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ABSTRACT OF THE DISSERTATION 

PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-γ COACTIVATOR 1-

α (PPARGC1A) GENETIC ASSOCIATIONS WITH TYPE 2 DIABETES IN THREE 

ETHNICITIES 

by 

Amanpreet K. Cheema 

Florida International University, 2014 

Miami, Florida 

Professor Fatma G. Huffman, Major Professor 

Genetic heterogeneity, lifestyle factors, gene-gene or gene-environment interactions 

are the determinants of T2D which puts Hispanics and populations with African 

ancestry at higher risk of developing T2D. In this dissertation, the genetic associations 

of PPARGC1A polymorphisms with T2D and its related phenotypes (metabolic 

markers) in Haitian Americans (cases=110, controls=116), African Americans 

(cases=120, controls=124) and Cuban Americans (cases=160, controls=181) of South 

Florida were explored. Five single nucleotide polymorphisms of gene PPARGC1A 

were evaluated in each ethnicity for their disease association. In Haitian Americans, 

rs7656250 (OR= 0.22, p<0.01) and rs4235308 (OR=0.42, p=0.03) had significant 

protective association with T2D but had risk association in African Americans for 

rs7656250 (OR=1.02, p=0.96) and rs4235308 (OR=2.53, p=0.03). We found that in 

Haitian American females, both rs7656250 (OR=0.23, p<0.01) and rs4235308 

(OR=0.38, p=0.03) had protective association with T2D. In African American 

females, rs7656250 (OR=1.14, p=0.78) had risk association whereas in males, it had 
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significant protective effect (OR=0.37, p=0.04). However, the risk association 

exhibited by rs4235308 was stronger in African American females (OR=2.69, p=0.03) 

than males (OR=1.16, p=0.72). In Cuban Americans, only rs7656250 showed 

significant risk association with T2D (OR=6.87, p=0.02) which was stronger in 

females alone (OR=7.67, p=0.01). We also observed significant differences among 

correlations of PPARGC1A SNPs and T2D phenotypes. Positive correlation was 

observed for log Hs-CRP with rs3774907 (p<0.05) in African Americans and 

rs4235308 (p=0.03) in Cuban Americans respectively. Correlation of log A1C with 

rs7656250 (p=0.02) was positive in Cuban Americans while it was negative for 

rs3774907 in Haitian Americans (p<0.01). Haitian Americans also had negative 

correlations between rs3774907 and log FPG (p<0.01), rs1172438 and log insulin 

(p=0.02). Results showed that (i) there are significant differences with regards to 

PPARGC1A correlations with T2D and its phenotypes among the three ethnicities 

studied (ii) the associations of PPARGC1A SNPs showed significant effect 

modification by sex. The findings suggest that variations in effects of PPARGC1A 

gene polymorphisms among three ethnicities and between sexes may have biomedical 

implications for the development of T2D as well as the phenotypes related to T2D.  
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CHAPTER I 
 
INTRODUCTION 

 

Type 2 Diabetes (T2D) is a major public health issue and its incidence is increasing 

worldwide (CDC, 2014). About 9.3% of the United States population is afflicted with 

diabetes (CDC, 2014). The prevalence of T2D in 65 years and older is 25.9%, 16.2% 

in 45-64 year olds whereas 4.1% in 20-44 year olds (CDC, 2014). The rates of new 

cases are much high in individuals with Hispanic and African lineages as compared to 

Non-Hispanic Whites (CDC, 2014). Among all ethnicities, T2D is diagnosed in 15.9 

% of American Indians and Alaska Natives, 12.8 % in Hispanics and 13.2 % in non-

Hispanic blacks (CDC, 2014). Diabetes brings with itself many associated chronic 

diseases such as high blood pressure, cardiovascular diseases, blindness, kidney 

disease and even amputation and death. The risk of developing T2D is reported to be 

increased by certain modifiable factors like obesity, physical inactivity, cigarette 

smoking and diet with low fiber and high glycemic index (Bouchard, 1995; Yki-

Ja¨rvinen, 1995; Boden, 1997). Many factors such as age, gender, diet, ethnicity and 

distribution of fat, that impact insulin secretion and sensitivity, are controlled by 

genetics, lifestyle or both (Qi et al., 2010; Yamauchi et al., 2010). Additionally, the 

fundamental clinical characteristic of T2D is high blood glucose level, which may be 

caused by anomalies in one or more of the different molecular pathways regulated by 

certain genes (Narayan, Boyle, Thompson, Sorensen & Williamson 2003). 
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Peroxisome proliferator-activated receptor-γ coactivator-1 α (PPARGC1A) has been 

identified as a transcriptional co-activator of a series of nuclear receptors, which 

regulate processes that impact cellular energy metabolism, thermogenesis regulation, 

glucose metabolism, adipogenesis, and oxidative metabolism (Stefan et al., 2003; 

Gerhart-Hines et al., 2007; Puigserver, Wu, Park, Graves, Wright & Spiegelman, 

1998; Puigserver et al., 2003; Rhee et al., 2003). PPARGC1A gene encodes a protein 

called PPARGC1A or PGC1-α. PGC1-α is a versatile master co-activator of various 

metabolic processes and therefore is involved in a variety of human diseases such as 

type 2 diabetes. PGC1-α interacts with a wide array of nuclear receptor factors (NRFs) 

that further regulate several mitochondrial genes responsible for maintaining energy 

metabolism and mitochondrial function and biogenesis (Fernandez-Marcos, & Auwerx 

2011; Scarpulla, Vega & Kelly, 2012). PGC1-α also regulates gluconeogenesis, 

through transcription factors including nuclear receptor subfamily 3, group C, member 

1(NR3C1) and forkhead box protein O1 (FoxO1). PGC1-α, expressed by PPARGC1A, 

regulates the expression of Fndc5 which is further proteolysed to irisin (Puigserver, 

Wu, Park, Graves, Wright & Spiegelman, 1998).   Irisin upon activation stimulates 

‘browning’ of adipose tissue and increases expression of ubiquitous protein 1 (UCP1) 

(Puigserver, Wu, Park, Graves, Wright & Spiegelman, 1998). The up-regulation of 

UCP1 is linked to increased mitochondrial function and increased energy utilization, 

therefore confers resistance to obesity induced insulin resistance. 

PGC1-α also regulates fatty acid oxidation as well as oxidative phosphorylation by 

interaction with peroxisome proliferative activated receptor alpha (PPARA) and 

estrogen receptor-related receptor (ESRR) (Fernandez-Marcos & Auwerx, 2011; 
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Scarpulla, Vega & Kelly 2012).  Oxidative phosphorylation in patients with type 2 

diabetes (T2D) is impaired, and as PPARGC1A regulates the mitochondrial genes, 

impaired oxidative phosphorylation is most likely to be linked to variations in 

PPARGC1A gene possibly resulting in diseases such as T2D, and metabolic syndrome 

(Vimalananda, Rosenweig, Cabral, David, & Lasser, 2011).  PGC1-α dysregulation is 

often associated with insulin resistance and Type 2 diabetes (T2D) (Vimalananda, 

Rosenweig, Cabral, David, & Lasser, 2011). In both pre-diabetes, and T2D, PGC1-α 

expression is low along with reduction in NRF expression (Patti et al., 2003). Reduced 

expression of PPARGC1A has not only been reported in individuals with T2D, but 

also in individuals who are unaffected, but have a family history of T2D (Gillberg et 

al., 2013). Recently a study established association between PPARGC1A haplotype 

and 30 min, 60 min post load glucose levels and beta cell function indices. This study 

also demonstrated a borderline significant association of PPARGC1A with T2D 

(Oberkofler et al., 2004). In aged mice, up-regulated PPARGC1A caused increase in 

insulin sensitivity, and insulin signaling (Wenz, Rossi, Rotundo, Spiegelman, & 

Moraes, 2009). PGC1-α also increases glucose uptake by up-regulating glucose 

transporter (GLUT-4) in skeletal muscle cells and increases gene 

phosphoenolpyruvate carboxy-kinase and glucose-6-phosphatase activities (Yoon et 

al., 2001). PGC1-α protein expression is found to be lower in adipose tissue of obese, 

as compared to lean individuals, independent of ethnicity (Chen, Yan, Huang, Yang & 

Gu, 2004).  

PPARGC1A variants related to insulin resistance, and impaired insulin secretions are 

therefore important in the pathogenesis of T2D. PPARGC1A coactivates peroxisome 
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proliferator-activated receptor gamma (PPARG), implicated in several regulative 

pathways such as lipid and glucose homeostasis, adipocyte proliferation and adaptive 

thermogenesis by interaction and regulation of various other genes (Huss, Koop & 

Kelly, 2002; Puigserver, Wu, Park, Graves, Wright & Spiegelman, 1998; Rosen & 

Spiegelman, 2001). Due to its extensive role in regulation of various biochemical 

processes, the human PPARGC1A, located in chromosome 4p15.1 has been identified 

to be linked to T2D and related phenotypes. PGC1-α is therefore involved in 

regulation of mitochondrial metabolism, adaptive thermogenesis, as well as many 

other biochemical processes (Handschin & Spiegelman, 2006).  

Mitochondrial metabolisms produces reactive oxygen species (ROS) such as super-

oxides but then are neutralized by various detoxifying enzymes such as superoxide 

dismutase or glutathione peroxidase, to maintain integrity of the system. PGC1-α 

protein controls the detoxification of these ROS by increasing expression of these 

detoxifying enzymes especially in muscles and mitochondria, thus a major role player 

in lowering oxidative stress (St-Pierre et al., 2006; St-Pierre et al., 2003; Valle, 

Alvarez-Barrientos, Arza, Lamas, & Monsalve,  2005). The ROS build up in cells 

perhaps due to low detoxifying enzyme expression may create havoc on the cell 

machinery. ROS can damage DNA causing mutations, and cell membranes by lipid 

peroxidation and eventually lead to cell death. Additionally, nuclear respiratory factors 

(NRFs) expression is also stimulated by PGC1-α (Wu et al., 1999).  NRFs are 

regulators of various genes involved in mitochondrial function (Wu et al., 1999). 

Thus, the PPARGC1A variants may result in production of non-functional protein 

increasing oxidative stress and thus leading to many chronic diseases. 
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Animal studies 

Master regulator role of PPARGC1A has been established through numerous animal 

studies. In a mice study, knocking off PPARGC1A gene not only resulted in reduced 

expression of mitochondrial genes involved in electron transport chain but also 

mitochondrial respiration (Li, Monks, Ge, & Birnbaum, 2004; Leone et al., 2005). 

This PPARGC1A knock out mice also demonstrated inability to increase UCP1 

expression, therefore dys-regulation of adaptive thermogenesis (Li, Monks, Ge, & 

Birnbaum, 2004; Leone et al., 2005). Lehman et al. (2000) reproduced the study but 

using transgenic mice instead of knocking off PPARGC1A gene and found increase in 

gene products involved with mitochondrial biogenesis which was later supported by 

another study (Wende et al., 2007). Resistance to age related obesity and T2D has also 

been observed in transgenic mice with up-regulated muscle PGC1-α (Wenz, Rossi, 

Rotundo, Spiegelman, & Moraes, 2009). 

Ethnicity and Type 2 Diabetes 

Complex interactions between ethnicities such as genetic variations and environmental 

factors (food, lifestyle and physical inactivity) have been identified to be associated 

with T2D (Chapp-Jumbo, Edeoga, Wan, & Dagogo-Jack, 2011; Schulze & Hu, 2005; 

Hansen & Pedersen, 2005; Kobberling & Tillil, 1990). Compared to non-Hispanic 

whites, the risk of T2D is 66% higher among Hispanics and 77% among Non-

Hispanic Blacks (Colditz, Willett, Stampfer, Manson, Hennekens, Arky, & Speizer, 

1990).Various population studies suggested a higher risk for T2D in Japanese and 

Danish populations, and the associated complications like hypertension (Hara, 2002). 

Early insulin secretions in Austrian population, Pima Indians respectively have also 
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been linked with higher risks for the carriers of PPARGC1A variants (Hara et al., 

2002; Ek et al., 2001; Muller, Bogardus, Pedersen, & Baier, 2003; Oberkofler et al., 

2003). The absence of association with diabetes- related traits have also been reported 

in German, Dutch, French Caucasians and the Chinese (Ambye et al., 2005; Chen, 

Yan, Huang, Yang & Gu, 2004; Lacquemant, Chikri, Boutin, Samson, & Froguel, 

2002).  Specifically, one variant, rs8192678 (Gly482Ser), of PPARGC1A gene has 

been established to be associated with T2D in Danish (Ek et al., 2001), Japanese (Hara 

et al., 2002), Southern Chinese (Zhang et al., 2007) and North Indians (Bhat et al., 

2007), but no such association was reported in Pima Indians (Muller, Bogardus, 

Pedersen, & Baier, 2003) or in French Caucasians (Lacquemant, Chikri, Boutin, 

Samson, & Froguel, 2002). Another variant, rs2970847 (Thr394Thr), of PPARGC1A 

has also been linked with insulin resistance and T2D in Chinese (Song et al., 2010), 

with T2D in two North Indian (Kashmiri and Punjabi) populations (Bhat et al., 2007). 

These discrepancies in genetic associations in different populations could merely be 

due to different genetic admixture or due to errors in sampling, low statistical power, 

population not being homogenous, stringency for genome wide studies (GWAS). 

According to Centre for Disease Control and Prevention (CDC), adult Cuban 

Americans and individuals with African origins have higher incidences of T2D and 

associated complications like hypertension, obesity, cardiovascular diseases and 

mortality (CDC, 2014). The current Cuban population resulted from the complex 

process of overlapping and racial mixture between groups from Asia, Africa, Native 

America and Spain which could be a major influence for the higher prevalence of 

T2D. In this population, lifestyle also is a huge player in the development of T2D. 
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Hispanics are rather a large group of individuals that includes Mexicans, Puerto 

Ricans, Cubans, and Peruvians among many others (Garcia, 2000). The differences 

among Puerto Ricans and Peruvians or Mexicans and Cubans are substantial. These 

differences trace back to the ancestry of individuals that differed widely in very 

important factors such as language, food, religion and even genetic makeup (Lentz, 

1995). Most of the Cubans that have migrated to United States are white and of higher 

socioeconomic status. The access to more food and other factors may amplify already 

prevalent unhealthy lifestyle like smoking, physical inactivity, and diet after moving to 

United States. While the data on dietary patterns in Cubans are unavailable, however 

1982–84 HHANES survey suggest higher consumption of junk foods (Taylor et al., 

2008). On average Cuban Americans have fewer servings of fruits and vegetables, and 

grains in their daily diet (Huffman et al., 2012; Helmrich, Ragland, Leung, & 

Paffenbarger, 1991; Ling et al., 2008).  All of these factors make Cuban Americans an 

interesting population to study. Despite the fact that Cuban Americans have the high 

risk to develop T2D; detailed information on Cuban Americans is missing. Moreover, 

no study so far has looked at genetic associations of Cuban Americans with chronic 

diseases such as T2D. Specifically, there has been no study that investigated the 

association of PPARGC1A variants, T2D and its related complications in Cuban 

Americans.  

Higher cardiovascular risk, diabetes, and obesity have been demonstrated in African 

Americans than in their White counterparts could be due to many factors such as 

lower socio economic status, physical inactivity, genetic and dietary factors (Boden, 

1997). The prevalence of T2D is highest among African Americans (CDC, 2014). 
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Obesity, one of the major risk factors for T2D is also highly prevalent in African 

American women and adults as compared to Whites (CDC, 2014).  The African 

American diet is poor in fruits and vegetables, but high in fat, sugar, and salt that 

increases the risk of developing high blood pressure, obesity and consequently T2D. 

Although the adipogenic diet puts African Americans at high risk for T2D, the role of 

genetics cannot be ruled out.  African Americans received ‘thrifty gene’ from their 

African ancestors that helped them survive in case of unavailability of food (Neel, 

1987). The ‘thrifty gene’ along with diet with poor nutrition has made African 

Americans the high risk population for T2D (Neel, 1987). Moreover, according to 

CDC statistics, more than 19.4% of African American adults smoked cigarettes in 

2011 and smoking among men is found to be higher than women (CDC, 2012). 

Cigarette smoking is an established risk factor for heart disease and stroke and may be 

instrumental in development of T2D and associated oxidative stress (CDC, 2012). 

Haitian Americans are grouped together with other populations of African origins. 

Apart from African descent, populations in Haiti also have lineage from France, and 

Spain making them unique (Zephir, 2004).  The distinctness of Haitian Americans is 

not only accounted for by different, genetics but also lifestyle and dietary factors. 

Haitian Americans generally eat two meals a day and their meals usually are 

predominantly starch based which could be the reason why Haitian Americans have 

worst glycemic control than African and Non-Hispanic Whites with diabetes (NDEP, 

2012). The differences between Haitian Americans and African Americans are more 

evident from the healthy eating index (HEI) scores, and level of physical activity 

(Huffman et al. 2012).  There exists an assumption that ethnic groups are homogenous 
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and obvious differences among different members of the ethnic group and many times 

subgroups with the ethnicity are overlooked. The PPARGC1A association studies are 

virtually absent in Haitians. To the best of our knowledge there is only a single study 

that determined the association of PPARGC1A in obese African Americans (Edwards 

et al., 2012). Moreover, the ethnic differences that exist within ‘Black’ population are 

not yet explored. The opportunity to investigate the association between PPARGC1A 

genetic variations and T2D in Cuban American, African American and Haitian 

American population of United States of America is present in Miami. Therefore, the 

study was undertaken to examine the relationship between PPARGC1A and T2D.   
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B. Table 1: Risk factors for development of type 2 diabetes 

 

 

 

 

 

 

 

Established Proposed 

Age Persistent Organic Pollutants 

Parent or sibling with diabetes 
Exposure to agricultural pesticides during first trimester of 

pregnancy 

Ethnicity Vitamin γ-tocopherol 

Prediabetes Exposure to arsenic 

History of cardiovascular disease  

History of gestational diabetes  

History of polycystic ovary syndrome 
(PCOS) 

 

Genetics  

High blood pressure  

Physical inactivity  

Abdominal obesity  

Being overweight  

High cholesterol  
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C. Figure 1: Haploview plot showing Linkage disequilibrium (LD) with r2 values for 

five selected SNPs of PPARGC1A gene.  

 

 

Note: Black coloring display strong LD, dark grey display less strong LD, light grey 
displays intermediate LD and white displays weak LD. 
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D. Table 2: Characteristics of most studied SNPs in the PPARGC1A gene 

 

NCBI ref 

SNP 

number* 

Chromosome 
nucleotide 

position ǂ 

Disease 

risk 

associations 

Location 
Minor 

allele 

F-

Score 

Minor allele 

frequency† 

GlobalCEUASW

rs8192678 23815662 
T2D, CVD, 

Obesity 
intron G 0.50 0.29 0.35 0.07

rs3774907 23829862 
Not enough 

information 
intron C 0.18 0.18 0.27 0.13

rs11724368 99418507 CVD intron G 0.25 0.11 0.21 0.08

rs4235308 23864412 CVD intron C 0.28 0.39 0.41 0.31

rs7656250 23866016 T2D, CVD intron C 0.27 0.26 0.26 0.12

 

Note: * National Center for Biotechnology Information (NCBI) reference single 
nucleotide polymorphism (SNP) number (http://www.ncbi.nlm.nih.gov/) 
ǂGenome Reference Consortium Human Build 37 patch release 13 (GRCh37.p13) used 
for nucleotide position (http://www.ncbi.nlm.nih.gov/SNP) 
†Minor allele frequencies are from a reference population genotyped in HapMap 

Project. Population descriptors: CEU (C): Utah residents with Northern and Western 
European ancestry from the CEPH collection; ASW (A): African ancestry in Southwest 
USA. CVD=Cardio Vascular Disease; T2D=type 2 diabetes; F-score=functionality 
score.  
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CHAPTER II  

SPECIFIC AIM AND HYPOTHESIS 

 

Multiple lines of studies have identified that the PPARGC1A plays a crucial role in 

glucose metabolism, insulin signaling, adipogenesis and oxidative metabolism. 

The involvement of PPARGC1A in all these metabolic pathways puts this gene in 

central role suggesting strong relationship of polymorphisms (variants) of 

PPARGC1A with T2D. However, inconsistent replication of results is often 

present when studying genetic associations, due to ethnic differences present in 

these complex interactions between genetic and lifestyle factors. Therefore, due to 

this gap in knowledge, this dissertation research assessed PPARGC1A 

polymorphisms: rs8192678, rs3774907, rs11724368, rs4235308, rs7656250 as 

genetic determinants of T2D and related phenotypes in three ethnicities at high 

risk for T2D; Haitian Americans, African Americans and Cuban Americans. It is 

well known that T2D does not affect all ethnicities and both sexes equally. We aim 

to establish some understanding regarding the differences in T2D prevalence 

observed between three ethnicities, with specific emphasis on the correlations of 

PPARGC1A polymorphisms with T2D. As PPARGC1A is a genetic determinant of 

T2D, the relationship between intermediate phenotypes was also investigated with 

PPARGC1A polymorphisms. The correlations of PPARGC1A polymorphisms 

were further studied against physical activity and lifestyle factors such as use of 

smoking, and alcohol. 

The following hypotheses were tested: 
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Hypothesis 1: PPARGC1A variants mediate genetic predisposition to T2D and its 

related phenotypes such as obesity. 

- The mediation by gene PPARGC1A polymorphisms in predisposition of T2D 

was tested for African Americans and Haitian Americans in chapter III (for 

SNPs rs8192678, rs7656250, rs4235308 and rs11724368) and V (for SNP 

rs3774907). The association of PPARGC1A polymorphisms with related 

phenotypes of T2D was tested for Haitian Americans in chapter IV, V and VII. 

It was tested for African Americans in chapter VII. Hypothesis 1 was tested in 

Cuban Americans in chapter VI and VII.  

Hypothesis 2: If PPARGC1A mediates genetic predisposition to T2D, its 

association will be stronger in cases with young-onset; who are non-obese; and 

who have family history of T2D. 

- Hypothesis 2 was tested in chapter VII for Haitian Americans, African 

Americans and Cuban Americans.  

 

The proposed study is important because complex interactions between 

PPARGC1A polymorphisms and lifestyle factors in these three study populations 

are unexplored. The differences between ethnicities and both sexes, hypothesized 

to be observed may provide explanations as to why different trends are observed 

for T2D prevalence in among ethnicities and males-females. The research findings 

provide evidence for the influence of genotypes on the phenotypes (metabolic 

markers) characteristic to T2D development. The findings provide pivotal 
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information which can be applied towards ethnic specific T2D management, 

treatment and community health policies.   
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CHAPTER III 

GENETIC ASSOCIATIONS OF PPARGC1A WITH TYPE 2 DIABETES; 

DIFFERENCES AMONG POPULATIONS WITH AFRICAN ORIGINS  

 

A. Abstract 

Aim: To investigate the differences in genetic association of PPARGC1A 

polymorphism with phenotype such as T2D between Haitian American and African 

American adults. 

Methods: The case-control study consisted of >30 years old, self-identified Haitian 

Americans (n=110 cases, n=116 controls) and African Americans (n=124 cases and 

n=122 controls) living in South Florida with and without T2D. Information was 

collected on socio-demographics; anthropometrics; medication use; smoking history; 

and family history of the participants. TaqMan allelic discrimination assays (LifeTech, 

Foster City, CA) used to genotype whole genome DNA using real-time PCR 

amplification on BioRad CFX96 real time PCR instrument (Hercules, CA). 

Results: Adjusted logistic regression indicated that the SNP rs7656250 showed 

protective association with T2D (OR=0.22, p<0.01) in Haitian Americans but risk 

association with T2D (OR=1.02, p=0.96) though it did not reach statistical 

significance. The rs4235308 also showed protective association with T2D in Haitian 

Americans (OR=0.42, p=0.03) but significant risk association with T2D in African 

Americans (OR=2.53, p=0.03). After stratification with sex, in Haitian Americans, 

both rs4235308 (OR=0.38, p=0.03) and rs7656250 (OR=0.23, p<0.01) showed 

protective association with T2D in females but could not reach statistical significance 
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in males. In African American females, rs7656250 showed risk association though 

statistically non-significant (OR=1.14, p=0.78), whereas in males, it had statistically 

significant protective effect on T2D (OR=0.37, p=0.04). In African American females, 

rs4235308 had stronger risk association with T2D (OR=2.69, p=0.03) than both sexes 

combined. 

Conclusions: The trends observed for genetic association of PPARGC1A SNPs; 

rs4235308 and rs7656250 between Haitian Americans and African Americans point 

out differences among Black race. The lack of genetic association studies in these two 

ethnicities warrants replicative study with larger sample size.   
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B. Introduction 

Peroxisome proliferator activated receptor, gamma, co-activator 1 alpha (PPARGC1A) 

gene encodes a well-known protein, PGC1-α (Lehman, Barger, Kovacs, Saffitz, 

Medeiros, & Kelly, 2002; Huss, Kopp, & Kelly, 2002; Handschin & Spiegelman, 

2006; Gerhart-Hines et al., 2007; Fernandez-Marcos & Auwerx, 2011). PGC1-α 

interacts with a wide array of nuclear receptor factors (NRFs) that further regulate 

several mitochondrial genes responsible for maintaining energy metabolism, 

mitochondrial function and biogenesis (Lehman, Barger, Kovacs, Saffitz, Medeiros, & 

Kelly, 2002; Huss, Kopp, & Kelly, 2002; Handschin & Spiegelman, 2006; Gerhart-

Hines et al., 2007; Fernandez-Marcos & Auwerx, 2011). PGC1-α regulates 

gluconeogenesis through transcription factors including NR3C1 and FoxO1 

(Puigserver et al., 2003). In addition, PGC1-α regulates fatty acid oxidation as well as 

oxidative phosphorylation by interaction with peroxisome proliferative activated 

receptor alpha (PPARA) and estrogen receptor-related receptor (ESRR) (Wu et al., 

2000; Lehman, Barger, Kovacs, Saffitz, Medeiros, & Kelly, 2002; Huss, Kopp, & 

Kelly, 2002; Handschin & Spiegelman, 2006; Gerhart-Hines et al., 2007; Fernandez-

Marcos & Auwerx, 2011). Upregulation of glucose transporter-4 (GLUT-4) by PGC1-

α increases glucose uptake in skeletal muscle cells and increases phosphoenolpyruvate 

carboxy-kinase and glucose-6-phosphatase activities (Michael et al., 2001; Miura, Kai, 

Ono, & Ezaki, 2003). This versatility of PGC1-α as a master co-activator of various 

metabolic processes has put it on a center stage for variety of human metabolic 

diseases such as type 2 diabetes (T2D) (Oberkofler et al., 2004) . 
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Reduced expression of PGC1-α has been reported not only in individuals with 

T2D, but also in individuals who are unaffected, but also in those who have a family 

history of T2D (Gillberg et al., 2013). Ethnic heterogeneity observed in genetic 

associations of PPARGC1A polymorphisms with T2D could be due to the presence of 

causal or other polymorphisms in strong linkage disequilibrium (LD) with the 

polymorphism in question. Differences in LD or gene to gene interactions among 

ethnicities could also be a possible explanation for such observed differences. 

Moreover, the environment in which populations live varies around the world. This 

variation in the interaction of environment with gene of interest could also be 

instrumental in different associations of PPARGC1A polymorphisms with T2D across 

ethnicities.  

Differences in genetic variations and environmental factors (diet, lifestyle and 

physical inactivity) between ethnicities have in fact been identified to be associated 

with T2D (Chapp-Jumbo, Edeoga, Wan, & Dagogo-Jack, 2011; Schulze & Hu, 2005; 

Hansen & Pedersen, 2005; Kobberling & Tillil, 1990). Compared to non-Hispanic 

Whites, the risk of T2D is 77% higher among Non-Hispanic Blacks (Narayanan, 

Boyle, Thompson, Sorensen, & Williamson, 2003). Although the adipogenic diet puts 

African Americans at high risk for T2D, the role of genetics cannot be ruled out.  

African Americans received ‘thrifty gene’ from their African ancestors that helped 

them survive in case of unavailability of food (Neel, 1989). The ‘thrifty gene’ along 

with diet with poor nutrition has made African Americans the high risk population for 

T2D (Neel, 1989). Quite often the lines that separate various sub populations within 

the ‘Black’ community are blurred in research studies, which make association studies 
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difficult, due to presence of genetic heterogeneity within the sample. The latest US 

Census Bureau data (2008) indicates the presence of 546,000 Haitian immigrants in 

the United States, 46% of total Haiti- born population resides in Florida and more 

specifically 34.2 % reside in the Miami-Dade and Broward Counties, FL (Rosen, 

Sharpe, Rosen, Doddard, & Abad, 2007). Haitian Americans are generally grouped 

together with other populations of African origins. Apart from African descent, 

populations in Haiti also have lineage from France, and Spain making them unique 

(Zephir, 2004).  In 2010, the International Diabetes Federation estimated the T2D 

prevalence in Haiti to be 7.2% for 20 to 79 year olds (International Diabetes 

Federation, 2000) yet the official data for Haitian-Americans are not available. 

Therefore genetic association studies are important for PPARGC1A gene, which is 

implicated in energy metabolism and T2D in populations with African origins. 

However, there is lack of data on the relationship between PPARGC1A 

polymorphisms and T2D outcomes in Haitian Americans. Therefore, the principle 

focus of this study was to investigate the differences in genetic association of 

PPARGC1A polymorphism with phenotype such as T2D between Haitian American 

and African American adults residing in south Florida. 

 

C. Materials and methods 

1. Study population  

Self-identified Haitian Americans and African Americans  living in South Florida, 

ages >30 years, were recruited at the Human Nutrition Laboratory, Department of 

Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, 
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Florida International University for a case control cross sectional study. Recruitment 

of participants was done using invitational flyers, community-based sources and 

advertisements in English and Creole. The presence of T2D was self-reported by the 

participants and was confirmed with laboratory tests using American Diabetes 

Association criteria (fasting plasma glucose concentration ≥126 mg/dl or use of insulin 

or diabetes medication). Individuals with any other chronic condition, pregnancy or 

lactation, were excluded from the study.  The research purpose and protocol was 

explained in English as well as Creole to the participants and voluntary informed 

consent was procured. Institutional Review Board (IRB) approval was received from 

Florida International University prior to study initiation. 

2. Socio-demographics, anthropometrics and medical assessment 

The information on demographics such as age, gender, T2D medication use and 

smoking history was collected using questionnaire to match cases and controls for 

both ethnicities by trained research staff. Height as well as weight were measured 

using SECA balance scale (Seca Corp, USA). Body mass index (BMI) was then 

calculated in kg/height in m2. A non-stretchable measuring tape measured waist 

circumference (WC) to the nearest 0.1 cm by placing it midway between the 12th rib 

and iliac crest at minimal respiration.  After 15 minute rest, sphygmomanometer 

(Tycos 5090-02 Welch Allyn Pocket Aneroid Sphygmomanometer, Arden, NC, USA) 

and a stethoscope (Littmann Cardiology, 3M, St Paul, MN, USA) were used to 

measure blood pressure (BP). 
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3. Blood collection and DNA isolation 

Twenty ml of venous blood was collected from each individual after an overnight fast 

(at least 8 hours) by a certified phlebotomist using standard laboratory techniques. 

Genomic DNA was then isolated from the whole blood using QIAamp DNA Blood 

mini kit (Qiagen, Hilden, Germany), according to the vender’s recommended protocol. 

Quality and quantity of the isolated DNA was tested using 2000c nanodrop 

spectrophotometer (Thermo Scientific, USA). 

4. Single nucleotide selection and genotyping  

The PPARGC1A gene is located in 4p15.1 region spanning ~110 kb. The rationale 

behind SNP selection was to give equal emphasis to functionality, already known 

disease associations, statistical power and cost. The four SNPs were selected for 

genotyping (Table 1) using HapMap (http://www.hapmap.org) genotype data from 

Africans, and taking into account their relationships with each other. These SNPs were 

tested for inter-relationships using linkage disequilibrium (LD) plots. TAGGER on 

Haploview was used for selection of haplotype tagging SNPs. The independence of 

each SNP from others is evident in the LD plot (Fig. 1). The values shown in this plot 

are r2 values showing the correlation between any pair of SNPs. The highest r2 value 

for any pairwise comparison for the four selected SNPs is 0.38 as shown in Fig 1. An 

integrated selection on the basis of genetic associations and human genome 

epidemiology was done using HuGE Navigator and dbSNP. Functionality of SNPs 

was assessed bio-informatically on F-SNP website (http://compbio.cs.queensu.ca/F-

SNP/). Thus, seventy five SNPs were narrowed down using mathematical, biological 
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and bioinformatics approach to four that have high minor allele frequencies (MAF), 

robust disease associations, high functionality and no correlation with one another.   

The main characteristics for the selected PPARGC1A gene Single Nucleotide 

Polymorphisms (SNPs) genotyped are shown in Table 1. Genotyping for all four SNPs 

was performed by real-time PCR amplification on BioRad CFX96 real time PCR 

instrument (Hercules, CA) using commercially available TaqMan allelic 

discrimination assays (LifeTech, Foster City, CA). PCR amplification (20 μL) was 

performed in 96 well plates using Bio-Rad’s SsoFast™ Probes Supermix as the 

reaction buffer with the TaqMan Assay. To ensure reproducibility and reliability of 

genotyping method, 10% of the DNA samples were duplicated during genotyping. 

Bio-Rad CFX Manager software (version 3.0) was utilized for both data acquisition 

and assignment of genotypes for each SNP. 

5. Statistical Analysis 

The statistical analysis were done using SPSS version 20 (SPSS Inc., Chicago, IL, 

USA). All statistical tests were two-tailed, and the threshold for statistical significance 

was set at P≤0.05. Sample size calculation was performed prior to the initiation of the 

study. Sample size of n=62 was calculated for significance threshold of 0.05 and odds 

ratio of 1.5 for equal case and control, to have statistical power of 80%. Genotype 

counts in each SNP were checked for Hardy-Weinberg equilibrium (HWE) in controls 

using the Chi-squared goodness-fit test. Demographic and clinical information 

between cases and controls was compared using student’s t-test for continuous 

variables, and Chi-squared test for categorical variables. All genetic associations were 

assessed by using the recessive genetic model to detect recessive effects, often 
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overlooked by other genetic models. Logistic regression methods were used to 

calculate unadjusted and adjusted odds ratios (OR) and 95% confidence intervals (CIs) 

to assess the relationship of all SNPs with binary outcome for case-control status (T2D 

= Yes/No)  before and after adjusting for potential confounding factors  such as age, 

sex, smoking status, and BMI. The analysis also included interaction term for SNPs 

and sex. Due to heterogeneity among two ethnicities, these two groups were analyzed 

separately.  Stratified analysis by ethnicity and sex was performed, to assess their 

effect modification on the relationship of polymorphisms with the phenotype i.e. T2D. 

The analysis was then repeated adjusting for age, BMI and smoking status.  

 

D. Results 

A total of 226 Haitian Americans (n=110 cases, n=116 controls) and 246 African 

Americans (n=124 cases and n=122 controls) comprised the study population for his 

study. 

General characteristics 

Table 2 shows the general characteristics of the individuals in the study. In brief, 

individuals with T2D (cases) were older than those without T2D (controls) in both 

Haitian Americans (p=0.001) and African Americans (p=0.022). Cases in Haitian 

American (p=0.019), as well as African American group (p=0.000) had higher waist 

circumference than controls. However, BMI was significantly higher for cases as 

compared to controls in African Americans only (p=0.000). There was no significant 

difference between cases and controls in Haitian American group for either SBP or 
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DBP, whereas, SBP was significantly higher in cases as compared to controls in 

African American group (p=0.006). 

The cases in Haitian American group included 48 males (44%) and 62 females (56%) 

and the controls included 54 males (47%) and 62 females (53%). The cases in African 

American group constituted of 59 males (48%) and 65 were females (52%). The 

controls in African American group included 61 males and females each (50%).  

Frequency of PPARGC1A polymorphisms 

All cases and controls were genotyped for the four candidate SNPs. Genotype call 

rates were higher than 95% for cases and controls in both ethnicities. None of the four 

PPARGC1A SNPs showed any deviation from Hardy-Weinberg equilibrium in 

controls. Table 3 shows genotype distribution of all four PPARGC1A SNPs in the 

case-control sample for both ethnicities. The minor allele frequency (MAF) for 

rs8192678, rs7656250, rs4235308 and rs11724368 SNP was 0.145 and 0.060; 0.118 

and 0.090; 0.414 and 0.327; 0.072 and 0.069 for cases and controls of Haitian 

Americans respectively. In African American group, the MAF for rs8192678, 

rs7656250, rs4235308 and rs11724368 for cases and controls was 0.093 and 0.074; 

0.165 and 0.110; 0.343 and 0.336; 0.093 and 0.069 respectively (Table 3). The MAF 

seen in the study were very close to NCBI’s genotyped data validating our study 

(http://www.ncbi.nlm.nih.gov/SNP/). 

Correlations between PPARGC1A polymorphisms and type 2 diabetes  

In total, four PPARGC1A SNPs were examined for genetic associations with T2D 

using logistic regression analysis. Results including unadjusted odds ratios and odds 

ratios adjusted for covariates (age, sex, BMI, smoking status) and interaction terms 
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between SNPs and sex are shown in table 4(a & b). Two out of four SNPs showed 

significant association with T2D in Haitian Americans. However, only one SNP was 

significantly associated with T2D in African Americans (Table 4b). The SNP 

rs7656250 showed protective association with T2D with adjusted OR of 0.22 

(p=0.005) in Haitian Americans (Table 4a). This association was not significant for 

African American group but when adjusted for confounders, rs7656250 showed risk 

association with T2D with OR of 1.02 (p=0.940) though it did not reach statistical 

significance (Table 4b). The interaction between sex and rs7656250 was found to be 

significant only in Haitian Americans (p=0.008). In Haitian Americans, rs4235308 

had an unadjusted odds ratio (OR) of 0.53 (p=0.033) as shown in table 4a. The 

adjustment for age, BMI, sex, smoking and interaction terms for SNPs and sex 

lowered the effect (OR=0.42, p=0.026).This SNP showed significant risk association 

with T2D in African Americans (OR=2.53, p=0.028) (Table 4b). 

Effect modification of sex on PPARGC1A SNPs association on T2D was also 

explored by stratification by sex adjusted for age, BMI and smoking status, as shown 

in table 5a & b. In Haitian Americans, rs4235308 showed protective association with 

T2D both in females (OR=0.38, p=0.026) as well as in males (OR=0.62, p=0.326), 

though not statistically significant. In Haitian Americans, rs7656250 also had a 

protective effect on T2D in females (OR=0.23, p=0.006) and but risk association in 

males (OR=1.62, p=0.409). The association in males was statistically insignificant. In 

African American females, rs7656250 showed risk association though statistically 

non-significant (OR=1.14, p=0.788), whereas in males, it had statistically significant 

protective effect on T2D (OR=0.37, p=0.043). In African American females, 
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rs4235308 had stronger risk association with T2D (OR=2.69, p=0.029) but not in 

males (OR=1.16, p=0.723).  

 

E. Discussion 

High prevalence of T2D in populations with African origins is well established 

(Carter, Pugh, & Monterrosa, 1996; EL-Kebbi, Cook& Ziemer, 2003; Wolfe, 2000). 

Recently, only few studies have documented existing metabolic differences in the sub 

populations of African ancestry (Agyemang, Bhopal, & Bruijnzeels, 2005; Cooper & 

David, 1986; Cheema et al., 2014). Despite being well established, the ethnic disparity 

is not always addressed in genetic association studies. There exists an assumption that 

ethnic groups within a race are homogenous and obvious differences among different 

members of the ethnic group and many times subgroups with the ethnicity are 

overlooked. This study revealed such differences among Haitian Americans and 

African Americans, often grouped together with other populations of African origins. 

This study also provides some confirmation of minor allele frequencies of previously 

discovered genetic markers associated with T2D, furthermore validating our case-

control study for investigation.  

Of the four PPARGC1A SNPs, rs4235308 showed significant overall association 

with T2D, while rs8192678, rs7656250 and rs11724368 did not show any associations 

in African American group. However, in Haitian American group, both rs7656250 and 

rs4235308 showed overall association. Ling et al (2008) reported association of 

reduced PPARGC1A mRNA expression with rs8192678 SNP, making some to 

speculate it as a functional SNP. The association of rs8192678 SNP with T2D has also 
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been reported in Danish (Ek et al., 2001), Japanese (Hara et al., 2002), Southern 

Chinese (Song et al., 2010; Zhang et al., 2007), and North Indians (Bhat et al., 2007), 

but no such association was reported in Pima Indians (Muller, Bogardus, Pedersen, & 

Baier, 2003) or in French Caucasians (Lacquemant, Chikri, Boutin, Samson, & 

Froguel, 2002). These discrepancies in genetic associations in different populations 

could merely be due to different genetic admixture or due to errors in sampling, low 

statistical power, population not being homogenous, confounding by gene-

environment interactions and stringency for genome wide studies (GWAS).These 

conflicting results suggest ethnic differences in distribution of the SNPs in different 

populations and thus differences in susceptibility for T2D in various ethnicities. It is 

often seen that a genetic association is rather with a nearby SNP than the SNP being 

tested due to confounding by locus. We made sure that the SNPs selected for the study 

were independent and the associations were not due to linkage disequilibrium between 

these gene variants.  

One interesting finding in the study was the protective association of rs7656250 

as well as rs4235308 with T2D in Haitian Americans whereas risk association in 

African Americans. Both rs7656250 as well as rs4235308 exhibited protective effect 

in females of Haitian American group. However, a risk association was observed for 

both SNPs in females of African Americans in the study. Haitian Americans have poor 

diabetes control but lower prevalence than African Americans (Vimalananda, 

Rosenweig, Cabral, David, & Lasser, 2011). The collective protective effect of 

PPARGC1A polymorphisms rs7656250 and rs4235308 in this study in Haitian 

Americans could be just a glimpse of why such a difference exists. One study pointed 
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out the differences between both ethnicities of South Florida in diet quality (Huffman, 

2012). Although both ethnicities were found to have lower than optimal diet quality, 

Haitian Americans had better diet quality scores in general but not in women 

(Huffman, 2012). The prevalence of T2D has been reported to be higher in Haitian 

females than males in one study (Jean-Baptiste, Larco, Charles-Larco, Vilgrain, 

Simon, & Charles, 2006) although the study population comprised of only the 

members of the households present at the time of the visit. This selection bias could 

have resulted in overestimation of diabetes prevalence in females. Additionally, the 

gender differences in prevalence of T2D in Haitian Americans are not well known due 

to lack of literature. The poor access to health care, educational status, exposure to 

gestational diabetes and diet quality often seen in ethnicities of African origins may 

increase the lifestyle burden on physiological functioning increasing prevalence of 

T2D in females (Shai et al., 2006). According to a recent study published in Journal of 

American Medical Association, African American females had 2.4-fold greater 

diabetes incidence per 1000 person as compared to 1.5-fold greater in men than their 

White counterparts (Brancati, Kao, Folsom, Watson & Szklo, 2000). The strong risk 

association for rs4235308 in African American females observed in this study 

supports the same trend. However, the risk association of rs7656250 in African 

Americans could not reach statistical significance, probably due to insufficient sample 

size. In African males, the association of rs7656250 was marginally protective for 

T2D; probably it can explain why African American males have lower T2D 

prevalence than African American females. As there is lack of genetic association 
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studies in African American population and virtually nonexistent in Haitian American 

population, further research is warranted.  

There are few limitations of this study. Although, the sample size of the study 

had sufficient statistical power (>80%) to detect odds ratio of 1.5 or more, for equal 

case and control at significance threshold of 0.05, it may have been inadequate to 

detect association of SNPs with a modest effect. As with any case-control approach, 

bias exists for genetic association studies, due to unacceptable designation of cases 

and controls. In this study, participants were classified as cases or controls 

(T2D=Yes/NO) with the use of medical history and the standard criteria described by 

American Diabetes Association. Self-reported ethnicity is a common method with 

population based association studies and due to population stratification it may 

increase the false positive results. In this study, both cases and controls were selected 

from the same population pool and geographic area, with information on ethnicity up 

to two generations, for each respective ethnicity. The heterogeneity however within 

the African American and Haitian American population and thus residual confounding 

is still a concern.  

Despite the low p-values, the likelihood of true disease associations mostly 

depends on the biological plausibility. Polymorphisms located within the PPARGC1A 

gene with strong associations with T2D have been reported in multiple genetic 

association studies (Villegas et al., 2014; Zhu et al., 2009; Lai et al., 2008; Su, Peng, 

Li, & Huang, 2008; Jing, Xueyao & Linong, 2012). The PPARGC1A gene has been 

identified as a transcriptional co-activator of a series of nuclear receptors, which 

regulate processes that impact cellular energy metabolism, thermogenesis regulation, 
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glucose metabolism, adipogenesis, and oxidative metabolism via protein PGC1-α 

(Gerhart-Hines et al., 2007; Puigserver, Wu, Park, Graves, Wright, & Spiegelman, 

1998; Rhee et al., 2003). Acetylation of PGC1-α is in fact essential for its 

transcriptional co-activator functions (Rodgers et al., 2005) and any hindrance in 

acetylation-deacetylation process may adversely affect its functioning. PGC1-α 

dysregulation is often associated with insulin resistance and T2D (Finck & Kelly, 

2007), which suggests that variations within the PPARGC1A gene may influence 

transcriptional homeostasis of the genes involved. 

In summary, this is the only study that successfully examined differences in genetic 

associations of PPARGC1A with T2D between Haitian American and African 

Americans. As T2D is a complex disease with strong environmental influence, the 

contribution of differences in ancestry may be behind the ethnic disparities observed 

in risk of type 2 diabetes development in this and other populations. 
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G. Table 1. Characteristics of PPARGC1A SNPs 

 

NCBI ref 
SNP number* 

Chromosome 
nucleotide positionǂ  

MAF† Disease risk 
associations 

F-Score 

 
rs8192678 

 
23815662 

 
0.291 

 
T2D, CVD, 

Obesity 

 
0.50 

rs7656250 23866016 0.265 T2D, CVD 0.27 

rs4235308 23864412 0.396 CVD 0.28 

rs11724368 99418507 0.106 CVD 0.25 

 

Note: * National Center for Biotechnology Information (NCBI) reference single 
nucleotide polymorphism (SNP) number (http://www.ncbi.nlm.nih.gov/) 
ǂGenome Reference Consortium Human Build 37 patch release 13 (GRCh37.p13) used 
for nucleotide position (http://www.ncbi.nlm.nih.gov/SNP/) 
†Minor allele frequencies are from a global population genotyped in HapMap project 
MAF=minor allele frequency; T2D=type 2 diabetes; CVD=cardiovascular disease; F-
Score= Functionality score. 
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H. Figure 1. Haploview plot showing Linkage disequilibrium (LD) with r2 values for 
four selected SNPs of PPARGC1A gene.  

 
 

 
Note: Black coloring display strong LD, dark grey display less strong LD, light grey 
displays intermediate LD and white displays weak LD. 
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I. Table 2. Descriptive characteristics of individuals by ethnicity and T2D status 

 

 
Note: Values are unadjusted mean ± SD for continuous variables or N (%) for categorical variables. Diabetes medication is 
only for cases. So statistical test is not necessary and the p-value is not available (NA). Cases= with T2D; Controls= without 
T2D; BMI= body mass index; Diabetes Meds= Diabetes medications; SBP= systolic blood pressure; DBP= diastolic blood 
pressure. 
 
 
 
 

 

 

 

 
 

Variables 
Haitian Americans African Americans 

Cases (n=110) Controls (n=116) p-value Cases (n=124) Controls (n=122) p-value 
Age, yr. 58.55±10.15 54.03±11.05 <0.01 54.31±10.07 51.20±8.65 0.01 
Sex (Male) 48 (44) 54 (46) 0.66 59 (48) 61 (50) 0.70 
Waist Circumference (cm) 100.25±12.16 95.97±12.72 0.01 114.15±18.12 102.02±14.98 <0.01 
BMI (kg/m2) 29.50±5.45 28.96±5.157 0.44 35.86±8.28 31.21±6.77 <0.01 
Smoke (Yes) 7 (6) 5 (4) 0.49 44 (35) 49 (40) 0.45 
Blood pressure 

(mm of Hg) 
SBP 148.24±25.76 144.63±26.206 0.29 140.85±20.11 133.15±18.41 <0.01 
DBP 90.82±13.22 90.44±13.55 0.83 89.76±11.59 88.37±12.97 0.38 

Diabetes Meds (Yes) 98 (89) 0 (0) NA 96 (77) 0 (0) NA 
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J. Table 3. Genotype distribution of PPARGC1A SNPs by ethnicity and T2D 

 

Note: Genotype frequencies are depicted as n (%). Cases= with T2D; Controls= without T2D; SNP= single nucleotide 
polymorphism; MAF= Minor allele frequency. 

 

 

 

 

 
SNPs 

Minor 
Allele 

Haitian Americans (n=226)  African Americans (n=246) 
Cases 
(n=110) 

Controls 
(n=116) 

p-
value 

MAF (%)  Cases 
(n=124) 

Controls 
(n=122) 

p-
value 

MAF (%) 
Cases Controls  Cases Controls 

   
   

   
   

  G
en

ot
yp

e 
fr

eq
u

en
ci

es
 (

n,
 %

) 

rs8192678 
CC   

 
T 

92 (84) 102 (88) 
<0.01 0.145 0.060 

 103 (84) 104 (85) 
0.36 0.093 0.074 CT 4 (4) 14 (12)  19 (15) 18 (15) 

TT 14 (13) 0 (0)  2 (2) 0 (0) 
              

rs7656250 
TT 

 
C 

85 (73) 96 (83) 
0.58 0.118 0.090 

 90 (72) 98 (80) 
0.26 0.165 0.110 CT 24 (22) 19 (16)  27 (22) 21 (17) 

CC 1 (0.9) 1 (0.8)  7 (6) 3 (2) 
              

rs4235308 
TT 

 
C 

35 (32) 52 (45) 
0.12 0.441 0.327 

 56 (45) 51 (42) 
0.33 0.343 0.336 CT 59 (54) 52 (45)  51 (41) 60 (49) 

CC 16 (14) 12 (10)  17 (14) 11 (9) 
              

rs11724368 

CC 
 
G 

93 (84) 100 (86) 

0.72 0.072 0.069 

 103 (83) 105 (86) 

0.35 0.093 0.069 CG 17 (15) 16 (14)  19 (15) 17 (14) 
GG 0 (0) 0 (0)  2 (2) 0 (0) 
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K. Table 4a. PPARGC1A SNP association with T2D in Haitian Americans 
 

 

Note: The statistically significant results are in bold. Controlled variables included in the logistic regression analysis for 
adjusted OR were age, sex, BMI, and smoking status. The interactions between sex and individual SNP were also included in 
logistic regression analysis for all the SNP.  p is considered significant at 0.05. OR= Odds ratio; CI= Confidence Interval; 
PPARGC1A= Peroxisome proliferator activated receptor, gamma, co-activator 1 alpha. 
 

 

 

 

 

 

 

Variables 
Haitian American 

Unadjusted OR 95% C.I. p-value Adjusted OR 95% C.I. p-value 
 
rs8192678 

 
TT +CT vs CC 

 
0.66 

 
0.30 

 
1.42 

 
0.28 

 
0.49 

 
0.15 

 
1.60 

 
0.24 

rs7656250 CC+CT vs TT 0.66 0.34 1.30 0.23 0.22 0.07 0.64 <0.01 
rs4235308 CC+CT vs TT 0.53 0.30 0.95 0.03 0.42 0.17 0.93 0.03 
rs11724367 CC+CG vs GG 1.14 0.52 2.52 0.74 1.73 0.55 5.49 0.35 
rs8192678*sex - - - - - 1.77 0.34 9.27 0.50 
rs7656250*sex - - - - - 7.53 1.66 34.15 <0.01 
rs4235308*sex - - - - - 1.56 0.46 5.34 0.48 
rs11724367*sex - - - -  0.54 0.09 2.95 0.48 
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L. Table 4b. PPARGC1A SNP association with T2D in African Americans 

 

Note: The statistically significant results are in bold. Controlled variables included in the logistic regression analysis for 
adjusted OR were age, sex, BMI, and smoking status. The interactions between sex and individual SNP were also included in 
logistic regression analysis for all the SNP.  p is considered significant at 0.05. OR= Odds ratio; CI= Confidence Interval; 
PPARGC1A= Peroxisome proliferator activated receptor, gamma, co-activator 1 alpha. 

 

 

 

 

 

 

 

Variables 
African American 

Unadjusted OR 95% C.I. p-value Adjusted OR 95% C.I. p-value 
 
rs8192678 

 
TT +CT vs CC 

 
0.90 

 
0.45 

 
1.87 

 
0.78 

 
0.55 

 
0.19 

 
1.56 

 
0.26 

rs7656250 CC+CT vs TT 0.62 0.34 1.13 0.12 1.02 0.43 2.43 0.96 
rs4235308 CC+CT vs TT 1.29 0.75 2.21 0.36 2.53 1.08 5.92 0.03 
rs11724367 CC+CG vs GG 0.69 0.33 1.25 0.33 0.29 0.08 1.14 0.08 
rs8192678*sex - - - - - 1.46 0.38 5.60 0.58 
rs7656250*sex - - - - - 0.36 0.11 1.13 0.08 
rs4235308*sex - - - - - 0.48 0.15 1.59 0.23 
rs11724367*sex - - - - - 3.78 0.82 17.31 0.09 



49 
 

M. Table 5 a. Associations of the single nucleotide polymorphisms of PPARGC1A with type 2 diabetes by ethnicities in 
males 

 

 

Note: The statistically significant results are in bold. Controlled variables included in the logistic regression analysis for OR 
(adjusted) were age, sex, BMI, and smoking status. OR= Odds ratio; CI= Confidence Interval; PPARGC1A= Peroxisome 
proliferator activated receptor, gamma, co-activator 1 alpha. 

 

 

 

 

 

 

                                                                               Male 

Variables 
 

Haitian American 
 

African Americans 

OR 95% CI p-value OR 95% CI p-value 
 
rs8192678 
 

 
TT +CT vs CC 0.89 0.25 3.10 0.85 0.86 0.29 2.53 0.79 

rs7656250 
 

CC+CT vs TT 
1.62 0.51 5.09 0.41 0.37 0.14 0.97 0.04 

rs4235308 
 

CC+CT vs TT 
0.62 0.24 1.61 0.33 1.16 0.50 2.68 0.72 

rs11724368 
 

CC+CG vs GG 
0.84 0.23 3.08 0.79 1.11 0.42 2.94 0.83 
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N. Table 5 b. Associations of the single nucleotide polymorphisms of PPARGC1A with type 2 diabetes by ethnicity in 
females 

 

Note: The statistically significant results are in bold. Controlled variables included in the logistic regression analysis for OR 
(adjusted) were age, sex, BMI, and smoking status. OR= Odds ratio; CI= Confidence Interval; PPARGC1A= Peroxisome 
proliferator activated receptor, gamma, co-activator 1 alpha. 

 

 

                                                                                                                                                         Female 

Variables 
Haitian American 

 
African Americans 

 OR 95% CI p-value OR 95% CI p-value 

 
rs8192678 

 
TT +CT vs CC 

 
0.51 

 
0.15 

 
0.16 

 
0.26 

 
0.48 

 
0.15 

 
1.49 

 
0.20 

rs7656250 CC+CT vs TT 0.23 0.08 0.65 <0.01 1.14 0.43 3.07 0.79 

rs4235308 CC+CT vs TT 0.38 1.59 0.89 0.03 2.69 1.11 6.52 0.03 
 
rs11724368 
 

CC+CG vs GG 
 

1.41 
 

0.45 
 

4.40 
 

0.55 
 

0.32 
 

0.07 
 

1.54 
 

0.15 
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CHAPTER IV 

PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA 

COACTIVATOR-1 ALPHA (PPARGC1A) POLYMORPHISM ASSOCIATED 

WITH MICROALBUMINURIA IN HYPERTENSIVE HAITIAN AMERICANS 

WITH TYPE 2 DIABETES?  

A. Abstract 

Aim: To explore the relation of PPARGC1A polymorphism with microalbuminuria in 

hypertensive Haitian American adults with type 2 diabetes (T2D). 

Methods: Haitian Americans, ages >30 years, with and without T2D were recruited for a 

cross-sectional, case-control study using community based sources, and advertisements. 

Sociodemographic data, and medical history, was collected using questionnaires. 

Anthropometrics and medical assessment performed using standard procedures. 

Measurements of serum glucose using hexokinase method, A1C using Roche Tina Quant 

method (Laboratory Corporation of America, LabCorp, FL), lipid panel using automatic 

chemical analyzer and albumin using ImmunoDip method  (Diagnostic Chemicals 

Limited, Oxford, CT, USA) was performed. Urinary albumin concentrations of 0.18 

mg/L as a cut off for microalbuminuria (Yes) were considered corresponding to albumin: 

creatinine ratio 0.30 ug/mg values. Real-time PCR amplification was performed using 

TaqMan allelic discrimination assay (Life Technologies Inc, Carlbad, CA) for genotyping 

rs3774907 polymorphism of PPARGC1A from whole genome DNA isolated using 

QIAamp DNA Blood mini kit (Qiagen, Hilden, Germany).  
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Results: The risk for hypertensive Haitian Americans with T2D to have 

microalbuminuria was much lower with ‘C’ allele of PPARGC1A polymorphism 

(OR=0.35, p=0.031) than common allele ‘T’ suggesting protective effect of minor allele 

for rs3774907 SNP (OR=2.88, p=0.272). 

Conclusions: The risk for hypertensive Haitian Americans with T2D to have 

microalbuminuria was much lower with ‘C’ allele of PPARGC1A polymorphism than 

common allele ‘T’ suggesting protective effect of minor allele for rs3774907 SNP. In 

future, larger replicative studies in several ethnicities should examine the relationship 

observed in this study to validate the role of PPARGC1A in microalbuminuria. 
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B. Introduction 

Microalbuminuria (MA) defined as urinary albumin excretion greater than normal but 

lower than 300 mg/day, is associated with cardiovascular risk, irrespective of the diabetes 

status (Mattock et al., 1992; Beilin, Stanton, McCann, Knuiman, & Divitini, 1996; 

Hillege et al., 2001).  The prevalence of microalbuminuria varies in different ethnicities, 

populations of African origin being at highest risk amongst Caucasians and Polynesians 

(Goldschmid, Domin, Ziemer, Gallina, & Phillips, 1995). Additionally, the prevalence of 

type 2 diabetes (T2D) is also the highest (13.2%) among populations of African origin 

but no data is available on Haitian Americans exclusively (CDC, 2014).  Several studies 

have reported microalbuminuria to be a strong predictor of cardiovascular complications 

and kidney diseases, particularly in individuals with T2D (Miettinen et al., 1996; Mattock 

et al., 1998; Borch-Johnsen, Feldt-Rasmussen, Strandgaard, Schroll, & Jensen, 1999). 

The high odds of microalbuminuria in Haitian Americans with T2D and poor glycemic 

control have been reported (Cuervo, Zarini, Exebio, McLean & Huffman, 2012). The risk 

for developing T2D and poor glycemic control increases with elevated urinary albumin 

excretion. Microalbuminuria is not the causative agent of cardiovascular events but is 

rather a marker for increased risk (Garg & Bakris, 2002). Several environmental factors 

have been implicated with the high rates of microalbuminuria, but hypertension and 

systolic blood pressure (BP) association has been seen across the ethnicities (Konen, 

Summerson, Bell, & Curtis, 1999; Goldschmid, Domin, Ziemer, Gallina, & Phillips, 

1995). Hypertension increases glomerular hydrostatic pressure, accelerating urinary 

albumin excretion and accelerating microalbuminuria (Palatini, 2003). Elevated 

glomerular hydrostatic pressure could very well be an indicator of endothelial 
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dysfunction, making leakage of albumin and other macromolecules of blood into the 

vascular wall, thereby initiating atherosclerosis (Palatini, 2003). Common genetic 

markers predisposing one to both high BP and microalbuminuria could also be at play. 

Predictive markers for microalbuminuria, including genetic ones, are now being 

under the close scrutiny of scientific community. Peroxisome proliferator-activated 

receptor gamma coactivator-1 alpha (PPARGC1A) is located on chromosome 4. The 

protein expressed by this gene, PGC1- α is involved in mitochondrial biogenesis via 

transcriptional regulation of nuclear respiratory factor (NRF) (Fernandez-Marcos & 

Auwerx, 2011; Scarpulla, Vega, & Kelly, 2012).  Vascular endothelial growth factor-1 

(VEGF-1) expression is also regulated by PGC1-α (Thom, Rowe, Jang, Safdar, & Arany, 

2014). In individuals with hypertension, mitochondrial content of endothelial cells is 

reported to be lower (Tang, Luo, Chen, & Liu, 2014). Its expression is also lower in 

diabetes (Pangare & Makino. 2012). Several epidemiological studies have linked 

PPARGC1A polymorphisms with hypertension, carotid atherosclerosis, and coronary 

artery disease, proposing its involvement in development of vascular disease (Kluge, 

Fetterman, & Vita, 2013). The region in which the PPARGC1A gene is located, 

chromosome 4p15.1, have been reported to be linked with high BMI (Stone et al., 2002), 

microalbuminuria (Prior et al., 2012), hypertension (Rojek et al., 2014), elevated systolic 

blood pressure (Vimaleswaran et al., 2008) in other studies. Haitians have similar 

diabetes care and outcomes as African Americans but fewer microvascular or 

macrovascular complications (Vimalananda, Rosenweig, Cabral, David, & Lasser, 2011). 

This study was therefore designed to explore the relation of PPARGC1A polymorphism 

with microalbuminuria and hypertension in Haitian American population, with T2D. 
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C. Materials and methods 

1. Study population 

Participants, ages >30 years, were recruited for a cross-sectional study conducted with 

Haitian Americans with and without type 2 diabetes. Recruitment of participants was 

done using invitational flyers, community-based sources and advertisements. The 

participants self-reported the presence of type 2 diabetes which was further confirmed 

with laboratory tests using American Diabetes Association criteria. Individuals were 

classified as having T2D if fasting plasma glucose concentration was ≥126 mg/dl or use 

of insulin or diabetes medication was reported. Participants were instructed to refrain 

from smoking, consuming any food or beverages except water, and engaging in any 

heavy physical activity for at least eight hours prior to their blood collection. Participants 

were explained protocols of the study and an informed voluntary consent in English or 

Creole was obtained prior to the commencement of the study. This study was approved 

by the Institutional Review Board at Florida International University. Individuals with 

any other chronic condition, pregnancy or lactation, were not eligible for participation.  

2. Socio-demographics 

Validated questionnaire was used to collect information on demographics such as age, 

gender, and smoking history. Data on T2D status (yes/no), duration of T2D, medication 

use (for diabetes, Nonsteroidal Anti-inflammatory Drugs (NSAIDs), and family history 

of T2D was collected using validated questionnaire by trained staff. 

3. Anthropometric measurements and medical assessment 

A SECA balance scale was used to measure both height and weight (Seca Corp, US) 

which were later used to calculate body mass index (BMI) in kg/height in m2. 
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Additionally, waist circumference (WC) to the nearest 0.1 cm was measured horizontally 

with a non-stretchable measuring tape placed midway between the 12th rib and iliac crest 

at minimal respiration and was used to determine central obesity (male = 102 cm/ female 

= 88 cm). Blood pressure (BP) measurement was repeated two times using a random zero 

sphygmomanometer (Tycos 5090-02 Welch Allyn Pocket Aneroid Sphygmomanometer, 

Arden, NC, USA) and a stethoscope (Littmann Cardiology, 3M, St Paul, MN, USA) in 

participants after a 15-minute rest while sitting. The BP was measured twice and then 

averaged. Presence of hypertension was established if participant had either systolic BP ≥ 

140 mm Hg, diastolic BP ≥ 90 mm Hg or they were using antihypertensive agents 

(AHA). 

4. Blood collection  

Twenty ml of venous blood was collected from each participant after an overnight fast (at 

least 8 hours) by a certified phlebotomist. Glucose levels in serum were quantified using 

hexokinase method. Whole blood was used to measure A1C using Roche Tina Quant 

method (Laboratory Corporation of America, LabCorp, FL). Automatic chemical 

analyzer was employed to determine high-density lipoprotein cholesterol (HDL-C), low-

density lipoprotein cholesterol (LDL-C), triglycerides (TG) and total cholesterol (TC) 

values.  

5. Urinary albumin and Microalbuminuria 

Albumin levels in fresh, single-voided, first morning urine samples were quantitated by a 

semiquantitative assay (ImmunoDip, Diagnostic Chemicals Limited, Oxford, CT, USA) 

according to validated methods published by Davidson et al [24] to assess urinary 

albumin and microalbuminuria status.  The ImmunoDip dipstick fulfilled the 
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requirements from the National Academy of Clinical Biochemistry (NACB) as a 

screening tool to detect microalbuminuria. In this study, urinary albumin concentrations 

of 0.18 mg/L were considered as a cut off for microalbuminuria (Yes) according to 

vendor (ImmunoDip, Diagnostic Chemicals Ltd) which corresponded to albumin: 

creatinine ratio 0.30 ug/mg values. 

6. DNA isolation and Real-time TaqMan-based genotyping 

Whole blood genomic DNA was isolated and tested for quality using QIAamp DNA 

Blood mini kit (Qiagen, Hilden, Germany) and 2000c nanodrop spectrophotometer 

(Thermo Scientific, USA), respectively. Real-time PCR amplification on BioRad CFX96 

real time PCR instrument using commercially available TaqMan allelic discrimination 

assay (Life Technologies Inc, Carlbad, CA) was performed for Single Nucleotide 

Polymorphisms (SNPs). 

7. Quality Control and Internal validity 

All biochemical parameters measured in the study had <10% of both intra- and inter-

assay coefficient of variations (CVs). Both cases and controls were derived from same 

study base. To ensure reproducibility and reliability of genotyping method, 10% of the 

DNA samples were duplicated during genotyping.   

8. Statistical analysis 

All statistical analyses were performed using SPSS 20 (SPSS, Inc., Chicago, IL, USA). A 

p-value of <0.05 (two-tailed) was considered statistically significant. The genotype 

frequencies for rs3774907 SNP was tested for Hardy-Weinberg’s equilibrium (HWE). 

Genetic associations for rs3774907 were assessed using both the recessive (CC+CT vs 

TT) as well as dominant (TT+CT vs CC) genetic model.  These models were employed to 
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detect recessive effects of the rare allele and dominant effects of common allele 

respectively. Sample size analyses for case-control ratio of 1:1 were conducted at 

significance threshold of 0.05 to detect odds ratio of 1.5 or more and minimum sample 

calculated was n=62. Student’s t-test and Chi-squared test were used to compare 

demographic and clinical information between individuals with and without type 2 

diabetes, for continuous and categorical variables respectively.  Logistic regression was 

employed to assess the relationship of SNP and hypertension with binary outcome for 

case-control status (Microalbuminuria= Yes / No)  before and after adjusting for potential 

confounding factors  such as age, sex, BMI, and smoking status among Haitian 

Americans with T2D.  

 

D. Results 

The general characteristics by microalbuminurea status are shown in Table 1. In the 

present study, genotype call rates for rs3774907 SNP were greater than 95%.  The minor 

allele frequency of C allele was found to be 0.410 in individuals with microalbuminuria 

as compared to 0.246 in individuals without microalbuminuria (Table 1). The genotype 

frequencies for TT/CT/CC in individuals with microalbuminurea were 10/26/3 and in 

without microalbuminuria the frequencies were 39/29/3. Individuals with 

microalbuminurea had higher proportion of C allele than the individuals without 

microalbuminurea who had higher proportion of T allele (p=0.013). 

No statistical difference in BMI (p=0.482), sex (p=0.231), smoking status 

(p=0.215), waist circumference (p=0.374) and proportion of individuals with 

hypertension (p=0.226) was found between individuals with microalbuminurea (cases) 
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and those without microalbuminurea (controls). The levels of triglycerides (p=0.143), 

total cholesterol (p=0.268), FPG (p=0.262) or LDL-C (p=0.070) were not statistically 

different between individuals with and without microalbuminurea. However, the 

microalbuminurea group had higher SBP (p=0.001) and DBP (p=0.026), A1C (p=0.013) 

and HDL-C (p=0.039).   

As shown in Table 2, the logistic regression analysis for rs3774907, shows unadjusted 

odds ratios indicating that the individuals with T2D and CC and CT genotype were 0.28 

times as likely as those with TT genotype for rs3774907 to have microalbuminurea 

(p=0.004). After controlling for the effect of age, sex, BMI, smoking status, the Haitian 

Americans with T2D and CC and CT genotype remained steady at 0.29 times as likely as 

individuals with T2D and genotype TT to develop microalbuminuria (p=0.006). On the 

contrary, the individuals with T2D were 1.84 times as likely to have microalbuminuria if 

they had TT or CT genotype of rs3774907 compared with those with CC genotype 

(p=0.47). The risk decreased to OR= 1.71 when adjusted for confounding variables; age, 

sex, smoking status, BMI (p=0.53). However, the results were not statistically significant 

for TT+CT model.  Hypertension was not significantly associated with microalbuminuria 

(Table 2).  

In Table 3, likelihood of microalbuminuria in hypertensive Haitian Americans with T2D 

is shown by presence of rs3774907 alleles. The hypertensive individuals with T2D and 

CC and CT genotype of rs3774907 were 0.351 times as likely as TT genotype to have 

microalbuminuria (p=0.031) after adjusting for age, sex, BMI and smoking status.  On 

the other hand, the adjusted risk for microalbuminuria increased to 2.882 times in 

hypertensive Haitian Americans with T2D and TT +CT genotype (p=0.272).  
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E. Discussion 

This study investigated the relationship of rs3774907 SNP of the PPARGC1A gene with 

microalbuminuria in hypertensive Haitian Americans with T2D. As anticipated, 

individuals with microalbuminuria had higher blood pressure and A1C. Surprisingly no 

difference was seen between with and without microalbuminurea groups for BMI, waist 

circumference, cholesterol, or triglycerides. Despite higher blood pressure the reason why 

no difference in lipid profile was seen in microalbuminuria group except HDL-C being 

higher in individuals with microalbuminuria, is not clear. Interestingly, the minor allele 

frequency for rs3774907 (C) was higher in individuals with microalbuminuria than 

without microalbuminuria, suggesting some interaction of this allele with 

microalbuminuria. 

Microalbuminuria is frequently observed in individuals with hypertension (Redon 

& Pascual, 2006). We tested the effect of this association in either of the two alleles for 

the SNP rs3774907. Upon testing, the risk for hypertensive individuals to have 

microalbuminuria was much lower with minor allele ‘C’ of rs3774907 SNP than allele 

‘T’ in this study sample of Haitian Americans with T2D. The interaction however was 

never before examined in Haitian American population, despite African origin 

populations being at high risk for development of microalbuminuria. 

Microalbuminuria patients usually show elevated blood pressure, compared to patients 

without microalbuminuria along with atherogenic lipid profile (Bigazzi & Bianchi, 1995). 

Same relationship was observed between microalbuminuria and some of the atherogenic 

factors; blood pressure and A1C but not cholesterol, or triglycerides, in this study 

consisting of Haitian Americans. This correlation is well documented to be the 
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manifestation of endothelial dysfunction, reported in hypertension due to the involvement 

of endothelial cells in permeability and blood pressure control (Pedrinelli et al., 1994).  In 

this study, interaction between hypertension and rs3774907 was also significant 

suggesting association of hypertension with this SNP. Recent studies have recognized 

mitochondrial influence in endothelial function due to its involvement in multiple cellular 

processes.  The complex process of mitochondrial content is based on the delicate 

equilibrium between selective mitochondrial degradation and mitochondrial biogenesis. 

Mitochondrial biogenesis is regulated primarily by PPARGC1A expressed PGC1-α, 

through activation of nuclear respiratory factor (NRF) (Nisoli et al., 2003; Dominy, Lee, 

Gerhart-Hines, & Puigserver, 2010). In addition, PGC1-α regulates glucose and lipid 

metabolism as well as vascular endothelial growth factor-1 (VEGF-1) expression and 

thus it stimulates angiogenesis (Patten & Arany, 2012).The importance of PGC1-α in 

angiotensin induced hypertension was established by a recent study (Kröller-Schön et al., 

2013). The influence of PGC1-α on elevated blood pressure and thus hypertension could 

be a major determinant of microalbuminuria.  

There are several limitations to the study. Only one variant for the gene PPARGC1A was 

chosen to test the association with microalbuminuria in this study population. Haplotype 

based analysis should be therefore performed in further studies by assessing other 

variants within the regulatory region of PPARGC1A gene. As type 2 diabetes is a 

multifactorial disease, environmental factors must be included in such studies to get 

comprehensive analysis. Ethnic specific case-control studies generally have intrinsic bias 

due to possible genetic heterogeneity among cases and controls. This study however 

recruited both cases and controls from the same geographical region for Haitian 
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Americans. The small sample size with cross sectional design could have been a factor in 

inability to see few statistically significant interactions.  

In conclusion, this is the first study that examined rs3774907 relation to 

microalbuminuria in hypertensive Haitian Americans with T2D. As it is an exploratory 

study, additional larger studies however are warranted to confirm the contribution of 

PPARGC1A gene polymorphisms in susceptibility of microalbuminuria in hypertensive 

Haitian Americans with T2D.  
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G. Table 1. Characteristics of study population by Microalbuminurea status 

 
 

Variables 
With Microalbuminurea 

(n=39) 
Without Microalbuminurea 

(n=71) 
p-

value 
Age 59.49±9.62 58.04±10.46 0.478 
Sex, Female 20 (51) 28 (39) 0.231 
BMI (kg/m2) 29.01±4.79 29. 77±5.80 0.482 
Waist circumference (cm) 98.85±12.75 101.01±11.85 0.374 
SBP (mm of Hg) 159.13±26.89 142.25±23.20 0.001 
DBP (mm of Hg) 94.58±13.28 88.75±12.82 0.026 
Smoke, Y 4 (10) 3 (4) 0.215 
Total cholesterol (mg/dl) 195.62±43.04 186.92±36.98 0.268 
Triglycerides (mg/dl) 113.33±60.83 99.00±40.63 0.143 
Log TG 1.99±0.17 1.96±0.18 0.335 
HDL-C 50.46±14.09 56.90±16.15 0.039 
LDL-C 122.44±37.49 110.24±30.97 0.070 
FPG (mmol/L) 176.87±75.40 156.66±98.89 0.262 
A1C (%) 9.28±2.77 7.96±2.56 0.013 
Log A1C 0.94±0.12 0.88±0.12 0.008 
Hypertension, Y 33 (84) 53 (72) 0.226 
     

rs3774907 
TT (%) 10 (25) 39 (55) 0.013 
CT (%) 26 (67) 29 (41)  
CC (%) 3 (8) 3 (4)  

MAF                C                      0.410 0.246  

 
 
Note: Data were expressed as mean ± SD for continuous variables or N (%) for 
categorical variables. BMI= body mass index; WC= waist circumference; Log TG= log 
transformed triglyceride; FPG= fasting plasma glucose; A1C= hemoglobin A1C; HDL-
C=high-density lipoprotein cholesterol; LDL-C=low density lipoprotein cholesterol; 
SBP=systolic blood pressure; DBP=diastolic blood pressure; MAF=minor allele 
frequency. 
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H. Table 2. Logistic regression analysis for rs3774907 and hypertension with 

microalbuminuria in Haitian Americans with type 2 diabetes. 
 

 

 
Note:  Controlled variables included in the logistic regression analysis were age, sex, 
BMI, smoking status. CI= confidence interval; OR= odds ratio.  

 
 
 
 
 

I. Table 3. Likelihood of microalbuminuria by rs3774907 among hypertensive 
Haitian Americans with type 2 diabetes. 

 
 

 
Parameter 

 

Unadjusted 
OR 

95% CI 
p-

value 
Adjusted 

OR 
95% CI 

p-
value 

rs3774907 

CC+CT 
vs TT 

0.33 0.13 0.85 0.022 0.35 0.13 0.91 0.031 

TT+CT 
vs CC 

2.55 0.40 16.13 0.32 2.88 0.43 19.0 0.27 

 
Note: Controlled variables included in the logistic regression analysis were age, sex, 
BMI, smoking status. CI= confidence interval; OR= odds ratio. 
 
 
 
 
 

 
Parameter 

 

Unadjusted 
OR 

95% CI 
p-

value 
Adjusted 

OR 
95% CI p-value 

CC+CT vs TT 0.28 0.12 0.68 0.004 0.29 0.12 0.67 0.006 
Hypertension 1.79 0.62 5.17 0.274 1.99 0.63 6.25 0.238 
Hypertension 
*rs3774907 

- - - - 3.21 0.23 43.59 0.381 

         
TT+CT vs CC 1.84 0.35 9.71 0.47 1.71 0.32 9.19 0.533 
Hypertension 1.85 0.66 5.15 0.237 2.08 0.68 6.33 0.197 
Hypertension 
*rs3774907 

- - - - 0.35 0.13 0.93 0.035 
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CHAPTER V 

PGC1-α POLYMORPHISM ASSOCIATION WITH TYPE 2 DIABETES; DUE TO 

ROLE IN HIGHER FASTING PLASMA GLUCOSE, AND INFLAMMATION IN 

HAITIAN AMERICANS.  

A. Abstract 

Aim: The primary aim of this study was to examine the correlation of PPARGC1A 

polymorphism, rs3774907 with type 2 diabetes (T2D) in Haitian Americans with and 

without T2D. Secondary aim was to explore if this relationship is due to the involvement 

of PGC1-α in FPG and Hs-CRP levels in Haitian Americans with obesity and T2D status. 

Methods: Whole genome DNA was extracted from n=228 Haitian Americans with 

(n=118) and without (n=110) T2D for this IRB approved case control study using 

QIAamp DNA Blood mini kit (Qiagen, Hilden, Germany).  Socio-demographic and 

anthropometric data comprising of age, sex, smoking history and medication intake was 

collected using questionnaires. Body mass index (BMI) was calculated as weight/height, 

both measured using SECA balance scale (Seca Corp, MD, US). If Waist circumference, 

measured by a measuring tape, was ≥102cm in males and WC ≥88cm in females, the 

individual was classified as abdominally obese. Measurement of high sensitivity C-

reactive protein (Hs-CRP) by immulite method and serum glucose was measured with 

hexokinase method. Genotyping for rs3774907 polymorphism was performed with whole 

genome DNA using TaqMan allelic discrimination assay (Life Technologies Inc, 

Carlbad, CA) on a BioRad CFX96 real time PCR instrument. Multiple linear regression 

was used to test the relation between rs3774907 genotypes and log transformed FPG or 
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Hs-CRP with diabetes status (Yes/No) adjusted for age, sex, smoking status and BMI on 

SPSS version 18 (SPSS Inc., Chicago, IL, USA). 

Results: PGC1-α polymorphism was significantly associated with decreased risk for T2D 

in Haitian Americans with CC or CT genotype than TT genotype (OR=0.33, p=0.005). 

The individuals with CC+CT genotype for rs3774907 had 0.04 log mmol/L lower FPG 

(p=0.025) and 0.24 log ng/ml lower CRP (p=0.02) values than TT genotype. Conversely, 

the individuals with TT+CT genotype had 0.19log mmol/L lower log FPG levels 

(p=0.653) but 0.67log ng/ml higher log CRP values (p=0.01). 

Conclusions: Lower levels of log FPG and Hs-CRP among Haitian Americans who are 

rs3774907 homozygous for rare allele suggests implication of this PPARGC1A 

polymorphism in metabolic disorders often followed by T2D.  The interactions observed 

with PPARGC1A polymorphism may contribute to the explanation of metabolic 

outcomes such as hyperglycemia or chronic inflammation among certain Black 

ethnicities which are at high risk for T2D. 
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B. Introduction 

Plasma glucose levels are tightly regulated under normal physiological conditions (Jiang 

& Zhang, 2003). This normal physiological range of glucose levels in plasma varies from 

70 to 100 milligrams per deciliter (mg/dL), depending on feeding or fasting state 

(Desvergne, Michalik, & Wahli, 2006). Circulating fasting plasma glucose (FPG) is 

determined by interplay between gastric emptying time and hepatic processes, such as 

glycogenolysis and gluconeogenesis (Jiang & Zhang, 2003). The plasma levels of fasting 

glucose of 100 to 125 mg/dL are classified as with impaired fasting glucose (IFG), 

whereas, FPG levels ≥126 mg/dL, is considered as type 2 diabetes (T2D). The elevation 

in FPG levels is linked with risk of T2D and cardiovascular diseases (CVD) (De Vegt et 

al., 1999; De Vegt et al., 2001; Snieder, Boomsma, Van Doornen & Neale, 1999). High 

blood glucose level is the fundamental clinical characteristic of T2D, which may be 

caused by anomalies in one or more of the different molecular pathways regulated by 

certain genes (Narayan, Boyle, Thompson, Sorensen, & Williamson, 2003; Nelson, 

Vogler, Pedersen, Hong & Miles, 2000). T2D in conjunction with hyperglycemia 

contributes to vascular dysfunction by instigating various biochemical mechanisms that 

brings changes in the intricate metabolic pathways.  

Hyperglycemia has been reported to stimulate the activation of protein kinase C 

isoforms, elevating Glycated end product levels, increasing oxidative stress in the 

vascular endothelium (Lin et al., 2005). The presence of hyperglycemia is also known to 

trigger the inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin-

6 (IL-6) release from various cells, leading to chronic low grade inflammation (Tsigos, 

Papanicolaou, Kyrou, Defensor, Mitsiadis & Chrousos, 1996). This chronic inflammation 
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can also be stimulated with the presence of adiposity although inflammation is also 

observed in non-obese, lean individuals (Peraldi & Spiegelman, 1998; Munoz, Abate & 

Chandalia, 2013).  

Peroxisome proliferator-activated receptor-γ coactivator-1 α (PPARGC1A) 

encoded protein PGC1-α coordinates a tissue-specific gene regulation, affecting the 

expression of genes involved in hepatic glucose metabolism and mitochondrial 

biogenesis (Lin, Handschin & Spiegelman, 2005; Yoon et al., 2001). PGC1-α increases 

glucose uptake by up-regulating GLUT-4 in skeletal muscle cells and it regulates 

enzymes phosphoenolpyruvate carboxy-kinase and glucose-6-phosphatase levels 

involved at critical points in gluconeogenesis (Yoon et al., 2001; Mootha et al., 2004). 

PGC1-α also regulates glycolysis by controlling the levels of NAD+ regenerated from 

NADPH (Wende et al., 2007).  Elevated levels of PGC1-α in muscle have been reported 

to show decreased rates of glycolysis (Wende et al., 2007). Recently a study established 

association between PPARGC1A haplotype and 30 min, 60 min post load glucose levels 

and beta cell function indices (Oberkofler et al., 2004). By regulating the expression of 

enzymes of gluconeogenesis, PGC1-α could in fact be pivotal in regulation of glucose 

uptake or production. 

PGC1-α also protects against inflammatory response caused by high oxidative 

stress prevalent in several metabolically deregulation linked cases such as T2D (Dillon, 

Rebelo & Moraes, 2012). PGC1-α reduces both the synthesis and release of pro-

inflammatory cytokines (Dillon, Rebelo & Moraes, 2012). Interestingly, high levels of 

inflammatory cytokines have been reported in the tissues where PGC1-α protein was lost 

or down-regulated (Handschin et al., 2007). Additionally, a study reported reduced 
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expression of PGC1-α in mice with heterozygous PPARGC1A gene, comparable to 

human with T2D (Mootha et al., 2004), suggesting a correlation between inflammatory 

cytokines and PGC1-α. It is therefore imperative to study variations in this gene to 

enhance knowledge on T2D prognosis. 

Ethnic disparity exists in the development of T2D and its comorbidities. 

Individuals with African origin are at higher risk for T2D than Caucasians (Colditz et al., 

1990). Haitian Americans have high blood pressure, poor control of LDL cholesterol as 

well as poor glycemic control but lower insulin resistance and vascular complications 

compared to African Americans or Caucasians (Narayan, Boyle, Thompson, Sorensen& 

Williamson, 2003; Cheema et al., 2014). Therefore, the relationship of PPARGC1A 

polymorphism, rs3774907 on FPG and Hs-CRP levels in Haitian Americans with obesity 

and T2D status was assessed.  

 

C. Materials and methods 

1. Study population 

The case-control study sample consisted of n= 228 Haitian Americans with n=118 and 

n=110 without T2D. The participants were recruited from Miami-Dade and Broward 

counties using multiple community sources, for a previous parent study with cross-

sectional design conducted at Human Nutrition Laboratory at FIU. Local diabetes 

educators and community health practitioners in both counties contributed in recruitment. 

Invitational flyers with information on the research protocol of the parent study were 

distributed to Florida International University (FIU) faculty, staff and students. 

Additionally, Advertisements were placed in local Haitian American newspapers, Creole 
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radio station, churches, restaurants and supermarkets to recruit the participants. The intent 

of the research study as well as protocol was explained to the individuals who agreed to 

participate and anthropometric information such as age, sex was collected. The age of 

diagnosis and treatment modalities were also noted for the participants who self-reported 

to have T2D. The study was approved by the Institutional Review Board at FIU. 

Voluntary written consent was collected from the eligible participants in Creole or 

English. 

Sociodemographic data, smoking history and status, and medications intake were 

collected using standard questionnaires. SECA balance scale (Seca Corp, MD, US) was 

used to measure both height and weight and body mass index (BMI) was calculated as 

weight/ height (kg/m2). Those who had BMI≥30 kg/m2 were considered obese (NIH, 

1998). Waist circumference (WC) was measured by a non-stretchable measuring tape 

between 12th rib and iliac crest. Abdominal obesity was determined with WC in males to 

be ≥102cm and in females with WC ≥88cm (NIH, 1998). 

2. Biological measurements 

Whole blood was collected using standard procedures by a phlebotomist from 

participants with instructions not to smoke, or consume food or beverages except water 

overnight (at least for 8 hours). The hexokinase enzymatic methods were employed to 

measure glucose levels in serum stored in a Vaccutainer Serum Separator tube. Blood 

collected in EDTA collection tube was used to measure glycosylated hemoglobin (A1C) 

percentages with Roche Tina Quant method by a certified laboratory (Laboratory 

Corporation of America, LabCorp, FL, USA).  Immulite method was employed to 
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measure values of high-sensitivity C-reactive protein (Hs-CRP) in serum (Roberts, 

Sedrick, Moulton, Spencer& Rifai, 2000). 

3. Genotype detection  

After isolating genomic DNA from the peripheral blood using QIAamp DNA Blood mini 

kit (Qiagen, Hilden, Germany), single nucleotide polymorphism (SNP) genotyping was 

performed by real-time PCR amplification on BioRad CFX96 real time PCR instrument.  

Commercially available TaqMan allelic discrimination assay specific for rs3774907 SNP 

(Life Technologies Inc, Carlbad, CA) was used for assessment of genotypes along with 

SsoFast™ Probes Supermix reaction buffer. Each 96 well plate with singleplex reactions 

contained two no template controls (NTC), random samples for replication and a positive 

control.  The cycling program for PCR for rs3774907 SNP was enzyme activation for 2 

minutes at 95oC, 5 seconds of denaturation at 95oC (42 cycles), and then 5 seconds of 

annealing and extension at 61oC. Data acquisition and assignment of genotype was 

conducted using Bio-Rad CFX Manager software (version 3.0). 

4. Statistical Analysis 

All statistical analyses were performed using SPSS version 18 (SPSS Inc., Chicago, IL, 

US) with p values <0.05 considered as statistically significant. Log transformations of 

continuous variables (FPG and Hs-CRP) were made if the variable was not normally 

distributed. Differences between the general continuous characteristics between case and 

control subjects were determined using Student’s t-test and analysis of variance 

(ANOVA). Chi-squared test was used to analyze differences between categorical 

variables such as gender, alleles, and genotypes of two groups and to determine if the 

SNP conforms to the Hardy Weinberg Equilibrium (HWE). Logistic regression analysis 
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tested the correlation of rs3774907 with binary outcome diabetes status (Yes/No) 

adjusted for age, sex, BMI and smoking status.  Recessive model was used to test the 

recessive effect of rare allele on the outcome and dominant model was used to observed 

effects of common allele on the outcome. The relationship of log FPG or log Hs-CRP 

with diabetes status (Yes/No), Obesity (Yes/No) and rs3774907 SNP (CC+CT vs TT) 

and their interactions was examined by multiple linear regression adjusted for age, sex, 

smoking status and BMI.  

 

D. Results 

Table 1 provides general characteristics of the study population by diabetes status. The 

mean age of individuals without T2D was 54.15 ±11.13 years whereas it was 

58.55±10.15 years for individuals with T2D (p=0.002). There was no statistically 

significant difference between two groups for gender (p=0.56), smoking status (p=0.67), 

BMI (p=0.56) or obesity (p=0.40). The individuals with T2D had larger waist 

circumference (p=0.02), higher A1C (p<0.001), and higher FPG (p<0.001) than the 

participants without T2D.  There was significant difference observed for rs3774907 SNP 

genotype frequencies between two groups (p<0.001). In individuals without T2D, the 

frequencies (%) for TT/CT/CC genotypes of rs3774907 SNP were 80/20/6 whereas in 

individuals with T2D, the genotype frequencies were 49/55/6. The minor allele frequency 

(MAF) in individuals with T2D was 0.304, and in those without T2D, MAF was 0.181.  

The descriptive data of the study population by rs3774907 SNP genotype is 

shown in Table 2. No significant difference was observed for sex (p=0.85), smoking 

status (p=0.91), obesity (p=0.50), age (p=0.25) or BMI (p=0.73) between the three 
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genotypes. Individuals with TT genotype had lower proportion of individuals with T2D 

(p<0.001), lower FPG (p=0.003), lower A1C (p=0.005) than CC and CT genotypes. The 

heterozygous CT genotype was seen to have higher FPG values than any of CC or TT 

homozygotes (p=0.003) but when the FPG values were log transformed, there was no 

significant difference in values among the three genotypes.   A1C was also highest in CT 

genotype followed by CC (p=0.005). The Hs-CRP was lower for CT (p=0.012) genotype 

than TT or CC (Table 2). Haitian Americans with CC or CT genotype were at lower risk 

(OR=0.33, 95% CI=0.15-0.71, p=0.005) of T2D than those with TT genotype.  

Table 3 shows findings of multiple linear regression analyses of relationship 

between rs3774907 and log FPG values, with non-significant interaction terms removed.  

The individuals with CC+CT genotype had significantly lower FPG by 0.04 log mmol/L 

than TT genotype (p=0.02).  The results for TT+CT vs CC genotype were not statistically 

significant. Results from multiple linear regression analyses for relation of rs3774907 

with log CRP values are shown in Table 4. The log CRP values were significantly lower 

by 0.24 log ng/ml in those with CC+CT genotype than TT genotype (p=0.02). On the 

other hand, individuals with TT+CT genotypes had 0.67 log ng/ml higher CRP values 

than those with CC genotype for rs3774907 (p=0.01). 

 

E. Discussion 

The effect of PPARGC1A polymorphism on FPG and Hs-CRP was explored in Haitian 

Americans with and without T2D. As expected, individuals with T2D had higher FPG 

than individuals without T2D however, the values for Hs-CRP was lower among 

individuals with T2D. High Hs-CRP levels are a sub-clinical indicator for chronic 
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inflammation, often seen in T2D (Helmersson, Vessby, Larsson & Basu, 2004). It is well 

known that genetics play a partial role in the levels of FPG (Snieder, Boomsma, Van 

Doornen & Neale, 1999). The presence of higher MAF in individuals with T2D as 

compared to without T2D and association of rs3774907 with T2D in this study suggests 

an association of the minor allele C of rs3774907 SNP with the T2D and possibly its 

modalities.  

When general characteristics of participants were inspected by genotype, carriers 

of heterozygous (CT) genotype had the highest FPG and, A1C values but surprisingly the 

lowest Hs-CRP values among the three genotypes. However when log transformed values 

for FPG and Hs-CRP was compared, the difference was not significant. Homozygous 

(TT) genotype carriers however had the lowest number of individuals with T2D, lower 

FPG, and A1C values. The results suggest a protective effect of T allele against metabolic 

parameters such as Hs-CRP associated with T2D and association of heterozygosity with 

elevated metabolic values.  

Furthermore, results from multiple linear regression analysis show that the 

individuals with CC+CT genotypes had lower Log FPG as well as Log CRP values than 

TT genotype. The individuals with T allele had much lower Log CRP values than those 

with C allele supporting the above projected idea of T allele of rs3774907 being 

protective for CRP values in Haitian Americans. Despite of poor diabetes control, Haitian 

Americans have lower type 2 diabetes prevalence than African Americans (Vimalananda, 

Rosenweig, Cabral, David, & Lasser, 2011).  The findings of this study may add to the 

understanding of why Haitian Americans are protective towards T2D.  
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Elevated FPG (hyperglycemia) and Hs-CRP are often associated with metabolic 

diseases such as T2D. Presence of hyperglycemia enhances the oxidative stress by 

activating Tumor necrosis factor (TNF-α), Interleukin 6 (IL-6), and producing reactive 

oxygen species (ROS), which further impairs the Nitric oxide (NO) mediated 

vasodilation (Dandona, Aljada & Bandyopadhyay, 2003). Under normal physiology of 

vascular endothelium, a balance exists between vasodilators and vasoconstrictors to 

maintain a selective barrier for various molecules in blood. When NO availability is 

reduced, endothelial dysfunction results initiating inflammatory response releasing CRP. 

Inflammation sets up an atherogenic cycle that increases the risk of the individual for 

cardiovascular diseases and T2D (Laakso, 2010).  The role of low levels of NO as 

antioxidant is well established (Mohanakumar et al., 2002). The antioxidant effect of NO 

is elucidated via PGC1-α expression and therefore the other stress protection genes 

(Mohanakumar et al., 2002). However, PGC1-α in turn regulates endothelial Nitric Oxide 

Synthase (eNOS) expression establishing a feedback regulation of ROS detoxification 

mechanism (Borniquel, Valle, Cadenas, Lamas& Monsalve, 2006). PGC1-α control the 

expression of various enzymes directly involved in producing inflammatory response 

(Dillon, Rebelo, & Moraes, 2012).  It is also reported that PGC1-αmodulates circulating 

glucose levels by controlling the expression of genes involved in hepatic glucose 

production via gluconeogenesis and glucose metabolism by glycolysis, making PGC1-α 

critical in T2D prognosis (Yoon et al., 2001; Mootha et al., 2003; Wende et al., 2007). If 

polymorphism in PPARGC1A causes PGC1-α level to vary significantly or structural 

changes occur that can alter the function of this protein, it could influence the many 

processes it regulates.  
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The study has several limitations. Small sample size and case-control study design 

being some of them. We could not see statistical significance in the T allele carriers Log 

CRP, probably due to the small sample size. The population though was homogenous, 

recruited from the same geographical area and base population. Only one SNP was used 

in the PPARGC1A gene in this study. However, this SNP is not in linkage disequilibrium 

with any other causal SNP (data not shown). Therefore the association demonstrated is 

not due to correlation to any nearby loci but rather an independent one.  

This study explored the possibility that certain ethnicities within Black race may 

have PPARGC1A gene induced metabolic consequences that put them at high risk for 

T2D.  To the best of our knowledge, no other study is available that explored the effect of 

rs3774907 SNP on FPG or Hs-CRP levels as well as its association with T2D in Haitian 

Americans. This study should be replicated in a larger study sample as well as in other 

ethnicities to validate the results. 

 

 

 

 

 

 

 

 

 

 



81 
 

F. References 

Borniquel, S., Valle, I., Cadenas, S., Lamas, S., & Monsalve, M. (2006). Nitric oxide 
regulates mitochondrial oxidative stress protection via the transcriptional coactivator 
PGC-1alpha. FASEB Journal, 20(11), 1889-1891. 

 
Cheema, A. K., Zarini, G. G., Exebio, J., Ajabshir, S., Shaban, L., Antwi, J., . . . 

Huffman, F. G. (2014). Ethnic differences in insulin resistance, adiponectin levels 
and abdominal obesity: Haitian Americans and African Americans, with and without 
type 2 diabetes mellitus. British Journal of Medicine and Medical Research, 4(26), 
11-20. 

 
Colditz, G. A., Willett, W. C., Stampfer, M. J., Manson, J. E., Hennekens, C. H., Arky, R. 

A., & Speizer, F. E. (1990). Weight as a risk factor for clinical diabetes in women. 
American Journal of Epidemiology, 132(3), 501-513. 

 
Dandona, P., Aljada, A., & Bandyopadhyay, A. (2003). The potential therapeutic role of 

insulin in acute myocardial infarction in patients admitted to intensive care and in 
those with unspecified hyperglycemia. Diabetes Care, 26(2), 516-519. 

 
De Vegt, F., Dekker, J. M., Jager, A., Hienkens, E., Kostense, P. J., Stehouwer, C. D., . . . 

Heine, R. J. (2001). Relation of impaired fasting and post load glucose with incident 
type 2 diabetes in a Dutch population: The Hoorn study. Journal of the American 
Medical Association, 285(16), 2109-2113. 

 
De Vegt, F., Dekker, J. M., Ruhé, H. G., Stehouwer, C. D., Nijpels, G., Bouter, L. M., & 

Heine, R. J. (1999). Hyperglycemia is associated with all-cause and cardiovascular 
mortality in the Hoorn population: The Hoorn study. Diabetologia, 42(8), 926-931. 

 
Desvergne, B., Michalik, L., & Wahli, W. (2006). Transcriptional regulation of 

metabolism. Physiological Reviews, 86(2), 465-514. 
 
Dillon, L. M., Rebelo, A. P., & Moraes, C. T. (2012). The role of PGC-1 coactivators in 

aging skeletal muscle and heart. International Union of Biochemistry and Molecular 
Biology Life, 64(3), 231-241. 

 
Handschin, C., Chin, S., Li, P., Liu, F., Maratos-Flier, E., Lebrasseur, N. K., . . . 

Spiegelman, B. M. (2007). Skeletal muscle fiber-type switching, exercise intolerance 
and myopathy in PGC-1alpha muscle-specific knock-out animals. The Journal of 
Biological Chemistry, 282(41), 30014-30021. 

 
Helmersson, J., Vessby, B., Larsson, A., & Basu, S. (2004). Association of type 2 

diabetes with cyclooxygenase-mediated inflammation and oxidative stress in an 
elderly population. Circulation, 109(14), 1729-1734. 

 



82 
 

Jiang, G., & Zhang, B. B. (2003). Glucagon and regulation of glucose 
metabolism. American journal of physiology, Endocrinology and 
metabolism, 284(4), E671-678. 

 
Laakso, M. (2010). Cardiovascular disease in type 2 diabetes from population to man to 

mechanisms. Diabetes Care, 33(2), 442-449. 
 
Lin, J., Handschin, C., & Spiegelman, B. M. (2005). Metabolic control through the PGC-

1 family of transcription coactivators. Cell Metabolism, 1(6), 361-370. 
 
Lin, Y., Berg, A. H., Iyengar, P., Lam, T. K., Giacca, A., Combs, T. P., . . . Scherer, P. E. 

(2005). The hyperglycemia-induced inflammatory response in adipocytes: The role 
of reactive oxygen species. The Journal of Biological Chemistry,280(6), 4617-4626. 

 
Mohanakumar, K. P., Thomas, B., Sharma, S. M., Muralikrishnan, D., Chowdhury, R., & 

Chiueh, C. C. (2002). Nitric oxide: An antioxidant and neuroprotector. Annals of the 
New York Academy of Sciences, 962(389), 401. 

 
Mootha, V. K., Handschin, C., Arlow, D., Xie, X., St Pierre, J., Sihag, S., . . . 

Spiegelman, B. M. (2004). Erralpha and Gabpa/b specify PGC-1alpha-dependent 
oxidative phosphorylation gene expression that is altered in diabetic muscle. 
Proceedings of the National Academy of Sciences, 101(17), 6570-6575. 

 
Munoz, A., Abate, N., & Chandalia, M. (2013). Adipose tissue collagen and 

inflammation in nonobese Asian Indian men. The Journal of Clinical Endocrinology 
& Metabolism, 98(8), E1360-E1363. 

 
Narayan, K. M., Boyle, J. P., Thompson, T. J., Sorensen, S. W., & Williamson, D. F. 

(2003). Lifetime risk for diabetes mellitus in the United States. Journal of the 
American Medical Association, 290(14), 1884-1890. 

 
National institutes of health: Clinical guidelines on the identification, evaluation, and 

treatment of overweight and obesity in adults - the evidence report. (1998). Obesity 
Research, 6, 51-209. 

 
Nelson, T. L., Vogler, G. P., Pedersen, N. L., Hong, Y., & Miles, T. P. (2000). Genetic 

and environmental influences on body fat distribution, fasting insulin levels and 
CVD: Are the influences shared? Twin Research and Human Genetics, 3(1), 43-50. 

 
Oberkofler, H., Linnemayr, V., Weitgasser, R., Klein, K., Xie, M., Iglseder, B., . . . 

Patsch, W. (2004). Complex haplotypes of the PGC-1alpha gene are associated with 
carbohydrate metabolism and type 2 diabetes. Diabetes, 53(5), 1385-1393. 

 
Peraldi, P., & Spiegelman, B. (1998). TNF-alpha and insulin resistance: Summary and 

future prospects. Molecular and Cellular Biochemistry, 182(1-2), 169-175. 



83 
 

 
Roberts, W. L., Sedrick, R., Moulton, L., Spencer, A., & Rifai, N. (2000). Evaluation of 

four automated high-sensitivity C-reactive protein methods: Implications for clinical 
and epidemiological applications. Clinical Chemistry, 46, 461-468. 

 
Snieder, H., Boomsma, D. I., Van Doornen, L. J., & Neale, M. C. (1999). Bivariate 

genetic analysis of fasting insulin and glucose levels. Genetic Epidemiology, 16(4), 
426-446. 

 
Tsigos, C., Papanicolaou, D. A., Kyrou, I., Defensor, R., Mitsiadis, C. S., & Chrousos, G. 

P. (1997). Dose-dependent effects of recombinant human interleukin-6 on glucose 
regulation. The Journal of Clinical Endocrinology and Metabolism, 82(12), 4167-
4170. 

 
Wende, A. R., Schaeffer, P. J., Parker, G. J., Zechner, C., Han, D. H., Chen, M. M., . . . 

Kelly, D. P. (2007). A role for the transcriptional coactivator PGC-1alpha in muscle 
refueling. The Journal of Biological Chemistry, 282(50), 36642-36651. 

 
Yoon, J. C., Puigserver, P., Chen, G., Donovan, J., Wu, Z., Rhee, J., . . . Spiegelman, B. 

M. (2001). Control of hepatic gluconeogenesis through the transcriptional 
coactivator PGC-1. Nature, 413(6852), 131-138. 

 

 

 



84 
 

G. Table 1. General characteristics of study population by diabetes status 

 

Note: Values are unadjusted mean ± SD for continuous variables or N (%) for categorical variables. Diabetes medication is 
only for with T2D. T2D= type 2 diabetes; BMI= body mass index; T2D_Meds= type 2 diabetes medications; WC= waist 
circumference; FPG= fasting plasma glucose; A1C= hemoglobin A1C; Hs-CRP= high sensitivity C- reactive protein. Obese= 
Yes (BMI≥30 kg/m2). 

 
 
 
 

Variables With T2D (n=110) Without T2D (n=116) p-value 

Age 58.55±10.15 54.15±11.13 0.002 
Sex (male) 48 (44) 56 (47) 0.56 

Smoke (yes) 7 (6) 6 (5) 0.67 

T2D_ meds (yes) 98 (89) 0 (0) - 
Obese (yes) 47 (43) 44 (37) 0.40 
BMI (kg/m2) 29.50±5.45 29.10±5.25 0.56 
WC (cm) 100.25±12.17 96.29±12.86 0.02 
A1C (%) 8.43±2.70 6.05±0.66 <0.001 
Log A1C 0.91±0.13 0.78±0.04 <0.001 
FPG (mmol/L) 163.83±90.03 101.22±19.79 <0.001 
Log FPG 2.16±0.187 1.99±0.08 <0.001 
Hs-CRP (ng/mL) 2.92±3.30 3.69±7.29 0.30 
Log Hs-CRP 0.38±0.34 0.40±0.39 0.71 
MAF 0.304 0.178 - 

rs3774907 
TT 49 (69) 80 (69) 0.001 
CT 55 (25) 30 (26)  
CC 6 (5) 6 (5)  
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H. Table 2. General characteristics of Haitian Americans by rs3774907 genotype 

 

 

Note: Values are unadjusted mean ± SD for continuous variables or N (%) for categorical variables. Diabetes medication is 
only for with T2D. T2D= type 2 diabetes; BMI= body mass index; T2D_Meds= type 2 diabetes medications; WC= waist 
circumference; FPG= fasting plasma glucose; A1C= hemoglobin A1C; Hs-CRP= high sensitivity C- reactive protein. Obese= 
Yes (BMI≥30 kg/m2). 

 
 
 
 
 
 
 

Variables TT (n=129) CT (n=85) CC (n=12) p- value 

T2D (yes) 49 (38) 55 (65) 6 (50) 0.001 
Sex (male) 58 (44) 41 (48) 5 (42) 0.85 
Smoke (yes) 7 (5) 5 (6) 1 (8) 0.91 
Obese (yes) 49 (37) 38 (5) 4 (33) 0.50 
Age 54.80±10.77 58.09±10.52 59.90±9.65 0.25 
BMI (kg/m2) 29.73±5.64 29.96±5.05 28.81±4.42 0.73 
FPG (mmol/L) 119.14±60.12 150.89±85.72 125.20±68.57 <0.01 
Log FPG 2.04±0.14 2.13±0.17 2.04±0.22 <0.01 
A1C (%) 6.88±2.18 7.77±2.31 7.00±1.88 <0.01 
Log A1C 0.82±0.10 0.87±0.11 0.83±0.10 <0.01 
Hs-CRP (ng/mL) 3.52±3.82 3.42±4.53 9.70±18.36 0.01 
Log Hs-CRP 0.38±0.35 0.36±0.34 0.60±0.53 0.17 
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I. Table 3. Multiple linear regression analysis for relationship of rs3774907 with log FPG 

 

 

 

 

 

 

 

 

Note: Model adjusted for age, sex, smoking status, T2D status, obesity, two way as well as three way interaction terms between 

rs3774907, T2D status and obesity. 

 

 

J. Table 4. Multiple linear regression analysis for relationship of rs3774907 with log CRP 

 

 

 

 

 

 

Note: Model adjusted for age, sex, smoking status, T2D status, obesity. Non-significant interactions removed.  

Variables Coefficient SE p- value 
95% CI 

Lower bound Upper bound 

rs3774907 
CC+CT vs TT -0.04 0.01 0.025 -0.08 -0.06 

TT+CT vs CC -0.19 0.04 0.653 -0.10 0.06 

Variables Coefficient SE p- value 
95% CI 

Lower bound Upper bound 

rs3774907 
CC+CT vs TT -0.24 0.10 0.020 -0.43 -0.03 

TT+CT vs CC 0.67 0.20 0.010 0.27 1.08 
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CHAPTER VI 

TYPE 2 DIABETES IN CUBAN AMERICANS; INFLUENCE OF PPARGC1A 

A. Abstract 

Aim: To explore the influence of PPARGC1A gene variants on type 2 diabetes (T2D), 

and its related phenotypes in Cuban Americans. 

Methods: Cuban Americans aged ≥ 30 years with and without T2D were included in the 

study. Data on socio-demographics, and anthropometrics as well as medical history and 

alcohol intake was collected. Measurement of A1C by Roche Tina Quant (Laboratory 

Corporation of America, LabCorp, FL), lipid panel by automated analyzer, glucose by 

hexokinase assay and hs-CRP by immulite method were conducted. Whole genome DNA 

was isolated by QIAmp DNA blood mini kit (Qiagen, Hilden, Germany) from whole 

blood. TaqMan allelic discrimination assay (LifeTech, Foster City, CA)  was used for 

PPARGC1A genotyping on BioRad CFX96 real time PCR (Hercules, CA).  

Results: In Cuban Americans with CC+CT genotype of PPARGC1A SNP rs7656250, the 

likelihood of T2D was 6.87 times than those with TT genotype (p=0.02), after adjusting 

for age, sex, BMI and smoking status. Significantly higher adjusted odds ratio were found 

in females (OR=7.67; p=0.01) for CC+CT genotype vs TT genotypes. Additionally, the 

odds of cases with C allele (CC and CT genotypes) for rs4235308 SNP increased for 

higher log CRP by 0.33 times (p=0.002) as compared to TT genotype. Further, the 

likelihood of pulse pressure being higher was 7.39 times in C allele carriers than the ones 

who had TT genotype (p=0.001). 

Conclusions: The findings suggest implication of PPARGC1A polymorphisms in higher 

FPG levels, blood pressure that are typical indicators of metabolic abnormalities resulting 
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in T2D. Cuban Americans being one of the ethnicities in which T2D prevalence is high, 

the results contribute to the understanding of why some ethnicities are at higher risk of 

T2D than others. As with any other genetic association study, replicative studies with 

large samples are needed for this study in order to generalize the findings to Cuban 

American population. 
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B. Introduction 

Type 2 diabetes (T2D) is a complex cluster of essentially different metabolic disorders. 

Genetic heterogeneity, lifestyle factors, gene-gene or gene-environment interactions are 

the determinants of T2D development. Hispanics have higher prevalence of metabolic 

disorders, hypertension, cardiovascular diseases and T2D than non-Hispanic Whites 

(Najjar & Kuczmarski, 1989; Smith & Barnett, 2005; Huffman, Gomez & Zarini, 2009). 

The prevalence of obesity and hypertension among Cuban Americans is comparable to 

Mexican Americans, Puerto Rican Americans and other Latin American ethnicities, 

according to HHANES study done in 1982-84 (Najjar & Kuczmarski, 1989). However, 

Cuban Americans aged 45-74 years have lower prevalence of T2D and diabetes related 

mortality than Mexican Americans, Puerto Rican Americans (Najjar & Kuczmarski, 

1989; Smith & Barnett, 2005). Interestingly, lifestyle factors or acculturation has not 

been associated with obesity in Cuban Americans (Khan, Sobal & Martorell, 1997). 

Therefore, it is possible that such metabolic differences within these ethnicities exist due 

to the genetic admixture.  

Recently, peroxisome proliferator activated receptor gamma coactivator-1 alpha 

(PPARGC1A) has emerged as a candidate gene associated with T2D. PPARGC1A is 

pivotal in regulation of several genes, including the ones involved in mitochondrial 

function, energy homeostasis, lipid oxidation, thermogenesis regulation and oxidative 

phosphorylation (Gerhart-Hines et al., 2007; Puigserver et al., 1998; Puigserver et al., 

2003; Rhee et al., 2003). The protein expressed by PPARGC1A called PGC1-α is reduced 

in T2D and its associated phenotypes. The reduction in PGC1-α expression as a result of 

Single Nucleotide Polymorphisms (SNPs) in the gene could vary among different 
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ethnicities. One variant of PPARGC1A,  rs8192678 (Gly482Ser), is reported to be 

correlated with T2D  in Danish (Ek et al., 2001) but not in Pima Indians (Muller, 

Bogardus, Pedersen& Baier, 2003) and French Caucasians (Lacquemant, Chikri, Boutin, 

Samson & Froguel, 2002). The PGC1-α gene variants have also been implicated with 

obesity in African Americans (Edwards, et al. 2012). As current Cuban population is a 

result of complex overlap of genes from African, European (Spain) and Native Indian 

populations, the exploration of a genetic component in metabolic functioning becomes 

imperative. Hence, the influence of variants of PPARGC1A gene and PPARGC1A-

environment interactions on T2D and its related phenotypes was explored in this study in 

a Cuban American population.  

 

C. Materials and methods 

1. Study population 

The individuals for this case-controlled study were recruited for an age matched cross-

sectional parent study conducted at Human Nutrition Laboratory, Florida International 

University (FIU). Cuban Americans with and without T2D were recruited in an alternate 

manner for duration of one year by letters of invitation. Approximately ten thousand 

letters, in both English and Spanish, with information about the purpose of the study were 

mailed to randomly selected individuals with age≥30 years. The lists for Cuban 

Americans with T2D and without T2D, living in South Florida, were purchased from 

KnowledgeBase Marketing, Inc., Richardson, TX, USA. The interested participants (4% 

of total delivered mails) were telephonically interviewed for basic screening for age, 

gender and T2D status (methods of treatment and age of diagnosis). These individuals 
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were then explained the purpose, protocol of the parent study in detail. Out of 388 

individuals who responded, 18 were ineligible for the study due to ethnicity; age (<30 

years); treatment with insulin; pregnant or lactating women; and other chronic conditions. 

Participants were also excluded if their A1C values could not be measured or caloric 

intake >5000 kcals for analyses purposes. All eligible candidates were requested for 

participation in the study and informed voluntary consent obtained from the participants 

prior to the outset of the study. For the parent study, Cuban Americans, aged ≥30 years 

with and without T2D were included in the study. Data on age, gender, smoking status, 

and diabetes medications was collected using a sociodemographic questionnaire. Seca 

balance scale was used to measure both height and weight (Seca Corp, Columbia, MD, 

USA) and body mass index (BMI) was calculated in kg/m2. Blood pressure was measured 

by a sphygmanometer (Tycos 5090-02 Welch Allyn Pocket Aneroid 

Sphygmomanometer, Arden, NC, USA) and a stethoscope (Littmann Cardiology, 3M, St 

Paul, MN, USA) using standard laboratory technique. If values of systolic blood pressure 

(SBP) ≥140mm Hg and diastolic blood pressure (DBP) ≥90 mm Hg or if the individual 

was under antihypertensive treatment, the individual was determined hypertensive. Pulse 

pressure was determined by subtracting DBP from SBP. Food frequency questionnaire 

(FFQ) developed was utilized to collect information on alcohol consumption (Willet et 

al., 1985). A certified phlebotomist collected twenty ml of venous blood using standard 

laboratory techniques from each participant after an overnight fast. Quantification of A1C 

percentages by Roche Tina Quant method, lipid panel by enzymatic methods, immulite 

method for serum high sensitivity C-reactive protein (Hs-CRP), and glucose by 

hexokinase method was performed. Total serum adiponectin was measured using an 
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enzyme-linked immunosorbent assay (ELISA). Institutional review board at Florida 

International University approved the study. 

2. DNA isolation and genotyping 

QIAmp DNA blood mini kit was utilized to isolate genomic DNA from stored whole 

blood (-80ºC) (Qiagen, Hilden, Germany). Isolated DNA was then tested for both quality 

and quantity using 2000c nanodrop spectrophotometer (Thermo Scientific, USA). All 

five SNPs of PPARGC1A gene (rs8192678, rs765250, rs3774907, rs4235308 and 

rs11723468) were genotyped using TaqMan allelic discrimination assays (LifeTech, 

Foster City, CA) after real-time PCR amplification on BioRad CFX96 real time PCR 

instrument (Hercules, CA). Data was acquired and assigned using Bio-Rad CFX Manager 

software (version 3.0).  

3. Statistical analysis 

The statistical analysis employed SPSS version 18 (SPSS Inc., Chicago, IL, US). All 

statistical tests were two-tailed, with the statistical significance threshold set at P≤0.05. 

The sample size was calculated prior to the data acquisition with statistical threshold of 

0.05 and 80% statistical power. Sample size of n=62 was calculated for case-control 

ratio=1:1 to detect odds ratio of 1.5 or greater. Genotype counts in each of the five SNPs 

were tested for conformity to Hardy-Weinberg equilibrium (HWE) in controls by the 

Chi-squared goodness-fit test. All continuous variables were tested for normality using 

the Kolmogorov-Smirnov test. The variables FPG, A1C, Hs-CRP, insulin, adiponectin, 

triglyceride (TG) and total cholesterol were log transformed. Student t-test for continuous 

variables and Chi-squared test for categorical variables were used to compare 

demographic and clinical data between cases (with T2D) and controls (without T2D). 
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The combined effect of all five SNPs on outcome case-control status (T2D Yes/T2D No) 

was assessed using logistic regression. Covariates adjusted for the logistic regression 

analyses were age, gender, and smoking, BMI and interaction terms for each of the five 

SNPs with sex. The Hosmer-Lemeshow goodness-of-fit test was used to evaluate if the 

observed probability was equal to the expected probability based on the fitted model; a 

lack of fit for the fitted logistic regression model was reflected by a p-value <0.05. The 

sensitivity and accuracy of our method in prioritizing SNPs associated with T2D was 

tested using Receiver Operating Characteristic (ROC) curves. The association between 

T2D and SNPs was then further analyzed by logistic regression after stratifying by sex. 

The relationship of T2D phenotypes: Log A1C; Log FPG; Log CRP; log adiponectin; log 

insulin; log triglyceride and total cholesterol with all five SNPs adjusted for age, sex, 

BMI and smoking status was evaluated by linear regression.  

 

D. Results 

Cuban Americans with (cases) and without T2D (controls) were compared for the general 

and metabolic characteristics in Table 1. The mean age was 64.90±12.29 years for cases 

and 62.24±11.17 years for controls (p=0.04). There was no significant difference 

observed between cases and controls for sex (p=0.49), smoking status (p=0.56), SBP 

(p=0.11), DBP (p=0.30), or Hs-CRP (p=0.44). Both waist circumference (p<0.001) and 

BMI (p=0.03) were significantly higher in cases as compared to controls. Additionally, 

the levels for FPG (p<0.001), A1C (p<0.001), Insulin (p=0.002), and TG (p=0.01) were 

significantly higher in cases than controls. However, adiponectin (p<0.001), TC (p=0.02), 

HDL (p<0.001), LDL (p=0.006) levels and Kcal (p=0.01) were significantly lower in 
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cases than in controls. Table 2 shows genotype frequencies and MAF of all five SNPs 

were compared between cases and controls. The MAF for rs8192678, rs7656250, 

rs4235308, rs11724368, and rs3774907 were calculated as 0.327, 0.223, 0.377, 0.238 and 

0.222 in controls whereas they were 0.335, 0.264, 0.378, 0.198 and 0.182 in cases 

respectively. There was no statistical significance observed in genotypes of rs8192678 

(p=0.78), rs7656250 (p=0.06), rs4235308 (p=0.99), rs11724368 (p=0.43) or rs3774907 

(p=0.25) between cases and controls (Table 2). 

Results from logistic regression analysis to test combined association of all five SNPs 

with T2D status are shown in Table 3. Out of five SNPs, only one SNP (rs7656250) 

showed significant unadjusted disease risk association with T2D with OR=2.98 (p=0.02). 

After adjusting for age, sex, BMI, smoking status and individual interactions of all five 

SNPs with sex, the OR increased to 6.87 (p=0.02) for rs7656250 (CC+CT vs TT). The 

interactions between SNPs and sex were not significant. The receiver operating 

characteristic (ROC) curve is shown in figure 1. The area under the curve (AUC) was 

65.4%, which indicates a good fit of the model. When the T2D association was explored 

in the population for rs7656250, separated by sex, the odds (unadjusted) in female were 

significant (OR=6.50; p=0.02) (Table 4). This association was not statistically significant 

in males. After adjusting for confounders for T2D, such as age, BMI and smoking status, 

the association remained statistically significant and odds were greater (OR=7.67; 

p=0.01) for females than both sexes combined (Table 4 vs Table 3). 

Multivariable linear regression was performed on T2D intermediate phenotypes with five 

SNPs adjusted by age, sex, BMI, smoking status in cases. Out of five SNPs, rs4235308 

showed association with log Hs-CRP. In cases, the presence of C allele in rs4235308 
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SNP increased the likelihood of higher log CRP by 0.33 times (p=0.002) as compared to 

TT genotype. Out of four remaining SNPs, none showed any significant association with 

the CRP levels. Pulse pressure was also found to be significantly associated with SNP 

rs3774907 in cases. In individuals with T2D, the likelihood of higher pulse pressure was 

7.39 times in C allele carriers than the ones who had TT genotype (p=0.001). Of A1C, 

FPG, TG, TC, insulin or adiponectin levels, no phenotype was found to be associated 

with any SNP in Cuban American cases.  

 

E. Discussion 

In recent decades, obesity-linked T2D epidemic in the United States has been on the rise 

(CDC, 2012). The diabetes prevalence rate of >6% which once was seen only in two 

states: Puerto Rico and Washington, D.C., recently increased to all 50 states by 2012 

(CDC, 2012). In 2010, 25.8 million Americans had type 2 diabetes, but the number has 

jumped to 29.1 million in 2012, according to ‘National Diabetes Statistics Report, 2014’ 

(CDC, 2014). The burden of the disease, however, is not shared equally by all ethnicities. 

American Indians/Alaskan Natives (15.9%) have highest rates of diagnosed diabetes 

followed by non-Hispanic blacks (13.2%), Hispanics (12.8%), Asian Americans (9.0%) 

and non-Hispanic whites (7.6%) (CDC, 2014). Out of all the ethnic minorities in the 

Unites States, Hispanics, with 52 million people, form the largest group. Hispanic 

population comprises of diverse Spanish speaking inhabitants of Caribbean, Central and 

South American countries (Garcia, 2000). Some states in US have more concentrated 

Hispanic populations (Lopez, Gonzalez-Barrera & Cuddington, 2003). South Florida has 

seen the influx of ethnicities from Caribbean and Latin countries. Hispanics comprise 
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65.6% of Miami-Dade population, and 54 % are Cuban Americans (Lopez, Gonzalez-

Barrera & Cuddington, 2003).  

Hispanic population is a mixture of European, African and Native American 

lineage, the proportion of each of the three varying in different Hispanic groups (Bryc et 

al., 2010). The difference in genetic lineage makes each Hispanic subgroup unique. 

Hispanics are at higher risk for T2D development and related phenotypes as compared to 

their European counterparts (CDC, 2012; CDC, 2014). One possibility could be due to 

lineage from Native American and African ancestors. It is well documented that 

metabolic diseases are more prevalent in Native American and populations with African 

origins (CDC, 2014). These two populations have proposed to contain a ‘thrifty gene’ 

that enabled them to survive scarcity of food (Neel, 1989). In the 21st century, the 

abundance of poor quality food had put these populations at greater risk for metabolic 

diseases (Champagne et al., 2007; Edwards & Patchell, 2009).  

In this study, we observed higher waist circumference, BMI, FPG, A1C, TG and 

insulin but low adiponectin, HDL, LDL, TC and Kcal intake values for cases than 

controls. The T2D was significantly associated with rs7656250 SNP. The C allele carriers 

for rs7656250 SNP were at greater risk for T2D than those with TT genotype. When 

separated by sex, the odds were significantly higher in females.  The results in males 

however were not statistically significant. A recent study in Cubans ≥60 years has 

reported the prevalence of T2D to be 19.9% in females and 7.3% in males (Rodrigues 

Barbosa, Balduino Munaretti, Da Silva Coqueiro & Ferreti Borgatto, 2011). The higher 

prevalence of T2D in females could be due to exposure to gestational diabetes or 

presence of obesity that affects Cuban women more than men (Herrera-Valdés et al., 
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2008). However, several studies have found lower obesity among both urban and rural 

elderly Cubans than their Latin America and the Caribbean counterparts (Valencia, 

Alemán-Mateo, Salazar & Hernández Triana, 2003; Rodrigues Barbosa, Balduino 

Munaretti, Da Silva Coqueiro & Ferreti Borgatto, 2011). The HHANES in 1982-84 also 

reported higher rates of T2D in Cuban American women (34%) than Cuban American 

men (30%) (Najjar & Kuczmarski, 1989). The obesity in Cuban American women (15%) 

was also reported to be higher than men (9%) (Pawson, Martorell & Mendoza, 1991). 

The absence of acculturation and socioeconomic status with higher BMI (Khan, Sobal & 

Martorell, 1997) indicates possible genetic influences. The genetic variations are now 

known to modify an individual’s susceptibility to disease (Shriver et al., 2005).  

Reduced expression of PPARGC1A has not only been reported in individuals with 

T2D, but also in individuals who are unaffected, but have a family history of T2D 

(Mootha et al., 2004; Gillberg et al., 2013). Defects in regulation by PGC1-α have been 

associated with T2D and insulin resistance (Finck & Kelly, 2006). The 4p15 

chromosomal location where PPARGC1A is located has been associated with obesity in 

multigenerational Utah residents (Stone et al., 2002). Fasting plasma insulin in Pima 

Indians has also been mapped to this location (Pratley et al., 1998). In Pima Indians, 

variants of PPARGC1A gene were associated with early insulin secretion and 

modifications in lipid oxidation (Muller, Bogardus, Pedersen & Baier, 2003). The 

PPARGC1A variants have also been associated with BMI in African Americans 

(Edwards et al., 2012). In the present study, we found the association of rs4235308 SNP 

with higher log CRP values whereas SNP rs3774907 was found to be associated with 

pulse pressure. High CRP and pulse pressure are predictors of cardiovascular health and 
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thus prognosis of T2D. The presence of the association in both Native Indian and African 

origin populations suggests some involvement of this gene with T2D prognosis in Cuban 

Americans. 

This study is unique and most likely the only one that investigated the influence 

of PPARGC1A polymorphisms on T2D and its intermediate phenotypes in Cuban 

Americans. The five genotyped SNPs were selected after testing for correlations using 

LD plot and TAGGER on Haploview to ensure independence in association with T2D. 

There are however some limitations of the study. Due to small sample size we may have 

not been able to detect modest effects of the association. Second, the sampled population 

was restricted in geographical location; therefore, the results may lack generalizability, in 

order to extrapolate to general Cuban Americans. The genetic homogeneity is insured by 

Ancestry Informative Markers (AIM), which was not employed in this study making 

population stratification a concern. However, the sample population was recruited from 

Cuban American dense Miami-Dade County and participants were self-identified white 

Cuban Americans.  As with any candidate gene study, the possibility of false positive 

results is a concern for this study. In future, independent replicative studies should 

investigate this association in more representative Cuban American population to 

corroborate the findings.  
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G. Table 1. General characteristics of study population 

 

 

Note: Values are unadjusted mean ± SD for continuous variables or N (%) for 
categorical variables. Diabetes medication is only for cases. BMI= body mass index; 
DM_Meds= Diabetes Mellitus medications; SBP= systolic blood pressure; DBP= 
diastolic blood pressure; A1C=Glycated hemoglobin; FPG= fasting plasma glucose; 
CRP=C-reactive protein; TC=total cholesterol; TG=triglycerides; HDL=high density 
lipoprotein; LDL= low density lipoprotein; Kcal=Kilo calories. 

 
 
 
 

Variables 
Cuban Americans 

With T2D (n=161) 
Without T2D 

(n=180) 
p-value 

Age, yr. 64.90±12.29 62.24±11.17 0.04 
Sex (Male) 61(37.88) 61(33.88) 0.49 

Waist Circumference (cm) 105.41±14.53 100.24±12.45 <0.001 

BMI (kg/m2) 30.90±6.24 29.58±5.24 0.03 

Smoke (Yes) 25(15.52)  33(18.33) 0.56 
Blood pressure 

(mm of Hg) 
SBP 129.48±21.15 129.48±21.15 0.11 
DBP 80.86±11.42 80.86±11.42 0.30 

FPG (mmol/L) 145.38±60.85 97.69±17.77 <0.001 

Log FPG 2.13±0.16 1.98±0.06 <0.001 

A1C (%) 7.65±1.62 6.01±0.64 <0.001 

Log A1C 0.87±0.08 0.78±0.04 <0.001 
Hs-CRP (ng/mL) 5.37±6.24 4.83±6.30 0.44 

Log CRP 0.58±0.41 0.51±0.40 0.13 
Insulin (μIU/mL) 18.91±13.04 14.77±10.08 0.002 

Log insulin 1.18±0.30 1.08±0.27 0.004 
Adiponectin (ng/mL) 4.90±3.67 12.61±7.95 <0.001 

Log adiponectin 0.55±0.38 0.97±0.41 <0.001 
TC (mg/dL) 193.15±40.54 204.15±43.40 0.02 
TG (mg/dL) 173.90±88.99 149.68±84.16 0.01 

Log TG 2.19±0.19 2.12±0.21 0.001 
HDL-C (mg/dL) 50.36±11.08 55.44±14.40 <0.001 
LDL-C (mg/dL) 107.05±33.30 117.81±36.51 0.006 

Alcohol 2.42±5.61 3.95±8.20 0.05 
Kcal 2151.01±798.32 2363.60±792.65 0.01 
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H. Table 2. Genotype frequencies of PPARGC1A SNPs by diabetes status 

 

 

Note: Genotype frequencies are depicted as n (%); MAF= Minor Allele frequency. 

 

 
 
 
 
 
 
 
 
 
 

SNPs Minor Allele 
With T2D 

(n=161) 

Without T2D 
(n=180) p-value 

G
en

ot
yp

e 
fr

eq
u

en
ci

es
 (

n
, %

) 

rs8192678 
CC 

 
T 

70(43.47) 83 (46.11) 

0.78 
CT 74(45.96) 76(42.22) 
TT 17(10.55) 21(11.66) 

 MAF 0.335 0.327 
      

rs7656250 
TT 

 
C 

91(56.52) 102(56.66) 

0.06 
CT 55(34.16) 72(40.00) 
CC 15(9.31) 6(3.33) 

 MAF 0.264 0.233 
      

rs4235308 
TT 

 
C 

61(37.88) 69(38.33) 

0.99 
CT 78(48.44) 86(47.77) 
CC 22(13.66) 25(13.88) 

 MAF 0.378 0.377 

      

rs11724368 

CC 
 

G 

104(64.59) 104(57.77) 

0.43 CG 50(31.05) 66(36.66) 
GG 7(4.34) 10(5.55) 

MAF 0.198 0.238 
      

rs3774907 

TT 

C 

108(67.08) 106(58.88) 

0.24 
CT 47(29.19) 68(37.77) 
CC 6(3.72) 6(3.33) 

MAF 0.182 0.222 
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I. Table 3. Logistic regression for PPARGC1A SNPs and T2D association 

 

 

 
 
Note: The statistically significant results are in bold. Controlled variables included in the 
logistic regression analysis for adjusted OR were age, sex, BMI, and smoking status. The 
interactions between sex and individual SNP were also included in logistic regression 
analysis for all the SNP.  p is considered significant at 0.05. Hosmer and Lameshaw test 
statistic p=0.907. OR= odds ratio; CI= confidence Interval; PPARGC1A= Peroxisome 
proliferator activated receptor, gamma, co-activator 1 alpha.   
 
 
 
 
 

 
Variables 

Cuban American 
Unadjusted 

OR 
95% C.I. 

p-
value 

Adjusted 
OR 

95% C.I. 
p-

value 

rs8192678 
TT +CT 
vs CC 

0.89 0.58 1.37 0.62 0.92 0.52 1.63 0.82 

rs7656250 
CC+CT 
vs TT 

2.98 1.12 7.87 0.03 6.87 1.41 33.30 0.02 

rs4235308 
CC+CT 
vs TT 

0.70 0.39 1.26 0.24 0.62 0.28 1.36 0.24 

rs11724368 
CC+CG 
vs GG 

0.77 0.28 2.08 0.61 0.43 0.07 2.51 0.35 

rs3774907 
CC+CT 
  vs TT 

1.42 0.91 2.21 0.11 1.33 0.78 2.25 0.29 

 
Age (Years) 

1.02 1.00 1.03 0.04 1.02 1.00 1.04 0.009 

 
Sex (Male/Female) 

1.19 0.76 1.85 0.44 1.14 0.43 3.01 0.78 

 
BMI (kg/m2) 

1.04 1.00 1.08 0.04 1.06 1.01 1.10 0.005 

Smoke 
 

0.81 0.46 1.44 0.49 0.82 0.44 1.55 0.55 

rs8192678*Sex 
 

- - - - 1.13 0.43 3.00 0.79 

rs7656250*Sex 
 

- - - - 0.21 0.02 1.75 0.15 

rs4235308*Sex 
 

- - - - 3.11 0.70 13.72 0.13 

rs11724368*Sex 
 

- - - - 2.17 0.20 23.47 0.52 

rs3774907*Sex - - - - 0.99 0.39 2.52 0.99 
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J. Table 4. Logistic regression for PPARGC1A SNPs and T2D association separated by sex 
 

 
                                                                    Cuban American 

Variables 
Female Male 

OR 95% CI p- Value OR 95% CI p- Value 
rs8192678 TT +CT vs 

CC 
0.91 0.51 1.61 0.75 1.01 0.47 2.16 0.97 

rs7656250 CC+CT vs 
TT 

7.67 1.52 38.60 0.01 1.44 0.35 5.87 0.60 

rs4235308 CC+CT vs 
TT 

0.62 0.28 1.35 0.23 1.89 0.53 6.80 0.32 

rs11724368 CC+CG vs 
GG 

0.42 0.07 2.48 0.34 0.85 0.17 4.25 0.84 

rs3774907 CC+CT vs 
TT 

1.27 0.70 2.31 0.42 1.39 0.63 3.06 0.41 

 

 
Note: The statistically significant results are in bold. OR= odds ratio; CI= Confidence Interval; PPARGC1A= Peroxisome 
proliferator activated receptor, gamma, co-activator 1 alpha. 
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K. FIGURE 1: Receiver Operating Characteristic (ROC) curve. 

 

 
 

 
Note: The ROC curve depicts the performance of our model used to identify combined genetic association of PPARGC1A 
SNPs with T2D. The area under the ROC curve is 65.4% which is significantly different from random chance (p<0.001). 
Maximum sensitivity and specificity are 59.6% and 71.1% respectively. 

AUC 0.654 
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CHAPTER VII  

ADDITIONAL SIGNIFICANT FINDINGS 

A. Summary 

After testing the main hypothesis of this dissertation research i.e. to explore PPARGC1A 

polymorphisms as genetic determinants of T2D in three ethnicities at high risk for T2D, 

additional statistical analysis were performed. The correlations of five PPARGC1A 

polymorphisms were studied against several phenotypes (bio-markers) associated with 

T2D: total cholesterol (TC), triglycerides (TG), high density cholesterol (HDL-C), low 

density cholesterol (LDL-C), high sensitivity C-reactive protein (Hs-CRP), insulin, 

glycated hemoglobin (A1C), fasting plasma glucose (FPG) and adiponectin levels. 

Additionally, the association between T2D and PPARGC1A polymorphisms was 

examined with age of onset; obesity; and family history of T2D. PPARGC1A gene 

regulates mitochondrial biogenesis, mitochondrial respiration, detoxification, energy and 

fat metabolism, and fast to slow skeletal muscle fiber transformation (Bishop, Granata & 

Eynon, 2014; Kang & Li, 2012; Olesen, Kiilerich & Pilegaard, 2010; Puigserver et al., 

1998). Certain lifestyle factors affect metabolic outcomes by influencing molecular 

machinery. Recently various studies have reported the involvement of PPARGC1A with 

aerobic activity (Katzmarzyk, Church & Blair, 2004; Engeli et al., 2012).  Moreover, the 

expression of NAD-dependent de-acetylase Sirtuis 1 (SIRT1), PGC1-α and FoxO1 is 

affected by chronic alcohol use (Lieber, Leo, Wang & Decarli, 2008). Therefore, 

interactions between PPARGC1A polymorphisms and lifestyle factors in these three 

study populations were also explored.  
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B. Materials and methods 

The continuous variables were log transformed if variables were not normally distributed. 

Pearson correlations were analyzed between phenotypes (FPG, A1C etc.) and 

PPARGC1A polymorphisms for all three ethnicities. Logistic regression analyses were 

done to test the (i) association between T2D and PPARGC1A polymorphisms in African 

Americans and Haitian Americans (ii) effect modification by sex on correlation between 

PPARGC1A polymorphisms and T2D and (iii) interaction with age of onset; obesity; and 

family history of T2D, adjusting for age, BMI, smoking status as confounders. All 

statistical analyses were performed by SPSS (version 18 (SPSS Inc., Chicago, IL, US). 

Tests were considered statistically significant with p<0.05. 

 

C. Results and discussion 

Table 1a shows correlations of PPARGC1A SNPs with T2D intermediate phenotypes in 

African Americans. Only rs3774907 SNP was statistically correlated with log Hs-CRP 

(p<0.05). No statistically significant correlation was observed for SNPs rs8192678; 

rs7656250; rs4235308 or rs11724368 with T2D phenotypes (log TC, log TG, log HDL, 

log LDL, log insulin, log A1C, log FPG, log Hs-CRP or log adiponectin). In Haitian 

Americans, rs3774907 was significantly correlated with log A1C (p<0.01) and log FPG 

(p<0.01) values whereas rs11724368 was correlated with log insulin significantly 

(p=0.02) as shown in Table 1b. Another SNP; rs7656250 was also marginally correlated 

with log FPG in Haitian Americans (p=0.09). The gene PPARGC1A has been associated 

with T2D and related phenotypes in other ethnicities but never in the selected three 

ethnicities in this study. We observed positive correlation of rs3774907 with log Hs-CRP 
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in African Americans whereas in Haitian Americans, this SNP was negatively correlated 

with log Hs-CRP. Additionally, in Haitian Americans log FPG was negatively correlated 

with rs7656250 and rs3774907. Another SNP rs11724368 was negatively correlated with 

log insulin in Haitian Americans. The differences observed among African American and 

Haitian Americans for correlations of PPARGC1A SNPs with T2D phenotypes suggest 

the two ethnicities could not be pooled together for analyses.  In Cuban Americans, 

PPARGC1A SNP rs7656250 was significantly correlated with log A1C (p=0.02) and 

rs4235308 was significantly correlated with log Hs-CRP (p=0.03) as shown in Table 1c. 

The positive correlation observed suggest high levels of log A1C and log Hs-CRP levels 

in CC+CT genotypes of both SNPs. 

Table 2a shows protective association of SNP rs3774907 with T2D in both 

Haitian Americans as well African Americans after adjusting for confounding variables 

age, sex, BMI and smoking status. Haitian Americans Females and African Americans 

females with CC+CT genotype of the rs3774907 were 0.344 (p=0.006) and 0.369 

(p=0.028) times less likely than those with TT genotype to have T2D. The results in 

males of either ethnicity were not statistically significant. 

Table 3a shows that in African Americans, none of the PPARGC1A SNPs were 

significantly associated with T2D in individuals with family history of T2D (adjusting for 

age, BMI, sex and smoking status) when looking at recessive effects of the variant allele. 

The T2D association was also not significant in African Americans in non-obese after 

adjusting for age, sex, BMI and smoking status as shown in Table 3a. In Haitian 

Americans, no SNP (recessive model) had significant association with T2D after 

adjusting for confounding variable age, BMI, sex, and smoking status in those with 
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family history of T2D (Table 3b). However, rs3774907 was significantly associated with 

T2D in non-obese Haitian Americans with OR=0.27 (p=<0.01). Hence, non-obese 

Haitian Americans who have CC+CT genotype for rs3774907 were 0.27 times less likely 

to develop T2D than those with TT genotype. This suggests protective effect of 

rs3774907 SNP in Haitian Americans who are not obese. In Cuban Americans with 

family history of T2D, as shown in Table 3c, none of the SNPs was significantly 

associated with T2D after adjusting for confounders. Additionally, the association with 

T2D was also not significant in non-obese Cuban Americans (Table 3c).  

Further, the association of PPARGC1A SNPs with T2D was explored in young 

onset of T2D; with physical activity (measured as met hours per week); alcohol 

consumption; or obesity in Haitian Americans, African Americans and Cuban Americans. 

In Haitian Americans, the association of T2D with interactions between age of onset; 

physical activity; family history; or alcohol intake and each respective SNP was not 

significant, as shown in Table 3b. Only the interaction term between rs4235308 and 

obesity had significant association with T2D after adjustment for age, sex, BMI and 

obesity (OR=0.24, p=0.03). This finding suggests that Haitian Americans with at least 

one rare allele have low OR for T2D despite being obese. The interactions of obesity with 

rest of PPARGC1A SNPs were not found to be significantly associated with T2D (Table 

3b) suggesting no effect of obesity on the association. There was no statistical 

significance observed for the association of T2D with interactions between PPARGC1A 

SNPs and age of onset; obesity; physical activity; family history of T2D or alcohol intake 

in African Americans as shown in Table 3b. However, rs3774907 showed some 

interaction with alcohol intake (OR=1.04, p=0.08) which suggests slightly high risk for 
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T2D in African Americans who are carriers of rare allele for rs3774907 and are alcohol 

users. 

In Cuban Americans, the effect of the interactions between age of onset; obesity; 

physical activity and any of the SNPs on the association with T2D was not statistically 

significant (Table 3c). No statistical significance observed for association of interaction 

between alcohol intake and each of PPARGC1A SNP, with T2D. The interaction effects 

of PPARGC1A SNPs and family history of T2D was also analyzed. The rs11724368 and 

family history (OR=5.32, p=0.08) had some interaction. The findings show high risk for 

T2D in rs11724368 rare allele carrier Cuban Americans who have family history of T2D.  

In Cuban Americans, none of the interaction was statistically significant for rest of the 

SNPs as shown in Table 3c.  

The findings show some genetic mediation of PPARGC1A in T2D prognosis with 

interactions with age of onset; obesity; alcohol usage; family history of T2D. The absence 

of any statistical significance could merely be a result of small sample size within the sub 

categories such as with family history of T2D or absence of obesity, to allow the 

statistical model to reach significance. 
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E. Table 1a. Pearson correlations of PPARGC1A SNPs with T2D phenotypes in African Americans 

 

Note: The statistically significant results are in bold. TC= total cholesterol; TG= triglycerides; HDL= high density 
lipoprotein; LDL= low density lipoprotein; A1C= Glycated hemoglobin A1C; Hs-CRP= high sensitivity C reactive protein. 
PPARGC1A= peroxisome proliferator-activated receptor-γ coactivator-1 α; SNP= single nucleotide polymorphism; T2D= 
type 2 diabetes. 

 

 

 

 

 

Variables 
 

rs8192678 rs7656250 rs3774907 rs4235308 rs11724368 
Pearson 

correlation 
p-

value 
Pearson 

correlation 
p-

value 
Pearson 

correlation 
p-

value 
Pearson 

correlation 
p-

value 
Pearson 

correlation 
p-

value 
Log TC 0.01 0.89 0.01 0.90 0.10 0.10 0.02 0.65 0.03 0.54 
Log TG 0.09 0.14 0.07 0.23 0.04 0.49 0.07 0.23 0.10 0.09 
Log HDL -0.04 0.45 -0.05 0.38 0.06 0.28 -0.05 0.40 -0.05 0.38 
Log LDL -0.01 0.83 -0.02 0.73 0.10 0.10 0.02 0.79 0.02 0.66 
Log insulin -0.07 0.24 -0.04 0.47 0.02 0.70 -0.03 0.58 -0.04 0.46 

LogA1C 0.02 0.70 0.02 0.75 -0.01 0.92 0.03 0.53 0.02 0.64 
Log FPG 0.03 0.61 0.05 0.38 -0.02 0.73 0.07 0.27 0.04 0.53 
Log Hs-CRP -0.02 0.76 -0.04 0.50 0.17 <0.05 -0.01 0.87 -0.01 0.78 
Log 
adiponectin 

0.02 0.72 0.01 0.83 0.04 0.48 0.03 0.59 0.02 0.75 



114 
 

 

F. Table 1b. Pearson correlations of PPARGC1A SNPs with T2D phenotypes in Haitian Americans 

 

 

Note: The statistically significant results are in bold. TC= total cholesterol; TG= triglycerides; HDL= high density 
lipoprotein; LDL= low density lipoprotein; A1C= Glycated hemoglobin A1C; Hs-CRP= high sensitivity C reactive protein. 
PPARGC1A= peroxisome proliferator-activated receptor-γ coactivator-1 α; SNP= single nucleotide polymorphism; T2D= 
type 2 diabetes. 

 

 

 

 

Variables 
rs8192678 rs7656250 rs3774907 rs4235308 rs11724368 

Pearson 
correlation 

p-
value 

Pearson 
correlation 

p-
value 

Pearson 
correlation 

p-
value 

Pearson 
correlation 

p-
value 

Pearson 
correlation 

p-
value 

Log TC 0.01 0.95 0.05 0.38 -0.02 0.80 -0.11 0.08 -0.06 0.33 
Log TG 0.01 0.92 0.08 0.2 -0.02 0.71 0.02 0.73 -0.00 0. 94 
Log HDL -0.09 0.16 0.03 0.56 -0.09 0.14 -0.12 0.06 -0.05 0.37 
Log LDL 0.02 0.66 0.06 0.34 0.01 0.84 -0.07 0.26 -0.06 0.36 
Log Insulin -0.02 0.80 0.05 0.40 0.02 0.81 -0.02 0.73 -0.02 0.02 

LogA1C 0.07 0.29 -0.01 0.77 -0.23 <0.01 0.07 0.28 0.07 0.25 
Log FPG 0.01 0.91 -0.11 0.09 -0.25 <0.01 -0.03 0.64 0.07 0.27 
Log Hs-CRP 0.01 0.84 0.09 0.17 -0.02 0.82 0.05 0.47 -0.04 0.52 
Log 
adiponectin 

-0.09 0.14 -0.04 0.52 <0.01 0.99 -0.07 0.26 -0.06 0.35 
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G. Table 1c. Pearson correlations of PPARGC1A SNPs with T2D phenotypes in Cuban Americans 

 

 

Note: The statistically significant results are in bold. TC= total cholesterol; TG= triglycerides; HDL= high density 
lipoprotein; LDL= low density lipoprotein; A1C= Glycated hemoglobin A1C; Hs-CRP= high sensitivity C reactive protein. 
PPARGC1A= peroxisome proliferator-activated receptor-γ coactivator-1 α; SNP= single nucleotide polymorphism; T2D= 
type 2 diabetes. 

 

 

 

 

Variables 
 

rs8192678 rs7656250 rs3774907 rs4235308 rs11724368 
Pearson 

correlation 
p-

value 
Pearson 

correlation 
p-

value 
Pearson 

correlation 
p-

value 
Pearson 

correlation 
p-

value 
Pearson 

correlation 
p-

value 
Log TC -0.02 0.67 -0.01 0.78 0.02 0.66 -0.02 0.73 0.07 0.17 
Log TG 0.03 0.59 0.01 0.78 0.07 0.22 -0.09 0.10 -0.01 0.85 
Log HDL -0.03 0.64 -0.05 0.33 -0.04 0.48 0.05 0.39 -0.01 0.97 
Log LDL -0.01 0.83 -0.01 0.88 -0.01 0.81 -0.01 0.83 0.09 0.11 
Log insulin 0.08 0.17 0.01 0.93 0.07 0.20 -0.01 0.83 0.05 0.37 

LogA1C 0.01 0.85 0.13 0.02 0.08 0.12 0.03 0.59 -0.07 0.22 
Log FPG -0.01 0.93 0.04 0.44 0.07 0.16 -0.03 0.57 -0.03 0.96 
Log Hs-CRP -0.03 0.60 0.03 0.59 0.08 0.16 0.12 0.03 0.09 0.20 
Log 
adiponectin 

-0.02 0.97 -0.08 0.22 -0.02 0.75 -0.03 0.69   
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H. Table 2a. Logistic regression of rs3774907 and type 2 diabetes by ethnicity 

 

 

 

Variables 

Haitian American                                                              African American 

OR 95% C.I. p-value OR 95% C.I. p-value 

rs3774907 
CC+CT 

vs TT 
0.328 0.152 0.708 0.005 0.381 0.162 0.898 0.027 

rs3774907*Sex 1.391 0.451 4.291 0.566 2.187 0.687 6.957 0.185 

 

Note: Controlled variables included in the logistic regression analysis for adjusted OR were age, sex, BMI, and smoking 
status. The interactions between sex and individual SNP were also included in logistic regression analysis.  p is considered 
significant at 0.05. OR= odds ratio; CI= confidence Interval. 
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I. Table 2b. Logistic regression of rs3774907 in Haitian Americans by sex 

 

 

 

Variables 

Haitian American 

Female Male 

OR 95% C.I. p-value OR 95% C.I. p-value 

rs3774907 
CC+CT 

vs TT 
0.344 0.160 0.737 0.006 0.500 0.209 1.195 0.119 

 

Note: Controlled variables included in the logistic regression analysis for adjusted OR were age, sex, BMI, and smoking 
status. The interactions between sex and individual SNP were also included in logistic regression analysis.  p is considered 
significant at 0.05. OR= odds ratio; CI= confidence Interval. 
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J. Table 2c. Logistic regression of rs3774907 in African Americans by sex 

 

 

Variables 

African American 

Female Male 

OR 95% C.I. p-value OR 95% C.I. p-value 

rs3774907 
CC+CT 

vs TT 
0.369 0.152 0.896 0.028 0.842 0.387 1.830 0.664 

 

Note: Controlled variables included in the logistic regression analysis for adjusted OR were age, sex, BMI, and smoking 
status. The interactions between sex and individual SNP were also included in logistic regression analysis.  p is considered 
significant at 0.05. OR= odds ratio; CI= confidence Interval. 
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K. Table 3a. PPARGC1A SNP-age of onset/obesity/physical activity/alcohol/family 
history interaction’s effect on association with T2D in African Americans. 

 

 

Note: Variables adjusted for: a) sex, BMI; b, c, d) age, sex, BMI. 

 

 

 

 

 

 
Variable 
 

ORinterac p-value 

rs8192678*age of onseta 1.02 0.58 
rs7656250*age of onseta 0.93 0.07 
rs3774907*age of onseta 0.98 0.79 
rs4235308*age of onseta 1.01 0.84 
rs11724368*age of onseta 1.05 0.38 
   
rs8192678*obesityb 0.25 0.10 
rs7656250* obesityb 1.39 0.64 
rs3774907* obesityb 0.79 0.71 
rs4235308* obesityb 1.08 0.89 
rs11724368* obesityb 0.89 0.90 
   
rs8192678*met hours per weekc 1.00 0.68 
rs7656250*met hours per weekc 1.01 0.05 
rs3774907*met hours per weekc 0.99 0.61 
rs4235308*met hours per weekc 1.00 0.78 
rs11724368*met hours per weekc 1.00 0.72 
   
rs8192678*alcohold 1.00 0.92 
rs7656250*alcohold 1.01 0.61 
rs3774907*alcohold 1.04 0.08 
rs4235308*alcohold 0.99 0.95 
rs11724368*alcohold 

 
0.99 0.97 

rs8192678*family history T2Dd 3.65 0.19 
rs7656250*family history T2Dd 0.48 0.45 
rs3774907*family history T2Dd 2.28 0.27 
rs4235308*family history T2Dd 1.21 0.79 
rs11724368*family history T2Dd 0.17 0.10 
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L. Table 3b. PPARGC1A SNP-age of onset/obesity/physical activity/alcohol 
intake/family history interaction’s effect on association with T2D in Haitian 
Americans 

 

 

Note: Variables adjusted for: a) sex, BMI; b, c, d) age, sex, BMI. 

 

 

 

 

 
Variable 
 

ORinterac p-value 

rs8192678*age of onseta 0.94 0.19 
rs7656250*age of onseta 1.02 0.78 
rs3774907*age of onseta 1.07 0.13 
rs4235308*age of onseta 0.95 0.29 
rs11724368*age of onseta 1.03 0.59 
   
rs8192678*obesityb 0.98 0.99 
rs7656250* obesityb 0.87 0.86 
rs3774907* obesityb 1.56 0.46 
rs4235308* obesityb 0.24 0.03 
rs11724368* obesityb 0.82 0.83 
   
rs8192678*met hours per weekc 0.99 0.34 
rs7656250*met hours per weekc 0.99 0.20 
rs3774907*met hours per weekc 0.98 0.70 
rs4235308*met hours per weekc 0.99 0.62 
rs11724368*met hours per weekc 0.98 0.15 
   
rs8192678*alcohold 0.94 0.58 
rs7656250*alcohold 0.97 0.82 
rs3774907*alcohold 0.92 0.52 
rs4235308*alcohold 1.07 0.48 
rs11724368*alcohold 1.23 0.41 
   
rs8192678*family history T2Dd 0.96 0.63 
rs7656250*family history T2Dd 1.06 0.40 
rs3774907*family history T2Dd 1.03 0.57 
rs4235308*family history T2Dd 0.96 0.57 
rs11724368*family history T2Dd 0.96 0.65 
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M. Table 3c. PPARGC1A SNP -age of onset/obesity/physical activity/alcohol 
intake/family history interaction effect on association with T2D in Cuban 
Americans. 

 

 

Note: Variables adjusted for: a) sex, BMI; b, c, d) age, sex, BMI. 

 

 

 

 

 

 
Variable 
 

ORinterac p-value 

rs8192678*age of onseta 0.97 0.15 
rs7656250*age of onseta 0.96 0.51 
rs3774907*age of onseta 0.99 0.81 
rs4235308*age of onseta 0.97 0.36 
rs11724368*age of onseta 0.99 0.99 
   
rs8192678*obesityb 0.64 0.33 
rs7656250* obesityb 0.35 0.32 
rs3774907* obesityb 1.57 0.36 
rs4235308* obesityb 2.49 0.18 
rs11724368* obesityb 0.45 0.48 
   
rs8192678*met hours per weekc 0.99 0.70 
rs7656250*met hours per weekc 1.01 0.41 
rs3774907*met hours per weekc 1.01 0.21 
rs4235308*met hours per weekc 1.01 0.39 
rs11724368*met hours per weekc 1.01 0.27 
   
rs8192678*alcohold 1.01 0.45 
rs7656250*alcohold 1.31 0.40 
rs3774907*alcohold 1.04 0.33 
rs4235308*alcohold 0.95 0.51 
rs11724368*alcohold 0.87 0.42 
   
rs8192678*family history T2Dd 1.00 0.50 
rs7656250*family history T2Dd 1.00 0.93 
rs3774907*family history T2Dd 1.01 0.50 
rs4235308*family history T2Dd 1.01 0.47 
rs11724368*family history T2Dd 5.32 0.08 
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CHAPTER VIII 

LIMITATIONS AND STRENGTHS 

The research study has several strengths. This is the only study that explored the genetic 

associations of PPARGC1A polymorphisms with T2D in three high risk ethnicities; 

providing valuable information on the prognosis of T2D. Additionally, we attempted at 

studying the differences within the Black race with regards to genetic influences on T2D 

as well as its associated phenotypes. The effects of lifestyle factors, age of onset, and 

family history of T2D on the genetic determination of T2D with PPARGC1A 

polymorphisms were also investigated in all three ethnicities.  

The case-control candidate gene study had the advantage of looking closely at 

polymorphisms of one single gene and its association with the disease. This study 

contributed in genotype determination of the candidate gene (PPARGC1A) 

polymorphisms with some biological importance to T2D. Relevance to pathogenesis of 

T2D and functionality was considered during the careful selection of the gene as well as 

polymorphisms utilizing established databases. The polymorphisms selected were also 

tested for linkage disequilibrium with adjoining polymorphisms to ensure independent 

genetic associations with T2D. Moreover, instead of using the default model (additive) in 

analyses; recessive model was specifically chosen to study the recessive effects of the 

variant allele of each polymorphism. The recruitment for unrelated controls in this study 

was done from the community sources matched by ethnic origin, age and sex which are 

an ideal practice for case-control studies.  Moreover, the two Black ethnicities; African 

Americans and Haitian Americans were studies separately to avoid any population 
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stratification. Additionally, this study also explored effects of lifestyle factors on the 

genetic association with T2D that facilitated the estimation of the extent of the genetic 

risk factor.   

As other candidate gene studies, this study has some limitations. As the study was 

focused on the genetic associations of only one gene (PPARGC1A), the influence of 

gene-gene interactions were not considered.  The effects of polymorphisms on the 

expression of protein PGC1-α were not quantitated, so direct relationship with the gene 

product could not be established. In this study, sample size was calculated for detection 

of an association of the variant genotype with T2D, assuming odds ratio of 1.5 with 

threshold significance level set at 0.05 for 80% statistical power. However, for detection 

of significant odds ratio, the sample size may not have been sufficient if the frequency of 

minor allele is quite small especially with the case-control design. The participants in the 

study were self-reported ethnicities; resulting in possible genetic heterogeneity, a concern 

for candidate gene studies. Confounding due to population stratification can be controlled 

by ancestry-informative markers, AIMs, to avoid false associations were not used in this 

study. However, both controls and cases were selected from the same base population as 

well as same geographical location for each ethnicity. Additionally, the sample 

populations for Cuban Americans, Haitian Americans and African Americans being 

recruited from South Florida community may not be representative to general U.S. 

population. 
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CHAPTER IX 

CONCLUSIONS AND FUTURE RESEARCH 

Conclusions 

The correlations among PPARGC1A polymorphisms, type 2 diabetes and its related 

phenotypes were examined in the Cuban American, Haitian American and African 

American populations of South Florida. Additionally the genetic associations of 

PPARGC1A polymorphism with T2D were also explored for the effects of age of onset, 

family history and lifestyle factors; obesity, physical activity and alcohol use.  

The main objective of this study was to examine the correlations of PPARGC1A gene 

polymorphisms with T2D in three ethnicities which are at high risk of T2D. We were 

able to see associations between polymorphisms of this gene with T2D. The implication 

of PPARGC1A in T2D development reported earlier by other studies is validated by our 

findings. However, no other study has explored these polymorphisms in PPARGC1A 

gene in our unique ethnic populations for T2D disease association. We found significant 

differences among Haitian Americans and African Americans. PPARGC1A SNPs; 

rs4235308 and rs7656250 showed significant protective association with T2D in Haitian 

Americans but risk association in African Americans. One SNP, rs7656250 also had risk 

association with T2D in Cuban Americans. The different pattern of association of 

PPARGC1A polymorphisms among two Black ethnicities justifies our previously 

published hypothesis that these two ethnicities are distinct and may not be pooled 

together as Black race (Cheema, 2014). 
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Effect modification by sex, lifestyle factors and age of onset in T2D susceptibility was 

examined in all three ethnicities. Our findings further supported the trends of sex 

differences observed in T2D prognosis in these populations. The presence of stronger risk 

association in African American females seen in this study also identifies with the fact 

that African American females have higher T2D prevalence than African American 

males (CDC, 2012). Haitian Americans, despite their African origins and poor diabetes 

control have lower prevalence of T2D than their African American counterparts 

(Vimalananda, 2011). Our findings support and contribute to the complex explanation of 

this observed trend. We were unable to find significant effect modifications by family 

history of T2D, age of onset, alcohol intake or physical activity on T2D association with 

PPARGC1A polymorphisms in any ethnicity. However, some interactions were observed 

between PPARGC1A polymorphisms and family history; obesity; alcohol use in Cuban 

Americans, Haitian Americans and African Americans respectively. Moreover, the 

correlation between PPARGC1A polymorphism; rs3774907 and T2D still held true in 

non-obese Haitian Americans but not Cuban Americans or African Americans. The 

possibility of insufficient sample size could explain the inability to reach statistical 

significance for some of the analyses.  

Our hypothesis that PPARGC1A polymorphisms will also be correlated with T2D 

phenotypes was based on other reports and the involvement of PPARGC1A in various 

genes in crucial metabolic pathways. We found positive correlations in African as well as 

Cuban Americans with these metabolic parameters whereas in Haitian Americans, 

negative correlations were found. The functional implication of PPARGC1A was seen in 
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Haitian Americans. Hypertensive Haitian Americans with T2D and CC and CT genotype 

were less likely than those with genotype TT to develop microalbuminuria.  

The mixing of many races has given birth to ethnicities that possess lineage from two or 

more genetic sources. Such populations are at high risks for metabolic diseases such as 

T2D and cardiovascular diseases. Genetic polymorphisms that have direct effects on the 

gene product are the functional and often most useful polymorphisms, whereas others are 

genetic markers that may influence indirectly the metabolism of the gene product and 

thus the disease. To be able to study and understand the similarities as well as differences 

among these ethnicities is a big contribution to finding appropriate treatments and 

policies for the disease management and prevention.  

Future research 

Functional follow up studies are warranted as statistical correlations are the basis of the 

findings of this study. Carefully designed as well executed replication studies are 

necessary to validate the results in any case-control study. The associations of variants 

that occur with very low frequency might not have been statistically significant due to 

limited sample size. Therefore, larger sample sizes will be necessary to observe credible 

and substantial effects of such genetic variants. The study being focused on association of 

polymorphisms of only one gene with T2D did not look into adjoining genes that could 

have some interaction with PPARGC1A. The disregard of possible gene-gene interactions 

in a polygenic model in this study should be pursued by follow up studies. In near ideal 

scenario, a locus on a particular chromosome can be identified using whole genome 

scanning in the participant as well as family in a sample matched for age, sex and 
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ethnicity. This area can then be used to examine allelic associations of polymorphisms 

within and between candidate genes taking into account various environmental 

influences. Further, genomic studies assessing protein expression levels of functional 

proteins could be followed to explore the causative effect of such genetic polymorphisms.  
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Table 3. Hypothesis testing 

 
Hypothesis 
  

Conclusion 

  
1: PPARGC1A variants 
mediates genetic predisposition 
to T2D and related phenotypes 

  

PPARGC1A polymorphisms were associated with 
T2D in three ethnicities which suggest the 
involvement of this gene in T2D prognosis. The 
polymorphisms were also correlated with T2D 
intermediate phenotypes such as FPG, A1C, Hs-
CRP. Therefore, findings in this dissertation 
research indicate the genetic predisposition to T2D 
and related phenotypes being mediated by 
PPARGC1A polymorphisms. 

 
2. If PPARGC1A mediates 
genetic predisposition to T2D, 
its association will be stronger 
in cases with young-onset, who 
are non-obese and who have 
family history of T2D 

 

After adjusting for covariates (age, sex, BMI, 
smoking status, the interaction rs4235308 with 
obesity was significant in Haitian Americans. In 
Cuban Americans, high risk for T2D in rs11724368 
rare allele carrier and with family history of T2D 
was seen. We did not see significant interaction of 
age of onset with T2D.  The findings of this 
research indicate some genetic mediation of 
PPARGC1A in T2D prognosis with interactions 
with obesity; alcohol usage; and family history of 
T2D.   
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