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ABSTRACT OF THE DISSERTATION
DEVELOPMENT OF ADVANCED CAPILLARY ELECTROPHORESIS
TECHNIQUES WITH UV AND MASS SPECTROMETRY DETECTION FOR
FORENSIC, PHARMACEUTICAL AND ENVIRONMENTAL APPLICATIONS
by
Hanzhuo Fu
Florida International University, 2014
Miami, Florida
Professor Bruce R. McCord, Major Professor

Capillary electrophoresis (CE) is a modern analytical technique, which is
electrokinetic separation generated by high voltage and taken place inside the small
capillaries. In this dissertation, several advanced capillary electrophoresis methods are
presented using different approaches of CE and UV and mass spectrometry are utilized as
the detection methods.

Capillary electrochromatography (CEC), as one of the CE modes, is a recent
developed technique which is a hybrid of capillary electrophoresis and high performance
liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of
both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ
photoinitiation polymerization method. The column was then applied for the separation
of six antidepressant compounds.

Meanwhile, a simple chiral separation method is developed and presented in
Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not

only twelve cathinone analytes were separated, but also isomers of several analytes were

vi



enantiomerically separated. To better understand the molecular information on the
analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial
filling technique (PFT) were employed to reduce the contamination of MS ionization
source. Accurate molecular information was obtained.

It is necessary to propose, develop, and optimize new techniques that are suitable
for trace-level analysis of samples in forensic, pharmaceutical, and environmental
applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower
amounts of samples, it simplifies sample preparation, and it has the flexibility to perform
separations of neutral and charged molecules as well as enantiomers.

Overall, the present work demonstrates the versatility of capillary electrophoresis

methods in forensic, pharmaceutical, and environmental applications.
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CHAPTER 1 GENERAL INTRODUCTION
"The journey of a thousand miles begins with a single step."
Lao Tzu, Chinese philosopher, 604 BC-531 BC.
1.1 Historical Background

The history of capillary electrophoresis can be traced back to the 19™ century,
when Lodge described “hydrogen ion movements in a tube of phenolphthalein jelly” [1, 2]
in his thesis in 1886. Later, Smirnow [3], Hardy [4, 5], and Field [6] continued the
development of electrophoresis systems. During this time, separations were performed in
U shaped glass tubes with electrodes attached to each of the tubes’ arms [4, 5]. In 1937,
Swedish scientist Tiselius [7] successfully applied electrophoretic techniques for the
separation of colloidal mixtures. As a result of his pioneering work, Tiselius was awarded
the Nobel Prize in Chemistry in 1948, "for his research on electrophoresis and adsorption
analysis, especially for his discoveries concerning the complex nature of the serum
proteins" [8]. Professor Tiselius continued his explorations in the field of electrophoresis
and a number of more inspiring results were published, including separation of virus
particles in a 3 mm L.D. capillary [9-13]. In 1967, Hjerten [14] demonstrated the
separation of proteins using a 3 mm [.D. capillary, which was the earliest example of the
use of capillaries for electrophoretic separations with high electric fields. Afterwards in
1974, Virtenen discussed several advantages of using smaller diameter columns in

electrophoretic separations. However, the studies conducted in earlier years were not able



to demonstrate the high efficiencies which the modern CE systems have because of their

inability to produce stable capillary columns.

The commonly accepted modern CE system was introduced by James W.
Jorgenson, who was a professor at University of North Carolina, Chapel Hill, with his
graduate student Krynn Lukacs. Because of their pioneering work in the 1980s [15-18],
the CE system was widely used in academia, and resulted in CE industrial commercial
availability in the late 1980s. For example, in their paper titled capillary zone
electrophoresis published in Science magazine in 1983 [16], fundamental concepts of
modern capillary electrophoresis such as zone broadening as well as theoretical ideas on
CE separation mechanisms were proposed and presented. In the paper, they applied
voltages as high as 30 kV and adapted online UV detection for the separation of ionic

species.

Meanwhile, micellar electrokinetic chromatography (MEKC), another milestone
of CE development, was introduced by Professor Terabe in 1984 [19]. This invention
presented a method for using electrophoresis to separate both charged and neutral species
and was another vital step in CE history. After that, several types of CE separation modes

were invented and introduced [20-24].

Today, capillary electrophoresis is gaining great popularity as a powerful
analytical tool for various applications. Figure 1.1 illustrates the number of scientific
articles published over past three decades on the topic of “Capillary Electrophoresis”
using capillary electrophoresis as the key word in conducting a search using the Scifinder

Database.



3000

Data Source: SciFinder
2500
[¥a]
c
©
T 2000 -
i
o
S i
5 1500
—
@
o 1000 -
Ne)
S
= 500
0_
N w0~ 00000 A M ST WD~ O AN SN0~ 0000 M
0O 0O 00 00 00 00 00O OO O OO O OO OO0 0O 000000 o A -
(o2 TN o0 T o T o T o 0 R o 2 T o 0 T @ 0 T o R o 0 T w T o O o T o T o T o T o T e T e T e Y e T e T s S e T s T s Y v T s [ o Y e I o |
4 4 4 4 A4 A4 A4 A4 4 4 4 4 A A A 4 A~~~ NN SN SN

Year of Publication

Figure 1.1 Literature published between 1983 and 2013 on the topic of Capillary
Electrophoresis using capillary electrophoresis as the key work to conduct the search.

Data source: Scifinder database.
1.2 Principles of Separation in Capillary Electrophoresis

Capillary electrophoresis is a useful technique for the analysis of a wide variety of
compounds, including chiral compounds, pharmaceutical molecules, peptides, and
proteins [2, 25]. In particular, capillary electrophoresis has been successfully applied to
the determination of drugs in toxicological samples [26]. The usage of CE in forensic
analysis mainly results from advantages such as minimal sample requirements, rapid

analyses, and high efficiencies.



Capillary electrophoresis separation is determined by two factors: electroosmotic
flow (EOF) and electrophoretic mobility [2]. Electrophoretic mobility is the motion of
liquid induced by an applied potential across a capillary column. Electroosmotic flow
originates from the negative charges on the inner wall of the capillary tube, which result
in the formation of an electrical double layer. This is known as the zeta potential, which

is expressed by ¢, and defined by the Helmholtz equation [27].

Sample + \ / -

<€ >

Figure 1.2 Schematic diagram of the capillary electrophoresis system. The high voltage
up to 30 kV is applied at the ends of the capillary. With the force combination of
electrophoretic mobility and electroosmotic flow, the samples and background
electrolytes are carried through the capillary from the inlet to the outlet. A short portion
of the capillary is created as the detection window in order to obtain electrophoretic

spectra from UV or fluorescence detectors.



Equation 1.1 Helmholtz equation

o 47r77€lueo

where 1) is the viscosity, € is the dielectric constant of the buffer, and i, is the coefficient
for electroosmotic flow. Equation 1.1 can be used to categorize the effects of various
parameters on the EOF as under the influence of an applied electric field, the cations in
the diffuse layer move towards the cathode, leading the solvent molecules to move in the

same direction.

The linear velocity, expressed by v, of the electroosmotic flow is defined by the

following equation.

Equation 1.2 Calculation of linear velocity v

€
v

=—2E
4mn ¢

And the number of the theoretical plates is expressed as Equation 1.3, where E is the

potential of the electric field.

Equation 1.3 Calculation of theoretical plates (N)

(ueo+uep)v
N = (peotuep
2D

Where L, is the electrophoretic mobility and D is the diffusion coefficient of the solute.
Separations in CE occurs based on differences among electrophoretic mobilities of

solvated ions as shown in Figure 1. High efficiencies occur in these separations because



the system flow is electro-driven rather than pressure-driven as in an HPLC system.

Diffusion is minimized in the small 50 um flow channel.

Figure 1.3 illustrates the separation mechanism of capillary electrophoresis and
electroosmotic flow forms in a capillary. The wall of the capillary attracts cations in the
electrolyte, and an electrical double layer is created. Once voltage is applied to the

capillary, the net motion of electrolytes towards the cathode (EOF) occurs.
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Figure 1.3 Formation of the electroosmotic flow from the double layer inside the

capillary. Adapted from Ref. [28].

Equation 1.4 Separation mechanism of the capillary electrophoresis system

I = Jleo+ Llep

As stated above, the two different forces, electroosmotic fow e, and

electrophoretic mobility pp, play roles in the separation of the capillary electrophoresis



system. pH values have an important impact on the flow directions of the two forces,

which is demonstrated as Figure 1.4.
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Figure 1.4 Mechanism of separations in capillary electrophoresis systems. The
combination of electrophoretic mobility i, and electroosmotic flow p, determines the
flow velocity of the eluents in the capillary. Generally, at high pH conditions, silanol
groups on the inside wall of the capillary are fully ionized, generating a strong zeta
potential and dense electrical double layer. The overall separation is based on the two

forces.



In Figure 1.5, flow profiles in CE and HPLC are presented. As a result of its
contribution to peak broadening, the pressure driven flow profile inherently limits the
efficiency of HPLC. In CE, the EOF results in a flat flow profile towards the counter

electrode with charged compounds migrating at various rates within this vector.

® — O

Anode | | Cathode

Electroosmotic Velocity Profile

L |

High Low

Pressure Pressure

Hydrodynamic Velocity Profile

{Laminar flow)

Figure 1.5 A comparison between electroosmotic flow and laminar flow. Laminar flow
results in increased diffusion and band broadening and is a characteristic of HPLC
separations while the flat flow profile of the EOF improves separation efficiency in CE.

Adapted from Ref. [2].



Figure 1.6 displays CE sample stacking and sample injection. Samples are first
injected by either electrokinetic mode (voltage) or pressure. Then high voltage up to 30
kV is applied towards the samples. Samples are moved to the outlet based on different

forces.

Injected sample

OPNO) _
T 169a0 ROF ——>
Anode O O O O Cathode

Apply voltage

T BOF ——
Anode Cathode
Electrophoresis proceeds
_I_ EOF — -
Anode Cathode

Figure 1.6 CE sample stacking and sample injection. Top: the analyte is injected. Middle:
high voltage filed (up to 30 kV) is applied and since the electric potential difference
exists, the samples are pushed towards the cathode end. Bottom: the sample ions are
stacked and migrating though the capillary as a zone that is narrower than the sample

injected. Adapted from Ref. [2] and [29].



1.3 Significance of the Work

In this dissertation, different capillary electrophoresis methods are utilized to
examine effects in the separation and detection of drugs and toxins in forensic,

pharmaceutical, and environmental applications.

The detection of compounds involved in illicit and prescription drug abuse

The use of illicit drugs and the concomitant large number of problematic drug
users is a serious problem in work health [30]. According to the World Drug Report 2013
released by the United Nations Office on Drugs and Crime (UNODC), “ between 167 and
315 million people between the age of 15-64 were estimated to have used an illicit
substance” [30] in the year of 2010. This corresponds to between 3.6% and 6.9% of the
adult population in the world [30]. Figure 1.7 demonstrates that since 2008 the estimated
total number of people who have used an illicit drug has increased by 18%. This issue
makes it vital for law enforcement officers, policy makers, and researchers to find

corresponding solutions to fight against synthetic and designer drugs of abuse.
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Figure 1.7 Trends in drug use from 2006 to 2011. Date source: the World Drug Report

2013, UNODC. [30]
Environmental issues

The Annual Report 2013 from the United Nations Environment Programme
(UNEP) [31], and the Annual Report 2012 from Greenpeace [32], summarized various
issues in the 21% century that human beings are facing, such as global warming and
greenhouse effect, CO, emission, food safety and food security, air pollution, and
drinking water shortage. Among them, drinking water safety is one of the most important
aspect for human safety. A threat to clean drinking water includes cyanobacteria, which
are widely distributed throughout the world, which reflects their genotypic and
phenotypic variation [33]. Cyanobacteria are common in diverse types of every terrestrial
habitat, including oceans, lakes, fresh water, deserts, and even in the extreme
environments of Antarctica and thermal springs [34-35]. Thus, it is important to not only

detect but also quantify the amount of cyanobacteria existing in drinking water
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CE to the rescue

Numerous scientific publications have reported various analytical methods for
analysis of synthetic and designer drugs of abuse, overdosed prescriptions, and
environmental toxins such as cyanobacteria. Some application examples include HPLC
and LC-MS (including LC-MS/MS) [34-41], GC and GC-MS [42-47], and other
techniques [48-54] such as SFC, TPLC, and ELISA. However, capillary electrophoresis
has some advantages over these approaches mentioned above, which has made CE a
powerful tool for fulfilling the goal of projects in this dissertation. To summarize,
capillary electrophoresis 1) requires less sample injection amount; ii) has high efficiency,
high selectivity, and low operation cost; iii) exhibits the ability to analyze non-volatile
and highly polar compounds, and iv) demonstrates relatively easy column modification to
achieve chiral separation ability.

This dissertation is focused on development of novel CE techniques for forensic,
pharmaceutical, and environmental applications. A number of approaches were examined

for different applications and are presented in each following chapters.
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CHAPTER 2 MONOLITHIC CAPILLARY ELECTROCHROMATOGRAPHY FOR

THE TRICYCLIC ANTIDEPRESSANTS

2.1 Introduction

2.1.1 Introduction of the project

Worldwide issues with poisoning and death from clandestine drug manufacturing
demonstrate the need for effective methods that can not only detect low levels of drugs
but also accurately confirm their molecular information. In this way law enforcement can
better track users and victims of these products. In addition, the field of toxicology has
become increasingly vital as researchers and practitioners recognize the importance of
defining the precise role different drug combinations play in human behavior [33]. As a
result, a large number of studies have been conducted to develop better ways to detect the
presence of dangerous drugs [34-37]. The goal of the research described in this chapter is
to develop novel methods for the detection of drugs wusing capillary

electrochromatography (CEC).

Trace detection of pharmaceutical compounds typically employs several
analytical techniques, including gas chromatography-mass spectrometry (GC-MS) and
liquid chromatography-mass spectrometry (LC-MS). For the separation of drugs with
very similar structural and physical properties, these techniques may require specialized
stationary phases or additional derivatization for some samples in order to increase

method selectivity. An alternative to above techinuges is to utilize capillary
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electrophoresis (CE). Because of its high resolution and excellent peak capacity,
capillary electrophoresis can be a powerful alternative to traditional separation methods
for ionic analytes as well as neutral drugs. To permit the separation of neutral drugs,
compounds may be added to the buffer to produce guest/host and micellar/solute
interactions with the analytes. Using compounds such as cyclodextrins in the buffer, even
chiral compounds can be separated [2]. However, while capillary electrophoresis coupled
with UV, electrochemical or fluorescence detection can be used to presumptively
determine the presence of a particular compound, mass spectrometry connected to
chromatography is necessary for absolute identity of any drugs present in sample matrix
[55]. For toxicological analysis a number of useful procedures have been developed for
the detection and screening of compounds by capillary electrophoresis-mass spectrometry
(CE-MS) including low sample consumption and the potential for highly efficient chiral
analysis. However, current applications involving neutral or chiral drug detection by CE
procedures have been problematic [2, 25]. Since these procedures perform separations
utilizing non-volatile detergents or cyclodextrin-based pseudo-stationary phases, these
methods generally are incompatible with electrospray ionization methods that require
volatility. One potential solution for this issue is to operate the CE-MS system in a partial
filling mode to avoid spraying the reagent into the mass spectrometer. However, the
partial filling method is not often viable because of problems controlling the timing of the
capillary fill step and the potential instability of buffer gradient step that results from the

process.
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Capillary electrochromatography (CEC) is an alternative method for
electrophoretic separation that can be employed in the application of drug analysis. This
procedure is a novel technique which permits the detection of neutral compounds by
combining the high efficiency of CE with the outstanding selectivity of HPLC. In CEC,
the capillary column is packed with an HPLC type stationary phase, which allows the
separation to occur via sample partitioning between the packed stationary phase and an
electrodriven mobile phase. An efficient way to produce the stationary phase is through
in-situ polymerization into a so called polymer monolith. When coupled with mass
spectrometry, the procedure has been shown to provide efficient and sensitive detection

of drugs and their metabolites in biological fluids.

2.1.2 Background and significance of capillary electrophoresis and capillary

electrochromatography

Capillary electrochromatography was first introduced by Pretorius [56] and a
wide variety of applications have been developed for the technique [57]. In CEC a high
voltage is applied across the capillary, to generate EOF and move the mobile phase along
with analytes through the column. Separations for CEC are a consequence of both
differential partitioning and electrophoretic migration in mobile phases, which typically
include a mixed aqueous/organic buffer [58]. Since CEC is a hybrid of CE and HPLC,
high pressure is introduced to the system in order to assist with the electrophoretic
mobility as well as reducing the formation of bubbles when preparing monolithic

capillary columns.
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Figure 2.1 Schematic diagram of the CEC system. 1, inlet buffer vials; 2,

Fl
'

capillary; 3, outlet buffer vials; 4, electrodes; 5, power supply; 6, point of detection; 7,
external pressure 2-12 bar. The power supply (5) provides voltages up to 30 kV to the
two buffer vials at the distal ends of capillary (1, 3). The applied voltage creates an
electroosmotic flow (EOF) within the capillary (3) moving the analytes down the column
where they interact with the stationary phase. A detection window (6) is placed near the
end of the capillary which is typically UV, fluorescence, or mass spectrometry. Adapted

from Ref. [2].

In CEC, the stationary phase has two major roles: to provide charged sites to
permit the desired EOF for mass transport across the column, and to offer interactive sites
for chromatographic retention. A convenient way to generate a CEC stationary phase
with proper anionic character for generating EOF involves the production of monolithic
stationary phases. A monolithic column is defined as “A continuous unitary porous
structure prepared by in situ polymerization or consolidation inside the column tubing

and, if necessary, the surface is functionalized to convert it into a sorbent with the desired
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chromatographic binding properties” [59]. Two approaches can be used for making
monolithic stationary phases: sol-gels and organic polymers. The polymeric method is
often used because of its simplicity. In addition, the polymeric method is easy to
chemically modify to induce selectivity changes [25, 60]. The procedure consists of four
main steps: first using a promoter solution for pretreatment of the capillary walls to
increase sorption sites; the polymerization mixture is then used for flushing the capillary.
Under UV radiation exposure or heat, the mixture is initiated by in Situ polymerization.
Lastly, unreacted components are removed and a detector window is created by exposing
a section to UV light [27, 58]. The polymerization mixture is made of monomers, a
chemical initiator, and the porogen. The charged monomers assist in generating
electroosmotic flow, while the retentive monomers establish partitioning sites. Separation
selectivity can be enhanced by altering the hydrophobicity of the capillary’s stationary
phase [60]. The monolithic polymerization process may include altering the functional
groups on the monomer or altering the carbon chain length [61]. Formation of the
polymer chains is enhanced by the cross-linker, and the free radical polymerization
process is started by the initiator, resulting in the formation of the monolithic column.
The porogens play an important role as well because they assist in the formation of a
large network of pores in the polymeric monolith through which the mobile phase can

traverse [60].

Blas et al. [58] described the separation and detection of benzodiazepines in urine

samples using monolithic CEC-TOF-MS. Enhanced sensitivity was achieved because of
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two factors: the usage of the TOF-MS system and preconcentration at the tip of the

capillary containing the monolithic materials.
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Figure 2.2 Comparison of electrophoresis, electrochromatography and chromatography.
Different flow profiles are exhibited for electrophoresis, electrochromatography, and

chromatography. Adapted from Ref. [62].

Separation selectivity can be enhanced by altering the monomers and side groups
[62-63]. For example, hydrophobicity can be altered through increases in the length of
the carbon side group from hexyl to octadecyl acrylate. Charge density and pore size can
also affect separation through changes in sulfonate concentration and through increased

addition of cross linkers [57-59].

18



Antidepressants (ATD), as the names indicate, are substances with a wide range
of therapeutic uses for treatment of depressive disorder, and other conditions such as
anxiety and dysmenorrhoea. The World Health Organization (WHO) reported that
depression is the world’s third-leading cause of death loss [63]. Because of their side
effects and possible harmful potential, strict limitation is placed on the usage of
antidepressants. Among the wide variety of antidepressants, the most significant classes
are the selective serotonin reuptake inhibitors (SSRIs), serotonin—norepinephrine
reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), and monoamine oxidase

inhibitors (MAOISs) [64, 65]. In this project, I focused mainly on TCAs(Figure 2.3).

1. F Citalopram 2, Cyclobenzaprine

pKa 9.5710.28 pKa 9.1510.28

Desipramine

pKa 10.40£0.10 4, Doxepin

pKa 9.4010.28

5. ~ Fluoxetine 6. Imipramine
pKa 10.05%0.10 pKa 9.49+0.28

Figure 2.3 Structures of analytes used in Chapter 2

A number of different analytical techniques have been used in the trace detection

of antidepressant compounds. Gas chromatography (GC) and gas chromatography — mass
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spectrometry (GC-MS) [66-69] have been used to analyze ATD compounds. However,
chemical derivatization is required to increase volatility of many analytes to permit
compatibility with GC methods. High performance liquid chromatography (HPLC) and
liquid chromatography — mass spectrometry (LC-MS) [70-74] have often been used as an
alternative to GC and GC-MS for these compounds. However, most published work was
focusing on screen and determination rather than separation [73-75]. A useful alternative
is capillary electrophoresis. A number of capillary electrophoresis (CE) and CE combined

with MS methods have also been explored [26, 75-77].

Capillary electrochromatography (CEC) as an alternative method can be
employed in the application of drug analysis. Electrochromatography was first introduced
by Pretorius [56]. In CEC a high voltage is applied across the capillary, to generate EOF
and move the mobile phase through the column. Several applications of CEC monolith
capillary columns have been reported and reviewed [61, 78-83]. However, to the author’s
knowledge, there are no published reports on the use of acrylate-based monolithic CEC

for ATDs detection.

2.2 Experimental

2.2.1 Chemicals and materials

Fused-silica capillaries with an inner diameter of 100 um and a UV-transparent
coating were purchased from Polymicro Technologies (Phoenix, AZ, USA). Hexyl
acrylate (HA), 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), 2,2’-

azobisisobutyronitrile (AIBN), and sodium phosphate dibasic heptahydrate were obtained
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from Acros Organics (Morris Plains, NJ, USA). One, three-butanediol diacrylate
(BDDA), trimethyoxysilylpropyl acrylate (TMSA), ammonium acetate, ammonium
dihydrogen phosphate, ammonium formate, and sodium phosphate monobasic
monohydrate were obtained from Sigma Aldrich (St. Louis, MO, USA). Acetone,
acetonitrile, and ethanol from were purchased from Fisher Scientific (Pittsburgh, PA,
USA). Distilled water was deionized by a Milli-Q water purification system (Millipore,
Bedford, MA, USA). Antidepressants standards were purchased from Sigma Aldrich (St.

Louis, MO, USA).

Table 2.1 Chemical components of monolithic mixture

Chemical Name Chemical Structure Function

Hexyl Acrylate (HA) i Monomer
Il)LoW
1,3-butanediol diacrylate o o
/\/L Cross-linker
(BDDA) | © °" ]
trimethoxysilylpropyl o .
o~ o Adhesion Promoter
acrylate ﬁ" e
2-acrylamido-2-methyl-1-
0 Support Electroosmotic
propanesulfonicacid N 0
| H #—GH Flow
(AMPS) o
2,2"-azobisisobutyronitrile Free Radical Initiator for

N
=3 N.
(AIBN) 5( "&N Polymerization
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2.2.2 Instrumentation

All experiments were carried out using a fully automated capillary electrophoresis
system (G1600, Agilent Technologies, CA, USA) with the column temperature
maintained at 25°C. Separations were performed in 100 um ID uncoated fused silica
capillaries with a total length of 60 cm and an effective length of 50 cm. The running
voltage was 30 kV and samples were injected using the electrokinetic injection mode for
5 s at 10 kV. A built-in diode-array detector (DAD) was employed to record UV
spectrum. All analytes were scanned from 190 nm to 450 nm, and 206 nm was selected to
enable maximum sensitivity for analytes [53]. The separations were performed at field

strengths of 150-950 V/cm.

For spiked urine sample analysis, an Agilent 3250a time-of-flight mass
spectrometer (TOF-MS) was employed in addition to the CE system. An orthogonal
electrospray ionization (ESI) interface was used to couple CE with TOF-MS. Reference
masses obtained from Agilent (G1969-85001 API-TOF reference mass solution Kkit)
including purine at 121.0509 m/z and HP0921 at 922.0098 m/z were added to the sheath
flow liquid to calibrate the mass spectrometer. The mass range was set to 100-1000 m/z
to include both reference masses. Applied Biosystems/MSD-SCIEX Analyst QS
Software (Frankfurt, Germany) was employed for data analysis. All experiments were

performed in positive ion mode. The TOF-MS conditions were shown in Table 2.2.

22



Table 2.2 ESI-TOF-MS experiment conditions for analysis of spiked urine samples

Parameter Value
Capillary Voltage 3000 V
Nebulizer pressure 10 psi
Drying gas (N2) 5 L/min
Gas temperature 150 °C
Fragmentor voltage 125V
Skimmer voltage 40V
Octapole RF 300 V
TOF/PMT 1025V
Mass range (m/z) 0-1000
Sheath flow 0.5 mL/min
Reference 121.0509, 922.0098

2.2.3 Monolithic capillary preparation

A method of making monolithic CEC columns was originally developed by Ngola
et al. [84] and modified to prepare monolith columns. The procedure consists of four
main steps: first using a promoter solution for pretreatment of the capillary walls in order
to increase sorption sites; the polymerization mixture is then used for flushing the
capillary [58]. Under UV radiation exposure or heat, the mixture is initiated by in situ
polymerization. Lastly, unreacted components are removed and a detector window is

created by exposing a section to UV light [27, 58].
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The polymerization mixture is made of monomers, a chemical initiator, and the
porogen. The charged monomers assist in generating electroosmotic flow, while the
retentive monomers establish partitioning sites. Briefly, the monolithic mixtures
consisting of 1357 uL HA, 591 uL BDDA, 0.0145 g AMPS, 0.0098 g AIBN and 4 pL
TMSA were prepared. A pH 6.8 sodium phosphate buffer was made from a solution
containing 3 mM sodium phosphate monobasic and 4 mM sodium phosphate dibasic with
1.0 M NaOH adjusting to desired pH value. The porogenic mixture was composed of
acetonitrile, ethanol, and sodium phosphate buffer at 3:1:1 volumetric ratio. The
monomer mixture was mixed with the porogen at a 1:2 volumetric ratio. Five min of

sonication was needed to remove bubbles in the mixture.

Pretreatment towards the capillary was made prior to use, which includes flushing
the capillary with acetone for 5 min followed by 1.0 M sodium hydroxide for 60 min and
then treating the inner wall with 4 pL of trimethoxysilylpropyl acrylate in 1 mL 6 mM
acetic acid for 10 min. The capillary has to be flushed with water for 30 min to remove

any residual solvent residuals and dried with a flow of nitrogen gas.

The capillary was filled with the polymerization mixture by immersing the inlet of
the capillary into a reservoir and pushing the polymerization solution through the
capillary under gas pressure. After 30 min, both ends of the capillary were sealed. A UV
detection window was created by masking a 1 cm portion of capillary by aluminum foil.
The capillary was then placed into an UV box at 365 nm for the duration of 1 h at room
temperature. Then 2 cm of both ends were cut and the capillary was put in the CE

instrument for experiments. The monolith must be present in the entire capillary.
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2.2.4 Sample preparation

Antidepressant samples were prepared as following procedures. Stock solutions
were prepared in methanol at a concentration of 1 mg/mL. When not in use, the stock
solution was stored in the freezer at — 18 °C. For experimental usage, the stock solutions
were pipetted, dried down under nitrogen, and diluted to concentrations ranging from 5
ng/mL to 1 mg/mL using deionized water with 10% buffer. Fresh samples were prepared

daily.

To check method capability, urine was spiked with cyclobenzaprine, desipramine
and imipramine at concentrations ranging from 25 ng/mL to Img/mL (IRB Protocol

Approval #: IRB-13-0474) to mimic forensic samples.

Monomer == |nitiator == Porogenic Solvent === Monolith

Initial Mixture Phase Separation Polymer

1.

,_;A‘i_

Figure 2.4 Monolithic column preparation procedure. The monolithic materials are

synthesized by monomer mixtures, a chemical initiator, and porogenic solvents.
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2.2.5 Liquid-liquid extraction

A liquid-liquid extraction procedure was employed [58] and adjusted as follows:
1000 pL of spiked urine was mixed with 200 pL of 100 mM ammonium acetate at pH of
12 and then extracted with 500 pL ethyl acetate. One hundred mL of 0.1 M NaOH was
then added to the aqueous phase and extracted again with 500 pL ethyl acetate. The
organic phases were dried down and reconstituted in deionized water with 10%

phosphate buffer.
2.3 Results and Discussion
2.3.1 Monolithic columns

Several chemical reactions are involved in the monolithic polymerization
procedure. The first step is the decomposition of 2,2'-azobisisobutyronitrile (AIBN).
CH; CH; CHj
hy
N=C—C—N=N—C—C=N —» 2CN—C* + N2

CH3 CH; CHs;
Equation 2.1 Decomposition of 2,2'-azobisisobutyronitrile (AIBN)

A 2,2'-azobisisobutyronitrile molecule has one nitrogen-nitrogen double bond and
two carbon-nitrogen triple bonds. Because N=N has lower bond energy than C=N, the
AIBN molecule will take apart into two equal products and the N=N double bond is

where the free radical reaction takes place. The product will be a t-butyl carbon group
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with free radicals attached on, which provides reactions sites for the next polymerization

steps.

The second step of the polymerization procedure is the monomer initiation. The
monomer, hexyl acrylate, reacts with free radicals produced in the first step. The free
radical attacks the carbon carbon double bond C=C in the hexyl acrylate molecule and

produces a hexyl carbon chain free radical.

CHy o Q
| St
CN—C = + /\/\/\ /\/\/\
(o} CN—C—%
| —= ]
CH3 CH;

Equation 2.2 Monomer hexyl acrylate (HA) initiation

Next, the produced hexyl carbon chain free radical continues reacting with hexyl

acrylate molecules, producing complex hexyl carbon chain free radicals.

o
CH, HK/\/\/\ CHs
AN TN
GN—é OW N—é
CH3 O
Equation 2.3 Monomer propagation

The polymerization reaction continues till it is terminated when the UV initiation
source is removed. In the case of the reaction used in this project, the UV exposure time

1s set to 60 min.
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Equation 2.4 Termination of the polymerization reaction
2.3.2 Method development and CEC-UV results

The first step of the method development was to fabricate monolithic capillary
columns, which provided advanced separation performance. Two methods exist for the
characterization of the quality of a monolithic column. First, UV/Vis spectra of samples
in the column can be obtained. Second, SEM can be utilized to image the monolithic
materials inside the column. The figure below illustrates a comparison of effective and

non-effective monolithic capillary columns.

Once monolithic columns were successfully fabricated, their performance was
optimized and characterized. Firstly, the effect of pH was examined. The optimal
wavelength was set at the 206 nm as the UV detection wavelength by examining the scan

of 190 nm to 450 nm to maximize sensitivity.
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Figure 2.5 Comparison of effective (left side) and non-effective (right side) monolithic

capillary columns.

Preliminary results indicated that phosphate buffer was the optimum buffer for
separation [85, 86]. To begin with, running buffers at different pH’s was investigated.
pH’s at 2.52, 3.60, 6.13, and 6.95 were examined ( Figure 2.7). From these results it can

be concluded that at higher pH conditions, antidepressants were better separated.

To optimize voltage and injection times, a sample containing 200 ng/mL of
desipramine was injected at different voltages and injection times. A comparison between

different injection conditions is listed in Table 2.3.
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Figure 2.6 Scanning electron micrographs of hexyl acrylate monolithic column. Entire
capillary (top) and enlargement (bottom). Micrographs were taken at 20 kV high electric
field with x1,000 zoom (top) and x2,000 zoom (bottom), respectively. From the top
figure, it can be viewed that proper polymerized materials were built inside the column
and the polymeric materials taken full space inside the column. From the bottom figure,
porous structure was well developed and the monolithic materials were tightly attached to

the capillary wall, which indicated that the polymerization process was well finished.
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Table 2.3 Effect of voltage and duration of injection on peaks. Values are given as

percentage in relation to the value for 5 kV — 10 s injection.

5kV-5s 60 96 96
5kv-10s 100 100 100
10kv-10s 195 107 93
15kV—8s 232 112 95

Various combinations of injection time and voltage were tested, including 5 kV —
55,5kV—-10s, 10 kV — 10 s, and 15 kV — 8 s. Among these parameters, 5 kV — 10 s
demonstrated optimum results in terms of resolution and peak shape. All other
combinations of injection are compared with 5 kV — 10s and the results are shown in
Table 2.3. If longer injection time was used, more samples were injected and sample
stacking would occur in the capillary; if less injection time adapted, less samples were
injected and the peak intensity might be lower and not intense enough. For the injection
voltage, similar principles apply. It can be concluded that 10s is a proper time span to
ensure enough amount of samples injected into the monolithic columns. Also comparing

5 kV with 10 kV, 5 kV is relatively proper than the 10 kV.
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Figure 2.7 CE-UV separations using monolithic capillary columns at different pH
conditions. Sample: a mixture of 6 antidepressants at 5 pg/mL. BGE: ACN:Phosphate
Buffer 30:70. Peak identification: Desipramine (1); Cyclobenzaprine (2); Citalopram (3);
Imipramine (4); Doxepin (5); Fluoxetine (6). Optimum separation conditions and results
are shown in Figure 2.8.
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Figure 2.8 Electropherogram of a mixture of six compounds at 50 ng/mL. BGE:
ACN:Phosphate Buffer 30:70. Run voltage: 30 kV. Injection: 5 s at 10 kV. Cassette
temperature: 25 °C. Peak identification: Desipramine (1); Cyclobenzaprine (2);

Citalopram (3); Imipramine (4); Doxepin (5); Fluoxetine (6).

Figure 2.8 demonstrates that six antidepressant compounds were separated using
monolithic capillary columns and analyzed by DAD UV detection. The separation

conditions are listed in the legend.
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The analytical measurements of the CEC-UV experiments is presented as Table
2.4. Figures of merit for each analyte including slopes of the calibration curve, coefficient
of determination (R?), LOD and LOQ are calculated. LOD down to 11 ng/mL was

obtained.

Table 2.4 Figures of merit for the CEC-UV results (n>5)

Slope, k
Compound (peak area vs.
conc.)

Cyclobenzaprine 35.45 0.9816 33 100
Citalopram 57.98 0.9991 12 36
Imipraminne 32.9 0.9985 11 32
Doxepin 37.6 0.9976 22 66
Desipramine 30.1 0.9830 27 80
Fluoxetine 50.7 0.9995 19 57

2.3.3 Liquid-liquid extraction and spiked urine sample

In order to determine the capability of the procedure for the analysis of biological
samples, liquid-liquid extraction was explored using spiked urine samples. The urine
samples were collected using IRB approved protocols from human volunteers (IRB-13-

0474).
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As stated earlier, 1000 pL of spiked urine was mixed with 200 pL of 100 mM
ammonium acetate at the pH of 12 and then extracted with 500 uL ethyl acetate. One
hundred mL of 0.1 M NaOH was then added to the aqueous phase and extracted again
with 500 pL ethyl acetate. The organic phases were dried down and reconstituted in

deionized water with 10% phosphate buffer.

Blank Urine
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Cyclobenzaprine
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h | |
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Figure 2.9 Electropherogram of TOP: Blank urine samples and BOTTOM: spiked urine
samples of a mixture of three compounds at the concentration of 100 ng/mL. BGE:
ACN:Phosphate Buffer 30:70. Run voltage: 30 kV. Injection: 5 s at 10 kV. Cassette

temperature: 25 °C.
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A spiked urine sample containing three analytes were examined and the results
using UV detector are presented as Figure 2.9. A comparison between blank urine and the
spiked urine samples were. The top figure of Figure 2.9 is shown extraction of blank
urine sample. No signal was obtained, which matches the character of the blank urine.

The bottom figure of Figure 2.9 is the spiked urine sample exhibiting three analytes
cyclobenzaprine, desipramine and imipramine were separated and captured by UV (DAD)

detector.

The spiked urine sample was then infused into the TOF-MS system in order to

check the extraction capability. The results are presented as Figure 2.10.
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Figure 2.10 Mass spectrum of spiked urine sample of a mixture of three compounds at
the concentration of 100 ng/mL. Three compounds were identified by TOF-MS. M+H

values as Table 2.5. Detection conditions were same as Figure 2.9.
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Exact molecular weight information was obtained for the three antidepressant
analytes spiked in the sample. Since the TOF is an accurate mass detector, four decimal

places molecular weight information was given.

Table 2.5 Accurate mass measurements of extracted urine samples (n>5)

M M+H M+H Error  Error
Compaund Formula (calculate) (calculated} (experimental) (amu)} (ppm)

Cyclobenzaprine C20H2IN  275.1669  276.1747  276.1736 -0.0011 -4
Desipramine  CI8Hz2Nz  266.1778  267.1856  267.1844 -0.0012 -4

Imipramine Cl9H24Nz  280.1934 2812012 2811997 -0.0015 -5

Table 2.5 demonstrated the mass measurements of the urine sample extractions.
Errors in terms of amu and ppm were calculated and presented in the table. Low errors

(ppm) were obtained, which exhibited the advantages of the TOF-MS system.

2.4 Concluding Remarks

This chapter details a method for separation and identification of six
antidepressant compounds using an acrylate-base porous monolith capillary. Capillary
electrochromatography (CEC) coupled with UV detector was explored. The CEC-UV
method provides an effective and efficient method for the separation and identification of
the analytes. Spiked urine samples were utilized to check method capability. A liquid-
liquid extraction procedure was established to perform sample extraction. Time-of-flight
mass spectrometry was also employed for spiked urine sample analysis, and accurate

molecular information was obtained.
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CHAPTER 3 CHIRAL SEPARATION OF CATHINONE ANALOGS BY

CYCLODEXTRIN-ASSISTED CAPILLARY ELECTROPHORESIS

3.1 Introduction

In recent years, there has been a trend towards marketing novel synthetic drug
analogs as an alternative to conventional controlled substances [87]. Inexpensive organic
starting materials, inadequate control by law enforcement, and rapid transportation of
these compounds have lead to the widespread use of such drugs. In addition, the
increasing use of the Internet makes selling new drugs easier than ever before [88, 89].
According to the European Monitoring Centre for Drugs and Drug Addiction
(EMCDDA), mephedrone and related substances are primarily sold online and prices
ranged between 18 and 25 Euros for one gram in 2011 [90]. According to the World
Drug Report 2013 [30], synthetic cathinones have stimulant effects and are controlled
substances in most countries. These categories of synthetic drugs are often referred as
new psychoactive substance (NPS) by UNODC, such as mephedrone and
methylenedioxypyrovalerone (MDPV). The abuse of synthetic cathinones, also known as
“bath  salts” (cathinone-type  substances  such as  mephedrone  and
methylenedioxypyrovalerone(MDPV)), has become a major public health threat across
the world [30]. Case reports and clinical studies have shown that the use of these designer
drugs can cause severe psychiatric symptoms and possibly death [91-93]. In USA, the
chemicals used in “bath salts” were under Federal control and regulation announced by

U.S. DEA in 2011 as “an increasing number of reports from poison control centers,
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hospitals and law enforcement regarding products containing one or more of these

chemicals” [94] was received. Strictly control should be implemented and it is necessary

to analyze and detect cathinone analogs for forensic applications.
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Figure 3.1b Structures of all cathinones used in Chapter 3
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Though the first synthetic cathinones, methcathinone and mephedrone, were
introduced in the late 1920s, many related compounds have been synthesized [95]. Since
then, however, most of these have not been used for clinical purposes because of serious
side effects. Cathinone analogs are amphetamine-like psychostimulants, structurally
related to the main psychoactive component of the kath plant (Catha edulis), the

phenylpropylamine alkaloid cathinone (Figure 3.1a) [96].

Cathinone analogs are a group of B-keto phenethylamine compounds that are
derived from the parent compound cathinone shown in Figure 3.1a [97]. Analogs studied

in Chapter 2 are illustrated in Figure 3.1b.

Because of existence of a chiral center in cathinone analog compounds, two
isomers exist for each drug [98]. As with many chiral active pharmaceutical ingredients,
the pharmacological effect of the enantiomers of those psychoactive compounds can
differ [99-101]. The enantiomeric separation of cathinone analogs may become important

as these isomers can perform different functions in drug design and other aspects.

Many different types of instrumentation and methods have been utilized for the
separation of cathinone analogs, including HPLC [102-104], GC [99, 105, 106], and CE
[107-110]. Compared to HPLC and GC, CE demonstrates numerous advantages
including high efficiency and resolution, and the capability to perform chiral separations
through the addition of chiral selectors to the background electrolyte (BGE). The chiral
selector procedure allows easy and fast preparation compared to the required
modifications of the stationary phase necessary in CEC, HPLC, and GC chiral separation

[83, 111]. In addition, CE permits low sample injection sizes which are a benefit when
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sample volumes are limited in most forensic case applications [112]. Capillary
electrophoresis has been used for cathinone detection, for example, in 2012, Mohr et al.
[107] described a method of enantioseparation of 19 cathinone derivates with sulfated-3-
CD. However they did not apply mass spectrometric detection to these samples, which is

a necessary step in forensic case study as a confirmatory method.

A major advantage of capillary electrophoresis over other separation techniques is
its capability of separation in the area of chiral analysis [107-110, 113]. Furthermore, the
technique has wide applications in forensic toxicology, as demonstrated by the numerous
papers published in the field by Fanali, Lurie, and others [109, 113-116]. In this project
presented in Chapter 3, the capability of CE has been investigated in the determination of
synthetic cathinone analogs. With CE, numbers of chiral selectors are available for use,
including crown ether [117-127] and antibiotics [128-135]. Among them, cyclodextrins

(CDs) and their analogs are the most commonly used [107, 136].

Compared to other chiral selectors, cyclodextrin has its own advantages: i. it is
relatively cheaper than crown ether [137], which is another widely used chiral selector; ii.
CD has a low UV signal shield at 200-250 nm, which is especially useful for the target
compounds used in this project; and iii.it is easy to synthesize CD derivatives on the basis
of CD’s neutral a-, B- and y-CD forms since the OH- groups on the edge of CD ring
provide various anchoring sites. However, cyclodextrin is a non-volatile compound,
which means once it gets into the MS ionization source, it is difficult to remove. In this

case, other than spraying buffer containing the CD directly into the MS, a novel approach
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should be implemented for CE coupling with MS. This part (CE-MS) will be mainly

discussed in the next chapter (Chapter 4). Chapter3 is focused on CE-UV mode.
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Figure 3.2 TOP: The structure of B-cyclodextrin from top view and BOTTOM: Side

view with diameter and height values of B-cyclodextrin molecule.
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The possible separation mechanism of CD was proposed by Prof. Bezhan
Chankvetadze of Tbilisi State University [138]. He concluded that “... in order to be
separated by CE, the enantiomers must migrate with different velocities along the
longitudinal axis of a separation capillary” [138], and to accomplish such goal, it is
necessary to add the chiral selector to BGE. The mechanism is expressed as the following

equation:
Equation 3.1 Separation mechanism of CD proposed by Chankvetadze [138]

Ay = (be — ko) (Ks — Kp)[C]
W=17 (Kg + Kg)[C] + KrKs[C]?

where Al represents the velocity difference between isomers of the same chiral
analyte, Mrand M. are mobility of the non-complex form and mobility of complex form,
respectively. The variable [C] represents the concentration of chiral selector, and the
complexation constants of R and S isomers are expressed as Kg and Ks. Equation 3.1
explains that when the two enantiomers react with CD and the diasterometric products
have their own velocity and enantiomers-chiral selector complexation constants, a
velocity difference between the two enantiomers exists, so the two enantiomers elute out

the capillary at different migration times.

In 1997, another assumption was proposed, that even when Kr = Kg = K, chiral
separation can be achieved by CE. In this scenario, Equation 3.1 is transformed to the

following equation.
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Equation 3.2 Separation mechanism of CD when association constants are at the same

value [138].

Au = (“‘CR B IJ‘CS)K[C]
b= T K[

The goal of the particular project presented in Chapter 3 was to develop a method
for simultaneous chiral analysis of multiple cathinone analogs by cyclodextrin-assisted
CE. In addition, the author was interested in developing a procedure to permit coupling
the chiral separations with time of flight mass spectrometry (TOF-MS). In this way one
could also obtain the exact mass information useful in compound detection and
identification by the TOF-MS. In Chapter 3, the CE-UV part of the project is mainly
discussed. Detailed experimental procedures and method development of CE-TOF-MS

section will be demonstrated in Chapter 4.

3.2 Experimental

3.2.1 Chemicals

Phosphoric acid and acetic acid were purchased from Fisher Scientific (Pittsburgh,
PA, USA); ammonium acetate, sodium hydroxide, sulfated B-cyclodextrin, highly
sulfated-B-cyclodextrin, and sodium phosphate monobasic monohydrate from Sigma-
Aldrich (St. Louis, MO, USA); B-cyclodextrin and y-cyclodextrin from TCI America
(Portland, OR, USA); and highly sulfated y-cyclodextrin from Beckman Coulter (Brea,

CA, USA). Distilled water was produced with a Barnstead Nanopure Diamond water
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system (Waltham, MA, USA). Sodium phosphate dibasic heptahydrate were obtained

from Acros Organics (Morris Plains, NJ, USA).

Acetonitrile (ACN), methanol (MeOH), Isopropanol, and phosphoric acid used
for the preparation of the buffer electrolytes, were of analytical reagent grade (Carlo Erba,
Milan, Italy). Distilled water was deionized by a Milli-Q water purification system

(Millipore, Bedford, MA, USA).

A number of experiments were performed in the author’s Italian collaborator’s lab.
For method development in the Italian lab facility (UV/Vis detection), drug standards of
(+)-2-(methylamino)-1-phenylbutan-1-one hydrochloride (Buphedrone), (£)-1-phenyl-2-
(methylamino)pentan-1-one hydrochloride (Pentedrone), (%)-1-(4-methoxyphenyl)-2-
(methylamino)propan-1-one hydrochloride (Methedrone), (+)-1-(3,4-dimethylphenyl)-2-
(methylamino)propan-1-one  hydrochloride (3,4-DMMC), (£)-2-ethylamino-1-phenyl-
propan-1-one hydrochloride (Ethcathinone), (¥)-1-(4-fluorophenyl)-2-
methylaminopropan-1-one hydrochloride (4-Fluoromethcathinone), (+)-2-
dimethylamino-1-phenylpropan-1-one  hydrochloride = (Dimethylcathinone),  (+)-2-
methylamino-1-(3,4-methylenedioxyphenyl)propan-1-one hydrochloride (Methylone),
(¥)-1-(1,3-benzodioxol-5-yl)-2-(ethylamino)propan-1-one hydrochloride (Ethylone), (+)-
2-methylamino-1-(4-methylphenyl)propan-1-one hydrochloride (Mephedrone), (+)-1-
(1,3-benzodioxol-5-yl)-2-(methylamino)pentan-1-one hydrochloride (Pentylone), (%)-1-
(Benzo[d][1,3]dioxol-5-yl)-2-(pyrrolidin-1-yl)pentan-1-one hydrochloride (MDPV) and
(+)-2-(ethylamino)-1-phenyl-1-propanone hydrochloride (Ethcathinone) were purchased

from LGC Standards (Sesto San Giovanni, Milan, Italy).
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For method development in USA lab facility (UV/Vis and CE/MS) at FIU, drug
standards of (%)-2-(methylamino)-1-phenylbutan-1-one (Buphedrone), (+)-1-phenyl-2-
(methylamino)pentan-1-one (Pentedrone), (¥)-1-(4-methoxyphenyl)-2-
(methylamino)propan-1-one (Methedrone), (¥)-1-(3,4-dimethylphenyl)-2-
(methylamino)propan-1-one  (3,4-DMMC), (#)-2-ethylamino-1-phenyl-propan-1-one
(Ethcathinone), (¥)-1-(4-fluorophenyl)-2-methylaminopropan-1-one (4-
Fluoromethcathinone), (+)-2-dimethylamino-1-phenylpropan-1-one (Dimethylcathinone),
(¥)-1-(1,3-benzodioxol-5-yl)-2-(ethylamino)propan-1-one (Ethylone), (£)-1-(1,3-
benzodioxol-5-yl)-2-(methylamino)pentan-1-one (Pentylone), and (+)-2-(ethylamino)-1-
phenyl-1-propanone, monohydrochloride (Ethcathinone) were purchased from Cayman
Chemical (Ann Arbor, MI, USA) and drug standards of (+)-2-methylamino-1-(4-
methylphenyl)propan-1-one (Mephedrone), (¥)-1-(Benzo[d][1,3]dioxol-5-yl)-2-
(pyrrolidin-1-yl)pentan-1-one (MDPV) and (¥)-2-methylamino-1-(3,4-
methylenedioxyphenyl)propan-1-one (Methylone) were purchased from Lipomed
(Cambridge, MA, USA). The chemical structures of cathinones are represented in Figure

1b.

Stock solutions of synthetic cathinones (0.1 mg/mL) were prepared in methanol
and stored at -20 °C. Background electrolytes (BGE) used for CE experiments were
prepared daily by dissolving the proper amount of B-cyclodextrins in phosphate buffer.

All the electrolyte solutions for the CE separation were stored in glass bottles at + 4 °C.
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Background electrolyte preparation

Phosphate buffers were prepared by diluting concentrated phosphoric acid to a
desired concentration, in this project to a 100 mM phosphate buffer and adjusting with a
1.0 M NaOH solution in order to reach the working pH (= 2.5). In the experiments
evaluating the influence of the pH on separation performance, 100 mM solutions of
phosphoric acid at the starting pH of 1.8 were titrated with NaOH (1.0 M) to match pHs

0f2.5,3.5,5.0 and 7.0.

3.2.2 Instrumentation

The separation experiments of cathinone standards and commercial samples were
performed using a fully automated capillary electrophoresis system (G1600, Agilent
Technologies, Santa Clara, CA, USA) with the column temperature maintained at 25 °C.
Separations were performed in 50 um ID uncoated fused silica capillaries with a total
length of 57.5 cm and an effective length of 49.5 cm. The capillary columns were
obtained from Polymicro (Phoenix, AZ, USA). Prior to use, each new capillary was
rinsed with 1.0 M NaOH for 25 min and water for 10 min as the pretreatment steps.
Samples were introduced into the capillary using electrokinetic injection for 10s at 10 kV.
CE-UV detection was performed via on-column measurements using a diode array
detector (DAD) at a wavelength of 206 nm. Experiments were carried out in “normal
polarity” mode (anode at the capillary inlet) by applying a constant voltage of 25 kV

during analyses with the current at ~52 pA.
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3.3 Results and Discussion

3.3.1 Method development and CE-UV results

In this CE-UV study the cathinones examined belong to the benzoylethanamines
class. These compounds have similar chemical structures differing from each other by
presence of different substituents that may include halogen, dioxol, and alkyl groups.
Hence, a highly efficient and selective method for the discrimination of such closely
related compounds is needed. From the data reported in the literature, numerous
chromatographic methods have been developed for the separation of this class of drugs.
[102, 139-141]. However, given the wide variety and potential development of new
compounds, there is a need for methods which can access the high efficiency and

identification capability that can be obtained via CE and mass spectrometric methods.

The initial conditions for the separation were adapted from a previous study
developed in the McCord research group for the separation of amphetamine and
piperazine designer drugs [142]. In that project, 6 piperazine and 4 chiral amphetamine
compounds were simultaneously separated within 23 min using a 200 mM phosphate
buffer at pH=2.8 with 20 mM hydroxypropyl-B-cyclodextrin (HP-B-CD) as a buffer
additive. For the analysis of the cathinone analogs in this project, various separation
parameters (pH, buffer concentration, field strength, etc.) were further optimized using

UV-visible detection prior to coupling the procedure to mass spectrometry.
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3.3.1.1 Background electrolyte (BGE) optimization

Different pH conditions were tested at pH 2.5, 3.5, 5.0, and 7.0. It appears that at
low pH the resolution was higher, presumably resulting from the reduced electroosmotic
flow at low pH conditions. The results shown in Figure 3.3 illustrate the influences of the
pH on the resolution and the analysis time. At higher pH conditions the resolution
dropped, and coelution of several of the cathinones occurred. pH of 2.5 produced optimal
migration times, peak efficiency, and resolution. Buffers at pH lower than 2.5 produced
no advantage in terms of resolution of the peaks. Thus, pH of 2.5 was used for all further

experiments.

The effect of buffer concentration on the separation was examined at 50 mM, 75
mM, 100 mM and 150 mM phosphate. Among these different concentrations, 100 mM

phosphate provided the optimum results in terms of resolution and migration time.

Once the pH and the buffer concentration were optimized, further tests were
performed to improve the separation. In particular, the author examined the effect of the
addition of 5-20 mM f-cyclodextrin (B-CD) with and without organic modifiers in the
buffer (Figure 3.4 and Figure 3.5). The results shown in Figure 3.4 demonstrate that the
concentration of the B-CD has a marked effect on both of the resolution and the migration
time. Higher concentrations of B-CD resulted in increased migration times due to slower
migration of the drug/cyclodextrin complex. Optimal resolution and peak shape occurred
at a concentration of 10 mM B-CD. In addition to B-CD, highly sulfated-y-CD (HS-y-CD)
and mixtures of HS-y-CD and B-CD were examined (Figure 3.6). In general, the

separations obtained from HS-y-CD separation were not as efficient as those from pB-CD.
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Higher amounts of HS-y-CD also lead to raised baselines and a significant drop in signal
to noise ratio with UV detection. The effects of 2 %, 5 %, and 10 % of MeCN, MeOH,
and isopropanol in the BGE containing 10 mM B-CD were also tested. Bulk migration
times were slower when organic modifiers were added to the BGE, and a decrease in the
resolution of cathinones was observed. Because of the longer analysis time and the lower
resolution, those conditions were not useful. Thus, the final conditions for the separation
buffer consisted of 100 mM phosphate at a pH of 2.5 with 10 mM B-CD. This buffer
permitted the resolution of all relevant synthetic cathinones as well as the chiral
separation of 10 of them (Figure 3.7). These buffer conditions compare favorably with a
previous chiral separation of some of these compounds and uses neutral B-CD as a

modifier [107].
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Figure 3.3 Effect of pH value on the separation of the twelve synthetic cathinones. (a)
pH 2.5; (b) pH 3.5; (c) pH 5.0; (d) pH 7.0. Conditions: BGE 100 mM phosphate buffer;
voltage injection, 10 kV for 10 sec; applied voltage, 25 kV; temperature, 25 °C; fused-
silica capillary, 57.5 cm (49.0 cm effective length) x 50 um i.d.; detection, 206 nm.
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Figure 3.4 Effect of the concentration of B-cyclodextrine on the separation of the twelve
cathinones and enantiomers. (a) 5 mM, (b) 10 mM; (c) 15 mM and (d) 20 mM.
Separation conditions as in Figure 3.3.
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Figure 3.5 Effect of the organic modifier as an addition to the phosphate buffer on the
separation of the twelve cathinones and enantiomers. Separation conditions as in Figure

3.3.
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Figure 3.6 Effects of concentration of B-CD and HS-B-CD on the separation of the

twelve cathinones and enantiomers. Separation conditions as in Figure 3.3.

3.3.1.2 CE-UV results

Figure 3.7 demonstrates the separation of a standard containing 12 cathinone
analogs using this method. The optimal running voltage was 25 kV (435 V/cm). Lower
field strengths provided longer migration times and broader peaks, with little

improvement in terms of resolution.

The separation conditions utilized were the optimized parameters discussed in
previous sections. A mixture of 12 compounds at 100 ng/mL for each individual
compound was enantio-separated using a 100 mM phosphate buffer containing 10 mM of
B-cyclodextrin at pH 2.5. Electrokinetic injection was used and the sample was injected
for 10 s at 10 kV. The running voltage was 25 kV with cartridge temperature set to 25 °C.
A fused-silica capillary with 57.5 cm long (49.0 cm effective length) x 50 um i.d. was

used to carry out the separation. DAD was set to scan at 206 nm.

All  compounds except 4-fluoromethcathinone and methedrone showed
stereospecific interactions with the chiral selector B-CD. 4-Fluoromethcathinone and
methedrone could be distinguished from other compounds but could not be enantio-
separated. Interestingly, these two compounds were enantiomerically separated using the
highly sulfated-y-cyclodextrin buffer in CE-MS mode. Thus, the geometry of these
molecules may have been a factor affecting the separation of their enantiomers by the

different cyclodextrins.
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Figure 3.7 Electropherogram of the simultaneous chiral separation of a mixture of 12
compounds at 100 ng/mL, using a 100 mM phosphate buffer adding with 10 mM of B-
cyclodextrin. Separation conditions as in Figure 3.3. Peak identification: 4-

Fluoromethcathinone (1); Dimethylcathinone (2,2’); Ethcathinone (3,3”); Buphedrone
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(4,4); Pentedrone (5,5°); Methedrone (6); Methylone (7,7”); Mephedrone (8,8);

Ethylone (9,9°); 3,4-DMMC (10,10°); Pentylone (11,11°); MDPV (12,12°).
3.3.2 Method validation

Once the optimum conditions for the analysis of cathinones were determined, the
method was validated in terms of linearity, precision, limit of detection (LOD), and limit
of quantification (LOQ). Linearity of the method was established over the range from
12.5 ng/mL to 500 ng/mL (n=5) with correlation coefficients (r*) ranging between 0.9911
and 0.9955. Table 3.1 illustrates the analytical figures of merit obtained from the twelve

analyzed synthetic cathinones.

The analytical precision was assessed by examining repeated injections of a
mixture of cathinones at a concentration of 100 ng/mL. In Table 3.1, inter-day and intra-
day precision data, including % RSD, migration time (tn), and peak areas, are reported as
well. The RSD values for retention time were lower than 0.99% for intra-day precision
and 1.0% for inter-day precision. Good results were also achieved for peak areas with
RSD < 7.6% and 8.5% for intra- and inter-day experiments. To investigate the method
sensitivity under the proposed conditions, limits of detection (LOD) and quantification
(LOQ) were determined as 3 times and 10 times the signal-to-noise ratio, respectively.
The LODs ranging from 4.2 ng/mL to 7.0 ng/mL and LOQs ranging from 13 ng/mL to 21

ng/mL for all selected cathinones were found (results shown in Table 3.1).
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Table 3.1.Figures of merit for the CE-UV results of the chiral separation project
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3.4 Concluding Remarks

This chapter details the development of an optimized method for the separation of
12 cathinone analogs using B-cyclodextrin for the CE-UV detection. Separations were
carried out in 50 um ID uncoated fused silica capillaries with a total length of 57.5 cm
and an effective length of 49.5 cm. Electrokinetic injection mode was used for sample
injection with conditions of 10 kV and 10 s. Running voltage was set to 30 kV. Various
parameters were tested to obtain optimum separation results, including different chiral
selectors, buffer concentrations, pH of the buffer, and organic modifiers. The B-CD was
selected and optimum separation results were achieved using 100 mM phosphate buffer
containing 10 mM of B-CD. All 12 cathinone analogs were separated with 10 out 12

enantio-separated.

The method provides high resolution separation by CE-UV. The protocol was
validated by running various standards intra- and inter- day. The low injection volume
permitted by CE will make this method useful in forensic laboratories when a minimal

sample input is required.
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CHAPTER 4 IDENTIFICATION OF CATHINONE ANALOGS BY TIME-OF-

FLIGHT MASS SPECTROMETRY

4.1 Introduction

Mass spectrometry (MS) is a technique that provides mass spectra information on
atoms or molecules. In this study, I would like to take advantage of MS to identify the
analytes in the project. Several factors are considered. The most vital step is to avoid
ionization source contamination. To achieve the goal, partial filling technique was used.
Partial-filling micellar electrokinetic chromatography (PF-MEKC) was first introduced
by Terabe et al. [19] and provides a potential solution for interfacing chiral MEKC
separations with ESI-MS. In comparison with conventional MEKC, PF-MEKC involves
filling a small portion of the capillary with a micellar solution to achieve a separation.
The capillary in PF-MEKC is filled with electrophoresis buffer, followed by the
introduction of micellar solution and finally a sample injection. In PF-MEKC, the
analytes first migrate into the micellar plug where the separation occurs and then into the
electrophoresis buffer, which is free of surfactant. The analytes in the electrophoresis
buffer sequentially elute out of the MEKC capillary and are subsequently introduced into
ESI-MS, while the surfactant plug remains behind in the capillary. Once the analytes are
detected by the mass spectrometer, electrophoresis is terminated to avoid the surfactant
plug eluting into the detector. The partial filing technique has proven to be a very useful
procedure to prevent nonvolatile chiral selectors entering into the MS. However, it

requires a complex series of steps to avoid MS contamination. Molina et al. [143]
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reported three ways to couple micellar electrokinetic chromatography (MEKC) on-line
with electrospray ionization mass spectrometry (ESI-MS) for the analysis of N-
methylcarbamate pesticides. A more stable electrospray performance was obtained;
however, some of the analytes were protonated and could not be detected due to the

increase in their retention factors.

Time t;

1\['.iete ctor

Time t

T[lete ctor

Figure 4.1 Schematic view PF-MEKC (B) Background electrophoresis buffer; (S)

surfactant in background electrophoresis buffer. Adapted from Ref. [144].

Although novel MEKC-based methodologies have recently been proposed for
chiral analysis, the combination of MEKC methods with MS detection still has some
critical issues. One of the main limitations of this coupling is the lack of compatibility of
the most widely used surfactants in MEKC separation with mass spectrometers [143].
Generally, surfactant monomers suppress the ionization of the analyte in the spray
chamber, which in turn, provides an increased chemical noise in the electrosprays,

reducing the sensitivity of the whole MS analysis. In last few years the use of high-
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molecular-mass micelle polymers (also referred to as micelle polymers or molecular
micelles) as pseudo-stationary phase have been shown to be an interesting alternative to
more conventional micelles for the analysis of enantiomers with MS. Further
investigation of PF-MS will be examined to see if such materials would be appropriate

for trace drug detection and chiral analysis.

4.2 Experimental

4.2.1 Chemicals and materials

Phosphoric acid and acetic acid were purchased from Fisher Scientific (Pittsburgh,
PA, USA); ammonium acetate, ammonium dihydrogen phosphate, ammonium formate,
sodium phosphate monobasic monohydrate, and sodium hydroxide from Sigma-Aldrich
(St. Louis, MO, USA); B-cyclodextrin from TCI America (Portland, OR, USA); and
highly sulfated y-cyclodextrin from Beckman Coulter (Brea, CA, USA). Sodium
phosphate dibasic heptahydrate were obtained from Acros Organics (Morris Plains, NJ,
USA). Development of capillary electrophoresis as part of a micro-total analytical system

for microcystins

Acetonitrile (ACN), methanol (MeOH), Isopropanol, and phosphoric acid used
for the preparation of the buffer electrolytes, were of analytical reagent grade (Carlo Erba,
Milan, Italy). Distilled water was deionized by a Milli-Q water purification system

(Millipore, Bedford, MA, USA).

Drug standards of (£)-2-(methylamino)-1-phenylbutan-1-one (Buphedrone), (+)-

1-phenyl-2-(methylamino)pentan-1-one ~ (Pentedrone),  (#)-1-(4-methoxyphenyl)-2-
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(methylamino)propan-1-one (Methedrone), (¥)-1-(3,4-dimethylphenyl)-2-
(methylamino)propan-1-one  (3,4-DMMC), (#)-2-ethylamino-1-phenyl-propan-1-one
(Ethcathinone), (¥)-1-(4-fluorophenyl)-2-methylaminopropan-1-one (4-
Fluoromethcathinone), (+)-2-dimethylamino-1-phenylpropan-1-one (Dimethylcathinone),
(¥)-1-(1,3-benzodioxol-5-yl)-2-(ethylamino)propan-1-one (Ethylone), (£)-1-(1,3-
benzodioxol-5-yl)-2-(methylamino)pentan-1-one (Pentylone), and (+)-2-(ethylamino)-1-
phenyl-1-propanone, monohydrochloride (Ethcathinone) were purchased from Cayman
Chemical (Ann Arbor, MI, USA) and drug standards of (+)-2-methylamino-1-(4-
methylphenyl)propan-1-one (Mephedrone), (¥)-1-(Benzo[d][1,3]dioxol-5-yI)-2-
(pyrrolidin-1-yl)pentan-1-one (MDPV) and (¥)-2-methylamino-1-(3,4-
methylenedioxyphenyl)propan-1-one (Methylone) were purchased from Lipomed
(Cambridge, MA, USA). The chemical structures of cathinones are represented in Figure

2.1b.

4.2.2 Background electrolyte preparation

Phosphate buffers were prepared by weighing out appropriate amount of sodium
phosphate monobasic monohydrate salt and sodium phosphate dibasic heptahydrate salt
to pH at 4.5, 6.0, 7.0, and 8.0. For low pH conditions, phosphate buffers were prepared
by diluting concentrated phosphoric acid to a 100 mM phosphate buffer and adjusting pH

with a 1.0 M NaOH solution in order to reach the desired pH to 2.5 and 3.5.
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4.2.3 Sample preparation

Stock solutions of synthetic cathinones (0.1 mg/mL) were prepared in methanol
and stored at -20 °C. Background electrolytes (BGE) used for CE-MS experiments were
prepared daily by dissolving the proper amount of highly sulfatedy-cyclodextrins in
phosphate buffer. All the electrolyte solutions for the CE-MS separation were stored in

glass bottles at + 4 °C.

Seized drug samples were obtained from law enforcement sources previously
diluted to an appropriate concentration in methanol (approximately 1mg/mL) and

centrifuged to remove insoluble material.

4.2 .4 Instrumentation

The separation of cathinone standards and commercial samples was performed
using a fully automated CE system (G1600, Agilent Technologies, Santa Clara, CA, USA)
with the column temperature maintained at 25 °C. Separations were performed in 50 um
ID uncoated fused silica capillaries with a total length of 80 cm. The capillary columns
were obtained from Polymicro (Phoenix, AZ, USA). Each new capillary was rinsed with
1.0 M NaOH for 25 min and water for 10 min. Samples were introduced into the capillary
using electrokinetic injection for 10s at 10 kV. Experiments were carried out in “normal
polarity” CE mode (anode at the capillary inlet) by applying a constant voltage of 25 kV

during analyses.

The time of flight mass spectrometry (TOF-MS) analysis was performed in the

positive ion mode using partial filling technique [145-148] to minimize contamination of
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the MS with non-volatile cyclodextrins. The CE system was connected to a TOF-MS,
(3250a MSD, Agilent Technologies, Santa Clara, CA, USA) with a CE-ESI-MS sprayer
interface. Reference masses obtained from Agilent (G1969-85001 API-TOF reference
mass solution kit) including purine at 121.0509 m/z and HP0921 at 922.0098 m/z were
added to the sheath flow liquid to calibrate the mass spectrometer. The mass range was
set to 100-1000 m/z to include both reference masses. The sheath flow — which was
composed of 50:50 (v/v) deionized water and methanol along with reference mass
solutions — was provided by an isocratic pump set to a low rate of 0.5 mL/min with a
1:100 split ratio resulting in a net flow of 0.005 mL/min.

Table 4.1 CE-ESI-TOF-MS parameters for chiral analysis of cathinone analogs

Parameter Value
Capillary Voltage 4000 V

Nebulizer pressure 10 psi

Drying gas 5 L/min

Gas temperature 250 °C
Fragmentor voltage 125V

Skimmer voltage 40V

Octapole RF 300V

TOF/PMT 1025V

Mass range (m/z) 0-1000

Sheath flow 0.5 mL/min
Reference 121.0509, 922.0098
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4.3 Results and Discussion

4.3.1 Method development and CE-MS results

To couple the CE with the TOF-MS detector, the capillary was extended to 80 cm
in total length to reach the ESI interface. An Agilent Time-of-Flight (G1969A) mass

spectrometer was employed for CE-MS detection.

4.3.1.1 Buffer selection

For capillary electrophoresis- mass spectrometry technique, a volatile buffer
should be used in order to avoid mass sprayer contamination [149]. Ammonium acetate
and ammonium formate were initially tested as background electrolyte because both are
volatile and have similar pKa and buffer ranges to the phosphate buffer used in the CE-
UV method [149]. However, the separations produced by the ammonium acetate and
ammonium formate buffers were poor. Therefore, to maintain acceptable separation
results, non-volatile phosphate buffer was adopted; however, the concentration of
phosphate buffer was reduced to 50 mM. It should also be noted that this level of buffer
was further diluted by the addition of the sheath flow prior to introduction to the mass
spectrometer [150, 151]. To further minimize contamination of the mass spectrometer,
which was biased in the positive mode, the B-cyclodextrin in the UV separation was
replaced by highly sulfated-y-cyclodextrin [152]. In previous work, highly sulfated y-
cyclodextrin has exhibited good enantiomeric separation ability [153-156] and the highly

sulfated form should migrate counter to the osmotic flow in the capillary.
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Several parameters, including pH and the concentration of cyclodextrin, were
investigated in order to obtain optimal separations. As expected, the optimal pH of 2.5
was similar to that found for the CE-UV. For chiral selection, different amounts of highly
sulfated-y-cyclodextrin were tested starting with 0.2%. Experiment results indicated that
0.6% was the optimum concentration. At concentrations of highly sulfated-y-
cyclodextrin lower than 0.6%, some peaks could not be separated; at concentrations
higher than 0.6%, excess noise was present in the extracted ion chromatogram
presumably because small amounts of highly sulfated-y-cyclodextrin entering into

electrospray ionization source.

Interestingly, the results using highly sulfated-y-cyclodextrin produced different
separation dynamics. Previously unresolved enantiomeric separations of methadrone and
fluormethcathinone in CE-UV experiments (Chapter 3) were achieved with the new
conditions, while other compounds previously separated as enantiomers such as

methylone, dimethyl cathinone, ethcathinone, pentedrone and buphedrone were not.
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Figure 4.2 Buffer selection: ammonium acetate vs. phosphate.
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The final two buffer candidates are phosphate and ammonium acetate. The
comparison of these two buffers are shown as Figure 4.2. Two aspects are compared, first
from the angle of peak shapes in electropherogram, which represents resolution and
sensitivity. As shown in Figure 4.2, ammonium acetate demonstrates smooth peak shape.
Secondly, the separation windows of the two buffers are compared. Phosphate buffer
provides longer separation window, which can be treated as better separation ability in

terms of selectivity.

Considering the chiral separation project is mainly focused on the separation, the

author decided to choose the phosphate buffer because of its better separation ability.

Table 4.2 Effect of amount of HS-y-CD filled in the capillary on peaks. Values are given

as percentage in relation to the value for 70% (56 cm) partial filling

Amount of HS-y-CD Baseline Noise (%) Sensitivity (%)

90% (72 cm) 139 75
80% (64 cm) 120 82
70% (56 cm) 100 100
60% (48 cm) 92 109
50% (40 cm) 87 115
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4.3.1.2 Optimization of MS conditions

Once proper separation parameters were established, MS detection parameters
were optimized for the cathinone analogs. Samples were directly infused into the mass
spectrometer and scanned at different voltages in the positive electrospray ionization
mode. To optimize ESI ionization, different voltages were applied to the ion optics.
Among the mass spectrometry parameters tested were capillary voltages from 3000 to
4500 V, fragmentor voltages from 110 to 225 V, and skimmer voltages from 40 to 110V.
The combination providing the best performance for compounds separated in the positive
ion mode was 4000 V, 225 V and 50 V for the capillary, the fragmentor, and the skimmer

respectively. Optimum conditions are demonstrated in Table 4.2.

Next, the CE and MS were connected together employing the optimum conditions
described above. All of the compounds which could be separated in CE-UV mode were
also separated and identified by CE-MS mode, though the elution order was different due
to the change from neutral to charged cyclodextrins in the buffer. Since different
cyclodextrins were employed in CE-UV and CE-MS, the separation results were
expected to be slightly different. For instance, in the CE-MS experiments, Compound 1,
4-fluoromethcathinone and Compound 6, methedrone were enantomerically separated by
HS-y-CD while in the CE-UV experiments using B-CD both compounds were eluted as a
single peak. Similarly, certain compounds separated enantiomericaly by B-CD were not

fully separated by HS-y-CD; for example, Compound 2 dimethylcathinone.
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4.3.1.3 Partial-filling (PF) technique

The partial filling technique [145, 146] was employed in the CE-MS procedure to
reduce contamination by the non volatile cyclodextrin assisted phosphate buffer. With
partial filling, the HS-y-CD buffer was aspirated into a fraction of the capillary instead of
fully flushing the capillary. By doing so, the non-volatile portion of the buffer does not
enter the mass spectrometer. To start with, the 80 cm capillary previously filled with
phosphate buffer was filled with 50% (40 cm), 60% (48 cm), 70% (56 cm), 80% (64 cm)
and 90% (72 cm) of its length with the phosphate buffer containing HS-y-CD. Overall the
70% filling exhibited the best separation results and the lowest baseline noise. While the
procedure reduces the overall separation efficiency in an amount proportional to the fill

length, the baseline noise of the mass spectrometer is reduced by 45%.

Total length 80 cm

: 100% (80 cm)

: = 90% (72 cm)
S - 80% (64 cm)

: - 70% (56 cm)

: - 60% (48 cm)

S - 50% (40 cm)
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Figure 4.3 Different partial filling percentage (length of buffer filled in capillary divided

by total length of capillary)

4.3.1.4 TOF-MS results

Figure 4.4 illustrates the extracted ion chromatogram of 12 cathinone analytes
using the optimized CE-MS separation conditions. Compounds which have same
molecular weight and thus the same mass to charge ratio, are extracted in the same pane.
The twelve analytes are divided into eight groups with masses ranging from 178 to 276

Daltons. The number of each compound is the same as in UV experiment in Figure 3.7.
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Figure 4.4 Extracted lon Chromatograms at specific m/z of a mixture of 12 cathinone
analytes at 0.5 pg/mL each using 50 mM pH 2.5 phosphate buffer with 0.6% (v/v) highly
sulfated-y-cyclodextrin, CE conditions: running voltage 25 kV, 5 kV for 10s injection,
TOF-MS conditions: source temperature = 250 °C, drying gas = 5 mL/min, nebulizer
pressure = 10 psig, positive ion mode (ESI+), capillary = 3000 V, fragmentor = 125 V,
skimmer = 40 V. Peak identification: 4-Fluoromethcathinone (1,1”); Dimethylcathinone
(2); Ethcathinone (3); Buphedrone (4); Pentedrone (5); Methedrone (6,6’); Methylone
(7,7°); Mephedrone (8,8’); Ethylone (9,9%); 3,4-DMMC (10,10’); Pentylone (11,11°);
MDPV (12,12°). The masses listed on the chromatogram are experimental values. See

Table 4.3 for calculated values and mass errors.

Table 4.3 presents the exact mass measurements obtained by ESI-TOF-MS
detection. The theoretical [M+H] values were calculated and compared with the
experimental values. Mass errors in terms of Daltons and ppm are reported. The
experimental values, relative standard deviations of the experimental values, and mass
errors are calculated for experiments performed at 0.5 ug/mL using optimum separation

conditions. n=5.

Table 4.4 demonstrates the linearity and sensitivity data for CE-MS results.
Correlation coefficients, LODs and LOQs are calculated for all analytes, with 1.0 ng/mL
to 11 ng/mL for LOD and 3 ng/mL to 33 ng/mL for LOQ. Comparing to the figures of
merit for CE-UV, the MS detector provides lower LODs for 9 out of 12 analytes. Table 4

also illustrates the precision for the CE-MS procedure. Intra- and inter-day data were
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analyzed and presented in the table. It should be noted that linearity could be further

improved through the use of an internal standard [154].

Table 4.3 CE-ESI-TOF-MS accurate mass measurements for chiral analysis of cathinone
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Table 4.4 Figures of merit for the CE-ESI-TOF-MS results
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4.3.2 Analysis of seized drug samples

Bath salts are commonly used in various situations, both legally and illegally. In

Florida, bath salts are a commonly used illicit drug of abuse [90, 157]. To examine the
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capabilities of the previously mentioned procedure, eight previously analyzed seized drug
samples were provided by Broward Sheriff’s Office for analysis via CE-MS method and
comparison with a previously validated GC-MS method. All of the tested samples
contained  methylone (m.w. 207.0892). One sample contained 3,4-
Dimethylmethcathinone (3,4-DMMC, m.w. 191.1306) as well. Analyses of two of these

samples are shown in Figure 4.5 and Figure 4.6.

The results of CE-MS match those obtained using of GC-MS from Broward
Sheriff’s Office, and also provide exact mass measurements to assist in the identification
process. Methylone is currently a Schedule I controlled substance in State of Florida

which is prohibited for use in medical treatments [158].
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Figure 4.5 Sample A: TOF-MS Extracted Ion Chromatogram (top) and mass spectrum

showing peak m/z 208.0968 (bottom).
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Figure 4.6 Sample B: TOF-MS Extracted lon Chromatogram (top) and mass spectrum

showing peaks m/z 192.1354 and m/z 208.0952 (bottom).

4.4 Concluding Remarks

This chapter demonstrates the development of an optimized method for the

separation of 12 cathinone analogs using CE-TOF-MS. Experiments were performed in

50 um L.D. uncoated fused silica capillaries with a total length of 80 cm. The running

voltage was set to 25 kV. The procedure was adapted from utilizing B-cyclodextrin for

CE-UV separation and optimized with highly sulfated y-cyclodextrin for CE-MS

detection. Initial attempts to use volatile buffers to improve the coupling of the MS to the

CE system. However, the separation ability of volatile ammonium acetate and

ammonium formate was not as good as the non-volatile phosphate buffer in terms of
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selectivity. Thus, the use of the phosphate buffer was continued but the concentration was
decreased from 100 mM in the CE-UV mode to 50 mM in the CE-MS mode. Meanwhile,
HS-y-CD was examined and employed instead of B-CD to avoid contamination of the
mass spectrometer’s ion source. Since HS-y-CD is a negatively charged chiral selector, it
was expected to migrate counter to the ion current which was set to be towards the anode.
As a result, the potential for contamination of the MS ion source by non-volatile CD is
greatly reduced. Lastly, a partial filling technique was used to further reduce the
possibility of MS ion source contamination. Different percentages of partially filled
capillaries were tested. A capillary with 70% full of phosphate buffer containing chiral

selector was used to perform the experiment.

The method developed provides exact mass identification of individual analytes
present in the mixture by TOF-MS. The procedure was tested using a small set of seized
illicit bath salt samples obtained from law enforcement. The results of this study matched
previously obtained data by GC/MS. Overall this method presents a useful procedure for
separation and analysis of chiral cathinones. The low injection volume permitted by CE
will make this method useful in forensic laboratories when a minimal sample input is
required. Exact mass detection permits the determination of unknown compounds. To
the author’s knowledge, this is the first report of cathinone analogs separated and

detected by both CE-UV and CE-TOF-MS.
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CHAPTER 5 MICROCYSTIN AND CAPILLARY ELECTROPHORESIS MASS

SPECTROMETRY: AN ENVIRONMENTAL APPLICATION

5.1 Introduction

5.1.1 Cynobacteria and microcystin

Cyanobacteria, also known as cyanophyta or blue green algae, are prokaryote
photosynthetic organisms, which lack membrane-bound organelles and sexual
reproduction [159-161]. The occurrence of cyanobacteria on the earth can be traced back
for at least over 2.7 billion years. Cyanobacteria were the first organisms to have the
ability to produce oxygen gas (O;) as a by-product of photosynthesis [162], which is
considered to have converted early atmosphere into an oxidizing one, leading to dramatic
change in the composition of life forms on earth. Cyanobacteria can process
photosynthetic nitrogen fixation by converting nitrogen (N,) in the atmosphere into
ammonium (NHy), nitrites (NO;") or nitrates (NOs’), which can be further converted into
protein and nucleic acid for the simplest nutritional requirements of all living organisms
[159]. Cyanobacteria also use the energy of sunlight to initiate photosynthesis for carbon
fixation, the process which generally involves the conversion of inorganic carbon to

organic compounds.

Cyanobacteria are widely distributed throughout the world, reflecting their
genotypic and phenotypic variation [159]. They are commonly found in diverse types of
every terrestrial habitat, including oceans, lakes, fresh water, deserts, and even in the

extreme environment of Antarctica and thermal springs. The predominant habitats of
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cyanobacteria are freshwater and marine environments, in which extensive and highly
visible blooms can form. Theses harmful algae blooms are formed under favorable
conditions, such as high temperatures, high pH, and intense light; they enhance the

available nutrients released by athropogenic activities [163, 164].

Certain cyanobacteria produce highly toxic secondary metabolites known as
cyanotoxins, which are a severe threat to human and animal health as well as to the
environment. Ingestion of water or food contaminated by cyanotoxins can lead to severe
diseases such as acute gatro-intestinal disorder [164], inhalational problems, and death
for humans and animals. Dermal exposure to the cyanotoxins also has the risk of acute
skin irritant effects such as acute skin eruptions [165, 166]. Cyanobacteria can produce a
range of cyanotoxins with structural diversity and biological activity differences, such as

microcystins, cylindrospermopsins, saxtoxins, and domoic acid (Figure 5.1).

Saxtoxin

Domic acid Cyindrospermopsion

Figure 5.1 Structures of some cyanobacteria
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One of the most problematic cyanotoxins is microcystin, a cyclic peptide toxin
with seven amino acids and a cyclo (D-Glu-MDHA-D-Ala-L-Leu-D-Asp-1-Arg).
Microcystin contains a unique non-protein amino acid, 3-amino-9-methyoxy-2,6,8-
trimethyl-10-phenyldeca-4,6-dienoic acid, also known as ADDA [166], which is critical
for biological activity. Microcystin is also considered to be a hepatotoxin and is produced
by various genera of freshwater cyanobacteria, such as microcystis, anabaena, nostoc,
and oscillatoria [167, 168]. The general mechanisms of hepatotoxin are related to the
inhibition of protein synthesis [169]. For example, hepatotoxins can inhibit protein
phosphatase enzymes (PP1 and PP2A) within liver cells, resulting in increased liver
weight and modified plasma membranes [169]. Hepatotoxins can also cause damage of

liver structure by hypovolemic shock and extra accumulation of blood in the liver [170].

Microcystins impact aquatic ecosystems, especially aquatic invertebrates.
Rohrlack et al. [171] studied the effects of ingestion of microcystins on Daphnia galeata
and found that ingestion of the microcystin-producing PCC 7806 wild type cells leads to
lethal poisoning. Chen et al. [172] also reported the effects of microcystin on Daphnia
galeata and demonstrated that high concentrations and longtime exposure to microcystin
were fatal, leading to the accumulation and inhibition of the enzyme phosphatase.
Microcystin was also reported to be harmful to fish. Exposure to microcystin during
feeding or breathing can lead fish to die. The paper published by Tencalla [173] indicated
that microcystin transferring route in trout is via the gastrointestinal tract, and that

toxicity is manifested as massive hepatic necrosis.
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Human exposure to microcystin generally occurs through ingestion of microcystin
contaminated water or food, or through a dermal route during recreational activities when
harmful algae blooms. Besides the affected organs in the liver, other affected organs such
as kidneys and colon cause illness as gastroenteritis, irradiant and allergic skin effects,
and liver diseases. Human exposure to low but long-term concentrations of microcystin
can cause chronic diseases, such as tumors and cancers, which are related to the toxicity
of microcystin. Therefore, the World Health Organization (WHO) established a

maximum value of 1 ppb for microcystin-LR in drinking water in 1997 [169, 174].

The first notable incident of microcystin toxicity on human health was discovered
in the town of Caruaru in Brazil in 1996, which led to 76 deaths from liver complications
due to intake of contaminated water. The symptoms of these patients were headache, eye
pain, blurred vision, nausea, and vomiting. Further analysis and determination found the
existence of microcystin in blood and liver of patients [175]. Other cases involving
human poisoning by microcystin toxicity have also been reported. In England, two
canoeing exercisers drank microcystin contaminated water, which lead to left basal
pneumonia for four to five years [176]. Another accident occurred in Brazil where the
poisoning resulted from the blooms of anabaena and microcystin freshwater genera. This
poisoning incident led to gastroenteritis in 2,000 people and 88 deaths over a period of 42

days [169].

5.1.2 Current analytical approaches for microcystin detection

Many scientific studies have been published for separation and identification of

various microcystin family compounds using different analytical instrumentation and
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methods, including HPLC / HPLC-MS [177-180], GC / GC-MS [181-183], and TLC
[184-186]. However, these methods suffer from either tedious sample pretreatment
procedures or low sensitivity. Capillary electrophoresis has been widely used for
separation and detection of microcystin variables because of its simplicity, low sample

volume requirement, and high sensitivity [180, 187-190].

Gabor Vasas et al. [191] reported separation of three cyanotoxin compounds
(ANA-a, MCY-LR, and CYN). Both CZE and MEKC methods were examined and
different parameters were tested. The authors presented optimum separation conditions
with borate buffer at high pH conditions for CZE and sodium tetraborate containing SDS
for MEKC. All three compounds were separated within 4 min in the CZE mode.
However, buffers containing SDS are not suitable for coupling CE with the MS detector,

as the nonvolatile detergent may contaminate the MS ion source.

E.C. Aguete et al. [192] demonstrated a procedure for separating three cyanotoxin
analytes (RR, LR, and YR) by HPLC and HPCE. Samples were pretreated using
immunoaffinity extraction. All three compounds were separated within 20 min in both

the HPLC and HPCE modes.

The goal of this project is to develop a method which allows rapid separation and
detection of various microcystin compounds with CE separation with coupling to both the
UV/Vis and MS detectors. To the author’s knowledge, this is the first report where the
three microcystins MC-RR, MC-YR, and MC-LR have been separated within 6 min

using both CE-UV and CE MS techniques.
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5.2 Experimental

5.2.1 Chemicals and materials

Phosphoric acid and acetic acid were purchased from Fisher Scientific (Pittsburgh,
PA, USA); ammonium acetate, ammonium dihydrogen phosphate, ammonium formate,
sodium phosphate monobasic monohydrate, and sodium hydroxide from Sigma-Aldrich
(St. Louis, MO, USA); B-cyclodextrin from TCI America (Portland, OR, USA); highly
sulfated y-cyclodextrin from Beckman Coulter (Brea, CA, USA); and sodium phosphate

dibasic heptahydrate from Acros Organics (Morris Plains, NJ, USA).

Acetonitrile (ACN), methanol (MeOH), isopropanol, and phosphoric acid used for
the preparation of the buffer electrolytes, were of analytical reagent grade (Carlo Erba,
Milan, Italy). Distilled water was deionized by a Milli-Q water purification system

(Millipore, Bedford, MA, USA).

5.2.2 Instrumentation

The separation of cathinone standards and commercial samples was performed
using a fully automated CE system (G1600, Agilent Technologies, Santa Clara, CA, USA)
with the column temperature maintained at 25 °C. Separations were performed in 50 pm
ID uncoated fused silica capillaries with a total length of 50 cm. The capillary columns
were obtained from Polymicro (Phoenix, AZ, USA). Each new capillary was rinsed with
1.0 M NaOH for 10 min and water for 5 min. Samples were introduced into the capillary
using electrokinetic injection for 15s at 10 kV. CE-UV detection was performed via on-

column measurements using a diode array detector (DAD) at a wavelength of 206 nm.
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The time of flight mass spectrometry (TOF-MS) analysis was performed in the
positive ion mode using partial filling technique [36-39] to minimize contamination of
the MS with non-volatile cyclodextrins. The CE system was connected to a TOF-MS,
(3250a MSD, Agilent Technologies, Santa Clara, CA, USA) with a CE-ESI-MS sprayer
interface. Reference masses obtained from Agilent (G1969-85001 API-TOF reference
mass solution kit), including purine at 121.0509 m/z and HP0921 at 922.0098 m/z, were
added to the sheath flow liquid to calibrate the mass spectrometer. The sheath flow —
which was composed of 50:50 (v/v) deionized water and methanol along with reference
mass solutions — was provided by an isocratic pump set to a low flow rate of 0.5 mL/min

with a 1:100 split ratio, resulting in a net flow rate of 0.005 mL/min.

5.3 Results and Discussion

Detailed methodology of the project was presented in the thesis titled
“Quantitative analysis and determination of microcystin in water by capillary
electrophoresis mass spectrometry” by Bingxue Zheng in 2014 [193]. In short, four
microcystin variables were separated within 6 min by phosphate buffer containing -
cyclodextrin. Different separation conditions, such as pH, buffer ionic strength, and
various organic modifiers were tested in the thesis of Zheng, B.. However, due to lack of
confirmatory information provided by UV/Vis spectrometry, it is necessary to introduce
another confirmatory method to identify the analytes. MS was widely used coupled with

HPLC or CE for microcystin analysis [194-197].

In this chapter, the CE-MS portion of the project will be mainly discussed.
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5.3.1 Volatile buffer consideration for MS detection

When extending the capillary to the MS detector, the main consideration is how to
avoid MS ion source contamination. The 100 mM phosphate buffer was utilized in the
CE-UV part of the analysis; however, it was not advisable to continue using the same
buffer, as 100 mM is too high a concentration for MS detector, and phosphate is a non-
volatile buffer. However, a number of studies [150, 151] have indicated that with the
introduction of the sheath liquid, the concentration of the phosphate buffer could be
further diluted to 1:100 ratio. Because of this consideration, phosphate buffer was
employed; however, 50 mM buffer was prepared instead of 100 mM. Volatile buffers,
such as ammonium acetate and ammonium formate, were also tested. However, their

separation performance was not as good as with phosphate buffer.

5.3.2 TOF-MS results

Figure 5.2 represents the extracted ion chromatogram of three microcystin
variables. As the figure shows, all three compounds were separated by 50 pm ID
capillary and identified by TOF-MS within 6 min. Since TOF is an accurate mass
analyzer, the molecular mass info was obtained to four decimal places, which is a

powerful tool to accurately identify the analytes.
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Figure 5.2 Extracted mass spectrum of MC-RR, MC-YR and MC-LR.
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Figure 5.3 Mass spectrum of MC-RR, MC-YR and MC-LR.

Mass measurements are presented in Table 5.1. As shown in the table, low error
in terms of amu and ppm was achieved with the TOF-MS system. It can be proved that

TOF-MS is an accurate measurement method for analyte identification.
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Table 5.1 Accurate mass measurements of the three microcystin analytes

M+H M+H Error  Error
Compound Formula M (calculate) ({calculated) (experimental} (amu) (ppm)
MC-LR  C49H74N10012 9945470  995.,5548 9955589 0.0041 4
MC-YR (C52H72N10013 1044.5263 1045.5341 10455371 0.0030 3

MC-LA C46HE7N7012 909.4831 910.4909 910.5130 0.0221 24

5.4 Concluding Remarks

This chapter presents a rapid and novel procedure for separation and identification
of microcystin variables using capillary electrophoresis with mass spectrometry as a
detection method. A 50 um I.D. uncoated fused silica capillary with a total length of 70
cm was used for the CE-MS experiments. Experiments were carried out using 25 kV as
the running voltage. Phosphate buffer was used for the separation. Different pH, buffer
concentrations, and various amounts of organic modifiers and chiral selectors were
examined. The optimum separation results were achieved with 100 mM phosphate buffer
at pH 8.0 with 10 mM B-CD adding to the buffer for the CE-UV part. For the CE-MS
part, a 50 mM phosphate buffer at pH 7.5 without B-CD was utilized for optimum
separation. All three microcystin analogs were separated within 6 min. Accurate
molecular weight was obtained through TOF-MS, and mass errors were calculated. The
method was applied to spiked microcystin samples and real environmental samples (pond

water).
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CHAPTER 6 OVERALL CONCLUSIONS

This dissertation demonstrates several novel and advanced -capillary
electrophoretic techniques for forensic, pharmaceutical, and environmental applications.
The idea of the overall work is to utilize the advantages of capillary electrophoresis
coupling with mass spectrometric techniques over other hyphenated chromatographic
techniques, i.e. gas chromatography mass spectrometry and liquid chromatography mass
spectrometry. In order to accomplish my goals of separation and detection of chiral,
neutral, and charged molecules by mass spectrometry, different procedures of capillary
electrophoretic techniques — including monolithic capillary electrochromatography,
capillary zone electrophoresis, and partial filling technique — were explored, examined

and discussed in this dissertation.

Chapter 1 introduces the background of the overall project, challenges, and
problems existing in forensic, pharmaceutical, and environmental applications as well as

general principles of capillary electrophoresis systems.

Chapter 2 exhibits the principles of capillary electrochromatography and a novel
development of monolithic CEC columns. Hexyl acrylate based monolithic columns were
developed and optimized. A porous structure was built inside of 100 um L.D. transparent
capillary columns. Monomer solutions were prepared using different organic chemicals
as described in the chapter and polymerized with UV lamp under 360 nm radiations.
Various approaches were made to ensure the quality of the home-made capillary columns.
This chapter details a method for separation and identification of six antidepressant

compounds wusing an acrylate-based porous monolith capillary. Capillary
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electrochromatography coupled with the UV detector was explored. The CEC-UV
method provides an effective and efficient method for the separation and identification of
the analytes. Spiked urine samples were utilized to check the capability of the method. A
liquid-liquid extraction procedure was established to perform sample extraction. Time-of-
flight mass spectrometry was also employed for spiked urine sample analysis, and

accurate molecular information was obtained.

Chapter 3 explores an approach to fulfill enantioseparation of chiral compounds
with adding cyclodextrin to the background electrolyte. Compared to HPLC, GC, or CEC
methods, this method provided a simplified way to accomplish the chiral separation. In
this chapter, a rapid chiral separation of 12 cathinone analogs has been developed and
validated using cyclodextrin-assisted CE with UV and time of flight mass spectrometric
(TOF-MS) detection. Optimum separation was obtained on a 57.5 cm x 50 pm capillary
using a buffer system consisting of 10 mM B-cyclodextrin (B-CD) in a 100mM phosphate
buffer for CE-UV. All analytes were separated within 18 minutes in the CE-UV mode.
Ten compounds were enantiomerically separated using B-cyclodextrin. Detection limits
down to 1.0 ng/mL were obtained. The method was then validated by analytical

performing tests including LOD, LOQ, and RSD%.

Chapter 4 demonstrates a CE-MS method of enantioseparation on the basis of CE-
UV procedures described in Chapter 3. In this study, time of flight mass spectrometric
(TOF-MS) detection was employed to identify accurate mass information of 12 cathinone
analytes. Time-of-flight mass spectrometry is a more accurate measurement than UV,

because it can confirm the presence of a certain compound in the samples. Optimum
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separation was obtained on a 80 cm x 50 um capillary using a buffer system consisting of
0.6% (v/v) highly sulfated-y-cyclodextrin (HS-y-CD) in a 50 mM phosphate buffer. In the
CE-MS experiments, a partial filling technique was employed to ensure that a minimum
amount of cyclodextrin entered the mass spectrometer in order to avoid contamination of
the MS ion source. All analytes were separated within 18 minutes and identified by TOF-

MS. The CE-MS method was then applied to examine the seized drugs.

Chapter 5 discusses the applications of capillary electrophoresis mass
spectrometry in environmental toxicology using microcystin as an example. Microcystin
belongs to cyanotoxin and has several different varieties. In this chapter, a rapid
separation and identification method of four microcystin compounds was developed with
a 50 um ID capillary using a phosphate buffer as the background electrolyte. Compared
to previous published methods, the procedure demonstrated in this chapter achieved fast
separation within 6 min. In addition, accurate molecular information on each analyte was

acquired with TOF-MS detection.

92



CHAPTER 7 FUTURE RESEARCH ON FORENSIC, ENVIRONMENTAL AND
PHARMACEUTICAL APPLICATIONS BY ADVANCED CAPILLARY

ELECTROPHORESIS TECHNIQUES

Though capillary zone electrophoresis is a fairly simple form of electrophoretic
technique, the increasing demand for achieving impressive separation efficiency makes
scientists continue to optimize current approaches and explore new methods. In this
chapter, I consider several ideas that could be of potential interest for research, which are

presented below.

7.1 Monolithic Chiral Stationary Phases

Currently, the hexyl acrylate based monolithic column has been successfully
applied for separation of neutral and charged small molecules as detailed in Chapter 2.
As demonstrated in that chapter, monolithic CEC techniques can provide improved
separation ability for neutral and charged small molecules. Future study can be conducted
with further modification to the monolithic stationary phase in order to achieve the goal
of chiral separation. Several monolithic chiral stationary phases have been developed for
CEC. It is very important to focus on these chiral selectors, as many of the drugs and
metabolites are chiral compounds which possess quite different pharmacodynamic
characteristics [198]. Recent achievements using chiral stationary phases with CEC have
been described in several review articles [82, 83, 199]. In order to prepare a chiral

stationary phase, one approach is binding the most commonly used chiral selector
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cyclodextrin to the silica wall of the capillary column. The proposed method is shown as

Figure 7.1 [200-202].

The reaction starts with regular B-CD reacting with CH,CH(CH,),Br in sodium
hydroxide and DMSO condition. The CH,CH(CHa), group is added to one of OH group
on the ring of CD. The intermediate product continues reacting with CH3I / NaH and

dimethylsiloxone. The final product is synthesized.
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Figure 7.1 Synthesis of chemically modified chiral polysiloxanes Chirasil-Dex. DMSO =
dimethyl sulfoxide, DMF = dimethylformamide,polysiloxane =

methylhydro/dimethylpolysiloxane 5/95. Adapted from Ref. [200].

7.2 Monolithic CEC Microchips

In recent years, miniaturization has become an important topic across different
scientific disciplines in the scientific world. The two main advantages of miniaturized
devices currently attracting the attention of scientists are portability and low cost of
fabrication. Different research groups have been working on miniaturization of different
devices, including microfluidic chips, mass spectrometry, and others [203-205]. I am
interested on miniaturization of capillary electrophoresis systems, which is commonly
referred to as microfluidic chips [203, 206], or micro total analysis systems (LTAS), for

further research.

Since the hexyl acrylate based monolithic capillary columns were fabricated, the

potential exists to introduce the monomer mixture into the small channel of the microchip
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plate, polymerize the mixture, and shape it to the desired structure inside the microchip

channel.

At the moment, there are two ways of in situ polymerization for preparing a
continuous monolithic bed, chemical initiation [207, 208] and photoinitiation [203, 209-
212]. The polymerization method presented in Chapter 2 utilized photoinitiation by a 360
nm UV box. In addition, mass spectrometry detection was even coupled with monolithic

CEC microchips for a protein digest analysis [210].

Figure 7.2 A polymer-based monolithic CEC microchip was fabricated by Daniel J.
Throckmorton, Timothy J. Shepodd, and Anup K. Singh. The structure was photoinitiated
using acrylate based monomer mixture. Adapted with permission from Ref. [203].

Copyright (2002) American Chemical Society.
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MS detector

Figure 7.3 Schematic diagram of the microchip CEC-MS configuration: (1) separation
channel; (2) double-T injector; (3) ESI source; (4) eluent reservoir; (5) sample inlet
reservoir; (6) sample waste reservoir; (7) eluent waste reservoir that houses the porous
glass gate; (8) side channel for flushing the monolithic channel; (9) ESI emitter. Adapted

with permission from Ref. [210]. Copyright (2003) WILEY-VCH.

7.3 Capillary Zone Electrophoresis for Chiral Separation

As detailed in Chapter 4 and 5, simultaneous enantioseparation of 12 cathinone
analogs was successfully achieved by B-CD and HS-y-CD. It is possible to use other
chiral selectors as alternative ways to fulfill the goal of enantioseparation using CE with
UV and MS detection. Several chiral selectors have been reported for chiral separations,
including antibiotics [128, 132, 213, 214], crown ether [121, 124, 126, 215, 216], and
other compounds [217, 218]. However, it should be noted that among various chiral
selectors, CD and its derivatives are the most widely used chiral selectors by far because
of their low UV absorption in 190 — 400 nm band and because of their widespread
commercial availability. I would like to continue the research by choosing volatile chiral

selectors, which are MS-friendly.
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Figure 7.5 Chemical structure of penicillin G potassium salt (PenG) used as chiral

selector in Ref. [116].

98



"An education isn’t how much you have committed to memory, or even how much you

know. It’s being able to differentiate between what you do know and what you don’t."

Anatole France, French author, 1844-1924.

-END-
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APPENDICES

L. In situ synthesis of monolithic stationary phases for electrochromatographic separations

1. Capillary pretreatment

Cut a 100 um L.D. transparent capillary to the required length, i.e. 80 cm. Rinse the

capillary based on the following order.

e Acetone — 5 min

e NaOH - 60 min

e 6 mM acetic acid* containing 4 pL of trimethoxysilylpropyl acrylate (TMSA) —
10 min

e Static mode — 60 min

e H20 - 30 min

e N2 - 15 min (Use an empty vial at inlet)

* 6 mM acetic acid: Add 34 pL glacial acetic acid to deionized water, total vol. 100 mL.

2. Preparation of the polymerization mixture.

Polymerization solution consists of a mixture of a monomer mixture (A) with 4mL of the

porogenic solvent (B).

A. consists of a mixture which contain hexyl acrylate (76%, 1369ul); 1,3-butanediol
diacrylate (24%, 591uL) ; 2-acrylamido-2-methyl-1-propanesulfonicacid (0.5%, 14.5mg)

and trimethoxysilylpropyl acrylate (2uL)
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B. a mixture of Ethanol, Phosphate Buffer (pH6.8, 5SmM), and Acetonitrile (v/v/v=1/1/3,

i.e. 2 mL/2 mL/6 mL)

Phosphate buffer: 0.0371 g of monosodium phosphate, monohydrate and 0.062 g of

Disodium phosphate, heptahydrate in 100 mL deionized water.

AIBN (0.5 % with respect to monomer, 9.4mg) is added to the polymerization solution as
initiator. The polymerization solution is then sonicated to obtain a clear solution and to

remove dissolve air. The solution MUST be clear.

3. Monolithic column

1. Filling

The capillary is filled with the polymerization mixture by immersing the inlet of the
capillary into a reservoir and by pushing the polymerization solution under gas pressure.

After 30 min, its ends are sealed.

ii. Polymerization

The capillary is then placed into an UV oven 365nm during 1h at room temperature. Then
2cm of both ends are cut and the capillary is put in the CE instrument. The monolith must

be present in the entire capillary.

iii. Washing (Post-treatment)

Before any analysis, a voltage program ranging from 0 to 20kV in 120 min with a total
duration of 300min is applied on the capillary with a mobile phase which consists of a

mixture Acetonitrile/Phosphate Buffer pH6.8 (80/20). A pressure of 5 bar provided by
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pressurized nitrogen is applied at both ends of the capillary during every experimental
runs to minimize bubble formation. A detection window is created on the column as a
result of exposure to the deuterium light of the detector. At the end of the conditioning
the UV noise must be around 0.1mAU, and a stable current around 2-4uA (30kV applied)

must be observed.
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II. Instructional guidelines for the usage of the Agilent Chem Station in CE/CEC mode.

1. Disconnect CE with TOF-MS. See diagram on the back of the MS for details.

2. Turn on CE. The ON/OFF switch is on the lower left side of the front panal.

3. Start the Agilent ChemStation (Instrument 1 Online)

a. Go to menu bar. Select Instrument.

e Select system INIT

b. Wait for ready (Green light in the status bar of the software)

¢. Click on Run method

4. If you plan to not use the instruments for a few hours:

e Turn off the CE lamp

5. At the end of the day:

a. Turn off the CE lamp

b. Close ChemStation software

¢. Turn off the CE
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