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ABSTRACT OF THE THESIS

CONSERVATION ECOLOGY OF AMPHIBIANS AND REPTILES IN SARAPIQUI,

COSTA RICA: FOREST FRAGMENTATION AND LONG-TERM POPULATION

CHANGE

by

Kristen E. Bell

Florida International University, 2005

Miami, Florida

Professor Maureen A. Donnelly, Major Professor

In order to explore the conservation ecology of frogs and lizards in the Sarapiqui

region of Costa Rica, I compared populations and communities among forest fragments

and La Selva Biological Station, as well as across 35 years of sampling at La Selva.

Species richness in nine fragments combined was 85% of that found in La Selva, and

community composition varied among sites and by fragment size class. Although

communities in fragments differed fundamentally from those in intact forest, the high

diversity observed across all fragments indicates that preserving a network of small forest

patches may be of great conservation value to the herpetofauna of this region. According

to data from past studies at La Selva, most common species of leaf-litter frogs and lizards

demonstrated significant decreases in density over the 35-year period. My findings may

represent either natural population fluctuations or sweeping faunal declines at this site.
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INTRODUCTION

Amphibian populations around the world have suffered declines and

disappearances in the past few decades, threatened by a suite of factors including habitat

loss and modification, disease, introduced species, acid precipitation, and climate change.

Many of the same factors also threaten reptile populations, with the same negative

consequences. The importance of these groups from an ecological perspective cannot be

overstated; they make up the largest component of vertebrate biomass in many systems,

and fill roles as primary, mid-level, and top consumers. The loss of reptiles and

amphibians could have severe repercussions for communities and ecosystems; for

effective conservation of these groups we need to understand the autecologies of

amphibians and reptiles and how their populations respond to disturbance. In this project

I focused on the population and community structure of frogs and lizards in the Sarapiqui

region in the Caribbean lowlands of Costa Rica. I addressed two aspects of conservation

ecology: responses to habitat fragmentation, and change across decades in an intact

forest.

In the first chapter I report on community and population structure in nine small

forest fragments, compared to intact forest at La Selva Biological Station. By

systematically sampling in several forest fragments, I was able to compare species

richness, community composition, and population densities among sites which varied in

area, isolation, and habitat characteristics. Determining community structure in various

fragment types can help inform conservation priorities, both by identifying potentially



vulnerable species and by assessing the conservation value of small forest patches to

amphibians and reptiles.

Chapter Two describes population change across 35 years at La Selva Biological

Station, one of the most thoroughly studied sites in the neotropics. I compared

population densities of leaf-litter reptiles and amphibians estimated from my sampling

with those reported in comparable studies. Such long-term datasets from lowland

tropical forest are extremely rare. Most reported amphibian declines from around the

world occur primarily in montane sites, and the species affected tend to be aquatic-

breeding species. Thus, although the data come from different sources and are therefore

subject to various biases, this long-term population dataset for a lowland, terrestrially-

breeding herpetofauna is especially useful for comparative purposes.
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Influence of forest fragmentation on community structure of frogs and lizards in

northeastern Costa Rica

Kristen E. Bell

Abstract

I examined community and population structure of frogs and lizards in the

fragmented landscape surrounding La Selva Biological Station in the Sarapiquf region of

northeastern Costa Rica. Frogs and lizards were sampled in nine forest fragments (1-7 ha

each) and La Selva (1100 ha) using diurnal quadrats and nocturnal transects; all sites

were sampled monthly between October 2003 and August 2004. Species richness in all

fragments combined was 82% of that found in La Selva with comparable sampling effort.

Richness varied from 10 to 24 species among forest fragments, compared to 36 species at

La Selva. Lizard density was higher and frog density lower in forest fragments than in

continuous forest. Community composition varied among sites and by fragment size

class, and species occurrence was nested with respect to fragment area. Isolation and

habitat variables did not significantly affect species richness, composition, or nestedness.

Between 18 and 25% of species I sampled in continuous forest were absent from forest

patches. Such fragmentation-sensitive species may not survive outside continuous forest,

while fragmentation-tolerant species remain abundant in forest fragments. Nevertheless,

the high diversity observed in the entire set of fragments indicates that preserving a

network of small forest patches may be of great conservation value to the amphibians and

reptiles of this region.
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Introduction

Anthropogenic habitat destruction, modification, and fragmentation may represent

the most serious threats to amphibians and reptiles worldwide (Corke 1992; Fisher and

Shaffer 1996; Alford and Richards 1999). Although habitat fragmentation has been the

focus of an extensive body of research (see Saunders et al. 1991; Andren 1994;

McGarigal and Cushman 2002), relatively little is known of its effects on amphibians and

reptiles, especially in tropical ecosystems (McGarigal and Cushman 2002). Neglecting

these organisms is a serious oversight, considering their important roles in most

ecosystems as primary, mid-level, and top consumers, sometimes comprising the largest

component of vertebrate biomass in a system (Burton and Likens 1975; Reagan 1996).

Negative effects of forest fragmentation may include declines in species diversity,

decreased abundance, changes in species composition, changes in demographic

parameters, and decreased genetic diversity (Saunders et al. 1991; Turner 1996; Laurance

et al. 2002). The type and severity of community responses to fragmentation depend on a

suite of factors that can be grouped into three categories: area effects, edge effects, and

position in the landscape (Saunders et al. 1991; Fahrig and Merriam 1994).

As fragments decrease in area, they are predicted to contain fewer species

(Connor and McCoy 1979) and smaller populations (Bender et al. 1998), which are prone

to extirpation because of stochastic change (Shaffer 1981). Abiotic conditions at the

forest edge, such as increased wind and solar radiation, increased fluctuations in

temperature, and decreased humidity, may functionally reduce the size of a fragment for

forest-adapted organisms (Saunders et al. 1991; Murcia 1995). Edges can also affect

entire fragments by making them more susceptible to agrichemical inputs, selective
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logging, livestock grazing, or fire (Turner 1996). Forest structure and dynamics are

altered in fragments (Murcia 1995; Laurance et al. 2002), which can result in higher-

order effects (e.g., changes in community structure and ecosystem processes; Turner

1996; Laurance et al. 1997). At the landscape scale, the distance separating habitat

patches affects the movement of organisms between them (Brown and Kodric-Brown

1977). The presence of habitat corridors and the type of matrix surrounding a fragment

also influence dispersal rates of organisms (Fahrig and Merriam 1994; Gascon et al.

1999; Lima and Gascon 1999). Finally, all of the above effects change with increasing

time since a fragment's isolation (Gonzalez 2000; Grez et al. 2004).

Species vary in their tolerances of forest fragmentation. Characteristics that

contribute to fragmentation sensitivity include low abundance, large area requirement,

high population fluctuation, low fecundity, low dispersal ability, and specialized habitat

requirements (Henle et al. 2004). Predictions based on these qualities are difficult to

make in the absence of detailed autecological information, as is often the case for tropical

organisms. As a group, amphibians may be especially vulnerable to fragmentation

because their relatively narrow moisture and temperature tolerances (Duellman and Trueb

1986) and specific breeding habitat requirements (Zimmerman and Bierregaard 1986)

may restrict the types of habitat they can occupy and limit movement between them.

Several studies have documented negative responses of tropical amphibians to habitat

fragmentation, including decreased diversity (Vallan 2000; Pineda and Hallfter 2004),

decreased abundance (Marsh and Pearman 1997), edge avoidance (Schlaepfer and Gavin

2001; Lehtinen et al. 2003), reduced fecundity (Funk and Mills 2003), and changes in

community composition (Gascon et al. 1999; Pineda and Hallfter 2004).
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In general, reptiles are not as constrained by moisture requirements as

amphibians, and lizards may be unaffected by fragmentation (Jellinek et al. 2004) or

occur at higher densities along fragment edges (Schlaepfer and Gavin 2001; Lehtinen et

al. 2003). Nonetheless, many reptile species and communities are sensitive to

fragmentation (Sarre et al. 1995; Cosson et al. 1999; MacNally and Brown 2001; Driscoll

2004). Conversely, both amphibians and reptiles may be less severely affected by

fragmentation than birds and mammals (Dickman 1987; Smith et al. 1996; Gascon et al.

1999), in some cases even increasing in species richness with fragmentation (Tocher et

al. 1997). Compared to similar-sized homoiotherms, reptiles and amphibians have lower

energetic requirements, smaller home ranges, and higher densities (Pough 1980), which

could allow the maintenance of viable populations in small patches (McGarigal and

Cushman 2002).

We need to more fully understand the responses of tropical herpetofaunas to rapid

land-use change. Tropical forests continue to be logged and destroyed at a rate of about

16 million ha per year (Laurance 1999). Our current understanding of amphibians'

responses to fragmentation in Neotropical lowland rain forest is based almost entirely on

data from experimentally isolated fragments at one Amnazonian site near Manaus, Brazil

(Tocher et al. 1997). Increased knowledge of how organisms use forest fragments can

add to our understanding of the impacts of land use change in the tropics, as well as help

inform local conservation efforts (Matlock et al. 2002; Luck and Daily 2003). Effective

conservation strategies must operate at the landscape level and include enough sites to

maintain high diversity and natural communities (Margules et al. 1988). In order to

select an appropriate network of patches to protect, we must first describe the distribution
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of species and communities (Saunders et al. 1991), and then determine which factors

have the greatest influence on diversity and species composition within forest fragments.

Often, the well-studied intact ecosystems inside parks and preserves are not

contextualized within the surrounding anthropogenic landscape. La Selva Biological

Station is one of the most extensively studied forests in the Neotropics (Clark 1990);

however, the surrounding Sarapiquf region has been converted from continuous lowland

wet forest to an agriculture-dominated landscape over the past 40 years (Butterfield

1994). These circumstances make it increasingly necessary to relate research done in La

Selva's primary forest to the highly fragmented surrounding landscape (see Guariguata et

al. 2002; Matlock et al. 2002). My study examines patterns in the abundance and

distribution of lizards and frogs in the fragmented landscape surrounding La Selva

Biological Station in Costa Rica. This study has two main objectives: (1) to describe the

community structure of frogs and lizards across fragments of different areas and

isolations versus a reference area in continuous forest, and (2) to compare estimates of

density and age structure of populations between fragmented and continuous forest.

Methods

Study Sites

Research was conducted in and around La Selva Biological Station in the

Caribbean lowlands of Costa Rica. La Selva is located in Sarapiquf canton in the

province of Heredia, at the confluence of the Puerto Viejo and Sarapiquf rivers (1026'

N, 83 59' W); for a complete description of the site, see McDade and Hartshorn (1994).

It has a diverse and relatively well-known herpetofauna, with 25 lizard and 46 frog
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species recorded from the site (Donnelly 1994; Guyer 1994; Savage 2002; Guyer and

Donnelly 2005). About 70% of La Selva's 1600 ha is primary forest, and it adjoins the

45,000-ha Braulio Carrillo National Park. In the 1950s, the Sarapiquf region was almost

entirely covered by lowland tropical wet forest. Escalating conversion of lands to

agricultural uses has resulted in a large reduction of forested area, which decreased from

about 70% in 1963 (Butterfield 1994) to 55% in 1976 and 34% in 1996 (Sanchez-

Azofeifa et al. 1999). Between 1976 and 1996, the number of forest fragments more

than doubled and average fragment size decreased (Sinchez-Azofeifa et al. 1999).

Principle land-use categories in the region are now secondary forest, pasture, and banana

plantation.

I selected nine fragments that ranged in area from one to seven hectares, isolated

from other forest and located varying distances from the nearest forest (Fig. 1. 1,

Appendix 1). The primary and selectively logged portions of La Selva (about 1100 ha

within the 1600-ha preserve, which is contiguous with a large national park) served as a

reference area of continuous forest. Small fragments were chosen for biological and

geographical reasons. Frogs and lizards, with their small body sizes and modest home

range requirements, may be able to maintain viable population sizes in small forest

patches. Also, small fragments are typical of forest fragments in the region. I analyzed a

177-km2 area around La Selva using 2.5 m-resolution satellite Quickbird images from

2003 (within the dotted line, Fig. 1.1). After on-screen digitizing of all forest patches, I

found that 80% of forest fragments were less than 10 ha in size, with a median size

(excluding protected areas) of 2.6 ha (Fig. 1.2). This was also the median size of my

study sites. Of regional forest fragments, 55% fell within the size range of my study sites
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(1-8 ha). I chose fragments that were mostly or entirely surrounded by pasture in order to

minimize the effects of matrix composition on fragment communities; however, there

was considerable variation among pastures in terms of topography, wetlands, shade, and

grazing intensity. The length of time each fragment had been isolated from other forest,

estimated from landowner interviews and aerial photos, ranged from 17 to 34 years, with

a mean of 26 years. The fragments also varied in forest structure, and all were

moderately to heavily impacted by humans. Although this variation may confound my

results, it is typical of forest in the region. Forest use commonly includes selective

logging, understory clearing, and cattle grazing; no undisturbed forest remains outside

protected areas.

Sampling methods

I used two standard sampling methods to assess species composition and

abundance at each site: diurnal leaf-litter quadrat samples (Jaeger and Inger 1994) and

nocturnal visual encounter surveys (VES) along transects (Crump and Scott 1994). The

nocturnal VES method is one of the most effective for sampling tropical herpetofaunas,

generally yielding greater numbers of individuals and species per unit effort than other

sampling methods (Pearman et al. 1995; Doan 2003: Donnelly et al. 2005). Leaf litter

quadrat sampling, while detecting fewer species, provides fairly accurate estimates of

density and is useful for comparisons among studies and sites (Allmon 1991); this

method has been used previously at La Selva to assess the litter herpetofauna (Scott 1976;

Fauth et al. 1989; Heinen 1992; Watling and Donnelly 2002; Watling et al. in press).

Species in this assemblage have been shown to differ in diet activity patterns and vertical

habitat use (Miyamoto 1982; Slowinski et al. 1987). By combining the two methods I
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was able to describe a wider assemblage than I could using a single method (Doan 2003;

Donnelly et al. 2005), including both the leaf-litter community and many arboreal,

semiarboreal, and semiaquatic species.

Each quadrat and transect was randomly placed and sampled only once. Leaf

litter quadrats were 5 X 5 m; they were searched by two people, who raked aside and

thoroughly searched under all leaf litter and cover objects. Litter plots took an average of

19 minutes (+/- 6 min SD) to search. The VES belt transects were 50 X 4 m. Transects

were established with a 50-m string; two observers walked slowly, one on either side of

the string, each visually searching the entire 4-m width of the transect. Each transect

took an average of 30 minutes (+/- 7 min SD) to complete.

Quadrats and transects were placed in fragments using the following method. A

random compass direction overlaid on a map of the fragment decided the initial point of

entry into the fragment. From this starting point at the edge, a randomly-chosen compass

direction and number of steps were taken (100 steps in small fragments, 200 in medium

fragments), followed by a second random direction and number of steps. If an edge was

encountered (defined as the last line of tree trunks), a 90-degree turn was made in order

to stay within the fragment. The quadrat or transect was located at the end point of this

random walk. Transects were oriented according to an additional random direction. This

method oversamples edge relative to core habitat in fragments, but is otherwise a

practical approximation of random sampling. In La Selva, sampling locations were

picked using the GIS grid system. A computer program selected random grid poles in

primary and selectively logged forest within 150 in of a trail. Quadrats were placed at the
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grid poles; transects extended from the pole away from the nearest trail, to minimize

effects of human disturbance.

Sampling effort was greater at larger sites to control for differences in area

(Schoereder et al. 2004). Fragments were classified as small (1.4-2.6 ha) or medium (4-

6.9 ha). Each month, four quadrats and three transects were searched in each small site,

six quadrats and six transects in each medium site, and 15 quadrats and 15 transects in La

Selva. Generally, quadrats were searched during morning hours and transects were

established following plot sampling. Transects were sampled after dark, between 1800

and 2300 hours. Quadrat sampling ran from October 2003 through April 2004. Transect

sampling continued from October 2003 through July 2004, with full datasets completed

for every month but October 2003 (preliminary data) and May 2004 (heavy flooding).

Data collection and analysis

All amphibians and reptiles encountered were captured, identified to species,

measured (snout-vent length), and released. For each fragment, the area, distance to

nearest large (>300 ha) forest, and area of forest within 1 km of the fragment were

measured using GIS analysis of Landsat and Quickbird images. I measured stream length

to calculate the ratio of stream length to area for each fragment. Understory plant density

was quantified by using a Secchi disk (25 cm diameter): one person held the disk

vertically at a height of 50 cm while the other walked away, measuring the distance at

which the disk was no longer visible (N = 340). To approximate leaf litter depth, a 30 X

30 cm sample of litter was collected from one corner of each quadrat, dried at 700 C for

48 hours, and weighed (N = 344). Canopy cover was measured at each quadrat by taking

the mean of four spherical densiometer readings (N = 393). Size of the largest trees was
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quantified by taking the mean DBH of the three largest trees within 10 m of the center of

each quadrat (N = 399).

I assessed sampling completeness with respect to species richness by calculating

incidence-based and abundance-based estimators (ICE, ACE) and constructing species

accumulation curves (both by sampling effort and by number of individuals) with the

program EstimateS (Colwell 2004). Species richness, evenness, and population density

were compared among fragments using nonparametric Spearman's rank correlations

because of the small sample size (n = 9). Understory density, litter depth, and DBH were

log-transformed; canopy cover was arcsine square-root transformed. Variances were

unequal even after transformations, so habitat variables for all fragments combined and

La Selva were compared using a Wilcoxon rank-sum test. In order to test for differences

in community composition by site, I used a nested analysis of similarity (ANOSIM), with

each transect as a sample, abundance of each species as dependent variables, and site

nested within forest type (fragmented/continuous) as factors. I also evaluated community

similarity with site nested within size class Ismall (1-4 ha), medium (5-7 ha), and La

Selva (continuous)I. Each ANOSIM was based on a Bray-Curtis dissimilarity matrix,

using PRIMER 5.0 (Clarke and Warwick 2001). To determine which combination of

habitat variables most influenced community composition, I performed the BIO-ENV

procedure, which correlates Bray-Curtis dissimilarity matrices of community

composition with Euclidean distance dissimilarity matrices of habitat variables. I used

BIO-ENV for 10 sites (including La Selva) with the following variables: canopy, litter,

DBH, and understory; and in nine sites (fragments only) with: canopy, litter, DBH,

understory, area, isolation, distance, streams, and age. I looked for nested patterns of
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species occurrence using the Nested Temperature Calculator (Atmar and Patterson 1995).

Densities of frogs and lizards were compared for all fragments combined versus La Selva

using a Wilcoxon rank-sum test (due to unequal variances) with transect or quadrat as the

sampling unit. Proportions of juveniles for 1 1 abundant species were compared among

sites with chi-square tests and compared between fragments and La Selva with Z-tests.

Results

Sampling completeness

I encountered an estimated 74-96% of the frog and lizard species at each site

(using the abundance-based estimator ACE in EstimateS; Colwell 2004). Species

accumulation curves plotted by transect and by number of individuals yielded similar

patterns, indicating that the differences in number of sightings per transect did not affect

the sampling curve. La Selva had the steepest accumulation curve, followed by the two

largest fragments (Fig. 1.3a). When correlated with area, the estimated richness values of

ACE and ICE yielded similar results to my observed species richness (Table 1.1);

therefore, I used observed values for subsequent analyses.

Species richness and evenness

During the ten-month study, I found 36 anuran and 14 lizard species across all

sites using the two sampling methods. Richness of fragments ranged from 10 to 24

species. Thirty-six frog and lizard species were encountered at La Selva. Species

richness of all fragments combined exceeded the number of species I recorded at La

Selva, totaling 41 species; however, this is probably the result of greater sampling effort

across all fragments (350 transects, vs. 132 transects in la Selva). When species
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accumulation for all fragments combined was stopped at the same number of individuals

as La Selva, richness was 85% of that found at La Selva (Fig. 1.3b). Among fragments,

total species richness was positively correlated with fragment area (Spearman; n = 9, r, =

0.67, P = 0.049; Fig. 1.4), although this was primarily an effect of high richness in the

largest two sites. The same trend was present for frogs (r, = 0.41, P = 0.055) and lizards

(excluding one outlier site; r, = 0.82, P = 0.012) when analyzed separately. Evenness

was similar across sites (r, = 0.03, P = 0.93). There was no relationship between species

richness and fragment isolation, according to the two measures employed: distance from

nearest large forest and area of forested land within 1 km of the fragment.

Forest structure

Proportion of edge habitat increased with decreasing fragment size (r = 0.69, P =

0.006). Tree size (DBH) did not vary between continuous and fragmented forest (Z =

0.34, P = 0.56). Litter depth was greater in fragments than in continuous forest (x' =

7.74, P = 0.005). Canopy cover was less (x = 6.08, P = 0.014) and the understory more

dense (x = 7.98, P = 0.005) in forest fragments than in continuous forest. None of these

variables was correlated with fragment area.

Community composition

Relative abundance of species varied among sites. Norops linifrons was the most

abundant species at four sites; Dendrobates pumilio was the dominant species at three

sites; and Eleutherodactylus ridens and E.fitzingeri were each dominant at a single site.

The most abundant species in each fragment accounted for 18 to 45% of all observations

at that site (Appendix 2).
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Nonmetric multidimensional scaling (nMDS) plots of similarity in community

composition showed apparent clustering of sites according to their size (Fig. 1.5). There

were significant differences in community composition among sites (Global R = 0.25, P

= 0.01) as well as among fragment size classes (Global R = 0.44, P = 0.026) in a nested

ANOSIM. However, none of the pairwise comparisons was significant. The significant

differences in community composition among sites (Global R = 0.26, P = 0.01)

outweighed differences between fragmented and continuous forest (Global R = 0.51, P =

0.10) in a nested ANOSIM. According to BIO-ENV analyses, no habitat variable or

group of variables was strongly correlated with community composition among sites;

correlation coefficients did not exceed 0.32 in any analysis.

Species occurrence was significantly nested among fragments. This was true for

frogs (T = 17.31, P < 0.00 1), lizards (T = 19.84, P = 0.003), and both (T = 24.04, P <

0.001) when the analysis included La Selva. When only fragments were compared, the

nested pattern was weaker for each group (frogs: T = 23.87, P < 0.001; lizards: T =

27.63, P = 0.045; and both: T = 32.86, P = 0.001). Nested rank of fragments was

significantly correlated with fragment area (r, = -0.75, P = 0.02) but not with distance (r,

= 0.07, P = 0.86), isolation (r, = -0.42, P = 0.26), or any habitat variable.

Population structure

Densities were calculated using day (402 total quadrats) and night (482 total

transects) data separately (Fig. 1.6). Anuran density was higher in continuous than

fragmented forest for day sampling (Wilcoxon; X = 7.20, P = 0.007). For night

sampling, however, there was no difference in anuran density between continuous and

fragmented forest (X = 1.52, P = 0.22). Lizard density was higher in fragmented than
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continuous forest for both day ( = 8.33, P = 0.004) and night (x = 20.61, P < 0.001)

sampling. There were no correlations between fragment area and total density of frogs,

lizards, or most of the abundant species, with the following exceptions: there were

positive correlations between fragment area and density for centrolenids (r, = 0.74, P =

0.022) and two Eleutherodactylus, E. ridens (r, = 0.72, P = 0.029) and E. noblei (r, =

0.82, P = 0.007) from night sampling data.

Mean proportion of juveniles across sites was 0.41 for lizards (+/- 0.10 SD) and

0.32 for frogs (+/- 0.09 SD). Only three of the 1 1 species analyzed showed significant

variation in the proportion of juveniles among fragments, and these did not vary

according to fragment area, isolation, or habitat variables. Proportions of juveniles for

most abundant species did not differ between continuous and fragmented forest, with the

exception of two species, Eleutherodactylus fitzingeri (Z = 2.07, P = 0.025) and Norops

linifrons (Z = 2.27, P = 0.005), which had higher proportions of juveniles in fragments.

Fragmentation-sensitive species

Since the entire region was once forested, it may be reasonable to use the

abundance of species at La Selva as an estimate of natural commonness/rarity for the

region (Vallan 2000). Frequency of occurrence in fragments was plotted according to

(log-transformed) abundance at La Selva for each species. I used confidence intervals

from the resulting linear relationship to separate species which closely follow the

expected pattern from fragmentation-tolerant species (those that occur more frequently in

fragments than predicted by their abundance at La Selva) and fragmentation-sensitive

species (those that occur in fewer fragments than predicted by their La Selva abundance;

Fig. 1.7).
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Discussion

Observed species richness ranged from 10 to 24 species for each fragment, and

pooled richness of all fragments was 29 at a sampling effort comparable to that

accomplished at La Selva. According to my sampling, nine small fragments may

preserve about 85% of the species found in primary, continuous forest in this region.

However, these results should be interpreted with caution, because species richness

observed 17-34 years post-isolation may still be decreasing as small populations are

extirpated. Additionally, this 10-month study did not detect all the region's species.

Seventy-one frog and lizard species have been recorded from La Selva; I encountered 36

species at La Selva and 50 species across all sites.

I found a significant species-area relationship among fragments (Fig. 1.4, Table

1.1), although this was primarily the result of high richness in the largest two fragments.

This may indicate the presence of a "small island effect," a threshold in area (in this case

around 5 ha) below which there is no species-area relationship due to variation in island

characteristics (Lomolino and Weiser 2001). Although the forest fragments in this study

varied in terms of forest structure, leaf litter depth, and stream density, area was the best

predictor of richness. Isolation, on the other hand, did not affect species richness. In

general, area seems to be a better predictor of richness in forest fragments than isolation

(e.g., Bolger et al. 1997: Pineda and Hallfter 2004), although this could reflect the recent

isolation of most fragments, which have not had time for extinction/colonization

dynamics to shape communities (Gonzalez 2000).

I found greater leaf-litter depth, less canopy cover, and a denser understory in

fragmented than in continuous forest. These characteristics were not correlated with
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fragment size. Among fragments, habitat differences that were not quantified included

topography, presence and type of wetlands, and human disturbance. All fragments had

been previously logged to some extent, which affected forest structure. The most

obvious source of ongoing disturbance in the fragments was livestock; cattle churned up

mud, compacted soil, and opened the understory.

Community composition was not correlated with habitat variables or measures of

isolation in multivariate analyses, but composition did vary by fragment size class (Fig.

1.5). Species occurrence demonstrated a significantly nested pattern, both among

fragments and including La Selva; this was true for both frogs and lizards, although for

lizards the relationship was weak among fragments. The assemblage was nested with

respect to fragment area, but not isolation or habitat variables. The nonrandom

distribution of species across sites implies the existence of a set of species that are

systematically lost from smaller patches. Area is the only site characteristic correlated

with species richness, community composition, and nestedness. Clearly, the area of a

forest patch has some influence on its community structure. However, the great variation

observed among sites in terms of both diversity and composition points to the ubiquity of

unpredictable and random change in small populations.

Two species and one family of frogs showed significant increases in density with

fragment area. Similar patterns have been found for some lizards (Hokit and Branch

2003), frogs (Marsh and Pearman 1997), birds, and mammals (Bender et al. 1998). For

the large majority of species I encountered, however, density was not correlated with

area. Overall, anuran density was lower in fragmented than continuous forest, while

lizard density was higher. This could be due to physiological constraints or preferences
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specific to the two groups. Anuran activity patterns may be based on moisture

availability; frogs were less dense in fragmented forest during the day, but of equal

density compared to continuous forest at night, when humidity tends to be higher. Some

tropical lizards have higher densities (Schlaepfer and Gavin 2001; Lehtinen et al. 2003)

or faster incubation times (Schlaepfer 2003) in edge or open habitat.

For most of the abundant frog and lizard species, proportions of juveniles did not

differ between continuous and fragmented forest and remained remarkably similar across

sites. The two species displaying greater proportions of juveniles in fragments (E.

fitzingeri and N. linifrons) are characteristic of disturbed and edge habitat (Savage 2002).

According to this rough estimate of recruitment, successful reproduction occurs in

fragments as well as continuous forest; however, more detailed study of reproduction in

fragments is clearly needed. Fragmentation has been demonstrated to reduce clutch size

in one anuran species in Brazil (Funk and Mills 2003). Many anurans have specific

breeding habitat requirements; for these species, presence or absence of breeding habitat

may be the single most important factor determining persistence at a site (Zimmerman

and Bierregaard 1986). For instance, I found Rana taillanti only in sites with slow-

flowing streams or ponds and Hyla ebraccata only in sites with grassy temporary ponds.

Breeding habitat cannot, however, explain the distribution of dendrobatids and most

leptodactylids, which reproduce terrestrially, because leaf-litter depth was not correlated

with abundance or proportion of juveniles of these groups.

My study did not attempt to investigate movement or migration of herpetofauna

across the landscape, although this is an important consideration for any fragmented

landscape. The ability of an organism to use (or disperse through) matrix habitat has
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been negatively correlated with sensitivity to fragmentation (Gascon et al. 1999).

Unshaded pasture can be a hostile environment to small ectotherms, because of

desiccation and predation risks (Rothermel and Semlitsch 2002). At a montane site in

Ecuador, only 6% of total frog abundance occurred in pasture vs. forest, and 3% in

cropland vs. forest (Toral et al. 2002). In contrast, 65% of forest frog species were

encountered in pasture in lowland Brazil (Gascon et al. 1999). Even with such

considerable barriers to movement, moderate-range movement of small reptiles and

amphibians is probably common. For instance, I found an adult Agalychnis callidryas, a

temporary pond breeder, in a fragment with no standing or flowing water; this species is

known to move up to 300 m in a single night, and is often found breeding in pasture

ponds (M. Williams, personal communication). Similarly, Hvalinobatrachiun

pulveratumn, a stream-breeding centrolenid, was found in a fragment with no flowing

water, implying an ability to move through pasture. Although I tried to choose fragments

that were completely surrounded by pasture, several had narrow forested streamside

corridors connecting them to other forest patches. Such corridors are common in the

region, and their contribution to landscape connectivity invites further study.

Plotting species' abundance at La Selva by their occurrence in fragments (Fig.

1.7), I identified a group of 16 fragmentation-tolerant species (Eleutherodactvlus

bransfordii, E. fitzingeri, E. diastena, E. ridens, Scinax eleaochroa, S. boulengeri,

Sinilisca puma, Agalychnis callidryas, Rana vaillanti, Corvtophanes cristatlus, Norops

limnifrons, N. humilis, N. carpenteri, Amneiva festiva, Lepidoblepharis xanthostigmna, and

Sphenomorphus cherriei) and a group of 17 fragmentation-sensitive species

(Eleutherodactyls talanmancae, E. cerasinus, E. crassidigitus, E. cruentus, E.
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megacephalus, E. mninus, Agalychnis saltator, A. calcarifer, Hvla rufitela, H. ebraccata,

Smilisca sordida, Centrolenella prosoblepon, Gastrophryne pictiventris, Bufo

mnelanochlorus, Rana warszewitschii, Norops lenurinus, and N. capito). This second

group includes several species that seem to be rare in general, and I do not want to

confuse overall rarity in the landscape with fragmentation-sensitivity per se.

Nevertheless, descriptions of habitat preference for these species, when available, largely

agree with my designations (Savage 2002; Guyer and Donnelly 2005).

Based on my sampling, 18% of total species were absent from fragmented forest,

and 28% of total species were absent from La Selva. However, all species absent from

La Selva had been recorded there previously. Additionally, 27 species previously

recorded from La Selva were not sighted during my study; these either naturally occur at

low abundances, have patchy distributions, occur mainly at higher elevations or in the

canopy, or may have declined at this site. Many of these species could prove even more

sensitive to fragmentation than the species recorded during my study.

I found that many species described as preferring primary forest (Savage 2002)

were present or even abundant in small forest fragments. These species may be wrongly

characterized due to a paucity of research conducted in secondary and disturbed forest in

the region. Although many forest species did well in fragments, there did not appear to

be a non-forest, disturbance-adapted guild invading fragments. Species such as Bufo

marinus, Gonatodes albogularis, and Heinidactylus frenatus are common around human

habitations in this area but were not recorded in forest fragments.
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Conclusions

The small forest fragments I studied each contained 20 to 50% of the anuran and

lizard species found in the region, a greater number of species than might be expected

based on the small sizes and high levels of disturbance of the study sites. The relatively

high diversity I observed in these sites makes them relevant in terms of reptile and

amphibian conservation, although fragments may still be losing species decades after

isolation. Taken together, my nine fragments contained 82% of the species richness

encountered in continuous forest (58% of the regional total). Preserving a network of

small forest patches may be of great conservation value to herpetofauna in the Sarapiqui

region and at other lowland sites. Unfortunately, at this time landowners have little

incentive to preserve forest, especially small (< 10 ha) patches of forest.

Although a significant proportion of the herpetofauna may be able to exist in

small forest patches, it should be recognized that the communities in these fragments are

fundamentally different from the intact forest community. Nine of the 36 species (25%) 1

found in continuous forest were missing from fragments. Species composition and

relative abundances differ, and fragments tend to support higher densities of lizards and

lower densities of frogs than continuous forest. Therefore, the continued presence of La

Selva and other large reserves is vital to the preservation of reptiles and amphibians in the

fragmented Sarapiqui region.
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Figure 1.1. Map of forest cover (gray) and study sites (black) in northeastern Costa

Rica. Fragments are: (I ) Campos, 5.2 ha; (2) Laurel. 1.4 ha; (3) Chilamate, 2.2 ha: (4)

Paniagua, 2.6 ha; (5) Casona, 5.4 ha; (6) El Tigre. 2 ha; (7) Rio Frio, 1.8 ha; (8)

Colombiano, 4 ha; (9) Finca Araya, 6.9 ha. Reference site is the primary forest area of

La Selva Biological Station (-1 100 ha). Dotted line indicates area of high-resolution

Quickbird images used for GIS analysis.
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Figure 1.2. Size distribution of forest fragments in a 177 km2 area around La Selva

Biological Station, Costa Rica. Line indicates size range of my study sites; arrow

indicates median size of all fragments, which is also the median size of my study sites.
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Figure 1.3. Species accumulation by number of individuals for all study sites (a) and for

La Selva vs. pooled fragments (b). Constructed using EstimateS (Colwell 2004).
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Figure 1.4. Species richness increases with fragment area (r, = 0.67, P = 0.049).
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Figure 1.5. Nonmetric multi-dimensional scaling plot showing sites grouped by

similarity in community composition. Size of the points is proportional to area of the

study sites (except La Selva, which is actually 150 times larger than Araya).
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Figure 1.6. Density of frogs and lizards for day sampling (a) and night sampling (b) in

fragmented and continuous forest.
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Figure 1.7. There is a positive relationship between species' abundance at La Selva

(log-transformed) and the number of fragments in which they occur (r2 = 0.24; df =49;

P < 0.001). Confidence intervals (x = 0.05) can be used to delineate two groups of

species: those tolerant of fragmentation (triangles) and those sensitive to fragmentation

(circles).
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Area Observed Observed Observed
Site (ha) richness' richness richnessd ACEd ICEd

La Selva" 1 100 44 36 34 36.35 36.10
A raya 6.88 26 23 20 23.43 23.44
Casona 5.41 28 24 23 26.95 27.02
Campos 5.17 16 14 15 20.18 19.55
Colombiano 4.02 15 13 12 13.55 15.19
Paniagua 2.56 13 12 11 12.17 12.27
Chilamate 2.23 16 15 13 13.66 13.68
El Tigre 2.01 17 16 14 18.92 21.00
Rio Frio 1.76 11 10 9 10.58 10.50
Laurel 1.43 13 12 12 12.45 12.35

Spearman's r 0.7 0.67 0.71 0.75 0.72
P 0.037 0.049 0.032 0.020 0.030
" not included in correlations
b all sampling plus opportunistic sightings

all sampling (transects and quadrats)
d transect sampling only

Table 1.1. Area was positively correlated with species richness as measured by observed

(total), observed (all sampling), observed (transects), abundance-based (ACE) and

incidence-based (ICE) richness estimators for transect data (EstimateS, Colwell 1994). I

used only observed richness (all sampling) in further analyses.
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Appendix 1. Study sites and their characteristics. See Methods section of text for full explanations of measurements.

Distance to Area of
Proportion nearest forest Stream Litter dry Canopy

Area edge/area large forest within 1 length/area mass/30 cover Understory DBH
Site (ha) (m/ha) (m) km (ha) (m/ha) cm2 (g) (%) openness (m) (cm)

Laurel 1.43 377 266 178 0 8.98 91.01 16.53 55.4
Rio Frio 1.76 329 3266 55 108 17.73 90.51 10.08 46.7
El Tiare 2.01 349 1724 73 0 9.77 91.58 9.25 58.8
Chilamate 2.23 433 829 66 149 10.77 91.49 10.36 58.4
Paniagua 2.56 395 1317 41 123 13.94 90.91 8.49 57.9
Colombiano 4.02 208 3079 42 153 11.09 88.21 8.86 70.2
Campos 5.17 269 1527 199 104 17.57 92.18 7.35 43.3
Casona 5.41 280 2056 117 79 13.28 90.51 9.35 58.2
Araya 6.88 158 608 95 65 10.25 90.84 9.18 71.0
La Selva 1100 9.44 91.97 11.85 61.0
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Appendix 2. Total captures for all species, and number of quadrats (5 x 5 m) and transects (50 x 4 m) sampled, at each site.
Finca El Rio

La Selva Araya Casona Campos Colonmhiano Paniagua Chilamate Tigre Frio Laurel Total

(Quadrats 98 39 43 40 41 28 28 29 28 28

Transects 132 51I 57 54 54 27 27 26 27 27

Norops linifronis 78 22 54 14 148 64 9 1 36 46 34 607
Dendrobuwes /iritflii( 168 42 23 99 26 70) 61 14 5 10
Eleutlwrodact-/its fitzing'eri 59 41 81 10 88 29 36 2 23 19 389
Scitiux elaeochroa I ;i 9 I 68 1 3 124 8 238
E/eut/wrodactv fis diastenia 64 6 2 1 23 40 22 9 7 7 25 234
E.ridens 9 -14 24 31 21 6 4 8 147
N~orops hitmi/is 24 14 29 7 3 6 I15 7 3 14 I123
EIl'itherodctvits

/)rairsJor(/ii 42 14 6 8 I5 13 7 5 2 112
E. talainancae 68 68
Snidisca pnui I19 5 I12 3 4 43
Scitiax boitlelleri 2 9 2 3 5 17 4 42
E/c'utherod/actr'lur

ceris itius 32 2 34
Norops o_ v/op/iis 6 6 6 3 8 29
E/curtherodactvlits tiobici I 1 1 I15 1 28
A evcI,,iis saltator 24 24
C'orvtopliauis (:rstatits 3 6 54 4 22
1)cidrobates aiiraitits IS 2 17
Sphctioniorphitrs (/wrrwei I 2 4 I I 3 4 16
Eleurtherodactv/its criwtts I13 14
E. crassidi gitts I12 13
Cci iroletwilci prosob/epoti 6 4 2 12
Lepiodactv/its

pe'itadactvlurs 5 2 1 2 10
AgalvcI,,is ccd/idrvas 4 1I 3 I 1O
HII V/ Cihrccti 2 8 10

3,7



Rana vaillanti 1 x 1 10

Corhranclla spinosu 2 6 1 9

Elcrrtherodactvhr.ti

Illegacephalrrs 2 6 K

Norops carpenters 1 2 2 1 1 7

Amelia festiva I 1 1 2 2 7

LlerrtherodactYlrrs mimrrs 5 1 
6

Lepidohlepharis

xanthosti;ma 1 4 1 6

Norops lemrrrinns 6

Brtfo inelanochloris 3 2

GastrophrYrre pictivoitris 3 2 >

Basilisctrs vittatrts 2 3 5

Smilisca harrdinii 2 1 1 4

Brtfo haematiticrrs 3 
3

H Yla rrtfitela 3 3

,ti'orops capita 3 3

Smdisca phaeota 2 2

Cochranella alhomcrctrlato 1 i 2

Hsalinohatrachir.tm
- 1 2

ptrl veratum 1

Rcrna wars,,ewitsclhii 1 I 
2

Basilis -us plrnnifrorrs 2 2

Aa/s-chrris c alcari fc r I i

l vhl phlebodes I 
I

Srni/isca sordida I I

llvalinobatrachirrm
1

V(derioi l

7hecadact lirs rapicandrts 
I 

1

,'fops hiporcatns 
1 1
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Population variability of a leaf-litter herpetofauna at La Selva, Costa Rica: seasonal

and long-term trends

Kristen E. Bell

Abstract

I compared population densities of leaf-litter amphibians and reptiles across 35

years at La Selva Biological Station, a lowland wet forest site in Costa Rica. La Selva

has received more attention from herpetologists than nearly any other Neotropical site,

and because researchers have used standard sampling methods, this site provides a unique

opportunity to compare quantitative data on populations over time. My objectives were

to determine whether seasonal patterns of abundance are consistent across years, to assess

changes in density and relative abundance of amphibians and reptiles over the last four

decades, and to compare these changes between amphibians and reptiles to see if they

support the hypothesis that amphibians have declined at La Selva. Seasonal abundance

patterns were examined for 1973-74 (13 months) and 2003-04 (6 months). In 1973-74

there was a large peak in abundance for most species in March and April, corresponding

to the end of the dry season; this peak was absent in 2003-04, and overall densities were

an order of magnitude lower than those in 1973-74. Mean densities were calculated for

available months between 1970 and 2004, both in primary forest (n = 35) and abandoned

cacao plantation (n = 15). Most common species of both frogs and lizards in this

assemblage demonstrated significant decreases in density over the 35-year period.

Members of this assemblage depend on a similar set of habitat and dietary resources,

which may explain the similar response across taxa. My results may indicate either
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widespread faunal declines or natural population fluctuations but do not support the

hypothesis of an amphibian-specific decline at this site.

Introduction

Since 1989, amphibian declines have been documented in both human-impacted

and apparently pristine sites around the world (Wake 1989; Houlahan et al. 2000).

Causes of amphibian declines, as summarized in Young et al. (2001), include climate

change, habitat modification and fragmentation, introduced species, UV-B radiation,

chemical contaminants, acid precipitation, disease, and trade. Direct anthropogenic

impacts such as habitat destruction and modification are the primary threats to amphibian

populations (Blaustein et al. 1994; Alford and Richards 1999). However, much attention

has been focused on declines in pristine sites, since these "mysterious" declines may

implicate widespread, invisible anthropogenic influences such as global climate change

(Donnelly and Crump 1998). It has become clear that the causes of decline vary

according to individual communities and species, and in most cases include synergistic

effects of several factors (Carey et al. 1999; Blaustein and Kiesecker 2002). The primary

difficulty in pinpointing declines has been distinguishing actual declines and

disappearances from natural fluctuations in population size (Pechmann et al. 1991). The

magnitude of observed natural population fluctuation depends on variability in

recruitment, activity patterns, and detectability (Alford and Richards 1999). For instance,

populations of many seasonal aquatic breeders may skip breeding in years of unfavorable

climate (Skelly et al. 2003). Populations with highly variable recruitment tend to
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experience occasional years of large population increase followed by several years of

declines (Alford and Richards 1999).

Temperate amphibian populations can experience high variation in abundance

among years (Pechmann et al. 1991). Populations of pond-breeding species tend to have

a larger variance in population size than stream-breeding or terrestrial direct-developing

species (in a review of 617 population studies lasting > 5 years, Green 2003). Long-term

datasets for tropical amphibian populations are extremely rare (Young et al. 2001).

Documented among-year differences in tropical amphibian populations are

predominantly in the range of 2-fold to 4-fold, with occasional reports of much larger

change (Rand et al. 1983; Table 2.1). No study has found inter-annual tropical

population fluctuations to match the 2-3 orders of magnitude reported for some temperate

populations (Pechmann et al. 1991). Populations of tropical anurans can also exhibit

great monthly variation in population density as a result of seasonal variation in rainfall

and litter depth. Maximum population change within a year varied from 3-fold in

Panama and Peru (Toft 1980; Rodriguez 1992) to over 7-fold in Amazonia (Allmon

1991), in some cases exceeding variation among years (Duellman 1995; Table 2.2).

Tropical amphibian declines are usually reported as disappearances by workers

revisiting a collection site (e.g. Heyer et al. 1988; La Marca and Reinthaler 1991; Coloma

1995; Laurance 1996; Lips et al. 2004). Pounds et al. (1997) constructed a null model to

test for amphibian decline based on the number of species disappearing from a site.

Ideally, declines should be identified before species start to disappear, by noting changes

in density over several years (e.g., Martinez-Solano et al. 2003). Due to high among-year

variability, studies that examine 10 years or more of sampling data are the most useful.
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Because tropical amphibian populations also experience great seasonal variation in

abundance, between-year comparisons should try to examine data collected during the

same month or season in each year.

Population studies of lizards offer a potentially good source of comparison for

amphibian declines. In the tropics, many lizards share habitat and food resources with

frogs (Vitt and Caldwell 1994); therefore, they may be affected similarly by changes in

resource availability. Several species of frogs and lizards in Costa Rica showed similar

seasonal variation in abundance (Lieberman 1986). Monitoring lizard as well as

amphibian densities in tropical sites could provide a benchmark for detecting amphibian

declines, although at some sites lizards may also be in decline (Gibbons et al. 2000).

Two species of anoles declined and disappeared over a 15-yr period in Monteverde,

Costa Rica (Pounds 2000). Population variability of tropical lizards ranges from almost

no difference (Hirth 1963) to very large differences (Andrews 1991) among years (Table

2.1).

I compare population densities of amphibians and reptiles (focusing on frogs and

lizards) across 35 years at La Selva Biological Station, a lowland wet forest site in Costa

Rica. La Selva has been the focus of herpetological research for decades (Guyer 1990;

Guyer 1994; Donnelly 1994; Savage 2002; Guyer and Donnelly 2005), and so provides a

unique opportunity to compare quantitative data on populations over time. This

comparison is made possible by the consistent use of a standard sampling method, the

leaf-litter quadrat, by generations of researchers. Although my interpretation is limited

by the variation in sampling timing and intensity, this is nevertheless one of the most

complete datasets for density of a tropical herpetofauna across decades.
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My specific objectives were: 1) To determine whether seasonal patterns of

abundance of the leaf-litter herpetofauna at La Selva are consistent across years; 2) To

assess changes in density and relative abundance of amphibians and reptiles over the last

four decades at La Selva; and 3) To compare these changes between amphibians and

reptiles to see if any declines are amphibian-specific.

Methods

La Selva Biological Station is a preserve owned by the Organization for Tropical

Studies in the Caribbean lowlands of Costa Rica. La Selva is located in Sarapiqui canton

in the province of Heredia, at the confluence of the Puerto Viejo and Sarapiquf rivers

(10 26' N, 83 59' W); for a complete description of the site, see McDade and Hartshorn

(1994). About 70% of La Selva's 1,600 hectares is primary forest, and it is adjacent to

the 45,000-ha Braulio Carrillo National Park. Reptiles and amphibians have been

sampled at this site since the 1950s (Guyer 1994; Guyer and Donnelly 2005).

I analyzed two datasets, one from primary forest and one from abandoned cacao

plantation. I considered only data collected from leaf-litter plots sampled during the day

at La Selva Biological Station. Quadrat sampling provides fairly accurate density

estimates of organisms inhabiting the leaf litter (Jaeger and Inger 1994). The leaf-litter

herpetofauna at La Selva comprises roughly 16 frogs, 1 l lizards, and a large number of

snakes, most of which reproduce terrestrially (Donnelly 1994; Guyer 1994).

Sources of data for forest and cacao are summarized in Table 2.3. Forest

sampling data came from the following sources: 1) Scott (1976) sampled in March and

August, 1970, and March and July, 1971. 2) An extensive collection was made by C. F.
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Dock, C. S. Lieb, J. J. Talbot, and R. W. Vandevender, each month from December, 1973

to December, 1974. Data from this collection has been presented by Lieberman (1986),

Guyer (1986), Donnelly (1989, 1999), Watling and Donnelly (2002), and Watling et al.

(in press). 3) Heinen (1992) sampled from January to March, 1990. 4) Whitfield and

Pierce (2005) sampled in April and May, 2000. 5) M. Sasa sampled in March, 2002. 6)

K. E. Bell sampled monthly from October, 2003 to April, 2004, with preliminary data

from June, 2003. 6) Data from graduate and undergraduate courses run by the

Organization for Tropical Studies are also included (from 1977, 1982, 1984, 2000, 2003,

and 2004). These projects were, by their nature, short-term sampling efforts, concerned

primarily with learning field methodologies. However, OTS projects are usually

supervised by professors who are very familiar with the system and performed by highly

motivated students, and the value of such sources should not be overlooked. All analyses

were conducted first with data sets excluding OTS course projects and then with all data

sets together. Cacao sampling data came from the following sources: 1) The previously

described collection by Dock et al. from December, 1973 to December, 1974. 2) Fauth et

al. (1989) sampled in September, 1985. 3) Heinen (1992) sampled from January to

March, 1990. 4) Donnelly (unpublished data) sampled in September 1996, March 1998,

and May 1999. 5) Whitfield and Pierce (2005) sampled in April and May, 2000. 6) One

OTS course sampled in 1982.

Two of the studies have monthly samples for at least a 6-month period, making

seasonal comparisons possible. Mean monthly density was plotted for the 1974 and 2004

datasets to look for seasonal patterns in relative abundance. For one species, Norops
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hum ilis, an additional dataset was examined (Guyer 1988). Seasonal patterns in rainfall

and leaf litter accumulation were also explored.

To examine changes in density across years, log-transformed mean densities were

calculated for each month for which we had primary forest sampling data (n = 29; with

OTS course data n = 35). Log-transformed mean monthly densities were used for the

cacao dataset, except for the 1974 data, for which the mean of each two consecutive

months was reported due to low sampling intensity (one plot/month; n = 15). The

following groups were analyzed: all reptiles and amphibians, all frogs, all lizards, and the

abundant species Dendrobates pumilio, Eleutherodactylus bransfordii, E. inegacephalus,

E. diastema, E. talamancae, E. inimus, Gastrophryne pictiventris, Bufo haematiticus,

Norops hum ilis, N. limifrons, Lepidoblepharis xanthostigma, and Sphenomorphus

cherriei. These species are leaf-litter inhabitants with terrestrial reproduction, with the

exception of G. pictiventris and B. haematiticus, which are aquatic breeders, and E.

diastemna, which is semi-arboreal. Mean monthly densities were analyzed across all years

using nonparametric Kendall's tau-b correlations, which have been used previously to

detect faunal declines (Pechmann and Wilbur 1994; Pounds 2000).

Relative abundance of species was calculated for each year from primary forest

data to examine changes in community composition. I analyzed change in community

composition over time using a Mantel test, a technique that tests for correlations between

two distance matrices (Manly 1991). For the species composition similarity matrix I used

a Bray-Curtis dissimilarity index of standardized densities of the 12 most common

species and for the temporal distance matrix I used the number of months between
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sampling events. Each month of sampling was considered an independent sampling

event. I conducted 999 randomizations and calculated a Spearman's coefficient.

These data may be subject to several biases as a result of sampling differences

among studies. Obviously, different observers were responsible for data collection across

studies. Although all studies used leaf-litter quadrat sampling, quadrat size varied from

16 to 144 m2 among years. For primary forest data, plot size was significantly correlated

with time (Spearman, r, = -0.50, P = 0.002), which could confound my other analyses.

Plot size in cacao was not correlated with time (r, = -0.21, P = 0.46). I analyzed reptile

and amphibian densities according to both year and plot size using multiple regression,

for both forest and cacao datasets. Finally, sampling in each year occurred in different

numbers and combinations of months. For this reason, I wanted to make sure that across-

year differences were not actually the result of monthly variation. I plotted densities for

those months with more than three appearances in the datasets: January, February, and

March. To determine the relative effects of month versus year on change in community

composition, I ran two additional Mantel tests, on with a temporal distance matrix of

difference between months (ignoring year) and one with a temporal distance matrix of

difference between years (ignoring month).

Results

Seasonal trends

Between December 1973 and December 1974, densities of reptiles and

amphibians peaked in March and April. Between October 2003 and April 2004, densities

were highest in October and November, with a much smaller peak in March and April
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(Fig. 2. 1). For the common lizard Norops humilis, abundance in 1983 followed the 1974

pattern (Fig. 2.2). The largest changes in density (excluding zeros) for common species

in both years are reported in Table 2.4. In 1974, leaf litter accumulation peaked in May

and rainfall peaked in July (Fig. 2.1); leaf-litter volume was correlated with total reptile

and amphibian density (Spearman, r, = 0.79, P = 0.00 1). In 2004, leaf litter was greatest

in November and rainfall greatest in October and December (Fig. 2.1); leaf litter mass

was not correlated with density of amphibians and reptiles (r, = -0.03, P = 0.96).

Annual trends

Many species significantly declined in density over the 35-year period in primary

forest (Fig. 2.3). For the limited dataset (using each month as a datapoint, n = 29),

nonparametric correlations indicated significant declines in density of all herpetofauna,

all frogs, all lizards, E. bransfordii, D. pumilio, E. megacephalus, E. diastema, E. ninus,

B. haenatiticus, N. humilis, N. linifrons, L. xanthostigna, and S. cherriei (Table 2.5).

Relationships were not significant for G. pictiventris or E. talamnancae. When OTS

course data were included in the analysis (n = 35), declines remained significant for all

herpetofauna, E. bransjordii, D. pumilio, N. humilis, and N. lImifrons (the only species

for which I had data; Table 2.5). In order to determine the role of monthly variation in

accounting for declines across years, I plotted densities for January (n = 4), February (n =

4), and March (n = 5) across years. Although these data are insufficient for statistical

analysis, the trends for each month reflect the trends for the entire dataset (Fig. 2.4). For

the primary forest data, both year (F = 40.20, P < 0.001) and quadrat size (F = 4.18, P =

0.050) were significant in a multiple regression of amphibian and reptile density on those

variables; the interaction between year and quadrat size was also significant (F = 1 1.43, P
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= 0.002). For the cacao dataset, year was significant (F = 32.80, P < 0.001) but plot size

was not (F = 0.02, P = 0.88); neither was the interaction (F = 0.3 1, P = 0.59). Significant

declines across species were also present in the abandoned cacao dataset (n = 15; Fig.

2.5) for all amphibians and reptiles, all frogs, all lizards, E. bransfordii, D. pumnilio, N.

humilis, N. limifrons, and L. xanthostigna. Changes in density were not significant for S.

cherriei, E. mnegacephalus, or E. diastema (Table 2.5).

The relative abundance of species changed across years in primary forest (Fig.

2.6). In 1971, 1974, and 1990, E. bransfordii was the most abundant species, followed

by D. pumilio. In 2000 and 2004, D. piunilio replaced E. bransfordii as the most

abundant species. Norops humilis and N. linifrons remained moderately abundant

throughout the period. Lepidoblepharis xanthostigna and E. mnegacephalus were

moderately abundant in 1971-1990 and uncommon to absent in 2000-2004.

Sphenomorphus cherriei was moderately abundant in 1971-1974, but not observed in

1990-2004. Change in community composition across time (considering only the 12

most abundant species) was significant according to a Mantel test (r, = 0.577, P <0.001).

Differences were significant by year (r, = 0.578, P <0.001) but not by month (r,= -

0.069, P = 0.126).

Discussion

The leaf-litter herpetofaunal community at La Selva exhibits great variability in

the abundance of frogs and lizards both seasonally and annually. The forest at this site is

also very dynamic, with very high tree mortality and turnover rates compared to other

tropical forests (Lieberman and Lieberman 1987). Densities of amphibians and reptiles
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vary across months, although not all years show marked seasonal differences. Population

densities and relative abundances of frog and lizard species have changed over the past

decades. The most striking trend emerging from this 35-year view is an apparent decline

in leaf-litter reptile and amphibian density in general, and in one species of leptodactylid,

Eleutherodactvlus bransfordii, in particular.

Seasonal trends

Monthly variation in density for the common frog and lizard species in 1974 and

2004 was similar in magnitude to that reported for other tropical assemblages (Table 2.2).

Litter frogs and lizards at La Selva studied in 1974 and 2004 demonstrated maximum

changes of roughly 4-fold and 6-fold, respectively. Maximum within-year changes in

density reported for other tropical frogs and lizards range from 3-fold to 7.6-fold (Toft

1980; Guyer 1988; Allmon 1991; Duellman 1995; Stewart 1995), with the exception of

two frog species in Panama that changed by 1-2 orders of magnitude over the course of a

year (Toft et al. 1982).

Do these fluctuations follow a predictable seasonal pattern? In 1974, both frogs

and lizards increased dramatically at the end of the dry season, in March and April

(Lieberman 1986); the same pattern held for N. humilis in 1982-83 (Guyer 1988). In

contrast, frogs and lizards in 2003-04 displayed highest densities in October and

November (Fig. 2.2). Although available data are limited, these results suggest the

presence of a peak in abundance at the end of the dry season in some but not all years.

Although the seasonal pattern was different among years, within each year most species

followed the same abundance patterns. Both frogs and lizards in this leaf-litter
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assemblage seem to respond in the same way to resource availability or other

environmental cues.

Increases in observed abundance originate either from recruitment or changes in

activity patterns. In many cases, seasonal patterns in density are mostly (Toft et al. 1982;

Donnelly 1989; Allmon 1991; Rodriguez 1992; Stewart 1995) or partly (E. bransfordii at

La Selva; Donnelly 1999) the result of seasonal pulses of recruitment. On the other hand,

sometimes highly seasonal recruitment does not result in corresponding patterns in

density (four litter frogs at La Selva; Watling and Donnelly 2002). In one case, density

was highest during the months with least recruitment (N. humilis at La Selva; Guyer

1986). There was insufficient data to estimate recruitment for 2004. However, from

these scattered examples it seems that recruitment is often seasonal in tropical lizards and

amphibians, and that it may or may not lead to evident patterns in abundance through the

year. Timing of recruitment and/or activity may be tied to litter depth, which is usually

greatest during the dry season and dry-wet transition at La Selva (Frankie et al. 1974).

Leaf litter accumulation was correlated with reptile and amphibian density in 1973-73 but

not in 2003-04. Leaf litter provides both oviposition sites and habitat for arthropods

(prey), which also reach their highest densities during the dry season and dry-wet

transition in this part of Central America (Toft 1980; Lieberman and Dock 1982). The

amount of litterfall is dependent on annual weather conditions, especially the timing and

amount of rainfall (Frankie et al. 1974). Therefore, a large, seasonal peak in recruitment

of frogs and lizards may occur only in certain years when conditions are favorable. In

general, tropical seasonality is less predictable (or less understood) than we realize.
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Annual trends

Population fluctuations among years at La Selva were larger than some reported

from other tropical sites, with maximum changes of 18-fold for frogs and 14-fold for

lizards. In comparison, other tropical anurans experienced maximum changes of 2.5-fold

to 3.8-fold across years (Inger and Voris 1993; Duellman 1995; Woolbright 1996), with

the exception of much greater change in one frog and one lizard from BCI, Panama

(Rand et al. 1983; Andrews 1991). Norops limifrons displayed an 1 1-fold change over

the 30-year period; this is much more stable than a population of Norops liinifrons at

Barro Colorado Island, Panama, which varied from 0 to 17.4 individuals/100 m2 over a

19-year period (Andrews 1991). The BCI population appears to be exceptionally

variable compared with other temperate, subtropical, and tropical lizard populations

(Schoener 1985; Andrews 1991). Much larger fluctations in amphibian populations (e.g.,

Pechmann et al. 1991) may reflect larger errors in detection probability. Pond-breeding

species only emerge to breed when conditions are right, sometimes skipping a year

entirely (Skelly et al. 2003), whereas leaf-litter species are present year-round.

Although the population fluctuations I report fall within the range of those

reported from other tropical sites, in this case the changes are predominantly negative.

Eleutherodactylus bransfordii has declined from more than 10 individuals per 100 m2 in

1970 to less than 1 per 100 m2 in 2004. Eleutherodactylus bransfordii was the most

abundant species in 1970,1971,1974, and 1990; in 2000 and 2004 it was much less

abundant than D. pumilio. Attempts have been made to identify characteristics common

to declining species, in order to focus conservation efforts on such species. Within

temperate regions, species with highly variable population sizes and obligate dispersal
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across different habitat types, such as pond-breeding amphibians, appear to be most at

risk (Green 2003). From the known instances of tropical amphibian decline, riparian

species at middle to high elevations appear most at risk for extirpation (Lips et al. 2003).

Elecutherodactylus bransfordii is assumed to breed terrestrially, by depositing eggs in the

leaf litter, although reproduction has never been described other than "breeds at night"

(Scott 1983). Reproductive adults and small juveniles were found throughout the year in

1974, indicating that reproduction occurs year-round (Donnelly 1999). As an abundant,

terrestrially-breeding, lowland species, E. bransfordii should be in the lowest risk

category for declines according to current theory. Most tropical declines have occurred at

higher elevations (Lips 2003), and both temperate and tropical amphibian declines affect

mainly aquatic-breeding species, especially narrowly endemic ones (Green 2003; Lips

2003).

Although E. bransfordii suffered the most dramatic decrease in density, almost the

entire assemblage of litter frogs and lizards exhibited the same pattern. Of the other

common species examined, five of seven frogs and all four lizards experienced

significant negative trends in population over time (Figs. 2.3, 2.5). It is important to note

that I only detected changes in abundant species across time; because of differences in

sampling intensity among studies, I could draw no conclusions about uncommon to rare

species. However, there is anecdotal evidence that at least one rare species,

Eleutherodactylus ranoides, has disappeared from the site.

In addition to the negative population trends, I found a significant interaction

between year and quadrat size for the primary forest data. It seems unlikely, however,

that declines are actually an artifact of changing litter plot size, for several reasons. First,
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any plot-size effect should result in slightly lower (rather than higher) densities of

animals in larger quadrats, because the probability of escape increases with plot size.

Furthermore, the relationship between year and population density is much stronger than

that between plot size and density. Finally, plot size in the cacao dataset is not correlated

with time, and populations in cacao display the same negative trends as those in primary

forest. Negative relationships in density across years are also not attributable to monthly

variation. When population densities for individual months were graphed separately,

population trends remained negative (Fig. 2.4). Community composition varied

significantly by year but not by month according to Mantel tests.

Because both frogs and lizards exhibit declines of similar magnitude, these data do

not reflect amphibian-specific declines. Members of this assemblage depend on a similar

set of habitat and dietary resources, which may explain the similar response across taxa.

No simple reason for the observed negative trends stands out, but I suggest the following

factors: 1) Climate. The annual mean of minimum daily temperature increased between

1982 and 2004 (r 2 = 0.492, P <0.001; D. A. Clark dataset); total annual rainfall also

increased during that time (r 2 = 0.265, P = 0.012), and the proportion of days with no

rainfall decreased between 1970 and 2004 (r2 = 0.670, P <0.001; OTS dataset,

http://www.ots.ac.cr/en/laselva/inetereological.shtml; Fig. 2.8). Although the annual

mean of minimum daily temperature varied only 1.75 C between 1984 and 2000, it was

significantly negatively correlated with tree growth during the same period (Clark et al.

2003), indicating that the current climatic shift is strong enough to influence forest

dynamics. The increasingly warmer and wetter conditions of the past two decades could

influence litter accumulation by speeding decomposition rates (D. A. Clark, personal
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communication). This in turn could affect prey and reproductive habitat availability for

the litter herpetofauna. Climate change could also make animals more susceptible to

disease or parasites (Donnelly and Crump 1998). Negative effects of climate change on

diverse faunal groups have been documented at high elevation sites in the tropics (Pounds

et al. 1999) but not in lowland sites. 2) Human impact on the forest. La Selva's annual

visitation rate by educational groups, scientists, and tourists has steadily risen over the

past few decades; the number of person-days more than doubled between 1982 and 1991

(McDade and Hartshorn 1994), and then doubled again by 2004 to a total of 33,000

(OTS). In addition to the impacts of trail and forest use, people can be unwitting vectors

of exotic species and diseases. Scientific collecting of reptiles and amphibians was also

common in the past. 3) Isolation effects. There is some evidence that metapopulation

dynamics are vitally important for long-term persistence or stability of herpetofaunal

populations (Alford and Richards 1999). The Sarapiqui region has undergone increasing

fragmentation during the last three decades: total forest cover decreased from 55% of the

landscape in 1976 to 34% in 1996. The number of forest islands more than doubled over

this time period, while the average size of fragments decreased from 0.95 km2 to 0.25

km 2 (Sanchez-Azofeifa et al. 1999). La Selva is essentially an island of lowland rain

forest (Braulio Carrillo National Park is montane forest connected to La Selva via a steep

elevational gradient). If metapopulation dynamics operate on a spatial scale nearly the

size of or larger than the La Selva reserve, then the isolation of La Selva within the

Caribbean lowlands would effectively eliminate metapopulation dynamics, and could

plausibly contribute to drastic population declines. 4) Area or edge effects. La Selva's

isolation may leave it vulnerable to other impacts commonly experienced by forest
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fragments. Communities in forest fragments are affected by the decreased area of forest

as well as physical and biotic changes associated with edge formation. Although La

Selva is fairly large, it may be in a state of "faunal relaxation" and communities may be

shifting in favor of edge-adapted species.

In conclusion, my data either indicate widespread faunal declines or add to our

knowledge of the natural range of population fluctuations in tropical herpetofaunas.

Simultaneous negative trends in the density of leaf litter frogs and lizards at La Selva

resemble the declines across taxa at Monteverde (Pounds et al. 1999) rather than

amphibian-specific declines. In Monteverde, declines were apparently linked to changes

in timing and quantity of rainfall, but at La Selva causality remains unclear. Continued

monitoring at this site, of arthropods and leaf litter as well as the herpetofauna, is clearly

warranted. La Selva is one of only two large areas of Caribbean lowland forest

remaining in Costa Rica: its value to the conservation of reptiles and amphibians is

dependent on our gaining a better understanding of the factors influencing long-term

population change.
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Figure 2.1. Reptile and amphibian density (a), leaf litter accumulation (b), and rainfall

(c) for 1973-74 and 2003-04 at La Selva. Bars, when present. represent standard error

(each mean in 1974 calculated from only 2 samples).

61



a.
8 1973-74
7

0.4

2

II . I

2 g 192-8 3737

7
6

04

1
0

0.4 2003-04
0.3

o 0.2
0

S0.1

201973-74 5 1937

15

101

0 0_________ iiiiIi
0.54030 0.8 - 2003-04

0.3 0.4

0.1_ _ _ _ _ _ _ _ 0.2_ _ _ _ _

Figure 22Sesnlptenindstyfor Norops hiiniilis (a), Eleuaherodactv/u1s

bransf rdii (b), and Dendrobates pulnilio (c) in different years at La Selva, Costa Rica.

62



6 All reptiles and amphibians ** 4 All lizards **

+ 0 +3

3 .

N"2** o "00 2 So 

I.
0 0 0 "

G ^.

0 0

1965 1975 1985 1995 2005 1965 1975 1985 1995 2005

3 Norops humilis * * 2 Lepidoblepharis xanthostigma *
2.5

+ 2 + 1.5 *

g1.5 0

e 1 *.
0 .0.5 0

0 '0 .
1965 1975 1985 1995 2005 1965 1975 1985 1995 2005

2 Norops limifrons * 1.2 Sphenomorphus cherriei *

'71.5 *
0.8

1 , 0.6 S «

0.5 0 " 5 0.4

0 0
1965 1975 1985 1995 2005 1965 1975 1985 1995 2005

Figure 2.3. Changes in density of common species of reptiles and amphibian in primary

forest at La Selva, Costa Rica, from 1970 to 2004. Each point represents a mean monthly

density. Open circles indicate data taken from OTS course projects. * P < 0.05; ** P <

0.01 (Kendall's tau).
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Figure 2.5. Changes in density of common species of reptiles and amphibians in

abandoned cacao plantation at La Selva, Costa Rica, from 19'73 to 2000. Each point

represents a mean monthly density. Open circles indicate data taken from OTS course

projects. * P <0.05; ** P <0.01 (Kendall's tau).
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Table 2.1. Variation among years in populations of tropical frogs and lizards.

Sampling Min. Max. Max.
Source Location Species frequency density density change

Andrews BCI, Yearly, 17.4/
(1991) Panama N. 1imi1frons 1r989 0 100 m2

Rand et al. BCI, 1931,1964, 1 22
(1983) Panama H. rufitela 1980 breeding breeding 22-fold

site sites
Inger and Nanga 1962, 23.68/ 58.53/Voris Tekalit, Frogs 1970 1984 transect transect 2.5-fold
(1993) Borneo

Inger and Danum, 1986, 76.56/ 19.88/

(1993) Borneo 1989, 1990 transect transect

Alford and
Richards Queensland Litoria Yearly, 4/ 13.5/ 3.4-fold
(1999) Australia genimaculata 1989-1995 transect transect

Woolbright Puerto Bi-yearly, 6.25/ 23.13/ 3.7-fold
(1996) Rico coqul 1987-1995 100 m2  100 m 2

Duellman Lowland 11-12/86, 4.58/ 17.2/
(1e95a Peru frogs 11-12/89, person- person- 3.8-fold
(1995 Peru 11-12/91 day day

Alcala and . . Emnoia Yearly, 0.3/ 0.85/
Brown Philipines atrocostata 1962-1965 100 m 2  100 m2  2.9-fold
(1967)
Hirth Tortuguero Ameiva Yearly, 0.36/ 0.49/ 1.4-fold
(1963) Costa Rica quadrilineata 1959-1961 100 m 2  100 m2  -
Hirth Tortuguero Basiliscus Yearly, 0.29/ 0.32/
(1963) Costa Rica vittatus 1959-1961 100 m2  100 m2  1.1-fold

LaSelva 9701971, 1.12/ 20.04/
This study Costa Rica Litter frogs 1974,1990 1002 100 m2  17.9-fold

2000,2004

La Selva 1970,1971. 0.42/ 5.99/
This study Costa Rica Litter lizards 1974,1990 100 m2  100 m2  14.3-fold

2000.2004
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Table 2.2. Seasonal variation in populations of tropical frogs and lizards.

Sampling Max. Min. Max.
Source Location Species frequency density density change

Allmon Central Monthly, 13.68/ 1.8/
(1991) Amazonia Litter frogs 3/84-6/85 100 m2  100 m2  7.6-fold

Floodplain
Rodriguez Forest, Wet/dry 4.17/ 1.2/ 100 3.5-fold
(1992) Manu NP, Litter frogs season, 1988 100 m2  3-

Peru
Terra

Rodriguez Firme, Wet/dry 3/ 100 1/ 3-fold
(1992) Manu NP, Litter frogs season, 1988 m2  100 m2

Peru

Duellman Lowland 1-2/86. II- 17.2/ 3.88/

(1995 Peru frogs 12/86, 6-7/89, person- person- 4.4-fold
e11-12/89 day day

Stewart Puerto Monthly, 200/ 46/
(1995) Rico E. coqui 1/80-12/80 100 m 2  100 m2  4-fold

Toft Wet/dry 22.5/ 7.5/
(1980) Panama Litter frogs season 100 m2  100m 2  3-fold

Toft et al. BCI, C. ntbicola Monthly, 115 0 > 115-fold
(1982) Panama 11/76-12/78 (count)

Toft et al. BCI, B t/* Monthly. 38 0 >38-fold
(1982) Panama 1 1/76-12/78 (count)

Guyer LS, Costa N humilis Monthly, 8.3/ 2.22/ 3.7-fold
(1988) Rica N 3/82-6/83 100 m2  100 m 2

LS. Costa , Monthly. 28.9/ 6.25/
1974 data Rica Litter frogs 12/73-12/74 100m lO0m 2  4.6-fold

1974 data LS, Costa E. Monthly, 17.19/ 3.13/ 5.5-fold
Rica bransfordii 12/73-12/74 100 m 100 m2

LS, Costa . Monthly, 13.28/ 2.34/
1974 data Rica Litter lzards 12/73-12/74 100 m 2  100 2 5.7-fold

LS. Costa Monthly, 1.8/ 0.4/ 100 4.5-fold
2004 data Rica Litter frogs 10/03-4/04 100 m 2  m4

2004 data LS, Costa E. Monthly, 0.47/ 0.07/ 6.7-fold
Rica bransfordii 10/03-4/04 100 m2  100 m2

2004 data LS, Litter lizards Monthly, 0.83/ 0.13/ 6.4-fold
Rica 10/03-4/04 100 m 100 m2
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Table 2.3. Sources of data used in analysis. Sources in gray indicate data from OTS course projects.

Primary Forest, Daytime Leaf-litter Plot Sampling
Total individ.

Number of Total Total reptiles and Individuals/
Source Dates plots/month Plots Size of plots area amphibians 100 m2

Bell Oct 2003- 6-15 98 25 m2  2450 m2  110 4.49Apr 2004
Sasa unpublished 2002 0 10 64 m 2  640 m2  49 7.66
data
Whitfield and Apr-May 13-21 34 16 m 544 m- 35 6.43
Pierce (2005) 2000

Heinen (1992) Jan-Mar data pooled 25 25 m 2  625 m2  92 14.72
1990

Lieberman (1986) Dec 1973- 2-5 30 64 m 2  1920 m2  344 17.92
Dec 1974

Scott (1976) Mar, Jul 5 10 58 n2  580 m2  81 (excluding 13.97
1971 snakes)

Scott (1976) Mar, Aug 4-5 9 58 m 2  522 m 115 (excluding 22.03
1970 snakes)

S AP 04 Oct 2(0)4 18 18 64 m - 15 64 5.56
E S AP ()_ No 110 8 4 '1 46 8.98

(T 1 %t e 20 20 64 mn 280 44 3.44
OT< 84 0 5a194 4 4 ((1 m244 20} 8.2)

_ 1 Jim 1982 _1 100 m 25 150 14.67

O TS 74 J1 1977 3 147 1 36 92.52

71



Abandoned Cacao Plantation, Daytime Leaf-litter Plot Sampling
Total individ.

Number of Total Total reptiles and Individuals/

Source Dates plots/month Plots Size of plots area amphibians 100 m2

Whitfield and Apr-May 6-16 22 16 m' 352 m2  58 16.48
Pierce (2005) 2000
Donnelly, May 1999 40 40 144 m2 5760 m2 802 13.92
unpublished data

Donnelly, Mar 1998 40 40 144m 2  5760 m2  884 15.35
unpublished data

Donnelly, Sep 1996 40 40 144m2 5760 m 741 12.86
unpublished data

Heinen (1992) Jan-Mar data pooled 50 25 m 2  1250 m2  386 30.88
1990

Fauth et al. Sep 1985 10 10 25 m 2  250 m 2  56 22.4
(1989)

Lieberman (1986) Dec 1973- 1-6 21 64 m2  1344 m2  660 49.10
Dec 1974

() T' S 82-J 9 3 in 75 mn 1 41.33
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Table 2.4. Maximum seasonal change in abundance for common species in two years.

1973-74 (13 months) 2003-04 (6 months)
All frogs 4.6-fold 4.5-fold
All lizards 5.7-fold 6.4-fold
E. bransfordii 5.5-fold 6.7-fold
D. pumilio 7-fold 5.2-fold
N. humilis 10-fold 4.7-fold
N. limnifrons 7.5-fold 4.7-fold
E. megacephalus 2-fold
L xanthostigna 7.5-fold
S. cherriel 2-fold

Table 2.5. Changes in density over 35 years in forest and cacao at La Selva, Costa Rica.

Forest (excluding
Forest (all datasets) OTS course data) Cacao

i P T P - P
All reptiles and -0.59 <0.001 -0.55 <0.00 1 -0.61 0.002
amphibians
All frogs -0.57 <0.001 -0.59 0.012
All lizards -0.51 <0.001 -0.69 0.003
E. bransfordii -0.54 <0.001 -0.58 <0.001 -0.63 0.002
D. pimniilio -0.34 0.008 -0.30 0.038 -0.41 0.045
N. humiilis -0.48 <0.001 -0.44 0.003 -0.65 0.001
N. linifrons -0.28 0.030 -0.34 0.023 -0.45 0.029
E. diastema -0.42 0.009 -0.02 0.94
E. megacephalus -0.50 0.002 -0.22 0.39
L. xanthostigma -0.37 0.018 -0.60 0.010
S. cherriei -0.38 0.020 -0.21 0.37
E. mimnus -0.37 0.025
B. haematiticus -0.50 0.002

G. pictiventris -0.09 0.58

E. talamancae -0.31 0.063
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CONCLUSIONS

The small forest fragments studied here each contained 20 to 50% of the frogs and

lizard species I found in the region, a greater number of species than might be expected

based on the small sizes and high levels of disturbance of the study sites. The relatively

high diversity I observed in these sites makes them relevant in terms of reptile and

amphibian conservation, although fragments may still be losing species decades after

isolation. Taken together, the nine fragments contained 82% of the species richness I

encountered in continuous forest (or 58% of the regional total). Thus, preserving a

network of small forest patches may be of great conservation value to herpetofauna in the

Sarapiqui region and at other lowland sites.

Although a significant proportion of the herpetofauna may be able to exist in

small forest patches, it should be recognized that the communities in these fragments are

fundamentally different from the intact forest community. Nine of the 36 species (25%) I

found in continuous forest were missing from fragments. Species composition and

relative abundances differ, and fragments tend to support higher densities of lizards and

lower densities of frogs than continuous forest. Therefore, the continued presence of La

Selva and other large reserves is vital to the preservation of reptiles and amphibians in the

fragmented Sarapiqui region.

But how "intact" is the forest within La Selva? Although the overall density of

herpetofauna does not differ between fragments and La Selva, the density observed at La

Selva in 2004 is the lowest recorded in 35 years. The compiled data either indicate

faunal declines at La Selva or population fluctuations greater than those found in other
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tropical assemblages. Simultaneous negative trends in the density of leaf litter frogs and

lizards at La Selva resemble the declines across unrelated taxa at Monteverde..

This system seems to exemplify the "sliding baseline" problem of evaluating

anthropogenic impacts while in the midst of a climatic or other major regime shift

(Dayton et al. 1998). While forest fragments in my study maintained herpetofaunal

densities comparable to those in La Selva in 2004, La Selva's "baseline" has shifted

dramatically since the early 1970s, when densities were ten times higher. The abrupt

downward trend of amphibians and reptile populations across the decades at La Selva

should make us aware that the site has changed greatly over the past decades and may no

longer represent intact lowland tropical forest. As one of only a few large areas of

Caribbean lowland forest remaining in Costa Rica, La Selva appears to be vulnerable to

surrounding land use change, climate change, or some other combination of factors. Its

value to the conservation of reptiles and amphibians is dependent on our gaining a better

understanding of the factors influencing long-term population changes.

Dayton, P. K., M. J. Tegner, P. B. Edwards, and K. L. Riser. 1998. Sliding baselines,
ghosts, and reduced expectations in kelp forest communities. Ecological
Applications 8:309-322.

75


	Florida International University
	FIU Digital Commons
	6-24-2005

	Conservation ecology of amphibians and reptiles in Sarapiqui, Costa Rica : forest fragmentation and long term population change
	Kristen E. Bell
	Recommended Citation


	tmp.1408120574.pdf.t29MD

