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 Prior finance literature lacks a comprehensive analysis of microstructure 

characteristics of U.S. futures markets due to the lack of data availability. Utilizing a 

unique data set for five different futures contract this dissertation fills this gap in the 

finance literature. In three essays price discovery, resiliency and the components of bid-

ask spreads in electronic futures markets are examined. In order to provide 

comprehensive and robust analysis, both moderately volatile pre-crisis and volatile crisis 

periods are included in the analysis.  

 The first essay entitled “Price Discovery and Liquidity Characteristics for U.S. 

Electronic Futures and ETF Markets” explores the price discovery process in U.S. futures 

and ETF markets. Hasbrouck’s information share method is applied to futures and ETF 

instruments. The information share results show that futures markets dominate the price 

discovery process. The results on the factors that affect the price discovery process show 

that when volatility increases, the price leadership of futures markets declines. 



  

vi 
 

Furthermore, when the relative size of bid-ask spread in one market increases, its 

information share decreases. 

 The second essay, entitled “The Resiliency of Large Trades for U.S. Electronic 

Futures Markets,“ examines the effects of large trades in futures markets. How quickly 

prices and liquidity recovers after large trades is an important characteristic of financial 

markets. The price effects of large trades are greater during the crisis period compared to 

the pre-crisis period. Furthermore, relative to the pre-crisis period, during the crisis 

period it takes more trades until liquidity returns to the pre-block trade levels.  

 The third essay, entitled “Components of Quoted Bid-Ask Spreads in U.S. 

Electronic Futures Markets,” investigates the bid-ask spread components in futures 

market. The components of bid-ask spreads is one of the most important subjects of 

microstructure studies. Utilizing Huang and Stoll’s (1997) method the third essay of this 

dissertation provides the first analysis of the components of quoted bid-ask spreads in 

U.S. electronic futures markets. The results show that order processing cost is the largest 

component of bid-ask spreads, followed by inventory holding costs. During the crisis 

period market makers increase bid-ask spreads due to increasing inventory holding and 

adverse selection risks. 
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CHAPTER 1: PRICE DISCOVERY AND LIQUIDITY CHARACTERISTICS FOR 
U.S. ELECTRONIC FUTURES AND ETF MARKETS 

 

1.1. Introduction 

Futures contracts, electronically traded exchange traded funds (ETFs), and their 

underlying cash markets are three different types of instruments used for speculative, 

investment, and/or hedging purposes. The inter-related nature of these securities allows 

us to address the issue of market completeness versus redundancy. Thus, we ask which 

inter-related instrument(s) incorporate new information and which instrument(s) simply 

derives its prices from the other markets. Moreover, analyzing the price discovery 

process provides important information on where informed traders focus their attention. 

Thus, such knowledge allows participants to determine which markets are most fair and 

orderly.  

The microstructure issues of U.S. futures markets have received little attention 

compared to equity markets, mainly because of the historical lack of bid-ask quotes from 

floor-traded futures contracts. Thus, previous authors needed to proxy futures bid-ask 

spreads from the futures price series. However, Locke and Venkatesh (1997) show that 

spread estimators ineffectively proxy floor-traded futures bid-ask spreads. In addition, 

futures floor-traded data incorporates inaccurate recording problems, including the time 

displacement of the sequence of trades and prices on the official price record. 

In order to analyze the dynamic and time-varying nature of the relative price 

discovery process of these markets we employ Hasbrouck’s (1995) information share 

methodology. Furthermore, we extend our analysis by examining the determinants of the 

price discovery process in these markets. We then explore the effects of large trades and 
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the depth of the market by computing the time series and cross-sectional differences in 

these liquidity measures across asset classes. Included in our analysis is a comparison of 

the 2008 financial crisis to the pre-crisis period to show how the different characteristics 

of market behavior affect the price discovery shares of various financial instruments for 

different market conditions. Hasbrouck’s information share method is based on the Law 

of One Price. Thus, prices of the same or related instruments cannot deviate from one 

another in the long run because of arbitrage activity. Consequently, the same or related 

assets share a common value. Therefore, the information share method measures the 

contribution of each instrument to this common value.1 

Our examination of ETFs in the price discovery process is consistent with the 

importance of ETFs as an important investment tool in modern financial markets. During 

the 2008 financial crisis 716 ETFs traded in U.S. equity markets, with the daily average 

trading volume for the SPY ETF alone approaching 42 billion dollars. Moreover, the 

initiation of electronic trading in futures markets and the subsequent growth in high 

frequency trading in the new millennium (Karazoglu, 2011) represents a major structural 

change in markets.2 In order to capture the microstructure effects in these markets we 

employ bid-ask spread data for electronically traded futures contracts on stock index, 

currency, and gold and their associated electronically traded ETFs. The literature 

conflicts on the importance of ETFs in price discovery: for example, see Hasbrouck 

                                                      
1 Hasbrouck’s (1995) information share method provides maximum and minimum values for each futures 
and ETF pair. In the regression we first employ the ratio of the daily average values of the information 
shares. Then we repeat our regression analysis using the daily maximum and minimum information share 
values separately. 
 
2 A rich literature highlights the increased trading efficiency obtained by electronic trading (e.g., Jain 
2005). 
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(2003) versus Tse, Bandyopadhyay and Shen (2006). Using both U.S. equity index 

futures and ETF data, Hasbrouck determines that the e-mini S&P 500 futures contributes 

more to price discovery than does the floor-traded SPY ETF. Alternatively, Tse, 

Bandyopadhyay and Shen show that the contribution made by the DIA ETF to price 

discovery is greater than the contribution made by floor-traded futures. 

In order to explore the effects of liquidity measures as determinants of the price 

discovery process we utilize two methods that have rarely been used in this context 

before. We calculate the price impact of trades using Hasbrouck’s (2004) sequential 

trading based model and then examine the market depth of futures and ETFs with Engle 

and Lange’s (2001) VNET method. With Hasbrouck’s model we analyze not only the 

first component of transactions costs (the bid-ask spread), but also the second component 

(the price impact of trades). These additions provide a more comprehensive analysis than 

previous studies (Ates and Wang 2005, Schlusche 2009). Moreover, Engle and Lange 

argue that the best quoted depth does not provide the full depth in markets, whereas 

VNET depth captures the realized market depth by measuring the actual trade volume 

required to move prices. Finally, our approach differs from previous studies in the 

literature by examining the determinants of price discovery for various U.S. electronic 

futures relative to their corresponding ETFs.3 We also compare these results for a highly 

volatile period versus an average volatility period. Thus, we determine whether analyzing 

two distinctly different volatility periods provides evidence concerning differing 

determinants of the price discovery process.  

                                                      
3 The stated objective of the ETFs used in our sample is to replicate the returns achieved in the associated 
spot markets.  However, ETF prices do include tracking error (Shin and Soydemir, 2010; Petajisto, 2011). 
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Previous studies that explore the determinants of the price discovery process 

document different variables as significant factors. For example, Theissen (2002) 

employs German DAX equity index futures and spot data to show that trading volume 

positively affects price leadership of a market. Alternatively, Martens (1998) uses Bund 

futures and Schlusche (2009) employs DAX futures and ETFs to document that a 

market’s relative contribution to price discovery depends solely on the level of volatility. 

Both of these results contradict the transactions costs hypothesis (Fleming, Ostdiek, 

Whaley., 1996) which relies on the actual costs of transactions.4 Alternatively, Ates and 

Wang (2005) use floor and electronically traded currency futures in U.S. markets to show 

that price discovery is affected by the relative liquidity in the floor-traded and electronic 

markets, whereas volatility does not affect price discovery. Regarding the research here, 

the use of extensive intraday data enables us to analyze the effects of specific factors (i.e., 

the price impact of trades and market depth) that are overlooked in previous studies on 

price discovery. In addition, we examine how market characteristics such as volatility and 

other time-varying factors affecting price discovery help us to resolve conflicting results 

regarding price discovery and its determinants. Our results find support for both the 

transactions cost and leverage hypotheses,5 as well as the significance of volatility in the 

price discovery process in these markets.  

Overall, our study contributes to the literature by investigating the price discovery 

process of electronically traded futures and ETFs across a variety of asset classes, and 

                                                      
4 The Transactions Cost Hypothesis states that markets with lower transactions costs (higher liquidity) 
exhibit a higher information share. 
 
5 The leverage hypothesis states that leveraged financial instruments attract more informed trading than 
non-leveraged instruments. The reason is that informed traders prefer leveraged instruments to take 
advantage of their information to increase their profits.  
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then examining the determinants of the price discovery process in these markets. 

Specifically, our study contributes to the literature in the following ways. First, we use 

electronic markets data instead of floor-traded prices (especially for futures markets), 

which provides almost instantaneous trade execution and therefore a more accurate 

representation of when information is fully disseminated into market prices. Second, our 

real time bid-ask spread databases make it possible to present the first major analysis of 

bid-ask quotes for U.S. electronic futures markets, such that our results are not affected 

by floor-traded bid-ask estimator bias. A third contribution to the literature is our 

examination of three different inter-related markets (futures, their corresponding ETFs, 

and the related underlying cash instruments), as well as studying different asset classes 

(stock market indexes, currency, and metal futures/ETFs), with both of these factors 

adding to previous research on price discovery. Moreover, although a number of studies 

examine price discovery, they do not compare ETFs with futures on automated trading 

platforms.6 Fourth, we not only analyze the market microstructure liquidity 

characteristics of futures contracts and their corresponding ETFs, but we also explore 

how price discovery is affected by market depth, volatility, informed trading and 

liquidity, including employing the bid-ask spread and the price impact of larger trades. 

Thus, our results provide a depth and breadth of results not available elsewhere, 

especially in terms of whether information shares are invariant to asset classes. Finally, 

and perhaps most importantly, previous studies employ data from relatively stable 

periods, whereas we examine the volatile financial crisis of 2008 versus the less volatile 

pre-crisis period of 2007 in order to understand the relative importance of liquidity, 
                                                      

6 In addition, we examine ETFs that are electronically traded, rather than floor traded ETFs as with 
Hasbrouck (2003).  
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volatility, and VNET depth for price discovery in futures and ETFs in different market 

environments.  

Our results show that price discovery occurs mainly in the highly liquid and 

highly leveraged futures markets. These findings support the transaction cost hypothesis, 

as well as the leverage hypotheses. Besides futures and ETF data, we also employ spot 

market data for currencies and the stock market cash index to analyze the price discovery 

process of these underlying markets. Our results show that futures markets lead the price 

discovery process, followed by the spot market and then ETFs.  

 The results also show that both the ratio of the quoted percentage spreads between 

the futures contracts and the corresponding ETFs, and the level of their overall volatility, 

determine the relative information shares of these markets. This result holds for all three 

types of instruments (stock market indexes, currencies, and metal futures/ETFs). Other 

variables (such as the ratio of the impact of trades on prices and the ratio of the daily 

average dollar volume of futures and ETFs) do not significantly change the value of the 

information shares.   

   The presentation in the following sections is organized as follows: Section 2 

provides a brief literature review of price discovery for futures and ETFs. Section 3 

describes the data. Section 4 presents our research methods and section 5 discusses our 

results. Concluding remarks and suggestions for future research are summarized in the 

last section. 

1.2. Literature Review  

Previous studies (Pirrong, 1996; Grammig, Schireck, Theissen, 2001; Hasbrouck, 

2003; Kurov and Lasser, 2004) compare electronic markets to floor trading (mostly in 
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equities), showing that electronic markets provide anonymity, fast execution and higher 

information efficiency advantages to traders relative to floor trading.7 In fact, Hasbrouck 

(2003) shows that e-mini electronically traded futures contracts are the dominant source 

of information compared to floor traded equity futures, ETFs, and the associated cash 

index. However, Tse, Bandyopadhyay and Shen (2006) show that electronically traded 

Dow Jones ETFs contributes significantly to the price discovery process relative to the 

Dow futures. Therefore, instead of asking which instrument dominates price discovery, 

the more relevant question to ask is what characteristics and market conditions cause one 

instrument to provide a greater contribution to the price process?  

Futures contracts provide anonymity, execution speed, leverage and information 

efficiency advantages to investors, as noted above. Alternatively, Alexander and Barbosa 

(2008) argue that ETFs’ popularity among individual investors has increased due to the 

ability to be sold short and their low transactions costs for small size trades. Deville 

(2008) states that ETFs are more convenient as trading instruments compared to futures 

for smaller orders and liquidity traders. Hegde and McDermott (2004) say that lower 

prices per share and smaller contract sizes for ETFs make them more suitable investment 

vehicles for many investors. ETFs also represent quick ways of taking exposure in 

particular sectors and strategies. As such, ETF have the potential to lead price discovery 

in terms of industry specific information and information that is more dispersed across 

many traders. Consequently, ETFs provide an interesting alternative to futures contracts 

and the cash market.   

                                                      
7 Subrahmanyam  (p. 529, 2009) defines information efficiency as “the amount of private information 
revealed in the market price.”  
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Another line of research analyzes the determinants of the price discovery process. 

Admati and Pfleiderer (1988) theoretically show that both informed and liquidity traders 

prefer to trade in liquid markets. In this sense liquidity enhances the incorporation of 

private information into prices by attracting informed traders. Analyzing stocks, futures, 

and options in U.S. markets, Fleming, Ostdiek, Whaley (1996) document that a traders’ 

choice on which market to use depends on the relative transaction costs in alternative 

markets. They show that the market with the smallest transactions costs attracts informed 

traders and therefore dominates the price discovery process. Martikainen and Puttonen 

(1994) and Zhong, Darrat, and Otero. (2004) find similar results for Finnish and Mexican 

stock markets. Consequently, in order to examine the relation between price discovery 

and transactions costs, several authors study the effect of a reduction in tick size on price 

discovery in futures and stocks: Baillie, Booth, Tse and Zabotina (1999) uses the 

information-share approach, Chu, Hsieh and Tse, (1999) and Hsieh (2004) employ a 

common-factor decomposition approach, and So and Tse (2004), Roope and Zurbruegg 

(2002), and Covrig, Ding, and Low (2004) employ both approaches. They all find that 

price discovery improves with a reduction in the tick size, which reduces transactions 

costs. Regarding bid-ask spreads, Theissen (2002) finds that the size of the relative bid-

ask spread across different markets only weakly explains the contribution to price 

discovery, whereas Wang and Ates (2005) show that using the ratio of spreads with 

currency futures provides a much stronger evidence of spreads affecting price discovery. 

Unlike our study, none of the studies mentioned here use data from a financial crisis 

period, when price discovery is particularly important.  
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Volatility is another potential determinant of price discovery. Schlusche (2009) 

reports that the price discovery process for DAX futures and its associated ETF is only 

affected by its volatility, not its liquidity. Martens (1998) and Franke and Hess (2000) 

empirically document that the German bund futures using the Automated Pit Trading 

System (APT) on the London International Financial Futures Exchange's (LIFFE’s) made 

a greater contribution to price discovery during periods of higher volatility, whereas the 

Deutsche Terminborse (DTB) futures made a larger contribution to price discovery 

during periods of low volatility.8 Our study helps resolve this debate by focusing on the 

difference between a highly volatile crisis period and a normal period, a factor that is not 

examined in these studies. Finally, Theissen (2002) finds that the contribution made to 

price discovery by the trading system employed was positively related to the size of the 

market share. In conclusion, different studies document different variables as the main 

determinant of price discovery. Our goal is to resolve this debate by providing a more 

comprehensive study of the factors most closely related to price discovery.  

1.3. Data 

 We employ electronic market transactions and bid-ask quotes for five different 

futures contracts. The futures employed are chosen to represent a cross-section of 

different asset classes; the associated ETFs represent the top ranking ETFs by trading 

volume in their respective categories. The futures data are from CQG and the ETF trade 

and quotes data are obtained from TAQ. Our sample includes the E-mini S&P 500, E-

mini NASDAQ 100, British pound, the Euro currency, and gold futures. The 

                                                      
8 We use electronic market data as it is the dominant venue for futures trading during our period of study. 
For example, according to CME’s website during the pre-crisis period in 2007 electronic futures markets 
created 77% of the trading volume, whereas floor trading only caused 23%. Similarly, during the crisis 
period the volume share of the electronic market was 84%, with floor trading being 16%. 
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corresponding ETFs trade with ticker symbols of SPY, QQQ, GLD, FXE and FXB. Our 

sample period covers the September through December 2008 financial crisis as well as 

the January through March 2007 pre-crisis “normal” time period.9 The instrument 

specifications for the futures contracts are described in Table 1.1 Panel A. The ETFs used 

in this study and the markets they follow are listed in Panel B of Table 1.1. Following 

Engle and Lange (2001), the first five minutes of each trading session are excluded.10 

1.4. Empirical Methodology  

1.4.1. Price Discovery 

In the finance literature the price discovery process across related instruments are 

typically analyzed using Hasbrouck’s (1995) information share (IS) or Gonzalo 

Granger’s (1995) component share (CS) methods. Baillie et al. (2002) argue that although 

the IS and CS methods seem different, they share a lot in common, since both techniques 

are based on the vector error correction models. In this study we utilize Hasbrouck’s IS 

method in order to determine the price discovery ability of electronically traded futures 

contracts versus their related ETFs; for some tests their associated cash markets also are 

examined.  

Hasbrouck’s information share methodology is the first process we employ to 

analyze the price discovery process in the futures, ETF and spot markets. This price 

                                                      
9 The selection of these periods is based on the logic provided by Anand, Irvine, Puckett and Venkataraman 
(2013). Following their paper we use the first quarter of 2007 as the benchmark period and the last quarter 
of 2008 (the Lehman Brothers bankruptcy) as the crisis period. We examine the active nearby expiration 
contracts and roll the contracts to the next expiration when either the volume of the deferred contract 
becomes dominant, or at least one week prior to the expiration of the nearby contract. Furthermore, trades 
that occur on the same side of the market, at the same price, and within the same minute are combined into 
one transaction. Bid-ask spreads that are more than $5 per unit price are discarded as misprints or outliers. 
 
10 When the first five minutes are included the quantitative results change by less than 1% and qualitative 
inferences are unchanged.  
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discovery model is based on the assumption that arbitrage prevents prices of these related 

securities from widely diverging. The information share of an instrument is measured as 

that instrument’s contribution to the total variance of the common (random-walk) 

component. If pt
X represents the price of asset X and pt

Y represents the price of asset Y, 

then a vector error correction model of order K lags of the price changes can be 

represented as: 

Δpt = At Δpt-1 + … + Ak Δpt-k + γ (zt-1 – μz) + ut                         (1.1)  

where pt = ቈ
p୲୶

p୲
୷ is the column vector of prices, Ai is the squared autoregressive coefficient 

matrix of order n for the number of instruments analyzed, γ is vector of the speed of 

adjustment coefficients, μz = E(pt
X - pt

Y)  stands for the mean vector of deviations 

representing the long-run average price difference between the two markets, zt= pt
X - pt

Y 

is the price difference matrix, and the γ (zt-1 – μz) term equals the error correction 

coefficients. Also, ut = ቈ
u୲୶

u୲
୷  is the vector of random innovations with the covariance 

matrix of 
σଵ
ଶ σଵଶ

σଶଵ σଶ
ଶ ൨. The linear combinations of the random innovations in the prices of 

X and Y provides the innovations of the common price: 

ηt =  ቂ
aଵଵ aଵଶ
aଶଵ aଶଶ

ቃ ቈ
u୲୶

u୲
୷             (1.2) 

where the aij are determined from the VECM parameters. The variance of the common 

price is then: 
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Var(ηt) =	ሾaଵଵ aଵଶሿ 
σଵ
ଶ σଵଶ

σଶଵ σଶ
ଶ ൨ ቂ

aଵଵ
aଵଶ

ቃ           (1.3) 

When the covariance matrix is diagonal ሺσଵଶ ൌ 0ሻ: 

Var(ηt)=	VarሺηtAሻ 	ൌ 	 aଵଵ
ଶ σଵ

ଶ  aଵଶ
ଶ σଶ

ଶ          (1.4) 

The information share for security X is then equal to  

ISx = 
భభ
మ ఙభ

మ

ಏ
మ               (1.5) 

Similarly, the information share for security Y is: 

ISy = 
భమ
మ ఙమ

మ

ಏ
మ               (1.6)  

 

 Hasbrouck’s method constructs upper and lower bounds for the information 

shares by orthogonalizing (rotating) the covariance matrix to determine the explanatory 

power of a particular market. Following Hasbrouck (2003) we use the quote mid-points 

for prices in order to avoid the bid-ask bounce issue.11 

1.4.2. Determinants of the Price Discovery Process in Futures and ETFs 

After determining which market(s) dominate the price discovery process, for both 

the crisis and pre-crisis periods, we then explore the relative importance of the 

determinants of the daily variation in information share of the futures and ETF markets. 

Specifically, using a regression model we test how the price discovery process is affected 

                                                      
11 Bid-ask bounce is the constant reversal of trade prices between the bid and ask sides of the market. Using 
trade prices causes the price series to appear to oscillate between the bid and ask prices, even though the 
true value of the asset does not change. 
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by the relative liquidity (the price impact of trades and the bid-ask spread), market depth 

(as measured by VNET, i.e. the volume needed to move prices 0.5%), daily dollar 

volume, declining average trade size, increasing adverse selection cost, and the aggregate 

volatility of the futures and ETFs.   

We employ the bid-ask spread and the price impact of trades in order to explore 

the effects of liquidity on price discovery. VNET measures the realized depth; by 

including VNET we test the effect that market depth has on price discovery. Adverse 

selection cost (Glosten and Harris (1987)) and higher average trade size are used to 

capture informed trading activity (O’Hara, 1987).   

1.4.2.1. The Bid-Ask Spread 

 Trading costs have three main components (Fleming, Ostdiek, and Whaley, 

1996). These costs are the bid-ask spread, the market impact of trades, and brokerage 

commissions. Fleming, Ostdieck, and Whaley state that in a perfectly frictionless and 

rational market, new information should be incorporated simultaneously into the prices of 

similar securities traded in different markets. However, their results show that the price 

discovery process is dominated by the lowest-cost market. 

In order to explore the effects of the first component of transactions costs (the bid-

ask spread) on price discovery we calculate the average of the percentage quoted spreads 

for each day and each instrument. We obtain the percentage spread by dividing the dollar 

quoted spread by the midpoint of the bid and ask quotes. Ates and Wang (2005) show, 

that the ratio of the spreads between the electronic market and floor trading is the only 

significant factor affecting the price discovery process. According to their results, when 

the relative spread increases in one market, its contribution to the price discovery process 



  

14 
 

decreases. In our analysis we employ the ratio of the daily average electronic futures 

spread to the ETF electronic spread to examine price discovery. 

 

1.4.2.2. Trade Impact 

According to the transaction cost hypothesis a second factor that can affect 

information share is the market impact of transactions on prices. Market impact measures 

the percentage of the price variation that can be attributed to trade size, and is determined 

using Hasbrouck’s (2004) sequential-trading-based regression equation. Hasbrouck) 

develops a Markov Chain Monte Carlo (MCMC) based method to assign trade direction 

for floor traded markets. Since bid-ask quotes are available from our electronic markets, 

we classify trade direction by using the methodology introduced by Lee and Ready 

(1991) to obtain a more powerful test than the MCMC method, which is based only on 

inferred spreads from transactions prices.  

We use the following regression model in order to analyze the impact of trades on 

the futures and ETF markets:  

Δmt = ∑ ݍ
ୀ t-j λj vt-j + ut                                  (1.7)                         

where m is the midpoint of the ask and bid quotes, q is the trade direction (which takes 

the value of 1 for buy orders and -1 for sell orders based on the Lee and Ready 

algorithm),12 λ (1x2) is the two element coefficient vector for the impact of these trades, 

which is multiplied by the associated two element vector v: 

                                                      
12 The Lee and Ready (1991) algorithm classifies a trade as a buy (sell) if the trade price is closer to the ask 
(bid). Trades that occur exactly at the mid-quote are classified according to the tick rule of the previous 
trade. In such cases if the trade price is larger (smaller) than the previous price then it is classified as a buy 
(sell). 
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vt-j = [1 √volume]′.                         (1.8) 

where volume is the dollar trade volume of each transaction. Hasbrouck argues that the 

square-root transformation in (8) is motivated by trade-price impact studies in equity 

markets that generally find concavity in the relation.   

 For our information share regression, one of the key explanatory factors is λ, 

which represents the daily ratio of the trade impact values between the futures contract 

and the ETF. As discussed previously, we expect the market with a lower price impact to 

have a higher information share. The ratio λ captures the relative transactions costs of the 

two instruments in terms of the price impact of the trades of these instruments. We expect 

the coefficient to be negative according to the transaction cost hypothesis, since the 

transaction costs and its information share in a given market are negatively correlated. In 

addition, in our regression the ratio of the daily dollar volumes of the instruments 

determines the relative activity of the two instruments. 

1.4.2.3. VNET Market Depth  

We calculate the net directional volume (VNET depth) values in order to measure 

the market depth in the futures and ETF markets, as well as allowing us to examine the 

effect of market depth on information share price discovery in the three inter-related 

markets. VNET (Engle and Lange, 2001) is based on the assumption that price changes 

occur due to the imbalance between buyer and seller initiated trades. Thus, VNET is the 

net directional volume (i.e., the difference between the volume of buyer-initiated volume 

and the volume of seller-initiated volume) causing a given price change over a time 

interval (called the price duration). Engle and Lange (2001) argue that on an ex-post basis 

the VNET measure captures the realized market depth. The formula for VNET is: 
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VNET =|∑qi Voli |                   (1.9) 

where qi is the direction of the trade (1 for buy, -1 for sell) and Voli is the dollar trade 

volume. Engle and Lange (2001) determine VNET by picking price level thresholds in 

order to obtain a daily average number of price durations. Since the price levels of futures 

and ETFs are substantially different, we define the “price duration” as the amount of time 

between 0.5% cumulative price changes.13 In this context, VNET measures the realized 

depth that is associated with a certain percentage price change. For example, when 

market depth is low, a smaller net directional volume is sufficient to change prices 0.5% 

and the VNET value is lower compared to the periods when a higher volume is required 

to move prices. Engle and Russell (1998) show that the expected length of the price 

durations is inversely proportional to volatility. Accordingly, lower VNET values would 

be expected in a time series of a crisis compared to a non-crisis period, whereas a cross-

section of the market with higher depth should have larger VNET values.  

1.4.2.4. Regression Model for the Determinants of Price Discovery 

We examine how liquidity affects the price discovery process by analyzing the 

effects of the ratio of bid-ask spreads, daily dollar volume, trade impact, average dollar 

trade size,14 VNET depth values, and volatility on the information shares of futures and 

ETFs. In order to minimize the effects of microstructure noise (as discussed by Andersen 

and Bollerslev, 1998), we employ a five-minute sampling frequency in order to measure 

the daily volatility in markets, as done by Schlusche (2009). Since the daily volatility in 

                                                      
13 The results are consistent when 0.1% and 0.25% price changes are used for the price durations. 
 
14 O’Hara (1987) argues that informed traders use larger orders compared to uninformed traders. To 
analyze whether relative order sizes affect the price discovery in futures and ETF markets we use the ratio 
of the futures and ETF average dollar trades sizes.   
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both the futures and ETF markets show an extremely high correlation,15 we employ the 

aggregate standard deviations of the futures and corresponding ETFs, which is consistent 

with Andersen and Bollerslev (1998) and Schlusche (2009). The regression equation to 

examine what factors affect information share (IS) is given in (1.10):  

ISt = β0 + β1Rspreadt + β2Rvolumett + β3Volatilityt + β4Rvnett + β5Rtrade_impactst + β6 

Rtrade_sizet             (1.10) 

where Rspread is the ratio of the percentage spreads, Rvnet is the ratio of the VNET 

values, Rvolume is the daily average dollar volume ratio, Rsize is the ratio of the average 

dollar trade sizes, Rtrade value is the ratio of the liquidity coefficients in the futures and 

ETF markets, and volatility is the aggregate of the two market’s volatility on day t, where 

the daily volatility is calculated as the sum-of-squares of the five-minute intraday returns 

(Andersen and Bollerslev, 1998). Each variable in the model employs trade-by-trade data 

to determine the daily value. The t-statistics are calculated using Newey-West corrected 

standard errors to adjust for any potential serial correlation.  

 We also test the effects of the adverse selection component of effective spreads on 

price discovery (Glosten and Harris, 1987; Hendershott, Jones and Menkveld, 2011). The 

adverse selection cost of a spread is calculated as:  

Adv_selectionjt = qjt (mj,t+5min – mj,t)/mj,t         (1.11) 

                                                      
15 Average dollar volume, trade size, percentage spreads and other factors are different in futures and ETF 
markets, but volatility is similar as they follow the same underlying cash or spot market and the ratio is 
almost equal to1. Therefore, instead of using the ratio of volatility, we employ the aggregate value for 
volatility. 
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where qjt is the trade direction indicator, mj,t  is the midpoint of the prevailing quote, 

mj,t+5min is the quote midpoint five minutes after the trade and q takes the value of +1 for 

purchases and -1 for sales.  

 Grammig and Peter (2013) argue that the upper and lower bounds of the 

information share values diverge at higher sampling frequencies. Thus, since we employ 

trade by trade high frequency data, we also execute the regressions given above for the 

ratios of the maximum values and the ratios of the minimum values of the information 

share as a robustness check. 

1.5. Results 

1.5.1. Price Discovery, Liquidity and Market Depth in Futures and ETF Markets 

1.5.1.1. Information Share Results 

We start our empirical analysis by exploring the price discovery process of 

futures, ETFs, and the underlying spot markets. Panel A of Table 1.2 (left columns) 

shows the mean information share values obtained using Hasbrouck’s (1995) model for 

the inter-related futures and ETF instruments. In Panel B we extend the scope of the 

analysis of the inter-related markets, determining the information share values for futures, 

ETFs, and their underlying spot markets.  

The results in both panels show that the price discovery process is dominated by 

futures, both for the pre-crisis and crisis periods. The implication is that informed traders 

engage in futures markets more than in ETFs. The dominance of futures over ETFs is 

most prominent for currency markets. Specifically, the British pound futures possess an 

information share)of 0.983 versus the information share of 0.017 for the British pound 

ETFs during the pre-crisis; for the crisis period the pound futures and ETF information 
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share values are 0.973 and 0.027, respectively. Similarly, the Euro futures possess a large 

information share of 0.963 and a value of 0.037 for the ETFs during the pre-crisis and 

0.941 and 0.059 for the crisis period, respectively. The dominance of futures over the 

ETFs is least prominent for metals: comparing gold futures to the gold ETF shows the 

smallest difference in information shares between the two markets (an information share 

of 0.762 for futures vs. a value of 0.238 for ETFs during the pre-crisis, and values of 

0.731 for futures and 0.269 for the ETF during the crisis). These results show that the 

gold ETF (GLD) attracts more informed trading relative to the currency and equity 

ETFs16.  

Panel B of Table 1.2 reports our information share results for the expanded set of 

inter-related securities of futures, ETFs, and spot markets. These results show that futures 

remain the main venue for price discovery, followed by the spot market, then the ETFs. 

In fact, spot markets have a higher information share than ETFs for all asset classes in 

this study, with these results being consistent for both the pre-crisis and crisis periods.  

Next we analyze the changes in the price discovery shares of these instruments 

during the crisis period. The general conclusion is the information share of the 

(leveraged) futures market declines during the volatile crisis period. We arrive at this 

conclusion for all asset classes when we compare the information share of futures during 

the pre-crisis period with the information share during crisis period in any given row of 

Table 1.2. This pattern is particularly obvious in Panel B when all three instruments are 

                                                      
16Daigler and Padungsaksawasdi (2014) document that gold exhibits a positive risk-return relation, opposite 
to stocks and currencies. The reasoning is that gold “crashes” upward, whereas the stock market crashes 
downward; currencies can have large moves in either direction. They argue that gold is considered a safe 
haven and generally used for hedging purposes. Consequently, ETFs could be suitable for hedgers as they 
are not leveraged and thus less risky than futures markets.  
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analyzed. For example, the E-mini S&P 500 futures information share declines from 

0.722 in the normal period to 0.633 during the crisis period, whereas the information 

share of ETFs and cash indexes increase. Specifically, the information share for the SPY 

ETF increases from 0.081 in the pre-crisis period to 0.136 in the crisis period. Similarly, 

the cash index’s IS increase from 0.157 in the pre-crisis period to 0.231 in the crisis 

period. Thus, the analysis of changes in information share values show that the price 

discovery share of cash indexes and ETFs increase during the crisis period, whereas the 

contribution of the futures correspondingly decline.    

In Table 1.3 we report the information share values for the futures and ETFs in 

our sample for each month during the crisis period. According to these results, the futures 

contracts consistently dominate their ETF pairs during each of the four months. This 

shows that our results are not driven by an extreme value in one month, rather they are 

consistent throughout the crisis period.  

1.5.1.2. Liquidity in the Futures and ETF Markets 

After documenting that futures contracts possess higher information share values 

than the ETFs, we now turn our attention to the study of the determinants of price 

discovery. Here we examine the liquidity of these instruments as a potential determinant 

of the relative information shares. Table 1.4 shows our results for the size of the 

percentage spreads and Hasbrouck’s (2004) sequential trading model on the price impact 

of trades. The first two numerical columns of Table 1.4 report the average percentage 

spreads for the futures and ETFs for the two time periods. The ETFs possess much larger 

percentage spreads than the futures. The next set of columns shows that the trade impact 
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coefficients from the regression are significantly smaller for futures than for ETFs, which 

is consistent with the percentage spread results.  

Brunnermeier and Pedersen (2009) and Chiu et al. (2012) show that the 

borrowing constraints of investors during the crisis period adversely affected liquidity in 

financial markets. The pre-crisis versus crisis comparison of the bid-ask spreads shows 

that the percentage spreads of every instrument in our sample increased during the crisis 

period, which is consistent with the worsening of liquidity in the futures and ETF markets 

during the crisis period. Also, the effect of the trade impact aspect of liquidity for both 

the futures and ETFs deteriorate (become larger) during the crisis period.  

Hasbrouck (2004) argues that the R-squared values for the sequential trading-

based regression model show to what extent traders are informed in one market. In other 

words, the R-squared values in Hasbrouck’s model measure the proportion of price 

changes that originates from the trading activity. Consistent with our information share 

results, the R-square values for the futures contracts are higher than the ETFs, both in the 

pre-crisis and crisis periods. Also during the crisis period trades explain a lesser 

percentage (smaller R-square values) of the price changes for both the futures and ETF 

markets. The last column of the table reports the standard deviations of returns, which 

shows the increased volatility existing during the crisis period. The results for the R-

squared values and standard deviations show the heightened uncertainty in the futures 

and ETF markets during the crisis period. Using the crisis period provides the opportunity 

to analyze how price discovery and other microstructure characteristics of futures and 

ETFs are affected by the increased uncertainty during this period. Previous studies (Ates 

and Wang, 2005; Schlusche, 2009) only employ stable time periods. 
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Table 1.5 continues our examination of liquidity variables as determinates of price 

discovery, employing variables such as the average bid-ask quote sizes and the trade sizes 

of the futures and ETFs. Consistent with our liquidity analysis in Table 1.4, these results 

show that both the average bid-ask quote sizes and the trade sizes decline during the 

crisis. The decline in the liquidity of futures and ETFs in terms of increased trade impact, 

increased percentage spread, wider quotes, and lower trade sizes during the financial 

crisis shows the different adverse effects of the crisis on the futures and ETF markets. 

Thus, the volatility and liquidity results show that the pre-crisis and crisis periods provide 

an interesting environment to examine the effects of decreased liquidity and increased 

volatility on the price discovery process between futures and ETFs.  

1.5.1.3. Market VNET Depth in Futures and ETF Markets 

In Table 1.6 we report the average daily dollar volume and the average VNET 

depth, where VNET is the dollar volume needed to change prices by 0.5%. The higher 

the VNET, the deeper and more liquid the markets. We first discuss the levels of VNET 

followed by the changes in VNET. The dollar VNET values for the futures are much 

higher than the VNET values for the ETFs, with currency futures showing the largest 

difference – especially during the crisis period.17 As Hasbrouck (2004) states, there are 

several other venues for currency trading (e.g., the interbank market), which could be the 

reason why currency ETFs exhibit less VNET depth values compared to other ETFs in 

our sample. Comparatively, relative to the other futures contracts, higher net directional 

dollar volumes (VNET) are required to change the prices of stock index ETFs. The larger 

VNETs for the stock index ETFs during the crisis is consistent with the increased 
                                                      

17 During the crisis period of 2008 those trading currencies turned from the interbank market to the futures 
market to avoid the credit risk of money center banks during this time period. 
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popularity and volume of the ETFs during this time period, as discussed in the 

introduction. 

Next we discuss changes in VNET from the pre-crisis period to the crisis period. 

During the crisis period there were a large number of 0.5% price changes compared to the 

pre-crisis period for all the asset classes in our sample. Moreover, the price durations (the 

length of the time interval when a 0.5% price change occurred) are much shorter during 

the crisis period (not shown here). For example, during the first quarter of 2007 there 

were 64 price durations for the e-mini S&P 500 futures, whereas in the last quarter of 

2008 more than 3,000 0.5% price changes occurred for the same futures contract. Thus, 

in normal times the net directional dollar volume (VNET) needed for the futures 

contracts to change 0.5% is substantially less. However, the VNET results for the ETFs 

show that average VNET values for the ETFs are actually higher during the crisis period 

compared to the pre-crisis period. Consequently, changes in the daily trading volume 

during the crisis shows that a similar pattern occurs between the futures and ETFs, since 

the daily trading volumes of the ETFs are actually higher during the crisis period relative 

to the pre-crisis period.  

Overall, our results show that one important development during the crisis period 

was the worsening of the market depth of futures markets (as measured by VNET). In 

contrast, the realized depth for ETFs improved.  

1.5.1.4. Discussion of the Information Share, Liquidity, and Market Depth Results 

 The results reported above show that futures contracts are more liquid and possess 

larger information shares and market depth compared to the ETFs. These results are 

consistent with the transactions cost and leverage hypotheses, as the more liquid and 



  

24 
 

leveraged futures market dominates the price discovery process. Our analysis for the 

crisis period shows that high volatility affects futures and ETF markets in terms of price 

discovery, liquidity and market depth.   

 We documented that both the average daily dollar trading volume and the VNET 

values of the ETFs increased during the crisis period, whereas both trading volume and 

VNET values of futures contracts declined. The liquidity measures of the percentage 

spread and trade impacts highlight the adverse effect of high volatility on the liquidity of 

both futures and ETF markets. 

 The significantly different information share results for futures and ETFs for the 

pre-crisis period versus the crisis period shows that the relative price discovery in futures 

and ETFs was significantly affected by the 2008 financial crisis. Thus, although futures 

dominate the price discovery process in both time periods, the information shares of 

ETFs increased (the information shares of futures declined) during the crisis period.  In 

the next section our goal is to explore the factors that significantly affect the day-to-day 

variation in information share values of futures and ETFs. 

1.5.2. The Determinants of Price Discovery 

Using the information shares of futures contracts as the dependent variable, we 

test the impact of relative liquidity using the ratios of percentage spreads and of trade 

impacts, market depth (VNET), informed trading (average trade size and the adverse 

selection component of effective spreads), and aggregate volatility on price discovery. In 

Tables 1.7 and 1.8 we document our regression results for these potential determinants of 

price discovery. Unlike previous studies (Ates and Wang 2005; Schlusche 2009) that find 

only one factor as significant, our results in Table 1.7 show that the coefficients for 
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volatility and the ratio of percentage spreads are significantly negative for explaining 

information shares. Thus, when the ratio of the percentage spreads of the futures to the 

ETFs decreases (i.e., the futures spreads become smaller relative to the ETF spreads), 

then the information share of the futures markets increases, and vice-versa. This result is 

consistent with the transaction cost hypothesis. Moreover, our results show that volatility 

also affects the information shares of futures and ETFs. This finding means that the 

information shares of the leveraged futures markets decline and the information shares of 

ETFs increase during more volatile time periods. Other variables in our model (such as 

the ratio of depth, trade impact, and average trade size) are not significant factors. Thus, 

our results show that only the percentage spread and volatility significantly affect price 

discovery for both the pre-crisis and crisis periods. These results support the transaction 

cost hypothesis. Moreover, our price discovery results show that the first component of 

transaction costs (namely the spread, Fleming, Ostdiek, and Whaley, 1996), is the most 

important measure of liquidity. Consequently, we find that during periods of high 

volatility the futures information shares decline, although futures still dominate the price 

discovery process. Table 1.8 employs the ratios of the adverse selection costs in futures 

and ETF markets in place of the average trade sizes. Similar to our findings in Table 1.7, 

Table 1.8 shows that the ratio of the spreads and the aggregate volatility are the only two 

significant factors affecting the price discovery process.  

One potential issue with our results is the use of high frequency data to examine 

the information share. In particular, Grammig and Peter (2013) state that at higher 

sampling frequencies, such as five and ten minutes, the upper and lower bounds of the 
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information share values diverge. Since we employ trade by trade data in our analysis we 

test the robustness of our results by re-examining the information shares by separately 

testing the minimum values in Table 1.9. We report our regression results for the 

determinants of price discovery using the ratios of the minimum values of the daily 

information shares of the futures relative to the ETF as the dependent variable. Our 

results are similar to the findings we document in Tables 1.7 and 1.8. These results also 

show that when the aggregate volatility in futures and ETF markets increases, the 

information share of futures markets declines. Moreover, the relative liquidity in one 

market is inversely related to its information share. Table 10 documents the results for the 

ratios of the maximum values of the information shares. Consistent with previous results 

we find that the relative liquidity and volatility variables are significant variables that 

affect price discovery. Overall, our results are robust, whether we employ the mean, 

maximum, or minimum values of the information shares.  

1.6. Conclusion  

 Two of the most important functions of a financial market are to provide price 

discovery and liquidity (O’Hara 1987). The price discovery and liquidity characteristics 

of futures markets have received limited attention compared to equity markets. 

Historically, the key reason for this dearth of futures microstructure studies was the lack 

of bid-ask quote data, since such data is not available for floor trading transactions that 

dominated futures trading until recently. Alternatively, electronic exchanges gather such 

information. In addition, we compare the price discovery and liquidity characteristics of 

ETFs to futures contracts.  
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Using electronic quote and transaction data for futures and ETFs we analyze the 

price discovery processes for five different instruments during a normal and a volatile 

time period. We find that the futures dominate the price discovery processes during both 

the volatile financial crisis and the pre-crisis periods.  

We also examine the liquidity characteristics of the futures and ETFs in our 

sample in terms of percentage spreads and the price impact of large trades. We find that 

currency futures are the most liquid contracts among futures, with gold being the least 

liquid contract. Alternatively, currency ETFs are the least liquid and equity ETFs are the 

most liquid among the ETFs. The lack of liquidity for currencies is consistent with the 

other venues of currency trading that exist, as well as the relative lack of interest in 

currency trading by individual investors compared to equities. Our results also show that 

the liquidity of both futures and ETFs decline during the crisis.  

Our analysis on volume and realized market depth documents the adverse effects 

of a financial crisis on futures markets. Compared to the pre-crisis period both the daily 

dollar volume and market depth (as measured by VNET) declined in the futures market 

during the crisis. Alternatively, these measures are higher for the ETFs for the crisis, 

showing the increased interest from traders for these financial instruments during this 

time period (see Alexander and Barbosa, 2009, for their discussion of ETFs).  

We investigate whether these liquidity changes affect price discovery in futures 

and ETF markets by regressing the information shares on these instruments’ ratio of the 

bid-ask spread, the average trade size, dollar volume, the trade impact on prices, and 

aggregate volatility. The regression results support the transaction cost hypothesis in 

terms of the importance of the relative bid-ask spread. Moreover, our results show that 
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volatility is another significant factor that affects the price discovery process between 

futures and ETF markets. Consistent with Kyle and Obhizhaeva’s (2011) market 

microstructure invariance theorem, the determinants on price discovery are the same two 

factors for currency, stock index and gold futures, as well as their corresponding ETFs.  

 Future research projects could extend this paper to include options market data, 

where options on futures and options on ETFs are employed as underlying instruments. 

The results would determine the contribution of options to price discovery and how their 

contribution changes based on different market conditions. 
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     Table 1.1 – Panel A  

     Futures Contract Specifications 
 
Contract E-mini S&P 500 E-mini Nasdaq 100 Gold 

Symbol ES NQ GL 

Related ETF SPY QQQ GLD 

Tick Size $0.25 $0.25---------------------- $0.1 

Contract Size $50 x index price $20 x index price 100 troy oz 

Expiration Months Mar,Jun,Sep,Dec Mar,Jun,Sep,Dec Feb,Apr,Jun,Aug,Oct,Dec 

Price Quoted in Index points Index points $/oz 
    

Contract British pound Euro 

Symbol M6B M6E 

Related ETF FXB FXE 

Tick Size $0.0001 USD/GBP $0.0001 USD/Euro 

Contract Size 6,250 British pounds 125,000 Euros 

Expiration Months Mar,Jun,Sep,Dec Mar,Jun,Sep,Dec 

Price Quoted in USD/GBP USD/EUR 

   
 

    Table 1.1 – Panel B  

    ETF Definitions 
 Definition 
SPY Provide investment results that correspond to the price and divident performance of the S&P  

500 Index. 
QQQ Provides investment results that correspond to the price and dividend performance of the Nasdaq 

100 Index. 
GLD Replicate the performance of the price of gold bullion. 

FXE Tracks the price of the Euro. 

FXB Tracks the price of the British pound. 

  

Panel A reports the specifications of the futures contracts. Contracts are traded electronically on the Chicago 
Mercantile Exchange’s GLOBEX electronic trading platform. Panel B provides the definitions of the ETFs. 
Unlike the futures in our sample, these ETFs are not leveraged. All ETF performances are net of expenses. 
Source: The CMEX website. 
 

 

 

 

 

 



  

30 
 

      
        
      Table 1.2 
     Information Shares of Futures, ETFs, and Related Cash Markets 

Panel A   Panel B   

Instrument Pre-Crisis Crisis Instrument Pre-Crisis Crisis 

E-mini S&P 
500 

0.879 0.857** E-mini S&P 500 0.722 0.633** 

SPY ETF 0.121 0.143** SPY ETF 0.081 0.136** 

  
Cash Index 0.157 0.231** 

E-mini 
NASDAQ 100 

0.894 0.849** 
E-mini  
NASDAQ 100 

0.770 0.661** 

QQQ ETF 0.106 0.151** QQQ ETF 0.108 0.130** 

 
NASDAQ 100 
Cash Index 

0.112 0.209** 

Euro Futures 0.963 0.941* Euro Futures 0.609 0.547* 

FXE ETF 0.037 0.059* FXE ETF 0.110 0.152* 

Euro Spot 0.281 0.351* 

British Pound 
Futures 

0.983 0.973* 
British Pound 
Futures 

0.614 0.602* 

FXB ETF 0.017 0.027* FXB ETF 0.030 0.071* 
British Pound  
S t

0.356 0.327* 

Gold Futures 0.762 0.731** 
 

GLD ETF 0.238 0.269**  
Panel A of this table (left columns) reports the Hasbrouck (1995) information share values for the futures 
and ETFs in our sample. Panel B (right columns) report the results for our three-way analysis of futures, 
ETFs, and spot markets. The pre-crisis period covers January-March 2007 and the crisis period covers 
September-December 2008. The data source is CQG database for futures and TAQ for ETFs. The 
notations * and ** refer to the significance of the difference between the crisis and pre-crisis periods at the 
5% and 1% levels, respectively. 
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      Table 1.3 
Crisis Period Monthly Information Share Values of Futures and ETFs 

Instrument       September October November December 

E-mini S&P 500 0.864 0.842 0.847 0.876 

SPY ETF 0.136 0.158 0.153 0.124 

   

 

E-mini NASDAQ 
100 

0.858 0.832 0.827 0.879 

QQQ ETF 0.142 0.168 0.173 0.121 

  

 

Euro Futures 0.962 0.921 0.933 0.947 

FXE ETF 0.038 0.079 0.077 0.053 

 

 

British Pound 
Futures 

0.982 0.960 0.977 0.974 

FXB ETF 0.018 0.040 0.023 0.026 

Gold Futures 0.741 0.725 0.719 0.747 

 GLD ETF 0.059 0.075 0.081 0.053 

This table reports the Hasbrouck (1995) monthly information share values for the futures and ETFs in our 
sample during the crisis period (September-December 2008). The data source is CQG database for futures 
and TAQ for ETFs. 
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Table 1.4 
Liquidity and Volatility Measures of Futures and ETFs during the Pre-Crisis and Crisis Periods 

 
    

Average Percentage Spread Trade Impact Coefficients R-sq     St. Deviation of Returns
Trade Direction Trade Volume 

Contract Pre-Crisis Crisis Pre-Crisis Crisis Pre-Crisis Crisis Pre-Crisis Crisis Pre-Crisis Crisis

S&P 500 Futures 0.011 0.02 0.41 0.98 0.10 0.12 41% 31% 1.12 2.54

SPY ETF 0.018 0.04 0.54 1.32 0.23 0.36 10%  1% 0.89 2.03

NASDAQ Futures 0.013 0.02 0.53 1.11 0.09 0.12 34% 30% 1.23 2.77

QQQ ETF 0.028 0.06 0.82 1.52 0.11 0.13 08% 01% 1.21 2.59

Gold Futures 0.023 0.04 0.81 1.24 0.14 0.18 25% 22% 1.61 2.91

GLD ETF 0.088 0.20 1.14 2.05 0.51 0.92 07% 01% 1.31 2.88

Euro Futures 0.006 0.01 0.23 0.33 0.04 0.05 49% 42% 0.22 1.58

FXE ETF 0.312 0.39 3.30 4.20 0.93 1.17 01% 01% 1.47 2.23

Brit. Pound Futures 0.008 0.01 0.34 0.43 0.06 0.09 45% 43% 0.16 0.58

FXB ETF 0.366 0.72 2.20 4.42 0.86 1.46 02% 01% 1.70 2.70

This table reports the spreads and trade impact coefficients. Higher values for the trade impact coefficients are associated with lower liquidity. Trade impacts 
are analyzed using Δmt = ∑ 

ୀ t-j λjvt-j + ut  where λj = (λj,intercept  λj,slope)  ,  vt-j = [1 √volume], Δmt is the change in the efficient price; the R2 value of this 
regression model provides the price variation that is attributable to the trades. Trade direction λj,intercept and trade volume λj,slope impact coefficients are 
multiplied by 10,000, where trade direction (q) is equal to +1 for buy orders and -1 for sell orders. The pre-crisis period covers January-March 2007 and 
crisis period covers September-December 2008. The data source is CQG database for futures and TAQ for ETFs. 
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Table 1.5 
Bid-Ask and Trade Sizes 

  

  

Contract    Average Bid Size Average Ask Size         Average Trade Size Average Dollar Trade Size

          Pre-Crisis Crisis Pre-Crisis Crisis Pre-Crisis Crisis Pre-Crisi Crisis

S&P 500 599.63 151.28 601.37 150.90 17.88 7.48 1,277,242 390,996

SPY ETF 318.61 72.77 303.35 77.22 8.99 4.31 129,467 38,694

NASDAQ 100 67.24 17.42 66.47 17.98 29.31 16.53 1,468,526 572,826

QQQ ETF 2006.52 462.94 1968.65 467.26 20.96 6.96 82,891 23,706

Gold Futures 6.51 3.91 6.36 3.97 4.37 2.68 294,748 207,240

GLD ETF 111.79 23.43 111.90 23.67 6.59 2.79 42,595 21,207

Euro Futures 16.58 12.39 17.64 12.06 5.63 2.59 1,008,617 417,621

FXE ETF 43.80 35.37 48.55 37.92 5.39 3.18 67,903 44,527

British Pound 
Futures 12.35 10.07 14.27 10.45 4.17 2.31 874,971 342,843

FXB ETF 23.18 21.28 27.92 21.38 4.38 2.87 84,713 51,947
This table provides the average quote and trades sizes. The values for ETFs are reported in lots where one lot is equal to one hundred shares. Average 
dollar trade volumes of transactions are reported in the last two columns. The pre-crisis period covers January-March 2007 and crisis period covers 
September-December 2008. The data source is CQG database for futures and TAQ for ETFs. 
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Table 1.6 

VNET Market Depth Values 
 

Contract 
Daily Avg. Dollar 

Volume (in billions) 
Average VNET (in 

thousands) 
       Number of  Price 

Durations

Pre-Crisis 
  

Crisis Pre-Crisis 
  

Crisis   Pre-Crisis Crisis 

S&P 500 73.211 56.493 3,596.502 640.391 56 3,131 

SPY ETF 13.656 41.945 304.617 463.805 64 3,322 

NASDAQ 
100 21.464 19.399 2,817.432 582.662 77 3,361 

QQQ ETF 3.342 7.818 243.256 359.186 61 3,652 

Gold 
Futures 1.643 1.420 321.717 258.644 159 516 

GLD ETF 0.371 1.343 142.216 160.259 127 492 

Euro Futures 16.824 14.211 4,913.213 573.463 128 623 
FXE ETF 0.011 0.103 42.916 89.666 164 782 

British 
Pound 
Futures 14.345 11.853 4,214.215 549.713 133 741 

FXB ETF 0.002 0.015 21.739 46.095 179 932 
This table reports the daily average dollar volume market depth of futures contracts and ETFs as measured 
by VNET. Average VNET values show the average net directional dollar volume needed that leads to a 
0.5% price change. Every interval where a 0.5% price change occurs is defined as a price duration. VNET 
values are calculated using the formula: VNET=Σ|qiVoli|, where “q” is the trade direction and “Vol” is the 
volume traded. Larger VNET values are associated with higher market depth, which means it takes greater 
net directional volume to change the price. The number of price durations is inversely related to market 
liquidity. The pre-crisis period covers January-March 2007 and crisis period covers September-December 
2008. The data source is CQG database for futures and  and TAQ for ETFs. 
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Table 1.7  
Determinants of Price Discovery 

Panel A: Full Sample      

 
 

E-Mini S&P 500 
E-mini NASDAQ 

100 
Euro British Pound Gold 

Ratio of 
Spreads 

-1.60 -1.71 -0. 44 -0.37 -1.41 

(-7.71) (-7.67) (-4.87) (-4.74) (-5.84) 

Volume -0.35 -0.31 -0.19 -0.83 -0.19 

(-0.57) (-0.69) (-0.10) (-0.88) (-0.13) 

Volatility -2.33 -1.91 -1.51 -0.65 -1.24 

(-8.16) (-7.14) (-4.43) (-3.74) (-4.25) 

VNET -0.08 0.12 -0.29 -0.28 -0.31 

(-0.03) (-0.05) (-0.08) (-0.07) (-0.11) 

Trade Impact 0.25 0.48 -0.11 0.27 0.52 

(-0.04) (0.16) (-0.07) (0.09) (0.05) 

Trade Size 0.19 -0.24 0.13 -0.52 -0.20 

(0.12) (-0.19) (-0.15) (-0.13) (-0.19) 

Dummy 2.81 3.14 2.24 1.63 1.03 

(-2.44) (-2.51) (-2.36) (-2.49) (-2.33) 

Adjusted R-sq 27% 28% 23% 25% 17% 

 

Panel B: Pre-Crisis 

Ratio of  
Spreads 

-1.43 -1.51 -0.89 -0.78 -1.33 

(-7.24) (-7.49) (-5.96) (-5.24) (-6.77) 

Volume 0.26 0.36 0.79 -0.40 -0.58 

(-0.22) (-0.27) (-0.41) (-0.33) (-0.38) 

Volatility -2.27 -1.43 -1.29 -0.92 -1.42 

(-5.17) (-4.11) (-3.16) (-3.01) (-3.74) 

VNET -0.12 -0.19 -0.12 -0.61 -0.83 

(-0.04) (-0.07) (-0.13) (-0.25) (-0.31) 

Trade Impact 0.42 0.73 -0.66 0.17 0.74 

(-0.15) (-0.64) (-0.73) (-0.05) (-0.54) 

Trade Size -0.26 -0.67 0.42 0.38 0.73 

 (0.13) (-0.22) (0.13) (0.08) (0.25) 

Adjusted R-sq 27% 22% 24% 21% 16% 
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Panel C: Crisis Period 

E-Mini S&P 500 E-mini NASDAQ 100 Euro British Pound Gold

 

Ratio of 
Spreads 

-1.96 -1.83 -0.54 -0.47 -1.33

(-9.26) (-9.43) (-6.35) (-5.45) (-7.12)
Volume -0.18 -0.13 -0.27 -0.15 -0.41

(-0.49) (-0.45) (-0.65) (-0.48) (-0.66)
Volatility -2.14 -1.66 -1.14 -1.33 -1.06

(-7.41) (-6.32) (-4.29) (-5.42) (-4.02)
VNET -0.11 -0.29 -0.51 -0.46 -0.39

(-0.05) (-0.07) (-0.20) (-0.18) (-0.15)
Trade Impact -0.33 -0.21 -0.77 -0.29 -0.67

(-0.08) (-0.13) (-0.19) (-0.14) (-0.16)
Trade Size -0.61 -0.44 -0.53 -0.26 -0.69

(-0.84) (-0.55) (-0.67) (-0.18) (-0.91)
Adjusted R-sq 29% 25% 17% 21% 18%

This table reports the OLS regression results for futures contracts information share on the spread, volume, 
trade size, trade impact coefficients, volatility and VNET market depth values. Every variable in the model 
(except volatility) is calculated using the ratio of daily values from the futures and ETFs. The model we use 
can be represented as: ISt = β0 + β1Spreadt + β2Volumet + β3Volatilityt + β4Vnett + β5Trade_impactst + 
β6Trade_sizet, where spread is the ratio of percentage spreads, Vnet is the ratio of Vnet values, Volume is 
the total dollar trading volume ratio, Size is the ratio of the average trade sizes, and Trade Impact is the ratio 
of the liquidity coefficients for futures and ETFs. Volatility is the sum of the two markets’ volatility on day 
t, where the daily volatility is calculated as the sum of squares of the 5-minute intraday returns (Andersen & 
Bollerslev, 1998). We obtain the percentage spread by dividing the dollar spread by the midpoint of the bid 
and ask prices. Every variable in the model is calculated for each day and the information shares of the 
futures are regressed on these variables. T-values are reported in parentheses. Coefficients and t-values in 
bold values are significant at the 5% level. The t-statistics are calculated using Newey-West, which corrects 
standard errors to adjust for any potential serial correlation. 
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Table 1.8  
Determinants of Price Discovery with Adverse Selection Cost 

Panel A: Full Sample      

 
 

E-Mini S&P 500 
E-mini NASDAQ 

100 
Euro British Pound Gold 

Ratio of 
Spreads 

-1.58 -1.75 -0. 49 -0.41 -1.53 

(-7.43) (-7.24) (-4.85) (-4.61) (-5.43) 

Volume -0.34 -0.31 -0.24 -0.74 -0.23 

(-0.55) (-0.69) (-0.11) (-0.79) (-0.16) 

Volatility -2.31 -1.93 -1.54 -0.63 -1.22 

(-8.16) (-7.14) (-4.39) (-3.69) (-4.21) 

VNET -0.11 -0.12 -0.29 -0.28 -0.31 

(-0.04) (-0.05) (-0.08) (-0.07) (-0.11) 

Trade Impact 0.22 0.48 -0.11 0.27 0.52 

(-0.04) (0.16) (-0.07) (0.09) (0.05) 

Adverse 
Selection Cost 

0.64 0.37 0.29 0.57 0.83 

(0.87) (0.64) (0.79) (0.63) (0.72) 

Dummy -2.79 -3.14 -2.25 -1.66 -1.02 

(-2.38) (-2.48) (-2.31) (-2.46) (-2.31) 

Adjusted R-sq 26% 28% 22% 24% 17% 

 

Panel B: Pre-Crisis 

Ratio of  
Spreads 

-1.38 -1.53 -0.89 -0.79 -1.21 

(-7.18) (-7.42) (-5.96) (-5.21) (-6.72) 

Volume 0.27 0.35 0.71 -0.45 -0.55 

(-0.23) (-0.25) (-0.40) (-0.35) (-0.34) 

Volatility -2.29 -1.45 -1.26 -0.98 -1.38 

(-5.15) (-4.10) (-3.11) (-2.97) (-3.68) 

VNET -0.13 -0.16 -0.14 -0.63 -0.81 

(-0.05) (-0.09) (-0.11) (-0.23) (-0.29) 

Trade Impact 0.40 0.75 -0.63 0.20 0.71 

(-0.17) (-0.62) (-0.76) (-0.05) (-0.52) 

Adverse Cost 0.53 0.38 0.48 0.73 0.62 

 (0.54) (0.71) (0.65) (0.71) (0.82) 

Adjusted R-sq 26% 21% 25% 23% 15% 
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Panel C: Crisis Period 

    

E-Mini S&P 500 E-mini NASDAQ 100 Euro British Pound Gold

 

Ratio of 
Spreads 

-1.93 -1.86 -0.57 -0.49 -1.31

(-9.21) (-9.38) (-6.31) (-5.42) (-7.06)
Volume -0.17 -0.16 -0.29 -0.17 -0.40

(-0.45) (-0.43) (-0.63) (-0.43) (-0.68)
Volatility -2.11 -1.62 -1.17 -1.29 -1.03

(-7.29) (-6.25) (-4.25) (-5.22) (-4.01)
VNET -0.12 -0.27 -0.53 -0.48 -0.37

(-0.06) (-0.09) (-0.18) (-0.19) (-0.13)
Trade Impact -0.32 -0.22 -0.75 -0.28 -0.64

(-0.08) (-0.12) (-0.22) (-0.15) (-0.18)
Adverse Cost 0.61 0.65 0.43 0.56 -0.69

(0.84) (0.71) (0.82) (0.77) (-0.91)
Adjusted R-sq 28% 24% 19% 20% 19%

This table reports the OLS regression results using the adverse selection component of effective spread 
instead of average trade sizes employed in Table 6. Every variable in the model (except volatility) is 
calculated using the ratio of daily values from the futures and ETFs. The model we use can be represented 
as: ISt = β0 + β1Spreadt + β2Volumet + β3Volatilityt + β4Vnett + β5Trade_impactst + β6Adverse_costt, where 
spread is the ratio of percentage spreads, Vnet is the ratio of Vnet values, Volume is the total dollar trading 
volume ratio, Adverse is the adverse selection cost component of effective spreads, and Trade Impact is the 
ratio of the liquidity coefficients for futures and ETFs. Volatility is the sum of the two markets’ volatility on 
day t, where the daily volatility is calculated as the sum of squares of the 5-minute intraday returns 
(Andersen & Bollerslev, 1998). We obtain the percentage spread by dividing the dollar spread by the 
midpoint of the bid and ask prices. Every variable in the model is calculated for each day and the 
information shares of the futures are regressed on these variables. T-values are reported in parentheses. 
Coefficients and t-values in bold values are significant at the 5% level. The t-statistics are calculated using 
Newey-West, which corrects standard errors to adjust for any potential serial correlation. 
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Table 1.9 
Determinants of Price Discovery Using Minimum Values of the Information Shares 

 

 
 

E-Mini S&P 500 
E-mini NASDAQ 

100 
Euro British Pound Gold 

Ratio of 
Spreads 

-1.45 -1.59 -0.52 -0.45 -1.22 

(-7.32) (-7.41) (-4.46) (-4.51) (-5.79) 

Volume -0.39 -0.51 -0.16 -0.73 -0.17 

(-0.47) (-0.34) (-0.13) (-0.92) (-0.15) 

Volatility -2.44 -1.82 -1.62 -0.65 -1.21 

(-8.06) (-6.89) (-4.43) (-3.74) (-4.21) 

VNET -0.12 -0.18 -0.22 -0.24 -0.22 

(-0.03) (-0.04) (-0.08) (-0.05) (-0.12) 

Trade Impact -0.22 -0.54 -0.13 -0.33 -0.44 

-0.16 -0.16 0.07 -0.12 -0.07 

Adverse Cost -0.19 -0.24 -0.11 -0.47 -0.23 

(-0.12) (-0.19) (-0.15) (-0.16) (-0.17) 

Dummy -2.73 -2.92 -2.14 -1.59 -1.26 

(-2.29) (-2.41) (-2.36) (-2.49) (-2.29) 

Adjusted R-sq 26% 25% 23% 24% 14% 

This table reports the OLS regression results using the daily ratio of the minimum values of the information 
share as the dependent variable (rather than the mean values of the information shares employed in Table 7). 
Every variable in the model (except volatility) is calculated using the ratio of daily values from the futures 
and ETFs. The model we use can be represented as: ISt = β0 + β1Spreadt + β2Volumet + β3Volatilityt + 
β4Vnett + β5Trade_impactst + β6Adverse_costt, where spread is the ratio of the percentage spreads, Vnet is 
the ratio of Vnet values, Volume is the total dollar trading volume ratio, Adverse is the adverse selection 
cost component of the effective spreads, and Trade Impact is the ratio of the liquidity coefficients for futures 
and ETFs. Volatility is the sum of the two markets’ volatility on day t, where the daily volatility is calculated 
as the sum of squares of the 5-minute intraday returns (Andersen & Bollerslev, 1998). We obtain the 
percentage spread by dividing the dollar spread by the midpoint of the bid and ask prices. Every variable in 
the model is calculated for each day and the information shares of the futures are regressed on these 
variables. T-values are reported in parentheses. Coefficients and t-values in bold are significant at the 5% 
level. The t-statistics are calculated using Newey-West, which corrects standard errors to adjust for any 
potential serial correlation. 
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Table 1.10  
Determinants of Price Discovery Using Maximum Values of the Information Shares 

 

 
 

E-Mini S&P 500 
E-mini NASDAQ 

100 
Euro British Pound Gold 

Ratio of 
Spreads 

-1.51 -1.48 -0.49 -0.42 -1.16 

(-7.39) (-7.22) (-4.48) (-4.54) (-5.92) 

Volume -0.44 -0.56 -0.23 -0.66 -0.21 

(-0.38) (-0.41) (-0.09) (-0.86) (-0.16) 

Volatility -2.38 -1.76 -1.69 -0.71 -1.17 

(-7.95) (-6.77) (-4.51) (-3.88) (-4.16) 

VNET -0.16 -0.22 -0.17 -0.28 -0.16 

(-0.04) (-0.08) (-0.07) (-0.09) (-0.13) 

Trade Impact -0.26 -0.33 -0.46 -0.33 -0.44 

-0.19 -0.33 -0.31 -0.41 -0.17 

Adverse Cost -0.11 -0.28 -0.17 -0.37 -0.12 

(-0.17) (-0.24) (-0.20) (-0.15) (-0.17) 

Dummy -2.73 -2.86 -2.03 -1.63 -1.33 

(-2.29) (-2.47) (-2.26) (-2.41) (-2.15) 

Adjusted R-sq 27% 25% 22% 22% 13% 

This table reports the OLS regression results using the daily ratio of the maximum values of the information 
share as the dependent variable (rather than the mean values of the information shares employed in Table 7. 
Every variable in the model (except volatility) is calculated using the ratio of daily values from the futures 
and ETFs. The model we use can be represented as: ISt = β0 + β1Spreadt + β2Volumet + β3Volatilityt + 
β4Vnett + β5Trade_impactst + β6Adverse_costt, where spread is the ratio of the percentage spreads, Vnet is 
the ratio of Vnet values, Volume is the total dollar trading volume ratio, Adverse is the adverse selection 
cost component of the effective spreads, and Trade Impact is the ratio of the liquidity coefficients for futures 
and ETFs. Volatility is the sum of the two markets’ volatility on day t, where the daily volatility is calculated 
as the sum of squares of the 5-minute intraday returns (Andersen & Bollerslev, 1998). We obtain the 
percentage spread by dividing the dollar spread by the midpoint of the bid and ask prices. Every variable in 
the model is calculated for each day and the information shares of the futures are regressed on these 
variables. T-values are reported in parentheses. Coefficients and t-values in bold values are significant at the 
5% level. The t-statistics are calculated using Newey-West, which corrects standard errors to adjust for any 
potential serial correlation. 
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CHAPTER 2: THE RESILIENCY OF LARGE TRADES FOR U.S. ELECTRONIC 
FUTURES MARKETS 

2.1. Introduction 

 Market liquidity is considered to be the most important criterion for evaluating 

market quality (Clemons and Weber 1992). Kyle (1985) identifies three components of 

market liquidity: bid–ask spread, depth, and resiliency. Bid–ask spread measures the 

difference between the prices at which the dealer is willing to buy and sell the instrument. 

Depth is defined as the size of the order flow required to change prices. Resiliency is the 

speed that prices return to equilibrium following a large trade. Thus, resilient markets are 

those where the price effects of large trades are small and short-lived. In this respect, 

resiliency is the time dimension of liquidity.  

 Resiliency is an important aspect of liquidity affecting trading strategies and 

investor performance. Traders prefer resilient markets, as transaction costs increase when 

the market is not resilient. Obizhaeva and Wang (2005) and Alfonsi, Fruth, and Schied 

(2005) argue that an optimal trading strategy, one which minimizes execution costs, 

depends on the resiliency of an investor’s book. Regulators and exchanges both have an 

interest in more resilient markets, whose lower transaction costs attract more investors, 

increasing exchange profits and helping to prevent price manipulations. 

 Despite its importance, the resiliency of U.S. electronic futures markets has not 

been analyzed in previous studies (since actual bid-ask prices were not available for floor 

trading), causing existing literature to focus on the resiliency of U.S. equity markets. My 

study contributes to the literature in the following ways: 1) For the first time, the 
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resiliency of U.S. electronic futures markets is examined; 2) Changes in market resiliency 

are investigated over types of markets by comparing the resiliency of U.S. futures 

markets in pre-crisis versus crisis periods; and 3) By using different asset classes, the 

study is able to assess the resiliency of a wide spectrum of futures contracts.  

 My results show that markets are more resilient when they are less volatile. 

Moreover, different types of assets show different resiliencies. In particular, according to 

our results, currency futures are more resilient than the equity index and gold futures. 

Markets also respond differently to large buy and sell orders during a volatile period, 

when large sell trade effects outweigh those of large buy trades. 

2.2. Literature Review 

 Numerous studies analyze the effects of large trades on stock price behavior. 

These studies document that the price impacts of large trades are larger than the price 

impacts of smaller trades. Although these pioneering studies establish the importance of 

“resiliency” i.e. the time dimension of liquidity in microstructure literature, they majorly 

focus on the equity market. Thus, “resiliency” as a fundamental measure of market 

quality/liquidity can be better understood by examining an asset market other than equity.  

Our study adds to this very nascent literature on “resiliency” by examining several assets 

in the US futures market. This will also help shed more light on the connection between 

various aspects of market quality namely spread, depth and resiliency. 

 For example, Easley and O’Hara (1987) theoretically and empirically show that 

large trades affect stock prices more than small trades because large trades contain 

private information. Hasbrouck (1991) finds that large trades in stock markets contain 
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information and thus their bid–ask spreads are wider for large trades. Lee, Mucklow, and 

Ready (1993) document that in equity market the bid–ask spreads widen and depths 

decline after large trades. Lee and Radhakrishna (2000) document that a majority of 

institutional trades in equity markets are indeed large trades. Koski and Michaely (2000) 

show that liquidity suppliers in equity markets adjust bid–ask spreads when they face 

adverse selection risk. Similar effects of large trades on equity markets are documented 

empirically by Kraus and Stoll 1972; Holthausen, Leftwich, and Mayers 1987, 1990; 

Gemmill 1996; and Keim and Madhavan 1996.  

 Saar (2001) theoretically shows that the price impact of trades depends on 

economic conditions. Chiyachantana, et al. (2004) empirically supports the theoretical 

model of Saar (2001), arguing that institutional traders pay for liquidity when they sell in 

declining markets or buy in rising markets.  

 Subrahmanyam (1991) and Gorton and Pennacchi (1993) theoretically prove that 

individual, equity-specific private information is negligible for futures and other types of 

basket securities. However, Fleming, Ostdiek, and Whaley (1996) state that futures 

markets attract informed traders, because of their low transaction costs and leverage. In 

fact, their empirical results show that futures prices incorporate new information faster 

than index and option prices. They argue that futures prices lead other markets because 

informed traders prefer to trade in this market. Subrahmanyam (1991) states that 

frictions, such as nonsynchronous trading in the underlying stocks, can explain the lead 

of index futures prices over cash index prices. Berkman, Brailsford, and Frino (2005) find 

that trades in U.K. futures markets are mainly liquidity-motivated. Similarly, using data 
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from the Sydney Futures Exchange, Frino and Oetomo (2005) show that price effects of 

large trades in futures markets are smaller than those of large trades in equity markets. 

Frino and Oetomo (2005) also do not find asymmetry between the effects of buy and sell 

trades. These results, as well as the theoretical models of Subrahmanyam (1991) and 

Gorton and Pennacchi (1993), show that differences exist in the trading dynamics 

between futures and equity markets. 

 Coppejans, Domowitz, and Madhavan (2003) provide evidence for the high 

degree of resiliency of the Swedish stock index futures market, showing that the 

reduction of liquidity dissipates quickly following a volatility shock (disappearing within 

an hour after the shock). They attribute this rapid adjustment to the self-correcting nature 

of automated auctions. Frino and Cummings (2010) report that the 3 Year 

Commonwealth Treasury Bond Futures on the Sydney Futures Exchange recover after 12 

trades following a block trade.  

  The research in this paper differs from prior studies that focus on the effects of 

large trades and the resiliency of markets in several aspects. First, prior research does not 

analyze the resiliency of the U.S. electronic futures markets. Previous studies on futures 

floor trading did not provide an accurate and precise time sequence of trades, unlike the 

futures data employed here. Second, prior studies only employ one type of futures 

contract, whereas here the resiliencies of five different futures contracts are analyzed and 

compared. Third, this study examines the effect of different market conditions (the 
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volatility of the 2008 financial crisis) on resilience.18 To sum up, both the wide spectrum 

of data and uniquness of data period makes this study fill the gaps in literature that have 

not been explored by prior studies.  

2.3. Data 

 I employ electronic market transactions and bid–ask quote data for five different 

futures contracts from the CQG futures database. Use of electronic prices is an important 

extension of past studies since floor trading price data does not provide bid–ask prices 

(and approximations from formulas are notoriously inaccurate) and floor prices provide 

imprecise time sequences of trades; thus, only with electronic trade data is the current 

study possible with accuracy. My sample includes the E-mini S&P 500, E-mini 

NASDAQ 100 equity index, gold, British pound, and the euro currency futures to 

represent a wide spectrum of different asset classes. My sample time periods are the 

volatile financial crisis time span of September 2008 through December 2008 and the less 

volatile pre-crisis period of January 2007 through March 2007.  

 Trades that occur at the same price, in the same trade direction (buy or sell), and 

within the same minute are aggregated. Nearby contracts are employed in the analysis, 

since they are the most active contracts. Trades are categorized into 10 groups, based on 

the empirical distribution of transaction sizes of each contract. Block trades are 

associated with the 10th group since they possess the largest transaction sizes. 

 

                                                      
18 As Brunnermeier (2009) states, the 2008 financial crisis was the most severe crisis since the Great 
Depression. 
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2.4. Methodology 

 Following Koski and Michaely (2000) and Frino and Cummings (2009), quoted 

prices and bid–ask spreads are used for the return and liquidity analyses in order to avoid 

the bid–ask bounce. In accordance with the Lee and Ready (1991) algorithm, trades that 

are closer to the ask (bid) are classified as buy (sell) trades. Trades that occur at the 

midquote are classified according to the price of the previous trade. If the trade price is 

larger (lower) than the previous trade price, then it is classified as a buy (sell).  

 Following Holthausen, Leftwich, and Mayers (1990); Koski and Michaely (2000); 

and Frino Cummings (2009), block trades are designated as trade 0 and then benchmark 

returns (BENR) are calculated for each contract from the returns for quotes sequenced 

from –20 through –11 relative to the block trades  

BENR = 
∑ ∑ ோ,௧షభభ

సషమబ
ಿ
ೕసభ

ே
 ,                   (2.1.) 

where N is the total number of trades during the period (pre-crisis or crisis), and Rj,t is the 

return for quote t. Returns are computed using the ask quote prices for purchases and bid 

quote prices for sales.  

Using the benchmark for the ask quotes, mean excess returns for block purchases 

(MRP) are computed as 

MRPt = 
∑ ோ௧ିாேோಿೠೝ
ೕ

ே௨
,             t= -10, … , +20,          (2.2) 
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where Npur is the total number of block purchases. Mean excess returns for block sales 

(MRS) are calculated using the total number of sales and the bid quotes. After analyzing 

the price impacts around large trades, the changes in the bid-ask quote sizes surrounding 

large trades are examined using the following formulas.  

First, benchmarks spreads for each futures contract are computed as 

BENSPR = 
∑ ∑ ௌ,௧షభభ

సషమబ
ಿ
ೕసభ

ே
,          (2.3.) 

where is Sj,t is the bid-ask spread for quote t. 

Mean excess spreads are computed using the equation 

MSt = 
∑ ௌ௧ିாேௌோಿೠೝ
ೕ

ே௨
  t= -10, … , +20      (2.4.) 

Using these equations above, the effects of large trades are analyzed in terms of returns 

and liquidity.  

2.5. Results  
 
 The summary statistics reported in Table 2.1. show that the average number of 

contracts for each block trade were less during the crisis period compared to the pre-crisis 

period. Furthermore, the number of block sales and purchases per day were also lower 

during the crisis period. These results reflect the declining degree of trading activity in 

the futures markets during the crisis period.  
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2.5.1. Returns around Large Trades 

 In this section the returns after large trades are analyzed for each of the five 

futures contracts, both before and during the crisis periods. The results in Tables 2.2. 

through 2.5. show that among all the contracts in my sample, currency futures exhibit the 

smallest returns following large trades. Of the two currency futures, after block trades 

euro futures have smaller returns than British pound futures. Moreover, gold futures 

exhibit the highest returns after large trades. Comparing returns for the two index futures 

following large trades, we can see that returns in the E-mini NASDAQ 100 futures 

market are larger than the returns in the E-mini S&P 500 futures market. These results 

show that E-mini S&P 500 futures contracts are more liquid than the E-mini NASDAQ 

100 futures. 

 Saar (2001) theoretically shows that price reactions to trades depend on the 

economic condition. My empirical results examine the 2008 pre-crisis to crisis periods, 

concluding that the results here support his argument. In particular, during the crisis 

period the returns after block trades are much larger than those during the pre-crisis 

period (see Figures 2.1.–2.5.). The results show that most of the price adjustment occurs 

within the first few trades for electronic futures markets.  The larger returns for block 

trades during the crisis period reflect a decline in liquidity during that time period. 

Furthermore, the crisis period exhibits an asymmetry between the price effects of large 

buy and large sell trades, unlike the pre-crisis period. Thus, during the crisis period the 

returns after large sell trades are greater than returns after large buy trades. However, 

during the pre-crisis period, returns exhibit similar return patterns after large buy and sell 
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trades. For example, the instant return for the E-mini S&P 500 index futures after both 

purchases and sells is around 0.3% during the pre-crisis period (Figure 2.1.), whereas 

after 20 trades the return increases to approximately 0.5%. Alternatively, during the crisis 

period the instant return for large buy trades is 0.46% and for large sales is 0.62%, 

whereas after 20 trades the cumulative return for large purchases is 0.8% and for large 

sales is 1.0%. Using the E-mini NASDAQ 100 index futures one finds similar results 

(Figure 2.2). Comparison of Figures 2.1. and 2.2. shows that the E-mini S&P 500 futures 

market is slightly more liquid than the E-mini NASDAQ 100 futures market for both the 

pre-crisis and crisis periods. For example the instant returns following large purchases 

and large sales (0.42% and –0.44%, respectively) are larger than the instant returns for 

the E-mini S&P 500 market. Similarly during the crisis period, the initial returns 

following a large purchase (0.56%), and the return following a large sale (0.65%), are 

also larger than the initial returns in the E-mini S&P 500 market. Returns following large 

trades in the gold futures market are higher than the returns in any other markets that are 

analyzed in this study (Figure 2.3.). During the pre-crisis period, large trades are 

associated with a 0.5% initial price change, whereas during the crisis period the initial 

returns are 0.7% for buy trades and –0.75% for sell trades. Returns following large trades 

in currency futures are lower than those in equity indexes and gold futures (Figures 2.4. 

and 2.5.). Both the initial returns and cumulative returns after block trades in the currency 

futures markets show that euro futures are more liquid than the British pound futures. For 

example during the crisis period, the initial returns are 0.35 and –0.49% after the large 

buy and sell trades, respectively, of British pound futures, whereas in the euro currency 
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futures market the initial returns on average were 0.33% and –0.40% for large buy and 

sell trades, respectively. 

2.5.2. Bid–Ask Spreads around Large Trades 

 In this section, the effects of large trades on the liquidity in futures markets in 

terms of the bid–ask spreads are examined. Using equation (2.4.) the mean excess spreads 

before and after large trades are computed and reported in Tables 2.6.–2.9. Consistent 

with the results of previous studies, these results show that block trades cause bid–ask 

spreads to widen. The results for the crisis period exhibit three major differences from the 

pre-crisis period. First, the bid–ask spreads widen much more after block trades during 

the crisis period. Second, there is a difference in the number of trades it takes for bid–ask 

spreads to return to their levels prior to the block trades. Specifically, during the crisis 

period it takes more trades for the liquidity level to recover from the adverse effects of 

block trades. Finally, block purchases and sales show asymmetrical effects during the 

crisis period, when the effects of block sales on bid–ask spreads are larger than those of 

block purchases. In fact, more trades are required to restore liquidity to pre-block trade 

levels after block sales than to restore liquidity after block purchases 

 Our results show liquidity recovers in currency contracts faster than in the equity 

index and gold futures (Figures 2.6.–2.15.) and that the euro futures contract is the most 

resilient futures contract. In the euro currency futures market during the pre-crisis period, 

liquidity reverts back to the pre-block trade level after 7 trades (Figures 2.12. and 2.13.). 

However, during the crisis period liquidity recovers after 10 trades following large 

purchases, whereas it takes 11 trades to recover after large block sales.  
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The British pound futures contract is the second-most resilient futures contract in 

our sample, after euro futures. In the British pound futures market during the pre-crisis 

period, liquidity recovers following block transactions after 8 trades (Figures 2.14. and 

2.15.). In the crisis period following large purchases the bid-ask spreads remain above 

average levels for 10 trades. After large sales it takes 12 trades until liquidity returns to 

pre-block trade levels.  

The gold futures market is the least resilient market in our sample (Figures 2.10. 

and 2.11.). Even during the pre-crisis period, bid–ask spreads stay above average levels 

for 12 trades following block trades. The adverse effects of the crisis on the liquidity of 

gold futures can be seen in Figures 2.10 and 2.11. For example during the crisis period, it 

takes 15 trades until liquidity is recovered following large purchases, whereas liquidity is 

recovered after 17 trades following large sales.  

Our results show that the E-mini S&P 500 and E-mini NASDAQ 100 futures 

markets exhibit similar resiliencies (Figures 2.6–2.9.). Specifically, after block trades 

liquidity recovers in 9 trades in these markets during the pre-crisis period, whereas during 

the crisis period the E-mini S&P 500 futures market shows slightly more resiliency than 

the E-mini NASDAQ 100 futures market, with liquidity recovering after block purchases 

in 12 trades for the former as opposed to 13 trades for the latter. After block sales, the 

bid–ask spreads return to normal levels in 14 and 15 trades for E-mini S&P 500 and E-

mini NASDAQ 100 contracts, respectively.  
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2.6. Conclusion 

 Understanding how markets respond to large trades is important not only to 

traders who want to minimize the price impacts of their transactions but also to regulators 

who establish the rules for well-functioning markets. Although studies exist that analyze 

the price impact of trades in U.S. markets, no previous studies compare the speed of the 

adjustment process after large trades in volatile versus normal times in electronic U.S. 

futures markets. This study fills that gap in the literature by using high-frequency quote 

and trade data from U.S. electronic futures markets to compare the effects of block trades 

on quote returns and bid-ask spreads during volatile and less volatile periods. Our results 

show that the effects of block trades are larger during the volatile period of the financial 

crisis used for this study compared to the pre-crisis period. Specifically, more trades are 

required for prices to adjust to a new equilibrium and liquidity to recover after large 

trades during the crisis period than during the pre-crisis period. Moreover, during the 

crisis period the effects of block sales are larger than the effects of block purchases. 

However, during the pre-crisis period, the effects of purchases and sales are similar. This 

study could be extended using ETF, options, and less liquid futures  in order to compare 

the speed of adjustment processes in different and less liquid instruments.  
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Table 2.1. – Descriptive Statistics 

              

 E-mini S&P 500 E-mini NASDAQ 100 Gold 
   
Period        Crisis Pre-Crisis            Crisis    Pre-Crisis Crisis Pre-Crisis 

Average size of purchases 6.76 11.5 5.44 9.84 2.78 4.11 

Average size of block purchases 41.77 56.03 37.22 44.37 14.55 19.06 

Number of block purchases per day 882.70 498.94 774.43 453.72 245.97 214.22 

Average size of sales 6.87 11.31 5.63 9.68 3.02 4.01 

Average size of block sales 48.44 56.51 42.48 43.96 17.35 18.93 

Number of block sales per day 909.82 487.78 847.32 448.28 266.26 211.74 

 Euro British Pound     

Average size of purchases 5.23 9.14 4.45 8.74     

Average size of block purchases 29.37 36.04 24.31 32.43     

Number of block purchases per day 672.48 572.29 612.49 542.18     

Average size of sales 5.61 8.97 4.92 8.66     

Average size of block sales 36.22 35.47 31.14 31.48     

Number of block sales per day 714.67 575.12 633.51 537.62     

This table contains sample characteristics for the following electronically traded futures contracts: E-mini S&P 500, E-mini NASDAQ-100, gold, 
British pound, and the euro. The trades are categorized into trade groups based on the percentiles of the empirical trade size distribution. 
Transactions with a trade size equal to or larger than the 90th percentile are classified as  block trade. 



  

54 
 

 Table 2.2. - Quote Returns around Large Sales 
 
     Trade Relative to Block Trade (t=0) 
 
 –2 –1 0 1 2
E-Mini S&P  
(Pre-Crisis) Mean Excess Return –0.01 0.01 –0.29 –0.05 –0.02

 t-value: Excess return = 0 –1.4 1.6 –40.2 –4.5 –4.4

E-Mini S&P  
(Crisis) Mean Excess Return –0.01 -0.01 –0.62 –0.09 –0.04
 t-value: Excess return = 0 –1.8 -1.7 –45.3 –9.8 –4.6

E-Mini NASDAQ  
(Pre-Crisis) Mean Excess Return –0.01 –0.01 –0.44 –0.04 –0.02
 t-value: Excess return = 0 –0.8 –1.2 –47.4 –4.9 –3.3

E-Mini NASDAQ  
(Crisis) Mean Excess Return 0.01 –0.02 –0.65 –0.11 –0.06
 t-value: Excess return = 0 0.9 –1.5 –54.2 –7.5 –5.3

Gold (Pre-Crisis) Mean Excess Return 0.01 –0.01 –0.51 –0.05 – 0.02
 t–value: Excess return = 0 0.6 –0.9 –45.2 –6.2 –3.4

Gold (Crisis) Mean Excess Return –0.01 0.02 –0.69 –0.16 –0.06
 t-value: Excess return = 0 –1.3 1.6 –52.8 –14.4 –8.3

Euro (Pre-Crisis) Mean Excess return –0.02 –0.01 –0.23 –0.03 –0.02
 t-value: Excess return = 0 –2.5 –1.3 –28.3 –4.5 –3.1

Euro (Crisis) Mean Excess Return –0.01 –0.01 –0.42 –0.07 –0.04
 t-value: Excess return = 0 –1.9 –2.2 –48.8 –7.5 –7.2

British Pound  
(Pre-Crisis) Mean excess trade size –0.01 0.01 –0.24 –0.04 –0.03
 t-value: Excess return = 0 –1.3 0.8 –26.5 –4.7 –3.6

British Pound  
(Crisis) Mean Excess Return –0.03 –0.01 –0.49 –0.09 –0.05
 t-value: Excess return = 0 –1.5 –0.9 –49.5 –9.7 –9.5
Quote-to-quote returns are computed from one bid quote to the next bid quote for sales. 
The excess return for quote 0 relative to the block trade is defined as the excess return 
from the prevailing quote to the block trade. The excess return for quote +1 is defined as 
the excess return from the block trade to the first quote after the block trade. 
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   Table 2.3. – Quote Returns around Large Purchases 

      Trade Relative to Block Trade (t=0) 

-2 –1 0 1 2 
E-Mini S&P  
(Pre-Crisis) Mean Excess Return 0.02 0.01 0.31 0.03 0.02 
 t-value: Excess return = 0 0.8 1.2 40.3 8.5 8.4 

E-Mini S&P (Crisis) Mean Excess Return –0.01 0.01 0.46 0.04 0.04 
 t-value: Excess return = 0 –0.7 0.8 35.3 5.1 5.2 

E-Mini NASDAQ 
(Pre-Crisis) Mean Excess Return –0.02 0.01 0.42 0.04 0.03 
 t-value: Excess return = 0 –1.3 0.7 49.5 9.1 7.3 

E-Mini NASDAQ 
(Crisis) Mean Excess Return 0.01 –0.01 0.56 0.05 0.03 
 t-value: Excess return = 0 1.8 –1.7 43.5 4.6 3.9 

Gold (Pre-Crisis) Mean Excess Return –0.01 –0.01 0.49 0.04 0.02 
 t-value: Excess return = 0 –0.7 –0.4 44.1 10.4 4.2 

Gold (Crisis) Mean Excess Return 0.02 0.01 0.71 0.06 0.05 
 t-value: Excess return = 0 1.6 1.2 53.4 14.1 13.9 

Euro (Pre-Crisis) Mean Excess Return –0.01 0.01 0.32 0.03 0.01 
 t-value: Excess return = 0 –0.9 0.5 29.2 6.7 6.1 

Euro (Crisis) Mean Excess Return 0.01 0.01 0.44 0.03 0.03 
 t-value: Excess return=0 1.1 1.2 47.2 7.5 7.2 

British Pound  
(Pre-Crisis) Mean Excess Return –0.01 0.01 0.34 0.03 0.03 
 t-value: Excess return = 0 –1.1 1.4 27.1 11.5 11.2 

British Pound (Crisis) Mean Excess Return –0.01 –0.01 0.49 0.03 0.02 
 t-value: Excess return = 0 –1.4 –0.8 50.3 7.9 7.4 
Quote-to-quote returns are computed from ask quote to ask quote for purchases. The 
excess return for quote 0 relative to the block trade is defined as the excess return from 
the prevailing quote to the block trade. The excess return for quote +1 is defined as the 
excess return from the block trade to the first quote after the block trade.  
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   Table 2.4. – Bid-Ask Spreads around Large Sales 

Trade Relative to Block Trade 
 –2 –1 0 1 2

E-Mini S&P  
(Pre-Crisis) 

Bid–Ask Spread 0.251 0.282 0.452 0.448 0.447
Mean Excess Spread –0.019 0.012 0.182 0.178 0.177

 t-value: Excess Spread = 0 –0.6 1.4 8.3 8.5 8.4

E-Mini S&P 
(Crisis) 

Bid–Ask Spread 0.431 0.409 0.982 0.954 0.942
Mean Excess Spread –0.019 –0.041 0.532 0.504 0.492

 t-value: Excess Spread = 0 1.6 –0.8 17.2 15.1 14.3
0 3 0 3 0 3 0 3 0 3

E-Mini Nasdaq 
(Pre-Crisis) 

Bid–Ask Spread 0.289 0.285 0.541 0.537 0.533
Mean Excess Spread –0.011 –0.015 0.241 0.237 0.233

 t-value: Excess Spread = 0 –0.8 –1.2 9.7 8.9 9.3

E-Mini Nasdaq 
(Crisis) 

Bid–Ask Spread 0.583 0.488 1.022 1.027 0.962
Mean Excess Spread 0.053 –0.042 0.492 0.497 0.432

 t-value: Excess Spread = 0 1.8 –1.7 13.5 12.6 12.7
0 011 0 011 0 011 0 011 0 011

Gold (Pre-Crisis) Bid–Ask Spread 0.0101 0.0103 0.0174 0.0178 0.0175
 Mean Excess Spread –0.0009 –0.0007 0.0064 0.0068 0.0065
 t-value: Excess Spread = 0 –1.3 –1.1 11.4 12.3 11.7

Gold (Crisis) Bid–Ask Spread 0.0162 0.0171 0.0346 0.0362 0.0354
 Mean Excess Spread –0.0018 –0.0009 0.0166 0.0182 0.0174
 t-value: Excess Spread = 0 –1.6 –1.2 13.4 14.1 13.9

Euro (Pre-Crisis) Bid–Ask Spread 0.025 0.023 0.052 0.055 0.054
 Mean Excess Spread –0.002 –0.004 0.025 0.028 0.027
 t-value: Excess Spread = 0 –2.3 –3.9 8.8 7.5 7.2

Euro (Crisis) Bid–Ask Spread 0.044 0.041 0.095 0.099 0.097
 Mean Excess Spread –0.009 –0.012 0.042 0.046 0.044
 t-value: Excess Spread = 0 –2.1 –2.4 8.8 7.5 7.2

0 029 0 029 0 029 0 029 0 029
British Pound  
(Pre-Crisis) 

Bid–Ask Spread 0.021 0.022 0.057 0.061 0.059
mean excess trade size –0.008 –0.007 0.028 0.032 0.030

 t-value: Excess Spread = 0 –2.3 –2.1 6.5 7.5 7.2

British Pound 
(Crisis) 

Bid–Ask Spread 0.042 0.052 0.103 0.106 0.105
mean excess trade size –0.015 –0.005 0.046 0.049 0.048

 t-value: Excess Spread = 0 –2.3 –0.9 10.5 10.9 10.7
Excess spreads are spreads in excess of a benchmark level, computed using spreads -20 through -
11 relative to trades of a given size. For excess spreads, reported results include Mean excess 
spread and t: Excess spread = 0 (the t-statistic for the test of the null hypothesis that the mean 
excess spread equals zero) 
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    Table 2.5. – Bid-Ask Spreads around Large Purchases  

                 Trade Relative to Block  Trade (t=0) 
 –2    –1 0 1         2 
E-Mini 
S&P 
 (Pre-
Crisis) 

Bid–Ask Spread 
Mean Excess Spread 
t-value: Excess Spread = 0 

0.251 0.282 0.452 0.448 0.447
–0.019 0.012 0.182 0.178 0.177

–0.6 1.4 8.3 8.5 8.4

E-Mini 
S&P 
(Crisis) 

Bid–Ask Spread 0.422 0.473 0.945 0.949 0.938
Mean Excess Spread –0.028 0.023 0.495 0.499 0.488
t-value: Excess Spread = 0 –1.8 1.6 10.2 8.5 8.4

0 3 0 3 0 3 0 3 0 3
E-Mini 
Nasdaq 
(Pre-
Crisis) 

Bid–Ask Spread 0.289 0.285 0.541 0.537 0.533
Mean Excess Spread –0.011 –0.015 0.241 0.237 0.233
t-value: Excess Spread = 0 –0.8 –1.2 9.7 8.9 9.3

E-Mini 
Nasdaq 
(Crisis) 

Bid–Ask Spread 0.521 0.512 0.932 0.961 0.964
Mean Excess Spread –0.009 –0.018 0.402 0.431 0.434
t-value: Excess Spread = 0 –0.9 –1.5 8.4 8.9 9.3

0 011 0 011 0 011 0 011 0 011
Gold 
(Pre-
Crisis) 

Bid–Ask Spread 0.0101 0.0103 0.0174 0.0178 0.0175
Mean Excess Spread –0.0009 –0.0007 0.0064 0.0068 0.0065
t-value: Excess Spread = 0 –1.3 –1.1 11.4 12.3 11.7

Gold 
(Crisis) 

Bid–Ask Spread 0.0154 0.0174 0.0316 0.0342 0.0324
Mean Excess Spread –0.0026 –0.0006 0.0138 0.0162 0.0144

 t-value: Excess Spread = 0 2.3 1.2 8.3 8.4 9.3

Euro  
(Pre-
Crisis) 

Bid–Ask Spread 0.025 0.023 0.052 0.055 0.054
Mean Excess Spread –0.002 –0.004 0.025 0.028 0.027
t-value: Excess Spread = –2.3 –3.9 8.8 7.5 7.2

Euro 
(Crisis) 

Bid–Ask Spread 0.046 0.042 0.088 0.096 0.094
Mean Excess Spread –0.007 –0.011 0.035 0.043 0.041

 t-value: Excess Spread = –1.9 –2.2 8.8 7.5 7.2
0 029 0 029 0 029 0 029 0 029

British 
Pound 
(Pre-
Crisis) 

Bid–Ask Spread 0.021 0.022 0.057 0.061 0.059
Mean Excess Spread –0.008 –0.007 0.028 0.032 0.030
t-value: Excess Spread = –2.3 –2.1 6.5 7.5 7.2

British 
Pound 
(Crisis) 

Bid–Ask Spread 0.047 0.048 0.094 0.097 0.095
Mean Excess Spread –0.010 –0.009 0.037 0.040 0.038
t-value: Excess Spread = –2.1 –1.9 9.2 9.7 9.5

Excess spreads are spreads in excess of the benchmark level, computed using spreads -20 through 
-11 relative to trades of a given size. For excess spreads; reported results include the Mean Excess 
Spread and t: Excess spread = 0 (the t-statistic for the test of the null hypothesis that the mean 
excess spread equals zero).   
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CHAPTER 3: COMPONENTS OF QUOTED BID-ASK SPREADS IN U.S 

ELECTRONIC FUTURES MARKETS 

3.1. Introduction 

The bid-ask spread represents a major component of a trader’s transactions cost. 

Much of the literature finds that bid-ask spreads reflect the three costs that market makers 

incur: order processing costs (Roll 1984), adverse selection costs (Kyle 1985; Glosten 

and Milgrom; 1985; and Glosten 1994), and inventory costs (Stoll 1978). Several studies 

concerning bid-ask spreads focus their analyses on the empirical determinants of bid-ask 

spreads in the equity markets (Roll 1984; Glosten and Milgrom, 1985; Glosten, 1987; 

Glosten and Harris, 1988; Copeland and Galai, 1983; Haller and Stoll, 1989; Stoll, 1989; 

George, Kaul, and Nimalendran, 1991; McInish and Wood, 1992; Huang and Stoll 1997). 

Whereas previous studies focused on the behaviour and components of bid-ask spreads in 

U.S. equity markets, no studies exist in the literature analyzing bid ask spreads in U.S. 

electronic futures markets. 

 In this study, I analyze how adverse selection, order processing, and inventory 

holding costs affect bid–ask spreads for a wide spectrum of futures contracts in both 

volatile and less volatile periods. The purpose of this study is to understand how market 

makers adjust quotes during different market conditions. These bid-ask spreads are 

decomposed into their components using Huang and Stoll’s (1997) model. According to 

Van Ness et al. (2001), Huang and Stoll’s method accurately captures the adverse 

selection component of the spread without being affected by the instrument’s price 
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volatility. This property of Huang and Stoll’s technique makes it particularly suitable for 

this study, since adverse selection costs are measured for both volatile and less volatile 

periods. 

  This study contributes to the literature by comparing for the first time the three 

cost components for equity index, currency, and precious metal futures during volatile (in 

this case, the financial crisis of 2008) and less volatile periods (the pre-crisis period), 

using intraday, high-frequency data from five different futures contracts that are 

electronically traded in U.S. markets. 

 Our results show that during the more volatile period of 2008, market makers 

increase bid–ask spreads, mostly because of the increased risks associated with 

information asymmetry (calculated as adverse selection costs) and inventory holding 

costs. However, we find that order processing costs represent the largest component of 

bid–ask spread in both periods.  

3.2. Literature Review 

Several studies show that market makers widen spreads when information arrival 

is suspected. Kyle’s (1985) theoretical model is based on informed investors taking 

advantage of uninformed investors and profiting from trading on private information 

about the value of an asset. Kyle’s model emphasizes the importance of the adverse 

selection cost component of the bid-ask spread as it affects dealers and uninformed 

liquidity traders. Further empirical research shows that adverse selection costs comprise 

an important component of the bid–ask spread in equities markets (Easley and O'Hara, 
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1987; Glosten and Milgrom, 1985; Copeland and Galai, 1983). These studies analyze the 

impact of informed traders in a market setting, where the other players are uninformed 

traders and market makers. Informed trading has considerable negative impact on market 

makers, who therefore inflate bid and ask quotes to compensate for the losses from 

informed traders.  

 Subrahmanyam (1991) extends Kyle’s model to a multi-asset economy setting, 

where baskets of stocks are available for trading. Subrahmanyam’s model predicts that 

because private information about individual assets plays a smaller role at the portfolio 

level, less of an informational disadvantage exists to market makers holding baskets of 

stocks; an example of such assets is equity index futures. Neal and Wheatley (1998) find 

that although the adverse selection cost component of closed-end funds is indeed smaller 

than that of common stocks, the difference is not as great as hypothesized by 

Subrahmanyam (1991).  

 In the market microstructure literature (Kyle 1985; Glosten and Milgrom 1985), 

three investor categories are proposed—market makers, informed traders, and liquidity 

(uninformed) traders. Market makers, or other limit order investors, possess an information 

disadvantage relative to informed investors, whereas liquidity investors trade without 

access to private information. To market makers, informed and liquidity investors are 

indistinguishable. Informed investors profit from trading with market makers, and 

liquidity investors. Market makers post bid–ask quotes wide enough to compensate for 

trading with informed investors. Therefore, spreads increase with asymmetric 

information.  
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 Inventory holding cost is another component of the bid ask spread. As market 

makers buy (sell) and as inventory increases (decreases), market makers try to sell (buy) 

back, thereby adjusting their quotes in to control order flow and bring inventory back to a 

preferred position (Stoll 1978; Amihud and Mendelson 1980; Ho and Stoll 1981; Ho and 

Stoll 1983). The third and last  component of bid ask spread is order processing cost. The 

order processing cost represents a fee charged by market makers for matching buy and 

sell orders 

 In the market microstructure literature of decomposing the bid-ask spread two 

classes of models exist: the serial covariance spread estimation model and the order flow 

spread estimation model. In the serial covariance spread estimation model the spread 

measures are derived from the serial covariance properties of transaction price changes 

(the most common empirical serial covariance estimation model was developed by Roll 

(1984)). If trade prices fluctuate between bid and ask prices then the observed price 

changes become negatively autocorrelated. Roll’s (1984) model estimates the bid-ask 

spread based on this negative serial correlation property of transaction prices. In another 

class of models, the bid-ask spread is estimated via order flow regression models. Glosten 

and Harris (1988) applied this concept to estimate the adverse selection spread 

component by developing an order flow transaction costs model. Huang and Stoll (1997) 

extend the Roll (1984) and Glosten and Harris (1988) models, by combining order 

processing, inventory, and asymmetric information (adverse selection) cost components. 

Van Ness, Van Ness, and Warr (2001) show that Huang and Stoll’s method accurately 

captures the adverse selection cost component of bid–ask spreads without being affected 
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by market conditions. This study examines the bid–ask spreads of futures contracts using 

Huang and Stoll’s (1997) method, reported for the first time in the literature. 

3.3. Data 

 This study employs intraday, high-frequency data from five different futures 

contracts that are electronically traded in U.S. markets. Data from different asset classes 

and from different time periods are used in order to determine how the bid-ask spreads 

behave for different asset classes. Our data set includes the E-mini S&P 500, E-mini 

NASDAQ 100 equity index, gold, the British pound, and euro currency futures. The 

sample periods include the volatile time span of September 2008 through December 

2008, during the financial crisis, as well as the less volatile, pre-crisis period of January 

2007 through March 2007.  

 Trades that occur at the same price, in the same direction (buy or sell), and within 

the same minute are aggregated. Nearby contracts are used in the analysis, since they are 

the most active contracts. The data source is the CQG transactions database. 

3.4. Methodology 

I implement the Huang and Stoll (1997) model by first establishing a basic trade 

indicator model, then I employ two extensions to distinguish between all three bid–ask 

spread components. This technique uses the generalized method of moments to directly 

provide consistent estimates of the components of the bid-ask spread. The first part of the 

model, the basic trade indicator, makes no assumptions about the conditional probability 

of trades and measures the order processing cost. The basic model (explained in more 
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detail later) is based on substituting observable values into the unobservable price, Vt, 

which leads to   

∆ ௧ܲ ൌ
ௌ

ଶ
ሺܳ௧ െ ܳ௧ିଵሻ  ߣ ௌ

ଶ
ܳ௧ିଵ  ݁௧                    (3.1.) 

where S is the estimated traded spread; Q is the trade indicator and takes the value of  

–1, or 1, for sell and buy trades respectively. λ = α + β, where α is the adverse selection 

cost component and β is the inventory-holding cost component of the bid-ask spread. 

From this equation the cost component of the spread that is not due to adverse selection 

or inventory holding costs, (1 – λ), which represents the order processing cost component 

of the spread.  

 In the second part the basic model is extended by using the conditional 

expectation of the trade indicator. Since quote revisions follow each trade, every 

subsequent trade is dependent on the one prior to it. This data serves as a basis for a 

probability estimator, π, which is defined as the probability that the current trade is 

opposite in sign to the trade that occurred just before. The basic model is extended to 

estimate all three cost components of the bid ask spread .  

ሺܳ௧ିଵ|ܳ௧ିଶሻܧ ൌ ሺ	1 െ  ሻܳ௧ିଶ                                                               (3.2.)ߨ2

௧ܯ∆ ൌ ሺߙ  ሻߚ ௌషభ
ଶ
ܳ௧ିଵ െ ሺ1ߙ െ ሻߨ2 ௌషమ

ଶ
ܳ௧ିଶ  ߳௧                     (3.3.) 

where St is the quoted spread at the transaction at time t, Mt is the midpoint of the bid–

ask quote that prevails just before the transaction at time t, Qt is the buy–sell indicator for 

the trade price, Pt , and π is the probability that the trade at time t is opposite in sign to the 
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trade at t – 1. α and β represent the percentage of the half spread attributable to adverse 

selection costs and inventory costs respectively. Order processing cost component is 

equal to (1 – α – β).  

3.5. Results 

 Utilizing Huang and Stoll’s (1997) method, the bid ask spreads of five futures 

contracts are decomposed into three components to examine the pre-crisis and crisis 

periods of this study. The contract specifications given in Table 3.1 reflect the size and 

thus the risk traders and market makers take with each trade.  

 Our results in Table 3.2 show that order processing is the largest cost component 

of bid–ask spreads in the futures markets examined here. The sum of the adverse 

selection and inventory holding costs is smaller than the order processing cost for all five 

contracts, during both the pre-crisis and the crisis period. However, order processing 

costs decline and the sum of the adverse selection and inventory risk costs increase 

during the volatile crisis period as compared with the pre-crisis period. This result shows 

that when uncertainty increases in futures markets, market makers increase bid–ask 

spreads in response to higher information asymmetry and inventory holding risks. Among 

the contracts in our sample, gold futures have the smallest order processing costs (0.68 in 

the pre-crisis and 0.58 in the crisis periods), although they also possess the highest 

adverse selection and inventory holding costs. Equity index futures are associated with 

the least adverse selection and inventory holding costs. Specifically, in the E-mini S&P 

futures market the sum of the inventory holding and the adverse selection cost 

components are higher than for the E-Mini Nasdaq 100 futures market.  
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 Order processing, adverse selection, and inventory holding costs are reported 

separately in Table 3.3. In this analysis, sequential trades are not aggregated. The results 

reported in this table are consistent with the results reported in Table 3.2. Order 

processing costs still represent the largest component of the bid–ask spreads in futures 

markets. The second-largest cost component is the inventory holding costs. An exception 

is the gold futures adverse selection cost, which are negative due to trade clustering. In 

the next section the results are reported after the sequential trades that occur at the same 

price without any quote change are combined. 

Following Huang and Stoll (1997), who also find negative adverse selection costs 

due to trade clustering, we aggregate sequential trades that occur at the same price. Table 

3.4. shows the order processing, inventory holding, and adverse selection costs for 

sequential trades that occur at the same price, which are aggregated and treated as one 

large order. The results show that the gold futures market possesses the highest adverse 

selection and inventory holding costs in our sample, both in the pre-crisis and crisis 

periods. Consistent with Subrahmanyam (1991), our results show that adverse selection 

costs are the smallest, and the order processing costs are the largest components of the 

bid–ask spreads for all five futures markets. Moreover, the inventory holding costs are 

the second largest component of spreads after order processing costs. During the crisis 

period, the order processing cost components of the bid–ask spreads decrease, whereas 

the adverse selection and inventory holding cost components increase.  
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3.6. Conclusion 

 In this study I analyze the bid-ask spread components of a wide spectrum of 

futures contracts, in both volatile and less volatile periods, in order to understand how 

market makers adjust quotes during different market conditions. The cost components of 

bid–ask spreads are analyzed using intraday, high-frequency data from five different 

futures contracts that are electronically traded in U.S. markets to understand how market 

makers adjust quotes during different market conditions.  

Our results show that during more volatile periods, market makers increase bid–

ask spreads, mostly because of the increased risks associated with information 

asymmetry, calculated as adverse selection costs, and inventory holding costs. Although 

adverse selection and inventory holding costs are higher during the crisis period as 

compared with the pre-crisis period, order processing costs represent the largest cost 

component of bid–ask spread in both periods.  

 A theoretical model predicts that in markets using baskets of securities, adverse 

selection costs are diversified away (Subrahmanyam 1991). However, there is no prior 

empirical study that tests this hypothesis using data from U.S. electronic futures markets. 

Among the contracts we analyzed, our results show that the adverse selection cost 

component of equity index futures bid–ask spreads are smaller than those of gold and 

currency futures. Adverse selection and inventory holding cost components are larger for 

gold futures than for the equity index and currency futures.  



  

75 
 

 This study can be extended in the future to compare adverse selection, inventory 

holding and order processing costs in different markets and subsequent time periods, 

especially using data from options markets and data from the post-crisis period. 

    

Table 3.1: Contract Specifications 

This table reports the contract specifications of the five different futures contracts in this 

study.  

Contract Tick Size (Pts.) Contract Size Point Value (US$) 
E-Mini S&P 500 0.25 $50 times the index 50

E-Mini NASDAQ 100 0.25 $20 times the index 20

Gold 0.10 100 troy ounces 100

Euro 0.0001 EUR 125,000 125,000

British Pound 0.0001 GBP 62,500 62,500
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Table 3.1. Traded Spread and Order Processing Cost Components 

This table reports the results from estimating ∆ ௧ܲ ൌ
ௌ

ଶ
ሺܳ௧ െ ܳ௧ିଵሻ  ߣ ௌ

ଶ
ܳ௧ିଵ  ݁௧. The 

results show the estimated traded spread (S) and the proportion of bid-ask spread due to 

adverse selection and inventory holding (λ) costs. The proportion of the traded spread due 

to order processing is calculated as 1 – λ.  

 S (Estimated Spread) Λ (Sum of Adverse 
Selection and Inventory 

Holding Cost) 

1-λ (Order 
Processing Cost) 

    
 
 

Pre-
Crisis 

Crisis Pre-
Crisis 

Crisis Pre-
Crisis 

Crisis 

E-Mini S&P 
 

0.270 0.450 0.11 0.19 0.89 0.81 

E-Mini 
NASDAQ 
 

0.300 0.530 0.14 0.23 0.86 0.77 

Gold 0.010 0.018 0.32 0.42 0.68 0.58 
      
Euro 0.026 0.052 0.17 0.28 0.83 0.72 
      
British Pound 0.029 0.057 0.19 0.31 0.81 0.69 
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 Table 3.3. Components of the Bid–Ask Spreads, Estimates Based on Serial Correlation in Trade Flows 

This table reports the results from computing the extended model, which is based on serial correlation in trade flows. The 

extended model is used to simulatenously estimate the three components of the bid–ask spread: adverse selection (α), 

inventory holding (β), and order processing (1-α-β). The extended model consists of the following equations 

ሺܳ௧ିଵ|ܳ௧ିଶሻܧ  ൌ ሺ1 െ ሻܳ௧ିଶߨ2    ௧ߝ

Δܯ௧ ൌ ሺߙ  ሻߚ ௌషభ
ଶ
ܳ௧ିଵ െ ሺ1ߙ െ ሻߨ2 ௌషమ

ଶ
ܳ௧ିଶ  ݁௧.  

 α (Adverse Selection) β (Inventory Holding)            π  1-α-β (Order Processing) 

 Pre-Crisis  Crisis Pre-Crisis  Crisis Pre-Crisis  Crisis Pre-Crisis  Crisis 

E-Mini S&P 
 

–0.03 –0.01 0.13 0.16 0.31 0.36 0.90 0.85 

E-Mini NASDAQ 
 

–0.04 –0.03 0.15 0.17 0.26 0.32 0.89 0.86 

Gold 0.02 0.04 0.22 0.24 0.44 0.48 0.76 0.72 

Euro –0.05 –0.04 0.16 0.19 0.27 0.31 0.89 0.85 

British Pound –0.07 –0.02 0.19 0.23 0.22 0.35 0.88 0.79 
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      Table 3.4. Components of the Bid–Ask Spreads, Estimates Based on Serial Correlation in Trade Flows with Trade Clusters 

This table reports the results from computing the extended model, which is based on serial correlation in trade flows. 

Sequential trades without quote revision are considered as one large order. The extended model is used to simulatenously 

estimate the three components of the bid–ask spread: adverse selection (α), inventory holding (β), and order processing (1-α-β). 

The extended model consists of the following equations: ܧሺܳ௧ିଵ|ܳ௧ିଶሻ ൌ ሺ1 െ ሻܳ௧ିଶߨ2  ௧ܯ௧ and Δߝ ൌ ሺߙ  ሻߚ ௌషభ
ଶ
ܳ௧ିଵ െ

ሺ1ߙ െ ሻߨ2 ௌషమ
ଶ
ܳ௧ିଶ  ݁௧. 

 α (Adverse Selection) β (Inventory Holding) π  1-α-β (Order Processing)

 Pre-Crisis Crisis Pre-Crisis Crisis Pre-Crisis Crisis Pre-Crisis Crisis 

E-Mini S&P 
 

0.01 0.02 0.18 0.22 0.52 0.56 0.81 0.76 

E-Mini NASDAQ 
 

0.01 0.02 0.20 0.23 0.52 0.59 0.79 0.75 

Gold 0.07 0.09 0.31 0.34 0.54 0.55 0.62 0.57 

Euro 0.02 0.04 0.23 0.28 0.57 0.53 0.75 0.68 

British Pound 0.03 0.05 0.25 0.30 0.54 0.59 0.72 0.65 
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