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ABSTRACT OF THE THESIS 

RECENT CHANGES IN CENTRAL AND EASTERN PACIFIC EL NIÑO 

by 

Peter Marshall Washam 

Florida International University, 2014 

Miami, Florida 

Professor Robert Burgman, Major Professor 

Recent research indicates that characteristics of El Niño and the Southern 

Oscillation (ENSO) have changed over the past several decades. Here, I examined 

different flavors of El Niño in the observational record and the recent changes in the 

character of El Niño events.  The fundamental physical processes that drive ENSO were 

described and the Eastern Pacific (EP) and Central Pacific (CP) types or flavors of El 

Niño were defined.  Using metrics from the peer-reviewed literature, I examined several 

historical data sets to interpret El Niño behavior from 1950-2010.  A Monte Carlo 

Simulation was then applied to output from coupled model simulations to test the 

statistical significance of recent observations surrounding EP and CP El Niño.  Results 

suggested that EP and CP El Niño had been occurring in a similar fashion over the past 

60 years with natural variability, but no significant increase in CP El Niño behavior.
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CHAPTER 1 

INTRODUCTION 

El Niño and the Southern Oscillation, or ENSO, describes a coupled ocean 

atmosphere phenomenon that originates in the equatorial Pacific and affects regional and 

global climate on inter-annual timescales.  The term Southern Oscillation was coined by 

Walker and Bliss (1932) to describe a “seesaw” in the sea level pressure (SLP) that 

occurs across the equatorial Pacific affecting rainfall patterns and wind fields.  Walker 

and Bliss (1932) found that when pressure is high over the Pacific Ocean it tends to be 

low over the Indian Ocean.  Multiple regions in both the Northern and Southern 

Hemisphere were investigated to support their hypothesis.  Bjerknes (1966,1969) later 

included the Southern Oscillation within a basin wide phenomenon involving ocean and 

atmospheric interactions.  It was found that when large sea surface temperature (SST) 

anomalies extend over an equatorial zone from South America to the mid-Pacific, there is 

a weakening of equatorial easterly winds and low atmospheric pressure.  The warming 

was found to stem from weakening or complete termination of oceanic upwelling in the 

region. The ocean components of ENSO are referred to as El Niño and La Niña and are 

commonly described by the area averaged SST anomalies in the Niño 3.4 region  (5°N–

5°S, 170°–120°W).  

Figure 1 shows the historical variations of the SST anomalies in the Niño 3.4 

region. 
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Figure 1.  ERSSTv3b Niño 3.4 SST Anomaly 1950-2010.  Sea Surface Temperature Anomalies (SSTAs) in 
the Niño 3.4 region from 1950-2010 calculated from ERSSTv3b using a seasonal climatology based on the 
1971-2000 time period.  SSTAs in °C. 
 

Figure 2 shows the Niño 3.4 region and other regions used to measure ENSO 

characteristics. Positive values correspond with the warm phase or El Niño conditions 

while negative values indicate cool or La Niña conditions.  

 
Figure 2.  The Niño Regions. The Niño regions (1+2, 3, 3.4, 4) are a set of area averaged SSTAs that are 
used as indices in order to track the evolution of ENSO. Picture from: 
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/nino_regions.shtml.  
 

The oscillatory nature of ENSO is clearly illustrated in Figure 1 and a description 

of El Niño and La Niña events first requires a description of “normal” conditions in the 

Pacific as described by the time average. Normal conditions in the equatorial Pacific find 

The Niño Regions 

5°S-5°N, 170°W-120°W 

˜

°	 
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easterly trade winds near the surface, deep convection over the warmest surface waters in 

the west, westerly winds aloft, and subsidence over the cooler waters of the east Pacific. 

The zonal circulation pattern described above is called the Walker Circulation and is 

intimately tied to the underlying ocean (Sheinbaum, 2003). The surface easterlies induce 

poleward Ekman transport in the ocean near the equator, providing the proper 

environment for equatorial upwelling in the eastern Pacific resulting in a shallow 

thermocline and a “cold tongue” at the surface. In the western Pacific, advection of warm 

tropical waters by the easterly trades result in a vast region of warm surface waters or 

“warm pool” and a deep thermocline. The east west SST gradient further enhances the 

easterly flow of the trades. 

Bjerknes (1969) argued that the onset of an El Niño event was the result of to a 

positive feedback between the surface winds, the equatorial thermocline, and the SST 

gradient near the equator. The canonical El Niño onset occurs when the easterly trades 

weaken for a period of time, allowing the warm waters of the western Pacific to shift to 

the east. As the relatively cool surface waters of the central and eastern Pacific 

experience warming, the climatological temperature gradient along the equator decreases, 

resulting in a further weakening of the trade winds. In the west, the shifting waters result 

in a shallower thermocline while in the east, the weaker trades reduce upwelling and the 

thermocline deepens.  

Figure 3 shows the SST anomalies associated with the 1997-98 El Niño event.  

The anomalously warm surface waters extend from the coast of South America westward 

into the central equatorial Pacific while the waters of the west Pacific “Warm Pool” tend 

to experience anomalous cooling. In the atmosphere, the Walker circulation weakens as 
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the region of deep convection shifts to the east. The opposite occurs during the cold phase 

of the Oscillation (La Niña).  La Niña conditions are characterized by an intensification 

of the climatological Walker circulation (Sheinbaum, 2003).  The warm surface waters of 

the west Pacific intensify and spread westward while SSTs in the east Pacific Ocean cool 

and the thermocline shoals. The Bjerknes feedback provides a physically consistent 

explanation of the growth of an El Niño event, but does not address the reversal of the 

departure from normal conditions necessary to describe the oscillatory behavior observed 

in Figure 1 (Sheinbaum, 2003). For this there must be a mechanism for the termination of 

the positive feedback process.  

 

1.1 Mechanisms 

The literature points to several possible mechanisms for the behavior of ENSO 

over the period of observations that involve both oceanic and atmospheric dynamics 

 In this section we briefly describe three such mechanisms. 

The Delayed Oscillator 

The Delayed Oscillator theory (Schopf and Suarez, 1988) seeks to describe the 

mechanism of termination of an ENSO event through ocean wave dynamics.  To 

understand the Delayed Oscillator one can assume a simplified tropical Pacific Ocean 

with water temperatures that vary only with depth and a constant thermocline throughout.  

The motionless ocean basin is perturbed by initiating some isolated westerly (eastward) 

wind stress around the equator in the central part of the simplified ocean resulting in the 

creation of two types of equatorial waves.  At the equator, a westerly wind perturbation 

creates a downwelling Kelvin wave that travels eastward at a speed of ~3m/s, deepening 
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the thermocline and warming the surface layer.  Poleward of the initial equatorial 

perturbation a pair of upwelling Rossby waves is created and propagates westward at a 

slower speed (~1 m/s), causing the thermocline to shoal and the surface layer to cool.  

When the faster moving Kelvin wave reaches the eastern boundary of the simplified 

ocean, contact with the eastern boundary will result in two coastally trapped Kelvin 

waves that propagate poleward in both hemispheres and the reflection of two westward 

propagating down welling Rossby waves. The upwelling Rossby waves created by the 

original wind perturbation eventually reach the western boundary and reflect an 

upwelling Kelvin wave that travels eastward, carrying with it the cooler equatorial waters 

that terminate the warm event in the east. The simplified model of the Delayed Oscillator 

is an idealized description of the oceanic response to a single event of wind stress and 

proves to be informative. However, in nature wind stress and ocean waves are continuous 

and the time scales of the ENSO event are much longer.  

The Recharge-Discharge Oscillator 

 The Recharge-Discharge Oscillator is built upon results from Cane and Zebiak 

(1985), who argued that ENSO was related to equatorial heat content identified by 

thermocline depth.  Proposed by Jin (1997), the model states that during the warm phase, 

westerly wind anomalies produce warm SSTs in the eastern Pacific.  Off-equatorial 

Rossby waves move subsurface water poleward via Sverdrup transport, which exports 

heat from the equator.  Once exhausted, the equatorial thermocline becomes shallower, 

cold SSTs return to the eastern Pacific, and the cold phase is initiated.  Easterly wind 

anomalies then produce a meridional Sverdrup transport that replenishes the equatorial 

heat content, deepening the thermocline and repeating the cycle once more.  
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The Advective-Reflective Oscillator 

 Picaut et al. (1997) sought to describe El Niño by focusing on the advection 

produced by the reflection of signals off of eastern and western boundaries taking the 

form of equatorial ocean waves.  Here, the termination of an El Niño is presented as a 

result of a negative feedback mechanism containing an upwelling Kelvin wave and 

downwelling Rossby waves.  Both the Kelvin waves and the Rossby waves produce 

westward anomalous currents, that pair with mean zonal currents to return warm SSTs to 

the west Pacific. 

 

1.2 ENSO Characteristics 

 Phase Locking to the Seasonal Cycle 

Canonical El Niño and La Niña events tend to develop in late boreal spring and 

summer months, mature near the end of the calendar year, and decay rapidly by the 

following summer. The “phase locking” of ENSO with the seasonal cycle points to a 

strong influence of the changing strength of the ocean-atmosphere coupling strength via 

changes of upwelling, ITCZ location, and surface winds (ocean waves) over the seasonal 

cycle on the coupled instability that drives ENSO. For a thorough discussion of this topic 

see Galanti and Tziperman (2000). 

ENSO Irregularity in time  

The time series of Niño 3.4 shown in Figure 1 indicates that the amplitude and 

frequency of ENSO change over time. Irregularity in the behavior of ENSO on decadal 

timescales has lead to a debate in the literature as to the processes responsible for ENSO 

development and variability. One theory characterizes ENSO as a stable stochastically 
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forced phenomenon where ENSO growth and variability is determined by atmospheric 

dynamics (Penland and Sardeshmukh, 1995; Ping et al., 1996). Others argue that ENSO 

can be described as an unstable self-sustained mode of variability where irregularity is a 

result of interactions with other modes of variability such as the seasonal cycle or decadal 

variations in the climatological mean state of the tropical Pacific caused by ocean 

atmosphere dynamics in the tropics or midlatitudes (Zebiak, 1989; Burgman et al., 2008). 

In the unstable ENSO regime, stochastic forcing may play a significant role in the 

modulating of ENSO variability and predictability (Kirtman and Schopf 1998). Whether 

the oscillation itself is damped and stochastically forced, or it is a chaotic system 

containing an irregularity within, predictability remains a challenge. Prediction of ENSO 

is of great importance to society because of the extent of ENSO impacts worldwide via 

teleconnections. 

Irregularity in space or Flavors of El Niño 

Until recently, ENSO has been considered as a single phenomenon, and as such, 

was defined using a single metric. As stated by the National Oceanic and Atmospheric 

Administration (NOAA): “El Niño can be said to occur if sea surface temperature 

anomalies (SSTAs) in the Niño 3.4 region (5°N–5°S, 120°–170°W) exceed or equal 0.5 

C° for a period of at least five consecutive overlapping three-month seasons based on a 

1971-2000 climatology (http://www.climate.gov/news-features/understanding-

climate/watching-el-ni%C3%B1o-and-la-ni%C3%B1a-noaa-adapts-global-warming).” 

Trenberth and Stepaniak (2001) argued that in order to capture the many “flavors” of 

ENSO, more than one index was required. When Ashok et al. (2007) applied an empirical 

orthogonal function analysis to observational data from 1979-2005 they found ENSO 
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events with different spatial characteristics in the central Pacific. Because the 

phenomenon was determined to be unrelated to ENSO evolution it was labeled ENSO 

Modoki (pseudo-El Niño). Since that time, much research has been focused on the 

differences between the Central Pacific (CP) El Niño and the canonical Eastern Pacific 

(EP) El Niño.   

 
Figure 3.  SSTA Jan1998. January 1998 Sea Surface Temperature Anomaly during a mature EP El Niño.  
Calculated using HadISST1 with a 1971-2000 seasonal climatology.  SSTAs in °C 
 

 
Figure 4.  SSTA Jan1995. January 1995 Sea Surface Temperature Anomaly during a mature CP El Niño.  
Calculated using HadISST1 with a 1971-2000 seasonal climatology.  SSTA in °C. 
 

Figure 3 illustrates the spatial structure of a mature EP El Niño.  Figure 4 reveals the 

spatial structure of a mature CP El Niño. 

 

° 

°
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 (a) 

 
 
 
 
 
 
 
 
 
 

(°C)

EP El Niño SSTA Evolution  
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(b) 

 
 
Figure 5. (a) EP El Niño SSTA Evolution.  (b) CP El Niño SSTA Evolution.  3 month averages of SST 
anomalies demonstrating propagation of (a) Composite of EP El Niño events: 1986/87, 1997/98, 2006/07, 
and (b) Composite of CP El Niño events: 1994/95, 2001/02, 2004/05.  Calculated using HadISST1 with a 
1971-2000 seasonal climatology. SSTAs in °C. 
 

 

CP	El	Niño	SSTA	Evolution 

(°C)
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Figure 5 displays the Composite average SST anomaly of 3 EP (a) and 3 CP (b) 

El Niño events over the period of their evolution. During an EP El Niño positive SSTAs 

originate along the western coast of South America (Niño 1+2) in March.  The warm 

anomalies extend westward to the Niño 3 region in April, then to Niño 3.4 in May, and 

finally to Niño 4 during September.  SSTAs peak during Boreal Winter, before retreating 

in an almost identically opposite fashion that restores the normal cold waters of the 

eastern Pacific “cold tongue.”  Typically, the Niño regions experience this decay in April 

of the second year with the exception of the Niño 1+2 region, which decays in July (Kao 

and Yu, 2009).   

The CP El Niño has a different structure.  Positive SST anomalies often begin 

during the summer months near the international dateline (180° longitude), mature during 

December and January, and retreat during spring of the second year.  The anomalies 

associated with CP El Niño spread meridionally, but fail to propagate zonally to the 

extent that EP El Niño does.  Figure 4b reveals that these warm ocean anomalies are 

more ambiguous than those of EP El Niño with small patches of warm water occurring in 

the eastern Pacific during the fall and winter months.  Furthermore, Figure 5 

demonstrates that CP (EP) El Niño events are characterized by weaker (stronger) SSTAs 

with maximum composite values around +1.25 °C (+2.0 °C), and have a shorter (longer) 

duration of around 9 (15) months. 

 Kao and Yu (2009) studied both sea surface and sub-surface temperature 

anomalies (SubSTA) for CP and EP types of El Niño. They found that positive SubSTAs 

extend deeper in the water column for EP El Niño, whereas CP El Niño events are 

initated at the surface with shallow SubSTAs.  Yu and Kim (2010) found that while 
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thermocline processes may control the generation of the EP type of El Niño, they only 

determine the period of decay for CP El Niño events.  The result of Yu and Kim (2010) 

supports the argument that the processes controlling the evolution of these two types of 

El Niño must be different.  

 Kug et al. (2009) investigated the governing mechanisms for Warm Pool El Niño 

(another name for CP El Niño) using observational SST and atmospheric data. They 

found that much different than its cousin in the eastern Pacific, CP El Niño is not driven 

by thermocline variations, but instead through anomalous advection by surface currents, 

and the vertical temperature gradient supply and drive SSTA development in CP El Niño.  

Sea surface height leads subsurface warming and the eastward current, which both in turn 

lead surface warming. Once the surface warming initializes, the mean zonal and 

meridional currents propagate the anomaly eastward and poleward.  Here CP El Niño 

SSTAs induce precipitation and wind stress anomalies that enhance the development of 

the event. In the mature phase, westward zonal advection of cold water induced by the 

change of sea surface height distribution acts to damp the event (Kug et al., 2009).  Wind 

anomalies provide the mechanism that prevents the development of large SSTAs over the 

eastern Pacific.  During a CP El Niño, the precipitation anomaly is located near the 

dateline, allowing for strong westerly wind stress anomalies to occur from 130˚E-160˚W 

(including Niño 4 region), but easterly wind stress anomalies to prevail over most of the 

Niño 3 region.  The wind stress structure of a CP El Niño is governed by the dynamics 

presented in Gill (1982).  An in-phase relation observed between precipitation and wind 

stress combines with the structure mentioned above to enhance the warm (cold) SSTA in 

the central (eastern) Equatorial Pacific by downwelling (upwelling).  These convergent 
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winds play a significant role in both damping and containing positive SSTAs in the 

central Pacific.  Thermocline feedback is the key process in EP El Niño, but zonal 

advective feedback largely controls development and decay of warm ocean anomalies 

present in CP El Niño. 

The CP El Niño tends to occur more frequently during the warm phase of the 10-

15 year Pacific Decadal Oscillation (PDO) (Kug et al., 2009).  The interaction between 

the local atmospheric forcing and a warm PDO is important in relation to the resultant 

ocean warming from Climate Change.  If long term warming of SSTs in the tropical 

Pacific is expected, CP El Niño will be an important player in regional climate changes 

worldwide.  Thus, understanding and predicting teleconnections associated with CP El 

Niño is an essential skill to posses. 

Teleconnections 

El Niño Teleconnections are the result of anomalous warming in the equatorial 

Pacific Ocean on regional climates worldwide. Central Pacific and Eastern Pacific El 

Niño have different spatial SST anomaly structures, which result in different footprints 

on regional climates around the world.  Ashok et al. (2007) thoroughly investigated 

teleconnections for EP El Niño and El Niño Modoki.  The description of an El Niño 

Modoki is comparable to that of a CP El Niño, and for the purposes of this study they 

will be referred to as one and the same. 

Boreal Summer 

During Northern Hemisphere Summer, an EP El Niño results in positive rainfall 

anomalies over the eastern Pacific, with negative anomalies in the tropical western 

Pacific and equatorial South America.  In North America, increases in precipitation are 
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favored over the Southwest and the Northwest from Washington up to Alaska, the Great 

Plains, as well as the East Coast, contrasted by negative anomalies around the central and 

western Gulf Coast. ENSO signals can also be seen in Indian, Australian, and other 

monsoon seasons.  Eastern Pacific El Niño conditions can cause serious draught during 

boreal summer months in India and Australia, retarding the monsoon in these places (Mo, 

Schemm, and Yoo, 2009).  EP El Niño also causes warm air temperatures along the 

Pacific coast of North America up to Alaska, Central and East Africa, and South Asia.  

Cool temperatures are found over northeastern North America, eastern China, Japan, the 

tropical western Pacific islands, Turkey, and southern Mediterranean Europe.   

However, CP El Niño has a different footprint on regional climates worldwide.  

During CP El Niño boreal summers, positive precipitation anomalies are seen over the 

central equatorial Pacific bounded by negative rainfall anomalies in the East and West.  

Northern India receives wet conditions countered by drought in southern Japan, eastern 

Australia, and the western coast of North America.  Central Pacific El Niño is associated 

with globally cool temperatures, expect for parts of South America.  

Boreal Winter 

An EP El Niño boreal winter causes drought over the western Pacific tropics and 

sub-tropics, countered by wet conditions in the central and eastern equatorial Pacific, 

northern Argentina, southeast Brazil, northeast Africa, and southeastern North America.  

EP El Niño causes warm air temperatures over global tropical regions with exception to 

the western tropical Pacific.  Positive Surface Air Temperature (SAT) anomalies are also 

identified over eastern and southwestern Australia, Japan, and the South China Sea.  

Negative SATAs are found over New Zealand and inland Mexico.  
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During CP El Niño boreal winters, the eastern Pacific experiences drought along 

with southern Thailand, the Philippines, southern India, Sri Lanka, Northwest United 

States, and East Africa.  Central Pacific El Niño expectantly causes warmer SAT 

anomalies over the central equatorial Pacific Ocean bounded by cooling on both sides.  

The atmospheric cooling encompasses the islands of the tropical western Pacific as well 

as affecting western and southern Australia.  Eastern India, Eastern Europe, and the 

subtropical east coast of South America experience cooler temperatures. 

 

1.3  Motivation and hypothesis 

Recent research suggests EP and CP statistics have been changing over the past few 

decades.  Using ERSSTv2 (Smith and Reynolds, 2004), Kao and Yu (2009) stated that 

CP El Niño occurs more frequently in recent decades. Lee and McPhaden (2010) 

analyzed high-resolution satellite AVHRR SST data and found an increase in CP El Niño 

frequency and intensity from 1982-2010.  Yu et al. (2012) investigated CP and EP events 

in the ERSSTv3b (Smith and Reynolds 2004) observational SST data over the time 

period of 1950-2010 and also discovered an increase in CP El Niño frequency.  

Research by Deser et al. (2010) found that different SST data sets used in climate 

analysis showed inconsistencies in the representation of long term trends in the central 

Pacific. The authors showed that Kaplanv2 and HadISST1 both demonstrated a cooling 

trend in the Niño 3.4 region, while ERSSTv3b, and un-interpolated ICOADS and 

HadSST2 data showed significant warming in the eastern equatorial region of the Pacific.  

Using marine cloudiness, precipitation, and SLP data, the authors argued that the data 

showing a warming trend were more physically consistent with the atmospheric data over 
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the twentieth century.  The authors argued that the cooling trend must be a result of the 

methodology used in interpolating and reconstructing these simulated data sets.  

 
Figure 6. (a) ICOADS 1953 Jun-Nov Average SSTA. (b) ERSSTv3b 1953 Jun-Nov Average SSTA.  (c) 
HadISST1 1953 Jun-Nov Average SSTA. 
 

(a)  

° 

(b)  

° 

°

(c)  

° 
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When identifying and classifying CP and EP El Niño events, the discrepancy 

between the datasets is equally important because of the paucity of data in the central 

Pacific in the earlier historical record. Figure 6 shows the six month average SSTA 

during the development of the 1953-54 CP event (Yu et al., 2012).  The largest anomalies 

in the ICOADS data are found in the east Pacific, and there is a considerable area in the 

central Pacific devoid of data. In the ERSSTv3b there is clearly a stronger CP signal than 

the ICOADS figure and a weaker signal in the Niño 1+2 region (used in three of the four 

metrics used to define a CP El Niño) than that in the HadISST1 case. It is evident that the 

classification of this event is highly dependent not only on the particular methodology 

used in the data interpolation but also on the particular metric used in the classification of 

CP and EP events. The discrepancies among the differing datasets become less 

significant after the late 1970s when more comprehensive coverage was made possible by 

satellite observations. It seems justifiable then, to suggest that recent studies citing 

changes in the statistics of ENSO over the past several decades are influenced by changes 

in data quality.  

 

I propose the following hypothesis: 

The statistics of CP and EP El Niño events have not changed significantly over the 

past half-century. 

To test this hypothesis I employ a two-part data analysis procedure.  

1) Examine the consistency of the classification of CP and EP El Niño events since 

1950 using multiple datasets and multiple metrics drawn from the peer reviewed 

literature.  
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2) Test the significance of the recent changes in CP and EP El Niño statistics with 

the incorporation of spatially and temporally complete and consistent coupled 

model output from state of the art coupled climate models.  
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CHAPTER 2 

DATA 

2.1 Observational Data 

To examine the consistency of CP and EP El Niño event classification in differing 

observational estimates of sea surface temperature, I incorporate five data sets used in the 

peer reviewed literature to study historical changes in tropical Pacific SST. The datasets 

are listed in Table 1.  

Table 1.  Observational SST Data used.  All analysis data is referenced from other work. 

Data Name Type Reference 
Spatial 
Resolution 

International 
Comprehensive 
Atmosphere-Ocean Data 
Set (ICOADS) 

Raw None 2°x2° 

Hadley Centre SST version 
2 (HadSST2) 

Un-Interpolated 
based on 
ICOADS 

(Rayner et al., 
2006; Minobe 
and Maeda, 
2005) 

2°x2° 

Hadley Centre sea ice and 
SST version 1 (HadISST1) 

Re-Analysis 
(Interpolated) 

(Rayner et al., 
2003) 

1°x1° 

Extended Reconstructed 
SST version 3 (ERSSTv3b) 

Re-Analysis 
(Interpolated) 

(Smith et al., 
2008) 

2°x2° 

Kaplan Extended SST 
version 2 (Kaplanv2) 

Re-Analysis 
(Interpolated) 

(Kaplan et al., 
1998) 

5°x5° 

 

The ICOADS data set is a digital database that was constructed in 1985 and 

continues to be updated.  It contains raw data recorded by ships, weather ships, and 

weather buoys dating back to 1800. The HadSST2 data set is the work of Rayner et al. 

(2006) and is an observational dataset based on the ICOADS SST data set.  The 

HadSST2 analyzed the ICOADS SST database and did bias corrections to account for 

measurement practices through time.  A detailed analysis of uncertainties in these 
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corrections was included as well as an assessment of total uncertainty in each gridded 

average.  The analysis was done by combining the bias-correction-related uncertainties 

with those arising from measurement errors and under-sampling of intragrid box 

variability.  No interpolation was done in this SST data set that spans from 1850-present. 

Each re-analysis data set was created using methods that differ from the next.  In 

Kaplan et al. (1998) SST anomalies were produced using four statistical methods; 

optimal smoothing (OS), the Kalman filter (KF), optimal interpolation (OI), and 

Projection Method (P). These Empirical Orthogonal Functions (EOFs) are sourced by the 

stationary spatial covariance of the data field and use this covariance as the key to filling 

in missing data from 1856-1991.  The Kaplanv2 data set consists of the Global Ocean 

Surface Temperature Atlas (GOSTA) monthly averages of individual SST observations 

for 5° latitude by 5° longitude boxes (Bottomley et al., 1990) as the observational data.  

The MOHSST5 data set, which incorporates ICOADS, is used where no GOSTA data 

existed.  It should be noted that MOHSST5 corrects for systematic biases in SST 

measurements.  Climatological monthly means for the period 1951-1980 are subtracted 

out leaving the analysis product (Kaplanv2) as an anomaly from this mean.  The 

Kaplanv2 data set spans from 1856 to present. 

The HadISST1 data set is a product of Rayner et al. (2003) where a suite of 

methods was used to create a spatially complete monthly SST analysis from 1871-

present.  The HadISST1 data set was developed at Met Office Hadley Centre for Climate 

Prediction and Research, and improved on previous SST and sea ice data sets: GISST1, 

GISST2, and GISST3; all developed at Hadley Centre.  From 1871-1981 all SST analysis 

used gridded, quality-controlled in situ SST observations.  From 1871-1941 the data were 
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bias-adjusted following Folland and Parker (1995) because of diverse methods of data 

retrieval with different biases.  In addition, for the data-sparse oceanic regions a reduced 

space optimal interpolation (RSOI) (Kaplan et al., 1997) was utilized to fill in these 

regions using a 4° area resolution from 1871-1948 and a 2° area resolution from then to 

1981.  The RSOI uses EOFs to reconstruct in-situ data based on ships’ observations and 

in later years remotely sensed SSTs.  From 1982 onward, the RSOI technique was 

applied to a combination of in situ/satellite SSTs.  The bias-adjusted non-interpolated 

gridded in situ data were then adjusted and blended with the reconstructed fields.  The 

HadISST1 field is a blend of EOF reconstructed data with original data (Rayner et al., 

2003). 

The ERSSTv3b data set is a product of another re-analyses conducted by Smith et 

al. (2008).  The output being simulated surface temperature data (LST and SST) that is a 

combination of model output and observed data along with the 5°x5° historical sampling 

grid from 1880-present. The model output comes from the Geophysical Fluid Dynamics 

Laboratory (GFDL) Climate Model 2.1 (CM2.1), which is a coupled general circulation 

model (CGCM) that simulates the large-scale climate signal using variations in forcing 

by greenhouse gases, aerosols, and estimates of solar radiation changes.  Low frequency 

anomalies from 1860-2000 are combined with high frequency variations done with OI to 

make for a realistic data field.  The simulated data were subsampled using the historical 

sampling grid with random errors added in to produce test temperature-anomaly 

reconstructions, that are validated against the full (error free) simulated data.  Low 

frequency and High frequency tuning was then done in order to improve the original 

simulated data.  In-situ ship and buoy SSTs are taken along with bias-adjusted satellite 
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SSTs in later years and are combined to form the merged data set that is used in the 

statistical analysis.  Using weights calculated using relative noise of the data types and 

normalization of these weights ensure no damping or inflation is present in the data.  The 

ERSSTv3b data set spans the time period 1854 to present. 

 

2.2 Model Data 

 Model data comes from the fifth phase of the Coupled Model Intercomparison 

Project (CMIP5) established by the Working Group on Coupled Modeling under the 

World Climate Research Program. The simulations come form the pre-industrial control 

(Pi-control) simulations, which serve as a baseline for the analysis of historical and future 

scenario simulations.   The Pi-control simulations are run with prescribed concentrations 

of well-mixed greenhouse gases that allow for estimation of unforced variability in the 

coupled model. Here, simulated SST output is analyzed from 16 CMIP5 member models.   

The choice of Pi-control CMIP5 data for the Monte Carlo simulation allows for a 

longer record of physically consistent and comprehensive data. Unlike the observational 

data, the CMIP5 output has no gaps in coverage and is not affected by changing 

concentrations of greenhouse gasses. In this way, the model output can be seen as a 

“perfectly sampled” version of nature. Of course, the statistics of natural climate 

phenomena such as ENSO can vary considerably among coupled models and from the 

observed phenomena. Because of this an analysis of ENSO statistics was undertaken to 

identify models with similar statistics to those of the observed phenomenon.  
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CHAPTER 3 

METHODS 

3.1 EP and CP El Niño Metrics 

There is no consensus to date in the literature for a metric to classify a CP El 

Niño. Trenberth and Stepniak (2001) argued that to properly characterize the different 

flavors of El Niño, more than one index must be used. Here, we incorporate the TNI of 

Trenberth and Stepaniak (2001) as well as three other indices that were recently reviewed 

by Yu et al. (2012) to determine the “flavor” of El Niño events from 1950-2010.  All data 

had to first pass the working definition for an El Niño before the metric was applied. The 

four metrics are described below: 

1. The Niño 3/4 Index:   (Yeh et al., 2009, Lee and McPhaden., 2010) 

CP: (SSTA) Niño 4 > Niño 3 and >= 0.5°C for December-January-February (DJF) 
EP: (SSTA) Niño 3 > Niño 4 and >= 0.5°C for December-January-February (DJF) 

 
Figure 7.  ERSSTv3b Niño 3/4 Index.  The Niño 3/4 index applied to ERSSTv3b from 1950-2010.  The EP 
index associated with EP El Niño events are displayed in blue.  The CP index associated with CP El Niño 
events are displayed in red.  All values are displayed in °C.   
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The Niño 3/4 index is defined as the Niño 3 SSTA – Niño 4 SSTA.  When applied to an 

El Niño event, if the Niño 3/4 index > 0 then an EP El Niño is present.  If the Niño 3/4 

index < 0 a CP El Niño is present.   

2. The EP/CP Index:  (Kao and Yu, 2009) 

CP: SSTAs confined to Niño 3.4 and Niño 4 regions 
EP: SSTAs mostly contained to Niño 1+2 and Niño 3 regions 

 
Figure 8.  ERSSTv3b EP/CP Index.  The EP/CP index applied to ERSSTv3b from 1950-2010. The EP 
index associated with EP El Niño events are displayed in blue.  The CP index associated with CP El Niño 
events are displayed in red.  All values are displayed in °C.   
 

The EP/CP Index is defined here as the average Niño (1+2 and 3) SSTA – average Niño 

(3.4 and 4) SSTA.  When applied to an El Niño event, if the EP/CP index > 0 then an EP 

El Niño is present.  If the Niño 3/4 index < 0 a CP El Niño is present.  Kao and Yu 

(2009) attempted to isolate the CP (EP) signals by removing (via linear least squares 

regression) the Niño 1+2 (Niño3.4) index from the data and performing Empirical 

Orthogonal Function analysis on the residuals. Here we reproduce their results using a 

more straightforward index based approach. 
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3. The El Niño Modoki Index (EMI):  (Ashok et al., 2007) 
 
EMI= [SSTA]A – 0.5*[SSTA]B – 0.5*[SSTA]C 
Region A (165°E–140°W, 10°S–10°N), B (110°W–70°W, 15°S–5°N), and C (125°E–
145°E, 10°S–20°N) 
 
CP: EMI > 0.7σ average over Winter Seasons 
EP: EMI < 0.7σ average over Winter Seasons 

 
Figure 9.  ERSSTv3b El Niño Modoki Index.  The El Niño Modoki index applied to ERSSTv3b from 
1950-2010.  The 0.5*Region B metric associated with EP El Niño events are displayed in blue.  The 
0.5*Region C metric associated with CP El Niño events are displayed in red.  All values are displayed in 
°C.  
 

The EMI is defined as the Region A SSTA – 0.5*Region B SSTA – 0.5*Region C SSTA.  

Here, the EMI is multiplied by negative 1 in order to compare with the other metrics.  

When applied to an El Niño event, if the EMI >0.7σ then an El Niño Modoki (CP El 

Niño) is present.  If this threshold remains unbroken, then the El Niño event is simply 

classified as an EP El Niño. 

 

4. The Trans Niño Index (TNI):  (Trenberth and Stepaniak, 2001) 
 
CP: Niño 1+2N – Niño 4N = some negative value 
EP: Niño 1+2N – Niño 4N = some positive value 
(Niño 1+2N = Niño 1+2 SSTA/Niño 1+2 σ, Niño 4N = Niño 4 SSTA/ Niño 4 σ) 
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Figure 10.  ERSSTv3b Trans Niño Index.  The Trans Niño index applied to ERSSTv3b from 1950-2010.  
The EP index associated with EP El Niño events are displayed in blue.  The CP index associated with CP 
El Niño events are displayed in red.  All values are displayed in °C.   
 

The TNI is defined as the Niño 1+2N SSTA – Niño 4N SSTA.  When applied to an El 

Niño event, if the TNI > 0 then an EP El Niño is present.  If the TNI < 0 a CP El Niño is 

present 

 

3.2 Monte Carlo Simulation  

Resampling is a category of statistical methods that is used to robustly test a 

sample population.  Results commonly take the form of sample means, variances, 

standard errors, and confidence intervals.  Some popular resampling techniques are the 

Bootstrap, Jack knife, or Monte Carlo test. In a Monte Carlo test, a small (relative to 

population size) random sample is taken.  The small sample is taken randomly from the 

population any number of times before being synthesized into a new sample population, 

which can be used to accept or reject a null hypothesis about the original sample.  Here, 
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the significance of the Lee and McPhaden (2010) results is tested using a Monte Carlo 

test. 

Lee and McPhaden (2010) applied the Niño 3/4 Index to High Resolution 

AVHHR OI daily SST data for the December-January-February (DJF) season from 1982-

2010 and found an increase in CP El Niño frequency and intensity. I utilize Monte Carlo 

simulations that incorporate CMIP5 model output to test whether the 28-year trends 

described by Lee and McPhaden (2010) are statistically significant when sampled over 

the longer “perfectly sampled” period of the CMIP5 simulations.  

The methods used by Lee and McPhaden (2010) are tested on SST output from 16 

Pi-control simulations. The Monte Carlo simulations include 1000 random samples (with 

replacement) of 28 year “chunks” of data from the record. For each 28-year sample, the 

December-January-February (DJF) seasonally averaged Niño 3 and Niño 4 SSTAs are 

calculated (representing the mature phase of El Niño) and compared to assess the CP to 

EP frequency in the sample.  Next, linear trends are calculated for the Niño regions over 

the 28-year sample. Note, only samples that meet the NOAA threshold for an El Niño 

(0.5 °C, or standard deviation equivalent) are considered in the trend. Results represent 

the distribution of trends in the “perfectly sampled” observations of the individual models 

and multi model means and provide a context with which to consider the claims of Lee 

and McPhaden (2010).   
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Observational Data Analysis 

In this section I examine metrics used in the literature to distinguish CP and EP 

events using several observational estimates of historical SST records. Table 2 shows the 

El Niño events occurring since 1950 and the classification of the event for each of the 

metrics described in Section 3.  The Observational SST data sets are examined using four 

CP/EP El Niño metrics to classify El Niño events for the time period of 1950-2010. The 

analysis reveals several inconsistencies among the four metrics used to identify CP and 

EP events in the observational record.  Table 2 documents a total of 18 El Niño events (as 

opposed to the 21 synthesized by Yu et al.; 2012).  Of the 18 El Niño events shown 

above, the 4 metrics are in total agreement on the “flavor” of El Niño for 9 events.  The 

other half of the El Niño events reveal varied disagreement among the metrics used in 

distinguishing the type of the El Niño present.  
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Table 2.  Using ERSSTv3b the Results of Yu et al. (2012) are re-created.  Years highlighted in 
red denote a disagreement between Yu et al. (2012) result and the result of this analysis.  Yu et al. 
(2012) used ERSSTv3b in their analysis, but applied a 30 –year running climatology.  Here a 
fixed 30-year climatology (1971-2000) is used.  All events were checked using the NOAA 
criteria for an El Niño event. 

El Niño 
Years 

Niño 3/4 
Index: 

EP/CP  
Index: 

EMI: TNI: Raw Data 
Coverage % 

 

     Niño 3: Niño 4: 
1951-52     31% 22% 
 Neutral Neutral Neutral Neutral   
1953-54     26% 14% 
 Neutral Neutral Neutral Neutral   
1957-58     50% 25% 
 EP CP CP CP   
1958-59     39% 28% 
 Neutral Neutral Neutral Neutral   
1963-64     70% 56% 
 CP CP CP CP   
1965-66     80% 60% 
 EP CP CP CP   
1968-69     65% 56% 
 CP CP CP CP   
1969-70     82% 56% 
 EP CP EP CP   
1972-73     64% 66% 
 EP EP EP CP   
1976-77     86% 65% 
 EP EP EP EP   
1977-78     78% 75% 
 CP CP CP CP   
1982-83     FULL COVERAGE 
 EP EP EP EP   
1986-87     FULL COVERAGE 
 EP EP EP CP   
1987-88     FULL COVERAGE 
 CP CP EP CP   
1991-92     FULL COVERAGE 
 EP CP CP CP   
1994-95     FULL COVERAGE 
 CP CP CP CP   
1997-98     FULL COVERAGE 
 EP EP EP EP   
2002-03     FULL COVERAGE 
 EP CP CP CP   
2004-05     FULL COVERAGE 
 CP CP CP CP   
2006-07     FULL COVERAGE 
 EP EP EP CP   
2009-10     FULL COVERAGE 
 CP CP CP CP   
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The discrepancy regarding the “flavor” of the El Niño event present during the 

period of 1950-2010 is even more pronounced once the metrics are applied to multiple 

data sets.  Figure 11 shows the number of EP and CP events for the 5 observational SST 

data sets using the 4 different metrics over the time period: 1950-2010.  Table 3 reveals 

useful statistics for interpreting the results in Figure 11.  Note that Kaplanv2 contains 

SST anomalies computed using a 1951-1980 seasonal climatology.  This is inconsistent 

with the climatology (1971-2000) used in the studies of interest here.  

Figure 11. Number of EP and CP types of El Niño from 1950-2010 for Observational Data Sets: 
ERSSTv3b, ICOADS, HadISST1, HadSST2, Kaplanv2. (a) Niño 3/4 Index 1950-2010 (b) EP/CP Index 
1950-2010 (c) El Niño Modoki  Index 1950-2010 (d) Trans Niño Index 1950-2010. 
 

 
 
 
 
 
 
 

(a) (b)

(d)(c) 
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Table 3.  Statistics of Observational SST data sets once four different metrics are applied in order to 
determine the “flavor” of El Niño. 

Metric: Data Set: # of Events 
(1950-2010) 

EP index: CP Index: 

  EP CP Variance (°C) Variance (°C) 
Niño 3/4 Index      
 ERSSTv3b 11 7 0.733 0.375 

 ICOADS 11 9 0.724 0.432 
 HadISST 10 9 0.693 0.361 
 HadSST2 10 8 0.770 0.475 
 KAPLAN 13 6 0.689 0.387 

EP/CP Index      

 ERSSTv3b 6 12 0.837 0.498 
 ICOADS 6 14 0.842 0.509 

 HadISST 4 15 0.763 0.463 
 HadSST2 6 12 0.891 0.526 
 KAPLAN 7 12 0.769 0.482 

El Niño Modoki Index      

 ERSSTv3b 8 10 0.142 0.020 
 ICOADS 8 12 0.144 0.023 

 HadISST 7 12 0.130 0.020 
 HadSST2 8 10 0.156 0.023 
 KAPLAN 7 12 0.136 0.017 

Trans Niño Index      

 ERSSTv3b 3 15 1 1 
 ICOADS 2 18 1 1 

 HadISST 2 17 1 1 
 HadSST2 4 14 1 1 
 KAPLAN 4 15 1 1 
 

The Niño 3/4 Index uses two regions of comparable variance and spatial area as 

indices.  An EP El Niño identifies strongest SSTAs in the Niño 3 region, while strongest 

anomalies are focused in the Niño 4 region during a CP El Niño.  In using this 

straightforward approach, The Niño 3/4 Method yields results that may only be skewed 

by the slightly larger variance in the Niño 3 region. It is the only index that consistently 

classifies a larger number of EP events to CP events with the largest difference found in 

the Kaplan data. 
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The EP/CP Index describes a CP El Niño as having SSTAs confined to the Niño 

3.4 and 4 regions, and an EP El Niño as having SSTAs mostly contained to Niño 1+2 and 

Niño3 regions. The regions used to define EP and CP indices have a large spatial 

coverage and comparable variability differences seen in the NINO3/4 index.  While the 

large area does a good job of qualitatively explaining the spatial nature of these two types 

of El Niño, the nature of the index calculation and climatological range of temperature 

values averaged in these area averages leads toward the dominance of CP El Niño in the 

results. 

The El Niño Modoki Index uses meridionally large regions that are separate from 

the popular Niño regions.  These area averages are used to calculate an index that must 

break a 0.7σ threshold in order for the event to be termed an El Niño Modoki (CP El 

Niño).  If this threshold isn’t broken, but the Niño 3.4 index is greater than or equal to 0.5 

°C for the necessary period of time, then it is termed an (EP) El Niño.  The use of a 

standard deviation (σ) tends to favor El Niño Modoki (CP El Niño) slightly.  Note the EP 

index is an order of magnitude greater than the CP. 

The Trans Niño Index uses normalized area averaged SSTAs.  The Niño 1+2 

(large variance) and Niño 4 (moderate variance) regions are first divided by their 

standard deviation before calculating the index.  This metric was first created in order to 

define the “tilt” of the El Niño event (Trenberth and Stepaniak, 2001).  When applied 

here as a way of defining the “flavor” of the El Niño event, this metric leans heavily 

toward the CP type of El Niño.  A strong argument for this is the choice of the Niño 1+2 

region as the EP El Niño index.  As displayed in the Niño 3/4 Method, the Niño 3 region 

defines this index more reliability.  The Niño 1+2 region is also smaller than the Niño 4 
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region; therefore using much less data to define an event (EP El Niño) that at times has 

warm anomalies covering two thirds of the entire Equatorial Pacific Ocean. 

 

4.2 Monte Carlo Analysis 

Following the methodology of Lee and McPhaden (2010), I applied Monte Carlo 

simulations to SST output from 16 coupled climate models of the CMIP5 project. Using 

the statistics of CP and EP El Niño frequency and Niño region variances from 

observations, I first selected the SST output from the NSF-FASTCHEM coupled model 

as a statistically similar representation of the observed CP EP statistics. Figure 12 shows 

the distribution of the ratio of CP El Niño to the total number of El Niño events (CP+EP) 

in the NSF FASTCHEM model. The mean value of 0.55 found in the observational 

analysis (indicated by the red box), is within one standard deviation of the simulated 

frequency of occurrence in the model. A list of all of the CMIP5 coupled models with the 

calculated CP frequencies and Niño region variances are listed in Table 4. 

 
Figure 12.  NSF FASTCHEM Pre Industrial Control Run.  The distribution of CP El Niño frequency in 
NSF FASTCHEM resulting from the Monte Carlo Simulation is demonstrated.  The middle red line 
denotes the sample mean with either red line outside of it showing the 95% confidence interval.           

Lee and McPhaden (2010) 
 Result: 0.55 
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Table 4.  Statistics from pre industrial runs using 16 different model outputs found in the latest CMIP5.   

Model Name (#) CP/Total Ratio  Variance:  (°C) 
   Niño 3 Niño 4 Niño 3.4 
AVHRR OI SST 
(1982-2010) 

 0.55 0.7808 0.4292 0.7515 

ERSSTv3b 
(1950-2010) 

 0.40 0.8114 0.3924 0.7403 

Multimodel Mean  0.402 ±0.183 0.883 0.604 0.963 
CMCC-CMS 1 0.4579±0.17 0.6413 0.5415 0.8748 
CSIRO-0 2 0.0712±0.07 0.9022 0.3206 0.7277 
CSIRO-3 3 0.255±0.20 0.6737 0.4071 0.5974 
INM 4 0.468±0.61 0.2742 0.2175 0.323 
IPSL-CM5A-LR 5 0.204±0.21 0.4306 0.338 0.4408 
IPSL-CM5A-MR 6 0.519±0.21 0.51 0.55 0.585 
IPSL-CM5B-LR 7 0.077±0.08 0.57 0.21 0.556 
MPI-M-LR 8 0.528±0.19 0.65 0.55 0.719 
MPI-M-P 9 0.734±0.18 0.64 0.55 0.71 
MRI-CGCM3 10 0.546±0.16 0.37 0.3476 0.4128 
NCAR-CCSM4 11 0.438±0.15 1.30 0.966 1.569 
NCC-M 12 0.198±0.11 1.081 0.522 0.948 
NSF-BGC 13 0.387±0.19 1.298 0.894 1.538 
NSF-CAM5 14 0.698±0.14 0.938 1.015 1.219 
NSF-FASTCHEM 15 0.4594±0.132 1.241 0.846 1.4693 
NSF-WACCM 16 0.397±0.13 2.6109 1.3814 2.7199 

 

Figure 13 shows the distribution of linear SST anomaly trends for El Niño events 

in the Niño 3 and 4 regions of NSF FASTCHEM SST from the Monte Carlo Simulation.  

Lee and McPhaden (2010) pointed to an increase in CP El Niño intensity manifesting a 

positively trending Niño 4 SST anomaly (0.20 °C/decade), countered by a “decrease” in 

EP El Niño intensity exhibited in a negative trend in the Niño 3 SST anomaly (-0.39 

°C/decade), though the trend was not significant by their own analysis. All results from 

Lee and McPhaden (2010) lie within the 95% confidence interval (CI) (1.96σ) of the NSF 

FASTCHEM pi-control mode.   
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Figure 13. (a) NSF FASTCHEM El Niño (b) NSF FASTCHEM El Niño.  The distribution of NSF 
FASTCHEM Decadal SSTA trends (°C) resulting from the Monte Carlo Simulation is demonstrated. The 
middle red line denotes the sample mean with either red line outside of it showing the 95% CI.  The red 
box refers to the result of Lee and McPhaden (2010). 
 

Figure 14a-b shows the results of the Monte Carlo simulation applied to output 

from 13 members (CSIRO-0, IPSL-CM5B-LR, and NCC-M were omitted for CP/Total 

ratios below the 1.96σ threshold) of the CMIP5 coupled model project. The multi model 

averages place the results of Lee and McPhaden (2010) into a broader representation of 

“perfectly sampled nature” where the frequency of occurrence and ENSO behavior vary 

significantly.  The frequency of occurrence of CP El Niño found in the observational data 

lies within the one standard deviation of 9 out of the 13 models used in this analysis. This 

multi model mean demonstrates a CP/Total El Niño ratio that contains the Lee and 

(Lee and McPhaden, 2010) 
Result: 0.20 °C 
L&M significant at 90% 

(Lee and McPhaden, 2010) 
Result: -0.39 °C 
(L&M not significant) 

(a) (b) 
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McPhaden (2010) result within its first standard deviation with slightly larger variance in  

the Niño 3 and 4 regions (see Table 4).   

(a) 

 
 
(b) 
 

 
Figure 14. (a) CMIP5 Niño 3 SSTA Trends (multi model mean) (b) CMIP5 Niño 4 SSTA Trends (multi 
model mean).  Distributions of Multimodel Mean Decadal SSTA trends for CMIP5 piControl runs for (a.) 
EP Niño 3, CP Niño 3, and Niño 3 average (b.) EP Niño 4, CP Niño 4, and Niño 4 average.  The trend 
result for Lee and McPhaden (2010) is plotted on the Niño 3 and 4 figures to compare with model results.  

-Lee and McPhaden (2010)  
 Niño 4 trend =0.20 °C 

-Lee and McPhaden (2010)  
  Niño 3 trend= -0.39 °C  
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Each Figure is described as such: Red lines denote the mean surrounded by a blue box signifying the 1st 
quartile, with arms extending to 1.96σ or a 95% CI.  Multimodel means were calculated with the omission 
of models: CSIRO-0, IPSL-CM5B-LR, and NCC-M, because of their statistical disagreements displayed in 
Table 4.  SST anomaly trends are in the form of °C/decade. 

  

Figure 14 shows the distribution of the multi model averaged SST anomaly trends 

for CP and EP El Niño over the Niño 3 and Niño 4 regions.  All calendar months that 

meet the NOAA criteria of for an El Niño event are used in the trend analysis. Figure 14a 

shows the distribution of the Niño 3 linear trends for CP, EP, and total El Niño (CP+EP) 

events. The -0.39°C/decade trend of Lee and McPhaden (2010) falls just within the 95% 

CI for EP events and outside the 95% CI for CP and total El Niño events. Figure 14b 

shows the multi model average distribution of the Niño 4 linear trends for CP, EP, and 

total El Niño (CP+EP) events. The 0.20°C /decade trend of Lee and McPhaden (2010) 

falls well within the 95% CI for CP, EP, and total events. The results suggest that the 

increasing intensity of Niño 4 SSTA observed by Lee and McPhaden (2010) over the past 

28 years is unlikely to be significant when considered over longer timescales in the 

context of comprehensive, physically consistent data. Recall, the declining trend in the 

Niño 3 SSTA was not statistically significant in the Lee and McPhaden analysis. Here is 

well outside the 95% CI for CP El Niño and this is also seen in the combined (CP+EP) 

case. Results of the Monte Carlo simulation for each model are shown in Figure A1 

(Appendix). 

Naturally forced model output is not the same as observational data, but it can 

help to understand the behavior of the system in question, which in this case is the 

variability of El Niño.  The fact that both the “increasing” decadal SSTA trend in the 

Niño 4 region as well as the “decreasing” decadal SST trend in the Niño 3 region fall 
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within the 95% CI in the model that best simulates the observed tropical Pacific SSTs 

suggests that the 28 year period used by Lee and McPhaden (2010) was too short for the 

results presented.  
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CHAPTER 5 

CONCLUSIONS 

This analysis aims to address the question of an increase in CP El Niño intensity 

over the past thirty years.  The observational data analysis serves to assess the 

consistency of the metrics used to measure CP and EP events and to test the impacts of 

differing interpolation techniques used in the creation of historical SST datasets. 

Consistent with my hypothesis, Table 2 shows that the strongest discrepancy lies before 

full data coverage was available by satellites in 1979.  Years preceding 1950 were 

omitted because of the increasing sparseness of raw, un-interpolated data in the equatorial 

Pacific. The interpolation methods used by ERSSTv3b, HadISST1, and Kaplanv2 are 

unique to each data set, and when applied to raw SST data with pronounced gaps in 

coverage the Central Pacific they produced varied results (Figure 6).  The before-

mentioned disagreement is even more pronounced when aiming to define the flavor of El 

Niño.   Each metric used in this study takes a different approach to defining an EP or CP 

El Niño.  These approaches combined with the present discrepancy among observational 

data sets yielded diverse results.  For the 1950-2010 time period, the number of total 

ENSO events remained fairly consistent across all of the data (between 18 and 20); 

however the number of defined CP and EP El Niño events fluctuated.  As mentioned 

previously, the results from the Niño 3/4 Index yielded the most consistent results over 

all data sets with an average of 11 EP and 7.8 CP El Niño events during the time period 

in question.  The comparison between the Niño 3 and 4 regions takes area averaged 

SSTAs from two “blocks” of similar spatial area (Niño 3: 5°S-5°N, 150°W-90°W; Niño 

4: 5°S-5°N, 160°E-150°W) and of comparable variance (1982-2010: Niño 3: 0.788; Niño 
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4: 0.404).  The El Niño Modoki Index also gave balanced results with an average of 7.6 

EP and 11.2 CP El Niño events present.  The EP/CP Index and Trans Niño Index leaned 

heavily toward CP El Niño.   The EP/CP Index returned an average CP:EP ratio of 2.24:1 

and the TNI yielded an average ratio of 5.27:1.  This tendency to favor the CP type of El 

Niño puts the validity of these two metrics in question with regards to this specific use of 

each. 

The Monte Carlo Analysis applied to 16 CMIP5 Pi-control models provides a 

substantial number of data points that can be tested for significance.  In the model 

analysis, the results of CP El Niño frequency demonstrated that the result of Lee and 

McPhaden (2010) lies within the first standard deviation of the multi model mean 

calculated with the omission of models: CSIRO-0, IPSL-CM5B-LR, and NCC-M.  The 

multi model mean result describes the “increase” in CP El Niño frequency that is well 

within the natural variation of ENSO.  The Monte Carlo Analysis result for CP El Niño 

intensity demonstrates that the result of Lee and McPhaden (2010) lies within the 95% CI 

of the multi model mean SSTA trend.  Therefore expressing the “increase” in CP El Niño 

intensity as well within the natural variation of ENSO.  The analysis of the Niño 3 SSTA 

trend suggested, as the -0.39 °C/decade SSTA trend found by Lee and McPhaden (2010) 

fell within 1.96σ (95% CI) of El Niño events in the NSF FASTCHEM model, but outside 

the 95% CI for the multi model mean.  The Lee and McPhaden (2010) Niño 3 SSTA 

trend was found to be not significant by their own standards.   

In summary, the classification of differing types of El Niño is limited by the lack 

of consistent and standardized metrics. Further, the choice of data used to understand the 

changing statistics of El Niño events can have a significant impact on results. By 
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incorporating comprehensive model output from state of the art coupled climate 

simulations and resampling techniques, I provide evidence that the changes observed in 

CP El Niño intensity over the past three decades, manifesting itself in a positively 

trending Niño 4 SSTA, falls well within the expected range of values and thus I cannot 

reject my hypothesis. As full data coverage continues in the future and a larger 

comprehensive observational data set presents itself, the variation of CP and EP El Niño 

will become clearer, thus providing the means for a more definitive conclusion on the 

current state of the tropical Pacific Ocean.   
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APPENDIX 
Niño 3: 

 

 
 

(b) 

‐Lee	and	McPhaden	(2010)	 
		Niño	3	trend=	‐0.39	°C 

(a) 

‐Lee	and	McPhaden	(2010)	
		Niño	3	trend=	‐0.39	°C 



	 47

Niño 4: 

 

 
Figure 15. (a) CMIP5 EP El Niño: Niño 3 Decadal SSTA Trends (b) CMIP5 CP El Niño: Niño 3 Decadal 
SSTA Trends (c) CMIP5 EP El Niño: Niño 4 Decadal SSTA Trends (d) CMIP5 CP El Niño: Niño 4 

‐Lee	and	McPhaden	(2010)	 
		Niño	4	trend	=0.20	°C

(d) 

‐Lee	and	McPhaden	(2010)	 
		Niño	4	trend	=0.20	°C

(c) 



	 48

Decadal SSTA Trends. Distributions of SSTA trends for CMIP5 piControl runs for (a.) EP Niño 3 (b.) CP 
Niño 3 (c) EP Niño 4 (d) CP Niño 4.  Model numbers refer to Table 4.  The trend result for Lee and 
McPhaden [2010] is plotted on the Niño 3 and 4 figures to compare with model results.  Each Figure is 
described as such: Red lines denote the mean surrounded by a blue box signifying the 1st quartile, with 
arms extending to 1.96σ or 95% CI. 
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