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ABSTRACT OF THE DISSERTATION 

OPTIMIZATION OF COOLING PROTOCOLS FOR HEARTS DESTINED FOR 

TRANSPLANTATION 

by 

Abas Abdoli 

Florida International University, 2014 

Miami, Florida 

Professor George S. Dulikravich, Major Professor 

Design and analysis of conceptually different cooling systems for the human heart 

preservation are numerically investigated. A heart cooling container with required 

connections was designed for a normal size human heart. A three-dimensional, high 

resolution human heart geometric model obtained from CT-angio data was used for 

simulations. Nine different cooling designs are introduced in this research. The first 

cooling design (Case 1) used a cooling gelatin only outside of the heart. In the second 

cooling design (Case 2), the internal parts of the heart were cooled via pumping a cooling 

liquid inside both the heart’s pulmonary and systemic circulation systems. An unsteady 

conjugate heat transfer analysis is performed to simulate the temperature field variations 

within the heart during the cooling process. Case 3 simulated the currently used cooling 

method in which the coolant is stagnant. Case 4 was a combination of Case 1 and Case 2. 

A linear thermoelasticity analysis was performed to assess the stresses applied on the 

heart during the cooling process. 

In Cases 5 through 9, the coolant solution was used for both internal and external 

cooling. For external circulation in Case 5 and Case 6, two inlets and two outlets were 
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designed on the walls of the cooling container. Case 5 used laminar flows for coolant 

circulations inside and outside of the heart. Effects of turbulent flow on cooling of the 

heart were studied in Case 6. In Case 7, an additional inlet was designed on the cooling 

container wall to create a jet impinging the hot region of the heart’s wall. Unsteady 

periodic inlet velocities were applied in Case 8 and Case 9. The average temperature of 

the heart in Case 5 was +5.0oC after 1500 s of cooling.  

Multi-objective constrained optimization was performed for Case 5. Inlet velocities 

for two internal and one external coolant circulations were the three design variables for 

optimization. Minimizing the average temperature of the heart, wall shear stress and total 

volumetric flow rates were the three objectives. The only constraint was to keep von 

Mises stress below the ultimate tensile stress of the heart’s tissue.  
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CHAPTER I  

INTRODUCTION 

 

In the first section of this chapter (section 1.1), a brief review on heart transplant 

history, its past and current challenges, is presented. Section 1.2 reviews heart cooling 

preservation methods. Then, in section 1.3, some of the experimental research on heart 

cooling preservation is presented. A brief review on different types of cooling solutions is 

introduced in section 1.4. In section 1.5, numerical studies on this field are reviewed. 

Objectives of this research and organization of the dissertation are presented in section 

1.6 and 1.7, respectively.  

 
1.1 Background 

 

The first heart transplant in the world to a human was performed by James Hardy 

on January 23, 1964, at the University of Mississippi Medical Center in Jackson [1]. The 

recipient was a 68-year-old man, but the donor was a chimpanzee. The patient died 1 

hour later of acute rejection [1]. The first human-to-human heart transplant was 

performed on December 3, 1967 by Christian Barnard at the Groote Schuur Hospital 

Cape Town, South Africa [1]. The heart of a 25-year-old woman was transplanted into a 

54-year-old man. The patient lived for only 18 days after transplantation. This was 

considered a transient success. Three days later, on December 6, 1967, Adrian 

Kantrowitz performed the first heart transplant in the United States at Maimonides 

Medical Center in Brooklyn, New York [1]. The recipient was an 18-day-old male infant 

who received the heart of a 2-day-old anencephalic male. The patient died 6½ hours after 
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surgery [1]. Soon after, heart transplantation became a very interesting subject for 

researchers, and many surgeons quickly co-opted the procedure. However, due to the 

earlier death of recipients, the number of reported heart transplants decreased from 100 in 

1968, to just 18 in 1970. The major problem was the rejection of new tissues by the 

recipient’s body.  

The developments in tissue typing and immunosuppressant drugs helped to 

increase the number of transplants and recipient’s survival rate. In mid-1970s, Jean Borel 

discovered a very promising immunosuppressant drug called cyclosporine [2].   

Most heart recipients receive the heart from deceased donors. However, there are 

cases in which patients need a heart-lung combination transplant but his/her heart may be 

in good condition and it is possible to be transplanted into yet another patient. This is 

known as a “domino” heart transplant.    

Among all organs, the heart is the most valuable and challenging organ for 

transplantation due to its vital role in blood circulation. Heart operates as a pump and 

circulates the blood in the entire body to deliver oxygen and nutrients to cells, and to 

remove metabolic by-products and toxins from cells. Thus, unlike other organs, the 

transplanted heart must function at its highest capacity right after transplantation.   

Table 1 shows the heart transplant activities for the year 2009, 2010 and 2011 in 

the United States [3] reported by the United States Organ Procurement and 

Transplantation Network (USOPTN). As this table shows, 1,931 heart transplants were 

performed in 2011. One of the important pieces of information in this table is the number 

of patients who were removed from the waiting list. Considering the removal reasons 

listed in this table, it can be observed that 441 patients died in 2011 before receiving a 
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heart transplant. This indicates that approximately 18% of patients died due to lack of 

matching hearts. 

 

Table 1.1. Heart transplant waiting list activity among adult patients in the United States 

[3]. 

Activity 2009 2010 2011 

Patients at start of year 2,409 2,668 2,867 
Patients added during year 2,890 2,916 2,783 
Patients removed during year 2,625 2,710 2,837 
Patients at end of year 2,674 2,874 2,813 
 
Removal reason: 

Deceased donor transplant
   

1,840 
   

1,965  
   

1,931 
Patient died 435.0 400.0 441.0 
Patient refused transplant 14 12 18 
Condition improved, transplant not needed 193 164 166 
Too sick to transplant 55 61 92 
Other 88 108 189 

 

Figure 1 shows the demographic distribution of the percentage of adult wait-listed 

patients in the year 2010 who received a deceased donor heart transplant within one year, 

as reported by USOPTN [3]. As this figure shows the maximum percentage which is 

shown in dark blue color was 72.7%. The light blue color ravels the minimum percentage 

which was 34.3%. In can be observed that only in a few states the maximum of adult 

wait-listed patients received a heart transplant within one year.  
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Figure 1.1. Percent of adult wait-listed patients in 2010 who received a deceased donor 

heart transplant within one year in the United States [3].  

 

The Organ Procurement and Transplantation Network (OPTN) in its policies, 

prioritizes organ allocation to the most critically ill-heart matching candidates. As part of 

this policy, OPTN defines five concentric geographical zones for the heart allocation [4, 

5]. These five zones prioritize the heart allocation as follow 

1. Zone A: Includes all transplant hospitals within 500 nautical miles of the donor 

hospital but outside of the donor hospital’s DSA1. 

2. Zone B: All transplant hospitals within 1,000 nautical miles of the donor hospital 

but outside of Zone A and the donor hospital’s DSA. 

                                                 
1 Donation Service Area (DSA): The geographic area designated by the Centers for Medicare and 

Medicaid Services (CMS) that is served by one organ procurement organization (OPO), one or 
more transplant hospitals, and one or more donor hospitals. 
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3. Zone C: All transplant hospitals within 1,500 nautical miles of the donor hospital 

but outside of Zone B and the donor hospital’s DSA. 

4. Zone D: All transplant hospitals within 2,500 nautical miles of the donor hospital 

but outside of Zone C. 

5. Zone E: All transplant hospitals more than 2,500 nautical miles from the donor 

hospital. 

The above zones were implemented to facilitate transplant coordination and to 

minimize ischemic time [6]. More information about prioritized match candidates based 

on the level of urgency for transplantation can be found in OPTN policies [4]. In most 

cases, the donor and the recipient of the compatible heart are at vastly different 

geographic locations. Therefore, the preservation of a deceased heart has gained a crucial 

role in the transplantation process. An optimal preservation protocol will enable 

transplantation despite geographical differences between the donor and the matching 

recipient.  

The main problem in the heart preservation is the relatively short time that the 

heart can survive from the moment of their harvesting to the moment of its surgical 

transplantation into the recipient’s body. Currently, the time limit for an explanted human 

heart to remain viable is only 4.5 hours when the heart is kept submerged in a saline 

solution at a temperature close to that of freezing water. As it was mentioned, in most 

cases, the donor and the recipient of the compatible heart are at vastly different 

geographic locations. This means that the current 4.5 hours limitation must cover 

transportation from the site of harvesting to the nearest airport, flight time to the airport 

nearest to the recipient’s location, and travel time from that airport to the hospital where 
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the recipient is located. In practice, this leaves at most two hours for air transportation of 

the heart, which is insufficient to cover even half of the territory of the United States. An 

optimal preservation protocol is key in extending the current preservation time, thereby 

expanding the transplant geographical zones and increasing the number of heart 

transplants to the most critically ill-heart matched recipients. 

The USOPTN’s 2011 annual report [3] reveals major causes for the death of 

patients who had received a heart transplant. Based on this report, organ failure, 

cardiovascular failure, malignancy and infection are the major known causes of death 

among adult heart transplanted recipients. A proper cooling preservation protocol will 

help to minimize or eliminate some of these causes of death such as organ infection.  

 

 
Figure 1.2. Cause of death among adult heart transplanted recipients [3]. 
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1.2 Organ Preservation Methods 

 

From the heat transfer point of view, organ preservation approaches can be 

classified into two methods: cold preservation and warm preservation. 

The underlying principle of warm (normothermic) preservation is to maintain 

cellular metabolism, to allow cell functions to continue, and to avoid ischemia. The 

challenges in warm perfusion are to provide oxygen to cells and remove waste products 

by using a good perfusate (blood or blood components), while preventing thrombus 

formation, vascular damage and infection [7]. Recently, this concept has been revisited 

with considerable success [8, 9, 10]. Normothermic preservation also has more technical 

challenges compared to the cold preservation. This method requires specialist skills and 

complex apparatus.  

Cold preservation on the contrary takes advantage of the profound effect of 

decreasing cell temperature to decrease the cell metabolic rate to avert cell death [11, 12]. 

The well-known ‘‘Q10 law’’ states that for every 10°C reduction in tissue temperature 

there is a corresponding reduction in cell metabolism equal to the constant Q10 . The law 

is written as 

 0 10

10
0

(Q )
   T Tm

m

q

q  (1.1) 

where T is temperature in degrees Celsius and qm is the cell metabolic rate. Values for Q10 

range from 2.0 to 3.0 and are cited in the physiology literature [13]. For example, 
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assuming a mid-range value, say Q10 = 2.5, it can be observed that reducing temperature 

from +37°C to +27°C reduces the metabolic rate by a factor of 2.5. Reducing temperature 

to +4°C reduces the metabolic rate by 95%. As a result of reducing the cell metabolic 

rate, oxygen and glucose consumption and carbon dioxide production are decreased as 

well [11]. Thus, the cell damage due to lack of oxygen will be decreased [12]. Cold 

preservation is also less expensive and less complicated than warm preservation. This 

method is a simple, relatively inexpensive technique that allows the convenient 

transportation of any organ.  

Cold preservation approaches can be classified into three major methods: static 

cold storage, hypothermic machine perfusion and persufflation [14]. In the static cold 

method, the organ is cooled only from outside by using a cooling solution. The static cold 

preservation is the cheapest and simplest preservation method. However, this method is 

not able to deliver nutrient and oxygen to cells. Moreover, lack of internal cooling in this 

method causes more ischemic damages to the organ. 

The hypothermic machine perfusion applies both external and internal cooling. 

For internal cooling, a cooling liquid is perfused or pumped within the organ. This 

enables the delivery of nutrients and oxygen into the core of the organ, and removes 

waste products under appropriate conditions. This method has a higher risk of damage to 

the vascular structures due to perfusion pressures compared to the static cold 

preservation. In terms of technical complexity and cost, this method is moderately 

complicated and relatively inexpensive [14, 15].   

The third method is persufflation or gaseous oxygen perfusion. In this method 

gaseous oxygen is pumped within the organ. The Persufflation method has higher 
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capacity to deliver more oxygen to cells and prevent edema within the organ compared to 

the methods explained above. But at the same time, this method causes more vascular 

damages compared to other methods. It should also be mentioned that using gaseous 

oxygen requires longer cooling time compared to the hypothermic machine perfusion. 

This is because of the smaller heat capacity of gas compared to liquid. This method is 

expected to be as complex and expensive as the hypothermic machine perfusion [14, 16].  

 

1.3 Review on Experimental Research  

 

Currently the static cold preservation is the most commonly used method for heart 

preservation. By keeping the heart submerged in a cold saline solution, it can currently be 

preserved up to 4 hours. The primary graft failure rate in this method is less than two 

percent [17].  

One of the challenges in the heart cooling preservation is the highly sensitive 

cardiac muscles [18]. Second rinsing or leucocyte depleted in-situ reperfusion can help to 

increase ischemic tolerance up to 6 hours [17] suggesting that continuous cold perfusion 

is a viable method of extending the useful life of an organ destined for transplantation. 

Jahania et al. [19] described the protective strategy and principles for using hypothermia 

in heart preservation. Collins et al. [6, 20] reported cases in which hearts were 

successfully resuscitated by hypothermic machine perfusion with full recovery of 

function. They could also resuscitate one of the two hearts which belonged to Non 

Beating Heart Donors (NBHDs).  
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Stowe et al. [21] showed that stopping tissue perfusion and cooling isolated 

guinea pig hearts to +3.4°C for 6 hours resulted in a return of left ventricular pressure of 

up to 81% of that before cooling. As a result of heart temperature reduction during 

cooling process, heart rate decreases which led to depressed mitochondrial (m) 

bioenergetics, excess reactive oxygen species (ROS) generation, and mCa2+ loading [22]. 

These are the major factors underlying ischemia and reperfusion (IR) injury. Stowe and 

his colleagues conducted several researches to address this issue [23, 24, 25, 26].   

White et al. tried to minimize myocardial injury and improve short-term post-

transplant function by using initial reperfusion with a tepid adenosine-lidocaine 

cardioplegia and continuous myocardial perfusion [27]. Many of the experimental 

research studies in this field have been focused on the cooling solution. Therefore a 

review on cooling solutions is presented separately in the following section.  

 

1.4 Review on Cooling Solutions 

 

In the late 1980s Folkert Belzer and James Southard developed the first 

thoughtfully designed solution for pancreas preservation. This solution is known as 

University of Wisconsin solution [28]. Soon after, this solution became the first 

intracellular-like medium and displaced EuroCollins solution as the preferred medium for 

cold storage of the pancreas, liver and kidney [29, 30]. The UW solution has also been 

used in preservation of the heart and other organs [31, 32].  

The UW solution is based on a typical intracellular principal with a very high 

potassium (K+) and low sodium (Na+) ion composition [12]. It contains impermeants 
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lacto bionate and raffinose to prevent cell swelling. It also includes a colloidal agent with 

the rationale, called pentastarch to prevent interstitial edema formation. Antioxidants 

such as glutathione, adenine nucleotide precursors, radical scavengers, dexametasone and 

phosphate buffer are also included in this solution [17].  

Another often used solution is Histidine-tryptophan-ketoglutarate, or Custodiol 

HTK solution. HTK is a low K+ preservation solution, which works based on the 

principle of inactivating organ function by removing extracellular sodium and calcium, 

with intensive buffering of the extracellular space by using histidine / histidine 

hydrochloride [33, 34]. HTK solution is used for in-vivo and ex-vivo perfusion in 

different organs such as pancreas, heart, liver and lung.  

In other research, both solutions have been tested and compared for different 

organs [35, 36, 37]. Reichenspurner et al. [38] compared UW versus HTK solution for 

myocardial protection in heart transplantation. They reported a satisfactory myocardial 

preservation with HTK solution as long as the ischaemic time did not exceed 4 h. Their 

results showed that UW graft protection gave excellent early functional results, even with 

ischaemic times longer than 4 h.  

Celsior Solution (CS) is another solution which has also been used for organ 

preservation. CS is a high Na+, low K+, low-viscosity extracellular solution used in heart 

cooling [17, 39]. Despite developments of different cooling solutions which are better 

than UW solution in some aspects [40], the UW solution remains as the standard solution 

for organ preservation [41]. 
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1.5 Review on Numerical Research  

 

Numerical studies in this field are very challenging due to geometric complexity 

and lack of certain experimental data.  

As it was mentioned in the previous section, one of the main objectives in the cold 

preservation is to cool organs faster in order to maximize metabolic decay of the organ 

tissue. This requires applying higher cooling rates. Another important objective is to keep 

thermal and hydraulic stresses below the maximum tolerable stresses of the organ cells. 

This will limit the maximum allowable cooling rate. For controlling cooling rate in the 

organ, knowing the temperature distribution in the entire organ is required.  

Dulikravich [42] demonstrated, in the case of two dimensions, that it is possible to 

maintain specified cooling rates at any point of the cooled object by varying container 

wall temperature distribution. Dulikravich and Hayes [43] applied boundary element 

method because of its simplicity for studying temperature field in arbitrary geometrical 

shapes. They demonstrated the accuracy of their simulation with known analytical 

solutions. Dennis and Dulikravich [44] used 3-D spectral finite elements to simulate 

unsteady temperature field and thermal stress field during freezing of an idealized canine 

kidney submerged in a gel without perfusion. They also for the first time demonstrated 

the optimized time-varying thermal boundary conditions use on the surface of a spherical 

freezing container and suggested use of optimized internal perfusion of the organ during 

the cooling process. They used sixth order Chebyshev polynomial [44] in terms of the 
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circumferential angle to represent the variable boundary temperature on the surface of the 

container. 

Dennis et al. [45] applied finite element method to study cooling rate of realistic 

3-D human head and neck. They reported that to reach the target temperature in a 

reasonable period of time, it is necessary to use a pre-cooled blood in addition to a cold 

“ski cap”, because of very low conduction heat transfer coefficient of the cranium on one 

side, and the brain structure which is fully composed of blood vessels on the other side. 

Moore et al. [11] reported different experimental methods for brain cooling such as 

infusion of ice-cold fluids into the blood. Neimark et al. [46] in their research tried to 

simulate effects of intracarotid cold saline infusion by using 1-D assumption to get the 

blood temperature mixture and 2-D assumption to get the temperature field.  

Trunk et al. [47, 48] applied an explicit finite difference method to solve 

temperature diffusion equation in order to simulate the temperature changes in the heart 

during Topical Cooling (TC). TC is a myocardial protection technique which is often 

used in cardiac surgery as an adjunct to cardioplegia. They used a 3-D heart model, 

derived from Visible Human Data set from National Library of Medicine [49], with 

spatial resolution of 1 mm. However, their thermal analysis coolant flow was not 

included.  

Sterk and Trobec [50] simulated the 3-D heart model submerged inside the water 

cooling liquid without perfusion. They used an explicit finite difference method to solve 

Navier-Stokes equations to account for thermal buoyancy flow inside the cooling liquid 

bath. They used the same 3-D heart model, derived from Visible Human Data set [41]. 
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Trayanova [51] reviewed the whole heart modeling for cardiac electrophysiology and 

electromechanics applications. 

The complex geometry of the human heart is one of the major challenges for 

numerical simulations. Researchers have developed different methods for extracting and 

meshing 3-D high resolution heart geometric models from computer tomography (CT) 

for different applications. Parssl et al. [52] generated computational meshes for cardiac 

electrophysiology problems by using their method which applies the dual mesh of an 

octree. An octree is a hierarchical data structure. Their mesh generator can be applied 

directly to segmented image data stacks.  

Carson et al. [53] developed automated meshing algorithms to generate adaptive 

anisotropic hybrid meshes for arbitrary biological geometries. By applying their meshing 

algorithms, they were able to generate efficient and accurate meshes, which can 

equilibrate the relative error over the whole mesh in fluid-structure interaction 

computations [53, 54]. 

Zhang and Bajaj [55] applied a finite element method for meshing the 3-D human 

heart modeled from MRI scan data. They extracted adaptive tetrahedral meshes from a 

volumetric gridded database of signed distance function with a resolution of 2573. In 

2006, Bajaj et al. [56] constructed patient specific heart models using high resolution 

computer tomography (CT) data. Additionally Bajaj and Goswami [57, 58] performed 

multi-component heart reconstruction, segmentation and meshing from volumetric 

imaging. They applied a distant function technique in geometry modeling to generate a 3-

D finite-element and boundary element human heart mesh model from high resolution 

CT-angio imaging data. 
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Based on the available literature, it appears that fully 3-D conjugate heat transfer 

analysis and thermal stress analysis of a heart during cooling from body temperature to 

water freezing temperature has not been performed. Also, optimization of a fully 3-D 

time-accurate cooling protocol of a heart has not been performed. 

 

1.6 Objectives of the Research 

 

The ultimate objective of this research is to extend the viability of the heart to at 

least 8 hours. This would provide up to 5.5 hours for air transport, thus enabling heart 

transplantations anywhere in the United States. As part of achieving this goal, the just 

explanted heart should be brought to a just-above tissue freezing temperature as 

uniformly and as quickly as possible. At the same time, prevent all possible damages to 

the heart tissue due to thermal and hydraulic stresses during preservation process. The 

following items will be the objectives of this numerical research: 

 Using detailed 3-D heart geometry with includes the major vessels. 

 Designing a cooling container including required inlets/outlets and connections 

for coolant circulations. 

 Performing 3-D unsteady conjugate heat transfer analyses for the heart during 

different cooling process. 

 Performing thermal stress analysis for the entire organ during different cooling 

processes. 
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 Performing optimization to find the optimal cooling design to cool the heart as 

fast as possible and at the same time reduce stresses applied on the heart during 

cooling process.  

 

1.7 Organization of the Dissertation 

 

The remaining chapters are organized as follow 

In Chapter II, numerical procedures, governing equations and assumptions are 

discussed. Semi-conjugate and conjugate cooling designs are presented in Chapter III. In 

Chapter IV, two fully conjugate cooling designs were introduced. In Chapter V, turbulent 

flows and periodic unsteady boundary conditions were used for inlet velocities of internal 

and external cooling. Optimization of the cooling design to find the optimal inlet 

velocities are discussed in Chapter VI. Discussions and recommendations for future work 

are presented in Chapter VII.   

 

 

 

 

 

 

 

 

 



17 
 

CHAPTER II  

NUMERICAL FORMULATIONS 

 

In this chapter, numerical formulations and schemes used for simulations are 

explained. Formulations were classified into two sections: conjugated heat transfer 

formulations (section 2.1), and stress analysis formulations (section 2.2). In section 2.3 

and section 2.4 parallel computing methods and domain decommission algorithm are 

discussed, respectively. 

 

2.1 Conjugate Heat Transfer Formulations 

 

Conjugated heat transfer formulations include the fluid flow model (section 

2.1.1), the conduction heat transfer model (section 2.1.2) and the domain coupling 

method (section 2.1.3).  

 

2.1.1 Fluid Flow Model  

 

The UW solution was chosen as the cooling solution to pump through the major 

veins into the heart’s chambers. This solution was considered as a Newtonian fluid. There 

is no available data for the critical Reynolds number inside the heart. Kisslo and Adams 

[59] demonstrated that the blood flow inside the heart, great vessels and most of the 

cardiovascular system is normally laminar. Stein and Sabbah [60] studied the turbulent 

blood flow in the ascending aorta of humans with normal and diseased aortic valves. 
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They reported that the critical Reynolds number in smooth, straight pipes which is 2,300 

is also an acceptable criterion for the blood flow pattern inside the aorta. They mentioned 

that for Reynolds numbers below 2,300, even strong disturbances do not cause the flow 

to become turbulent. The turbulent flow in the aorta is mainly due to the aortic valve 

opening and closing and the pulsatile flow by muscle contraction. However, in some of 

the cooling designs presented in this dissertation, the flow was uniform through open 

valves. For such cases, considering these very low Reynolds numbers, static-open 

position of valves and by taking into account Kisslo, Adams, Stein and Sabbah’s 

observations, for Reynolds numbers less than 2,000, fluid flow was assumed to be 

laminar and for Reynolds numbers equal or greater than 2,000 fluid flow was assumed to 

be turbulent.  

In section 2.1.1.1, Navier-Stokes equations used for laminar flow simulations are 

discussed. For turbulent cases, the k   turbulent model was used which is presented in 

section 2.1.1.1. A brief introduction about OpenFOAM software platform used in this 

research is presented in section 2.1.1.3. Numerical discretizations are explained in section 

2.1.1.4.  

 

2.1.1.1 Laminar Flow Model 

 

Laminar flow was modeled by using the Navier-Stokes equations for 

incompressible viscous fluid flow. The equations for conservation of mass and linear 

momentum for this case have the form 

.V 0 


                                                                                                                                                 (2.1) 
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2V
( V. V) V  
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


   

p g
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(2.2)           

where,  is density, V


is the velocity vector, p is the static pressure,   is the dynamic 

viscosity and g


 is the gravitational acceleration. The conservation of energy for 

incompressible flow in stagnation enthalpy form was used as 

   V V Vo
o c r

h p
ρ h τ q q ρg ρq

t t

               

                                     (2.3) 

where, 
2

0 2
 


V

h h is the stagnation enthalpy per unit mass, τ  is the stress tensor, cq
  is 

the conduction heat flux, rq
  is the radiation heat flux, q  is the heat source. 

 

2.1.1.2 The k   Turbulent Model 

 

This model uses the Reynolds-averaged Navier–Stokes equations (RANS) to 

obtain approximate time-averaged solutions to the Navier–Stokes equations [61]. The 

idea behind the RANS equations is to decompose an instantaneous quantity, into its time-

averaged and fluctuating quantities.  

                      TV
( V. V) . ( )[ V V ]Tp

t
  

       



   

                                (2.4) 

 

Here,   is the dynamics viscosity of fluid and T  is turbulent viscosity which 

includes the effect of velocity fluctuations that were calculated from the k   turbulence 

model. The k   model is based on the turbulent kinetic energy and the dissipation rate. 
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In standard k   model 
2

T
T

k
C


 , where k is the turbulent kinetic energy and T  is 

the dissipation rate. In formulations in this paper, the dissipation rate was shown with T . 

This turbulent model includes two equations for k and ε which need to be added to 

governing equations. The k and T  equations for incompressible are  

.( V )
 



    




T

T
k

k
k k P

t
                                                                            (2.5) 
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


    




                                                      (2.6) 

where 
2TV V

2


  

 
TP and represents the production of turbulence kinetic energy. 

The following are the standard values of the k  model constants 

1 1.44C    2 1.92C    0.09 C    1 k    1.3                                         (2.7) 

The thermophysical properties of the UW solution and the heart are shown in 

table 2. The thermophysical properties of the gelatin were assumed to be the same as UW 

solution. As this table shows, thermophysical properties of the UW solution are very 

close to thermophysical properties of water.  

 

Table 2.1.  Thermophysical properties  

Material Density,  
(kg m-3) 

Specific Heat, C 
(J kg-1K-1) 

Heat Conductivity, k 
(W m-1K-1) 

Viscosity,  
(kg m-1s-1) 

UW solution [4] 1025 4180 0.6 0.0037 

Heart tissue [5] 1060 3716.98 0.586 - 
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2.1.2 Heat Conduction Model 

 

Heart tissue and cooling gelatin were considered as isotropic solid materials [63]. 

For the solid domains, only energy balance was applied. The updated version of equation 

2.3 for solid domains, which is mostly known as the transient heat conduction equation, 

is 

2T
T

t


 


                                                                                                       (2.16) 

where α is thermal diffusivity. The average volumetric temperature and coefficient of 

variation of volumetric temperature were used to further investigate the distribution of 

temperatures during the cooling process. Coefficient of variation (CV) was used to 

indicate temperature non-uniformity inside the heart tissue and was defined as follows 

SD
CV

aveT
                                                                                                     (2.17) 

Here, 

2

1

1
SD ( )

N

i ave
i

T T
N 

                                                                                        (2.18) 

1 2

1
( ... )ave NT T T T

N
                                                                                       (2.19) 

where, Tave average temperature, Ti is the temperature and N is the number of grid cells 

inside the heart tissue. In this computational study, average volumetric temperature refers 

to the average temperature of all computational cells by considering their volumes. 
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2.2 Stress Analysis 

 

Stress analysis was performed for the simulated heart during the cooling process. 

It was assumed that heart tissue is a homogenous and isotropic material. The main 

objectives of stress analysis were to investigate thermal stresses and internal shear 

stresses applied by pumping the cold solution from the vessels to the chambers as the 

internal cooling process. The pressure inside the resting heart during cooling is less than 

the diastolic pressure of the beating heart. Because the heart will not be beating and the 

cooling process will be continuous (constant flow), it is acceptable to assume there would 

be little deformation of the heart chambers or vessels during the cooling process. The 

conservation of momentum for a homogeneous solid body element [64] can be written as  

            
2

2
. 0 

  


 
b

u
f

t
                                                                                        

(2.21)  

where u


 is the solid displacement vector, σ is the stress tensor and bf


 is the body force. 

For a linear elastic solid body, stress tensor, σ, is written as 

2 ( ) I    G tr                                                                                            (2.22) 

where  and G are the Lamé's first and second (shear modulus) parameters respectively, 

ε is the strain tensor and I is the unit tensor.  and G can be determined by using the 

following formulas  

(1 )(1 2 )


 


 

E
                   

2(1 )



E

G                                                    (2.23)  
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Here, E is the module of elasticity,   Poisson's ratio. The combined strain tensor 

  is defined as  

v

1
[ ( ) ] I

2
      Τ 

u u T                   0  T T T                         

(2.24) 

where v is the coefficient of thermal expansion, 0T  is the reference temperature and the 

superscript T denotes the transpose. Combining equations 2.21, 2.22 and 2.24, the 

governing equation for an isotropic, homogenous, solid body with no motion and no 

external body forces, is 

   v v. ( ) 2 I tr I 0              
Τ  

G u u T u T                                   (2.25) 

The OpenFOAM stress analysis solver (solidDisplacementFoam) was applied for 

solving the above equation. This solver is a transient, segregated, finite-volume solver of 

linear-elastic, small-strain deformation. It also includes the thermal stresses.  

The von Mises stress criteria was used to further study the stress field inside the 

heart during cooling. The von Mises stress is defined as 

3
:

2
   v                                                                                                 (2.26) 

where  

tr( )

3

    I                                                                                                 (2.27) 

where    is the deviatoric stress tensor. Maximum stresses in all directions are also 

considered in stress analysis. The objective was to keep the maximum von Mises stress 

and the maximum of all stresses in different direction below the ultimate tensile stress of 
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the heart tissue. Mechanical properties of the heart tissue were assumed to be the same as 

the cardiac muscle. The required data for mechanical properties of cardiac muscles are 

demonstrated in table 2.2. As this table shows, cardiac muscle has a very small thermal 

expansion coefficient.  

 

Table 2.2. Mechanical properties of cardiac muscle 

Material 
Young's Elastic 
Modulus (kPa) 

Ultimate Tensile 
Stress (kPa) 

Poisson's 
Ratio 

Thermal Expansion 
Coefficient (°C-1) 

Cardiac muscle 80 [65] 110 [65, 66] 0.4 [67] 0.0003 [68] 

 
 

2.3 Domain Coupling 

 

The numerical procedures for coupling fluid and solid domains can be classified 

into two approaches: monolithic (implicit) and explicit (partitioned). In the monolithic 

method the governing equations for both the fluid and solid domains are derived based on 

the same primitive variables. This leads to one single solution matrix for the entire 

domain [69, 70]. Figure 6a illustrates a schematic view of the monolithic approach for a 

one time step. The major advantage of this method is its potential to attain higher 

accuracy and iteratively capture temperatures and heat fluxes at interfaces of heart tissue 

and coolant fluid and heart tissue and outside gelatin. The following are some of the 

major drawbacks of this method [69, 70]. 

 The single solution matrix requires a larger amount of memory to store all 

the primitive variables for both fluid and solid domains [71, 72]. 
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 There is a higher chance to obtain an ill-conditioned solution matrix due to 

differences in fluid and solid rigidity [72, 73]. 

 In cases with disparate time scales, the single time step for all domains can 

be inefficient [73].  

 It is more difficult to generate a single mesh discretization that has the 

proper quality for each domain [74].  

 More expertise is required to develop and maintain such a specialized, 

highly complex code [75, 76]. 

In contrast, the partitioned approach uses separate solution matrices, separate 

mesh discretizations, and separate numerical algorithms for fluid and solid domains. This 

method is the most useful for fluid-solid coupling. Figure 2.1 demonstrates the schema of 

partitioned coupling for a time step. As this figure shows, for each time step, fluid and 

solid solutions are coupled through their interface.  

 

                          a) 

 

         

                        

              b) 
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Figure 2.1. Schematic of coupling approaches for a one time step, a) monolithic coupling, 

and b) partitioned coupling. Sf is fluid solution, Ss is solid solution, and Sfs is unified 

fluid-solid solution [69]. 

 

For this research the partitioned coupling method was used to couple solid and 

fluid domains. Figure 2.2 shows the coupled fluid and solid domains with their separate 

variables and separate meshes.  
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Figure 2.2. Partitioned coupling with separate variables and separate meshes. 

 

Considering the governing equations for each domain as explained in previous 

sections, temperatures and heat fluxes should be equal at the interface, that is, 

f sT T           and                  f f s sK T K T                                                    (2.20) 

where, Tf  and Ts are the temperatures of fluid and solid domains, respectively. Boundary 

conditions were applied on boundary patches. Each patch consisted of numerous surface 

triangles. Coupled boundary patches are updating at each global iteration as follow 

    

Interface
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1. Solve the fluid flow and fluid temperature equation (find V


 and Tf  in the 

entire fluid domain). 

2. Apply the temperature on the fluid-solid interface ( f sT T ). 

3. Solve for the temperature in the solid domain (find Ts for the entire solid 

domain). 

4. Update the fluid temperature at the fluid-solid interface using the new heat 

flux (   f f s sK T K T ). 

  

Solvers for each domain were placed inside a loop to achieve the coupled 

convergence through a global iterative process. Multi-region, three-dimensional, 

unsteady conjugate heat transfer OpenFOAM solver (chtMultiRegionFoam) was applied 

for simulations. The chtMultiRegionFoam is a parallel solver that has been validated by 

different researchers [77]. In following sections, OpenFOAM software platform, 

numerical schemes and procedures are explained.  

 

2.4 OpenFOAM Software Platform 

 

The OpenFOAM® (Open Field Operation and Manipulation) software platform 

was used for simulations [78]. The OpenFOAM CFD Toolbox is a free, open source CFD 

software package with more than 80 solvers that simulate specific problems in 

engineering mechanics and more than 170 utility applications that perform pre- and post-

processing tasks such as meshing, data visualization, etc. By being an open access 
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Toolbox, OpenFOAM offers users complete freedom to customize and extend its existing 

functionality, either by themselves or through support from OpenCFD [78]. The 

following are advantages of OpenFOAM compared to closed source softwares [78] 

 It allows users to have total freedom to create or modify a solver.  

 It allows users to reuse functionality that is pre-compiled into shared 

libraries.  

 Solvers can be used by a specific need rather than “bolt-on” subroutines. 

 All applications, including those for meshing, CFD simulations, pre-

processing and post-processing are compiled using common functionality in 

the collection of libraries included in OpenFOAM. This ensures consistency 

in the entire OpenFOAM distribution, rather than having a suite of packages 

compiled from completely separate source code.  

 It has transparent solution algorithms which can be viewed by the user to 

better understand the underlying physics. 

OpenFOAM by using advanced level C++ as the core programming language 

brings major benefits to users [78]  

 Easier to debug codes and error checking at both compile and run time.  

 Extremely robust solver and utility executable.  

 High speed calculation with efficient memory management and fast linear 

equation solvers.  

 Parallel processing with linear speed up with number of processors. 
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2.5 Discretization  

 

The discretization process in a numerical simulation can be divided into two parts: 

1) discretization of the solution domain (section 2.5.1), and 2) discretization of governing 

equations [79, 80, 81] (section 2.5.2).  

 

2.5.1 Solution Domain Discretization 

 

The aim of solution domain discretization is to generate a computational mesh for 

solving the governing equations. The solution domain discretization can also be divided 

in two parts: discretization of space and discretization of time (for transient simulations). 

For space discretization, the space is divided into a finite number of control volumes 

known as computational cells. Figure 2.3 shows two cells which are connected through 

their common face.  

 

 

 

 

 

 

 

Figure 2.3. Control volume discretization. 
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All dependent variables and properties are saved at the cell centroid P. They may 

also be stored on faces or vertices. Each cell is bounded by a set of flat faces (f in figure 

2.3). OpenFOAM does not have any limitation for the number of faces bounding each 

cell, and for the alignment of each face. This kind of mesh is also known as “arbitrarily 

unstructured mesh” to differentiate it from meshes in which the cell faces have a 

prescribed alignment, typically by the coordinate axes [78]. Sf  is the face area vector is 

constructed for each face in such a way that it points outwards from the cell. This vector 

is normal to the face and has the magnitude equal to the area of the face. Figure 2.3 

shows two types of faces for cells. One is the internal faces which connect two cells. One 

of the adjoining cells is considered as the internal face owner and the other one is 

considered as the internal face neighbor. N is the center of the neighbor cell.  

For time discretization in transient simulations, the time interval is broken into a 

finite number of time steps. The size of time step may vary by monitoring certain 

conditions calculated during the numerical simulation [81]. 

 

2.5.2 Governing Equations Discretization 

 

There are two approaches for numerically solving a set of governing equations: 

simultaneous algorithm and segregated algorithm. In simultaneous algorithms [82, 83, 

81] the Nervier-Stokes are solved simultaneously over the entire solution domain. These 

algorithms might be considered when the number of computational cells is small and the 

number of governing equations is not too large. The solution matrix for these algorithms 

includes the inter-equation coupling and is several times larger than the number of 
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computational cells. Therefore, cost of a simultaneous solutions is high, both in the 

number of operations and memory requirements [81]. 

In another approach known as segregated approach [84, 85] the equations are 

solved in a specific sequence. Thus, a special treatment is required in order to establish 

the necessary inter-equation coupling in the pressure-velocity system. The two most 

popular schemes for the inter-equation couplings are PISO [85], SIMPLE [84] and their 

derivatives.  

 OpenFOAM fluid flow solver used in this project applies the PISO (Pressure 

Implicit with Splitting of Operators) algorithm [86, 81] for the pressure–velocity transient 

problems. Figure 2.4 demonstrates all numerical steps required in PISO algorithm in the 

flow chart format. This algorithm allows more than one pressure-velocity correction.  
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Figure 2.4. PISO algorithm flow chart.  

The major advantages of PISO over SIMPLE algorithm are  

 It does not need under-relaxation factors 

 The momentum corrector step is performed more than once 

 It is useful for irregular cells 

Another correction can be applied to account for the non-orthogonality of the 

computational grid. Some of boundary conditions are defined based on the pressure and 

velocity of solution domain. Therefore, they should be updated after calculation of new 

velocity and pressure fields. For instance, OpenFOAM has a boundary condition 

(inletOutlet or outletInlet) which switches a Dirichlet boundary condition to a zero 

gradient boundary condition and vice versa, based on the information obtained from the 

fluid field.  

For Navier-Stokes equation, a first order implicit Euler scheme was applied for 

discretization of first time derivatives [87] 

( ) ( )    
 

 
n o

P P P P

V

V V
dV

t t
                                                           (2.9) 

in which superscript n indicate new values and superscript o indicate old values.   can 

represent any tensor field. Subscript P indicates the center of the cell. t  is the time step. 

The convection term is integrated over a control volume and linearized as follow  

( ) ( ) ( )f f f f
f fV S

V dV dS V S V F           
  

� � �                        (2.10) 

The face field value,  f , is determined by using one of the following schemes  
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 Upwind differencing (UD) in which  f  is calculated based on the direction 

of flow  

         
0

0

 
   

P
f

N

for F

for F
                                                                   (2.11) 

Subscript P indicates the center of a neighboring cell, F is the convection 

mass flux ( VA


). 

 Central differencing (CD) which is a second order bounded scheme 

        (1 )     f x P x Nf f                                                                           (2.12) 

where /xf fN PN . fN is the distance between f and cell center N, PN  is 

the distance between cell centers P and N. 

 Blended differencing (BD) which is a combination of upwind and central 

differencing  

         (1 )( ) ( )      f f UD f CD                                                                (2.13)                 

For selecting , OpenFOAM offers several schemes including the well-

known schemes such as van Leer, SUPERBEE, MINMOD [87].  

 Gauss integration method was used for discretization of gradient terms. The 

discretization is performed by applying the standard method of Gauss’s theorem to the 

volume integral [87] 

      f f
fV S

dV dS S                                                                            (2.14) 

The divergence term is linearized by integration over a control volume 
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     � � �f f
fV S

dV dS S                                                                      (2.15) 

in which  f  either can be specified directly at surfaces, or can be determined by central 

differencing for a volume field.  

 

2.6 Parallel Computing in OpenFOAM 

 

OpenFOAM employs domain decomposition to perform a process level numerical 

parallelization of numerical algorithms [88, 89]. The global computational domain is 

divided into separates computational subdomains. Then, each subdomain will be 

allocated to separate processors [90, 91]. Subdomains will have different meshes, and in 

case of a multi-physics simulation, they could have different governing equations as well. 

The mapping between processors and the subdomains is one-to-one. Therefore, it can be 

considered as a single program multiple data parallelism (SPMD). In this case, each 

processor executes its program based on its own set of data. To proceed calculations, 

each processor will need data that exists in other subdomains, thus, they have to be able 

to communicate with each other to synchronize their data. OpenFOAM’s decomposition 

methods are presented separately in the next section. 

OpenFOAM uses the standard message passing interface (MPI) for 

communications synchronization between the processors on each subdomain. There are 

two types of communication: communication with neighboring, and global 

communication with all the processors.  
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One of the most common approaches for the communication scheme is the 

overlapping elements, which duplicates the cells next to subdomains common 

boundaries. This method is known as halo-layer approach [81, 88]. OpenFOAM applies 

the zero-halo layer approach for domain decomposition [81, 88]. Figure 2.5 illustrates the 

zero-halo layer approach. The red lines are internal edges which will be treated as 

boundaries in this approach. These boundaries are known as inter-processor (or 

processor) boundaries which are updated implicitly through communications between 

processors. 

 
 

 

 

 

 

 

 

 

 

 

Figure 2.5. Zero-halo layer approach for domain decomposition. 

 

Each inter-processor face only belongs to two subdomains. In the zero-halo layer 

approach, the faces can be categorized as [89, 92] 

 

1. Internal faces (within a single processor mesh) 

2. Boundary faces 

Global Domain 

Decomposition

Subdomain 3 Subdomain 4

Subdomain 1 Subdomain 2
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3. Inter-processor boundary faces 

 

The inter-processor boundary is the difference between the parallel and serial 

computational domains. The zero-halo layer approach has a major impact on the code 

design since it requires all cell and face loops to recognize and handle the halo layer. 

From algorithm point of view, the zero-halo layer is an inconsistent approach. It 

has coupled boundary with out-of-core addressing in different places in the code [92]. It 

is similar to the cyclic or periodic boundary conditions. For instance, to calculate the 

gradient operator (using the Gauss’s theorem), face values of the variable need to be 

evaluated. For internal faces, the evaluation is performed using an interpolation scheme 

such as the central interpolation, equation 2.12. In inter-processor boundary cells, P  

and N  are on different processors. Assuming P  is local, then N  can be fetched 

through pairwise communication. The evaluation of face values between two domains 

can be done in three steps [92] 

 

1. Collect internal cell values from local domain and send them to the 

neighboring processor 

2. Receive internal cell values from neighboring processor 

3. Evaluate inter-processor face value using interpolation 

 

The parallel communications are wrapped in a Pstream module, which isolates the 

communications details from OpenFOAM solvers. Thus, similar patterns can be seen in 
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local computations that require an interface influence to be included. The communication 

wrapper Pstream contains processor rank and size, and performs both point-to-point and 

collective communications [89].  

 

2.7 Domain Decomposition Methods 

 

OpenFOAM has four decomposition methods for dividing the solution domain 

into non-overlapping subdomains [88, 78]. These methods are Simple, Hierarchical, 

METIS [93], and SCOTCH [94]: 

 

 Simple decomposition:  

The simple geometric decomposition splits the global domain into 

subdomains by coordinate in a tensor product fashion. The number of 

partitions per each coordinate should be specified.  

 

 Hierarchical decomposition:  

This method is similar to the simple decomposition method except the 

directions of splits which need to be specified by user. For instance first n 

splits in the x direction and then m splits in the y direction.  

 

 METIS decomposition:  

METIS is a powerful library for partitioning and ordering matrices and 

graphs. OpenFOAM uses this library to partition the computational domain. 
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By default OpenFOAM minimizes the communication volume by using 

multilevel k-way partitioning. METIS decomposition has two partitioning 

methods: multilevel recursive bisections and multilevel k-way partitioning. 

Both of these methods try to minimize the communication volume between 

processors. Moreover, these methods enable users to specify weights for the 

different subdomains. There is also a parallel version for METIS which is 

called ParMETIS. 

 

 SCOTCH decomposition:  

SCOTCH is also a versatile partitioning and ordering library which is 

available in OpenFOAM. This decomposition method also attempts to 

minimize communication volume between processors by minimizing the 

number of internal boundaries. The main objective is to split the edges in a 

way to have the minimum internal boundaries for communications.    

This library employs different partitioning methods such as the multilevel 

FM-like algorithms, k-way graph partitioning and recursive bi-partitioning. It 

is also possible to assign different weights for different processors. 

PtSCOTCH is the parallel version of this method. 

 

 

 

 

 



39 
 

CHAPTER III  

SEMI-CONJUGATE AND CONJUGATE COOLING SYSTEMS 

 

Heat geometry and cooling container design are presented in section 3.1. The first 

semi-conjugated cooling system, in which only the cooling gelatin was used for the 

external cooling, is discussed in section 3.2. Section 3.5 presents the conjugated cooling 

system. In this cooling system, only the cooling liquid was used for the internal cooling. 

 

3.1 Heart Geometric Model and Implementation 

 

To better understand the details of human heart geometry, a simplified schematic 

model of the human heart is shown in figure 3.1a. This figure shows the direction of 

blood flow in the chambers and vessels of the heart. Figure 3.1b demonstrates the 

circulatory pressure distributions inside the normally beating heart [95]. The blood 

circulatory system in the heart consists of the systemic (left) and pulmonary (right) 

circulations. The left heart systemic circulation system (depicted in red) pumps 

oxygenated blood to the body, and consists of left pulmonary veins, right pulmonary 

veins, left atrium, mitral valve, left ventricle, semilunar valve, and aorta, which normally 

has three cephalad branches, i.e., brachiocephalic artery, left common carotid artery and 

left subclavian artery.  
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                     a) 

 

 
                     b) 

 
Figure 3.1. Heart anatomy, a) blood flow circulation, and b) typical values of circulatory 

pressures (SP is the Systolic Pressure, DP is the Diastolic Pressure, and MP is the Mean 

Pressure) [95]. 
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The heart right pulmonary circulation system (depicted in blue) pumps deoxygenated 

blood to the lungs, and consists of the inferior vena cava, superior vena cava, right 

atrium, tricuspid valve, right ventricle, semilunar valve, and right and left pulmonary 

arteries. 

Ranges in the velocity of blood flow in the major inflow and outflow vessels of the 

heart are shown in table 3.1. Maximal blood flow ejection velocity is in the aorta, 

whereas the superior vena cava has a minimal and smaller inlet velocity compared to the 

inferior vena cava. 

 

Table 3.1. Velocity of blood flow.  

Major Vein Inlet/Outlet Velocity (cm/s) [reference] 

Aorta Outlet 108-120 [96] 

Superior Vena Cava Inlet 10-35 [97] 

Inferior Vena Cava Inlet 30-45 [97] 
 

The complex geometry of the human heart is a major challenge for undertaking this 

thermal fluid stress analysis. For the present analysis the human heart geometry model 

developed by Zhang, Bajaj and Goswami [55, 58] from CT-angio data was used for all 

simulations. This model (figure 3.2 a) does not include the coronary circulation; that is, 

this internal heart cooling system consisted of coolant pumped through the major vessels 

and heart chambers. The multi-physical components of this computational analysis 

requires having three separate domains; inside the heart (chambers), the heart tissue itself, 

and outside the heart. The first step in creating the required domains was to separate the 

innermost (blood contact) surfaces from outermost surfaces as shown in figure 3.2b. 
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                        a)                                                                             b) 

                                     

 

Figure 3.2. Heart model, a) whole heart [55, 58], and b) innermost (blood contact) and 

outermost surfaces. 

 

Figure 3.3 demonstrates different domains surfaces in different colors. The blood 

contact surface which consists of the right (pulmonic) and left (systemic) heart 

circulations domains are shown in green and blue, respectively. Figures 3.3a and 3.3b 

show the outermost surfaces in red.  

 
        a)                                                                           b) 
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    c)                                                                           d) 

                                            

Figure 3.3. Heart surfaces: a) all surfaces, b) outermost surfaces, c) heart pulmonary 

circulation domain surfaces, and d) heart systemic circulation domain surfaces.  

 

A hexahedra (figure 3.4a) of 214 mm in length, 212 mm in width and 282 mm in 

height, with 4 inlets and 4 outlets was virtually designed as the heart-cooling container. 

These inlets/outlets which can be seen in figure 3.4, are specifically designed for internal 

cooling circulations. Figure 3.4b shows the designed connections and caps for pumping 

coolant through the pulmonic and systemic vessels.  

 

        a)                                                                           b) 
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        c)                                                                        d) 

 

 

 

 

 

 

 

 
Figure 3.4. Cooling system: a) cooling container, b) connections and caps, c) circulation 

directions for the right (pulmonic) heart, and d) circulation directions for the left 

(systemic) heart. 

 
For each of the two heart ventricles, two inlets and two outlets were incorporated to 

pump the coolant through the heart chambers as shown in figures 3.4c and 3.4d. For the 

right (pulmonic) heart circulation, the inferior vena cava and superior vena cava are the 

two flow inlets and one of the right pulmonary arteries and one of the left pulmonary 

arteries are the two flow outlets. For the left (systemic) heart circulation, one of the left 

pulmonary veins and one of the right pulmonary veins are the two flow inlets, and the 

aorta with one of its cephalad branches (left common carotid artery) are the two flow 

outlets. As these figures illustrate, the coolant will be pumped into the heart chambers in 

the same directions as that in an intact heart and circulatory system. This allows for the 

cooling solution to flow through chambers with the heart valves promoting forward flow 

and preventing backward flow, as occurs naturally. 
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3.2 Case 1 - Gelatin Cooling (Outside)  

 

In this cooling design, the heart is submersed inside gelatin cooling gel to apply 

external cooling. This cooling case was named “semi-conjugate” because the heart was 

cooled by using only one domain (outside of the heart). A multi-domain unsteady 

conduction heat transfer equation was solved for the heart tissue and its surrounding 

cooling gelatin. Temperature boundary conditions for the cooling container walls are 

given in table 3.2. Each wall had a constant value for temperature. The minimum and 

maximum wall temperatures were set at -1°C and +1°C, respectively. The minimum wall 

temperature could be less than -1°C, but the reason for choosing -1°C as the minimum 

temperature was to avoid cooling of the heart below +4°C, which might damage the heart 

cells if pure water domains were allowed to form ice crystals. Two wall temperatures, 

one set to 0°C and one set to +1°C (table 3.2) were used to investigate the influence of 

different wall temperatures on differential cooling of the heart. The initial temperature of 

gelatin was assumed to be +4°C. The initial temperature of the heart was assumed to be 

+37°C.  

 

Table 3.2. Boundary conditions for cooling container walls. 

Container Wall at Xmax  Xmin Ymax Ymin Zmax Zmin 

Temperature 0°C -1°C -1°C -1°C 0°C +1°C 

 

The initial temperature for the heart-gelatin interface was set as the average 

temperature of the heart and gelatin which was +20.5°C.  
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Heat transfer analysis was performed for a cooling time of 1500 s. It was assumed 

that the major temperature reduction should occur within this interval. Therefore, 1500 s 

was chosen as the target time interval. A workstation computer with the Ubuntu 13.10 

Linux OS was used for this simulation. Thermal simulation was run on 4 cores of an Intel 

Core i7, 3.4 GHz, Six Core with 64 GB memory. Total computing time was 2532 s. 

Figure 3.5 shows the temperature distributions in a sagittal view at 0 s, 300 s, 600 s, 

900 s, 1200 s and 1500 s. A constant color legend from +1°C to +37°C was used to better 

illustrate the temperature variation of the heart tissue. Figure 3.5a illustrates the heart 

tissue’s temperature distribution at the very beginning of the cooling process when the 

heart temperature was +37°C. The green color on the outermost surface of the heart in 

figure 3.5a is the initial coupled temperature between the warm heart and cold gelatin 

which was +20.5°C. The red color in figure 3.5 signifies the warmer spots (hot spots) 

within the heart tissue. As the cooling process continued, the red color turned to green, 

and then blue due to the temperature reduction of the heart tissue. Therefore, the 

minimum and maximum temperatures of the heart are not necessarily equal to the 

minimal to maximal range of the color legend. As this figure illustrates, there was a very 

large size higher temperature region remaining in the core of the heart after 1500 s. This 

occurred due to lack of internal cooling. 
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   a)                                                                            b)                   

               

   c)                                                                            d)                   

                     

   e)                                                                            f)                   

                 

Figure 3.5. Temperature distribution (sagittal view):  a) 0 s, b) 300 s, c) 600 s, d) 900 s, e) 

1200 s, and f) 1500 s. 

Cooling gelatin 
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To further reveal the temperature variations inside the heart during the cooling 

process, the maximum and minimum and average volumetric temperatures are shown in 

figure 3.6 demonstrating that variation of the minimum temperature is not significant. In 

this computational study, average volumetric temperature refers to the average 

temperature of all computational cells by considering their volumes.  

 

 

Figure 3.6. a) Temperature variations (maximum, minimum and average volumetric 

temperatures of the heart) vs. time. 

 

The heart temperature will begin to decrease as soon as the coolant begins to flow. 

Since the gelatin has its minimum temperature at the beginning of cooling, the minimum 

temperature of the heart will drop noticeably at the beginning of cooling. The minimum 

temperature of the heart was +2.2°C after 1500 s of cooling, which is less than the target 

of +4°C. This low temperature occurs on the very small part of outermost surfaces of the 
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heart, which lie close to the container wall. The reason for this local low temperature is 

the small gap between the container wall, at -1°C, and the heart. Figure 3.6 shows a slight 

reduction in the maximum temperature of the heart to +36.8°C after 1500 s of cooling 

with gelatin. The average volumetric temperature was reduced to +21°C after 1500 s. 

CV of the average volumetric temperature (figure 3.7) demonstrates that non-

uniformity of the average volumetric temperature increased until 500 s and then started to 

decrease with a very low slope. This is because of the slow pure conduction heat transfer 

from the outside of the heart. Therefore, the temperature non-uniformity was relatively 

small and was decreasing slowly.    

  

 

Figure 3.7. Coefficient of variation of average temperature vs. time. 

 

The results suggest that pure heat conduction cooling with gelatin from the outside of 

the heart was not capable of removing sufficient amount of heat within the target time 

interval of 1500 s. 
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3.3 Case 2 - UW Cooling (Inside)  

 

In this cooling design, the major heart vessels are connected to the cooling container 

via tubes to pump the UW solution within the heart. This design was named “conjugate” 

because it was cooling the heart using two internal circulation domains. For simulation of 

this cooling system, unsteady conjugate heat transfer equations presented in chapter II 

were solved using OpenFOAM software platform.  

Table 3.3 shows the boundary conditions applied for these two domains. Considering 

the maximal averaged velocity of blood flow inside the beating heart given in table 3.1, 

and the diameter of each of the designated inlets, we chose the averaged inlet coolant 

velocities of 1 m/s for the systemic circulation and 0.4 m/s for the pulmonary circulation 

using the UW coolant as the fluid. The outlet pressure values were assumed to be the 

same and equal to 101 kPa and constant. The temperature of the cooling fluid at the inlet 

was set as the minimal allowable temperature for the cooled organ, +4°C. Although the 

lowest allowed temperature was set at +4°C in the simulations to avoid water ice crystals, 

some coolants with high osmolarities, such as UW solution, have a freezing point well 

below +4°C. 

 

Table 3.3. Boundary conditions for fluid domains.  

Boundary Condition 
Heart Pulmonary 

Circulation 

Heart Systemic 

Circulation  

Inlet velocity magnitude 0.4 m/s 1 m/s 

Outlet pressure 101 kPa 101 kPa 

Inlet coolant temperature +4°C +4°C 
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   A sub-zero temperature of the coolant would allow simulation of even faster 

cooling. However, it would likely not have a positive effect to enhance temperature 

uniformity in the heart wall, where temperature variation is governed by heat conduction. 

A parallel computer with the Red Hat Enterprise Linux Server 6.2 OS and LSF scheduler 

was used for simulations. Thermo-fluid simulation was run on 4 Intel Xeon CPU E5-

2420 processors. Each processor has 6 physical cores, 12 threads and 48 GB memory. 

Total computing time was 108,751 s. 

Figure 3.8a illustrates the heart tissue’s temperature distribution (cut-away view) 

during the cooling process. The green color on the innermost surface of the heart is the 

initial coupled temperature between the warm heart and cold gelatin. In this case, the 

initial interface temperature was also set as the average temperature of the heart and 

gelatin, which was +20.5°C. The constant color bar from -1oC to +37oC was used in this 

figure which is the same as the one in previous case (figure 3.5). As the cooling process 

proceeded, the color of the heart’s tissue changes from red color to green, and then blue. 

It should be noted that the minimum and maximum temperatures of the heart are not 

necessarily equal to the minimal to maximal range of the color legend. 

As figure 3.7 illustrates, after 1500 s of cooling almost all internal parts of the heart 

were cooled. However, lack of an external cooling led to having larger temperatures close 

to the outermost surfaces, specially where the heart wall is thicker.   
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   a)                                                                            b)                   

                     

   c)                                                                            d)                   

                     

   e)                                                                            f)                   

                      

Figure 3.8. Temperature distribution (cut-away view):  a) 0 s, b) 300 s, c) 600 s, d) 900 s, 

e) 1200 s, and f) 1500 s. 
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In the next figure, the maximum and minimum and average volumetric temperatures 

of the heart are shown during cooling process. Figure 3.8 shows that the minimum 

temperature rapidly dropped to +4°C. The heart temperature will begin to decrease as 

soon as the coolant begins to flow. Since the cooling liquid has its minimum temperature 

at the beginning of cooling, the minimum temperature of the heart will drop noticeably at 

the beginning of cooling. Figure 3.6a shows that the maximum temperature was almost 

constant until 750 s of cooling. Then, it started decreasing and reached to its minimum of 

32.5°C at 1500 s. The average volumetric temperature was reduced to +12.5°C after 1500 

s.  

 

 

Figure 3.9. a) Temperature variations (maximum, minimum and average volumetric 

temperatures of the heart) vs. time. 
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Figure 3.10. Coefficient of variation of average temperature vs. time. 

 
CV of the average volumetric temperature is shown in figure 3.10. The maximum 

CV was 1.14E-6 at 500 s. It can be observed that non-uniformity of the average 

volumetric temperature increased until 500 s and then started to decrease with a moderate 

slope. The value of CV at 1500 s was 9.88E-5 which is 0.87 times less than its maximum 

value.   

Velocity and temperature distributions of the UW solution streamlines inside the 

heart pulmonary and systemic circulatory domains are shown in figure 3.9. Figure 3.9a 

illustrates that maximum velocity which is 2.30 m/s occurred in the pulmonary 

circulatory domain, right after semilunar valve. Figure 3.9b shows the maximum 

temperature variation of the UW solution is +3.85oC. It can also be seen that the UW 

temperature is higher near the outlets. 

The coolant temperature in systemic circulatory domain is higher than the coolant 

temperature in the pulmonary circulatory domain. This is because of the lower velocity of 

the UW solution in the systemic circulatory domain than the pulmonary circulatory 
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domain which can be observed in figure 3.9a. The lower coolant velocity will increase 

the heat transfer interval between the coolant and the heart and therefore will increase the 

coolant temperature. This can enhance the heat transfer process. However, having a lower 

velocity will decrease the rate of heat removed by the coolant. In this research, effects of 

inlet velocity on heat transfer from the heart were investigated for the external coolant 

flow.  

 

                         a)                                                                       b)                   

                       

Figure 3.11. UW streamlines of the internal circulation with, a) temperature distribution, 

and b) velocity distribution. 

 
3.4 Discussion  

 
For further comparison, results of the both cases are shown in table 3.4 at 1500 s. By 

comparing results of Case 1 (external gelatin cooling only, section 3.3) with results of the 

Case 2 (internal UW cooling only, section 3.4), a significant enhancement can be 

observed in terms of temperature reduction of the heart in Case 2. The minimum 

temperature in Case 1 was +1.8oC less than the minimum temperature in Case 2. As it 
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explained in section 3.3 this was because of the low wall temperature (-1oC) in Case 1. It 

is easier to maintain the minimum temperature at +4oC using Case 2, since the UW 

solution has the constant temperature equal to +4oC.  

 

Table 3.4. Results of all heart cooling cases at 1500 s. 

 

* Cooling with gelatin from outside (semi-conjugate) 
† Cooling with UW solution from inside (conjugate) 

 

The maximum temperature in Case 2 was +4.3oC less than the Case 1, which was 

due to the higher heat removal capacity of the cooling Case 1 compared to the one in 

Case 2. This will be more noticeable when the average volumetric temperatures of both 

cases are compared. The average volumetric temperature in Case 2 is 40.48% less than 

the one in Case 1. In terms of temperature uniformity, Case 1 showed a better result 

compared to Case 2. This can be explained by the slow, more uniform cooling conduction 

process in Case 1 compared to the fast, less uniform convection cooling process in Case 

2. In other words, the fast convection heat transfer from inside resulted more non-

uniformity (larger CV) than the slow pure conduction heat transfer from the outside of 

the heart.   

Parameter Case 1*  Case 2†  

Minimum temperature (oC)  +2.2 +4.0 

Maximum temperature (oC) +36.8 +32.5 

Average volumetric 
temperature (oC) 

+21.0 +12.5 

CV 6.4E-05 9.88E-05 

Metabolic rate reduction (%) 76.89 89.38 
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CHAPTER IV  

FULLY-CONJUGATE COOLING WITH GELATIN 

 

In this chapter, two fully-conjugate cooling designs will be introduced and 

investigated numerically. In both of these cases cold gelatin was used in the cooling 

process. They were named “fully-conjugate” because all internal and external surfaces of 

the heart were cooled during cooling preservation. Section 4.1 presents the first fully-

conjugate cooling system which applies gelatin cooling for both internal and external 

cooling. In section 4.2, the second fully-conjugate cooling case is presented. This fully-

conjugate cooling case keeps the same external gelatin cooling as in Case 1, but it uses 

the UW solution for internal cooling. In the last section (section 4.3), a discussion about 

the proposed cooling systems is presented.  

 

4.1 Case 3 - Gelatin Cooling (Inside and Outside)  

 

The fully-conjugate cooling design in this chapter uses gelatin gel for both 

internal and external cooling. The cooling container for this case remained the same as 

the one in Case 1 and Case 2 presented in previous chapter (figure 3.4). All cooling 

container’s walls were assumed to be thermally insulated. The reason for such 

assumption was to resemble the current cooling system. The initial and rest of boundary 

conditions for fluid domains in this fully-conjugate cooling case were kept the same as 

the initial and boundary conditions in semi-conjugate cooling Case 1. The initial 

boundary condition for internal gelatin cooling was set to +4oC which is the same as 
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external gelatin cooling. Thermo-fluid analysis results of this fully-conjugate case are 

presented in the following section.  

 

4.1.1 Thermo-Fluid Analysis 

 

Thermo-fluid simulation was performed for a 1500 s cooling period. A workstation 

computer with the Ubuntu 13.10 Linux OS was used for this simulation. Thermal 

simulation was run on 6 cores of an Intel Core i7, 3.4 GHz, Six Core with 64 GB 

memory. Total computing time was 4621 s. Figure 4.1 shows the temperature variation of 

the heart at 0 s, 300 s, 600 s, 900 s, 1200 s and 1500 s.  

Figure 4.1a illustrates the heart tissue’s temperature distribution at the very 

beginning of the cooling process when the heart temperature was +37°C. The translucent 

figure opacity level for lower temperatures was set to be smaller than higher 

temperatures. This way, high temperature regions within the heart tissue will be visible, 

as the temperature of their external regions decreases. As Figure 4.1 illustrates, heart 

tissue’s temperature slowly decreased during the cooling period in this cooling concept 

that did not involve any external or internal convection. This simulated the most 

commonly used current method for heart cooling and transportation in which cooling 

liquid is stagnant.   
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         a)                                                                        b) 

                                           

         c)                                                                        d) 

                                        

         e)                                                                         f) 

                                                                      

Figure 4.1. Temperature distribution (volumetric view) of the heart tissue with constant 

color legend:  a) 0 s, b) 300 s, c) 600s, d) 900 s, e) 1500 s, and f) 3600 s. 
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Figure 4.2 shows sagittal views of heart and cooling gelatin inside and outside of the 

heart. A constant color bar from +4oC to 37oC was used in this figure. It can be seen that 

the temperature of the gelatin inside the heart was increase after 300 s. Figure 4.2f shows 

that the heart and gelatin have almost the same temperature (around +17oc) at 1500 s.  

 

   a)                                                                            b)                   

                                  

   c)                                                                            d)                   

                                            

       

 

 

 

 

Coolant inside 
heart pulmonary 
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        e)                                                                             f) 

                                                          

Figure 4.2. Temperature distribution (sagittal view):  a) 0 s, b) 300 s, c) 600 s, d) 900 s, e) 

1200 s, and f) 1500 s. 

 
Metabolic rate variations were calculated using equation 1.1. Figure 4.3 shows cut-

away views of heart’s metabolic rate at 0 s, 300 s, 600 s, 900 s, 1200 s and 1500 s. The 

color bars indicating metabolic rate ranges are changing in each of these figures. Thus, 

the maximum and minimum of color bars are indicating the maximum and minimum of 

metabolic rates in their figures. Figure 4.3.a shows 100% of metabolic rate for the heart at 

the beginning of cooling process. The minimum metabolic rate of 22.05% in this figure 

belongs to the heart-gelatin internal and external interfaces. After 300s, the maximum and 

minimum metabolic rate decreased to 85% and 6.35%, respectively. It can be seen that 

after 300 s, the temperature of gelatin inside the heart’s major veins was increased.  

These values at 1500 s were 26.85% and 6.12% (figure 4.3f). Also, it can be observed 

that the regions close to the heart’s thick walls have higher metabolic rates after 1500 s.  
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   a)                                                                            b)            
        

                                
 

   c)                                                                            d)                   
 

                               
       e)                                                                             f) 

                                                          

Figure 4.3. Metabolic rate (cut-away view):  a) 0 s, b) 300 s, c) 600 s, d) 900 s, e) 1200 s, 

and f) 1500 s. 
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Figure 4.4 shows the maximum, minimum and average volumetric temperatures of 

the heart. The maximum volumetric temperature decreased to +23.8oC after 1500 s. The 

average volumetric temperature of the heart was +16.8oC at 1500 s. 

 

 
Figure 4.4. Temperature variations (maximum, minimum and average volumetric 

temperatures of the heart vs. time). 

 
The cooling rates were calculated and shown in figure 4.5 on a logarithmic scale. 

The cooling rate of the average heart temperature had an almost linear slope, specially 

after 250 s. The cooling rate of the maximum temperature reached to 1e-2 after 1500 s.  
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Figure 4.5. Cooling rate vs. time (logarithmic scale). 

 

 

Figure 4.6. Coefficient of variation of volumetric temperature vs. time. 

 

Variations of the CV of the average volumetric temperature of the heart versus 

time is shown in figure 4.6. The maximum value of CV was 8.43E-5 at 240 s. It can be 

observed that, the non-uniformity (CV) of the average volumetric temperature increased 

until 240 s and then started to decrease and reached to 4.41E-5 at 1500 s. 
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4.2 Case 4 - Gelatin Cooling (Outside) and UW Cooling (Inside)  

 

The fully-conjugate cooling design in this chapter includes internal cooling via 

UW solution and external cooling via gelatin gel. Both cooling cases presented in chapter 

3, were coupled to construct this fully-conjugate cooling design. Therefore, cooling 

container, connections and caps remained the same as those in previous cases (Figure 

3.4). The internal circulations systems for the cooling liquid were also the same as those 

in Case 2. The main objective of the new cooling design was to study the cooling 

enhancement by coupling both semi-conjugate and conjugate cooling systems presented 

in chapter 3. Therefore, initial and boundary conditions in this fully-conjugate cooling 

case were also kept the same as the initial and boundary conditions in semi-conjugate 

cooling Case 1 and conjugate cooling Case 2. Thermo-fluid analysis results are discussed 

in section 4.2.1. In section 4.2.2, stress analysis results are presented. 

 

4.2.1 Thermo-Fluid Analysis 

 

In this cooling case, there are two separate fluid domains, one for the right heart 

pulmonary circulation, and one for the left heart systemic circulation. The boundary 

conditions applied for the fluid flow simulation were the same as the boundary conditions 

used in the conjugate cooling Case 2 (table 3.4). Therefore, the averaged inlet velocities 

of coolant for the systemic circulation and the pulmonary circulation were 1 m/s and 0.4 

m/s, respectively. The outlet pressure values were assumed to be the same and equal to 

101 kPa. The inlet temperature of the cooling fluid was set to +4°C. The temperature 
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boundary conditions were also the same as the temperature boundary conditions applied 

in the semi-conjugate cooling Case 1 (table 3.2). 

A parallel computer with the Red Hat Enterprise Linux Server 6.2 OS and LSF 

scheduler was used for simulations. Thermo-fluid simulation was run on 4 Intel Xeon 

CPU E5-2420 processors. Each processor has 6 physical cores, 12 threads and 48 GB 

memory. Total computing time was 114,018 s. 

Figure 4.7a illustrates the heart tissue’s temperature distribution at the very 

beginning of the cooling process when the heart temperature was +37°C. The green color 

on the outermost surface of the heart is the initial coupled temperature between the warm 

heart and cold gelatin. This initial interface temperature was set as the average 

temperature of the heart and gelatin, which is +20.5°C. Figures 4.7b to 4.7f demonstrate 

the heart cooling process at different time steps. A constant color legend from +1°C to 

+37°C was used to better illustrate the temperature variation of the heart tissue (figure 

4.7). Therefore, the minimum and maximum temperatures of the heart are not necessarily 

equal to the minimal to maximal range of the color legend. The red color in figure 4.7b 

signifies the initial hot spots within the heart tissue. As the cooling process continued, the 

red color turned to green, and then blue due to the temperature reduction of the heart 

tissue.  
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         a)                                                                        b) 

               

         c)                                                                        d) 

              

         e)                                                                         f) 

                

Figure 4.7. Temperature distribution (volumetric view) of the heart tissue with constant 

color legend:  a) 0 s, b) 300 s, c) 600s, d) 900 s, e) 1200 s, and f) 1500 s. 
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To better illustrate the hot spot location inside the heart, cut-away views of heart 

are shown in figure 4.8.  

 

a)                                                                      b) 
   

 

 

 

 

 

 

Figure 4.8. Temperature distribution at 300 s: a) first cut-away view, b) second cut-away 

view. 

 
Figures 4.8a and 4.8b demonstrate the distribution of heart tissue’s temperature at 

300 s for two different cut-away views. Figure 4.8a reveals a large hot spot located above 

the right ventricle and on the right side of the right atrium. Figure 4.8b discloses two 

more hot spots; one is located on the left side of the left ventricle and the other is located 

on the right side of the left atrium. As this figure demonstrates, all hot spots were located 

in the regions where the heart walls were thicker.   
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   a)                                                                            b)                   

                                  

   c)                                                                            d)                   

                                             

       e)                                                                             f) 

                                             

Figure 4.9. Temperature distribution (sagittal view):  a) 0 s, b) 300 s, c) 600 s, d) 900 s, e) 

1200 s, and f) 1500 s. 

Coolant inside 
heart pulmonary 
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Figure 4.9a shows the heart submersed in the cooling gelatin without coolant flow 

at the beginning of cooling. Figures 4.9b to 4.9f illustrate the temperature distributions of 

the coolant flowing within the heart as well as temperature distributions within the heart 

tissue and the surrounding gelatin. The minimum temperature in figures 4.9a to figure 

4.9f is -1°C, which is the minimum temperature of the cooling container walls. The 

temperature in this volume of the heart tissue was reduced from +37.0°C to a minimum 

of +15.8°C after 1500 s. Figure 4.9 gives a better understanding of temperature fields in 

one particular sagittal cut of the cooling system. The temperature on the other side of the 

cut will be identical (please note the color bar temperature distribution is the same).  

To further reveal the temperature variations inside the heart during the cooling 

process, the maximum and minimum and average volumetric temperatures are shown in 

figure 4.10 demonstrating that variation of the minimum temperature is not significant.  

The heart temperature will begin to decrease as soon as the coolant begins to flow. Since 

the coolant inlet temperature is constant and the gelatin has its minimum temperature at 

the beginning of cooling, the minimum temperature of the heart will not change 

noticeably over time. The minimum temperature of the heart was +2.8°C after 1500 s of 

cooling, which is less than the target of +4°C. This low temperature occurs on the very 

small part of the outermost surfaces of the heart, which lie close to the container wall. 

The reason for this local low temperature is the small gap between the container wall, at -

1°C, and the heart. The minimum volumetric temperature in the semi-conjugate cooling 

Case 1 also occurred at the same location. At the same time, the maximum temperature 

was decreased by 18.9°C, that is, from +37.0°C to +18.1°C. The average volumetric 

temperature of the whole heart was calculated and is also shown in figure 4.10. The 
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minimum average volumetric temperature was reduced by 29.0°C, that is, from +37.0°C 

to +8.0°C after 1500 s.  

 

 

Figure 4.10. Temperature variations (maximum, minimum and average volumetric 

temperatures of the heart vs. time). 

 
Figure 4.11 illustrates the variation in cooling rates by time for the maximum, 

minimum and the average volumetric temperatures of heart on a logarithmic scale. As 

this figure shows, the cooling rate for average volume temperature starts at 0.228°C/s and 

gradually decreases to 0.0035°C/s at 1500 s. The cooling rate of the minimum 

temperature was very high initially (32.8°C/s), but decreased rapidly after a few seconds 

and became less than 0.005°C/s after 20 s. The maximum temperature started to decrease 

with an almost zero cooling rate, i.e., it did not cool at the beginning. Then, the maximum 

temperature started to decrease gradually and reached its maximum value 0.0198°C/s at 

480 s.  
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Figure 4.11. Cooling rates vs. time (logarithmic scale). 

 

 

Figure 4.12. Coefficient of variation of volumetric temperature vs. time. 

 

Figure 4.12 shows variations of the CV of the average volumetric temperature of 

the heart versus time. The maximum value of CV was 12.6E-5 at 260 s. It can be 
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until 260 s and then started to decrease, thus reducing the non-uniformity 2.23 times at 

1500 s compared to its maximum.   

Figure 4.13 illustrates temperature fields and the flow streamlines inside the heart 

pulmonary and systemic circulatory domains at 300 s.  

 

  a)                                                                       b) 

 

 

 

 

 

 

 

 

 
Figure 4.13. Velocity distribution at 300 s: a) coolant inside the ventricles with 

temperature distribution inside the heart tissue and gelatin (cut-away view), and b) 

coolant average speeds within the pulmonary and systemic circulatory domains.  

 
The maximum averaged coolant velocity occurs in the pulmonary circulatory 

domain, just behind the semilunar valve, and is 2.13 m/s. Inlet flow rates can be 

determined from the averaged velocities at the inlets and diameters of the inlets. The flow 

rates for the two pulmonary circulatory inlets are calculated as 4826 ml/min and 4241 

ml/min; for the two systemic circulatory inlets the values are 1086 ml/min and 271 

ml/min. Figure 4.14 shows cut-away views of metabolic rate variations within the heart 

UW Solution 

Coolant inside pulmonary 
circulation domain
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for six time steps. It can be observed that color bars are changing in each of these figures 

(4.14a to 4.14f) based on their maximum and minimum values.  As this figure shows the 

maximum metabolic rate was located at the top side of the right ventricle where the heart 

wall is thicker. It can also be observed that gelatin was not capable of cooling this region 

effectively.   

 
   a)                                                                            b)                   

                              
 

   c)                                                                            d)                   
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 e)                                                                            f)                   

                               

Figure 4.14. Metabolic rate (cut-away view):  a) 0 s, b) 300 s, c) 600 s, d) 900 s, e) 1200 

s, and f) 1500 s. 

 
As figure 4.9 shows, the temperature difference between the coolant and heart 

surfaces which are in contact with it, is almost zero. The heat convection law  is given as 

 

( )conv conv s fq h A T T                                                                                                       

(4.1) 

 

where convh is the convection heat transfer coefficient, A  is the contact surface 

area between fluid and solid. By increasing the flow rates (velocities), convh will increase. 

However, since ( )s fT T tends to zero, the convh effects will be almost negligible. Thus, 

increasing the coolant flow rates (velocities), would not only be ineffective in increasing 

the cooling rate, but would also increase the shear stresses on the heart tissue coolant 

interface and possibly cause endothelial tissue damage.  

 



76 
 

4.2.2 Stress Analysis 

 

For this cooling design, the stress analysis was performed by using the data 

obtained by the thermo-fluid analysis results. A zero displacement assumption was 

applied for the heart’s outermost surfaces. Normal and shear forces applied by the coolant 

flowing to the innermost surfaces were used as the boundary condition of these surfaces. 

These values were updated for each time step. The heart temperature field was used to 

obtain the thermal stresses during the cooling process.  

As table 2.2 shows, the ultimate tensile stress of cardiac muscle is 110 kPa. After 

obtaining the stress field measurement inside the heart, the maximum von Mises stress 

was calculated and is shown in figure 4.15. As this figure demonstrates, the maximum 

value of von Mises stress is almost constant (~ 96 kPa). Therefore, the effect of thermal 

stresses is not significant due to the very small Young's elastic modulus and thermal 

expansion coefficient of the heart tissue. Thus, only the forces caused by the flowing 

coolant play a major role in the stress field.  
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Figure 4.15. Maximum von Mises stress inside the heart and ultimate tensile stresses vs. 

time.  

 
Figure 4.16 shows the maximum pressures of the coolant flowing within the 

pulmonary and systemic circulatory domains, including the heart chambers and major 

inlet and outlet vessels at every 20 s. Pressure distributions within the pulmonary and 

systemic circulatory domains are related to the velocity fields within these domains. In 

this model, the fluid flow was considered and simulated as an unsteady flow mainly 

because of the unsteady temperature field. Therefore, the velocity field (flow pattern) will 

change with time even though the inlet velocity is a constant value. This causes variations 

in the pressure field with time. Inside the pulmonary circulatory domain, the maximum 

pressure fluctuated with time, but inside the systemic circulatory domain the maximum 

pressure was almost a constant (~102 kPa). This is because within the pulmonary 

circulatory domain the velocity field variation with time is negligible. As a result, the 

pressure field variation with time is also negligible. However, as figure 4.13b shows, the 

coolant velocity field within the pulmonary circulatory domain has larger values and 
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larger variations. Therefore, this leads to fluctuations in the pressure field as shown in 

figure 4.13b. The purpose of this analysis was to estimate the maximum pressure that 

could occur within the heart during the cooling process. The importance of these 

simulations was to show that maximum pressures within the pulmonary and systemic 

circulatory domains remained less than 112 kPa (~80 mmHg).  

 

 

Figure 4.16.  Maximum coolant pressure inside the pulmonary domain (PD) and systemic 

domain (SD).   

 
It should be also mentioned that 80 mmHg which is the safe valve pressure for the 

systemic circulation is actually the total pressure behind the valve. This is usually 

considered the pressure within the right ventricle. The results show that for systemic 

circulation the maximum pressure is much less than the 80 mmHg, so as the average 

pressure behind the valve. The total pressure in the pulmonary circulation was 

approximately 35 mmHg.  
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To further investigate shear stresses caused by the UW solution flows, heart wall 

shear stresses (WSS) on the coolant-heart contact surfaces is plotted in figure 4.17.  

 

       a)                                                                                  b) 

                                                                                  

 

Figure 4.17. WSS magnitude; a) entire fluid contact surfaces, and b) cut-away enlarged 

view of higher shear stresses region.  

 
Figure 4.17a demonstrates that on most of the coolant-heart contact surfaces, WSS 

was very small due to very small velocity gradients. The maximum WSS was 9.2 Pa 

which occurred in the pulmonary circulation domain at the pulmonary valve tip. The red 

oval in figure 4.17a depicts the high WSS region. Figure 4.17b shows an enlarged cut-

away view of the WSS distribution in this region. Higher WSS can also be observed at 

the inlet and outlet connections.  

Accurate measurement of WSS applied on the entire liquid contact surfaces of the 

heart is very challenging. In one of the earliest research, Fry [98] showed that WSS 

higher than 40 Pa could damage the endothelial cell layer. Later, Moore et al. [99] 

reported that the maximum WSS on any artery in the normal cardiovascular system is 
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expected to be less than 10 Pa. Oshinski et al. [100] applied MR phase velocity mapping 

to determine WSS in the aorta. They reported 5.4 Pa for the peak of wall shear stress in 

the aorta. Feldman et al. [101] reported that WSS of more than 7 Pa could produce 

endothelial damages in coronary arteries. Computationally predicted WSS results 

presented in the present study show that in most parts of the heart-liquid contact surface, 

WSS is lower than 2 Pa. The maximum WSS at the pulmonary valve tip is also expected 

to be lower in the real case since it will open more due to the fluid pressure. Therefore, 

the large velocity gradient at its tip will reduce. However, one can apply a constrained 

optimization algorithm (Colaco and Dulikravich, [102]) to find the maximum coolant 

flow rate at which WSS will be kept below its safe limit value.   

 

4.3 Mesh Independency  

 

Accuracy of the computational results depends on the size of the average 

computational grid cells. Dependency of the simulations was studied by comparing 

computational results obtained on two different meshes. Figure 4.18 illustrates the heart 

hexahedral mesh used for simulations presented in this paper and results obtained on a 

finer heart mesh to examine the mesh dependency of the simulations. All meshes in this 

research were time independent.  

The finer mesh information for each domain is presented in table 4.1. The total 

number of grid cells for all domains was 10,900,000.  
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Figure 4.18. Heart hexahedral mesh; a) used for simulations presented in this research, 

and b) finer mesh used for simulation until 20 s. 

 

Table 4.1. Finer hexahedral grid cells for different computational domains 

 

 

 

 

 

Table 4.2 shows the simulation results (at 20 s) obtained by using the first mesh 

having 4,200,000 grid cells. Case 4-fine in table 4.2 presents the simulation results 

obtained by applying the finer mesh. Variations between Case 4 and Case 4-fine results 

are also shown in this table.  

Domain Number of grid cells 

Heart pulmonary circulation   ~ 1,200,000 

Heart systemic circulation  ~ 1,200,000 

Heart  ~ 5,000,000 

Gelatin  ~ 3,500,000 
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Table 4.2. Comparison of simulation results for Case 4 and Case 4-fine at 20 s.   

 

As these results show, results of Case 4-fine are in good agreement with results of 

Case 4. However, the computation time in Case 4-fine is 13,986 s more than the 

computation time in Case 4 for these 20 seconds of simulated cooling process. 

 

4.4 Discussion  

 

For a better comparison, results of semi-conjugate, conjugate and fully-conjugate 

cooling systems are shown in table 4.1 at 1500 s. By comparing results of all three cases, 

it can be seen that the fully-conjugate cooling system had a better performance in cooling 

the heart within 1500 s. The minimum temperature in Case 3 was more than other cases 

including Case 1. The reason was because in Case 3 all cooling container’s walls were 

assumed to be thermally insulated.  The minimum temperature in Case 4 was the same as 

the one in Case 1.  

Table 4.3. Results of heart cooling cases at 1500 s. 

Parameter Case 4 Case 4-fine Variation  

Total number of cells ~ 4,200,000 ~ 10,900,000 ~ +6,700,000 

Minimum temperature (oC)  4.0 4.0 0 

Maximum temperature (oC) 37 37 0 

Average volumetric temperature 
(oC) 

32.40 32.46 +0.06 

Maximum von Mises stress 
(kPa) 

95.248 95.154 -0.094 

WSS (Pa) 9.243 9.290 +0.047 

Computation time (s) 1,496.24 15,482.12 +13,985.88 



83 
 

 

* Cooling with gelatin from outside (semi-conjugate) 
† Cooling with UW solution from inside (conjugate) 
‡ Cooling with gelatin from inside and outside (fully-conjugate) 

§ Cooling with gelatin from ouside and UW solution from inside (fully-conjugate) 

 

The maximum temperature in Case 4 was +5.7oC less than Case 3, +14.4oC less than 

the Case 2 and +18.7oC less than the Case 1. This is because of the higher heat removal 

capacity of the cooling Case 3 compared to the cooling Case 3, Case 2 and Case 1. The 

average volumetric temperature in Case 4 was +8.8oC (110%) less than the average 

volumetric temperature in Case 3, +4.5oC (56.25%) less than the one in Case 2, and 

+13.0oC (162.50%) less than the one in Case 1. The temperature uniformity (CV) of the 

heart in Case 4 was smaller than those in Case 1 and Case 2, and larger than the one in 

Case 3. Case 3 in which gelatin was used for both internal and external cooling had the 

best results in terms of temperature uniformity. This was mainly because of slow 

conduction cooling from both sides while all containers’ walls were insulated. In terms of 

metabolic rate reduction, it can be observed that Case 4 gave the best result. This case 

reduced the metabolic rate of the heart by 9.99%.  

 

Parameter Case 1*  Case 2†  Case 3‡ Case 4§  

Minimum temperature (oC)  +2.8 +4.0 +6.6 +2.8 

Maximum temperature (oC) +36.8 +32.5 +23.8 +18.1 

Average volumetric 
temperature (oC) 

+21.0 +12.5 +16.8 +8.0 

CV 6.4E-05 9.88E-05 4.41E-05 5.64E-05 

Metabolic rate reduction 
(%) 

76.89 89.38 84.29 92.99 
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CHAPTER V  

FULLY-CONJUGATE COOLING WITH TURBULENT FLOWS 

 

In this chapter, five fully-conjugate cooling systems will be investigated 

numerically. In these cooling systems, the heart is cooled by the UW solution flows from 

the inside and outside. The main objectives of these simulations were to study effects of 

turbulent flows, jet flows at the heart’s hot regions, and unsteady periodic inlet velocities 

in heart cooling process. In section 5.1, results of fully-conjugate cooling design (Case 5) 

in which both external and internal flows were laminar are discussed. Case 6 applies 

turbulent external flow and laminar internal flows for cooling. This case is presented in 

section 5.2. In Case 7 which is presented in section 5.3, an extra inlet was designed in 

such a way to create a jet impinging the hot spot within the heart. Sections 5.4 and 5.5 

present two cooling cases with unsteady periodic inlet velocities. In the last section 

(section 5.6), results of all cooling cases are discussed.  

 

5.1 Case 5 - UW Cooling (Laminar Internal and External Flows)  

 

For cooling systems in this chapter, the same cooling container as the one in 

previous cooling systems was used for the heart preservation (figure 3.4a). Figure 1b 

shows the designed connections and caps for pumping coolant through the pulmonic and 

systemic vessels which were the same as previous cooling cases (figure 3.4b). For 

circulating the coolant outside of the heart, two inlets with 15 mm diameter and two 

outlets with 20 mm diameter were designed on the cooling container’s walls. Inlets and 
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outlets were designed in such a manner to create fluid vortices around the heart and 

enhance the heat transfer.  

 

            a)                                                            b) 

 

            c)                                                            d) 

 

 

 

 

 

 

 

 

 

Figure 5.1. Cooling system: a) cooling container, b) connections and caps, c) inlet 1 and 

outlet 1 for external cooling, d) inlet 2 and outlet 2 for external cooling coolant. 

Outlet 2 for External
Circulation

Inlet 2 and 3 for 
External Circulation

Cap 

Connection

Inlet or Outlet for 
Internal Circulation

Inlet 1 for External 
Circulation  

Outlet 1 for External
Circulation
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As figures 5.1c and 5.1d illustrate, inlets were located on the top corner of the 

cooling container and on the opposite walls. Outlets were located on the bottom corner 

and on the opposite walls. The distance between each inlet (or outlet) center and its 

closest walls, was 20 mm. For each of the two heart internal circulation systems, two 

inlets and two outlets were incorporated to pump the coolant through the heart chambers 

which were the same as previous cooling designs (figures 3.4c and 3.4d).  

In the first fully-conjugate cooling case in this chapter (Case 5), inlet velocities 

were chosen in such manner to have the laminar flow regime in both internal and external 

coolant circulations. The same inlet velocities as previous cases (table 3.3), were also 

applied in this cooling system. Therefore, the inlet velocity of the UW solution for the 

pulmonary circulation was set to 0.4 m/s and for the systemic circulation was set to 1 m/s. 

The inlet temperature of the UW solution was also the same as the one in previous cases 

which was +4°C. The outlet pressure values were assumed to be constant and the same as 

the one applied in previous (101 kPa).  

Table 5.1 demonstrates boundary conditions for the UW solution outside of the 

heart.  In order to have laminar flow outside the heart, the UW solution was pumped with 

a very low velocity, 0.4 m/s. The inlet Reynolds number for the external circulation 

system was 1,662. Therefore, the flow around the heart was assumed to be laminar.    

     
Table 5.1. Boundary conditions for external fluid domain.  

Boundary Condition External Circulation 

Inlet velocity magnitude 0.4 m/s 

Outlet pressure 101 kPa 

Inlet coolant temperature +4°C 
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This case was simulated for a period of 3600 s of the cooling process. For 

simulations in this chapter, the same computer cluster was used. The thermo fluid 

simulation of Case 5 was run on 14 Intel (Xeon E5-2680 2.7GHz) based cores with 128 

GB memory. Total computing time for this case was 580,471 s.  

Figure 5.2a illustrates the UW solution streamlines around the heart with 

temperature distribution at 300 s. As this figure shows the maximum velocity of coolant 

was at the inlets. The minimum velocity occurred at fluid-solid interfaces due to viscous 

boundary layer of fluid. Therefore, lower velocity can be observed adjacent to the heart’s 

outermost surfaces and container walls. Heart model and its connections were added to 

this figure in red color to better demonstrate UW solution streamlines around the heart. 

Thus, its red color is not an indication for the velocity or temperature.  

    

              a)                                                                     b) 

          

Figure 5.2. UW solution streamlines (external circulation), a) temperature distribution, 

and b) velocity distribution at 300 s. 
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Figure 5.2b shows the temperature distribution of the UW solution around the 

heart at 300 s. As this figure illustrates, the maximum temperature which was +5.79°C 

occurred at the place where the fluid was in touch with the surface of the heart. It can also 

be observed that the inlet temperature (+4°C) was the minimum temperature of the 

coolant.    

Velocity and temperature distributions of the UW solution streamlines inside the 

heart pulmonary and systemic circulatory domains are shown in figure 5.3. Figure 5.3a 

illustrates that maximum velocity which was 2.24 m/s occurred in the pulmonary 

circulatory domain, right after pulmonary valve. Figure 5.3b shows that, the maximum 

temperature variation of the UW solution was +3.19oC.  

 

                a)                                                                     b) 

                   

Figure 5.3. UW solution streamlines (internal circulations), a) temperature distribution, 

and b) velocity distribution. 

 
The coolant temperature in the systemic circulatory domain was higher than the 

coolant temperature in the pulmonary circulatory domain. This was because of the lower 
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velocity of the UW solution in the systemic circulatory domain than the pulmonary 

circulatory domain which can be observed in figure 5.3a. The lower coolant velocity will 

increase the heat transfer interval between the coolant and the heart. Therefore, it will 

increase the coolant temperature. This can enhance the heat transfer process. However, 

having a lower velocity will decrease the rate of heat removed by the coolant. In this 

chapter, effects of inlet velocity on heat transfer from the heart were investigated for the 

external and internal coolant flows. 

Figure 5.4 shows the volumetric temperature distribution inside the heart at 0 s, 

300 s, 600 s, 900 s, 1500 s and 3600 s of cooling time. Figure 5.4a illustrates that the 

heart tissue’s temperature distribution at the very beginning of the cooling process when 

the heart temperature was +37°C. Figures 5.4b to figure 5.4f demonstrate the heart 

cooling process. A constant color legend from +1°C to +37°C was used to better illustrate 

the temperature variation of the heart tissue, and at the same time to be consistent with 

figures shown in previous cases. Also, this will help to better compare results of this 

cooling case with previous cooling cases. Therefore, the minimum and maximum 

temperatures of the heart are not necessarily equal to the minimal to maximal range of the 

color legend. The red color in figure 5.4 signifies the hot spots within the heart tissue. 

Figure 5.4e shows that after 1500 s of cooling, the temperature of almost all parts of the 

heart tissue was reduced to around +4°C, and only two spots within the heart had the 

temperature slightly higher than +4°C.  
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         a)                                                                        b) 
 

                            

         c)                                                                        d) 

                                   

         e)                                                                        f) 

                                 
 

Figure 5.4. Temperature distribution of the heart tissue with constant color legend:  a) 0 s, 

b) 300 s, c) 600s, d) 900 s, e) 1500 s, and f) 3600 s. 



91 
 

Since this cooling design showed a higher heat removal capacity compared to 

other cases, therefore, the cooling time was increased to 3600 s for further investigations. 

After 3600 s of cooling, the heart had the average temperature of +4°C. The minimum, 

maximum and average temperatures of the heart tissue are discussed separately in this 

section. 

To better illustrate the locations of the heart tissue’s hot spots, the heart was sliced 

at different planes and at different angles using ParaView visualizer software. Figure 5.5a 

and 5.5b demonstrate the distribution of heart tissue’s temperature at 300 s for two 

different cut-away views. Figure 5.5a illustrates a large hot spot located above the right 

ventricle, and on the right side of the right atrium.  

 

                 a)                                                                     b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5. Temperature distribution at 300 s: a) 1st cut-away view, b) 2nd cut-away 

view.  

The cut-away view shown in Figure 5.5b, discloses two more hot spots; one is 

located on the left side of the left ventricle, and the other is located on the right side of the 

Right atrium  

Right ventricle  

Left atrium  

Left ventricle
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left atrium. Thus, these three hot spots will take longer to cool compared to the rest of the 

heart tissue. The same hot spots were observed in Case 4 (figure 4.8).  

To further reveal the temperature variations inside the heart during the cooling 

process, the maximum, minimum and average volumetric temperatures of heart tissue are 

shown in figure 5.6. As this figure shows, variation of the minimum temperature is not 

significant. The heart temperature will begin to decrease as soon as the coolant begins to 

touch the inner and outer heart surfaces. Since the UW solution inlet temperature is 

constant (+4°C) and has its minimum temperature at the beginning of cooling, the 

minimum temperature of the heart will not change noticeably over time. The minimum 

temperature of the heart was +4°C after 1500 s of cooling and +3.9°C after 3600 s. These 

minimum temperatures indicate that the suggested cooling system was successful in 

avoiding possible tissue damages due to a temperature less than +4°C.  

The maximum temperature was decreased by +25.0°C, i.e., from +37.0°C to 

+12.0°C after 1500 s. The maximum temperature reached to 4.5°C after 3600 s. The 

average volumetric temperature of the whole heart was calculated and is also shown in 

figure 5.6. The average volumetric temperature was reduced by +32.0°C, i.e., from 

+37.0°C to +5.0°C after 1500 s. The average volumetric temperature was +4°C after 

3600 s.  
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Figure 5.6. Temperature variations (maximum, minimum and average volumetric 

temperatures of the heart vs. time). 

 

Figure 5.7 shows variations of cooling rates by time for the maximum, minimum 

and the average volumetric temperatures of heart on a logarithmic scale.  

 

           
Figure 5.7.  Cooling rate vs. time (logarithmic scale). 
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As this figure shows, the cooling rate for average volume temperature starts at 

0.247°C/s and gradually decreases to 0.0017°C/s at 1500 s and to 5.0E-5°C/s at 3600 s. 

The cooling rate of the minimum temperature was very high initially (31.1°C/s), but 

decreased rapidly after a few seconds and became less than 0.001°C/s after 100 s. The 

maximum temperature started to decrease with an almost zero cooling rate, i.e., it did not 

cool at the beginning. Then, the cooling rate of the maximum temperature started to 

increase gradually and reached to its maximum value of 0.0261°C/s at 480 s.  

The coefficient of variation of volumetric temperature (equation. 3.1) is shown in 

figure 5.8. The maximal value of CV was 1.45E-04, which occurred at 240 s. As this 

figure demonstrates, the non-uniformity of the average volumetric temperature increased 

until 240 s and then started to decrease gradually to 3.41E-5 at 1500 s and to 1.77E-6 at 

3600 s. Therefore, the non-uniformity was decreased 4.25 times at 1500 s compared to its 

maximum at 240 s. At 3600 s, CV was decreased 81.92 times compared to the maximum. 

 

 
Figure 5.8. Coefficient of variation of volumetric temperature vs. time. 

 

0.0E+00

2.0E‐05

4.0E‐05

6.0E‐05

8.0E‐05

1.0E‐04

1.2E‐04

1.4E‐04

1.6E‐04

0 450 900 1350 1800 2250 2700 3150 3600

C
V

Time (s)



95 
 

Rate of metabolic rate reduction was calculated by using equation 1.1. The 

percentage of this metabolic rate reduction was shown in figure 5.9. As this figure 

demonstrates, after 450 s of cooling, metabolic rate was reduced by 90%. Then, the 

reduction rate of metabolic rate slowed down rapidly. The metabolic rate reduction at 

1040 s was 94.02%. Variations of metabolic rate reduction after 1040 s were almost 

negligible. The reduction of metabolic rate at 1500 s was 94.68% and at 3600 s was 

95.13%. 

 
 
Figure 5.9. Percentage of metabolic rate reduction vs. time. 

 

The stress analysis was performed by using the data obtained by the thermo fluid 

analysis results. However, since the same boundary and initial boundary condition were 

used for fluid flow inside the heart, the same results were obtained for the maximum von 

Mises and WSS inside the heart as those presented in chapter IV, section 4.2.2.  
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5.2 Case 6 - UW Cooling (Laminar Internal and Turbulent External Flows)  

 

The main objective of simulating the fully-conjugate cooling Case 6, was to study 

effects of coolant flow rate and turbulent flow regime in enhancing heat transfer from the 

heart. Except internal velocities for external circulation, all parameters and boundary 

conditions were kept the same as those in the previous case. In this case, the inlet velocity 

of the UW solution for the external circulation was increased to 1 m/s. Therefore, the 

value of the Reynolds number at inlets of the external circulation increased to 4,155.35. 

This value indicates that the flow regime around the heart was turbulent. Thus, the k    

turbulent model explained in section 2.1.1.2 was applied to simulate turbulence effects.  

This simulation was also run on 16 Intel (Xeon E5-2680 2.7GHz) based cores 

with 128 GB memory. Total computing time was 601,230 s for 3600 s of cooling 

simulation. It should be noticed that, in this case governing equations included two 

additional equations for the k    turbulent model. This increased the computing time.     

Figure 5.10 shows external circulations streamlines with velocity and temperature 

distributions at 300 s. As figure 5.10a illustrates the maximum velocity of coolant was 1 

m/s, which was located at the inlet. This figure also illustrates more vortices around the 

heart compared to the first case (figure 5.2). Figure 5.10b shows that the maximum 

temperature of the UW solution around the heart was +5.92°C, which is slightly higher 

than the one in Case 5 (+5.79°C). However, as this figure shows, the distribution of 

temperature in this case was different than in Case 5 (figure 5.2b).  
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             a)                                                                     b) 

         

Figure 5.10. UW solution streamlines (external circulation), a) temperature distribution, 

and b) velocity distribution at 300 s. 

 

Figure 5.11 demonstrates coolant streamlines for internal circulation systems. 

Since the boundary conditions of internal flows were not changed, almost the same 

results were obtained compared to Case 5 (figure 5.3).   

 

                a)                                                                     b) 

                    

Figure 5.11. UW solution streamlines (internal circulations), a) temperature distribution, 

and b) velocity distribution. 
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Figure 5.12. Temperature variations (maximum, minimum and average volumetric 

temperatures of the heart vs. time). 

 

 
Figure 5.13. Cooling rate vs. time (logarithmic scale). 
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cases are almost negligible.  Cooling rates of the maximum, minimum and average 

volumetric temperatures are shown in figure 5.13. By comparing these results with those 

shown in figure 5.7, negligible differences can be detected.  

 

 
Figure 5.14. Coefficient of variation of volumetric temperature vs. time. 

 

 

 
Figure 5.15. Percentage of metabolic rate reduction vs. time. 
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The coefficient of variation of temperature is shown in figure 5.14. Again, 

negligible variations between these results and the results of Case 5 (figure 5.8) can be 

observed.  The percentage of metabolic rate reduction in this case, which is shown in 

figure 5.15, also demonstrates almost the same result as the first case (figure 5.9).  

 

5.3 Case 7 - UW Cooling (Laminar Internal and Turbulent External Flows)  

  

The main objective of the simulation in this section was to create a UW solution 

jet flow right on the external surface of one of the hot spots (figure 5.5a), and study its 

effects in cooling the hot spot of the heart tissue. A jet flow will increase the convection 

heat transfer coefficient of the UW solution flow around the heart, and it can enhance the 

heat transfer from the heart.  

Figure 5.16 shows the new cooling container with all inlets and outlets for 

external circulation system. Inlet 2 shown in figure 5.16b, was designed in such manner 

to create a jet on the external surface of the hot spot located above the right ventricle and 

on the right side of the right atrium (figure 5.5a). Total computing time for this case was 

602,012 s for cooling simulation of 3600 s.  

UW solution streamlines with velocity and temperature distributions are shown in 

figure 5.17. Figure 5.17a shows three jet flows in the cooling container. The maximum 

velocity of 1.04 m/s occurs at the outlets which was more than the inlet velocity (1 m/s). 

This was because of the extra inlet (inlet 3) which increases the total flow rate and 

velocity of the coolant at outlets to satisfy the conservation of mass law.  
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            a)                                                                   b) 

 

 

 
 
 
 
 
 
 
 
 
 
                                    a)                                                                   b) 
 

 

 

 

Figure 5.16. Cooling system: a) inlet 1 and outlet 1, b) inlet 2, inlet 3 and outlet 2 for the 

external cooling circulation. 

 

To better illustrate the jet flow on the hot spot, the heart and UW solution 

streamlines were cut at the hot spot. Color of heart in figure 5.17c and 5.17d indicates the 

temperature field inside the heart at 300 s. Figure 5.17c clearly shows the jet flow on the 

external surface of the hot spot. In figure 5.17d, streamlines on the external surface of the 

hot spot are not distinguishable due do negligible temperature difference between the 

heart external surface and UW solution streamlines.      

Streamlines of internal flows inside the heart pulmonary and systemic circulatory 

domains are shown in figure 5.18. Boundary conditions for internal flow were not 

changed. Therefore, results obtained for velocity and temperature distributions of the UW 

solution within the heart were almost the same as those in Case 5 and Case 6.  
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             a)                                                                     b) 

       

           
             c)                                                                     d) 

           

Figure 5.17. UW solution streamlines (external circulation), a) temperature distribution, 

and b) velocity distribution, c) cut-way view of temperature field, and d) cut-way view of 

velocity field at 300 s. 
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                a)                                                                     b) 

                                           

Figure 5.18. UW solution streamlines (internal circulations), a) temperature distribution, 

and b) velocity distribution. 

  
Figure 5.19 demonstrates the maximum, minimum, average volumetric 

temperature and their cooling rates during 3600 s of cooling. As this figure shows, there 

was no significant enhancement in cooling of the heart using the fully-conjugate cooling 

Case 7. Figures 19, 20, 21 and 22 show temperature variations, cooling rate variations, 

CV of the average volumetric temperature, and metabolic rate reduction, respectively. As 

these figures illustrate results of temperature non-uniformity, metabolic reduction rate 

and maximum von Mises stress were almost the same as those in fully-conjugate Case 5 

and Case 6.  
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Figure 5.19. Temperature variations (maximum, minimum and average volumetric 

temperatures of the heart vs. time). 

 

 
Figure 5.20. Cooling rate vs. time (logarithmic scale). 
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Figure 5.21. Coefficient of variation of volumetric temperature vs. time. 

 

 
Figure 5.22. Percentage of metabolic rate reduction vs. time. 
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for simulations presented in this section. Each of the four side walls had one inlet at its 

top right corner and one outlet at its bottom left corner. Figure 5.23 shows positions of 

inlets and outlets. Diameters of inlets and outlets were kept the same as in the previous 

cooling designs. 

 

                  a)                                                         b) 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5.23. External cooling system: a) inlet 1 & 2 and outlet 1 & 2, b) inlet 3 & 4 and 

outlet 3 & 4 for external cooling. 

 
For unsteady periodic inlet velocities a sine function was used as follow 

   0 0V V V sin(2 )in f t                                                                                              (5.1) 
 

where, f is the frequency and V0 is the magnitude of inlet velocity. The average 

magnitudes of inlet velocities for the internal and external circulations were kept the 

same as those in previous cases. Two relatively high frequencies (1 Hz and 2 Hz) were 

chosen to study the flow frequency effect on the heart cooling. Figure 5.24 shows inlet 
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Inlet 2 
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velocity profile for the two unsteady cooling cases, where inlet velocity magnitude was 1 

m/s (V0 = 1 m/s). For such inlets, the maximum and minimum velocities were 2 m/s and 

0 m/s, respectively. As this figure illustrates, during a time period of 1 s, the inlet velocity 

in Case 8 had one complete cycle. For Case 9, inlet velocity had two complete cycles per 

1 s period.   

 

 
Figure 5.24. Inlet velocity profile for Case 8 and Case 9 vs. time (V0 = 1 m/s). 

 

The maximum inlet Re numbers in Case 8 and Case 9 were double those in 

previous cases. Thus, the flow pattern for both internal and external circulations was 

assumed to be turbulent. Simulation results of unsteady Case 8 and Case 9 are presented 

separately in the following two sections. Based on the results of previous cases, it can be 

concluded that the major reduction in the average volumetric temperature of the heart 

occurred within 1500 s of cooling time. For this reason, unsteady Case 8 and Case 9 were 

simulated for 1500 s. Case 8 and Case 9 required smaller time steps due to their unsteady 

inlet velocities. Also, for these two cases more iterations were needed at each time steps. 
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Total computing time for Case 8 was 346,924, and for case 9 was 411,145 for 1500 s of 

simulation.  

 

5.5 Case 8 - UW Cooling (Turbulent Internal and External Flows)   

 

Figure 5.25 shows the thermo-fluid simulation results for the unsteady external 

flow circulation at 300 s. More flow vortices around the heart can be observed compared 

to the steady cases. Temperature variation in external flow streamlines is slightly 

different than in previous cases.    

 

             a)                                                                     b) 

          
 

Figure 5.25. UW solution streamlines (external circulation), a) temperature distribution, 

and b) velocity distribution at 300 s. 

 
The temperature distributions of internal flow circulations are shown in figure 

5.26a. The maximum temperature in this cooling design was +0.15oC less than in Case 5, 
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+1.12oC and +0.77oC higher than in cooling Case 6 and Case 7, respectively. The 

maximum velocity of the internal flow was 2.3 m/s (figure 5.26b) which was very close 

to the values in the previous cases.     

 

                a)                                                                     b) 

            
Figure 5.26. UW solution streamlines (internal circulations), a) temperature distribution, 

and b) velocity distribution. 

 
Figure 5.27 shows temperature and cooling rate variations during 25 min of 

cooling. The average temperature at 180 s was around 0.8oC less than in Case 5, Case 6 

and Case 7. After 180 s, these values started to decrease and reached only 0.1oC after 

1500 s. Figure 5.28 illustrates the cooling rate for the maximum, minimum and average 

volume temperatures. Variations between these results and those from previous (steady) 

cases were negligible. The maximum value of von Mises stress was 100.49 kPa at 80 s 

which was less than in previous cases. Then, it decreased to 100.4 kPa at 100 s and 

remained almost constant throughout the cooling time.     
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Figure 5.27. Temperature variations (maximum, minimum and average volumetric 

temperatures of the heart vs. time). 

 

 

Figure 5.28.  Cooling rate vs. time (logarithmic scale). 
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5.6 Case 9 - UW Cooling (Turbulent Internal and External Flows)  

 

The simulation results of the unsteady Case 9 in which the frequency of inlet 

velocity was 2 Hz are shown in this section. The velocity distribution shown in figure 

5.29a reveals higher velocities near the top surface of the cooling container. Temperature 

variation shows almost the same values as in the previous cases. 

 
             a)                                                                     b) 

          
 

Figure 5.29. UW solution streamlines (external circulation), a) temperature distribution, 

and b) velocity distribution at 300 s. 

 
Figure 5.30 shows the temperature and velocity distributions for the internal flow 

circulations for Case 9. The maximum temperature was +0.37oC less than in Case 8. 

However, larger temperatures can be observed in most regions compared to figure 5.26a. 

The maximum internal flow velocity was slightly lower than in Case 8. The velocity 

distribution was almost the same as in the unsteady Case 8. 



112 
 

                a)                                                                     b) 

              
 

Figure 5.30. UW solution streamlines (internal circulations), a) temperature distribution, 

and b) velocity distribution. 

 
Temperature and cooling rate variations versus time are shown in figure 31. The 

average volumetric temperature in this case was +0.04oC less than in Case 8 at 1500 s. 

This difference started to decrease as cooling process proceeded. At 180 s, Tave of this 

case was only 0.001oC less than in Case 5. From figure 32, very similar cooling rates can 

be observed compared to figure 18b. The maximum von Mises stress in this case was 

101.45 kPa at 20 s. Then, it decreased to 101.3 kPa at 320 s and remained almost constant 

for the rest of the cooling period.     
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Figure 5.31. Temperature variations (maximum, minimum and average volumetric 

temperatures of the heart vs. time). 

 

 
Figure 5.32.  Cooling rate vs. time (logarithmic scale). 
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5.7 Discussions  

 

Table 5.2 shows results of all fully-conjugate cooling cases presented in this 

chapter at 1500 s. By comparing results of fully-conjugate Case 5 (table 5.2) with results 

of the fully-conjugate Case 4 (table 4.1) in which gelatin was used for external cooling 

and UW was used for internal cooling, a significant enhancement can be observed in 

terms of temperature reduction of the heart. 

 

Table 5.2. Results of all heart cooling cases at 1500 s. 

 

Minimum temperatures in all five cases presented in this chapter were desirably 

the same as the minimum allowable temperature (+4°C). In terms of temperature 

uniformity, all five cases had very small coefficient of variations (CV) with the same 

order of magnitude. Fully-conjugate Case 5 showed 1.68% more reduction in metabolic 

rate compared to the conjugate Case 4 (table 4.1) at 1500 s. By comparing results of the 

five cooling cases in table 5.1, it can be observed that no major enhancements were 

obtained by using Case 6, Case 7, Case 8 or Case 9 instead of Case 5. The total UW inlet 

Parameter Case 5 Case 6 Case 7 Case 8 Case 9 

Minimum temperature (oC)  4.0 4.0 4.0 4.0 4.0 

Maximum temperature (oC) 12.1 12.0 11.9 11.7 11.7 

Average volumetric 
temperature (oC) 

5.0 5.0 4.9 4.9 4.9 

CV 6.38E-05 6.51E-05 6.22E-05 6.31E-05 6.25E-05 

Metabolic rate reduction (%) 94.67 94.67 94.72 94.72 94.72 

Average flow rate for 
external circulation (L/min) 

8.48 21.21 31.82 42.42 42.42 
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flow rates for external flow circulation are also shown in this table. It can be seen that the 

required average inlet flow rate in Case 8 and 9 were 5 times more than in Case 5, 2 times 

more than in Case 6 and 1.3 time more than in Case 7. This will increase the required 

pumping power as well as the size of the entire cooling package.  

Base on the convection heat transfer equation (equation 4.1), by increasing convh , 

convection heat transfer, convq , will increase in cases where A , sT  and fT  remain 

constant. By adding the third inlet in Case 6, convh was enhanced in the region above the 

hot spot. This helped removing the heat faster from the heart at the beginning of the 

cooling when s fT T  was larger. As cooling proceeded, the value of s fT T  decreased 

rapidly. Thus, effect of convh  was decreased drastically, and conduction heat transfer 

within the heart tissue became the major limiting factor in the cooling process. In such 

cases, the cooling systems are able to keep the entire boundary surfaces of the heart in the 

desired minimum temperature. This will be the optimal cooling design with the objective 

of cooling the heart as fast as possible. The cooling time in such cases will only depend 

on the thermal diffusivity of the heart tissue. In the next chapter, multi-objective 

optimizations are performed in order to find the optimal cooling system with the 

minimum coolant flow rate, maximum cooling capacity and minimum stresses. 

 
 
 
 
 
 
 
 

 



116 
 

CHAPTER VI  

OPTIMIZATION 

 

In this chapter a multi-objective optimization will be performed for the fully-

conjugate cooling Case 5. Optimization methodology, design variables and objectives are 

presented in section 6.1. Results and discussion are presented in section 6.2.  

 

6.1 Optimization Methodology   

 

Optimization of heart cooling design was carried out using modeFRONTIER 

optimization software [103]. Cooling Case 5 was used as the basic design for the 

optimization study. Therefore, each circulation domain (pulmonary circulation, systemic 

circulation and external circulation) had two inlets and two outlets. From the results 

presented in chapter 3, 4 and 5 it can be concluded that the major reduction in heart’s 

temperature and metabolic rate occurred within 1040 s of cooling. Therefore, 1040 s was 

chosen as the time interval for optimization. In other words, the goal is to find the optimal 

cooling design within 1040 s. Since results of Case 8 and Case 9 showed negligible 

enhancements, thus, all inlet velocities were assumed to be constant. Inlet velocities were 

chosen as design variables for optimization. The following are the three design variables 

 
1) Inlet velocity of UW for pulmonary circulation system 

2) Inlet velocity of UW for systemic circulation system 

3) Inlet velocity of UW for external circulation system 
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These design variables are randomly varied to generate unique cooling cases. 

Based on inlet Reynolds numbers, the flow pattern could be laminar or turbulent. Then, 

these unique random cases were imported to modeFRONTIER to generate multi-

dimensional response surfaces to interpolate multivariate scattered data and decrease the 

computing time significantly. Response Surface Methodology (RSM) was implemented 

using Gaussian Radial Basis Function (GRBF) [103] (see Appendix 1 for more 

information about GRBF’s parameters in modeFRONTIER). 

 Multi-objective Genetic Algorithm II (NSGA-II) developed by Deb et al. [104, 

105], was chosen to perform optimization. The three simultaneous objectives of the 

optimization study were 

 
1) Minimize the average volumetric temperature of the heart  

2) Minimize WSS 

2) Minimize total amount of the required volumetric flow rate of UW  

 
By minimizing the required volumetric flow rate of UW, the required pumping 

power as well as the size of the entire cooling package will be minimized. The only 

constraint in this study was to keep all stresses, including von Mises stresses, below the 

ultimate tensile stress of the heart tissue.  

Abdoli and Dulikravich [106, 107] demonstrated that Gaussian Radial Basis 

Function (GRBF) method gives more accurate results in comparison to other response 

surface methods. Then, this GRBF was coupled to NSGA-II multi-objective optimization 

algorithm in modeFRONTIER software in order to perform the optimization.  
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6.2 Results and Discussion 

 

Table 6.1 shows the range of design variables. Based on the results shown in 

Chapter V, additional inlets for external flow circulation did not enhance the cooling 

process. Thus, the maximum velocity for inlet external circulation was set 1 m/s. In 

previous cases, the inlet velocities magnitudes for internal circulations were constant. 

Therefore, for optimization study the maximum values for the heart pulmonary and 

systemic circulations were set to 1.2 m/s and 2 m/s, respectively. This way, effects of 

larger velocities in internal cooling will be examined. It should be mentioned that inlet 

velocities higher than those shown in table 6.1 resulted in very large velocities, especially 

near the heart’s valves.  

 

Table 6.1 Design variable ranges.  

Design Variables 
Heart Pulmonary 

Circulation 
Heart Systemic 

Circulation 
External 

Circulation 
Inlet velocity 
magnitude (m/s) 

0.1-1.2   0.1-2 0.1-1 

 

Thirty random unique cases were generated and simulated using the same 

numerical package as the one in previous cases. Then, these thirty cases were imported to 

modeFRONTIER software to construct a 7-dimentional response surface. This multi-

dimensional response surface will be used by the optimizer algorithm to evaluate new 

virtual design candidates. Response surfaces are mainly used in studies where evaluations 

of new designs are expensive. This applies for both computational and experimental 

studies. Since simulations in this research are costly, response surfaces was adopted for 
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evaluating new cooling cases. Therefore, these new cases are called “virtual”. In the next 

step, optimizer will search for the best virtual designs so called virtual “Pareto” optimal 

designs. For better understanding of the overall logic of the software system created, 

figure 6.1 depicts connections and information flow in the design system used in this 

research. As this figure shows, virtual Pareto designs will be validated by using the 

analysis package. The validated virtual Pareto designs then called “real” Pareto designs.    

 

 
 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.1. Flow chart showing how different software modules were linked together to 

generate virtual and real Pareto frontiers.   
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Figure 6.2 shows the optimization work flow designed in modeFROTIER. As it 

can be seen, three inlet velocities; “V_External”, “V_Pulmonary” and “V_Systemic” are 

the three input design variables in this work flow. Outputs are; total volumetric flow rate 

(Q), Stress, Tave and WSS. It can be observed that total volumetric flow rate, Tave and 

WSS were set to be minimized by the optimizer. A constraint was applied on stress 

output. As it was mentioned in the previous section, NSGA-II was used as the 

optimization method. Design of experiment (DOE) will enable the user to add virtual 

initial designs in cases where the number of initial designs are not enough or not 

uniformly distributed.    

 

 

Figure 6.2. Optimization work flow in modeFRONTIER. 
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Figure 6.3 illustrates the variations of two objectives; Tave versus WSS. Initial 

cooling cases (initial population), virtual Pareto and real Pareto design are shown in this 

figure. Initial cases are shown in blue diamonds. It can be seen that by cooling cases with 

Tave less than close to +6oC had larger WSS. This was because of higher UW flow rates 

in these cases. The virtual Pareto designs obtained from optimization are illustrated by 

green circles. Six of these virtual Pareto were chosen (shown in red deltas) to be validated 

by analysis package and named “Real Pareto”. As this figure shows these real Pareto 

designs are in good agreement with the selected virtual Pareto designs. One can choose 

one of these real Pareto optimal cooling designs based on their interest and design 

limitations. In this research, Pareto #4 was chosen as the best optimal cooling design. 

One can chose any of these Pareto designs based on their interest.  

 

Figure 6.3. Average temperature vs. WSS for initial population, virtual Pareto, and real 

Pareto optimal designs. 
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Pareto #4 was selected in this research, mainly due to its lower requirement for 

the total volumetric flow rate. This would also reduce the required pumping power and 

the size of cooling package as well. Figure 6.4 shows Tave versus total volumetric flow 

rate. Again, real Pareto designs were in good agreement with virtual Pareto designs.  

 

Figure 6.4. Average temperature vs. total volumetric flow rate for initial population, 

virtual Pareto, and real Pareto optimal designs. 

 
Variations of WSS versus total volumetric flow rate are shown in figure 6.5. It 

can be observed that by increasing the total volumetric flow rate WSS increases. 

However, there are cases that have higher total flow rates and lower WSS. This was 

because in these cases external circulation had higher flow rate than internal circulations. 

For better illustration, Tave versus WSS versus total volumetric flow rate is shown in 

figure 6.6.   
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Figure 6.5. WSS vs. volumetric flow rate for initial population, virtual Pareto, and real 

Pareto optimal designs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6. Average temperature vs.WSS vs. volumetric flow rate for initial population, 

virtual Pareto, and real Pareto optimal designs. 

0

10

20

30

40

50

60

70

80

90

100

0 10000 20000 30000 40000 50000

W
S

S
 (

P
a)

Total Volumetric Flow Rate (ml/min)

Initial Population

Virtual Pareto

Real Pareto

Pareto #4

Total Volumetric Flow Rate (ml/min)

WSS (Pa) 

Tav

e 
(o

Pareto #4 



124 
 

Specifications of Pareto design #4 is demonstrated in table 3. It can be seen that 

inlet velocity magnitude in heart systemic circulation was 6 times more than pulmonary 

circulation and 3 times more than the external circulation. Table 6.3 demonstrates the 

output parameters for Pareto #4. The average temperature of the heart in this case was 

+6.8oC at 1040 s. WSS has a very desirable value of 3.85 Pa. Table 6.4 shows the average 

error between selected virtual Pareto and real Pareto designs. The average error for Tave 

was 4.5%, for WSS was 6.2% and for the total volumetric flow rate was 3.9%. 

 

Table 6.2. Specifications of Pareto #4. 

Design Variables 
Heart Pulmonary 

Circulation 
Heart Systemic 

Circulation 
External 

Circulation 
Inlet velocity 
magnitude (m/s) 

0.1   0.6 0.2 

 
 

Table 6.3. Output parameters for Pareto #4. 

Objectives Tave (
oC) WSS (Pa) 

Total Volumetric Flow Rate 
(ml/min) 

Values 6.8   3.85 7,322.1 

 

Table 6.4. Average error. 

Objectives Tave  WSS  Total Volumetric Flow Rate 

Error (%) 4.5   6.2 3.9 
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CHAPTER VII  

CONCLUSION 

 

In section 7.1, a summary of dissertation is presented. In the last section, 

suggestions for future studies are presented.     

 

7.1 Summary of Dissertation   

 

In this dissertation a cooling container was numerically designed for human heart 

preservation destined for transplantation. The objectives of this research were to cool the 

heart as fast and uniformly as possible, while keeping all thermal and shear stresses 

below their maximum allowable values. Thus, several conceptually different cooling 

methods were implemented to compare their capacity in achieving the objectives of this 

study. This research was a computational study in which a high resolution 3-D heart 

geometry obtained from CT-angio data was used for all simulations. Multi-domain 

unsteady conjugate heat transfer analysis was performed to simulate the variation of the 

temperature field within the heart’s tissue during different cooling processes. Also, a 

linear stress analysis was performed simultaneously to calculate the stresses applied on 

the heart via different cooling systems. All simulations were carried out using 

OpenFOAM software platform. Four computational domains in this study were: the heart 

domain, the right pulmonary circulation domain, the left systemic circulation and the 

external domain for the region between the heart and the cooling container.  
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Nine different cooling cases were proposed for cooling of the heart. The UW 

solution and gelatin gel were used as the two cooling medium in this research. In the first 

cooling design (Case 1), the heart was submerged in the cold gelatin. Thus, only external 

surfaces of the heart were in touch with the cold medium. In this case, the average 

temperature of the heart was +21.0oC after 1500 s of cooling time. This design was 

named “semi-conjugate” case, since the heart was cooled via one computational domain 

(the external domain). Cooling Case 2 uses the UW solution for internal cooling. The 

UW solution was pumped inside the heart through its major veins. Two inlets and two 

outlets were designed for each of the right pulmonary and the left systemic circulations. 

Flow pattern was laminar in this case. The average temperature of the heart in this 

cooling design was +12.5oC at 1500 s. This showed that internal liquid cooling was 

40.5% better than external gelatin cooling. This design was named “conjugate” case, 

since it used two internal domains for the heart cooling. The next cooling design (Case 3) 

applied cold gelatin for both internal and external cooling. The average temperature of 

the heart in Case 3 was +16.8oC 1500 s. Cooling Case 4 was a combination of Case 1 and 

Case 2. In this case the heart was cooled via gelatin from the outside and the UW solution 

from the inside. This cooling case decreased the average temperature of the heart from 

+37oC to +8.0oC after 1500 s. This design was named “fully-conjugate” case, since it 

used all three internal and external domains for cooling of the heart.  

Based on the previous cases results, cold gelatin was not as effective as the UW 

solution in removing the heat. In other words, conduction heat transfer was not as 

effective as convection heat transfer. This was mainly due to the very low thermal 

diffusivity of the gelatin. In the next cooling design (Case 5), the UW solution was used 
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for both internal and external cooling. This cooling case was able to reduce the average 

temperature of the heart from +37oC to +5.0oC after 1500 s. In the next cooling design 

(Case 6), effects of external turbulent flow on cooling process were simulated. An 

additional inlet was designed in Case 7. The objective was to examine the effect of the 

UW jet impinging the heart’s hot spot to enhance heat transfer. The last two cases (Case 

8 and Case 9), were applied unsteady periodic inlet velocities for internal and external 

cooling. The frequencies for the sinusoidal inlet velocities in Case 8 and Case 9 were 1 

Hz and 2 Hz, respectively. Results of the last four cases showed that the effects of 

turbulence flow, the UW jet flow and periodic inlet velocities were insignificant in 

enhancing the heat transfer from the heart.  

In the last part of this research, a multi-objective constrained optimization was 

performed for cooling Case 5. The inlet velocities of three domains were the three design 

variables. The flow pattern could be laminar or turbulent based on the inlet Reynolds 

numbers. Minimizing the average temperature of the heart within 1500 s, minimizing the 

total volumetric flow rate of the UW solution and minimizing the wall shear stresses were 

the three objectives of optimization. The only constraint was to keep all other stresses 

including von Mises stress below the ultimate tensile stress of the heart’s tissue. One of 

the optimal designs, Pareto #4, was able to reduce the average temperature of the heart 

from +37oC to +6.8oC within 1040 s, while creating the WSS of 3.85 Pa. Total flow rate 

of the UW solution in this design was 7,322.1 ml/min.   

 

 



128 
 

7.2 Future Work 

 

The following items are the suggestions for the future work in this field: 

 

1) Researchers should use a more detailed human heart geometry which 

includes coronary arteries and cardiac veins. This way the coolant can be 

perfused within these veins and help to cool the heat walls faster. Also, the 

use of a model which differentiates between heart tissues such as: vascular 

muscle and fat tissues.   

2) For the cooling container, the number of inlets and outlets can be increased 

from two to three or four to enhance the heat transfer. The optimal number of 

inlets and outlets can be determined by an optimization study.  

3) Non-linear stress analysis can be performed to get a better understanding of 

stress distribution within the anisotropic heart’s tissue. Buoyancy force can 

also be included into the conjugate heat transfer governing equations. 

4) Electrophysiology system of the heart can also be studied during the cooling 

process. It would be interesting to investigate the effect of temperature 

variation on the heart’s electrophysiology system.   

5) As the heart rate decreases the diastolic Ca2+ continues to rise so relaxation 

is markedly reduced. Moreover, emission of ROS/RNS increases as a 

function of cooling. The high Ca2+ and the ROS/RNS have negative effect 

on the heart, even though protection against IR injury is improved by 

hypothermia [22]. One can incorporate the Ca2+ and ROS/RNS temperature 
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based equations into the thermo-fluid equation to monitor their variation 

based on temperature.  

6) Rewarming process of the cooled heart can also be simulated to find the best 

method to increase the average temperature of the heart safely.  

7) This numerical package can simply be applied for normothermic preservation 

of the heart and for the re-warming of the heart. It can also be applied for 

simulating the cooling process of different organs.    

8) Pareto #4 design parameters can be used to perform an experimental study 

for the human heart cooling. 
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Appendix 1 - Gaussian Radial Basis Function’s parameters in modeFRONTIER 
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Some parameters must be defined for this algorithm [103]:  

 

Training set: the designs set for Radial Basis Functions training. It is possible to choose 

between All Designs database and Only Marked Designs.  

 

Exclude Error Designs: if selected, the algorithm discards those designs which present 

errors in one or more unselected variables (whether input or output). Designs which 

present errors in one or more selected variables are already automatically excluded from 

training.  

 

Radial Functions: five different radial functions are available: Gaussians (G), Duchon's 

Polyharmonic Splines (PS), Hardy's MultiQuadrics (MQ), Inverse MultiQuadrics (IMQ), 

and Wendland's Compactly Supported (W2).  

 

Scaling Policy: the Automatic selection will let the algorithm to choose the proper scaling 

parameter value by means of minimization of the rms leave-one-out error (which costs -at 

most- ten repeated training of the RSM). On the contrary, if the User Defined choice is 

selected, the user has to define manually the value of the scaling parameter.  

 

Maximum number of optimization steps: this field is significant if and only if the 

Automatic choice is selected, and defines the maximum number of attempts allowed for 

automatically tuning the scaling parameter. Whenever the optimization cannot start due 

to an ill-conditioned database, the algorithm will switch to a random search for a 
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successful scaling value. This routine will be allowed to try at most a number of values 

equal to 10 times the number specified in this field.  

 

Scaling Parameter: this field is significant if and only if the User Defined choice is 

selected, and defines the value of the scaling parameter.  

 

Compute Leave-One-Out Errors: if this parameter is not selected, the computation of 

LOO errors will be skipped. Although this computation does not involve new linear 

system solutions, the time it may require increases more than linearly with respect to the 

training database size. If the Automatic Scaling Policy is selected, LOO errors are always 

computed.  

 

Disable the robust Fail-Safe mode: if this parameter is selected, the training will not be 

done in the robust (but time consuming) fail-safe mode whenever the algorithm cannot 

finish the run in the regular way (for example, when the linear system is ill-conditioned). 

If the user-defined Scaling Policy is selected, the training will be interrupted in case of 

failures. Otherwise, if the automatic policy is running, the algorithm will sample new 

scaling values according to different criteria depending on the step in which the failure 

occurs. In case of problems occurring at the first attempt, the optimization cannot start 

and the algorithm will randomly try to generate at least one feasible scaling parameter. In 

case of problems occurring when the optimization is already under way, then the 

unfeasible value will be penalized and the routine will continue. In any case, the 
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maximum number of sampled scaling parameters is controlled by the "Maximum number 

of optimization steps" parameter, as described above.  

 

Variables Normalization: if Enabled (suggested default choice), input and output 

variables are normalized within the unitary interval. In this way the algorithm can deal 

also with different scaled variables. The Disabled option should be reserved only for 

cases in which variables have the same nature and the same scale.  

 

Multi-threading Policy: it is possible to choose between two different policies: Use 

Maximum Number of Available Processors or User Defined. In fact the resolution of the 

linear systems involved in the training be carried out in parallel: in this way it is possible 

to take advantage of multi-core systems, reducing the total training time of the algorithm.  

 

Number of Threads: this field is active only when the Multi-threading Policy is User 

Defined. This parameter determines the number of threads that will be used in 

multithreading training. The upper limit is automatically fixed to the number of 

processors/cores available on the local machine.  

 

Save Leave-One-Out Errors File to Directory: it is possible to save the leave-one-out 

errors and values to a file, either in xls or in txt format. By pressing the File icon it is 

possible to choose the destination directory where the file will be created, and the file 

type.  
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File Name Prefix: if the leave-one-out errors are saved to a file, with this field it is 

possible to choose a prefix for the file name. A progressive number will be set 

automatically as the suffix of the file name.  
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