the results from Eq. 5.33 and 5.34.

(a)

(b)
Figure 48: MOC code with BC computed from Eq. 5.32 – Flooded Pipeline w/ Tees

(a) Pressure BC, (b) Volume Flow BC, mesh of 50 elements

105

Assume a pipeline with a total volume of 7952.156in3 (including six tees with a total

volume of 277.8221in3). A constant inlet pressure head of 50ft of water results in a

theoretical final pressure of 21.694psi. The MOC code yields a final pressure of

21.694psi (see Figure 48). The addition of 2in3 of water to the pipeline results in a

theoretical final pressure of 54.189psi. The MOC code yields a final pressure of

45.818psi (see Figure 48). Although the relative error (-15.45%) is higher than its

straight-pipe counterpart, the general behavior is correct and the under-predicted result is

consistent with the behavior observed for straight pipelines. Thus, the code is considered

verified for a fully flooded pipeline with tee connections.

5.2.1.3. Pipeline with Air

Assume the same pipeline from Section 5.2.1.1, with an air bubble of volume

1,159.45in3 located at the downstream end of the pipeline. As before, apply a constant

pressure head of 164.04ft of water and assume isentropic compression.

(a)

(b)
Figure 49: Comparison of Steady-State Simulations with Pressure BC – Pipeline with Air

(a) MOC code with BC computed from Eq. 5.7b using 8 mesh elements, (b) Wood’s code with BC
computed from Eq. 5.7b using 8 mesh elements

No results are reported for the WHS code because it does not provide for a downstream

106

air chamber condition. Wood’s code predicts a much higher pressure rise than the MOC

code. For isothermal compression, Wood’s code predicts a peak pressure over 600psi

while the MOC code predicts a rise just over 300psi. Nevertheless, both codes clearly

converge to the inlet pressure as expected. The oscillations are due to the variation of the

inlet flow rate.

(a)

(b)
Figure 50: Comparison of Steady-State Simulations with Volume Flow BC – Pipeline with Air

(a) MOC code with BC computed from Eq. 5.7b using 8 mesh elements, (b) Wood’s code with BC
computed from Eq. 5.7b using 8 mesh elements

 By applying the proposed pressure boundary conditions, however, the MOC code

demonstrates the nonlinear pressure rise expected of steady compression, and converges

to the analytical result (Figure 50). Wood’s code does not show the same trend, possibly

due to the fact that it does not update the air bubble head, z, each iteration (see Eq. 5.25).

107

(a)

(b)
Figure 51: Comparison of Steady-State Simulations with Volume Flow BC – Pipeline with Air

(a) MOC code with BC computed from Eq. 5.7b using 8 mesh elements, (b) Wood’s code with BC
computed from Eq. 5.7b using 8 mesh elements

 When the same case is executed with the volume flow boundary condition from

Eq. 5.7b, both the MOC and Wood’s code produce very noisy responses of roughly the

same magnitude.

108

Wood’s code yields a pressure at the plug

that oscillates about 0.108psi, while the

MOC code yields a fairly steady plug

pressure of 0.403psi. After applying the

proposed boundary condition (Eq. 5.32)

to the MOC code the plug pressure holds

steady at 0.370psi as shown in Figure 52.

Furthermore, the pressure oscillations

near the inlet dampen much faster. Given the general behavior of the MOC code, there is

ample evidence to conclude the MOC code has been verified for single-phase flows and

flows with air pockets.

5.2.2. Transient State Results

Although no verified transient solution has been provided for the MOC code, or

Wood’s code, the two codes will be compared using the 285ft case presented Section

5.5.1 of [53].

5.2.2.1. Pipeline with Air

The MOC code and Wood’s code were run using the pressure boundary

conditions and initial conditions given in Wood’s code. Note that this includes using a

polytropic compression exponent of n = 1.2, as suggested in [60]. The differences

between the two codes are:

 The mesh elements in the MOC code consists of eight equidistant pipe segments,

whereas the mesh elements in Wood’s code have lengths matching the

experimental set up described in Section 5.5.1 of [53].

Figure 52: Steady-State MOC Simulation with
Volume Flow BC – Pipeline with Air

BC from Eq. 5.32b using 8 mesh elements

109

 The time step size in the MOC code is 0.00123s. The time step size in Wood’s

code is 0.1s.

(a)

(b)
Figure 53: Comparison of Transient Simulation with Pressure BC – Pipeline with Air

(a) MOC code with BC computed from Eq. 5.7b using 8 mesh elements, (b) Wood’s code with BC
computed from Eq. 5.7b using 8 mesh elements

As before, Wood’s code predicts a pressure rise significantly higher than the MOC code.

Although the pipeline in the MOC code appears to be much more responsive (contains

many more pressure waves) than Wood’s code, it also contains the main features

predicted by Wood’s code.

5.3. Validation

 Before proceeding to show the simulation results, it is important to review the

specifics of the experimental set up in order to justify the use of the new boundary

conditions given in Section 5.1.2.5.

It is impossible to replicate the pipeline layout of a DOE site because the exact

layout of pipelines and the chemical composition of plugs is not known [64]. Therefore,

researchers at ARC have constructed several pipelines of varying lengths in order to

study the performance of pipeline unplugging technologies under different conditions.

One such pipeline was a black iron pipeline 72ft in length (Figure 54, below).

110

Figure 54: Experimental Pipeline Simplified Diagram (Not to Scale)

The pipeline consists of four, 3in diameter black iron pipes and one, 3in diameter black

iron bend connected by six tee fittings. All connections were threaded. These tee fittings

are each equipped with a pressure transducer and a pressure release valve (Figure 55).

(a)

(b)
Figure 55: Photos of Tee Fittings

(a) Fully Equipped Tee Fitting, (b) Labeled Photo of Bend and Tee Fittings

The tee fitting at the inlet is connected to a piston pump through a 1.25” pipe via two

reducers, as shown in Figure 56 below.

PPP P
P

P

Plug

3.781”

256” 256.75” 256.5”

16” 1
1
.1
5
6
”

6
5
.2
5
”

4.5” Bend
Tee Fitting

Inlet

111

Figure 56: Photo of "Inlet" Tee Fitting and Piston Pump

Although tests in 2012 incorporated the use of a solid aluminum plug and a potassium-

magnesium-sulfate (K-mag) plug [65], the experimental results will focus on the behavior

of the fluid in the pipeline and disregard any solid-fluid interaction. Therefore, the “plug”

at the end of the pipeline is small extension terminated with a pressure release valve as

shown in Figure 57 below.

Figure 57: Photo of “Plug”

Thus, it is clear that the physical control volume (the geometric shape of the fluid

volume) begins at the face of the piston cylinder and terminates at the closed pressure

release valve. More importantly, the water in the physical experiment is not free to flow.

112

Rather, it is merely compressed and expanded by the piston. Therefore, the physics of

this experimental set up resemble the dynamics of a pressure vessel with a moving

boundary much more than that of a large network of pipes with freely flowing fluid.

 The computational domain excludes the volume of fluid just before the “inlet tee”

and just after the last tee before the plug. That is, the computational domain (in the case

of this pipeline) includes roughly 99.754% of the volume of the physical domain. Typical

boundary conditions for a pipeline assume that flows entering the pipeline are fully

developed. Even if the flows are not fully developed, the boundary conditions in [60] and

[1] clearly assume that if one value (inlet pressure or velocity) is specified, the other is

free to take on any value that results from the computation (e.g. the upstream reservoir

can absorb any flow leaving the pipeline). Given the proximity of the computational inlet

to the piston head, it is impossible for the flow rate to assume an arbitrary value when

pressure is specified. When air is present and the wave speed is reduced, this proximity

also means that the unsteady changes in density and pressure occurring at the piston face

cannot be neglected. Furthermore, when the speed of sound is high and the pipeline is

short (as is the case with the fully flooded experimental pipeline) the pressure and density

of the fluid upstream of the inlet cannot be assumed independent of the downstream flow

field. Therefore, typical boundary conditions such as those in [1] are inappropriate for

this experimental set up. Instead, new boundary conditions that mimic the physics of a

pressure vessel must be developed. Although that research is outside the scope of this

thesis, it will be shown in Section 5.3.2 that under the right conditions, the simplified

boundary conditions proposed in Section 5.1.2.5 approximate the behavior of the physical

pipeline with sufficient accuracy.

113

5.3.1. Experimental Set Up and Boundary Conditions

 The data used in the following section for validation is based on a pipeline similar

to that of the previous section. In this case, the pipeline is 94ft long. The specified

volume flow, Q(t), will be the time derivative of two third-order polynomials fitted

through the measured piston displacement. The pressure head, H(t), will be created using

a higher-order polynomial fitted through pressure measurements taken by the “inlet”

pressure transducer. The pressure transducers were numbered based on their order

downstream of the piston, therefore, the inlet sensor is “P1.” In these experiments, air

was only added to the fourth tee, therefore, the pressure of the air was measured by

sensor “P4.”

 The system described above contains several features that are not modeled by the

MOC code:

 Air/water leaks: These can be safely neglected.

 Errors in the measurement of the air volume in the pipeline: They are assumed

below the tolerance specified by ARC.

 Piston/Pipeline Vibrations

 Unsmooth piston movement: While establishing an experimental control case, it

was observed that the piston velocity was not smooth due to an interaction

between the control unit’s signal and the piston. This is assumed negligible.

 Heat Transfer: In previous experiments, the temperature variation measured in the

pipeline was less than 1°C and located close to the piston, therefore, the pipeline

can be assumed isothermal.

114

 Pipeline Assembly: The pipeline has many small components that connect pipes,

bends, and sensors together. Each component contains a contact surface that, if

not installed exactly, can create a small gap in the pipeline. This gap will be filled

with water or air when the pipeline is flooded and create reflection waves when

the water is pressurized. Since the pipeline is assembled by hand, and the

components themselves have imperfections, this cannot be avoided.

 Behavior of Threaded Joints: It has been observed that threaded joints do not

behave like rigid connections [62]. If the pipeline deflection is large enough, this

behavior can have a significant impact on the accuracy of the model.

Nevertheless, this behavior is neglected in this thesis.

5.3.2. Simulation Results

In the case of a fully flooded pipeline the proposed volume boundary condition

predicts a peak at the correct time, but underestimates the peak pressure (Figure 58).

(a)

(b)
Figure 58: Validation of MOC code – Volume Flow BC – Fully Flooded Pipeline, 500 mesh elements

The underestimation of the pipeline transient (even with a larger mesh) is consistent with

the behavior observed during verification.

115

(a)

(b)
Figure 59: Validation of MOC code – Pressure BC – Fully Flooded Pipeline, 50 mesh elements

The proposed pressure boundary condition is much more accurate than the volume flow

boundary condition (Figure 59).

 For a pipeline with 0.327in3 of air, a piston “half-stroke,” the volume flow

boundary condition overestimates the peak pressure (Figure 60). Despite this, the

pressure wave noticeably smoothes out as it travels along the pipeline and forms a clear

peak which is consistent with the experimental profile.

(a)

(b)
Figure 60: Validation of MOC code – Volume Flow BC – Half Stoke of Air, 50 mesh elements

The pressure boundary condition performs roughly the same in the presence of small

amounts of air. It should be noted that two 6th order polynomials were used to fit the P1

116

profile (polynomials up to 25th order could not accurately fit the data).

(a)

(b)
Figure 61: Validation of MOC code – Pressure BC – Half Stoke of Air, 50 mesh elements

As shown in Figure 61, the pressure peak narrows and rises in a manner consistent with

the empirical data, however, does not coincide perfectly with the timing of the pulse. This

is partly due to the inaccuracy of the polynomial used to fit the boundary condition.

 For a pipeline with 0.654in3 of air (a piston “full-stroke”), the volume flow

boundary condition is very accurate at P4 (Figure 62). The average pressure also follows

the experimental measurements closely at P1.

(a)

(b)
Figure 62: Validation of MOC code – Volume Flow BC – Full Stoke of Air, 50 mesh elements

The pressure boundary condition, here poorly fit due to the large number of fluctuations

in the P1 data, shows a dampening, rather than increase, of the pressure peak at P4.

117

(a)

(b)
Figure 63: Validation of MOC code – Pressure BC – Full Stoke of Air, 50 mesh elements

Despite the inaccuracies presented above, the pressure boundary condition is clearly a

good approximation of the experimental data when the pipeline contains little or no air.

This is probably because, at high wave speeds, a relatively small addition of water (i.e.

small volume flow rate) produces large pressure fluctuations. Since the experimental flow

rates are on the order of 10-3 ft3/s, the assumption of a zero flow rate at the inlet is valid.

Furthermore, the flow rate boundary condition exhibits extraordinary success at

modeling the pressure of the tee containing the air pocket. This suggests that the

proposed volume flow boundary condition is most appropriate for large volumes of air.

Furthermore, it suggests that the accompanying pressure boundary condition (Eq. 5.32c)

becomes more accurate as the quantity of air increases. This is because the air dampens

out the pressure waves in the system reducing the difference in pressure between pipe

segments.

 With these observations, it is possible to conclude that the MOC code developed

for this thesis, combined with the proposed boundary conditions, is valid for this

experimental set up.

118

5.4. Evaluating and Optimizing the APU

In light of the coupling between the piston pump’s movement, and the behavior of

the pipeline, it is clear that the evaluation of a pump’s performance is specific to the

pump and the pipeline. In addition to this, a plugged pipeline has the added complexity of

the solid-fluid interaction between the plug, the pipe walls, and the surrounding fluid. For

short pipelines with large wave speeds in which the flow cannot be reversed (i.e.

pipelines that resemble pressure vessels), the specification of an arbitrary pressure profile

at the inlet is not enough to properly evaluate the pipeline’s performance. In this case,

there is no guarantee than a given piston pump will have the ability to reproduce a given

pressure profile. Therefore, the evaluation of a pipeline will require some

experimentation to determine the maximum and minimum pressures achievable with a

given piston pump, and the frequencies at which those pressures can be generated. Given

the bounds of a pump’s performance, however, an optimization algorithm can be used to

determine the optimal performance of the pump.

During earlier experiments, it was determined that if the pipeline conditions are

right and the timing of the pulses is right, pressure waves reaching the blockage can cause

a buildup of pressure at the surface of the blockage that will ultimately dislodge the plug

[57]. To avoid damaging the pipeline, the DOE designated safety limit for pipeline

pressure is 300 psi [57]. Furthermore, to avoid cavitation the pressure in the pipeline must

remain above -14.447 psi [66]. With this information, it is now possible to formulate the

APU operation process as an optimization process.

5.4.1. Optimization Problem Set Up

The goal of the APU unplugging process is to maximize the difference in

119

pressures at each face of the plug over the period (t_max) of the operation of the APU.

Therefore, the objective function can be written as:

 max_)(
max_

0

ttPU
t

t



 (5.35)

where ∆P represents the difference in pressure across the plug. The objective function is

negative because the hybrid optimization algorithm is designed to locate the global

minimum.

 The pressure at one surface of the plug is a function of the frequency and peak

pressures produced by the piston. Assuming a sequence of 5 consecutive half-pulses at

the same frequency, the design vector representing the piston’s pulse schedule can be

written as:

 2110987654321 ,,,,,,,,,,, ffPPPPPPPPPPx 


 (5.36)

Where Pi is the amplitude of the pressure of the ith pulse, f1 and f2 are the frequency of the

first and second five pulses, respectively. The first five amplitudes correspond to the

piston acting upstream of the plug; while the second set of five correspond to a second

piston acting downstream of the plug. Here, a “half-pulse” means the pressure generated

during the first half of the period of a sinusoidal pulse.

Given the limitations on the pressure in the pipeline, this optimization problem

contains two constraints:

0448.14

0300



g

g
 (5.37)

For each constraint violation at any point during the simulation, anywhere in the pipeline,

a penalty of 300psi is added to the objective function value.

120

In order to better represent the physical limitations of the experimental piston

pump, the frequencies will be between .25 Hz and 2 Hz, and the peak pressures will be

between -13.5psi and 257psi. Note that the pressure peaks correspond to a reverse stroke

of 0.5in and a forward stroke of 9.5in, respectively, for a fully flooded pipeline.

Each simulation was executed for 20 seconds of physical time, and the pipeline

was assumed symmetrical. The mesh for each side of the pipeline contained 20 elements

to reduce computational cost. The pipeline was assumed straight. The hybrid was run for

50 iterations. Optimization was performed on a fully flooded pipeline as well as a

pipeline containing an air bubble on one side of the plug. Each of those two cases was

executed for synchronized-piston (f1=f2) and asynchronous-pulsing (f1≠f2) cases.

5.4.2. Optimization Results

 The fully flooded,

synchronized case resulted in the

logical (arguably trivial) result,

where the pistons apply positive

pressure on one side of the pump,

and a negative pressure on the other

side of the pump. This result is the

natural consequence of the high

wave speed present in fully flooded pipelines. More importantly, it serves as a validation

of the optimization algorithm. Despite the multi-modal nature of the objective function,

Figure 64: Optimization of Piston Operation - Fully
Flooded Pipeline

121

(the trivial result is not unique) the optimization algorithm converged to the logical

answer given the constraints applied to the pipeline, and the limitations of the piston

pump.

The second case involves a pipeline that is fully flooded on the downstream side

of the plug, but, contains an air bubble (“full-stroke” of air) on the upstream side of the

plug with synchronized pistons. This profile is very similar to the first case, except that

the upstream side of the pipeline displays the slow response time typical of air bubbles.

The solution obtained by the optimization algorithm is clearly the reasonable solution: the

maximum positive pressure is applied on the flooded side of the plug, whereas the

suction is applied on the side with the air. If the positive pressure was applied on the side

with air, the bubble would dramatically reduce the peak pressure, and since the minimum

pressure has a low magnitude compared to the maximum positive pressure, it would be

impossible to maximize the pressure across the plug in this way.

122

(a) (b)
Figure 66: Optimization of Piston Operation – Asynchronous (a) Single Phase (b) Pipeline with air on

Upstream Side of Plug

Figure 66, above, shows the results for the fully flooded and multiphase cases in

which the pistons are allowed to pulse asynchronously. Unlike the synchronized case, the

new piston operation schedule for the fully flooded case favors operating at the upper

limits of the frequency range. The downstream (negative pulse) pistons were operated at

a lower frequency of 0.2698Hz, than the upstream (positive pulse) pistons, for which the

frequency was 1.9209Hz. The asynchronous case with air arrives at nearly the same

solution (0.25Hz and 0.2698 Hz), as the synchronized case. Table 15, below, shows the

Figure 65: Optimization of Piston Operation – Pipeline
with Air on Upstream Side of Plug

123

results and average pressure across the plug for each case.

Table 15: Optimal Piston Schedules

Figure
Upstream Piston Schedule Downstream Piston Schedule Avg.

ΔP P1 P2 P3 P4 P5 f1 P6 P7 P8 P9 P10 f2
Figure

64
257 ‐13.5 ‐13.5 ‐13.5 ‐13.5 0.2698 ‐13.5 257 257 257 257 0.2698 173.69

Figure
65

257 257 257 ‐13.5 257 0.2698 ‐13.5 ‐13.5 ‐13.5 257 ‐13.5 0.2698 172.30

Figure
66(a)

‐13.5 ‐13.49 ‐13.5 ‐13.49 ‐13.49 1.9209 257 257 257 257 257 0.2698 173.61

Figure
66(b)

257 257 257 257 257 0.2698 ‐13.5 ‐13.5 ‐13.5 ‐13.5 ‐13.5 0.25 173.61

At this stage the reader is cautioned again, that the true behavior of a piston can

only be studied within the context of a coupled solver that simultaneously computes the

pressure transients as well as the solid-fluid interaction with the piston and any other

relevant physical considerations. Nevertheless, the optimization algorithm clearly

provides reasonable results and demonstrates that it is possible to get higher average

pressures across the plug by operating the pistons asynchronously, rather than

synchronously, when air is present in the pipeline.

124

CHAPTER 6

6. CONCLUSIONS

 This thesis has achieved its primary goals. First, a novel, hybrid optimization

algorithm switching logic was proposed. After being tested against other algorithms using

standard benchmarking techniques, it was found to be superior to many algorithms over a

broad set of test cases. Due to the added overhead, however, the BST-SPC algorithm was

found to be superior to the hybrid in a variety of test cases as well. Nevertheless, the

hybrid is a strong competitor outperforming OPTRAN in the majority of unconstrained

test cases, and performing competitively against other hybrid algorithms in other test

cases.

 Second, a general framework for gaging the performance of hybrid optimization

algorithms was proposed. This framework can be applied to any hybrid whose express

aim is to outperform its constituent algorithms. Within this context, the hybrid is found to

perform “typically” suggesting that its extra computational expense prevents it from

maximizing the potential given the constituent algorithms at its disposal. Therefore, in the

future it would be useful to incorporate surrogate models, or improve the search

vector/constituent selection scheme so that the overhead costs of the hybrid are reduced.

 Third, a Method of Characteristics code was developed to model the

Asynchronous Pulse Unit. Using an updated version of the text book, and including new

boundary conditions proposed for the purpose of this thesis, the code was found to

accurately model a variety of experimental flows. With this, it became possible to

connect the hybrid optimization algorithm to the MOC code so that the operation of the

125

piston pumps could be performed. Once done, it was found that higher average pressures

across the plug could be achieved by pulsing the pistons asynchronously.

 The research performed for this thesis also opened up new topics of study. For

example, the question of how to decompose an objective function’s topology into

effective topologies remains unsolved. For many problems it is clear that this

decomposition is not unique. Therefore, if it is done carelessly, it is possible that an

incorrect set of effective topologies will be selected, which will misguide the

optimization algorithm. Furthermore, the question of how to best identify the iterative

heuristic that solves a problem given this set of effective topologies remains unanswered.

It is clear from the results in this thesis that matching the fittest search vector to the

constituent algorithm centroid is a useful approach, but it is only part of the solution.

Could there be rules, or a probabilistic selection scheme that would improve the hybrid’s

robustness? What additional measurements should the selection criteria be based on (e.g.

standard deviation of the range)?

 What is clear from these questions and the effectiveness of the proposed hybrid, is

that this is a fruitful area of research with ample room for continued investigation.

Although it may not be possible to create a single algorithm that solves all problems, a

well-constructed hybrid algorithm has clear advantages over any other kind of

optimization algorithm.

126

REFERENCES

[1] B. E. Wylie and V. L. Streeter, Fluid Transients in Systems, Upper Saddle River, NJ:
Prentice-Hall, Inc., 1993.

[2] R. J. Moral, Hybrid Multi-Objective Optimization and Hybridized Self-Organizing
Respose Surface Method, Miami: ProQuest Dissertations and Theses; Florida
International University, 2008.

[3] D. Simon, "Biogeography-Based Optimization," IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION, vol. 12, no. 6, pp. 702-713, December 2008.

[4] J. Lampinen and H.-Y. Fan, "A Trigonometric Mutation Operation to Differential
Evolution," Journal of Global Optimization, pp. 105-129, 2003.

[5] X.-S. Yang, "A New Metaheuristic Bat-Inspired Algorithm," Nature Inspired
Cooperative Strategies for Optimization (NISCO 2010), vol. 284, pp. 65-74, 2010.

[6] G. Saurav, S. Das, S. Roy, S. M. Islam and P. N. Suganthan, "A Differential
Covariance Matrix Adaptation Evolutionary Algorithm for Real Parameter
Optimization," Information Sciences, vol. 182, pp. 199-219, 2011.

[7] G. N. Vanderplaats, Multidiscipline Design Optimization, Vanderplaats Research
and Development, 2007.

[8] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Chichester:
Wiley, 2009.

[9] J. B. Rosen, "The Gradient Projection Method for Nonlinear Programming, Part I –
Linear Constraints," Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 1, pp. 181-217, Mar. 1960.

[10
]

J. B. Rosen, "The Gradient Projection Method for Nonlinear Programming, Part II –
Nonlinear Constraints," Journal of the Society for Industrial and Applied
Mathematics, vol. 9, no. 4, pp. 514-532, Dec. 1961.

[11
]

A. Ahrari, M. R. Saadatmand, M. Shariat-Panahi and A. A. Atai, "On the limitations
of classical benchmark functions for evaluating robustness of evolutionary
algorithms," Applied Mathematics and Computation, no. 215, p. 3222–3229, 2010.

[12
]

K. Schittkowski and W. Hock, Test Examples for Nonlinear Programming Codes -
All Problems from the Hock-Schittkowski-Collection, Bayreuth: Springer, 1981.

127

[13
]

K. Schittkowski, More Test Examples for Nonlinear Programming Codes, Berlin:
Springer-Verlag, 1987.

[14
]

R. Fletcher and M. J. D. Powell, "A Rapidly Convergent Descent Method for
Minimization," The Computer Journal, vol. 6, no. 2, pp. 163-168, 1963.

[15
]

D. Goldfarb, "Conditioning of Quasi-Newton Methods for Function Minimization,"
Math. Comput., pp. 647-656, 1970.

[16
]

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Boston: Addison-Wesley Longman Publishing Co., 1989.

[17
]

J. Kennedy and R. Eberhart, "Particle Swarm Optimization," Neural Networks, 1995.
Proceedings., IEEE International Conference on, pp. 1942-1948, 1995.

[18
]

R. Storn and K. Price, "Differential Evolution – A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces," Journal of Global Optimization, p.
341–359, 1997.

[19
]

H.-Y. Fan, J. Lampinen and G. S. Dulikravich, "Improvements to Mutation Donor
Formulation of Differential Evolution," in EUROGEN2003 - International Congress
on Evolutionary Methods for Design, Optimization and Control with Applications to
Industrial Problems, (eds: G. Bugeda, J. A- Désidéri, J. Periaux, M. Schoenauer and
G. Winter) Barcelona, Spain, September 15-17, 2003.

[20
]

J.-R. Zhang, J. Zhang, L. Tat-Ming and M. R. Lyu, "A hybrid particle swarm
optimization–back-propagation algorithm for feedforward neural network training,"
Applied Mathematics and Computation, vol. 185, p. 1026–1037, 2007.

[21
]

W. G. MacReady and D. H. Wolpert, "No Free Lunch Theorems for Optimization,"
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, vol. 1, no. 1, pp.
67-82, April 1997.

[22
]

S. Droste, T. Jansen and I. Wegener, "Optimization with randomized search
heuristics—the (A)NFL theorem, realistic scenarios, and diffcult functions,"
Theoretical Computer Science, vol. 287, p. 131 – 144, 2002.

[23
]

X.-S. Yang, "Free Lunch or No Free Lunch: That is not Just a Question?,"
International Journal on Artificial Intelligence Tools, vol. 21, no. 3, 2012.

[24
]

D. Corne and J. Knowles, "Some Multiobjective Optimizers are Better than Others,"
in The 2003 Congress on Evolutionary Computation, Canberra, 2003.

128

[25
]

C. Igel and M. Toussaint, "On Classes of Functions for which No Free Lunch
Results Hold," Information Processing Letters, vol. 86, no. 6, pp. 317-321, 2003.

[26
]

A. Auger and O. Teytaud, "Continuous Lunches Are Free Plus the Design of
Optimal Optimization Algorithms," Algorithmica, vol. 57, p. 121–146, 2010.

[27
]

E. Talbi, "A taxonomy of hybrid metaheuristics," J. Heuristics, vol. 8, no. 5, p. 541–
564, 2002.

[28
]

G. Raidl, "A unified view on hybrid metaheuristics," in Hybrid Metaheuristics, F.
Almeida, M. B. Aguilera, C. Blum, J. M. Vega, M. P. Perez, A. Roli and M.
Sampels, Eds., Berlin, Springer, 2006, pp. 1-12.

[29
]

J. A. Vrugt and B. A. Robinson, "Improved Evolutionary Optimization from
Genetically Adaptive Multimethod Search," Proceedings of the National Academy of
Sciences (U.S.), vol. 104, no. 3, p. 708–711, 2007.

[30
]

W. Gong, Z. Cai and C. X. Ling, "DE/BBO: a hybrid differential evolution with
biogeography-based optimization for global numerical optimization," Soft
Computing, vol. 15, no. 4, pp. 645-665, 2010.

[31
]

P. Sriyanyong, "A Hybrid Particle Swarm Optimization Solution to Ramping Rate
Constrained Dynamic Economic Dispatch," Engineering and Technology, vol. 47,
2008.

[32
]

M. Løvbjerg, T. K. Rasmussen and T. Krink, "Hybrid Particle Swarm Optimiser
with Breeding and Subpopulations," in Proceedings of the Genetic and Evolutionary
Computation Conference, 2001.

[33
]

G. S. Dulikravich, T. J. Martin, M. J. Colaço and E. J. Inclan, "Automatic Switching
Algorithms in Hybrid Single-Objective Optimization," FME Transactions, Vols. 41,
No. 3, University of Belgrade Faculty of Mechanical Engineering, 2013, pp. 167-
179.

[34
]

G. Dulikravich, T. Martin, D. B.H. and N. Foster, "Multidisciplinary Hybrid
Constrained GA Optimization," Invited Lecture, Chapter 12 in EUROGEN’99 -
Evolutionary Algorithms in Engineering and Computer Science: Recent Advances
and Industrial Applications, Jyvaskyla, Finland, May 30-June 3, 1999, pp. 231-260.

[35
]

G. S. Dulikravich and M. J. Colaço, "Hybrid Optimization Algorithms and Hybrid
Response Surfaces," in Advances in Evolutionary and Deterministic Methods for
Design, Optimization and Control in Engineering and Sciences, Springer
International Publishing Switzerland, 2015.

129

[36
]

R. J. Moral and G. S. Dulikravich, "Multi-Objective Hybrid Evolutionary
Optimization with Automatic Switching Among Constituent Algorithms," AIAA
Journal, vol. 46, no. 3, pp. 673-700, March 2008.

[37
]

G. S. Dulikravich, R. J. Moral and D. Sahoo, "A Multi-Objective Evolutionary
Hybrid Optimizer," in EUROGEN 2005 - Evolutionary and Deterministic Methods
for Design, Optimization and Control with Applications to Industrial and Societal
Problems, Munich, Germany, September 12-14, 2005.

[38
]

R. J. Moral, D. Sahoo and G. S. Dulikravich, "Multi-Objective Hybrid Evolutionary
Optimization With Automatic Switching," in AIAA-2006-6976, 11th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA,
September 6-8, 2006.

[39
]

M. J. Colaço, G. S. Dulikravich and T. J. Martin, "Control of Unsteady Solidification
via Optimized Magnetic Fields," Materials and Manufacturing Processes, vol. 20,
no. 3, pp. 435-458, May 2005.

[40
]

R. Mendes, J. Kennedy and J. Neves, "The Fully Informed Particle Swarm: Simpler,
Maybe Better," IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp.
204-210, 3 June 2004.

[41
]

M. T. Jensen, "Guiding Single-Objective Optimization Using Multi-objective
Methods," in Applications of Evolutionary Computing, vol. 2611, G. C. S. C. J. C. D.
G. J. G. A. H. E. J. C. M. E. M. J. M. M. Raidl, Ed., Springer Berlin Heidelberg,
2003, pp. 268-279.

[42
]

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical
Recipes in C: The Art of Scientific Computing, 2nd ed., New York: Cambridge
University Press, 1992.

[43
]

P. Bratley and B. L. Fox, "Algorithm 659 Implementing Sobol's Quasirandom
Sequence Generator," ACM Transactions on Mathematical Software, vol. 14, no. 1,
pp. 88-100, March 1988.

[44
]

J. Burkardt, "SOBOL - The Sobol Quasirandom Sequence:," 12 December 2009.
[Online]. Available: http://people.sc.fsu.edu/~jburkardt/cpp_src/sobol/sobol.html.
[Accessed 1 January 2013].

[45
]

T. Goel, R. Vaidyanathan, R. T. Haftka, W. Shyy, N. V. Queipo and K. Tucker,
"Response surface approximation of Pareto optimal front in multi-objective
optimization," Comput. Methods Appl. Mech. Engrg., vol. 196, p. 879–893, 2007.

[46 G. S. Dulikravich, "Brief comparison among different optimizers," FL, USA, 2011.

130

]

[47
]

D. R. Musser, "Measuring Computing Times and Operation Counts of Generic
Algorithms," Rensselaer Polytechnic Institute, 19 September 1998. [Online].
Available: http://www.cs.rpi.edu/~musser/gp/timing.html. [Accessed 17 June 2014].

[48
]

StackOverflow, "Timing algorithm: clock() vs time() in C++," StackOverflow, 6
July 2013. [Online]. Available:
http://stackoverflow.com/questions/12231166/timing-algorithm-clock-vs-time-in-c.
[Accessed 17 June 2014].

[49
]

StackOverflow, "Easily measure elapsed time," StackOverflow, 28 August 2013.
[Online]. Available: http://stackoverflow.com/questions/2808398/easily-measure-
elapsed-time. [Accessed 17 June 2014].

[50
]

T. J. Martin, M. Colaço and G. S. Dulikravich, "OPTRAN User Manual,"
Multidisciplinary Analysis, Inverse Design, Robust Optimization and Control
Laboratory, 1999.

[51
]

State of Oregon, "oregon.gov," 14 July 2009. [Online]. Available:
http://web.archive.org/web/20100602110418/http:/www.oregon.gov/ENERGY/NUC
SAF/HCleanup.shtml. [Accessed 1 July 2013].

[52
]

DOE Richland Operations Office, "Richland Operations Office - About Us," 1
February 2007. [Online]. Available:
http://web.archive.org/web/20080516002347/http:/www.hanford.gov/rl/?page=45&p
arent=0. [Accessed 1 June 2013].

[53
]

S. Wood, "Modeling of Pipeline Transients: Modified Method of Characteristics,"
FIU Electronic Theses and Dissertations., Miami, 2011.

[54
]

R. D. Hunt, J. S. Lindner, A. J. Mattus, J. C. Schryver and C. F. Weber, "Waste
Preparation and Transport Chemistry: Results of the FY 2002 Studies," Oak Ridge
National Laboratory, Oak Ridge, 2003.

[55
]

S. Gokaltun, D. McDaniel, D. Roelant, J. Varona, R. Patel and A. Awwad,
"Evaluation of Innovative High-Level Waste Pipeline Unplugging Technologies,"
Phoenix, 2009.

[56
]

J. A. Matos, "Development of a Body for a Pneumatic Crawler for Radioactive
Waste Pipelines," FIU Electronic Theses and Dissertations, Miami, 2013.

[57
]

S. Gokaltun, T. Pribanic, J. Varona, D. McDaniel, A. Awwad and D. Roelant,
"Evaluation and Development of Innovative High-Level Waste Pipeline Unplugging
Technologies," in WM Symposia 2010, Phoenix, 2010.

131

[58
]

T. Pribanic, S. Gokaltun, D. McDaniel, J. Varona, A. Awwad and D. Roelant,
"Summary of Conceptual Designs for Two Pipeline Unplugging Methods," Florida
International University Applied Research Center, Miami, 2009.

[59
]

S. Mambretti, Water Hammer Simulations, Billerica, MA: WIT Press, 2014.

[60
]

E. B. Wylie and V. L. Streeter, Fluid Transients, New York: McGraw-Hill, 1978.

[61
]

D. Roylance, "Pressure Vessels," Department of Materials Science and Engineering,
MIT, Massachusetts, 2001.

[62
]

Y. Ryu, A. Behrouzi, T. Melesse and V. C. Matzen, "Inelastic Behavior of Threaded
Piping Connections - Reconciliation of Experimental and Analytic Results," in
Proceedings of the ASME 2011 Pressure Vessels & Piping Division Conference,
Baltimore, 2011.

[63
]

R. A. Fine and F. J. Millero, "Compressibility of water as a function of temperature
and pressure," The Journal of Chemical Physics, vol. 59, no. 10, pp. 5529-5536,
1973.

[64
]

Committee on Long-Term Research Needs for Radioactive High-Level Waste at
Department of Energy Sites, Board on Radioactive Waste Management, National
Research Council, Research Needs for High-Level Waste Stored in Tanks and Bins
at U.S. Department of Energy Sites: Environmental Management Science Program,
Washington, D.C.: National Academy Press, 2001.

[65
]

T. Pribanic, A. Awwad, J. Crespo, D. McDaniel, J. Varona, S. Gokaltun and D.
Roelant, "Design Improvements and Analysis of Innovative High-Level Waste
Pipeline Unplugging Technologies," Phoenix, 2012.

[66
]

A. Wexler, "Journal of Research of the National Bureau of Standards - A. Physics
and Chemistry," vol. 80A, no. 5,6, 1976.

[67
]

E. J. Inclan, G. S. Dulikravich and X.-S. Yang, "Modern Optimization Algorithms
and Particle Swarm Variations," in 4th Symposium on Inverse Problems, Design and
Optimization-IPDO2013, (eds.: Fudym, O., Battaglia, J.L.) Albi, France, June 26-28,
2013.

[68
]

E. J. Inclan and G. S. Dulikravich, "Effective Modifications to Differential Evolution
Optimization Algorithm," in V International Conference on Computational Methods
for Coupled Problem in Science and Engineering, Santa Eulalia, Ibiza, Spain, June
17-19, 2013.

132

[69
]

J. Sun, C. H. Lai, W. Xu and Z. Chai, "A Novel and More Efficient Search Strategy
of Quantum-Behaved Particle Swarm Optimization," ICANNGA '07 Proceedings of
the 8th international conference on Adaptive and Natural Computing Algorithms, pp.
394 - 403, 2007.

[70
]

X.-S. Yang, "Firefly Algorithms for Multimodal Optimization," Stochastic
Algorithms: Foundations and Applications, SAGA 2009, vol. 5792, pp. 169-178,
2009.

[71
]

X.-S. Yang and S. Deb, "Engineering Optimisation by Cuckoo Search," Int. J.
Mathematical Modelling and Numerical Optimisation, vol. 1, no. 4, pp. 330-343,
2010.

[72
]

H. Ma, "An analysis of the equilibrium of migration models for biogeography-based
optimization," Information Sciences, p. 3444–3464, 2010.

[73
]

"Particle Swarm Optimization and Differential Evolution Algorithms: Technical
Analysis, Applications and Hybridization Perspectives," in Advances of
Computational Intelligence in Industrial Systems, vol. 116, Berlin / Heidelberg,
Springer, 2008, pp. 1-38.

[74
]

H. Iba and N. Noman, "Accelerating Differential Evolution Using an Adaptive Local
Search," IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 107-
125, 2008.

133

APPENDIX

A.1. Additional Global Optimization Algorithms

The information below was previously presented in [67] and [68]. The interested

reader is referred to those publications for more in-depth analysis.

A.1.1. Quantum-Behaved Particle Swarm (QPS)

The fundamental difference between this algorithm and PSO is simply the update

equation. QPS no longer utilizes an inertia term, and Eq. 2.4 is replaced with,

 






3

1 1ln RXCpX g
i

g
i

g
i


 (A.1)

Where ip


 is the “local attractor” defined using an equation reminiscent of Eq. 2.5,

 Gbestibesti XXp ,,)1(
   (A.2a)

21

1

RR

R





 (A.2b)

and
gC


 is the “mean best value” which is simply the arithmetic mean of the individual

best vectors for each generation. The scalars R1, R2 and R3 are random numbers ϵ [0,1],

and α is a user-defined parameter, set here to decrease linearly during each generation

from 1 to 0.5, per the authors’ recommendation in [69]. The scalars β and γ are also user-

defined scalars (here β = γ = 2). Note that the ± operation in Eq. A.1 is resolved simply

by assigning a 50% probability that the term will be either positive or negative.

A.1.2. Modified Quantum-Behaved Particle Swarm (MQP)

The modification to QPS presented here modifies the local attractor randomly

according to the scheme recommended in [69]. The rest is identical to QPS. The authors

suggest setting α to decrease linearly each generation from 1 to 0.4 [69].

134

A.1.3. Firefly Algorithm (FFA)

Under certain circumstances, FFA reduces to a special case of PSO [70]. Unlike

any other method presented here, it uses two loops over the population with one loop

nested inside the other. The attractiveness equation used in this thesis is a replica of the

equation provided in Dr. Yang’s MATLAB code, which is,

   minmin0

2

    re (A.3)

where γ is a user-defined parameter (here set to 1). The scalars β0 and βmin are also user-

defined parameters (here set to 1 and 0.2, respectively). Finally, r is the Euclidean

distance. The small random perturbation vector is generated in the MATLAB code

according to,

  



dim

1

ˆ)5.0(
i

ieLRu 
 (A.4)

where α is a user-defined parameter that decreases linearly with the generation number

from 0.25 to 0, R is a uniformly distributed random number ϵ [0,1], and L is the width of

the search domain in the iê direction. Finally, the update equation is given as,

   uXXX g
j

g
i

g
i


 11 (A.5)

The resemblance to the velocity equation of PSO is striking.

A.1.4. Bat-Inspired Algorithm (BAT)

This algorithm resembles DE in that it uses comparisons to update each new

generation of candidate solutions. Reminiscent of best/2/bin, it partially incorporates

perturbations of the best design vector into its formulation, and like sociability-only-PSO,

it searches the function space based on a multiple of the difference between the global

135

best and a particular design vector. However, each of these steps are performed

separately, and the DE-style comparison is used at the end to determine which candidate

solutions are retained and which are discarded. Similar to PSO, the algorithm has a

velocity equation is given by,

 fXXVV g
kGbest

g
ki

g
ki

g
ki  )(,,

1
,, (A.6)

where a new frequency is generated for each velocity vector component (denoted by k).

As in PSO, The bat update equation is the same as Eq. 2.4.

A.1.5. Cuckoo Search (CKO)

Another method reviewed for this thesis is CKO [71]. Like BAT, it also uses DE

style comparisons. The main drawback of this algorithm is that it requires two objective

function evaluations per generation. The first (Lévy flight) update is executed according

to the following equation,

   3,,/1

2

1
,

1
, 01.0 NXX

N

N
XX g

kGbest
g
ki

g
ki

g
ki 



















 (A.7)

where N1, N2 and N3 are normally distributed numbers centered at zero, β is a user-

defined parameter (here, β = 1.5), k is the dimension number, and σ is a constant. The

second (empty nest) population update is executed as follows,

 

 g
k

g
j

g
i

g
i

a

XXRXX

pRif







2
1

1
 (A.8)

where R1 and R2 are uniformly distributed random numbers ϵ [0,1], and pa is a user-

defined parameter (here pa = 0.25). The two population members denoted by j and k are

randomly selected from the population.

A.1.6. Biogeography-Based Optimization (BBO)

136

 BBO is modeled after the migration of species from one habitat to another [3].

Unlike the previous methods, BBO does not use an update equation, but rather, creates

new design vectors by creating permutations of existing design vectors based on their

fitness. BBO contains three user-defined parameters: µ, λ and the mutation probability.

Researchers have found that varying the emigration and immigration profiles can

improve the algorithm’s performance [72], but that is outside the scope of this thesis. The

value of µ must be nonnegative, or the algorithm may never perform emigration (the

update). The update condition is given by the following inequality,

 emigrationforkindividualselectthenRif
pop

i
i

k

i
i ,

11



  (A.9)

where R is a random number between zero and one, and k is the design vector whose µ

value makes the condition statement true.

A.1.7. Particle Swarm With Random Differences (RD)

Inspired by the concept of random walks and the modified local attractor of MQP,

this proposed modification adds versatility to PSO without dramatically changing its

basic procedure. Traditionally, each design vector in PSO is subtracted from its own

individual best vector. This method, proposed in [67], introduces a probability that a

design vector will be subtracted from an individual best other than its own based on the

value Rp, which is the “probability of random differencing,” a user-defined parameter ϵ

[0,1]. The above algorithm is roughly equivalent to rewriting Eq. 2.4 as follows,

   

jiandpopjiwhere

XXRXXRVV iGbestijbest
g

i
g

i


 

],1[,
,2,1

1


 (A.10)

137

where pop is the number of candidate design vectors in the population. The requirement

that i not equal j is not strictly enforced when the vectors are shuffled.

A.1.8. Modifications to DE

Over the years many modifications to DE have been proposed. Some of these

modifications relate to the update equation [4], while others involve merging DE with

some other technique [73] [74]. Recently, three types of modifications were proposed in

[68] that draw more performance out of DE while minimizing the changes made to the

implementation of DE.

1. Randomly Varying Parameters

Randomly varying both F and CR dramatically improves the convergence speed

and robustness of the DE methods in many test functions.

2. Special Vectors

Since DE involves the weighted average of a collection of vectors, including

special vectors in the population (such as the weighted average) after each iteration has

been shown to improve performance. An average vector, and a weighted average vector

are used for this purpose. This was the precursor to the search vector concept.

3. Sorted Comparisons

This method has been shown to greatly increase convergence speed but reduce

robustness, causing the algorithm to converge to local minima more frequently.

138

A.2. Comparison of Standard Optimization Algorithms

 Figure 67, below, compares the relative accuracy and speed of each algorithm.

Although PSO obtained the single best answer in 58.4% of the test cases, STD and DN3

outperformed all other methods in speed and accuracy in nearly half of the test cases.

Second to STD and DN3 in both speed and accuracy were PSO and MQP. These four

methods combined account for nearly 75% of the best-performing algorithms. Although

BST, TDE and QPS have accuracies above 10%, they suffer in the combined speed-

accuracy category due to their lack of speed relative to other methods. BBO rarely

outperforms any of the other algorithms. This may be due to the fact that BBO relies on

two processes in order to produce new designs:

1. Permutations: given an existing population, each new member generated by the

“migration” operation is simply a permutation of existing members.

2. Mutation / Replacement of Duplicates: the random generation of new designs.

Figure 67: Best Performance of Unmodified Optimization Algorithms

139

Each of these processes relies entirely on the quality of the RNG as well as shape of the

topology. BBO will converge to the global minimum if and only if the population already

contains components of that exact vector (neglecting the effects of mutation). Now let the

definition of convergence to the global minimum be relaxed to mean convergence to the

convex region containing the global minimum. This will enable BBO to converge to the

global minimum if the population contains components from the set of vectors that

occupy that convex region. If even one component of these vectors is missing from the

population, and if this component is never randomly generated during the optimization

process, it is impossible for BBO to converge to the global minimum. Therefore, BBO is

at a disadvantage when searching a continuous domain because it can only search using

permutations.

 On the other extreme, there is a subset of the Schittkowski & Hock test cases for

which some algorithms are perfectly suited. The test cases are given in Table 16,

Table 16: Selection of Test Cases – Exceptionally Good Algorithm Performance

TC Dim Objective Function Constraint Equation(s)

4 2 2

3
1

3

)1(
)(x

x
xU 




 n/a

45 5
120

2)(54321 xxxxx
xU 


 n/a

220 2 1)(xxU 


 0)1(2
2

1  xx

234 2)1()()(1
3

12 xxxxU 


 012
2

2
1  xx

236 2





































 2145
20

3
2119

2
2118

3
2

3
117

2
2

3
116

2
2

2
115214

4
213

3
212

2
2112

4
1102

3
192

2
18

21726
4
15

3
14

2
13121

...

......

...)1/(...

......

...

)(

xxeeb

xxbxxbxxbxxb

xxbxbxbxb

xbxxbxxbxxb

xxbxbxbxbxbxbb

xU


070021 xx

0125

2
1

2  xx

238 2

070021 xx

0125

2
1

2  xx

0)55(5)50(12  xx

140

239 2 070021 xx

242 3  


 
10

1

21.0
3

1.01.0 21)(
i

iiixix eexeexU


 n/a

331 2

1

21

2
)ln(

ln2ln
)(

x

xx
x

xU












01 21  xx

378 10  
  






























10

1

10

1

ln)(
i j

x
ii

x ji exaexU


0222 106321  xxxxx eeeee

012 7654  xxxx eeee

012 109873  xxxxx eeeee

In many cases (TC 4, 45, 220, 234, 236, 238, 239), the global minimum is located at the

boundary of the search domain. This can make minima easier to find when the design

domain is enforced by projecting the violating vector component back to the boundary.

The global minimum can be found simply by overshooting the domain’s boundaries.

141

Figure 68: Convergence Histories, Test Case 4

As shown in Figure 68-Figure 75, BBO converges very slowly. This is due, in part, to the

fact that BBO cannot overshoot a domain boundary (assuming the domain is closed and

simply connected). Therefore, it must approach the boundary at whatever speed the

population of design vectors allows.

Figure 69: Convergence Histories, Test Case 45

In several cases, such as Figure 69 above, an optimization algorithm (BAT in this case)

locates the global minimum within two iterations. It is important to note that the

convergence history plots show the error of the lowest population member each iteration,

and not the average error of the population.

142

Figure 70: Convergence Histories, Test Case 220

Cases 236, 238, and 239 share the same objective function but have different constraints

as well as different search domain sizes. These differences do not appear to alter the

performance of the optimization algorithms.

143

Figure 71: Convergence Histories, Test Case 234

144

Figure 72: Convergence Histories, Test Case 236

The wavy surface that appears in TC 236 and 239 is barely visible once the search

domain is expanded, as in TC 238. Effectively flattening the topology in this way causes

FFA to become trapped in local minima.

145

Figure 73: Convergence Histories, Test Case 238

146

Figure 74: Convergence Histories, Test Case 239

FFA also performs poorly on TC 242 and 220. Recall that although TC 220 has a linear

objective function, the application of penalties for constraint violations causes the

topology to change.

147

Figure 75: Convergence Histories, Test Case 242

This change in topology is what causes optimization algorithms to apparently become

caught in local minima, despite the smooth objective function topology. TC 331 is a

remarkable case in which BBO converges quickly to the global minima, relative to its

performance in many other test cases.

148

Figure 76: Convergence Histories, Test Case 331

149

TC 378 has a higher dimensionality than the previous cases. Here, the so called “curse of

dimensionality” is not yet observed, although it will become rapidly apparent in other test

cases.

Figure 77: Convergence Histories, Test Case 378

TC 111 is very similar to TC 378, and the optimization algorithm perform similarly well

on it.

 As one might expect, there is overlap in the performance of the various DE

optimization algorithms. In some cases, such as those shown in Table 17, the DE

optimization algorithms perform very well, showing only minor differences between

algorithms.

150

Table 17: Selection of Test Cases – Similar, Good Performance: DE Algorithms

TC Dim Objective Function Constraint Equation(s)

3 2
2

2
12

5)(10)(xxxxU  
 n/a

21 2 10001.0)(2
2

2
1  xxxU


 01010 21 xx

204 2 2nd order polynomial n/a

245 2  


 
10

1

21.0
3

1.01.0 21)(
i

iiixix eexeexU


 n/a

Note that the difference between TC 245 and TC 242 is the size of the search domain. In

TC 242, the domain is a cube with sides [0, 10]. In [13], the domain for TC 245 is (- ,),

but since this is impossible to program, the domain was set to [-300, 300]. This was the

limit set for most test cases having an infinite domain.

Figure 78: Convergence Histories - Similar, Good Performance: DE Algorithms

151

In other cases the DE optimization algorithms all perform poorly, such as in the

following table,

Table 18: Selection of Test Cases – Similar, Bad Performance: DE Algorithms

TC Dim Objective Function Constraint Equation(s)

47 5
2

54

2
43

2
32

2
21

)(...

...)()()()(

xx

xxxxxxxU






032
3

2
21  xxx

014
2
32  xxx

0151 xx

48 5 2
54

2
32

2
1)()()1()(xxxxxxU 


0555321  xxxxx

  032 543  xxx

293 50

250

1

2)(







 

i
iixxU


 n/a

The poor performance in TC 293 can be attributed to its high dimensionality. The

functions for TC 290, 291, 292, and 293 vary only in their upper limits, which are 2, 10,

30, and 50 respectively.

152

Figure 79: Convergence Histories –Curse of Dimensionality Among DE Algorithms

Therefore, despite the fact that the DE family of optimization algorithms performs well

on several low-dimension, even functions, as the number of equality constraints or

problem dimensionality increases performance can rapidly decrease.

153

 In some test cases, the donor formulation of the DE optimization algorithms

becomes important. A few examples include,

Table 19: Selection of Test Cases – Varying Performance: DE Algorithms

TC Dim Objective Function Constraint Equation(s)

79 5
4

54
4

43

2
32

2
21

2
1

)()(...

...)()()1()(

xxxx

xxxxxxU






02322
3

2
21  xxx

02224
2
32  xxx

0251 xx

241 3 Sixth order polynomial n/a

393 48 See [13]
1 Nonlinear Inequality, 2 Linear

Equality

395 50  



50

1

42)(
i

ii xxixU


 01
50

1

2  
i

ix

Figure 15, below, demonstrates the variability in performance. Not only is the donor

formulation for each DE algorithm different, but in the case of BST four vectors are used

to perturb the donor rather than two.

154

Figure 80: Convergence Histories – Varying Performance Among DE Algorithms

Therefore, while they share a common structure, each variation of DE can have markedly

different performance on a design problem. No single variation of DE is superior to the

others, or representative of the others’ behavior.

 The Particle Swarm family of optimization algorithms (PSO, QPS, and MQP)

also suffers from the curse of dimensionality, but QPS and MQP appear to perform

slightly better on TC 290-293 than the DE algorithms. As shown in Figure 16, QPS and

MQP are still able to locate the global minimum within the allotted 200 iterations on the

10-dimensional TC 291. After that, the performance gradually worsens, but is still better

than PSO and the DE optimization algorithms.

155

Figure 81: Convergence Histories – Curse of Dimensionality Among PSO Algorithms

Similar to the DE optimization algorithms, the PSO family of algorithms sometimes

performs the same, and other times it does not (see Figure 82). Each of the algorithms in

this group represents a viable alternative to DE, although PSO generally outperforms

QPS and MQP.

156

Figure 82: Convergence Histories – Varying Performance of PSO Algorithms

TC 5, 9, and 110 are given in Table 20, below. From this it is clear that PSO, QPS, and

MQP are capable of handling highly nonlinear problems, although problem

dimensionality is still an issue.

Table 20: Selection of Test Cases – Varying Performance Among DE OAs

TC Dim Objective Function Constraint Equation(s)

5 2 15.25.1)()sin()(11
2

2121  xxxxxxxU


 n/a

9 2)16/cos()12/sin()(21 xxxU 


 034 21  xx

110 10     
2.010

1

10

1

22)10ln()2ln()(







 

 i
i

i
ii xxxxU


 n/a

157

The algorithms by Dr. Yang and Dr. Simon rarely outpace the PSO family of

algorithms, although they can match their accuracy. In some cases, however, such as TC

395 below, the FFA greatly outperforms other methods.

Figure 83: Convergence Histories – Varying Performance of Yang/Simon Algorithms

The success of algorithms like FFA on high dimensional problems (using the nonlinear

population function) shows that the curse of dimensionality is the result of the

relationship between an algorithm and the objective function topology, not just the

population size. In other words, while conventional wisdom might call for increasing the

population size as dimensionality increases, it is also possible to overcome the curse of

dimensionality by modifying an algorithm to better suit a given topology, changing from

one algorithm to

158

another, or creating an algorithm capable of adapting on its own. Simply increasing the

population size in hopes of obtaining better results is a merely a brute-force approach.

A.3. Comparison of Modified Optimization Algorithms

The modifications to DE and PSO discussed in [67] and [68] greatly enhance each

algorithm’s performance. Figure 87, below, compares the relative performance of all

modified optimization algorithms, and their standard counterparts. The single greatest

improvement in performance can be seen in the difference between BST and BST-SPC,

as well as BST and BST-R to a lesser degree. The randomization of parameters

dramatically improves the performance of BST because it allows for a wider range of

perturbations to the global best vector. It also improves the performance of STD but

appears to decrease the performance of DN3 as well as TDE.

This apparent decrease, however, is misleading. In fact, it is more appropriate to say that

randomizing the parameters of DN3 as done here shifts the class of functions for which it

Figure 84: Best Performance of Unmodified vs Modified Optimization Algorithms

159

is well suited from one type to another. Consider, for example, the 50-dimensional

problems, TC 293 and 395, as well as the 100-dimensional problems, TC 299, and 302.

Figure 85: Convergence Histories – Modified DN3

In each of the above cases, the algorithm’s accuracy (and speed) is improved by several

orders of magnitude. Therefore, there is a tradeoff between improvement in some

problems and worsening in others. It should be noted that modified DN3’s performance

also improves in the 100-dimensional TC 305, but by less than one order of magnitude.

Therefore, randomization may not lead to performance improvements in all higher

dimension problems.

160

Table 21: Selection of Test Cases – Modifications to DN3

TC Dim Objective Function Constraint Equation(s)

299 100     



 

99

1

222
1

4 110010)(
i

iii xxxxU


 n/a

302 100  



100

2
1

2
1

2
1 222)(

i
iii xxxxxxU


 n/a

305 100 





















100

1

2

2100

1

4100

1

5.05.0)(
i

i
i

i
i

i xixixxU


 n/a

Similar to DN3, the addition of random differencing (PRD) to PSO tends to improve its

performance in higher dimensional problems. Although PRD decreases PSO’s

convergence speed (PSO appears to converge rapidly to local minima), it can enable PSO

to escape local minima and continue moving toward the global minimum.

Figure 86: Convergence Histories – PSO and PRD

Another notable feature of PRD, is that PRD obtains the single-worst minimum in a

161

problem far less frequently than PSO, but also obtains the single-best minimum less

frequently than PSO. PRD is very sensitive to the selection of Rp. While a linearly

decreasing Rp value was selected for this thesis, linearly increasing and constant values of

Rp have all been tested. Like randomization for DN3, each Rp value shifts the suitability

of PRD from one class of problems to another.

Figure 87: Convergence Histories – Various Improvements Due to Modifications

Some notable convergence history improvements are shown in Figure 87. As indicated

with DN3-R and PRD, modifications to these algorithms should be thought of as shifting

an algorithm from being well suited for one class of problems to another. Therefore, even

though STD and BST become more robust as a result of their improvements, these

162

improvements still come at the expense of performance in certain test cases that STD and

BST were previously well suited for. TC 282 is given in Table 22 below.

Table 22: Selected Test Case – Improvement to STD Due to Modifications

TC Dim Objective Function Constraint Equation(s)

282 10     



9

1

2
1

22
10

2
1))(10(1011)(

i
ii xxixxxU


 n/a

Direct comparisons between standard optimization algorithms and their modified

counterparts are given in Table 23 – Table 26.

Table 23: Relative Performance of
Standard and Modified STD

STD

STD-
R

STD-R,S

Accuracy 20.6% 32.1% 65.9%
Accuracy
& Speed

9.5% 26.0% 64.5%

Standard
Dev.

50.7% 38.2% 29.7%

Single
Best

Result
31.4% 41.6% 90.9%

Single
Worst
Result

64.9% 23.6% 43.6%

Table 24: Relative Performance of Standard and
Modified BST

BST BST-R

BST-
R,S

BST-SPC

Accuracy 15.9% 46.6% 24.0% 47.3%
Accuracy
& Speed

6.8% 32.4% 15.5% 45.3%

Standard
Dev.

62.5% 25.7% 16.6% 29.1%

Single
Best

Result
21.3% 62.5% 75.0% 77.7%

Single
Worst
Result

61.8% 24.0% 45.9% 15.5%

Tables Table 23 and Table 24 clearly demonstrate that the modifications significantly

improve the performance of the optimization algorithms.

Table 25: Relative Performance of Standard
and Modified DN3

DN3 DN3-R DN3-R,S

Accuracy 63.5% 18.2% 21.3%

Accuracy
& Speed

61.5% 18.2% 20.3%

Standard
Dev.

56.4% 32.8% 13.9%

Single Best
Result

50.0% 35.1% 62.5%

Single
Worst
Result

27.4% 12.2% 65.9%

Table 26: Relative Performance of
Standard and Modified TDE

 TDE TDE-R

 Accuracy 45.6% 63.9%

 Accuracy
& Speed

36.1% 63.9%

 Standard
Dev.

56.4% 53.0%

 Single Best
Result

54.4% 74.3%

 Single
Worst
Result

70.6% 51.4%

163

Although randomization improves TDE, the improvements are less than those in other

methods. The standard form of DN3 algorithm, however, is apparently more robust than

its modified form.

Table 27: Relative Performance of
PSO and PRD

PSO PRD

Accuracy 61.5% 43.6%
Accuracy &

Speed
56.4% 43.6%

Standard
Deviation

31.8% 73.3%

Single Best
Result

77.7% 36.1%

Single Worst
Result

69.9% 53.0%

The improvements to PSO are similar to those of TDE in that it does not make PSO more

robust relative to other methods (for the Rp value selected in this thesis). However, it

makes the method perform much more consistently as shown by the increased standard

deviation. Furthermore, the improvements (shift) in PRD accuracy is generally

accompanied by superior speed as evidenced by the equal Mean and M&C values.

	Florida International University
	FIU Digital Commons
	2014

	The Development of a Hybrid Optimization Algorithm for the Evaluation and Optimization of the Asynchronous Pulse Unit
	Eric Inclan
	Recommended Citation

	The Development of a Hybrid Optimization Algorithm for the Evaluation and Optimization of the Asynchronous Pulse Unit

