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ABSTRACT OF THE THESIS

ASSOCIATION BETWEEN MEAN RESIDUAL LIFE (MRL) AND FAILURE RATE

FUNCTIONS FOR CONTINUOUS AND DISCRETE LIFETIME DISTRIBUTIONS

by

Leonid Bekker

Florida International University, 2002

Miami, Florida

Professor Jie Mi, Major Professor

The purpose of this study was to correct some mistakes in the literature and derive a

necessary and sufficient condition for the MRL to follow the roller-coaster pattern of the

corresponding failure rate function. It was also desired to find the conditions under which

the discrete failure rate function has an upside-down bathtub shape if corresponding MRL

function has a bathtub shape. The study showed that if discrete MRL has a bathtub shape,

then under some conditions the corresponding failure rate function has an upside-down

bathtub shape. Also the study corrected some mistakes in proofs of Tang, Lu and Chew

(1999) and established a necessary and sufficient condition for the MRL to follow the

roller-coaster pattern of the corresponding failure rate function. Similarly, some mistakes

in Gupta and Gupta (2000) are corrected, with the ensuing results being expanded and

proved thoroughly to establish the relationship between the crossing points of the failure

rate and associated MRL functions. The new results derived in this study will be useful

to model various lifetime data that occur in environmental studies, medical research,

electronics engineering, and in many other areas of science and technology.
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1. Introduction

Reliability theory and its applications deal with distributions of continuous and dis-

crete lifetimes. The two commonly used measures of describing the lifetime of items

are the mean residual life (MRL) function and the failure rate function.

Lifetime distributions having decreasing, increasing, bathtub-shaped, or upside-down

bathtub-shaped MRL are used to model various lifetime data which occur in many

areas of science such as reliability, survival analysis, economics, actuarial, and many

others. For example, in biomedical sciences, researchers analyze survivorship studies

by using the MRL (see, e.g., Gupta (1981)). The failure rate function also has nu-

merous applications, including modelling the lifetime of electronic, electro-mechanical,

and mechanical products. For example, Mi (1996) discussed useful models for improv-

ing the quality of products after they have been produced, if the failure rate function

of the products exhibits a bathtub shape. On the other hand, upside-down bathtub-

shaped failure rate functions, typified by failure due to fatigue, are commonly used

for modelling lifetimes of mechanical parts and semiconductors (see Peck and Zerdt

(1974)).

Since both the MRL and failure rate functions are extremely important for char-

acterizing lifetime distributions and are theoretically equivalent, in the sense that

knowledge of one of them determines that of the other, the relationship between

these measures have been extensively studied in the literature. In this paper, we

further knowledge on the relationship of these two functions. The organization of

this paper is as follows. Section 2 provides an extensive review of the most important
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results regarding the general behavior of the MRL, for both continuous and discrete

lifetime distributions with respect to their failure rate functions, and vise versa. The

main results of this paper are presented in Section 3. A new result on the relationship

between the bathtub-shaped MRL function and the upside-down bathtub-shaped fail-

ure rate function is derived in Section 3.1. In Section 3.2, some mistakes in the proofs

of Tang, Lu and Chew (1999) are corrected, and a necessary and sufficient condition

for the MRL to exhibit the roller-coaster shape is established. In Section 3.3, some

mistakes in Gupta and Gupta (2000) are corrected, and the results are expanded and

proved thoroughly to show that the number of crossings of the MRL functions do not

exceed the number of crossings of the failure rate functions. Finally, some concluding

remarks appear in Section 4.

2. Literature Review

2.1. Single Population

2.1.1. Bathtub and Upside-Down Bathtub Failure Rate Function

For continuous and discrete cases, it has been shown that the shape of the MRL

function can be inferred from its failure rate.

Continuous Case

The relationship between the bathtub-shaped failure rate function and the upside-

down bathtub-shaped MRL function was established in Mi (1995). He proved that

the MRL of a component has an upside-down bathtub shape if the component has a

bathtub-shaped failure rate function, but the converse does not hold. This result
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shows that a proper burn-in process maximizes the MRL of a product if its failure

rate function has a bathtub shape.

Theorem 2.1. Let F have a differentiable bathtub-shaped failure rate function r(t)

with change points t1 and t2 . Then the following statements are true:

(i). If 0 < t1 < t2 < oo, then the mean residual life function pt(t) has an

upside-down bathtub shape with a unique change point to E [0, t1];

(ii). If 0 = t1 ; t2 < oo, then [(t) strictly decreases, i.e., there is a unique

change point at t = 0;

(iii). If t1 = t2 = oo, then [(t) strictly increases;

(iv). If 0 < t1 < t2 = oo, then p(t) strictly increases on [0, t1] and is constant

on [ti, oo].

Proof. See Mi (1995). Q

This result implies that if the failure rate has a bathtub shape, then the associated

MRL has an upside-down bathtub shape.

Tang, Lu and Chew (1999) discussed the relationship between upside-down bathtub-

shaped failure rate and bathtub-shaped MRL functions. Such characterization pro-

vides useful information for planning spare provision, formulating warranty policy,

and some other applications (see Siddiqui and Caglar (1994)). It was shown there,

that under some necessary condition, the MRL has a bathtub shape if the failure rate

function has an upside-down bathtub shape. The result was provided by the following

theorem.
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Theorem 2.2. If F has a differentiable upside-down bathtub-shaped failure rate func-

tion r(t) with a change point to, then for [(0) - r(0) < 1, the corresponding MRL has

a bathtub shape with change point t1 - [0, to]; otherwise, it is an increasing MRL for

all t > 0.

Proof. See Tang, Lu and Chew (1999). D

Discrete Case

The relationship between bathtub-shaped failure rate and upside-down bathtub-shaped

MRL functions has been investigated by Mi (1993). It follows, under some conditions,

that the MRL has an upside-down bathtub shape if the failure rate function has a

bathtub shape. This result could be applied for optimization of the burn-in process

in order to obtain the longest MRL in field operation.

Theorem 2.3. If a discrete lifetime distribution function F has support set {1, 2, ... },

and the failure rate sequence {r(i),i > 1} has a bathtub shape with change points n1

and n2 < oo, then for the MRL sequence { p(i), i > 1}, there are three cases

(i). If the probability mass function p(1) < 1/(1 + [), then p(i) strictly de-

creases;

(ii). If p(1) = 1/(1 + ), then p(1) = p(2) > p(3) > ... .

(iii). If p(1) > 1/(1 + ), then {,u(i), i > 1} has an upside-down bathtub shape

with either a unique change point ko, or two change points ko - 1 and ko, where

ko < n1 in either case.

Proof. See Mi (1993).
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The result, that gives some sufficient conditions under which the MRL has a bathtub

shape if the failure rate function has an upside-down bathtub shape, was provided by

Tang, Lu and Chew (1999).

Theorem 2.4. Let function F be a lifetime CDF having support set {t1, t2 , ... }, where

t1 = 0. Let the failure rate sequence {r(ti), i > 1} have an upside-down bathtub shape

with a change point ti, 1 > 1. Then, for the MRL sequence { p(ti),i > 1}, there are

three cases :

(i). If p(0) > 1/(1 + ), then p(ti) strictly increases;

(ii). If p(0) = 1/(1 + p), then (t1 ) = p(t2) < (t3 ) < ... ;

(iii). If p(0) < 1/(1 + ), then {p(ti), i > 1} has a bathtub shape with a unique

change point tk, k = mo+ 1 < 1, or two change points tk1 and tk2 , k1 = mo and k2 < 1,

where mo - sup{i > 1 : s(ti) < 0} and S(ti) = f R(t)d(t) - R(ti).

Proof. See Tang, Lu and Chew (1999).

2.1.2. Bathtub and Upside-Down Bathtub MRL Functions.

The estimation of the MRL function is much more stable than the estimation of

the failure rate function, since the estimation of the failure rate involves estimation

of the probability density function. Therefore, in many applications, it is desirable

to use information provided by the MRL function to check whether the underlying

distribution has an upside-down bathtub or bathtub shape property.
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Continuous Case

Ghai and Mi (1999) developed sufficient conditions for the upside-down bathtub-

shaped MRL to imply a bathtub-shaped failure rate function. The result is as follows.

Theorem 2.5. Let a unimodal (upside-down bathtub-shaped) MRL [(t) have a unique

change point to. Suppose there exists T0 c [to, oo) such that p(t) is concave on [0, To)

and convex on [to, oo). If ['(t) is convex on [to, To) , then :

(i). r(t) exhibits a bathtub shape that has two change points, say t1 and t 2, where

to < t1 < t2 < T0 ,

or

(ii). r(t) exhibits a bathtub shape that has a unique change point, say t*, where

to < t* < T0 .

Proof. See Ghai and Mi (1999). Q

Conversely, Ghai and Mi (1999) also developed sufficient conditions for the bathtub-

shaped MRL with a unique change point to to imply an upside-down bathtub-shaped

failure rate function.

Theorem 2.6. Let to be the unique change point of a buthtub-shaped MRL function.

Suppose there exists T0 E [to, oo) such that p(t) is convex on [0, To) and concave on

[to, oo). If p'(t) is concave on [to, To), then either the following (i) or (ii) is true for

the r(t) function associated with p(t):

(i). r(t) exhibits an upside-down bathtub shape that has two change points, say

t1 and t2 , where to < t1 < t2 < T0 .
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(ii). r(t) exhibits an upside-down bathtub shape that has a unique change point,

say t*, where to < t* < T0 .

Proof. See Ghai and Mi (1999). Q

Discrete Case

Mi (1993) developed a sufficient condition to show that an upside-down bathtub-

shaped MRL could imply a bathtub-shaped failure rate function. The condition was

given in the following theorem.

Theorem 2.7. Let the MRL sequence {[(i), i > 1} have an upside-down bathtub

shape with a unique change point to, and let the sequence { Ap(i), i > 1}, where

Ay(i) = (i + 1) - p(i), have a bathtub shape with a change point to + 1. Then the

sequence {r(i), i > 1} of failure rates of F has a bathtub shape with a unique change

point to or to + 1 , or two change points to and to + 1 .

Proof. See Mi (1993).

Nothing was mentioned about the relationship between bathtub-shaped MRL and

associated upside-down bathtub-shaped failure rate functions. We develop sufficient

conditions under which this result holds. The result is given in Section 3.1.

2.1.3. Roller-Coaster Failure Rate Functions.

Tang, Lu and Chew (1999) investigated the behavior of the MRL function for when the

associated failure rate function has a roller-coaster shape. A general characterization

of the MRL and failure rate relationship was given: for the roller-coaster failure

rate, the associated MRL function is the composition of the MRL corresponding to
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the three basic failure rates (decreasing, increasing, and constant failure rate) under

some conditions. The result was provided by the following theorem.

Theorem 2.8. Let F have a roller-coaster failure rate with consecutive change points

ti, i = 1, 2, ... , n, where 0 = t 1 < t 2 < t3 < - - - < to = oc. For change points ti- 1 and

ti, 2 < i < n - 1, let [p(ti- 1 ) -r(ti_ 1) - 1][p(ti) - r(ti) - 1] < 0.

Then, F have a MRL which is a combination of the MRL functions corresponding

to decreasing failure rate and increasing failure rate with consecutive change points

t , i = 1, 2, ... , n - 1, where

0 < t* < t2 < t3 < - - - < t*-1 = oo and ti E [ti,ti_1] for i = 1,2,..., n-2.

However, their result is not quite correct and the proof is also problematic. In Section

3.2, we correct the errors in the proof of Theorem 2 in Tang, Lu and Chew (1999)

and give a new proof.

2.2. Two Population

There are many practical situations that call for comparing two groups or treatments,

where the two failure rates cross at several points. For example, Rocock et al. (1982)

have observed this phenomenon in connection with prognostic studies in the treatment

of breast cancer. Champlin et al. (1983) and Begg et al. (1984) have also reported

instances of the superiority of a treatment being shortlived. This phenomenon of

crossing hazards also arises in the study of frailty models or environmental models

(see R. Gupta and C.Gupta (1986), Hougard (1984) and Omori and Johnson (1983)).

R. Gupta and C.Gupta (2000) presented a result on the crossing of failure rate func-

tions and associated MRL functions. The obtained result is stated next.
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Theorem 2.9. If two failure rate functions r(t) and r*(t) cross at the points t*, ., t*

such that 0 = t* < t* < ... < t* < oo, then the corresponding MRL functions g(t)

and b*(t) cross at most at k points and at most one crossing point occurs in each of

the intervals (ti, t+g),i = 0,1, 2,..., k - 1.

This result was based on the claim that MRL functions cannot have the same crossing

point as corresponding failure rate functions, that is p*(ti) p(ti). It can be shown

that this claim is incorrect. The counterexample is provided in Section 3.3.

3. Main Results

3.1. Discrete Bathtub MRL and Upside-Down Bathtub Failure Rate Func-

tions

Theorem 3.1. Let { (i), i > 1} be a mean residual life sequence for a discrete life

time distribution F. Suppose { p(i), > 1} have a bathtub shape with a unique change

point to and the sequence {A (i), i > 1} , where Ap(i) - p(i + 1) - p(i) , have an

upside-down bathtub shape with change point to. Then, the sequence {r(i), i > 1}

of failure rates of F have an upside-down bathtub shape with a unique change point

to - 1 or to, or two change points to - 1 and to .

Proof. The MRL function p(t) is defined as

(t) - E(T - t|T > t),

and for the discrete case we have

f. FP(t)d(t)

F(i - 1)

9



Thus,

( p(i) fi1 F(t)d(t) -F2(i) -r(i) + F(t)d(t) __ F(i)

(z) (i)F(i - 1) F(i) F(i - 1)

= r(i) - p(i + 1) - [1 - r(i)],(3.1)

where p(i) - P(T = i) is a probability mass function.

From (3.1), it follows that

()-[A(i + 1) - (i)] + 1 _ oy(i) + 1 .(3.2)
C(i+)(i+1) + 1(32

Hence,

0 (i + 1) + 1 0 (i) + 1
r(i 1)-r(i)(i + 2) + 1 p(i + 1) + 1

p(i + 2)A 2
1 (i) - (Ap(i + 1))2 - (3.3)

[p(i + 2) + 1][g(i + 1) + 1] '

where

0 2
1 (i) = Ap(i + 1) - Ap(i).

Define

S(2) = p(i + 2) Zy(z) - (A p(i + 1))2 _ M(z)

Then, from (3.3), it is obvious that the sign of the difference Ar(i) = r(i + 1) - r(i)

is the same as the sign of S(i) for all i > 1. For any i > to, we have Ap 2(i) < 0,

since the sequence {AL(i), i > 1} have an upside-down bathtub shape with change

point to. At the same time, i > to implies Af(i) > 0, since {p(i), i > 1} have a

bathtub shape with change point to. Hence, S(i) < 0 for i > to , and this implies

r(i + 1) - r(i) < 0, V i > to .
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Therefore,

r(to) > r(to + 1) > .... (3.4)

Consequently, the failure rate {r(i)} is strictly decreasing in i > to.

If i < to - 2 , then similarly to (3.4), we can obtain

02 (i) > 0 V i < to - 1. (3.5)

Note that by (3.2), p(i) has to satisfy

Ap(i) + 1 > 0 V i > 1. (3.6)

Because Ay(i) + 1 > 0, Ap(i + 1) < 0 , and A 2 (i) > 0, V 1 < i < to - 2, it

follows that

-(p(i + 1))2 - AI(i) = - A(i + 1)[Ap(i + 1) + 1] + A2 /(2) > A2 (i) > 0. (3.7)

Considering (3.3), (3.5), and (3.7), we obtain

r(i+1)-r(i)>0, V i<to-2.

Therefore,

r(1) < r(2) < . .. < r(to - 1).

Consequently, the failure rate sequence {r(i)} is strictly increasing in 1 < i < to - 1.

Hence, if r(to) > r(to -1), then the failure rate sequence {r(i), i > 1} have an upside-

down bathtub shape with a unique change point to; if r(to) < r(to - 1), then there

is a unique change point to - 1; and if r(to) = r(to - 1), the sequence have two change

points to - 1 and to. Q
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3.2. Roller-Coaster Failure Rate Function

As mentioned in Section 2, if the failure rate function have a bathtub shape, then the

corresponding MRL function may have an upside-down bathtub shape.

The bathtub-shaped failure rate function is a combination of DFR and IFR functions.

In practice, due to various reasons such as (i) the changing hazard conditions; (ii)

wear out of items with flaws; (iii) the effect of flaw/defect distribution; and (iv) the

test and inspection limits, the failure rate function could be alternatively increasing

or decreasing. This is the so-called roller-coaster failure rate. For the detailed de-

scription of the physical basis for the roller-coaster failure rate, we refer to K.Wong

(1988, 1989, 1991). In order to develop our study more formally, we first give the

following definition.

Definition 1. Let p(t) be a function on [0, oc). Suppose that there exist points

0 < t1 < t2 < - - - < tk < oo such that on each of the intervals [tj_1 ,tjj, 1 < j < k+1,

where to 0, tk+1 = oo and [tk, tk+1] = [tk, oo), the function o(t) is strictly monotone

and it have opposite monotonicity in any two adjacent such intervals. Then, we say

that p(t) have a roller-coaster shape with change points {t 1 , - - - , tk}.

Remark 1. Suppose co(t) is a failure rate function. In Definition 1 it is required

that ti > 0. This requirement will eliminate IFR and DFR from the set of failure rate

functions with roller-coaster shape. Even though this requirement is unnecessary, it

will give us a great convenience in the discussion below since it can avoid repeated

tedious explanation of certain exceptional possibilities.
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Remark 2. Definition 1 does not allow any constant part of (p(t) in each interval

[t_ 1, t,], 1 < j < k + 1 . Again, this is not necessary, but for the sake of convenience

we will require strict monotonicity of o(t) in each interval [t _1, ti].

Remark 3. If co(t) have a roller-coaster shape with change points {t,.-- , tk} and

So(t) is differentiable, then obviously {t, - - - , t} are also the critical points of co(t),

i.e., co'(tj) = 0, 1 < j < k.

Tang, Lu and Chew (1999) gave a result pertinent to roller-coaster failure rate func-

tions. For easy reference, we restate it with some modification of notation as follows:

"Let F(t) have a roller-coaster shape failure rate r(t) with change points {t 1 , -. , t}

If [ p(t_ 1) r(t_1) - 1][t(tj) r(te) - 1] < 0, 1 < j < k, then the MRL of F(t) have

a roller-coaster shape with change points {t', - - , t_ 1 }, where 0 < t' < t2 < - - - <

t'_1 < t' = oo and t. E [ti _1,tj ], 1 < j < k."

Tang, Lu and Chew used mathematical induction on k, the number of change points,

to prove their result. However, their proof is problematic. To see this, let us restate

part of their proof:

"Let the result be true for k = n - 1. . Now show that it is true for k = n.

The failure rate has n consecutive change points, 0 = to < t1 < - - - < to < t,+1 = 00-

According to the assumption for the failure rate with n-1 change points, for t < tn_1,

the MRL of F is the composition of the MRL with respect to DFR and IFR, --- "

The mistake is that on the interval [tn_ 1, oo) = [tn_ 1 , tn) U [tn, oo), the failure rate

r(t) is not strictly monotone and this violates the original assumption of roller-coaster

shape. As a matter of fact, the monotonicity of r(t) on [tn_ 1, tn) and [tn, oo) should

13



be different according to the definition of roller-coaster-shaped function. Therefore,

the induction assumption cannot be applied to F(t) at this time, and so the proof

provided there is incorrect.

We will now give a more complete discussion of the shape of the MRL when the

underlying failure rate have a roller-coaster shape. The error in the proof in Theorem

2 of Tang, Lu and Chew (1999) will also be corrected.

Lemma 3.2. Suppose the failure rate function r(t) is differentiable and strictly mono-

tone on (r, oo). Then

10 . p(t) does not have a critical point on [T, oo);

20. If r(t) strictly increases on [T, oo), then p(t) strictly decreases in t > T; if

r(t) strictly decreases on [T, oo), then [(t) strictly increases in t > T.

Proof. The MRL function p(t) is given as

ft0 (s) ds
p(t ) = F-t.~ F(t )

Following the result of Mi (1995), define

F(t)

where

A(t) = r(t) F(s) ds - F(t), (3.9)

and

A'(t) = r'(t) F(s) ds. (3.10)

14



Now, assume r(t) strictly increases in t > T. For any t > T, from (3.9), it holds that

A(t) = r(t)F(s) ds - F(t)

< r(s)F(s) ds - F(t)

= f (s) ds - P(t) = 0.

That is, '(t) < 0, V t > T. This shows that p(t) is strictly decreasing in t > T.

The result when r(t) strictly decreases on (T, oo) can be similarly proved, and thus is

omitted. Q

Lemma 3.3. Suppose the failure rate function r(t) is differentiable and strictly mono-

tone on (T1,T 2). Let T* E (Ti,T2) be a critical point of (t), i.e., p'(r*) = 0.

(i) If r'(t) > 0, V t E (T1,T 2 ), then p(t) has a bathtub shape in (TI,T 2 ) and

achieves its minimum value on [Ti, T2 ] at t = T*.

(ii) If r'(t) < 0, V t E (T1, T2 ), then p(t) has an upside-down bathtub shape in

(Ti, T2 ) and achieves its maximum value on [Ti, T2] at t = T*.

In any case, [(t) does not have any critical point in (T1,T 2 ) other than T*.

Proof. We will first prove result (i). Result (ii) can be shown in a similar way.

From equation (3.10), we see that A'(t) > 0, V t E (Ti, T2 ). That is, A(t) strictly

increases in t E (Ti, T2 ). Now, it is assumed that '(T*) = 0, so from (3.8), it follows

that A(T*) = 0. Hence, A(t) < 0, V ri < t < T*, and A(t) > 0, V T* < t < T 2 . It

further follows that p'(t) < 0, V Tr < t < T*, and 1 '(t) > 0, V T* < t < T 2, by (3.8).

Therefore, p(t) strictly decreases in t E (Ti, T*], strictly increases in t E [T*, T2 ), has a

bathtub shape on (Ti, T2 ), and achieves its minimum value on [Ti, T 2] at t = T*. Q
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Lemma 3.4. Suppose that in the interval (Ti, T2 ), a differentiable failure rate function

r(t) has a unique change point T* E (T1, T2) and '(T*) = 0.

(i) If r'(t) < 0 on (T1 , T*) and r'(t) > 0 on (T*, T2 ), then p(t) strictly increases in

t E (Ti, T 2 ).

(ii) If r'(t) > 0 on (T1, T*) and r'(t) < 0 on (T*, T 2 ), then p(t) strictly decreases in

t E (ri, T2).

Proof. Let us prove (i). The proof of (ii) is similar and will be omitted.

From (3.10), we see that A'(t) < 0, V t E (Ti, T*). This implies that A(t) strictly

decreases in t E (Ti, T*). Note that A(T*) = 0, since '(T*) = 0. Hence, A(t) >

0, V t E (Ti, T*). This means that '(t) > 0, V t E (Ti, T*), or that p(t) strictly

increases in t E (Ti, T*). On the other hand, A'(t) > 0, V t E (T*,T 2 ), and so

A(t) strictly increases in t c (T*, T2 ). This, in turn, implies that A(t) > 0, and so

p'(t) > 0, V t c (T*, T2 ). Consequently, p(t) strictly increases in t E (T*, T2 ). Since

p(t) strictly increases both in t E (Ti, T*) and in t E (T*,T2), b(t) strictly increases in

t E (Ti,T2). Q

Theorem 3.5. Suppose the failure rate function r(t) is differentiable and has roller-

coaster shape with change points {t1,--- , tk}. Let p(t) be the associated MRL func-

tion. Then the following statements are true:

10 p(t) is strictly monotone on [tk, oo) and p(t) does not have tk as its change

point.
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20 (t) has at most one change point in each interval (tj_1it;), 1 < j < k, where

to - 0.

30 None of the tj, 1 < j < k, can be a change point of p(t), even though it is a

critical point of p(t), i.e., it could hold that ['(tJ) 0.

40 t(t) has at most k change points and all of its change points must be in some

of the open intervals (t 3_1,tj), 1 < j < k.

Proof. Result 10 comes from Lemma 3.2. Applying Lemma 3.3, we obtain result 20.

To prove result 30, we can assume j < k - 1, since the case when j = k is considered

in 10. Let T - tj_ 1, T* = tj, and T2 = tj+1. Then, from Lemma 3.4, we see that

tj = T* cannot be a change point of p(t), V 1 < j < k - 1.

Finally, combining 10, 20, and 30, it follows that 40 is also true. Q

Lemma 3.6. Assume that the failure rate function r(t) is differentiable and strictly

monotone on (T1,T 2 ).

(i) Suppose p'(T1) = 0. If r'(t) > 0, V t E (TI,T 2 ), then p(t) strictly increases in

t E [Ti,T2]; if r'(t) < 0, V t E (T 1,T 2 ), then p(t) strictly decreases in t E [T1 ,T 2].

(ii) Suppose ['(T2) = 0. If r'(t) > 0, V t E (T1,T2), then [(t) strictly decreases in

t c [TI, T2 ]; if r'(t) < 0, V t E (Ti, T 2 ), then p(t) strictly increases in t E [T1, T2].

In particular, if ['(T1) = 0, then ['(T2) # 0, and if ['(T2) = 0, then p'(T1 ) # 0.

Proof. Let's first prove (i). Suppose '(T 1 ) = 0 and r'(t) > 0, V t E (T 1 ,7 2 ). From

equation (3.10) we see that A'(t) > 0, V t E (T1 ,T 2 ). That is, A(t) strictly increases

in t E [ITl,T2]. It further implies that A(t) > 0, V t E (T1 ,T 2] since A(Ti) = 0 by
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equation (3.8). Therefore, '(t) > 0, V t E (Ti, T2 ] from (3.8), which shows that A(t)

strictly increases in t E [T1, T2 ]. The result when r'(t) < 0, V t E (Ti, T2 ), can be

shown in a similar way.

Now, let's assume g'(T2) = 0 and r'(t) > 0, V t E (Ti, T2). The assumption b'(T2) = 0

yields A(T 2) = 0 by equation(3.8). However, r'(t) > 0, V t E (Ti, T2 ), implies A'(t) >

0, V t E (T1, T2) from equation (3.10), i.e., A(t) strictly increases in t c [Ti, T 2]. This

and the fact that A(T 2) = 0 further show that A(t) < 0, V t c [T1, T2 ). Therefore,

'(t) < 0, V t E [Ti, T2 ) by (3.8), i.e., p(t) strictly decreases in t E [T1, T2]. The case

of r'(t) < 0, V t E (T1 ,T2 ), can be shown in the same way. Q

Remark 4. Let r(t) be differentiable on (Ti, T2 ) and strictly monotone on (Ti, T2).

Then p(t) has at most one critical point on the closed interval [Ti, T2 ], by Lemmas

3.3 and 3.6.

In Tang, Lu and Chew (1999), a sufficient condition is given for the MRL function to

have a change point. The following result shows that this condition is also necessary.

Theorem 3.7. Suppose that r(t) is a differentiable failure rate function and has a

roller-coaster shape with change points {t1, - - - , tk}. Let p(t) be the associated MRL

function. The necessary and sufficient condition for (t) to have a change point in

(tj1, t),1 < j < k, is

[p(tj-_1) - r(tj-_1) - 1][p(tj) - r(tj) - 1] < 0. (3.11)

Proof. We first show the sufficiency of condition (3.11). Note that

(t) = -1 + r(t) p(t).
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Hence, condition (3.11) implies that p'(t_ 1) p'(t;) < 0. That is, p'(t_ 1) and p'(t3 )

have different signs. Thus, there exist t* E (t;_1, t,) such that p'(t*) = 0. By Lemma

3.3, t* must be a change point of p(t). Also, from Lemma 3.3, it follows that t* is

the unique change point of [(t) in (tj_1, ti).

Now, we will prove the necessity of condition (3.11). If '(t_ 1) p'(t;) = [[(t_ 1 )

r(tj_1) - 1][p(t,) - r(te) - 1] = 0, whether '(t_ 1 ) = 0 or ['(t3 ) = 0, from Lemma

3.6, we see that f(t) is strictly monotone on (t;_1, tj) and so cannot have any change

points in (ti_1, ta). If '(t _1) '(tj) > 0, then p'(t_1) and p'(tj) have the same sign.

For this interval (t_1i, ti), let

B = { t E (tj_1,t ) : p'(t) has the opposite sign of ['(t_ 1) and p(tj)}.

We will show that B = 0, i.e., B is an empty set. Suppose the contrary is true.

Then, if B z 0 and t* E B, there exist T* E (tji1, t*) and T** E (t*, tj) such that

' (T*) = '(T**) = 0. By Lemma 3.2, both T* and T** would be change points of

-(t) in (tj_1, t3 ). But this contradicts result 20 of Theorem 3.5. Hence, B must be

an empty set. Therefore, '(t) keeps the same sign on [t;_1, tj] and [(t) cannot have

any change point in (ti_ 1, t,). Q

3.3. Crossing of Failure Rate and MRL Functions

Gupta and Gupta (2000) studied the crossing properties of two mean residual life

functions in the case when the two associated failure rate functions cross at several

points. It was shown there that the number of crossings of the mean residual life

functions does not exceed the number of crossings of the failure rate functions. The
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location of these crossings was also examined in terms of the crossing points of the

failure rate functions. However, there are some errors in their proof.

Let F(t) and G(t) be two lifetime distribution functions which have failure rate func-

tions A(t) and r(t), and mean residual life functions [(t) and v(t), respectively. To

precisely develop our study, we first define the concept of a crossing point as follows.

Definition 2. Let o(t) and fi(t) be two functions. We say that cp(t) and 0(t) have

crossing points {-oo < t1 < - - - < tk < oo} if A(t) = o(t) - 0(t) has tj as the

only zeros, does not change sign in each of the intervals (ti_,tj), and changes signs

in any two adjacent intervals of the form (tj_1,tj), 1 < j < k + 1, where to - -oc

and tk+1 = 00.

Definition 3. Point t* is said to be a touching point of p(t) and 0(t) if A(t)

co(t) - V/(t) satisfies A(t*) = 0.

Remark 5. According to the above definitions a crossing point must be a touching

point, but the opposite is not always true.

With the above notation introduced, let us restate the result of Theorem 3.2 in

Gupta and Gupta (2000) as follows : " Suppose A(t) and r(t) have crossing points

0 < t1 < - - - < tk < oo. Then p(t) and v(t) cross in at most k points and at most one

crossing point occurs in each of the intervals (tj_1,t ), 1 < j < k, where to = 0".

This result is correct, but the proof provided there is incorrect. In case (iii) of the

proof of their Theorem 3.2, they tried to show that p(tj) 74 v(t,), 1 < j < k, by

contradiction. Their proof goes as follows:
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"Suppose on the contrary p(t,) =v(tj). Since A(te) = r(tj), we have

1 + '(t,) _ 1 + v'(t3 )

p(t,) v(t3 )

The hypothesis implies that

p'(t ) = v'(t ),

or

lim ft(t; + h) - v(tj + h) _ 0, (3.12)
h- o h

which is not possible because p(t) < v(t) or p(t) > v(t) on the right of tj. Hence,

p(tj) : v(tj), 1 < j< k."

The mistake is in assuming that if [t(t) < v(t) in a neighborhood to the right of t3 ,

this implies

p(t; + h) - v(t3 + h) < 0
h

if h > 0 is sufficiently small, which further implies

li p(t' + h) - v(tj + h)<0
ha0+

but this does not necessarily imply

lim [(t + h) - v(t + h) <0.
ha0+

However, they claimed

pi (t' + h) - v(tj + h) 0
h0+ h

is impossible, which is wrong, and therefore, their proof is incorrect. Actually, not

only this part of their proof is incorrect. The claim p(t;) # v(t ), itself, made in

21



their paper, is incorrect as well. Below we exhibit a counterexample in which two

failure rate functions rl(t) and r2 (t) have ti as their crossing point. In the meantime,

their corresponding MRL functions p1(t) and p[ 2 (t) also have t1 as a crossing point.

Counterexample.

Define ti = 1 and t2 = 2, and let 0 < h < oc and 0 < E < 1/2 be two fixed numbers.

LetO<ci<A<oo and 0<d2 <di<oo.

On the interval [ti, oo) = [1, oo), we define the function r1 (t) as follows: on the

interval [1 + E, 2 - -], ri(t) = cl; on the interval [1, 1 + E], r1 (t) is a linear function

with r1(1) = h and r1(1 + E) = cl; on the interval [2 - E, 2], r1 (t) is linear with

r1 (2 - E) = cl and ri(2) = h; on the interval [2, 2 + E], ri(t) is again linear, ri(2) = h,

and ri(2 + E) = di; and finally, r1 (t) = di for all t > 2 + E. Let r*(t) > 0 be an

arbitrary continuous function on [0, 1] satisfying r*(1) = h. Then we can extend

the domain of ri(t) to [0, oc) by defining r1(t)=r*(t), for all 0 < t < 1. Obviously,

ri(t) > 0 is a continuous function on [0, oo). Summarizing the above, we have defined

a continuous function r1 (t) as
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r* (t), for 0 < t < 1;

h, fort=1;

h + cl- (t - 1 ), for 1 < t 1 +;

Ci, for 1 + E < t < 2 -e;
ri(t) - (3.13)

h + cl-h(2 -t), for2-E<t<2;

h, for t=2;

h + dlh(t - 2), for 2 t < 2+;

di, for t > 2 + .

In a similar way, we can define a positive continuous function r2 (t, A) as

r* (t), for 0 < t < 1;

h, for t = 1;

h + A (t - 1), for 1 < t < 1 + s

A, for 1 + E < t < 2 -;
r 2(t, A) = (3.14)

h+A-h(2-t), for2-e<t<2;

h, fort=2;

h+ 2[h(t - 2), for 2 < t < 2+c;

d2, for t > 2 + E,

where r*(t) satisfies 0 < r*(t) < r*(t) for all 0 < t < 1 and r*(1) = r*(1) = h.
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For any A > c1 > 0, we see the following relationships according to the above defini-

tions:

> r2(t, A), for 0 < t < 1;

= r 2(t, A), for t = 1;

ri(t) < r 2(t, A), for 1 < t < 2;

= r2 (t, A), for t = 2;

> r2(t, A), for t > 2.

Also, it is easy to see that ri(t) > 0 and r 2(t, A) > 0, for all t > 0, f 0 ri(t)dt = oo,

and f r2(t, A)dt = oo. Therefore, both ri(t) and r 2(t, A) are failure rate functions.

Further, they cross at exactly two points t1 = 1 and t 2 = 2.

Denote the MRL function associated with the failure rate function r2(t, A) by p2 (t, A).

Then, by the definition of MRL, we have:

[p2 (ti, A) = 2 (1, A) = e f r2(u,A)dudx

j e- fl+ x r2(uA)dudx e f l+x r2(uA)d d.

Letting A -+ oo in the first integral, we have

lim e- f1l+X r2(,A)dudx = lim e- f X[h+ (I-h) (u-))dud
A-0 JO a-00JO

= lim e-[(2c )x 2 +hxl dx = 0.
a-+0 JO

As far as the second integral, similarly, we can obtain

lim efl+x r2(uA)dudx = lim e- fl+ r2 (uA)du e- fl+ r2(u,A)dudx = 0.
A-400le A-2oo 4
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Thus, it follows that limAso0 p2 (ti, A) = 0.

On the other hand, denote lim r2 (t, A) as r2 (t, cl). Then
A-+ci

= ri(t) for t < t < t 2r2 (t, cl)
< r1(t) for t > t2

Hence, p2 (ti, c1) = lim 2 (ti, A) and 2 (ti, cI) > 1 (t1 ).

Summarizing the above, we have shown that [ 2(ti, oo) = 0 < p1(ti) < 2(ti, ci).

Note that p2 (t, A) is a continuous function of A > 0. Therefore, there exists cl < A* <

oo such that /12(ti, A*) = p1(ti).

Now, we define

{)r 2 *(t), if 0 < t < 1.

r2(t, A*), if t > 1.

Then ri(t) and r2 (t) have exactly two crossing points, t1 = 1 and t 2 = 2, and it holds

that p2 (t1) = 1 (ti). This example shows that the claim made in (iii) of the proof

of Theorem 3.2 in Gupta and Gupta (2000) is incorrect.

In the rest of this section, we will revisit Theorem 3.2 in Gupta and Gupta (2000)

and give a new proof.

Lemma 3.8. Suppose that on the interval (Ti, T2 ), the failure rate functions A(t) and

r(t) satisfy A(t) < r(t), V t E (Tl, T2). Then

(i) If p(T2) = v(T 2 ), then p(t) # v(t), V t E [T1,T2 );

(ii) If p(Ti) = v(Ti), then p(t) # v(t), V t E (T1 , T2 ].
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Proof. For any given 0 < x1 < x 2 , we have

L($V) = f F(t) dt j0 F(x1 + ) f1+ A(u)dud
F(ii) F(i) o

e- j e x11 A(u)dud + e- 2 A(u)du- f1 +A(u)dud

- je2-X1

- X 2 -X 1 e - f l + x (u )d d + e f A (u )du j e f x2 + x a (u ) du d
o JX2-X1

2 X e - + ) A (u )du d x . fx ) A (u )d u 0 ( 3 .1 5 )

JO

Similarly, we have

fX2-X X
v(xi) = e- fx1 r(u)dudx + v(x 2) ef xl r(u)du. (3.16)

Now, if p(T2 ) = v(T2 ), then for any t E [T1, T2 ) from (3.15) and (3.16) we see that

(t ) j e- ftt" AMuMdd +I pu(2) 6 f 2 Aud
J -t

> e- xA(u)dudx + (T 2 ) ef 2(u)du

I 2-t

> e- f r(u)dudx + v(T2 ) e 2 r(u)d= v(t).

Therefore, (i) holds.

Result (ii) can be shown in the same way and is thus omitted.

Theorem 3.9. Let F(t) and G(t) be two lifetime distributions. Suppose that F(t) and

G(t) have failure rate functions A(t) and r(t), and mean residual life functions (t)
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and v(t), respectively. If A(t) and r(t) have crossing points {0 < t1 < - - - < tk < oo},

then

(i) p(t) and v(t) do not have a touching point on [tk, oo);

(ii) p(t) and v(t) have at most one touching point on each [tj_1,tj], 1 < j < k;

(iii) p(t) and v(t) have at most k touching points, and so they have at most

k crossing points. Also, these crossing points must be in open intervals (tj_1itj),

where 1 < j < k.

Proof. Result (i) was proved in Theorem 3.2 of Gupta and Gupta (2000).

To show (ii), let t* E [tj_ 1, tj] and p(t*) = v(t*). Applying Lemma 3.8 to the interval

[tj1, t*], we see that p(t) # v(t), V t E [tj-1, t*). Similarly, applying Lemma 3.8

to [t*, tj], we see that p(t) # v(t), V t E (t*, tj]. Thus, p(t) # v(t), V t E

[tj_1i, tj] \ {t*}. This shows that p(t) and v(t) have at most one touching point on

[tj- 1, t3 ].

Result (iii) follows from (i) and (ii). Q

4. Concluding Remarks

In this study, we discussed the behaviors of the MRL function for both continuous

and discrete lifetime distributions with respect to their failure rate functions and vise

versa, and established a new result for the relationship between discrete bathtub-

shaped MRL and upside-down bathtub-shaped failure rate functions. The study

showed that if a discrete MRL has a bathtub shape, then under some conditions

the corresponding failure rate function has an upside-down bathtub shape. Some

mistakes in the proofs of Tang, Lu and Chew (1999) were corrected, and a new
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necessary and sufficient condition for the MRL to follow the roller-coaster behavior

of the corresponding failure rate function was also derived. This study also corrected

some mistakes in the proofs in Gupta and Gupta (2000), with the ensuing results being

expanded and proved thoroughly to establish the relationship between the crossing

points of the failure rate and associated MRL functions.

The new results derived in this study will be useful to model various lifetime data

that occur in environmental studies, medical research, electronics engineering, and in

many other areas of science and technology.
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