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ABSTRACT OF THE DISSERTATION

TOWARDS NEXT GENERATION VERTICAL SEARCH ENGINES

by

Li Zheng

Florida International University, 2014

Miami, Florida

Professor Tao Li, Co-major Professor

Professor Shu-Ching Chen, Co-major Professor

As the Web evolves unexpectedly fast, information grows explosively. Useful resources

become more and more difficult to find because of their dynamic and unstructured charac-

teristics. A vertical search engine is designed and implemented towards a specific domain.

Instead of processing the giant volume of miscellaneous information distributed in the Web,

a vertical search engine targets at identifying relevant information in specific domains or

topics and eventually provides users with up-to-date information, highly focused insights

and actionable knowledge representation. As the mobile device gets more popular, the na-

ture of the search is changing. So, acquiring information on a mobile device poses unique

requirements on traditional search engines, which will potentially change every feature

they used to have. To summarize, users are strongly expecting search engines that can

satisfy their individual information needs, adapt their current situation, and present highly

personalized search results.

In my research, the next generation vertical search engine means to utilize and enrich

existing domain information to close the loop of vertical search engine’s system that mutu-

ally facilitate knowledge discovering, actionable information extraction, and user interests

modeling and recommendation. I investigate three problems in which domain taxonomy

plays an important role, including taxonomy generation using a vertical search engine,

actionable information extraction based on domain taxonomy, and the use of ensemble tax-
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onomy to catch user’s interests. As the fundamental theory, ultra-metric, dendrogram, and

hierarchical clustering are intensively discussed. Methods on taxonomy generation using

my research on hierarchical clustering are developed. The related vertical search engine

techniques are practically used in Disaster Management Domain. Especially, three disaster

information management systems are developed and represented as real use cases of my

research work.
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CHAPTER 1

Introduction

As the Web evolves unexpectedly fast, information grows explosively. Useful re-

sources become more and more difficult to find because of their dynamic and unstruc-

tured characteristics. General search engines, such as Google (www.google.com), Yahoo

(www.yahoo.com), and Bing (www.bing.com), can largely help people figure out many

important resources based on each user’s customized queries. However, as the size of in-

dexable Web pages keeps exploding, it is impossible for a search engine to maintain an

index with both comprehensiveness and freshness. Google, considered the best search in-

dex today, can only catalog a fraction of these massive contents. Even with spiders to crawl

millions of web pages per week, Google’s current index size is only 40 billion out of the

450+ billion pages estimated to exist, less than 10% of all available internet-served content.

In addition, under many circumstances, the general-purpose search engine, such as Google,

can easily generate millions of search results, but many of them are not relevant to the users

intension or are duplications of each other. For example, when the keywords can be gen-

erally used in various situations or areas, the generated results will be highly diversified.

Also when the keywords can be presented in several equivalent forms or expressions, site

information from a specific domain will not often be included in the top hits.

1.1 Next generation vertical search engine

A vertical search engine is designed and implemented towards a specific domain. In terms

of functionality, a vertical search engine is a further refinement and extension based on gen-

eral search engines. Instead of processing the giant volume of miscellaneous information

distributed in the Web, a vertical search engine targets at identifying relevant information

in specific domains or topics and eventually provides users with up-to-date information,

highly focused insights and actionable knowledge representation.

1



Figure 1.1: Google search results with keyword Finance.

Figure 1.1 and Figure 1.2 show the different top hits between Google and FindLaw by

using the keyword “Finance”. We can easily conclude that the user who is looking for

information about legal assistance definitely will prefer FindLaw’s results. The results in

Figure 1.2 are all about legal issues relevant to “Finance” and information is well catego-

rized to match user’s typical purposes, such as “Find a Lawyer” and “Local Blogs”. Even

when we change the keyword to “Finance Law”, in Figure 1.1, the refined google results

are much less comprehensive and actionable than FindLaw.

There are many hot applied areas, such as business, medicine, science, education and

job, in which many vertical search engines are already implemented. FindLaw1 is one of

the leading law search engines. You can also access www.theweathernetwork.com to find

weather reports, or www.expedia.com to search for available flights.

The nature of search is changing, especially on mobile devices. General search engine

used to be the main starting point for consumers looking to buy products, visit sites, or

discover hotspots. However, as mobile devices are getting more popular, using handsets

to instantly start a search becomes possible from almost anywhere and anytime. Since

1http://www.findlaw.com

2



Figure 1.2: FindLaw search results with keyword Finance.

the mobile device is portable (location sensitive) and personal (extremely user-centric),

acquiring information on the mobile device poses unique requirements on a traditional

search engine, which will potentially change every feature it used to have. To summarize,

users are strongly expecting search engines that can satisfy their individual information

needs, adapt their current situation, and present highly personalized search results.

A powerful vertical search engine can efficiently identify domain relevant resources,

extracting critical information, and adapt the search results to specific user’s needs. There-

fore, the utilization and enrichment of existing domain information plays an important role

in closing the loop of a vertical search engine’s system. This mutually facilitates knowledge

discovering and results representation as shown in Figure 1.3.
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Figure 1.3: An example of vertical search engine system.

1.2 Problem statement

Given a set of URLs (seeds) related to a domain or a given topic, a vertical search engine

needs to explore and maintain an appropriate amount of indexed Web pages so as to pro-

vide users with updated insight knowledge about important aspects of such domain. The

provided search results should be based on the user’s query and concentrate on the given

topic so that the domain professionals can easily gain a deep and comprehensive under-

standing about some aspects of the topic. To fully utilize the advantages of existing domain

knowledge, there are several challenges need to be solved:

• Challenge 1: How to efficiently build domain taxonomy using vertical search engine?

There are ways of organizing domain related keywords and terms. A term hierarchy

is the most popular form to represent the relationship between important concepts in

a particular domain. An efficient and effective method to build a domain taxonomy

based on textual content in such domain is expected to be stable and flexible. We

model this problem as hierarchical clustering with constraints, which generates stable

term hierarchy based on hierarchical clustering by transforming domain knowledge

into constraints.
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• Challenge 2: How to extract actionable information from un-structured data re-

sources?

To deal with un-structured data, general Information Retrieval and Natural Language

Processing (NLP) techniques can be utilized to identify named entities and relations

contained in a textual Web page. But it brings big challenges to figure out the domain-

relevant entity (eg. related people, location, organization) and identify its current sta-

tus. Domain taxonomy can be utilized to clustering and classify similar entities. On

the other hand, such taxonomy can be dynamically adjusted as the domain evolves

based on those on-topic resources the crawler collected. Also, models can be trained

to identify the status information.

• Challenge 3: How to efficiently capture the users’s interests and deliver right infor-

mation?

General search engine generates ranking list with diversified and repetitive results

which does not support decision-making process very well in a specific domain.

Since the users of a vertical search engine have focused search intensions, how to

understand the user’s interests and match the search results with corresponding user’s

profile is non-trivial task. Our proposed recommendation framework considers both

user’s historical interests and different user groups’ common interests to recommend

users the most relevant contents.

• Application Challenge: How to apply vertical search engine techniques to disaster

management domain?

Disaster management, as a national priority, gains massive attentions from both re-

search and engineering community. Efforts from various academic areas are made to

build a general framework in this domain. It is important to understand the charac-

teristics of this domain and figure out the specific requirements which can be solved
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by adaptively applying vertical search techniques. Disaster information management

domain taxonomy is also developed to support previous three tasks.

1.3 Summary of contributions

The following chapters give detailed discussions about critical techniques we proposed to

deal with each challenge.

Chapter 2 lists the most recent work relevant to my research. Several major categories

are mentioned and necessary discussions are given, such as Web Classification and Crawl-

ing, Domain Taxonomy Generation, Information Extraction, and Personalization and Rec-

ommendation.

In Chapter 3, we propose a hierarchical ensemble clustering framework which can natu-

rally combine both partitional clustering and hierarchical clustering results. We study three

important problems: Dendrogram Description, Dendrogram Combination and Dendrogram

Selection. We develop two approaches for dendrogram selection based on tree distances

and investigate various dendrogram distances for representing dendrograms. We provide a

systematic empirical study of the ensemble hierarchical clustering problem. Experimental

results demonstrate the effectiveness of our proposed approaches. The research works were

published in [ZLD10a]

In Chapter 4, we propose a novel semi-supervised hierarchical clustering framework

based on ultra-metric dendrogram distance. The proposed framework is able to incorporate

triple-wise relative constraints. We establish the connection between hierarchical clustering

and ultra-metric transformation of dissimilarity matrix and propose two techniques (the

constrained optimization technique and the transitive dissimilarity based technique) for

semi-supervised hierarchical clustering. Experimental results demonstrate the effectiveness

and the efficiency of our proposed methods. The research works were published in [ZL11].
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Chapter 5 considers the problem of how to extract useful information from the Web.

Two related aspects are discussed: taxonomy generation and information extraction. We

model the taxonomy generation problem as document hierarchical clustering with ordered

constraints in which the constraints are given as a partially know hierarchy, the domain

related concepts extracted from web documents are treated as instance and our solution is

to build a term hierarchy which satisfies the relative hierarchical structure in given partial

hierarchy. We also utilize techniques from information extraction and natural language

processing to build efficient model to quickly extract structured status information from

domain documents. A focus crawler prototype is presented in this chapter. The research

works were published in [ZST+12, ZST+10].

Chapter 6 discusses our proposed information recommendation framework to satisfy

online readers with their own reading preference. A novel personalized news recommen-

daTion framework using ensemble hierarchical clustering to provide attractive recommen-

dation results. Specifically, given a set of online readers, our approach initially separates

readers into different groups based on their reading histories, where each user might be des-

ignated to several groups. A document hierarchy is constructed for each user group. When

recommending document to a given user, the hierarchies of multiple user groups that the

user belongs to are merged into an optimal one. Finally a list of news articles are selected

from this optimal hierarchy based on the users personalized information, as the recom-

mendation result. Extensive empirical experiments on a set of news articles collected from

various popular news websites demonstrate the efficacy of our proposed approach. The

research works were published in [ZLHL12, ZLD10a].

Chapter 7 describes how the research can contribute to the real application in disas-

ter management domain. We have developed techniques to facilitate information shar-

ing and collaboration between both private and public sector participants for major disas-

ter recovery planning and management. We have designed and implemented two paral-
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lel systems: a web-based prototype of a Business Continuity Information Network sys-

tem and an All-Hazard Disaster Situation Browser system that run on mobile devices.

Data mining and information retrieval techniques help impacted communities better un-

derstand the current disaster situation and how the community is recovering. User stud-

ies with more than 200 participants from Emergency Operation Center (EOC) person-

nel and companies demonstrate that our systems are very useful to gain insights about

the disaster situation and for making decisions. The application works were published in

[ZST+11, ZST+10, ZST+12, ZST+13, WZLD09].

Finally, Chapter 8 summarizes this dissertation comprehensively. For each important

component, my research contributions are provided and future improvements are discussed.
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CHAPTER 2

Related work

This chapter presents related work in building a vertical search engine and domain

knowledge generation. Existing techniques are categorized into four aspects. Section 2.1

provides previous research on web classification and crawling strategies; Section 2.2 pro-

vides relevant work on taxonomy generation techniques and information retrieval methods

for entity recognition and relation extraction; Section 2.3 provides recommendation frame-

works that are widely studied in various application areas; Section 2.4 provides relevant

researches on various clustering techniques.

2.1 Web classification and crawling

2.1.1 Link-based algorithm

There are different types of link contextual information which can be evaluated in general

focused crawler: link context, ancester pages and web graph. Early algorithms, like Fish

search [DBP94], simply follow all links in an on-topic page by assuming the successive

relevance from the parent page. Shark search uses a few words around a hyperlink to

define more granular context [HJM+98]. Richer information (header, title) is extracted

from parent page to obtain more meaningful contextual information [CPS02, PM03]. By

introducing the concept of context graphs [DCL+00, HW06], features collected from paths

(ancestors) leading up to relevant nodes are utilized to guide the crawler and back-links

are used to estimate the link distance form a page to target pages. By considering the

detected web graph to identify a ”good” hub4, the priority of its following hyperlinks can

be increased [CvdBD99, PM03].

4A page contains links to many relevant pages.
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2.1.2 Machine learning-based algorithms

Researchers also explore different algorithms from machine learning perspective using var-

ious contextual information. Proper predicting models are trained to evaluate the relevance

between detected hyperlinks and the topic. In [LJM06], a Hidden Markov Model (HMM)

is trained based on user browsing history to predict how likely a page lead to a target page.

Algorithms using reinforcement learning [RM99, MNRS99] are designed to learn a map-

ping performed by Naive Bayes text classifier from the text surrounding a hyperlink to a

value function of sum of rewards. The estimation of the number of relevant pages can be

obained as the results of following that hyperlink. Genetic Algorithm [JTG03, SCR05] is

used to explore the space of potential strategies and evolve good strategies based on the

text and link structure of the referring pages. The strategies produce a rank function which

is a weighted sum of several scores such as hub, authority and SVM scores of parent pages

going back k generations. A population of agents are modeled by an ANNs network to

search for relevant pages and decide which links to follow using evolving query vectors

[MBC+99, MM99].

2.1.3 Ontology-driven crawling strategies

Ontology1 is defined as a well-organized knowledge scheme that represents high-

level background knowledge with concepts and relations. Research work presented in

[MEH+02, EM03, SGYL05] utilizes ontology to evaluate the relevance between web pages

and topic. Entities in visited pages are processed by calculating the entity distance (simply

the linking steps between an entity in the ontology and the crawling topic), thus the concept

weights of a page can be generated by a heuristically predefined discount factor raised to

the power of the entity distance. The page relevance score is equivalent to the summation of

concept weights multiplied by the frequencies of corresponding entities in the visited web

1http://en.wikipedia.org/wiki/ontology (computer science)
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pages. In [ZKK08] combine ontology and an ANN to classify the visited web pages by en-

hancing the qualification of a concept based on a set of training examples. Such method is

claimed to be able to overcome the disadvantages that the relevance score can not optimally

reflect the relevance of concepts to the crawling topics proposed by previous work.

In this dissertation, we propose a focused crawling strategy considering the challenges

that traditional focused crawlers are trying to solve. To differentiate our work with existing

methods, we fully utilize the domain taxonomy for web page classification, prioritizing,

and link prediction. Instead of classifying a web page into “related” and “not-related”,

we assigned to it a concept in our concept hierarchy which is essentially a domain taxon-

omy. These domain related concepts increase the coherence of the Web pages of a given

topic, which plays an important role of bridging different related sites and different domain

concepts.

2.2 Entity recognition and taxonomy generation

2.2.1 Named-entity recognition and relation extraction

Named-entity recognition (NER) is defined as a subtask of information extraction that iden-

tify and assign information units in text into predefined categories such as the names of

persons, organizations, locations, expressions of times, quantities, monetary values, per-

centages [PK01, NS07, WKPU08]. The most straightforward way is using an entity list

and part of speech (POS) patterns. A list contains a set of related terms or phrases in a

particular domain. The POS patterns allow people to define things like noun phrases, verb

phrases, or any POS patterns as regular expression. More complex and effective meth-

ods such as regular expression, Conditional Random Field (CRF) model, and Maximum

Entropy-based model are well studied by academic community. Using regular expressions,

people can define things like address, date ranges, email and have them treated as named
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entities [RH02, SP01, CC97]. Conditional Random Field model can be trained using la-

beled named entity types, such as Person, Date, Place. Such model is applied to new lexi-

cal documents to label the terms that can be recognized [LMP01, SP03]. Hidden Markov

Model is widely used for labeling sequential text. An HMM is essentially a finite state

automaton with stochastic state transitions and observations. By modeling the probability

of reaching a state given an observation and the previous state. Maximum Entropy-based

model can find the best model of the data which satisfies certain constraints and makes the

fewest possible assumptions [CN02b, CN02a, MFP00].

A relationship extraction task requires the detection and classification of semantic rela-

tionship mentioned within a set of elements typically from text documents. One solution

to this problem involves the use of domain ontologies [RTWH99, RKS06]. For instance,

the ARCHILES [WLB09] uses only Wikipedia and search engine page count for acquiring

relations to construct small-scale ontologies. Many researches on extraction of semantic

relationships focus on using syntactic parse trees. [MFRW00] builds generative models for

the augmented trees based on semantic information corresponding to entities and relations.

[ZAR03] extracts relations by computing kernel functions between parse trees. [CS04] ex-

tends this work to estimate kernel functions between augmented dependency trees. Other

method,such as [Kam04], builds Maximum Entropy models for extracting relations that

combine diverse lexical, syntactic and semantic features.

2.2.2 Taxonomy-driven information extraction

Research indicates that even state-of-the-art NER systems are brittle, meaning that NER

systems developed for one domain do not typically perform well on other domains [PK01].

[Res11] sets up a probabilistic framework and defines the measurement of semantic simi-

larity in information-theoretic terms in a taxonomy and applies such taxonomy-based mea-

surement to problems of ambiguity in natural language. [YM07, MC06, WHW08] use
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“ontology-driven information extraction” to define an IE process [CL96] guided by an

ontology. [WD10] provides the explicit definition for using ontology to not only extract

certain types of information but also present the output. A task for extracting instances

and property value with respect to classes and properties of a given ontology is often

named as ontology population[VVMD+01, DFKK08, SFMB07]. KIM system proposed

in [VFC05, KPT+04] defines a general framework for ontology-supported document re-

trieval, and integrate full-text search with ontology-based methods. [DK07] proposes a

non part-of-speech based method for semantic elements extraction and applies it in health

care domain to enhance the ontology and information retrieval performance.

2.2.3 Clustering-based taxonomy generation

Traditional hierarchical (divisive or agglomerative) clustering algorithms can be used to

construct a hierarchical taxonomy and some heuristic algorithms are applied to optimize

the taxonomic structure [CC03a, CC02]. Automatic tools for initial taxonomy construction

based on hierarchical clustering of documents are proposed in [LZO03, VD00]. [Bol98]

developed a divisive partitioning algorithm PDDP, which iteratively separates a intermedia

cluster into two children by testing if its scatter value exceeds a user-defined threshold.

COBWEB [CCH02] performs the incremental conceptual clustering to construct class hi-

erarchies. A set of topical summary terms are used for taxonomy construction. These

terms are selected by maximizing the joint probability of their topicality and predictive-

ness [LC03]. DisCover[KLR+04] is developed to maximize the coverage as well as the

distinctiveness of the taxonomy incrementally. [SJN06] defines taxonomy learning task as

finding the taxonomy that maximizes the probability of certain relationships between terms.

Multiple supervised logistic regression models is trained to capture the relations. [YC09]

presented a semi-supervised taxonomy induction framework that integrates contextual, co-

occurrence, and syntactic dependencies, lexico-syntactic patterns, and other features to
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learn an ontology metric, calculated in terms of the semantic distance for each pair of

terms in a taxonomy. There are also efforts on generating taxonomies by incorporating

evidence from multiple classifiers with the knowledge in a preexisting semantic taxonomy,

such as WordNet, to optimize the entire structure of the taxonomy [SJN06, YC09]. Some

other researches focus on not generating but exploiting existing document taxonomies and

enriching them using various classification techniques [AAHM00, AS01, CC03b].

2.2.4 Using external source for taxonomy generation

Rule-based approaches use predefined rules or heuristic patterns to extract terms and re-

lations typically based on lexico-syntactic patterns [Hea92]. Such lexico-syntactic pat-

terns can be defined manually [BC99, KRH08] or obtained by bootstrapping techniques

[GBM06, PP06], from which certain type of relation can be extracted, such as A is a kind

of B. Other rule-based approaches learn a taxonomy by applying heuristics to supporting

resources such as Wikipedia [SKW08, PS11], or utilizing computational lexicons such as

WordNet [PN09]. WordNet is also widely used as the underlying reference ontology to sup-

port the evaluation of semantic similarity [VVR+05]. The category system in Wikipedia

can be taken as a conceptual network. [PS11] labels the semantic relations between cate-

gories using methods based on connectivity in the network and lexico-syntactic matching

to generate a large scale taxonomy. [PN09] presents a knowledge-rich methodology for

disambiguating Wikipedia categories with WordNet synsets. A taxonomy automatically

generated from the Wikipedia system of categories can be restructured by using external

semantic information. Meanwhile, the WordNet is effectively enriched with a large number

of instances from Wikipedia.

In this dissertation, we propose a novel framework for generating domain taxonomy

using hierarchical clustering with constraints. Domain knowledge is used as the base tax-

onomy and can be enriched and updated as more meaningful concepts are extracted from
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crawled documents. Our framework is different from existing work on several aspects. In

our approach, information extraction is supported by taxonomy generated from collection

of domain related documents. External resources are not necessary to be used. In addition,

to generate domain taxonomy, we transform domain knowledge into ordered constraints

which are defined especially for hierarchical clustering. Semi-supervised hierarchical clus-

tering with ordered constraints and triple-wise constraints is implemented to integrate do-

main knowledge.

2.3 Personalization and recommendation

2.3.1 Content-based

Recommendation purely based on news content is essentially to consider the similarities

between the user’s profile and the target textual content. Both the user’s profile and the news

content can be generally represented using vector space model (e.g., TF-IDF) [JMK+00] or

topic distributions quantified by language models (e.g., PLSI [Hof99] and LDA [BNJ03]).

Many content-based news recommender systems have been proposed in the last decade.

For example, News Dude [BP99], is a personal news recommending agent that utilizes

TF-IDF combined with the K-Nearest Neighbor algorithm to recommend news items to in-

dividual users. Other illustrative content-based methods include YourNews [ABG+07] and

Newsjunkie [GDH04], where the former intends to increase the transparency of adapted

news delivery by allowing the given user to adapt his/ber profile information, and the lat-

ter tries to filter news stories by formal measures of information novelty. Although the

content-based approaches is quite straightforward to understand and implement, it is in-

sufficient to construct a single user’s profile information by aggregating a bag of words

since such model cannot adapt to relative stability of a user’s general reading interest and

frequent shift of the user’s fine-grained preferences.
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2.3.2 Collaborative filtering

Collaborative filtering systems assume that users with similar rating behaviors in the past

usually have similar preferences to new items. Such systems utilize historical user-item-

rating combinations to provide recommendation services. Generally, most of systems using

collaborative filtering do not use the context or content of items. For personalized news rec-

ommendation, news articles are regarded as different items, since there is usually no explicit

ratings on news articles. In such case, item ratings are typically binary: a news article be ac-

cessed by a reader is assigned the score of 1, otherwise it is assigned a 0 score [DDGR07].

Practically, the usage of users’ historical rating behaviors varies based on different mech-

anisms. Some collaborative filtering systems aggregate the rating behaviors of a group of

users “similar” to the given user to predict news ratings [RIS+94, SKKR01, YXT+02],

some others model users’ behaviors in a probabilistic way [AC09, Hof04, SHB06]. Typ-

ically, under two circumstances, collaborative filtering systems can efficiently predict the

score of unrated items based on similar users’ behaviors: 1. when there is relatively good

amount of overlap in historic ratings on the item set; 2. the content universe is almost

static [SKR99]. However, there are still challenges in collaborative filtering framework.

For example, in many web-based scenarios, the content universe dynamically changes,

with content popularity changing over time as well [LCLS10]. Moreover, new relevant

items with no historical ratings from users can not receive high predicted scores, which is

known as a cold-start problem [SPUP02].

2.3.3 Hybrid methods

Hybrid solutions to news recommendation by combining two types of methods have also

been developed recently. A scalable two-stage personalized news recommendation system

was proposed in [LWL+11], which models user preference by building a two-level news
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hierarchy to enhance the representativeness of each topic cluster. [SHG09] proposed to

use the content information in the form of user and item meta data in combination with

collaborative filtering information from previous user behavior in order to predict the value

of an item for a user. Representative examples include [CP09, Bur05], in which the in-

ability of the collaborative filtering to recommend news items is commonly alleviated by

using content-based filtering to solve the cold-start problem. To the best of our knowledge,

little research effort has been done to consider the relationship between individual user

profile and a profile group simultaneously to achieve a reasonable recommendation result.

[MSDR04] utilizes an ontology in a recommender system to solve the cold-start problem

and dynamically discover user interests. They first apply the nearest neighbor algorithm

to classify documents and user interests, and then identify meaningful communities by

ontology-based network analysis. [ZLST04] proposed a taxonomy-based recommender

framework for exploiting relationships between father-concepts and child-concepts in the

domain taxonomy to address the sparseness issue and diversify the recommendation results

to match the specific users interests.

In this dissertation, we propose a novel recommendation framework that captures users’

preferences based on not only individual user’s reading history, but also the historical con-

sumptions of a group of users with similar reading preferences based on the fact that each

user group has its unique preferences to different news topics. Furthermore, the profile

of a given user group is not represented using the traditional vector space model, but is

characterized by a news hierarchy in which the merged preference between pair of new

articles demonstrates their similarity. A consensus hierarchical clustering method is used

to combine the news hierarchies associated with the user groups that the user belongs to.

The user’s interest can be easily captured in a united way. Our proposed framework is be-

yond content-based methods and collaborative filtering, in which individual user behavior

and user group behavior are simultaneously considered for recommendation. Our proposed

17



framework achieves a good balance between the topic coverage and the content diversity of

the recommended news list. We model the news selection problem as a budgeted maximum

coverage problem, which is more realistic than independently selecting news items.

2.4 Clustering methods

2.4.1 Hierarchical clustering

Hierarchical clustering algorithms are unsupervised methods to generate tree-like clus-

tering solutions. Many research efforts have been reported on algorithm-level improve-

ments of the hierarchical clustering process and on understanding hierarchical cluster-

ing [WXC09][ZK02a]. There are two approaches to hierarchical clustering using bottom-

up by grouping small clusters into larger ones or top-down by splitting big clusters into

small ones. These are called agglomerative and divisive clusterings, respectively [TSK05a].

Also, other researches define the distance (closeness) between two sub-clusters. There are

several basic choices. Single-Link defines the distance between two clusters as the mini-

mum distance between their members; In complete-link, the distance between clusters is

the maximum distance between their members; The average-link defines the distance be-

tween two clusters as the mean of pairwise distances between members from two clusters;

The Ward’s method says that the distance between two clusters is how much the sum of

squares will increase when they get merged [WJ63, Mur83, TSK05a]. The problem of fit-

ting a tree metric to the (dis-)similarity data on pairs of objects from a given set has been

studied quite extensively [AC05a]. Ultra-metric is a special kind of tree metric where all

elements of the input dataset are leaves in the underlying tree and all leaves are at the same

distance from the root. Ultra-metric naturally corresponds to a hierarchy of clusterings of

the data [ABF+99][AC05a]. Given a dissimilarity D on pairs of objects, the problem of
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finding the best ultra-metric du such that ||D − du||p is minimized is NP-hard for L1 and

L2 norms (e.g., when p = 1 and p = 2) [ABF+99].

2.4.2 Ensemble clustering

The problem of ensemble clustering is to find a combined clustering result based on

multiple clusterings of a given dataset. There are many ways to obtain multiple clus-

terings such as applying different clustering algorithms; using re-sampling to get sub-

samples of the dataset, utilizing feature selection methods to obtain different feature

spaces, and exploiting the randomness of the clustering algorithm. Many approaches

have been developed to solve ensemble clustering problems over the last few years

[AF09][FB04][GMT05][LD08a][MTMG03][TJP05]. However, most of these techniques

are designed for partitional clustering methods. The problem of ensemble hierarchical clus-

tering using dendrogram descriptors has been studied in [MRA08]. The key difference is

that we present a coherent algorithm to learn the closest ultra-metric solution (matrix B in

Problem 1 near Eq.(4.3)) while the approach in [MRA08] requires many parameters that

are selected in an ad-hoc manner.

2.4.3 Consensus tree

Consensus tree has been widely studied in bioinformatics when comparing the evolution

of species to reach a consensus or agreement [Ada86b][III72]. Most techniques for find-

ing consensus tree are based on agreement subtrees (e.g., sub structures that are common

to all the trees) [FPT95][Wil94]. It is very difficult for these consensus tree techniques

to preserve structural information while including all the existing leaves from the input

trees [Swo91]. In supervised classification, different decision trees can be combined using

bagging [BB96], boosting [SS99], stacking [Wol92], or random forests [BB01]. Unlike
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our ensemble hierarchical clustering, these ensemble methods are designed for supervised

classification. In addition, most of the decision tree ensembles do not generate a final tree

and just combine the output predictions of base trees.

2.4.4 Semi-supervised clustering

Many researchers have explored the use of instance-level background information, such

as pairwise must-link and cannot-link constraints for learning a distance/dissimilarity

measure, or modifying the objective criterion, or improving the optimization proce-

dures [BhHSW05, BBM04, KKM02, Wag02, XNJR02, Zhu05]. Other types of knowl-

edge hints (such as size of the clusters, partial labels of the data points, and user-provided

external prototypes/representatives) have also been used for clustering [Ped04]. However,

most of these works are designed for partitional clustering and few research efforts have

been reported on semi-supervised hierarchical clustering methods. We note the very recent

works of Zhao et al. [ZQ10] and Bade et al. [BN06] which perform hierarchical clustering

with order constraints and partially known hierarchy. There is few previous work partic-

ularly focusing on integrating constraints in hierarchial clustering. In detail, new type of

constraint [BN06] is used in agglomerative hierarchical clustering. [BN06] also utilizes

a metric-based learning framework to adapt the weight associated with each feature by

mapping the given constraints to a distance measure. The objective is to maximize the re-

lations specified by each constraint. Simple gradient decent framework can be performed

to obtain the feature weights. Heuristic method is also proposed by verifying possible

violations which can prevent certain pair of clusters from merging together in each merg-

ing step [ZQ10]. Such method can stop at some step when constraints block any possible

further merging or force to merge by setting some constraints to be invalid.

In this dissertation, we propose a framework for ensemble hierarchical clustering based

on descriptor matrices to preserve the common structures from the input hierarchical clus-
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terings and also generate a full consensus tree. Our framework is different from existing

work on several aspects. In our approach, there are no parameters. In addition, we propose

a hierarchical ensemble clustering framework which can naturally combine both partitional

clustering and hierarchical clustering results and systematically studied the problems re-

lated to dendrogram description, selection, and combination. For semi-supervised hierar-

chical clustering framework, our triple-wise constraints are conceptually special cases of

the order constraints. However, different from their works, our proposed semi-supervised

hierarchical clustering framework is based on ultra-metric dendrogram distance. Such uni-

fied framework integrates both ultra-metric fitting and triple-wise relative constraints and

seeks an approximate dissimilarity metric (ultra-metric) which represents a tuned dendro-

gram that satisfies the given constraints.
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CHAPTER 3

Hierarchical ensemble clustering

Data clustering arises in many disciplines and has a wide range of applications. The

general goal of data clustering is to group a finite set of points in a multi-dimensional

space into clusters such that points in the same cluster are similar to each other while

points in different clusters are dissimilar. The clustering problem has been extensively

studied in the data mining, database, and machine learning communities and many different

approaches have been developed from various perspectives with various focuses. Based

on the way the clusters are generated, these clustering methods can be roughly divided

into two categories: partitional clustering and hierarchical clustering [TSK05a]. Generally,

partitional clustering decomposes the dataset into a number of disjoint clusters which

typically represent a local optimum of some predefined objective function. Hierarchical

clustering groups the data points into a hierarchical tree structure using bottom-up or top-

down approaches.

Clustering is an inherently difficult problem. Different clustering algorithms and even

multiple trials of the same algorithm may produce different results due to random initial-

izations and stochastic learning methods. Recently, as a way for overcoming the result-

ing instability and improving clustering performance, ensemble clustering has emerged

as an important elaboration of the classical clustering problem. Ensemble clustering

refers to the situation in which a number of different (input) clusterings have been ob-

tained for a particular dataset and it is desired to find a single (consensus) clustering

which is a better fit in some sense than the existing clusterings [SG03]. Many ap-

proaches have been developed to solve ensemble clustering problems over the last few

years [AF09][FB04][LOM04][GMT05][LD08a][MTMG03][TJP05][LDHN11].

However, most of these existing ensemble techniques are designed for partitional clus-

tering methods. Few research efforts have been reported for ensemble hierarchical cluster-
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ing methods. Different from partitional clustering where the clustering results are ”flat” and

can thus be easily represented using vectors, clustering indicators, or connectivity matri-

ces [LD08a][SG03], the results of hierarchical clustering are more complex and typically

represented as dendrograms or trees. In addition, unlike partitional clustering methods

which generally have some predefined objective functions, hierarchical clustering methods

have no global objective functions. These properties have made the ensemble hierarchical

clustering problem more challenging.

In this chapter, we demonstrate a hierarchical ensemble clustering (HEC) framework.

In this framework, the input could be both partitional clusterings and hierarchical cluster-

ings. The output is a consensus hierarchical clustering. We discuss three cases below.

(1) The input data consists of partitional clusterings. In this case, we first construct

the aggregate consensus distance from these partitional clusterings. We then generate a

consensus clustering using the consensus distance. If we stop here, that would be the usual

ensemble clustering. In HEC, we can further build a structure hierarchy on top of the

consensus clustering using the consensus distance.

First, a structure hierarchy on top of a clustering solution is useful to organize

and understand the discovered knowledge (topic or pattern). Second, the cluster struc-

ture hierarchy resolves a problem in the usual ensemble clustering when the input

partitional clusterings have different number of clusters. In this case, K, the num-

ber of clusters in the final clustering solution is not uniquely determined (Much re-

search has been done on finding the most appropriate number of clusters in a dataset

[FR98][SJ03][TWH01]). Different frameworks have also been proposed to deal with en-

semble clusterings [LD08a][SG03][WLDJ11]. In ensemble clustering, we consider input

partitional clusterings as meaningful results, including the number of clusters in each

input partitional clustering. Therefore, if the number of clusters of input partitional cluster-

ings has a range [K1, K2], then K of the final ensemble clustering should be K ∈ [K1, K2].
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From this analysis, in HEC framework, we can set K = K2 for the bottom clusterings

(leaves) of the structure hierarchy. In this way, the ”true” number of clusters is guaranteed

to be inside the cluster structure hierarchy.

(2) The input data consists of hierarchical clusterings, i.e., a set of dendrograms. In this

case, we first construct the aggregate dendrogram distance between objects. From this

distance, we then generate a hierarchical clustering as the final solution.

(3) The input data consists of both partitional clusterings and hierarchical clusterings.

In this case, we construct the consensus distance from the partitional clusterings and the

dendrogram distance from hierarchical clusterings. We combine these two distances into

a single distance, and then generate a hierarchical clustering as the final solution. Figure

3.1 illustrates this case. The dataset is shown in Fig.1(A) and their distances are shown in

Fig.1(B). K-means clustering is performed with different numbers of clusters in Fig.1(C)

and leads to a consensus distance matrix in Fig.1(E). A hierarchical clustering is done

in Fig.1(D) and leads to a dendrogram distance matrix in Fig.1(F). The consensus dis-

tance matrix of Fig.1(E) and the dendrogram distance matrix in Fig.1(F) are combined in

Fig.1(G) and the final hierarchical clustering is generated in Fig.1(H).

Our preliminary work was presented at the International Conference on Data Mining

(ICDM) 2010 [ZLD10b] in which we focused on the ensembles of hierarchical cluster-

ing and the related computational algorithms. In this journal submission, we extend our

previous work by systematically studying the following three important problems:

1. Dendrogram Description: How can we represent the dendrograms so that different

hierarchical clustering solutions can be compared and combined?

2. Dendrogram Combination: How can we aggregate different dendrograms and gen-

erate final hierarchical solution?

3. Dendrogram Selection: Given a large collection of input hierarchical clusterings,

how can we select a subset from the input collection to effectively build an ensem-
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Figure 3.1: An illustrative example of hierarchical ensemble clustering with both partitional
and hierarchical clusterings as input. The dataset is shown in (A) and their distances are
shown in (B). K-means clustering are performed in (C) and lead to a consensus distance
matrix in (E). A hierarchical clustering is done in (D) and leads to a dendrogram distance
matrix in (F). The consensus distance matrix of (E) and the dendrogram distance matrix in
(F) are combined in (G) and the final hierarchical clustering are generated in (H).

ble solution that performs as well as or even better than using all available cluster-

ings [FL08]?

In particular we investigate various descriptor matrices for representing dendrograms and

propose a novel method for deriving a final hierarchical clustering by fitting an ultra-metric

from the aggregated descriptor matrix. We also study the problem of combining both hier-

archical and partitional clustering results not only focuses on the combination hierarchical

clusterings. We develop two approaches for dendrogram selection based on tree distances.

Our experimental evaluation also provides a systematic empirical study on the ensemble

hierarchical clustering problem. Experimental results have demonstrated the effectiveness

of our proposed approaches.

The rest of the chapter is organized as follows: Section 3.1 discusses the related work;

Section 3.3 gives the comprehensive discussion about the HEC framework, in which al-
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gorithm is provided in Section 3.3.1; Section 3.3.2 describes the distance matrix used for

representing partitional clustering results; Section 3.3.3 proposes a novel method for deriv-

ing final hierarchical clustering by fitting an ultra-metric from the aggregated distance ma-

trix which is combined with multiple input hierarchical clusterings; Section 3.3.4 presents

our approaches for dendrogram selection, i.e., selecting a subset of hierarchical clusterings

from the input collection; Section 3.4 shows experimental evaluations and result analysis;

and Finally, Section 3.5 concludes the chapter and discusses future work.

3.1 Related work

Hierarchical Clustering: Hierarchical clustering algorithms are unsupervised methods to

generate tree-like clustering solutions. They group the data points into a hierarchical tree

structure using bottom-up (agglomerative) or top-down (divisive) approaches [TSK05a].

Many research efforts have been reported on algorithm-level improvements of the hierar-

chical clustering process and on understanding hierarchical clustering [WXC09][ZK02a].

Ensemble Clustering: The problem of ensemble clustering is to find a combined

clustering result based on multiple clusterings of a given dataset. There are many ways

to obtain multiple clusterings such as applying different clustering algorithms; using re-

sampling to get subsamples of the dataset, utilizing feature selection methods to obtain

different feature spaces, and exploiting the randomness of the clustering algorithm. Many

approaches have been developed to solve ensemble clustering problems over the last few

years [AF09][FB04][GMT05][LD08a][MTMG03][TJP05]. However, most of these tech-

niques are designed for partitional clustering methods. The problem of ensemble hierar-

chical clustering using dendrogram descriptors has been studied in [MRA08]. The key

difference is that we present a coherent algorithm to learn the closest ultra-metric solution

(matrix B in Problem 1 near Eq.(4.3)) while the approach in [MRA08] requires many pa-

rameters that are selected in an ad-hoc manner. In our approach, there are no parameters.
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In addition, we propose a hierarchical ensemble clustering framework which can naturally

combine both partitional clustering and hierarchical clustering results and systematically

studied the problems related to dendrogram description, selection, and combination.

Consensus Tree: Consensus tree has been widely studied in bioinformatics when com-

paring the evolution of species to reach a consensus or agreement [Ada86b][III72]. Most

techniques for finding consensus tree are based on agreement subtrees (e.g., sub structures

that are common to all the trees) [FPT95][Wil94]. It is very difficult for these consensus

tree techniques to preserve structural information while including all the existing leaves

from the input trees [Swo91]. In this chapter, we propose a framework for ensemble hierar-

chical clustering based on descriptor matrices to preserve the common structures from the

input hierarchical clusterings and also generate a full consensus tree.

Metric Fitting: The problem of fitting a tree metric to the (dis-)similarity data on

pairs of objects from a given set has been studied quite extensively [AC05a]. Ultra-metric

is a special kind of tree metric where all elements of the input dataset are leaves in the

underlying tree and all leaves are at the same distance from the root. Ultra-metric nat-

urally corresponds to a hierarchy of clusterings of the data [ABF+99][AC05a]. Given a

dissimilarity D on pairs of objects, the problem of finding the best ultra-metric du such

that ||D − du||p is minimized is NP-hard for L1 and L2 norms (e.g., when p = 1 and

p = 2) [ABF+99]. In this chapter, we propose a new method for fitting an ultra-metric to

the aggregated descriptor matrix.

Ensemble Decision Trees: In supervised classification, different decision trees

can be combined using bagging [BB96], boosting [SS99], stacking [Wol92], or random

forests [BB01]. Unlike our ensemble hierarchical clustering, these ensemble methods are

designed for supervised classification. In addition, most of the decision tree ensembles

do not generate a final tree and just combine the output predictions of base trees. In this

chapter, we generate the final ensemble result as a complete hierarchical clustering result.
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Cluster Ensemble Selection: The problem of selecting a subset of input clusterings to

form a smaller but better performing cluster ensemble than using all available solutions has

been studied recently for partitional clustering [AF09][FL08]. In this chapter, we develop

cluster ensemble selection methods for hierarchical clustering based on tree distances.

3.2 Ultra-metric, dendrogram, and hierarchical clustering

In this section, we explicit establish the relationship between ultra-metric, dendrogram,

and hierarchical clustering. By theoretically building the equivalence between a dendro-

gram and a hierarchical clustering results, the ultra-metric representation can be exten-

sively used as the basis for hierarchical ensemble clustering (discussed in Chapter3) and

semi-supervised hierarchical clustering (discussed in Chapter4).

3.2.1 Ultra-metric distance

Definition 1. A distance matrix D = (dij) is a metric, if it has the following properties:

nonnegativity

dij ≥ 0,

if dij = d(xi, xj) = 0, then xi = xj , symmetry

dij = dji,

and the triangle inequality

dij ≥ 0, dij ≤ dik + dkj, i 6= k 6= j.

It should noted that although nonnegativity and symmetry hold for many distance mea-

sures in data mining, the triangle inequality does not always hold.

A more restricted version of the triangle inequality is called ultra-metric inequality:

dij ≤ max(dik, djk) (3.1)
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for all triplets of points i, j, k. This is equivalent to saying that for any distinct triple i, j, k,

the largest two distances among dij, dik, djk are equal and not less than the third.

Definition 2. A distance measure is an ultra-metric if it satisfies the ultra-metric inequality,

nonnegativity and symmetry.

A distance measure automatically satisfies the triangle inequality if it satisfies the ultra-

metric inequality. Thus an ultra-metric distance is also a metric distance; But the converse

is not true.

3.2.2 Ultra-metric and dendrogram reconstruction

A dendrogram is a rooted tree that represents the result of a hierarchical clustering. On the

root, leaves represent data objects and internal nodes represent clusters at various levels.

The structural information is kept by pairwise cophenetic proximity which measures the

level at which two data objects are first merged in the same cluster [JD88].

Given a dendrogram, our task is to assign distances between leaf nodes. This problem

has been studied in literature [MRA08][Pod00a]. In Section 3.2.3, we will describe several

commonly used dendrogram distances (also called descriptors). We note that each of these

dendrogram distance is in fact an ultra-metric distance. This is important because given an

ultra-metric distance matrix D = (dij), we can reconstruct the original tree.

In single-link and complete-link hierarchical clustering, a dendrogram is generated by

repeatedly picking the closest pair of clusters from the distance matrix, merging these two

clusters into one, and updating the distance matrix. Various schemes differ in how the

distance between a newly formed cluster and the other clusters is defined. Let d be the final

generated distance. It can be easily shown that d is an ultra-metric. To see why, consider

three objects i, j, k. Without loss of generality, assume i and j merge first. Then we have

d(i, j) ≤ d(i, k) = d(j, k). More details can be found in [JD88].
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Ultra-metric distance plays a critical role in our HEC frame because of the unique

reconstruction property. Suppose, we are given a dendrogram G and we construct a den-

drogram distance D using a particular method M .

The following proposition holds:

Proposition 1. From a given ultra-metric distance D, a unique dendrogram G can be

constructed, in the sense that if we construct the distance from G, we recover D exactly.

Note that Proposition 1 does not exclude the possibility that two different ultra-metric

distances D1, D2 lead to the same reconstructed dendrogram G. In fact, there are several

ways to model the pairwise distance matrix between instances in a dendrogram (see Sec-

tion 3.2.3). Using different dendrogram distance measures leads to different ultra-metric

distances. But the reconstructed dendrograms from these different ultra-metric distances

are identical.

3.2.3 Dendrogram distances

A dendrogram is usually used to represent the hierarchical clustering results for cluster

analysis and it is easy to interpret. The ultra-metric information contained in the pairwise

distance matrix can be clearly mapped to dendrogram structural information. So, for each

dendrogram, there is a ultra-metric matrix which uniquely characterizes it and can be used

to recover this dendrogram [MRA08].

For instance, a dendrogram generated by the single-link hierarchical clustering algo-

rithm can be viewed as a weighted dendrogram, in which every internal node is associated

with a continuous variable indicating the merge distance within all leaves covered by the

internal node. The merge distance is called the height. If we replace the height of an in-

ternal node with its rank order (i.e., the level) which is maintained globally with respect

to the whole dendrogram, then a weighted dendrogram becomes a fully ranked dendro-
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gram [Pod00a]. A dendrogram descriptor can be regarded as a distance function describing

the relative position of a given pair of leaves in the dendrogram and is used to characterize

a corresponding dendrogram.

We now introduce the dendrogram descriptors that will be used in our investigation.

The first three dendrogram descriptors are based on a fully ranked dendrogram and use the

level information [MRA08][Pod00a]. The other descriptors do not directly consider level

information.

• Cophenetic Difference (CD) : the lowest height(i.e., merge distance) of internal

nodes in the dendrogram where two specified leaves are joined together. For ex-

ample, CD between nodes v and x in Figure 3.2 is 30.

• Maximum Edge Distance (MED): the depth of node in a bottom-up view. All leaf

nodes are assigned as depth 0, the depth of any internal nodes is generated in a

bottom-up manner. Suppose C3 is the internal node at which C1 and C2 firstly merge,

then Depth(C3) = max(Depth(C1),Depth(C2)) + 1. For example, MED of nodes

v and x in Figure 3.2 is 2. Nodes v and x firstly merged at internal node c, so

Depth(c) = max(Depth(a),Depth(x)) + 1 = max(1, 0) + 1 = 2, since Depth(a) =

max(Depth(v),Depth(w)) + 1 = 1.

• Partition Membership Divergence (PMD): By utilizing the property that a hierarchi-

cal clustering result implies a sequence of nested partitions obtained by cutting the

dendrogram at every internal node, the PMD is defined as the number of partitions

of the hierarchy in which two specified leaves are not in the same cluster.

• Cluster Membership Divergence (CMD): the size of the smallest cluster in the hier-

archy which contains two specified leaves.

• Sub-dendrogram Membership Divergence (SMD): the number of sub-dendrograms

in which two specified leaves are not included together.
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Figure 3.2: A dendrogram example.

3.3 Hierarchical ensemble clustering

3.3.1 Algorithm

With above discussions on ultra-metric distances and dendrogram, we outline the algorith-

mic strategy of our hierarchical ensemble clustering. Our central strategy is listed below:

1. Use a dendrogram distance measure to generate an ultra-metric dendrogram distance

for each input dendrogram (see Chapter 3.2). The consensus distance matrix for

partitional clustering results are discussed in Section 3.3.2.

2. Aggregate the ultra-metric dendrogram distances as well as the consensus distance

for partitional clusterings. (see Chapter 3.2)

3. Finding the closest ultra-metric distance from the aggregated distance. (see Sec-

tion 3.2)

4. Construct the final hierarchical clustering. (see Section 3.2)

3.3.2 Distance matrices for partitional clustering results

Our framework can be naturally extended to ensemble both partitional and hierarchical

clustering results by representing the partitional clustering results with a distance matrix.
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Formally let X = {x1, x2, · · · , xn} be a set of n data points. Given a partitional clus-

tering C, consisting of a set of clusters C = {C1, C2, · · · , Ck} where k is the number of

clusters and X =
⋃k
`=1C`, we can define the following associated distance matrix D(C)

whose ij-th entry is defined as

dij =

 0 (i, j) ∈ C`

1 Otherwise
(3.2)

where (i, j) ∈ C` means that i-th data point and j-th data point are in the same cluster

C`. In other words, if i-th data point and j-th data point are in the same cluster, then their

distance between them is 0.

Given a set of s clusterings (or partitions) P = {P 1, P 2, · · · , P s} of the data points in

X , the associated consensus distance matrix D can be represented as

D(P) = 1

s

s∑
i=1

D(P i). (3.3)

In other words, the ij-th entry of D indicates the average number of times that the i-th data

point and the j-th data point are not in the same cluster.

Equation 3.3 defines a way to aggregate multiple partitional clustering results into one

consensus distance matrix. Also there are many different ways to define the consensus

function such as co-associations between data points or based on pairwise agreements be-

tween partitions. Some of the criteria are based on the similarity between data points and

some of them are based on the estimates of similarity between partitions. The relationship

between consensus matrix and other measures is discussed and summarized in [LOM10].

Note that the distance matrix can be combined with the dendrogram descriptors to form

the aggregated distance matrix for dendrogram combination. A weight can be assigned to

the distance matrix to ensure that it is at the same scale of the dendrogram descriptors.
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3.3.3 Dendrogram combination

Suppose we have computed consensus distanceD(P) from the input partitional clusterings

and aggregated dendrogram distances D(H) from the input hierarchical clusterings.

Given any similarity we can do any kind of hierarchical clustering. However, there

are many different choices here: single-link, complete-link, average-link, and many other

choices. Which one to choose? Our logic is that since the input individual descriptors are

ultra-metric, and the consensus matrix is not ultra-metric, the most natural approach is to a

find an ultra-metric which is as close to the consensus matrix as possible. Once this ultra-

metric is learned, the final hierarchical clustering is uniquely determined. There are other

choices here. The entire approach is uniquely deterministic.

Our tasks now are

1. Find an ultra-metric distance T which is the closest to D = 1
2
× (D(P) +D(H)).

2. Construct the final hierarchical clustering based on T .

For (2) after the ultra-metric T is obtained, we obtain the final hierarchical clustering

by performing the alpha-cut [MNB04]. In the rest of this section we will concentrate on

(1), i.e., how to compute T .

First we note that the aggregated distance D will not be ultra-metric, even if each in-

dividual dendrogram distance is an ultra-metric. We compute the ultra-metric distance T

which is closest toD, instead of usingD directly due to the following two reasons. The first

reason is for the unique reconstruction of the eventual dendrogram, the final hierarchical

clustering, as discussed in Section 3.2.1 in Chapter3.2.

The second reason is an interesting property of our way of constructing T , the close ap-

proximation of D. We use a transitive dissimilarity to construct T , which has the tendency

that the solution for T attracts nearby data objects into a closer proximity and therefore

enhances the cluster separation (thus improves the clustering quality) (See the example in
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Section 4.2.2 in Chapter3.2). In the following, we first describe the algorithm to construct

T and then demonstrate the clustering separation property.

3.3.4 Dendrogram selection

Selecting a subset of input clusterings to form a smaller ensemble has been shown to

achieve better performance than using all available solutions for partitional clustering

methods[AF09][FL08]. The selection is based on the quality and diversity of each in-

dividual clustering solution. For partitional clustering, since the clustering solutions are

naturally represented using vectors or matrices [LD08a][SG03], the diversity and quality

of the clustering solutions can be easily computed. To perform dendrogram selection, the

question is how to compute the diversity and quality of different hierarchical clustering

solutions.

We propose two approaches to perform dendrogram selection based on tree distances.

First, we introduce the tree distances to measure the similarities/differences between differ-

ent hierarchies. There are two distances which are frequently used in literature to compute

the distance between two evolutionary dendrograms: Branch Score Distance (BSD) of

Kuhner and Felsenstein (1994) [KF94], and Symmetric Difference (SD) of Robinson and

Foulds (1981) [RF81]. Both distances are computed by considering all possible branches

that could exist on the two trees. Note that each branch makes a partition of the given

dataset into two groups – the ones connected to one end of the branch and the ones con-

nected to the other. BSD uses branch lengths while SD does not use branch lengths and

only uses the tree topologies. For BSD, each partition on a dendrogram has an associated

branch length. BSD is then computed by taking the sum of squared differences between

the branch lengths of two dendrograms. SD is calculated as the number of partitions of two

dendrograms among which such partition exists in exact only one dendrogram.
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The goal of dendrogram selection is to select a diverse subset of dendrograms where

each of them has good quality. We propose two approaches for dendrogram selection using

tree distances. The first approach is to use a modified K-medoids algorithm (with the tree

distances) to cluster those dendrograms and then select the medoids for each cluster. The

medoid of a cluster is a representative object whose average similarity to all the other

objects in the cluster is maximized, thus the medoid dendrogram can be considered to best

capture the information contained in the cluster and has good quality. On the other hand,

selecting medoids from different clusters achieves diversity.

The second approach is based on the farthest-point heuristic [Gon85]. The approach

starts with the medoid of all the input clustering solutions. Then pick a dendrogram that is

as far from the selected dendrogram as possible. In general, the approach picks a dendro-

gram to maximize the distances to the nearest of all dendrograms picked so far. Specifically,

if t1, t2, · · · , ti−1 denote the selected dendrograms so far, then we pick ti to maximize

min{dist(si, s1), dist(si, s2), · · · , dist(si, si−1)}. (3.4)

The approach stops after the required number of dendrogram has been selected.

3.4 Experiments

3.4.1 Experiment setup

To evaluate our ensemble framework, we focus on how well the ensemble hierarchical

solution reflects the characteristics of the original dataset. Co-Phenetic Correlation Co-

efficient (CPCC), which aims to evaluate how faithfully a dendrogram preserves the pair-

wise distances between the original data samples [RF68][SR62], is used as our performance

measure. CPCC can be calculated as

c =

∑
i<j(d(i, j)− d)(h(i, j)− h)√

[
∑

i<j(d(i, j)− d)2][
∑

i<j(h(i, j)− h)2]
, (3.5)
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where d(i, j) is the distance between the i-th and j-th data instances, h(i,j) is the height of

lowest common ancestor of the i-th and j-th data instances in ensemble dendrogram, d is

the averages of d(i, j) over all pairs, and h is the average of h(i, j). Generally, the higher

the CPCC value, the better the clustering performance.

We use six datasets from different domains to conduct the experiments: four datasets

(Wine, Parkinson Disease, Libras Movement and Madelon) from UCI Machine Learn-

ing Repository1, and two benchmark text datasets for document clustering (WebACE and

Reuters datasets) [LD08a]. The datasets and their characteristics are summarized in Ta-

ble 3.1. The two text datasets are represented using the vector space model, and they are

also pre-processed by removing the stop words and unnecessary tags and headers. All

experiments are conducted under the environment of Windows XP operating system plus

Intel P4 1.83 GHz CPU and 4 GB of RAM.

Name # samples # attributes # classes
Wine 178 13 3

Parkinson Disease 195 22 2
Libras Movement 360 90 15

Madelon 2000 500 2
WebACE 2340 1000 12
Reuters 2787 1000 9

Table 3.1: Dataset descriptions

3.4.2 Ensemble hierarchical clusterings

For experiments on ensemble hierarchical clusterings, 20 input dendrograms are generated

for each dataset by using different hierarchical clustering methods on different attribute

subsets. In particular, they are generated as follows: 1) 10 different attribute subsets are

randomly constructed first, each of which contains 90% of all the attributes; and 2) single-

link (SL) and complete-link (CL) algorithms are applied to different attribute subsets.

1The datasets can be downloaded from http://archive.ics.uci.edu/ml/.
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Descriptor ultra single-link
CD 0.392 0.381

CMD 0.443 0.273
MED 0.292 0.288
PMD 0.267 0.232
SMD 0.299 0.290

Table 3.2: Experimental results on Wine dataset using all input dendrograms. The max-
imum CPCC value for any input dendrogram is 0.407 and the average value of all input
dendrograms is 0.282.

Descriptor ultra single-link
CD 0.577 0.554

CMD 0.431 0.419
MED 0.485 0.428
PMD 0.402 0.417
SMD 0.448 0.491

Table 3.3: Experimental results on Parkinson Disease dataset using all input dendrograms.
The maximum CPCC value for any input dendrogram is 0.381 and the average value of all
input dendrograms is 0.201.

Descriptor ultra single-link
CD 0.423 0.419

CMD 0.411 0.389
MED 0.36 0.363
PMD 0.279 0.266
SMD 0.45 0.438

Table 3.4: Experimental results on Libra Movement dataset using all input dendrograms.
The maximum CPCC value for any input dendrogram is 0.334 and the average value of all
input dendrograms is 0.25.

Descriptor ultra single-link
CD 0.063 0.042

CMD 0.068 0.074
MED 0.05 0.039
PMD 0.088 0.082
SMD 0.04 0.047

Table 3.5: Experimental results on Madelon dataset using all input dendrograms. The
maximum CPCC value for any input dendrogram is 0.057 and the average value of all
input dendrograms is 0.014.
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Descriptor ultra complete-link
CD 0.465 0.4637

CMD 0.4971 0.4963
MED 0.4787 0.4699
PMD 0.4831 0.4896
SMD 0.5056 0.4781

Table 3.6: Experimental results on WebACE dataset using all input dendrograms. The
maximum CPCC value for any input dendrogram is 0.47 and the average value of all input
dendrograms is 0.428.

Descriptor ultra complete-link
CD 0.7349 0.7312

CMD 0.7822 0.7435
MED 0.7415 0.7176
PMD 0.7624 0.6955
SMD 0.6475 0.6479

Table 3.7: Experimental results on Reuters dataset using all input dendrograms. The max-
imum CPCC value for any input dendrogram is 0.7583 and the average value of all input
dendrograms is 0.633.

We evaluate our proposed method for generating the final hierarchical solution by fitting

an ultra-meric using all five dendrogram descriptors (i.e., CD, CMD, MED, PMD, SMD).

We also compare our proposed method (denoted as ultra in the experimental results) with

the method that directly performs single-link and complete-link hierarchical clusterings on

the aggregated descriptor matrices (denoted as single-link/complete-link or SL/CL2).

2In our work, we apply single-link (SL) on the aggregated descriptor matrices for 4 UCI datasets
and apply complete-link (CL) on the aggregated descriptor matrices for 2 text datasets.
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Results using all input dendrograms

(a) Wine (b) Parkinsons

(c) Libra Movement (d) Madelon

Figure 3.3: The performance variation on different number of selected dendrograms over
20 trails.

Tables 3.2 to 3.7 present the experimental results on six datasets using all input dendro-

grams, respectively. Note that, unlike ensemble clustering for partitional clustering results,

for hierarchical clustering ensemble, once the set of individual hierarchical clustering re-

sults is fixed, then the result of ensemble is also determined. From the experimental results,

we observe that: 1) Our proposed method ultra generally outperforms hierarchical cluster-

ing (single-link or complete-link) across various descriptors on most counts, especially on

large datasets (e.g., WebACE and Reuters); and 2) the ensemble solution using all input

dendrograms may be worse than the best individual dendrogram, thus demonstrating the

need for ensemble selection.
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(a) WebACE (b) Reuters

Figure 3.4: The performance variation on different number of selected dendrograms over
20 trails.

Results on different input dendrograms

In order to provide more insights on our proposed method, we also conduct experiments

with different sets of input dendrograms. Figure 3.3 and Figure 3.4 show the experimental

results on the four UCI datasets (Wine, Parkinsons, Libra Movement and Madelon) and the

two text datasets (WebACE and Reuters) respectively with different sets of input dendro-

grams. In particular, for a given size, we randomly select a set of input dendrograms, and

then perform the experiments. The reported results are averaged over 20 different runs.

Based on our observation, the best performance is often obtained when the number of

input dendrograms is around 16. Although this experiment is conducted by randomly se-

lecting input dendrograms, it still demonstrates that using a subset of input dendrograms

(rather than using all dendrograms) may improve the ensemble performance. The issue of

using dendrogram selection strategies to form the candidate subset are discussed in Sec-

tion 3.4.2 and Section 3.4.2, respectively.
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Desc. Sel Dis max ave ultra SL
CD F B 0.292 0.245 0.352 0.331

K B 0.306 0.251 0.373 0.357
F S 0.281 0.229 0.329 0.292
K S 0.299 0.238 0.336 0.344

CMD F B 0.292 0.245 0.387 0.378
K B 0.306 0.251 0.373 0.365
F S 0.281 0.229 0.361 0.329
K S 0.299 0.238 0.35 0.337

MED F B 0.292 0.245 0.369 0.348
K B 0.306 0.251 0.355 0.316
F S 0.281 0.229 0.339 0.318
K S 0.299 0.238 0.357 0.323

PMD F B 0.292 0.245 0.296 0.284
K B 0.306 0.251 0.315 0.331
F S 0.281 0.229 0.316 0.302
K S 0.299 0.238 0.305 0.32

SMD F B 0.292 0.245 0.321 0.307
K B 0.306 0.251 0.338 0.32
F S 0.281 0.229 0.317 0.293
K S 0.299 0.238 0.309 0.304

Table 3.8: Experimental results on Wine dataset using 16 selected input dendrograms. K
and F denote K-medoid and Farthest Neighbor of ensemble selection methods respectively,
and B and S denote Branch Length Score Distance and Symmetric Distance of dendrogram
distances respectively.

Experiments on ensemble selection

We also conducted experiments to demonstrate the effects of ensemble selection. Note that

dendrogram selection can be performed using two different approaches ( K-medoid and

Farthest neighbor, denoted as K and F) with two different distances (Branch Length Score

Distance or Symmetric Distance, denoted as B and S). Table 3.8 to Table 3.13 present the

experimental results on the six datasets using around 16 selected input dendrograms, re-

spectively 3. In these tables, Sel denotes the ensemble selection approaches, Dis represents

3The value of 16 is chosen based on our experiments on ensemble size selection and it seems to
provide good results in our experiments. How to come up with a principled way for ensemble size
selection is one of our future works.
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the tree distances, max represents the maximum CPCC value for any input dendrogram,

and ave represents the average CPCC value for the input dendrograms. The experiments

show that: 1) with ensemble selection, the results of both ultra and hierarchical cluster-

ing (SL or CL have improved; 2) ultra still outperforms hierarchical clustering (SL or CL in

most cases; 3) in many cases, the experiment results of ultra and hierarchical clustering (SL

or CL outperform the best dendrogram in the candidate set, which means those ensemble

dendrograms could be more representative of the original set; and 4) the Farthest Neighbor

selection method tends to produce better ensemble results than K-Medoids.

Desc. Sel Dis max ave ultra SL
CD F B 0.438 0.256 0.549 0.521

K B 0.467 0.251 0.538 0.544
F S 0.493 0.273 0.537 0.505
K S 0.452 0.235 0.526 0.524

CMD F B 0.438 0.256 0.56 0.512
K B 0.467 0.251 0.572 0.542
F S 0.493 0.273 0.553 0.527
K S 0.452 0.235 0.524 0.536

MED F B 0.438 0.256 0.574 0.539
K B 0.467 0.251 0.595 0.532
F S 0.493 0.273 0.54 0.537
K S 0.452 0.235 0.589 0.527

PMD F B 0.438 0.256 0.517 0.492
K B 0.467 0.251 0.523 0.531
F S 0.493 0.273 0.502 0.499
K S 0.452 0.235 0.544 0.507

SMD F B 0.438 0.256 0.529 0.529
K B 0.467 0.251 0.551 0.504
F S 0.493 0.273 0.547 0.516
K S 0.452 0.235 0.498 0.511

Table 3.9: Experimental results on Parkinson Disease dataset using 16 selected input den-
drograms. K and F denote K-medoid and Farthest Neighbor of ensemble selection methods
respectively, and B and S denote Branch Length Score Distance and Symmetric Distance
of dendrogram distances respectively.
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Experiments on ensemble size

To demonstrate the effect of the size of the ensemble, Figure 3.3 and Figure 3.4 show the

performance variation on different number of selected dendrograms on all datasets. We

apply K-Medoid selection methods on Symmetric Difference to choose candidate dendro-

grams. For each dataset, we vary the group size of candidate dendrograms and use CMD

as the descriptor to conduct the dendrogram selection.

Figure 3.5 shows the CPCC value for each dendrogram group averaging over 20 runs.

Note that for better readability, the plotted value of Madelon dataset is 10 times its actual

value. The performance slightly decreases once the number of ensemble dendrograms

reaches a certain size. So selecting a relatively smaller subset is likely to produce better

ensemble results. It also shows that ensemble selection can influence the ensemble results

and can be used to produce better hierarchical solutions.
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Figure 3.5: The performance variation on all datasets with different numbers of candidate
dendrograms.
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(a) The 5 dendrograms are represented by
Cophenetic Distance Matrix(CD) and are
selected using Farthest Neighbor ensemble
selection and Branch Score Distance.
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(b) The 5 dendrograms are represented by
Cophenetic Distance Matrix(CD) and are se-
lected using K-Medoid ensemble selection and
Symmetric Distance.
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(c) The 5 dendrograms are represented
by Cluster Membership Divergence(CMD)
and are selected using K-Medoid ensemble
selection and Branch Score Distance.
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(d) The 5 dendrograms are represented by Clus-
ter Membership Divergence(CMD) and are se-
lected using Farthest Neighbor ensemble selec-
tion and Symmetric Distance.

Figure 3.6: The performance comparison of combining 10 partitional clustering results
with 10 selected dendrograms. max represents the maximum CPCC value for any in-
put dendrogram, and ave represents the average CPCC value for the input dendrograms.
ultra and SL/CL represents the recovery approaches for ensemble dendrograms by using
ultra-matrix transformation and hierarchical clustering respectively. ultra+K and SL/CL+K
represents the combination of K-means clustering results and previous two methods.

3.4.3 Ensemble partitional and hierarchical clusterings

We also conducted experiments to evaluate our proposed method for combining both parti-

tional and hierarchical clusterings on all datasets. For each dataset, 10 partitional clustering
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results are obtained by running K-means 10 times and they are combined with 5 input den-

drograms. The experimental results are shown in Figure 3.6. The results demonstrate that

our ensemble framework is able to combine both partitional and hierarchical clusterings

and improve the performance on most datasets. The results also show that our proposed

method ultra clearly outperforms SL/CL on all datasets and ultra+K generally outperforms

SL/CL+K in most cases.

Desc. Sel Dis max ave ultra SL
CD F B 0.287 0.199 0.392 0.433

K B 0.291 0.185 0.441 0.408
F S 0.274 0.167 0.4 0.396
K S 0.303 0.158 0.398 0.385

CMD F B 0.287 0.199 0.432 0.424
K B 0.291 0.185 0.446 0.418
F S 0.274 0.167 0.410 0.402
K S 0.303 0.158 0.453 0.391

MED F B 0.287 0.199 0.49 0.458
K B 0.291 0.185 0.442 0.476
F S 0.274 0.167 0.483 0.472
K S 0.303 0.158 0.453 0.461

PMD F B 0.287 0.199 0.397 0.346
K B 0.291 0.185 0.383 0.315
F S 0.274 0.167 0.401 0.359
K S 0.303 0.158 0.394 0.329

SMD F B 0.287 0.199 0.437 0.384
K B 0.291 0.185 0.462 0.391
F S 0.274 0.167 0.423 0.439
K S 0.303 0.158 0.468 0.379

Table 3.10: Experimental results on Libra Movement dataset using 16 selected input den-
drograms. K and F denote K-medoid and Farthest Neighbor of ensemble selection methods
respectively, and B and S denote Branch Length Score Distance and Symmetric Distance
of dendrogram distances respectively.
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Desc. Sel Dis max ave ultra SL
CD F B 0.052 0.028 0.06 0.058

K B 0.046 0.031 0.054 0.054
F S 0.047 0.032 0.531 0.049
K S 0.056 0.038 0.064 0.057

CMD F B 0.052 0.028 0.066 0.062
K B 0.046 0.031 0.059 0.054
F S 0.047 0.032 0.063 0.058
K S 0.056 0.038 0.06 0.069

MED F B 0.052 0.028 0.067 0.63
K B 0.046 0.031 0.063 0.058
F S 0.047 0.032 0.056 0.058
K S 0.056 0.038 0.069 0.056

PMD F B 0.052 0.028 0.074 0.06
K B 0.046 0.031 0.069 0.062
F S 0.047 0.032 0.071 0.058
K S 0.056 0.038 0.072 0.64

SMD F B 0.052 0.028 0.06 0.066
K B 0.046 0.031 0.054 0.051
F S 0.047 0.032 0.053 0.05
K S 0.056 0.038 0.059 0.056

Table 3.11: Experimental results on Madelon dataset using 16 selected input dendrograms.
K and F denote K-medoid and Farthest Neighbor of ensemble selection methods respec-
tively, and B and S denote Branch Length Score Distance and Symmetric Distance of den-
drogram distances respectively.

3.5 Conclusion

In this chapter, we introduced and discussed a framework for ensemble hierarchical cluster-

ings based on descriptor matrices and study three important components of the framework:

Dendrogram Selection, Dendrogram Description and Dendrogram Combination. We pro-

pose two ensemble selection schemes based on tree distances, investigate five different den-

drogram descriptor matrices, and develop a novel method for fitting an ultra-metric from

the aggregated descriptor matrix. Our descriptor matrices based framework can be natu-

rally generalized to ensemble both partitional clustering and hierarchical clustering results

as partitional clustering results can be easily represented using distance matrices. Experi-
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ments are performed to evaluate our proposed approaches and the results demonstrate their

effectiveness.

Desc. Sel Dis max ave ultra CL
CD F B 0.483 0.41 0.491 0.49

K B 0.474 0.409 0.505 0.499
F S 0.465 0.417 0.492 0.492
K S 0.487 0.405 0.501 0.494

CMD F B 0.483 0.41 0.511 0.501
K B 0.474 0.409 0.509 0.507
F S 0.465 0.417 0.498 0.503
K S 0.487 0.405 0.505 0.497

MED F B 0.483 0.41 0.513 0.502
K B 0.474 0.409 0.504 0.497
F S 0.465 0.417 0.5 0.497
K S 0.487 0.405 0.507 0.489

PMD F B 0.483 0.41 0.496 0.498
K B 0.474 0.409 0.492 0.497
F S 0.465 0.417 0.501 0.5
K S 0.487 0.405 0.498 0.49

SMD F B 0.483 0.41 0.503 0.491
K B 0.474 0.409 0.5 0.493
F S 0.465 0.417 0.499 0.484
K S 0.487 0.405 0.507 0.495

Table 3.12: Experimental results on WebACE dataset using 16 selected input dendrograms.
K and F denote K-medoid and Farthest Neighbor of ensemble selection methods respec-
tively, and B and S denote Branch Length Score Distance and Symmetric Distance of den-
drogram distances respectively.

There are several avenues for future work. First, we plan to investigate the techniques

for scaling up the ensemble process to large-scale datasets. Second, our studies show that

selecting a relatively smaller subset is likely to produce better ensemble results. One in-

teresting question is how to determine the ensemble size. Another interesting yet related

direction is that rather than picking representative dendrograms, we can associate every

generated dendrogram with a weight. So when considering the ensemble, dendrograms

with larger weights can contribute more than dendrograms with smaller weights. Third,
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another aspect of interest is to provide a formal analysis on cluster separation enhancement

using transitive dissimilarity.

Desc. Sel Dis max ave ultra CL
CD F B 0.73 0.682 0.747 0.739

K B 0.741 0.635 0.785 0.794
F S 0.737 0.696 0.792 0.786
K S 0.729 0.64 0.769 0.75

CMD F B 0.73 0.682 0.793 0.767
K B 0.741 0.635 0.798 0.752
F S 0.737 0.696 0.794 0.755
K S 0.729 0.64 0.782 0.751

MED F B 0.73 0.682 0.779 0.754
K B 0.741 0.635 0.783 0.781
F S 0.737 0.696 0.765 0.77
K S 0.729 0.64 0.752 0.75

PMD F B 0.73 0.682 0.782 0.763
K B 0.741 0.635 0.775 0.755
F S 0.737 0.696 0.787 0.761
K S 0.729 0.64 0.74 0.745

SMD F B 0.742 0.726 0.797 0.784
K B 0.744 0.727 0.782 0.753
F S 0.736 0.730 0.771 0.767
K S 0.731 0.722 0.75 0.75

Table 3.13: Experimental results on Reuters dataset using 16 selected input dendrograms.
K and F denote K-medoid and Farthest Neighbor of ensemble selection methods respec-
tively, and B and S denote Branch Length Score Distance and Symmetric Distance of den-
drogram distances respectively.
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CHAPTER 4

Semi-supervised hierarchical clustering

The clustering problem arises in many disciplines and has a wide range of applications.

Basically clustering aims to group the given samples into clusters such that samples in

the same cluster are similar to each other while samples in different clusters are dissimi-

lar [JD88]. Based on the way the clusters are generated, clustering methods can be divided

into two categories: partitional clustering and hierarchical clustering [HK06][TSK05a].

Generally partitional clustering decomposes the dataset into a number of disjoint clusters

which are usually optimal in terms of some predefined objective functions. Hierarchical

clustering groups the data points into a hierarchical tree-like structure using bottom-up or

top-down approaches.

In many situations when we discover new patterns using clustering, there are known

prior knowledge about the problem. Recently, semi-supervised clustering (i.e., cluster-

ing with knowledge-based constraints) has emerged as an important variant of the tradi-

tional clustering paradigms [DR05][LL05]. Given the data representation, existing semi-

supervised methods have utilized background knowledge to learn a distance/dissimilarity

measure, to modify the objective criterion for evaluating clustering, and to improve the

optimization procedures [BhHSW05, BBM04, KKM02, Wag02, XNJR02, Zhu05].

There are two limitations in current studies of semi-supervised clustering. First, most

of these existing semi-supervised clustering algorithms are designed for partitional cluster-

ing methods and few research efforts have been reported on semi-supervised hierarchical

clustering methods. Different from partitional clustering where the clustering results can

be easily represented using vectors, clustering indicators, or connectivity matrices for op-

timization [XNJR02], the results of hierarchical clustering are more complex and typically

represented as dendrograms or trees. In addition, hierarchical clustering methods have no
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global objective functions. These properties have made the semi-supervised hierarchical

clustering problem more challenging.

Another limitation is on the types of constraints. Existing semi-supervised clustering

methods have been focused on the use of background information in the form of instance

level must-link and cannot-link constraints. A must-link (ML) constraint enforces that two

instances must be placed in the same cluster while a cannot-link (CL) constraint enforces

that two instances must not be placed in the same cluster. However, both ML and CL

constraints are not suitable for hierarchical clustering methods since objects are linked

over different hierarchy levels [BN06][BN08b].

Figure 4.1: An illustrative example of semi-supervised hierarchical clustering with triple-
wise relative constraints. The original data dissimilarity matrix is shown in (A). (B) shows
a standard transitive dissimilarity matrix obtained from the original dissimilarity and (C) is
the corresponding hierarchical clustering result without constraints. The triple-wise relative
constraints are given in (D). By combining both (A) and (D), the constrained ultra-metric
distance matrix is shown in (E) with its corresponding hierarchial clustering result in (F).
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In this chapter, we demonstrate a semi-supervised hierarchical clustering framework

based on the ultra-metric dendrogram distance. The characteristics of our proposed frame-

work are summarized below:

1. Triple-wise relative constraints: In the proposed framework, we consider the triple-

wise relative constraints in the form of (xi, xj, xk) which indicates the dissimilar-

ity (or the distance) between xi and xj , noted as d(xi, xj), should be smaller than

d(xi, xk). The relative constraint, also referred as must-link-before (MLB) constraint,

specifies the order in which the objects are merged (or linked) and can be naturally

incorporated into the hierarchical clustering process.

2. Ultra-metric dendrogram distance: Our proposed framework is based on ultra-metric

dendrogram distance. Note that the results of hierarchical clustering can be repre-

sented using ultra-metric distance matrices [Pod00b]. Using the ultra-metric dis-

tance matrices, we propose two techniques for solving semi-supervised hierarchical

clustering problem: the optimization-based technique and the transitive dissimilarity

based technique.

3. Effectiveness and efficiency: Extensive experimental results demonstrate the effec-

tiveness and efficiency of our proposed framework.

An illustrative example of semi-supervised hierarchical clustering is given in Figure 4.1.

The original dissimilarity is shown in Figure 4.1(A). Its ultra-metric distance matrix is

shown in Figure 4.1(B) and the corresponding hierarchical clustering result (without con-

straints) is shown in Figure 4.1(C). Four triple-wise relative constraints are given in Fig-

ure 4.1(D). A constrained ultra-metric distance matrix is obtained in Figure 4.1(E) and its

corresponding hierarchical clustering result (with constraints) is shown in Figure 4.1(F).

To sum up, different from existing research efforts on semi-supervised (hierarchical)

clustering, in our work, we explicitly establish the equivalence between ultra-metrics and

hierarchical clustering and also provide a unified framework integrating both ultra-metric
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fitting and triple-wise relative constraints, discussed in Chapter3.2. Our framework seeks

an approximate dissimilarity metric (ultra-metric) which represents a tuned dendrogram

that satisfies the given constraints. Two different solutions based on iterative projection and

heuristic (modified Floyd-Warshall) algorithms are proposed and empirically evaluated.

The rest of the chapter is organized as follows: Section 4.1 discusses the related work;

Section 4.2 extended the discussion about the transitivity that ultra-metric transformation is

preserved; Section 4.3 comprehensively discusses the semi-supervised hierarchical cluster-

ing, in which Section 4.3.1 formally defines the semi-supervised hierarchical problem and

Section 4.3.2 presents two different techniques for semi-supervised hierarchical clustering

based on ultra-metric distance; Section 4.4 describes the experimental results; and finally

Section 4.5 concludes the chapter.

4.1 Related work

Hierarchical Clustering Hierarchical clustering algorithms are unsupervised methods to

generate tree-like clustering solutions. They group the data points into a hierarchical struc-

ture using bottom-up (agglomerative) or top-down (divisive) approaches [TSK05a]. The

typical bottom-up approaches take each data point as a single cluster to start with and

then builds bigger clusters by grouping similar clusters together until the entire data set is

grouped into one final cluster. The divisive approaches start with all data points in one clus-

ter and then split the largest cluster recursively. Many research efforts have been reported

on algorithm-level improvements of the hierarchical clustering process and on understand-

ing of hierarchical clustering [YCWX09][ZK02b].

Semi-supervised Clustering: Integrating background knowledge into the clustering

process has been investigated extensively. Many researchers have explored the use of

instance-level background information, such as pairwise must-link and cannot-link con-

straints for learning a distance/dissimilarity measure, or modifying the objective crite-
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rion, or improving the optimization procedures [BhHSW05, BBM04, KKM02, Wag02,

XNJR02, Zhu05]. Other types of knowledge hints (such as size of the clusters, partial

labels of the data points, and user-provided external prototypes/representatives) have also

been used for clustering [Ped04]. However, most of these works are designed for parti-

tional clustering and few research efforts have been reported on semi-supervised hierarchi-

cal clustering methods. We note the very recent works of Zhao et al. [ZQ10] and Bade

et al. [BN06] which perform hierarchical clustering with order constraints and partially

known hierarchy. Conceptually our triple-wise constraints are special cases of the order

constraints. However, different from their works, our proposed semi-supervised hierar-

chical clustering framework is based on ultra-metric dendrogram distance. Experimental

studies demonstrate the effectiveness and efficiency of our proposal.

Metric Fitting: The problem of fitting a tree metric to the (dis-)similarity data on

pairs of objects from a given set has been studied quite extensively [AC05b]. Ultra-metric

is a special kind of tree metric where all elements of the input dataset are leaves in the

underlying tree and all leaves are at the same distance from the root. Ultra-metric naturally

corresponds to a hierarchy of clusterings of the data. Given a dissimilarity D on pairs of

objects, the problem of finding the best ultra-metric du such that ||D − du||p is minimized

is NP-hard for L1 and L2 norms (e.g., when p = 1 and p = 2) [ABF+99]. In this chapter,

we propose two techniques for fitting an ultra-metric using the given relative constraints.

4.2 Transitive dissimilarity

In Chapter 3, we establish the explicit relation between ultra-metric, dendrogram, and hi-

erarchical clustering in Section 3.2. In this section, we further the study on the transitive

dissimilarity that the ultra-metric transformation preserves and connect the dots between

transitivity dissimilarity and clustering.
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4.2.1 Transitive preservation

First, the nonnegative distance D can be viewed as the edge weight on a graph. Our task is

to construct the transitive dissimilarity starting from D.

The idea of transitive dissimilarity is to preserve transitivity of a graph, more precisely

a social network with n persons represented as (V1 · · · , Vn). If person V1 knows person

V2, and person V2 knows person V3, transitivity implies that person V1 knows person V3.

Turning this into distances, the transitivity of V1 → V2 → V3 can be enforced as

d13 ≤ max(d12, d23),

i.e., the distance d13 should be no greater than either d12 or d23.

Now consider 4 persons. One can see the above enforcement satisfies the associativity:

i.e., if both d13 ≤ max(d12, d23) and d24 ≤ max(d23, d34) hold, then

d14 ≤ max(d12, d23, d34).

Generalizing to any path Pij between i and j, on the graph, the transitive dissimilarity

on a path Pij (a set of edges connect Vi and Vj) can be defined as

T (Pij) = max(di,k1 , dk1,k2 , dk2,k3 , · · · , dkn−1,kn , dkn,j). (4.1)

So for any given pair of vertices Vi and Vj , the transitive dissimilarity varies according

to different paths chosen between Vi and Vj . The minimal transitive dissimilarity is

defined as:

mij = min
Pij

(T (Pij)), for given vertices Vi and Vj. (4.2)

It is clear that mij ≤ dij,∀Vi and Vj , which implies that minimal transitive dissimilarity

brings vertices closer than the original distance matrix.

Lemma 1. Triangle Inequality is preserved in consensus similarity if each individual dis-

tance satisfies it. But Ultra-metric inequality is not preserved even if each individual den-

drogram distance satisfies it.
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Proof. The proof of the first part is trivial. To prove the second part, we give a counterex-

ample. We construct two dendrograms on a dataset with three points, denoted as A and B.

The distance between points in A are dA12 = dA23 = 3 and dA13 = 2; The distance between

points in B are dB12 = dB13 = 3 and dB23 = 2. C is the consensus dendrogram of A and B.

The distance between points in C is given by dCij = 1
2
(dAij + dBij), thus dC13 = dC23 = 5/2

and dC12 = 3. Clearly, dC12 ≤ max(dC13, d
C
32) is violated and the utlra-metric inequality of

consensus clustering does not hold.

Proposition 2. For any weighted dissimilarity graph, the minimal transitive dissimilarity

between any pair of vertices satisfies the ultra-metric inequality:

mij ≤ max(mik,mkj), ∀i, j, k.

Proof. Let Pij is a set of all paths in which each element indicates an existing path con-

necting Vi and Vj as its end points. (Pik, Pkj) is describing a path starting from Vi to Vj via

Vk in a weighted graph. It is clear that (Pik, Pkj) is a subset of Pij . We define W (Pij) as

edge weights of any directly connected vertices in all possible paths Pij.

mij = min
Pij

max[W (Pij)]

≤ min(Pik, Pkj)max(W (Pik, Pkj))

= min(Pik, Pkj)max[max[W (Pik)],max[W (Pkj)]]

= max[min
Pik

(max[WPik
]),min

Pkj

(max[WPkj
])]

= max(mik,mkj).

Thus, the problem of obtaining the ultra-metric transformation of a consensus matrix

can be formulated as the following optimization problem:
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Problem 1. A is the consensus distance matrix; B is the desired ultra-metric to be com-

puted:

min
B

∑
ij

|Aij −Bij|, s.t. Bij ≤ Aij. (4.3)

The ultra-metric constraint on B is a hard constraint. The optimal solution is given by

Algorithm 1. In other words, the desired ultra-metric distance always smaller than input

distance.

Then, we use the modified Floyd-Warshall algorithm [DHX+06] to compute the up-

dated transitive dissimilarity of all pair of vertices in the weighted graph. In particular,

given input G, the adjacency matrix of a weighted graph with N nodes, the algorithm pro-

cedure is described in Algorithm 1.

Input: G: Pairwise distance matrix of data set.
Output: M: Minimum Transitive dissimilarity matrix closure of G.
Init: M = G.

1: for k ← 0 to N do
2: for i← 0 to N do
3: for j ← 0 to N do
4: mij = min(mij,max(mik,mkj));
5: end for
6: end for
7: end for
8: return M ;

Algorithm 1: Modified Floyd-Warshall algorithm to compute the minimum transitive
dissimilarity of weighted graph G

The following propositions are needed to show the correctness of the modified Floyd-

Warshall algorithm.

Proposition 3. Suppose the edge weights of given graph satisfy the minimal transitive

dissimilarities as defined in Eq.(4.2). The transitive dissimilarities are equal to the edge

weights.

Proof. We prove Proposition 3 using dynamic programming. Starting from 2-hop paths

Vi-Vk-Vj between any given vertices Vi and Vj . As the edge weights d satisfy the minimal
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transitive dissimilarities, so dij must be less or equal to 2-hop transitive weight T (Pikj) for

any k. Since we have minimal transitive dissimilarity mij ≤ dij implied by Eq.(4.2), so

mij ≤ dij ≤ T (Pikj) holds. For 2-hop minimal transitive dissimilarity, we get mij = dij .

Given any 3-hop path between Vi and Vj , denoted as Vi-Vk-Vl-Vj , we can change Vi-

Vk-Vl to Vi-Vl, or change Vk-Vl-Vj to Vk-Vj based on the destination from 2-hop paths. We

apply transitive dissimilarity and edge weight equivalence property again on path Vi-Vl-Vj

or Vi-Vk-Vj again, then we get mij = dij , for any path Vi-Vk-Vl-Vj .

For any n-hop path (n ≥ 2), the same process can be applied. Thus Proposition 3 is

proved.

Proposition 4. Given node pair Vi and Vj . Let Vi-Vk1-· · · -Vkm-Vj) be the path with the

eventual minimal transitive dissimilarity. After successive tightening of edges Vi-Vk1, Vk1-

Vk2, · · · , Vkm-Vj in order, the transitive dissimilarity achieves the final optimal maximal

transitive dissimilarity. This holds no matter what other edge relaxations occur.

Proof. Since the eventual path between Vi and Vj with minimal transitive dissimilarity is

given, the length-2 minimal transitive dissimilarity (optimal solution) can be easily ob-

tained. Also, the length-3 minimal transitive dissimilarity can be obtained based on length-

2 solution, and it is obviously the optimal solution. The conclusion holds when extending

to the last edge of the path. Thus Proposition 4 is proved.

Proposition 5. Algorithm 1 correctly computes the minimum transitive dissimilarity.

Proof. The outer loop k = 1 to N guarantees that all paths between any given vertices

Vi and Vj will be considered to achieve the eventual optimal path. Proposition 4 ensures

that final correct solution will be reached no matter how internal vertices along the path are

involved. Proposition 3 guarantees that any optimal solution obtained before traversing all

the possible solutions will be maintained without change in the future.
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Table 4.1: Original distance among the 10 objects shown in Figure 4.2.

i, j 1 2 3 4 5 6 7 8 9 10
1 0 138 288 428 532 262 230 267 335 432
2 138 0 151 301 419 336 272 240 266 370
3 288 151 0 163 295 435 356 268 234 326
4 428 301 163 0 137 504 419 299 214 260
5 532 419 295 137 0 550 468 341 241 226
6 262 336 435 504 550 0 85 210 309 356
7 230 272 356 419 468 85 0 127 227 284
8 267 240 268 299 341 210 127 0 101 173
9 335 266 234 214 241 309 227 101 0 104

10 432 370 326 260 226 356 284 173 104 0

4.2.2 Cluster separation enhancement and transitive dissimilarity

Here we demonstrate the enhancement of cluster separation due to the transitive dissimi-

larity. We use a small dataset shown in Figure 4.2, where the two clusters are reasonably

visible.

The original distance of the dataset is shown in Table 4.1 and the transitive distance

is shown in Table 4.2. The distance is computed using Euclidean distance and the value

is scaled by multiplying 1000 for readability. It is clear that the distance in Table 4.2

provides an enhanced/improved 2-cluster structure, because the diagonal block (1-5) and

(6-10) elements (distances within the same cluster) are visibly reduced. while the distance

between the two clusters remain at the fixed value 214.

For example, the original distance between x1 and x5 (they are in the same cluster)

doriginal15 = 532, while the original distance between x1 and x6 (they are in different clusters)

doriginal16 = 262. This is not intuitive because it implies that members of the same cluster

could have larger distance than the distance between members of different clusters.

With transitive distance, this counterintuitive situation is corrected because now

dtransitive15 = 163, while dtransitive16 = 214. The key point is that within-cluster distances

shrinked more than between-cluster distances.
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Figure 4.2: Illustration of cluster separation due to the transitive dissimilarity for a simple
dataset of 10 points in 2D space.

4.3 Semi-supervised hierarchical clustering

4.3.1 Problem statement

Problem Definition

Given set of instances X = {x1, x2, · · · , xn}, their pair-wise dissimilarities D =

{d(xi, xj)|xi, xj ∈ X} and a set of constraints C = {(xi, xj, xk) |d(xi, xj) < d(xi, xk)

, xi, xj, xk ∈ X}. The semi-supervised hierarchical clustering problem aims to output a

clusters hierarchy/dendrogramH to satisfy as many constraints as possible and meanwhile

to maintain the merge order based on sample dissimilarities as close as possible.

Note that hierarchical clustering results can be represented graphically on dendrograms

as shown in Figure 4.3. The vertical line along with the clustering dendrogram is labeled
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Table 4.2: Transitive distance among the 10 objects shown in Figure 4.2.

i, j 1 2 3 4 5 6 7 8 9 10
1 0 138 151 163 163 214 214 214 214 214
2 138 0 151 163 163 214 214 214 214 214
3 151 151 0 163 163 214 214 214 214 214
4 163 163 163 0 137 214 214 214 214 214
5 163 163 163 137 0 214 214 214 214 214
6 214 214 214 214 214 0 85 127 127 127
7 214 214 214 214 214 85 0 127 127 127
8 214 214 214 214 214 127 127 0 101 104
9 214 214 214 214 214 127 127 101 0 104

10 214 214 214 214 214 127 127 104 104 0

Figure 4.3: Triple-wise relative constraints for samples a and b in 4-point sample set.

by the value of the updated dissimilarity between the merged clusters, which can be treated

as a measure of separation of paired samples. The dissimilarity of sample a and c in the

dendrogram is noted by level(a, c). Note that some relative constraints (e.g., constraint (a,

b, c) in Figure 4.3) are consistent with the given dissimilarity matrix while many constraints

are not (e.g., constraint (a, d, b)).

Constraint Pre-processing

Transitive Closure: Constraints given by human experts or by partially known data hi-

erarchy may be incomplete. Some constraints are not explicitly given, for example, two
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given constraints c1 = (xi, xj, xk) and c2 = (xi, xk, xl) imply an additional constraint

c3 = (xi, xj, xl) which might not be explicitly stated. In our framework, given the initial

constraint set, we perform Floyd-Warshall algorithm to find its transitive closure and extend

the constraint set.

Conflict Removal: In practice, the given constraints may be conflicting. For example

c1 = (xi, xj, xk) and c2 = (xj, xk, xi) are explicitly conflicting with each other or c1 =

(xi, xj, xk) , c2 = (xi, xk, xl) and c3 = (xi, xl, xj) form a circle of merge orders. Conflicts

in the constraint set can form deadlocks, and the clustering algorithm may fail to identify

a valid merging pair of clusters. To remove conflicts, we randomly and iteratively remove

one of the conflicting constraint until there is no conflict.

4.3.2 Algorithm

We implementded two approaches for semi-supervised hierarchical clustering based on

ultra-metric distance matrices: the optimization-based approach and the transitive dissimi-

larity based approach. The optimization-based approach models the semi-supervised hi-

erarchical clustering as a constrained optimization problem of constructing an optimal

distance matrix satisfying both the ultra-metric constraints and relative constraints. The

transitive dissimilarity based approach aims to incorporate the relative constraints into the

process of constructing the transitive dissimilarity.

Constraint-based Optimization

In semi-supervised hierarchical clustering, besides satisfying ultra-metricity, the clustering

results should also consider relative constraints. We assume the dissimilarity matrix is non-

negative and symmetric in our proposed algorithm, so we can adopt a vector representation.

Suppose we have n samples and r relative constraints. For simplicity, the n× n symmetric

dissimilarity matrix D can be represented by an m × 1 vector ~d with m = n ∗ (n − 1)/2
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entries ofD’s upper/lower triangle elements. Thus, each relative constraint (xi, xj, xk) ∈ C

can also be represented by an m × 1 vector ~c where the index corresponds to Dij is set

to 1 and the index of Dik is set to −1. So, for any constraint c that is not consistent

with the given dissimilarity matrix, we have dT c ≥ 0. An illustrative example is shown

in Figure 4.4. Following the vector representation of dissimilarity and constraints, semi-

supervised hierarchical clustering problem can be represented in the form below:

argmin
d̂

(~d− ~̂
d)TE(~d− ~̂

d), (4.4)

subject to

D̂ij ≤ max{D̂ik, D̂jk},∀xi, xj, xk ∈ X, (4.5)

C~d ≤ ~0, (4.6)

where ~d and ~̂
d are vectors representing pair-wise dissimilarities, E is a m × m identity

matrix, and C = [cT1 ; c
T
2 ; · · ·; cTr ] is an r ×m matrix containing all r relative constraints.

Figure 4.4: Utilizing constraints in the optimization framework.

The above optimization problem can be solved by conducting iterative projection ap-

proach which provides optimal solution to minimize the least-square loss function under

inequality constraints [HA95][J.00][Soe84]. Different from related approaches, our prob-

lem formulation considers both ultra-metric and triple-wise relative constraints and seeks
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an approximate dissimilarity metric (ultra-metric) that satisfies the given constraints. The

ultra-metricity of the dissimilarity is taken as the underlying constraints to generate a tree-

like hierarchy. Iterative projection can be generally conducted by repeatedly following the

iterative “augmenting” steps. At each iteration, the parameter estimates are first projected

onto closed convex sets defined by the inequality constraints C~d ≤ ~0, and are then updated

by subtracting a vector of the changes made in the previous projection. Iterative projec-

tion carried out with this augmentation step is guaranteed to converge to the least squares

optimal solution for a given fixed set of constraints [J.01].

Algorithm 2 shows a simple implementation of iterative projection used in [Dyk83].

The procedure simultaneously generates sequence of estimated solutions a(t) and a se-

quence of Kuhn-Tucker vectors u(t) where a(t) and u(t) denote the ~a and ~u in iteration

t [KT50].

Input: ~d, C,E
Output: ~̂d
Init: ~a = ~d and ~u = ~0.

1: while not converge do
2: p = t mod r
3: ~s = ~a(t− 1) + E~cp~u(t− 1)p/2
4: for q = 1 to r do
5: if q = p then
6: ~u(t)q = max(0, 2 ∗ ~cTq ~s/ ~cTq E~cq))
7: else
8: ~u(t)q = ~u(t− 1)q
9: end if

10: end for
11: ~a(t) = ~s− E~cq~u(t)q/2
12: t = t+ 1
13: end while
14: return ~̂

d = ~a ;
Algorithm 2: Iterative Projection to minimize least-square error

Note that the iterative projection approach can be extended to an L1 minimization al-

gorithm by using iteratively re-weighted least-squares (IRLS) framework [J.00][B.83].
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Transpositive Dissimilarity

The Floyd-Warshall algorithm can be used to compute the minimum transitive dissimilarity.

In this section, we modified the Floyd-Warshall algorithm to fit the original dissimilarity

matrix to a ultra-matrix and at the meantime to incorporate the given relative constraints.

Algorithm 3 shows the algorithm procedure to incorporate the relative constraints into the

Input: G: Pair-wise distance matrix of data set.
C: Merge order constraints.

Output: M: Minimum Transitive dissimilarity matrix closure of G.
Init: M = G.

1: for k ← 0 to N do
2: for i← 0 to N do
3: for j ← 0 to N do
4: for all c = (xi, xj, xl) do
5: minCon = min(minCon, d(xi, xl));
6: end for
7: mij = min{mij,max(mik,mkj),minCon};
8: end for
9: end for

10: end for
11: return M ;

Algorithm 3: Modified Floyd-Warshall algorithm to compute the minimum transitive
dissimilarity of weighted graph G

ultra-metric transformation process. Its difference from standard Floyd-Warshall algorithm

is that the updated value for mij is not only determined by the pairwise dissimilarities

related to xi and xj , but also restricted by any constraints specifying merge orders about

them (see Lines 4-7).

4.4 Experiments

In this section, we conduct experiments on various datasets to evaluate our proposed semi-

supervised hierarchical clustering framework. We compare our proposed techniques in

Section 4.3.2 (the iterative projection algorithm (IPoptim) and the transitive dissimilarity

65



transformation algorithm (UltraTran)) with two baseline algorithms: the standard agglom-

erative hierarchical clustering(HAC) without constraints and the constraint-based HAC (de-

noted as HACoc) proposed in [ZQ10].

Name # samples # attributes # classes
Iris 150 4 3

Wine 178 13 3
Protein 116 20 6

Ionosphere 351 34 2
CSTR 475 1000 4
Log 1367 1000 8

WebACE 2340 1000 20
Reuters 2900 1000 10

Table 4.3: Dataset descriptions

dataset Algorithm FScore Time

Iris

HAC 0.8906 107
HACoc 0.96 233694
IPoptim 0.9293 18917
UltraTran 0.9211 18490

Wine

HAC 0.7614 109
HACoc 0.9346 573002
IPoptim 0.86 30034
UltraTran 0.8456 32636

Protein

HAC 0.4669 196
HACoc 0.5131 53580
IPoptim 0.4730 8889
UltraTran 0.4669 8342

Ionosphere

HAC 0.7401 361
HACoc 0.7446 1392259
IPoptim 0.7503 270198
UltraTran 0.7501 251164

Table 4.4: Performance comparison on 4 small datasets.

Table 4.3 shows the summary of the datasets used in the experiments. We use 8

datasets with the number of classes ranges from 2 to 20, the number of samples ranges

from 116 to 2900 and the number of dimensions ranges from 4 to 1000. The details of

the datasets are: (1) Four datasets (Ionosphere, Iris, Protein and Wine) are from UCI data

66



repository [BM98]. (2) Four datasets (CSTR, Log, Reuters, WebACE) are benchmark text

datasets for document clustering. Each document is represented as a term vector using vec-

tor space model. All document datasets are pre-processed by removing the stop words and

unnecessary tags and headers. More information of the datasets can be found in [LD08b].

dataset Algorithm FScore Time

CSTR

HAC 0.653 784
HACoc 0.6524 4911106
IPoptim 0.6632 577451
UltraTran 0.6631 570320

Log
HAC 0.8871 3255
IPoptim 0.9001 1.984e+7
UltraTran 0.8973 1.9698e+7

WebACE
HAC 0.5471 19580
IPoptim 0.5492 1.0081e+8
UltraTran 0.5514 1.0090e+8

Reuter
HAC 0.6154 33000
IPoptim 0.6187 1.7682e+8
UltraTran 0.6178 1.7694e+8

Table 4.5: Performance comparison on 4 large datasets.

4.4.1 Evaluation measures

All the eight datasets have data labels which will be used in clustering performance eval-

uation. The accuracy of a hierarchical clustering is evaluated by considering the entire

hierarchy [ZK02b]. A single cut on the hierarchy produces a possible partition of the data

set and such partition can be measured by FScore proposed in [LA99]. Supposing Gi is

one of the clusterings generated by cutting on the hierarchy H and Dj is a group of data

sharing the same label over L classes, then

FScore(Gi, Dj) =
2 ∗Recall(Gi, Lj) ∗ Precision(Gi, Lj)

Recall(Gi, Lj) + Precision(Gi, Lj)
. (4.7)

The FScore of group Gi is defined as the maximum FScore over all L classes

FScore(Gi) = max
j∈L

FScore(Gi, Dj). (4.8)
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For a hierarchical clustering with |D| samples. Totally N = (1+|D|)∗|D|
2

possible groups can

be generated by cutting at different levels. The FScore defined on the entire hierarchy is

computed as the weighted sum of each group’s FScore:

FScore(H) =
N∑
i=1

|Gi|
|D|

FScore(Gi). (4.9)

We also compare the running time of different algorithms. The running time is recorded

at milliseconds (1/1000s).
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Figure 4.5: Results on Ionosphere and CSTR datasets. The performance as a function of
the number of constraints.
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Figure 4.6: Results on Iris, Protein, and Wine datasets. The performance as a function of
the number of constraints.

4.4.2 Experiment setup

According to the given class label of each sample, we randomly select three samples

from two different classes to generate a constraint. For example, if xi, xj ∈ Class1 and

xk ∈ Class2, then c = (xi, xj, xk) is a relative constraint. So each generated constraint is

based on the actual class label information and should reflect the domain knowledge. As a

result, we can expect the clustering performance should be generally improved when these

constraints are utilized. In our experiments, the reported results are computed by averaging
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10 runs. For the first five small datasets (the number of samples ≤ 1000), we randomly

generate 100 constraints for each run. For the other three large datasets, we randomly

generate 200 constraints for each run. All constraint sets are preprocessed to eliminate

the conflicts. The experiments are conducted under the environment of Linux 2.6 plus 8

Intel(R) Xeon(R) CPU E5420 2.50GHz and 16 GB of RAM.
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Figure 4.7: Results on WebACE dataset. The performance as a function of the number of
constraints.
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4.4.3 Result analysis

The experimental results are shown in Table 4.4 and 4.5. Note that the running time of

HACoc is much longer than the other algorithms, especially on large datasets. So we do

not include the results of HACoc on Log, WebACE and Reuter datasets for comparison.

From Table 4.4 and 4.5, we observe that:

• By incorporating relative constraints, semi-supervised hierarchical clustering outper-

forms hierarchical clustering without constraints. In all datasets, the Fscore values

of HAC are consistently lower than those of other semi-supervised hierarchical clus-

tering frameworks with constraints. The performance improvement is significant on

Iris, Wine and Protein as shown in Figure 4.6.

• Although HACoc achieves the best clustering performance on three small datasets

(Iris, Wine, Protein), it is not efficient and needs long execution time.

• Our proposed techniques (IPoptim and UltraTran) are much more efficient than HA-

Coc. In terms of clustering performance, IPoptim and UltraTran outperform HACoc

on Ionosphere and CSTR datasets as shown in Figure 4.5.

• In general, IPoptim outperforms UltraTran in clustering performance while UltraTran

is more efficient than IPoptim.

To further investigate the performance of semi-supervised hierarchical clustering, we

conduct experiments by varying the number of relative constraints. Figure 4.6, Figure 4.5

and Figure 4.7 plot the clustering performance and execution time as a function of the

number of constraints on six datasets (Iris, Protein, Wine, Ionosphere, CSTR, and Reuter).

Note that the computation time of the algorithms does not increase much as the number

of constraints increases. We also observe that the performance enhancement obtained by

the semi-supervised clustering is generally greater as the number of constraints increases.

However, the performance is not monotonically increasing with the number of constraints.
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There are two possible reasons. First, our proposed framework is not aiming to satisfy

all constraints but to find a good approximation of the constrained ultra-metric. Second,

the clustering performance is also depending on the quality of generated constraints. It

is intuitive to say that not all constraints have the same importance to the performance

of semi-supervised hierarchical clustering. And the constraints we applied are directly

generated from the instance similarities and the true class labels. How to discover important

constraints would be a valuable consideration in our future work.

4.5 Conclusion

In this chapter, we propose a semi-supervised hierarchical clustering framework based on

ultra-metric dendrogram distance. The triple-wise relative constraints are introduced, par-

ticularly for hierarchial clustering, to describe the merge preference among instances. Two

techniques are developed to solve semi-supervised hierarchical clustering problem. The

optimization-based technique minimizes the distance between the original dissimilarity

matrix and the target ultra-matrix using the ultra-metricity and relative constraints. The

transitive dissimilarity based technique takes those relative constraints into the ultra-metric

transformation process. Experiments are conducted to demonstrate the effectiveness and

efficiency of our proposed methods.
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CHAPTER 5

Topic I: taxonomy generation and information extraction

To efficiently generate domain taxonomy, traditional vertical search engines can be used

to identify domain-related web resources and contents. In order to maintain a effective

domain taxonomy, the following three tasks should be considered:

• Automatically generate domain taxonomy: Taxonomy has been widely used as a

structured organization of domain knowledge. However, most taxonomy is gener-

ated manually and cost lots of human efforts. Also, since the information on the

internet changes and evolves very fast and hard to be predicted, the developed taxon-

omy is easy to become stagnant, manually rebuilding the taxonomy will bring more

inefficiency under such circumstances. Thus, to automatically generate taxonomy

becomes crucial means to deal with the challenging environment.

• Develop the crawling strategy: A focused crawler is a web crawler that collects Web

pages. Those collected page should satisfy some specific properties by carefully pri-

oritizing the crawl frontier and managing the hyperlink exploration process [Cha09].

A good crawling strategy is able to predict the probability that an unvisited page will

be relevant before actually downloading the page. Besides a reasonable prediction

algorithm, the performance of a focused crawler is also relevant to the richness of

links in a specific topic.

• Identify entity information from documents: The crawled on-topic contents are usu-

ally un-structured texts. To identify meaningful terms or elements in a domain,

entity-recognition techniques are necessary and often the best choice to perform such

task. In addition, each entity in a document has contextual information that would

be very useful to help people to better understand the document. Therefore, methods

to transform the unstructured text into structured formats associated with important

entities is highly expected.
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In the following sections, we will give details about two approaches which accomplish

the above tasks in our research. Taxonomy Generation in Section 5.1 demonstrates a hierar-

chical clustering with constraints to generate domain taxonomy from crawled documents;

A focused crawler implemented to identify domain-specific web resources is discussed in

Section 5.2; Section 5.3 shows an actionable information extraction process using informa-

tion extraction and natural language processing techniques to transform unstructured text

into structured contents. Section 5.4 concludes the chapter.

5.1 Taxonomy generation

Taxonomy plays significantly important role in most knowledge-based information man-

agement systems applied in various application domains. They are designed to provide

structurally organized terminologies that are formal, application-independent and with com-

mon agreement within a community of practice [Sim09, LWSL10]. However, generating

taxonomy from the scratch suffers high-cost, low-efficiency problem. Ensembling several

existing taxonomies or incrementally integrating new concepts into existing taxonomy be-

comes effective and well-accepted approach for taxonomy generation and reuse.

5.1.1 Base concept hierarchy generation

There are several taxonomy generation techniques having been implemented as we dis-

cussed in Chapter 2. However the performance of those state-of-art techniques can be

improved by considering the following two approaches according to my preliminary re-

search: Ensemble multiple hierarchies discussed in Chapter 3 and Constraints-based hier-

archy generation discussed in Chapter 4. In our taxonomy generation component, we model

this problem as document hierarchical clustering with ordered constraints in which the con-

straints are given as a partially known hierarchy, the sister related concepts extracted from
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web documents are treated as instances, and our goal is to build a term hierarchy which

satisfies the relative hierarchical structure in given partial hierarchy.

Our initial disaster taxonomy is built manually from the scratch. For example, based

on our long cooperation with Miami-Dade Emergency Operational Center (EOC), we ex-

tracted thousands of frequent terms in its official announcements and situation reports in the

past 5 years. We reasonably assume that those terms with high frequency indicate important

concepts in disaster domain. Through careful filtering and organizing those terminologies

from our staff and developers, our initial disaster taxonomy is obtained and then verified

by our domain experts.

5.1.2 Iterative taxonomy generation

Figure 5.1: Iterative taxonomy generation.
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The taxonomy generation process follows an interactive and iterative strategy. The

focused crawler utilizes the taxonomy to classify accessed web pages and prioritizes those

pages with highest relevance to disaster domain. From the repository of collected data,

high quality data will be analyzed and disaster-related concepts without being mentioned

in the existing taxonomy, will be extracted. Those extracted concepts are considered as

highly popular terms that can extend and enrich the existing taxonomy. After integrating

those newly- discovered concepts into existing taxonomy, domain experts can verify the

updated knowledge based and provide valuable feedback.

Given the domain of disaster management, Figure 5.1 illustrates the flow of how we

interactively construct an domain texonomy. The focused crawler utilizes the taxonomy

to classify accessed web pages and prioritizes those pages with highest relevance to disas-

ter domain. From the repository of crawled data, high quality data will be analyzed and

disaster-related concepts without being mentioned in the existing taxonomy, will be ex-

tracted. Those extracted concepts are considered as highly popular terms that can extend

and enrich the existing taxonomy. After integrating those newly discovered concepts into

disaster taxonomy, domain experts can verify the updated knowledge based and provide

valuable feedback.

5.1.3 Hierarchical clustering with constraints

Our developed technique is to build a hierarchical structure to model the basic human

understanding of the relationships among disaster relevant concepts. A basic taxon-

omy/concept hierarchy is given at the very beginning of the generation process. In our

work, we use agglomerative hierarchical clustering with constraint to algorithmically inte-

grate newly-discovered terms or concepts into the existing ones.
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Problem definition

All concepts in existing taxonomy are denoted as T = {t1, t2, · · · , tn} and the newly-

discovered concepts are denoted as C = {c1, c2, · · · , cn}. H is the existing concepts hier-

archy formed by terms from T . Our goal is to generate an updated concept hierarchy H ′

that is formed by all terms from both T and C. The integration of T and C is non-trivial.

There are three important aspects worth mentioning:

1. Each concept in T or C is represented by a set of terms extracted from the web

documents repository. So, essentially there is a subset of web documents under each

concept.

2. H is essentially a hierarchical clustering on all documents. The hierarchy of the

concepts reflects the inclusion or exclusion of documents sets. There is no partial

overlap between document sets under different concepts.

3. There is a merging preference/order for each pair of concepts in bothH andH which

indicates the level of closeness between two document sets. The new concepts in C

should not change the relative merging order of existing concepts in T . The details

are given in the following section.

Algorithm and partial hierarchy constraint

The merging preferences mentioned above are modeled as relatively ordered constraints

when performing hierarchical clustering on document set. Constraints defined in hierarchi-

cal clustering are different from constraints, such as instance-level constraints [WCRS01]

and prior knowledge [LZS09] in partitional clustering. Several types of constraints that can

be applied in hierarchical clustering are defined in the literature [BN08a, WCRS01, ZL11].

In our application, we use Bades algorithm [BN08a] to refine the given disaster concept

hierarchy by considering further extracted concepts. The constraint in [BN08a] is named
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must-link-before (MLB), shown in Figure 5.2, which specifies the order in which objects

are linked. When applied to concept hierarchy, such order indicates the merge prefer-

ence between concepts (document sets). Bades algorithm [BN08a] can utilize the existing

concept hierarchy as partially known hierarchy and update it by directly attaching newly-

discovery concepts to previous hierarchy. The other two methods do not meet our needs

because updated hierarchy requires to be built from the scratch.

Figure 5.2: Iterative taxonomy generation.

5.2 Focused crawler

We adopt focused crawling technique to retrieve the disaster aware information in the Web.

In addition, contents also come from subscription of some local news feeds and monitoring

announcement from government sites. Compared with a standard focused crawler defined

in [CvdBD99, AAGY01], there are some challenges when applied crawling in a specific

domain.
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Loose cohesion: Except when there is a situation happens which generates massive

information in a short time, most domain-relevant information is scattered in the Web. In

news websites, stories about an event sometimes embed in other types of news.

Diversity of topic: A common topic often includes many subtopics, for example, dis-

aster domain can be divided into various types of disasters. It is difficult to evaluate a web

pages relevance on a consistent scale among all these subtopics. It is very likely that the

crawled data will bias towards some of the subtopics and leave some others uncovered. To

address the above issues, we utilize the taxonomy we developed.

The following description will take diaster management as a scenario to better explain

the application of our approaches.

5.2.1 Selection strategy

Best-first approaches are widely used by focused crawlers, selecting the next page to be

crawled from all currently assessed candidate page URLs by their scores as

l∗ = argmaxl∈queue score(l)

where score(l) is calculated based on a classifier indicating whether or not the URL l

belongs to the topic. However, the best may bias to some of the subtopics of general disaster

topic because of the unbalance of these subtopics and a limited initial training dataset. To

get a set of web pages with high diversity for a specific disaster, we simultaneously crawl

web pages for each disaster concept based on the concept hierarchy. Our selection strategy

considers a disaster concept:

l∗c = argmaxl∈queue score(l, C),

that is, for each disaster concept, select the next page to be crawled from all currently

assessed candidate page URLs according to their scores with respect to the concept.
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5.2.2 Prioritization based on concept relationship

For a web page, instead of classifying it into “Disaster” and “Non-disaster”, we assigned to

it a concept in our concept hierarchy, such as “weather”, “government” and “environment

protection”. These disaster related concepts increase the coherence of the Web pages of

disaster topic, playing a role of bridging between pages of different sites of disaster con-

cepts and pages of different disaster concepts. To calculate the prioritization score of a

URL, the concept of the page from which the URL is linked is utilized as follows:

score(l, Cd) = P (C∗i → Cd) ∗ P (pagel = C∗i ),

where P (pagei = C∗i ) is the output of our content classifier indicating the probability the

page where the link l is linked from belongs to its optimal concept C∗i , and P (Ci → Cd)

is the link relationship between concepts, the probability that a page of concept Ci links to

a page of concept Cd. It can be calculated as

P (Ci → Cd) =

∑
p∈Ci
|Lp,fetched

⋂
Cd|+ λ∑

p∈Ci
|Lp,fetched

⋂
Cd|+ λ ·

∑
p∈Ci
|Lp,unfetched|

,

the ratio of the number of links classified as Cd from pages of Ci to the number of all

fetched links from pages of Ci, with a Dirichlet smoothing using un-fetched links. Note

that with the process of crawling, P (Ci → Cd) is being updated, so that the scoring of links

is also adaptive with more data crawled.

5.2.3 Link prediction

Although a page is disaster relevant, the links of the page may not necessarily lead to other

pages of disasters. Figure 5.3 shows an example news page about hurricane Irene in which

links in red block is irrelevant to hurricane information.

To further distinguish the links in a page, a link classifier is trained, using the prediction

of the content classifier for crawled pages as training data. The rationale is that many links
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Figure 5.3: An example page of hurricane Irene.

contain a description of the content of the linked page. Another observation we find is

about link structure, that for a pair of link which are in the sibling nodes of the HTML

DOM tree, e.g. in a list of the page, they tend to be of a similar topic. We follow the work

of [16] and build a link classifier based on Native Bayes. To apply the link prediction:

1. The prioritization score can be extended as: score(l, Cd) = P (C∗i → Cd)∗P (pagel =

C∗i ) ∗P (Cd|l), where P (Cd|l) is the output of the link classifier, probability that link

l leads to a page under concept Cd.

2. To reduce the redundancy, we first divide the links into clusters, and constrain the
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crawler such that links in the same cluster are not fetched at same time. Once a link

is fetched, the prediction of links in the same cluster will be updated.

5.2.4 Architecture of the focused crawler

Figure 5.4: Focused crawler architechture.

We build our crawler based on Nutch1, which is a distributed general crawling tool

running on Hadoop2 clusters. We customize the scoring module and generator module

in Nutch. The current architecture is shown in Figure 5.4. In each iteration, the Fetcher

fetches page content of a list of URLs, and stores them as a segment. The updater updates

CrawDB, where the crawled data is associated with a URL. The scoring module assigns

a prioritization score to each URL indicating the importance of the URL. The generator

module generates a set of URL, covering all disaster concepts in the concept hierarchy.

The Fetcher fetches the web page content.

1Apache Nutch. https://nutch.apache.org
2Apache Hadoop/ http://hadoop.apache.org
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5.3 Actionable information extraction

Actionable information means having the necessary information immediately available in

order to deal with the situation at hand 3. There are several important factors for an ac-

tionable information: entity, time, location, and status. Those information can direct to

immediate answers to typical questions like, when, how, where. We define actionable in-

formation as a triple relationship, <entity, time, status>revealing the status information

of the entity at a certain time, which needs to be extracted from given text set. Action-

able information extraction not only provides ways to identify those important factors from

unstructured text but also automatically build relations between those factor to transform

unstructured text to structured records.

Time: October 21, 2005 12:30 p.m.
Miami-Dade Emergency Operations Center is currently
activated at a level II and officials and emergency managers
are carefully monitoring Hurricane Wilma.
Residents are urged to finalize their personal hurricane
preparations.
On Monday, October 24, Miami-Dade County offices,
public schools, and courts will be closed.
Currently, transit bus and rail service continues, including
Metrobus, Metrorail and Metromover.
Miami International Airport is open. However, if you have
travel plans please check with your airline for flight
information.
Tomorrow afternoon, the American Red Cross will open
hurricane evacuation centers for residents who do not feel
safe in their homes or live in low-lying areas.

Table 5.1: An example of EOC report.

3http://en.wikipedia.org/wiki/Actionable information logistics
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5.3.1 Structured information extraction from text

The BCIN system is an information sharing system for companies and government agen-

cies. To provide a user-friendly interface to all these users, we do not request a unified

format for them to submit the reports. Instead, we use information extraction methods to

integrate reports from different sources. For example, Table 5.1 shows an example of EOC

reports.

For any events, the key information is “What was/is/will be the status of Facili-

ties/Services/ at the time of ”. From the EOC reports, we need to extract such information

in the form of a triple: (entity, time, status), which reveals the status information of the

entity at a certain time. Take disaster management domain as an example, the entity in

reports may be a facility or public service like “Miami International Airport”, “schools”,

“bus”, and an order like “curfew”. If the entity is referred to an order, the triple means

whether the order is in effect or not at that specific time. We extract these triples through

two steps: first, we extract entities and time expressions, then, we classify a pair of (service,

time) to a proper category, “no relation”/ “open” / “close” / “unclear”. We assume that the

information of one event will not span on different sentences, so we process every sentence

individually to extract an event. To extract those triples, both entity and relation extraction

will be performed.
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Time: October 21, 2005 12:30 p.m.
Miami-Dade Emergency Operations Center is currently
activated at a level II and officials and emergency managers
are
carefully monitoring Hurricane Wilma.
Residents are urged to finalize their personal hurricane
preparations.
On 〈T 〉Monday, October 24 〈/T 〉, 〈E〉Miami-Dade County
offices〈/E〉, 〈E〉public schools〈/E〉, and 〈E〉courts〈/E〉
will be closed.
〈T 〉Currently〈/T 〉, 〈E〉transit bus〈/E〉 and 〈E〉rail
service〈/E〉 continues, including 〈E〉Metrobus〈/E〉,
〈E〉Metrorail〈/E〉 and 〈E〉Metromover〈/E〉.
〈E〉Miami International Airport〈/E〉 is open. However, if
you
have travel plans please check with your airline for flight
information.
〈T 〉Tomorrow afternoon〈/T 〉, the American Red Cross will
open 〈E〉hurricane evacuation centers〈/E〉 for residents
who
do not feel safe in their homes or live in low-lying areas.

Table 5.2: Entity extraction result of the report in Table 5.1.

5.3.2 Entity extraction

For each report, sentence segmentation is conducted first, and each sentence is POS-tagged.

To extract entities and time expressions, we manually label some news and train a linear

chain conditional random fields (CRF) model to tag all words of sentences, using “BIO”

annotation [LMP01, SP03]. A word tagged as [TYPE-B]/[TYPE-I] means it is the begin-

ning/continuing word of the phrase of the TYPE, and the ones tagged as O means it is not

in any phrase. Here TYPE can be E or T, referring to the entity and time expression. Using

CRF, given the sentence X, the probability of its tags Y is as follows:

p(Y |X) =
1

ZX
exp(

∑
i,k

λkfk(yi−1, yi, X) +
∑
i,l

µlgl(yi−1, yi, X)),
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where Zx is the normalization constant that makes the probability of all state sequences

sum to one; fk(yi−1, yi, X) is an arbitrary feature function over the entire observation se-

quence and the states at positions i and i − 1 while gl(yi−1, yi, X) is a feature function of

the states at position i and the observation sequence; k and k are the weights learned for

the feature functions fk and gl , reflecting the confidence of feature functions by maximum

likelihood procedure. The most probable labels can be obtained as

Y ∗ = argmaxY P (Y |X),

by Viterbi-like dynamic programming algorithm [LMP01]. We use for features the

local lexicons and POS tags, and plus the dictionary composed of the existent entity names

in the database. Table 5.2 shows the result of the entity extraction result of the report in

Table 5.1.

5.3.3 Relation extraction

Feature Name Description
DistanceBetween(e,t) number of words between en-

tity and time
WordBetween(e,t) what is the words between en-

tity and time
TenseOfSentence(e.t) the tense of the sentence
NegativeVerbsInSentence(e,t) number of negative verbs in

the sentence
PositiveVerbsInSentence(e,t) number of positive verbs in

the sentence
ContainDate(t) whether the sentence contains

time
PrepositionBefore(t) what is the preposition
FromDocument(t) document the sentence be-

longs

Table 5.3: Features used to classify whether the entity e is associated with the time expres-
sion t.

86



If a sentence contains an entity but no time expression, the time associated with the report

will attached to the end of the sentence. To generate the triple by connecting the entity with

the time expression with a proper status label, we train a multi-category SVM [HL02] to

classify each pair of (entity, time) to a proper category, “no relation”/ “open”/ “close”/ “un-

clear”. Table 5.3 shows the features we used for classification. Among them, TenseOfSen-

tence(s,t), NegativeVerbsInSentence(s,t), and PositiveVerbsInsentence(s,t) are extracted by

heuristic rules to indicate the tense of the sentence, the verbs with and without negative

modifier semantically in the sentence, respectively. Note that FromDocument(t) indicates

whether the time is the time associated with document or not.

Finally, we extract those pairs of entity and time expression in the “open” or “close”

categories to form the triple. Meanwhile the time expressions are formatted into an absolute

form of expression from relative time expression such as “next Monday”, “this afternoon”

and etc. using the time of report as a benchmark. The structured information extracted

from the report in Table 5.1 is shown in Table 5.4.

Service Time Status
Miami-Dade County offices October 24, 2005 close
public schools October 24, 2005 close
courts October 24, 2005 close
transit bus October 22, 2005 6:30 p.m. open
Rail service October 22, 2005 6:30 p.m. open
...

...
...

Miami International Airport October 22, 2005 6:30 p.m. open
hurricane evacuation centers October 23, 2005 afternoon open

Table 5.4: Information extracted from the EOC report shown in Table 5.1.

5.4 Conclusion

In this chapter, we discussed the design and implementation of a focused crawler by uti-

lizing domain taxonomy. To generate domain taxonomy, enhanced information extraction
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techniques are used to identify meaningful domain-specific terms. Those terms can be used

to enrich exiting taxonomy. Such iterative process is conducted as the crawler is running,

so the taxonomy can be refreshed. Both crawling and extracting components are using

the enhanced hierarchical clustering techniques (discussed in Chapter 3) and considering

constraints transformed from domain knowledge (discussed in Chapter 4).

The system can be improved in both accuracy and efficiency. In particular, the time

cost of taxonomy generation can be further reduced by utilizing distributed frameworks or

using different agglomeration strategy to quickly generate similar hierarchies. We also plan

to incorporate the dynamic seed selection components into the crawler to maintain more

authoritative and informative seed sites.
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CHAPTER 6

Topic II: modeling user interest and recommendation

Web search is generally motivated by an information need. Since asking well-

formulated questions is the fastest and the most natural way to obtain information for hu-

man beings, almost all the queries posed to search engines correspond to some underlying

questions, which represent the information need. Accurate determination of these questions

may substantially improve the quality of search results and usability of search interfaces.

Moreover, in case of imprecise or ambiguous queries, automatically generated questions

can naturally engage the users into feedback cycles to refine their information need and

guide them towards their search goals. Implementation of the proposed strategy raises new

challenges in content indexing, question generation, ranking and feedback.

6.1 User profile modeling using hierarchical ensemble clustering

News recommendation has becoming one of the most important applications for major

content providers, such as Google News and Yahoo! News. It deals with the information

explosion problem which prevents readers from obtaining the most important information.

Recommendation services can largely improve the efficiency and accuracy of information

acquiring, and recommender systems are designed to filter the critical news, key events

and meaningful items. However, such crucial information cannot be of the same impor-

tance for the global set of users. The news personalization and localization have emerging

quickly to fit the reading preferences for each individual and geographical region respec-

tively. Therefore, a high-quality news recommender system should be able to provide

personalized “important” news reading lists according to each user’s preference.

News personalization has been extensively studied from many perspectives. However,

there are three major issues remaining challenging in personalized recommendation task: 1)
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how to capture each user’s reading interest according to his/her historical consumption?

2) how to model the relations between news content and user profiles for better reading

preference matching? and 3) how to make good predictions with regard to the quality and

diversity of the recommended result?

In this chapter, we develop a novel PErsonalized NEws recommendaTion framework

using ensemble hieRArchical clusTEring (PENETRATE) to systematically address the afore-

mentioned issues in news recommendation. PENETRATE captures users’ preferences based

on not only individual user’s reading history, but also the historical consumptions of a

group of users with similar reading preferences based on the fact that each user group has

its unique preferences to different news topics. Furthermore, the profile of a given user

group is not represented using the traditional vector space model, but is characterized by a

news hierarchy in which the merged preference between pair of new articles demonstrates

their similarity. By combining the news hierarchies associated with the user groups that the

user belongs to using a consensus hierarchical clustering method, the user’s interest can be

easily captured in a united way. We then can identify news groups that the user might be

interested in by cutting the consensus hierarchy at different levels, and finally recommend

news articles within each group according to the user’s reading behavior. The framework

of PENETRATE is described in Figure 6.1.

In summary, the contribution of our work is three-fold:

• Our proposed framework is beyond content-based methods and collaborative filter-

ing, in which individual user behavior and user group behavior are simultaneously

considered for recommendation.

• We provide a novel method to integrate multiple group-oriented news hierarchies,

by which the general reading preference of individual users can be effectively cap-

tured. The proposed framework achieves a good balance between the topic coverage

and the content diversity of the recommended news list.
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• We observe that the interestedness of news articles with respect to a user is regres-

sive, and based on this “submodularity” property, we then model the news selection

problem as a budgeted maximum coverage problem, which is more realistic than

independently selecting news items.

The rest of the section is organized as follows. Chapter 2 presents a brief summary

of prior approaches relevant to personalized news recommendation. In Section 6.1.1, the

system framework will be introduced, and the algorithmic details for major components

are presented in Section 6.1.2,6.2.1,6.2, respectively. Extensive experimental results are

reported in Section 6.3. Finally Section 6.4 concludes the chapter.

6.1.1 Recommendation framework

Figure 6.1 illustrates the framework of our system. The system is composed of three com-

ponents described as follows:

I. Profiling on Users and Groups (See Section 6.1.2): In this module, individual user’s

profile is enriched by taking into consideration the profiles of users similar to the given user.

The user pool is first divided into multiple groups under the “guideline” of latent topics ly-

ing between users and their preferred words. Then the users’ profiles in each group are

integrated in a weighted way, where the user who likes more the topic category contributes

more to the group profile. When newly-published news articles come, the news set is orga-

nized into a group-oriented hierarchy, as the ensemble element for further personalization.

II. Ensemble news hierarchies (See Section 6.2.1): Since each profile group has its

own news hierarchy, the ensemble hierarchical clustering component is designed to com-

bine multiple hierarchies when there are several profile groups related to a given user. Pro-

vided that each news hierarchical clustering associates with a dendrogram, we utilize the

dendrogram descriptor to define the similarities between all pairs of leaf nodes. Such de-

scriptor can preserve the dendrogram structure (merging order of each pair of sub-cluster).
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Figure 6.1: System framework of PENETRATE.

The ensemble result is an aggregated dendrogram descriptor that can be easily recovered

to a consensus news hierarchy.

III. Personalized News recommendation (See Section 6.2): Based on the ensembled

news hierarchy and the given user’s profile, we compare the topic distributions of each

intermediate cluster and the user’s accessed news, and then sequentially pick up the inter-

mediate clusters based on the similarity score, as the first level of the result. In each clus-

ter, we compare the similarities between each small news group and the user’s accessed

news, and select the most similar group as the base of the second level. In the selected

group, we model personalized news recommendation as a budgeted maximum coverage

problem [KMN99] (details in Section 6.2.3), and solve it by selecting news items greedily.
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6.1.2 Profiling on users and groups

In order to capture a user’s reading interests on news articles, news recommendation sys-

tems start with constructing the user’s profile. Traditionally, a user’s profile can be defined

by keeping track of what articles the user has read so far (or called consumption history),

mainly based on news content. A survey of various user profile construction techniques

is provided in [GSCM07]. However, in many cases a user’s reading history might not be

enough to construct a comprehensive profile representing the exact reading preference of

the user. In order to handle this issue, we propose to enrich individual user’s profile by

taking into consideration the profiles of users similar to the given user. In this way, we can

easily capture the general reading interest of users by profiling the user groups that the user

belongs to.

User profiling

In our system, we consider to construct profiles, using well-known topic models,

Probabilistic Latent Semantic Indexing (PLSI) [Hof99] and Latent Dirichlet Allocation

(LDA) [BNJ03]. The PLSI model and the LDA model are similar in terms of probabilistic

language models, except that in LDA the topic distribution is assumed to have a Dirichlet

prior. Note that the PLSI model is equivalent to the LDA model under a uniform Dirichlet

prior information, whereas the LDA model is essentially the Bayesian version of the PLSI

model [GK03]. Bayesian formulation tends to perform better on small data sets because

Bayesian methods can avoid overfitting [BNJ03]. In reality, the reading history of a spe-

cific user might not involve too many news articles. Therefore, we choose LDA as the topic

model to detect the possible topics, and represent the topic distribution of the user’s profile

as a topic vector, each entry of which denotes the weight of the representative words in

each topic1.

1The topic vector is built based on the entire vocabulary.
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Group profiling

As is mentioned above, individual user’s profile might not be representative enough in

terms of the general topics that the user prefers, and therefore, we propose to cluster users

into different groups and then characterize the user’s general interest using group profiles.

Notice that a specific user may have several interested topic categories; in other words, it is

not quite reasonable to classify a user into a single group. Thus, in our system, we employ

soft clustering algorithms for user clustering task, and then integrate all the users’ profiles

of the generated group into an aggregated group profile.

Profile clustering

To obtain online reader groups, we employ PLSI model to quantitatively characterize user

profile clustering task. Formally, we have a set of users U = {u1, u2, · · · , um}, and a

set of representative terms obtained from the users’ profiles T = {t1, t2, · · · , tn}. The

profiles data can be conceptually viewed as am×n user-word matrix UT = [w(ui, tj)]m×n,

where w(ui, tj) represents the weight of the term tj in the profile of the user ui. Note

that w(ui, tj) is calculated using LDA language model, introduced in Section 6.1.2. We

use a set of hidden (unobserved) variables Z = {z1, z2, · · · , zl}, which in our system

PENETRATE, correspond to the general topic categories existing in the reading histories

of users. Our goal is to automatically discover and characterize user groups based on the

user-word matrix.

The user’s preference on a specific word, represented by an entry of UT matrix, can be

modeled as

Pr(ui, tj) =
l∑

k=1

Pr(zk) · Pr(ui|zk) · Pr(tj|zk), (6.1)

where all possible choices of zk from which the observation could have been generated are

summed up. Here we are only interested in the probability Pr(ui|zk), i.e., the possibility

that the user ui belongs to a topic group zk, and use Expectation-Maximization algorithm
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to estimate it. Finally, we can obtain the probability distribution that the user belongs to

groups identified by the hidden variable zk. Here a threshold is needed to filter the unrelated

groups; in our system, we empirically set this threshold as 4 (See Section 6.3.4). In this

way, the user pool is separated into multiple groups in a soft way, where each user might

belongs to several distinct groups.

Profile aggregation

After obtaining the clustering result of the user set, our system automatically aggregates

all the users’ profiles in each group to quantify the group profile. Here we utilize a user

weighted aggregation scheme to achieve this goal. Each user has his/her own prefer-

ence on groups, indicated by the weights Pr(ui|zk). For simplicity, we integrate all the

users’ profiles in this group by a linear combination, where the user with higher pref-

erence weight would contribute more to the final group profile. Formally, for a group

Ĝ = {〈u1, w1〉, 〈u2, w2〉, · · · , 〈un, wn〉}, where each pair 〈ui, wi〉 represents the i-th user’s

profile and the corresponding preference weight on Ĝ, the aggregation can be described as

PĜ =
w1

ŵ
u1 +

w2

ŵ
u2 + · · ·+

wn
ŵ
un, (6.2)

where PĜ denotes the group profile and ŵ =
∑n

i=1wi. In this way, the recomputation

of LDA on the reading histories of all the users in group Ĝ can be avoided, and such

aggregation scheme provides us reasonable representation of the group profiles.

6.1.3 Group-oriented hierarchy generation

Up to this point, we have obtained a list of profile groups related to different hidden topic

categories. Given a collection of newly-published news articles, our system PENETRATE

automatically generates the group-specific news hierarchies for further ensemble process-

ing. Formally, the news set N contains m news items, {n1, n2, · · · , nm}, and the profile
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groups G includes r group profiles, {g1, g2, · · · , gr}. Note that each news item is summa-

rized by LDA similar to the group profile, represented by a topic distribution. To gener-

ate the group-specific news hierarchies, we calculate the Conditional Mutual Information

(CMI) [CTW+91] of two news items ni and nj given a group profile gk as follows:

CMI(ni;nj|gk) = H(ni, gk) +H(nj, gk)−H(ni, nj, gk)−H(gk), (6.3)

where H(·) denotes the Entropy or joint Entropy of the corresponding variables.

After computing all the CMI values for any pair of news items given a specific group

profile, we can obtain a CMI matrix of the original news set, where each entry represents

the CMI value of topic distributions of the corresponding two news articles. We then trans-

form the CMI matrix into a news-pair similarity matrix. The transformation procedure is

as follows: (1) l1-normalize the CMI matrix; and (2) substitute the value on the main di-

agonal by 1. The generated similarity matrix is utilized to construct a group-specific news

hierarchy using hierarchical clustering, for the purpose of ensemble hierarchical clustering

on multiple news hierarchies.

6.2 Personalized recommendation

Personalized news recommendation is oriented from exploring the relations between

newly-published news articles and the user’s profile. In PENETRATE, a two-level rec-

ommendation hierarchy is provided, where the first level shows a brief summary for each

topic category the user might prefer, and the second level gives a specific list of news ar-

ticles similar to the user’s reading interest. Further, we model personalized news selection

as a budgeted maximum coverage problem by exploring the ”submodularity” hidden in

multiple aspects of news personalization, and then resolve it greedily. In this way, the rec-

ommended news list can achieve an elegant balance of the topic coverage and the content

diversity, as well as the satisfaction of online readers.

96



6.2.1 Ensemble news hierarchies

Given a news set, each user profile cluster corresponds to a specific hierarchical clustering

of the news set. Such news hierarchy reflects the reading preferences of the group of users.

To capture the user’s interest without losing the diversity of user’s preferences, we propose

an ensemble clustering framework to combine various news hierarchical clustering results

associated with profile groups.

Problem formulation

The task of ensemble news hierarchical clustering is to obtain a single consensus news

hierarchy from multiple hierarchical clustering results. Formally, letX = {x1, x2, · · · , xn}

be a set of n pieces of news in the given set. A set of T hierarchical clusterings SP =

{H1, H2, · · · , HT} building on data points in X is given to demonstrate various merging

preferences among news. The dendrogram descriptor, which is defined to preserve the

structural information of hierarchies, are used to represent a hierarchical clustering result

as a dis-similarity matrix [Ada72][Ada86a]. We use the following descriptor to represent a

hierarchial clustering.

• Partition Membership Divergence (PMD): By utilizing the property that a hierarchi-

cal clustering result implies a sequence of nested partitions obtained by cutting the

dendrogram at every internal node, the PMD is defined as the number of partitions

of the hierarchy in which two specified leaves are not in the same cluster.

Figure 6.2 gives a simple example about how PMD describes the structural distance pre-

served in hierarchical clustering. The consensus news hierarchy is a single news hierarchi-

cal clustering result by aggregating all clusterings in SP . It could be different from any of

H i, i ∈ T . The ensemble procedure is illustrated in Figure 6.3.

In general, our ensemble hierarchy framework utilizes the representative power of ultra-

metrics to integrate multiple group-oriented news hierarchies into one consensus hierarchy.
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Figure 6.2: A dendrogram descriptor example.

The obtained single news hierarchy achieves a good balance between the topic coverage

and the content diversity of the recommended news list.

6.2.2 Interest matching for representation Lv.1

After obtaining the group-specific news hierarchy, we use Dunn’s Validity Index [Dun73]

as the metric to generate groups of news articles. This validity measure is based on the

idea that high-quality clustering produces well-separated compact clusters. In general, the

larger Dunn’s Index, the better the clustering. Therefore, our method tries to maximize

the Dunn’s Index. In this way, we do not have to specify the number of clusters when

performing clustering on news articles. Note that each news group is summarized using

LDA, similar to the user’s profile.

Once we generate news groups and the user’s profile, the first representation level can

be obtained by sequentially matching the user’s profile onto the news groups. For simplic-

ity, we only consider the cosine similarity between topic distributions of each intermediate
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Figure 6.3: An illustrative example of ensemble news hierarchical clusterings. The orig-
inal candidate hierarchical clusterings are shown in (A). (B) shows their corresponding
PMD for each news hierarchy and (C) is the aggregated hierarchical clustering. (D) is the
ultra-metric transformation on aggregation matrix obtained in (C) with its corresponding
hierarchial clustering result.

cluster and the user’s reading history. In practice, people tend to have their preference on

news categories, i.e., not interested in all the categories. Therefore, we choose the cate-

gories whose corresponding similarity is greater than a dynamic threshold2. After selecting

the appropriate categories that roughly satisfy the user’s general preference, we dig into

each category and choose the news articles as the second level representation.

2The dynamic threshold is set to be the median of all similarity scores with respect to a specific
user’s profile.
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6.2.3 News selection for representation Lv.2

To facilitate the selection of specific news items, we summarize each news article using

LDA, as the profile of news item. We then model news selection as a budgeted maximum

coverage problem, and solve it by a greedy algorithm. Intuitively, the interestedness of

news articles with respect to a user is regressive, i.e., after he/she clicks the first piece of

news she is interested in, the interest value might decrease when she clicks the second one

or more.

Introduction to submodularity

Let E be a finite set and f be a real valued nondecreasing function defined on the subsets

of E that satisfies

f(T ∪ {ς})− f(T ) 6 f(S ∪ {ς})− f(S), (6.4)

where S ⊆ T , S and T are two subsets of E, and ς ∈ E \ T . Such a function f is called

a submodular function [NWF78]. Intuitively, by adding one element to a larger set T , the

value increment of f can never be larger than that by adding one element to a smaller set S.

This intuitive diminishing property exists in different areas. For example, in social network,

adding one new friend cannot increase more social influence for a more social group than

for a less social group. The similar scenario holds in personalized news recommendation:

the interestedness of news articles with respect to a user is regressive, i.e., after he/she

clicks the first piece of news she is interested in, the interest value might decrease when she

clicks the second one or more.

The budgeted maximum coverage problem is then described as: given a set of ele-

ments E where each element is associated with an influence and a cost defined over a

domain of these elements and a budget B, the goal is to find out a subset of E which

has the largest possible influence while the total cost does not exceed B. This problem is

NP-hard [KMN99]. However, [KMN99] proposed a greedy algorithm which picks up the
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element that increases the largest possible influence within the cost limit each time and it

guarantees the influence of the result subset is (1 − 1/e)-approximation. Submodularity

resides in each “pick up” step. A key observation is that submodular functions are closed

under nonnegative linear combinations [LKG+07].

Submodular model for recommendation

In a particular news group, most of news articles concentrate on similar or even the same

topic, with minor difference on major aspects of the corresponding topic. For example,

given a news group talking about a popular movie “Inception”, one piece of news may

focus on the actor cast of this movie, while another may describe the high-end techniques

used in this movie. Typically, a news reader is interested in some specific aspects of the

given topic, but not all of them. Under this intuition, our news selection strategy can be

described as follows (note thatN denotes the original news group, S represents the selected

news set, and ς is the news item being selected). After selecting ς ,

I. S should be similar to the general topic in N \ S;

II. The topic diversity should not deviate much in S;

III. S should provide more satisfaction to the given user’s reading preference.

Per the above strategy, we define a quality function f to evaluate the current selected

news set S over the whole news group N as

f(S) = 1

|N \ S| · |S|
∑

n1∈N\S

∑
n2∈S

sim(n1, n2)

+
1(|S|
2

) ∑
n1, n2 ∈ S&n1 6= n2

−sim(n1, n2) +
1

|S|
∑
n1∈S

sim(u, n1),
(6.5)

where n1 and n2 denote news items, u represents the given user, and sim(·, ·) represents

the similarity between two profiles, either the user profile or the news profile.

In Eq.(6.5), three components are involved, corresponding to the news selection strategy

we list above. f(S) balances the contributions of different components Note that all these
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three components are naturally submodular functions. Based on the linear invariability of

the submodular function [LKG+07], f(S) is also a submodular function. Suppose ς is the

candidate news article, the quality increase is therefore represented as follows:

I(ς) = f(S ∪ {ς})− f(S). (6.6)

The goal is to select a list of news articles which provide the largest possible quality in-

crease within the budget3. Hence, personalized news recommendation is transformed to

the budgeted maximum coverage problem [KMN99].

In each news group, we adopt a greedy algorithm to solve the budgeted maximum cov-

erage problem: sequentially pick up the news article which provides the largest quality

increase based on the selected news set until the budget is reached. To integrate recom-

mended news items from different news groups into the final recommendation list, we

sequentially select top ranking items within each group, and the number of items selected

in one group is proportional to the interest weight of the user on the corresponding topic

category. Finally, the recommendation list is adjusted based on the popularity and recency

of the selected news articles, and presented to the user.

6.3 Empirical evaluation

6.3.1 Real world dataset

For evaluation purpose, we gather news articles along with users’ access history from sev-

eral popular news websites4, ranging from July 15th, 2010 to July 16th, 2011. It contains

the details of news articles (e.g., news title, content, published time, etc.) and user access

history (e.g., anonymous users, accessed news items, accessed time, etc.). After obtaining

3Here the budget can be regarded as the maximum number of recommended items in each news
group.

4The data is collected from commercial parties.
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the whole dataset, we preprocess the data by removing news articles that are rarely accessed

(i.e., the accessed frequency is less than 10 times per day) and by storing users with fre-

quent online reading behaviors (i.e., users who read news articles every day and read more

than 1 piece of news each day). By doing this, we can somewhat avoid introducing user

bias and item bias into user profiling. After preprocessing, a total of 1,042,200 news items

are stored, along with 52,630 users, each day in average with 2,848 news articles. Notice

that in the experiment, we are not concerned with the live traffic to a news website, but

focus on the recommendation quality of our proposed method over the collected dataset.

6.3.2 Experimental setup

To evaluate our proposed system, we implement it based on the architecture introduced

in Section 6.1.1. The entire system contains the following three major components: (a)

An offline component responsible for periodically clustering the user pool, and updating

group profiles and individual profiles; (b) An offline component of periodically clustering

news articles published within a time range based on different group profiles; and (c) An

online component to recommend news articles to individual users. From the experimental

perspective, we verify our system components in an integrated manner, where all these

three components are tested under a unified online environment.

6.3.3 Profiling evaluation

As discuss in Section 6.3.3, LDA would be more beneficial when the news dataset is small.

In order to verify this claim, we design the experiment as follows: (1) use 1 hour, 12 hours,

1 day, 2 days, and 3 days as the time periods; (2) for each time period, randomly select

10 time ranges, extract news articles in these time ranges, and treat the articles published

earlier than these time ranges as the reading history of the users; (3) perform PLSI and LDA
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on the generated ensemble hierarchical clustering results of these news sets, respectively;

(4) perform top @10 news recommendation to 2000 users randomly selected from the

users’ pool, where user profiles, along with group profiles, are constructed by virtue of

PLSI and LDA, respectively; (5) compute the averaged F1-score (over both time range

and all 2000 users) for PLSI-based and LDA-based systems. We also use the simple term

frequency (TF) to construct profiles, as the comparison baseline. The result is shown as in

Figure 6.4.

From the result, we observe that: (i) LDA-based system has steady recommendation

performance in terms of F1-score, regardless of different size of news corpus; and (ii) PLSI-

based recommender system has comparable results when the news corpus becomes larger.

However, when the dataset is relatively small, the performance of PLSI-based system is

comparatively lower than LDA-based system. Essentially, it results from overfitting when

the dataset is small. Therefore, LDA is more applicable to our recommender system.

6.3.4 Profile clustering evaluation

In our system PENETRATE, newly-published news articles are hierarchically clustered based

on different profile groups, under the assumption that the profile of the user group can be

more representative and useful than individual profiles when clustering news articles. In or-

der to verify our assumption, we design a series of experiments on examining the behavior

of user groups, described as follows.

Group profile V.S. individual profile

It is straightforward that individual profile has more personalized property, whereas group

profile can better describe the general reading preference of individual users. To better

capture this claim, we adopt the experimental setting similar to the one introduced in Sec-

tion 6.3.3, and compare the performance based on the following profile schemes: (1) using
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Figure 6.4: Performance comparison of TF-, PLSI- and LDA-based systems.
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Figure 6.5: Comparison among recommender systems using different profile schemes. Re-
mark: Blue – IP, Red – SP, Green – PENETRATE.
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individual profile of the given user to filter news groups obtained from the hierarchical

clustering result on news articles, and to filter news items in each news group, denoted as

“IP”; (2) using the integrated profile of users similar to the given user to filter news groups,

and the given user’s profile to filter news items in each group, denoted as “SP”; and (3)

constructing ensemble news hierarchy using the profiles of user groups that the given user

belongs to, and then using the given user’s profile to filter news groups and news items in

the resulted hierarchy, which is exactly the scheme applied in our recommender system,

PENETRATE. We recommend news items (top @10, top @20 and top @30) to the selected

2000 users, and compared the averaged recall and F1-score of recommendation results over

5 time ranges, where each time range contains 3 days. Figure 6.5 shows the comparison

results.

From the result, we observe that: (1) our proposed profile scheme outperforms the other

two baselines, which verifies our previous assumption; and (2) simply using individual

profile to filter news groups and news items does not provide promising performance. The

reason behind this might result from the fact that individual profile cannot reasonably

capture the general topics of the user’s reading history, and therefore fails to extract

appropriate news groups from the news hierarchy.

Different soft clusterings on profiles

In general, different online users might have different reading preference, and therefore the

important words extracted from their reading histories may differ. For a given user, he/she

might prefer several general topics. As described in Section 6.3.3, we use topic modeling,

e.g., PLSI and LDA, to handle the relationship between users and representative words; in

other words, there might be several implicit topics that can classify users and words into

different groups simultaneously, where each user may belong to several groups. To examine

the effectiveness of soft clustering techniques in our recommender system, we utilize the
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experimental setting similar to the previous procedures, and compare the performance of

different soft clustering algorithms based on our proposed recommendation framework.

The soft clustering algorithms being considered include PLSI, LDA and Fuzzy K-means

(Fuz). We choose the possible clusters that a user might belong to in a range of [2,10], and

recommend top @30 news articles to 2000 randomly selected users in 5 times periods (3

days in one period). The F1-score is averaged and plotted in Figure 6.6.
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Figure 6.6: Recommendation F1-score based on different soft clustering algorithms.

As is evident in Figure 6.6, PLSI and LDA give comparatively better performance under

our experimental setting. We choose PLSI as the soft clustering technique in our system,

since PLSI requires less parameter estimations than LDA. In addition, from the result we

can observe that when the possible number of clusters for users is 4, PLSI-based recom-

mender system achieves the best performance.

The effect of ensemble hierarchy

When recommending news items to individual users, our strategy replies on the selection

of news groups from a news hierarchy. A couple of intuitive ways to construct the basis

for news selection involve: (1) Single Partition (SP): To cluster newly-published news ar-

ticles based on the most promising profile group by employing partition-based clustering
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techniques; (2) Single Hierarchy (SH): To cluster newly-published news articles based on

the most promising profile group by employing hierarchical clustering techniques; (3) En-

semble Partition (EP): To integrate the partition-based clustering results based on multiple

profile groups preferred by the user; and (4) Ensemble Hierarchy (EH): To integrate the

hierarchical clustering results based on multiple profile groups preferred by the user.

Note that in our work, we use EH to build the recommendation base. As shown

in [LWL+11], the performance of news recommenders based on hierarchical clustering is

superior to the one by partition-based clustering (e.g., K-means). In addition, only adopt-

ing a single profile group might result in the dearth of the general topics, which renders the

final recommendation result less diverse. Alternatively, in our system PENETRATE, all the

profile groups preferred by the user are taken into account, and are used as a prior to con-

struct an ensemble news hierarchy on newly-published articles. In this way, the generated

news hierarchy might involve a couple of distinct topics that the user might be interested

in, and therefore make the result more diverse.

In order to demonstrate our observation, we compare the recommendation result based

on the aforementioned 4 methods in terms of accuracy and diversity. For single hierarchy,

we utilize the priority queue implemented using a binary heap to speed up the hierarchical

clustering process. For partition-based methods, we conduct K-means clustering 10 times

to obtain the best partition, by which eliminating the over-dependency on random seeds

initialization. The experimental setting is the same as the previous procedures. Particu-

larly, to evaluate how diverse the recommendation result is, we compare the set diversity

described in [ZH08] between the results of SH and EH. The news set diversity is defined as

the average dissimilarity of all pairs of news items in the recommendation list. Specifically,

given a news set N , the average dissimilarity of N , fd(N ), is defined as

fd(N ) =
2

p(p− 1)

∑
ni∈N

∑
nj∈N ,nj 6=ni

(1− Sim(ni, nj)) (6.7)
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where |N | = p, and the dissimilarity of a news pair is represented as 1 − Sim(ni, nj), in

which Sim(ni, nj) denotes the news profile similarity between the news item ni and nj .
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Figure 6.7: Comparison between partition-based and hierarchical-based recommender sys-
tems.

The experimental result of the quality of top @10, @20, @30 news items is shown in

Figure 6.7. From the result, we observe that:

• The diversity decreases as the recommendation news list enlarges. It is straightfor-

ward that when more news articles are selected, the topic distribution of the news list

becomes closer to the user’s reading interest, and therefore the selected news items

are more similar.

• The results of ensemble-based methods are superior to the ones of single profile

group based methods. By ensemble, a user’s profile can be enriched to a great

extent, due to the distinguishable interests originated from multiple profile groups.

• The diversity of the recommendation list provided by single group based method

drops dramatically as the list size increases due to the restricted topics of single

hierarchy or single partition.

• EH-based method shows promising performance, and since we intentionally consider

the requirement of news readers via ensemble hierarchy, the diversity decreases very

smoothly when we recommend more news items to individual users.
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6.3.5 News selection strategy evaluation

In order to verify the effectiveness of our proposed news selection strategy, we provide

detailed comparison between ours and the general greedy selection strategy simply based

on pairwise similarities. Also, we implement a recommender system that models the rec-

ommendation as a contextual bandit problem [LCLS10], as the comparison base. For each

approach, we randomly select 2000 users to provide recommendations for them. We plot

the precision and recall pair for each user on top @10, @20, and @30 news items rec-

ommended to these users. Figure 6.8 shows the comparison results. From the result, we

observe that besides the higher precision and recall, the performance distribution of PEN-

ETRATE is more compact than the other methods. The reason behind this phenomenon is

that our proposed “submodularity-based modeling” tries to select news articles by consid-

ering the representativeness of news items, the diversity of news lists, and the satisfaction

of online news readers, simultaneously. This demonstrates the stability of our proposed

news selection strategy.
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Figure 6.8: Precision-recall plot for different news selection strategies. Remark: © rep-
resents users using the general greedy-based recommender system; � denotes users using
the bandit-based recommender system; and + represents users using PENETRATE.
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Methods
N ≤ 20 20 < N ≤ 50 N > 50

Top @10 Top @20 Top @30 Top @10 Top @20 Top @30 Top @10 Top @20 Top @30

Goo 0.1845 0.2633 0.2901 0.2002 0.2957 0.3203 0.2206 0.3126 0.3365
ClickB 0.1730 0.2516 0.2872 0.1874 0.2831 0.2907 0.2119 0.2957 0.3147
Bilinear 0.1860 0.2587 0.2921 0.1923 0.2809 0.3115 0.2153 0.3073 0.3218
Bandit 0.1716 0.2409 0.2762 0.1837 0.2765 0.3087 0.2037 0.2984 0.3109

PENETRATE 0.2102 0.2981 0.3272 0.2182 0.3013 0.3426 0.2213 0.3185 0.3640

Table 6.1: Comparison on F1-score of different algorithms for three distinct user groups.
The bold numbers indicate that the corresponding results significantly outperform the oth-
ers under p < 0.005.

6.3.6 Overall evaluation

In the above experiments, all the users are equally treated as the experimental subject. In

reality, users with different news access patterns, such as different reading frequency ev-

ery day, may have distinct preferences on news topics, and therefore the dynamic interest

on news articles may vary a lot. In addition, many news recommendation systems cannot

address the so-called “cold-start” problem. In order to verify the performance of our pro-

posed algorithm on different user groups, we separate the selected users into three groups

based on their reading habits. Suppose a user reads N news articles per day, then the three

groups are: (i) N ≤ 20 (25%); (ii) 20 < N ≤ 50 (38%); (iii) N > 50 (37%). We apply

different algorithms on these three users groups with top @10, top @20 and top @30 rec-

ommended news, and record the F1-score respectively. Here, the comparison base includes

four existing approaches of different frameworks: [DDGR07] (Goo, collaborative filtering),

[LDP10b] (ClickB, content-based), [CP09] (Bilinear, probabilistic model) and [LCLS10]

(Bandit, hybrid). Table 6.1 shows the comparison results. It demonstrates that our system

PENETRATE can achieve a reasonable recommendation result when it is subject to the

“cold-start” problem because our proposed method considers the group behavior instead

of individual behavior when finding the general topics that the user might be interested in;

in other words, even if the given user is a new user, his/her profile can be enriched by the

profiles of users similar to the given user.
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6.4 Conclusion

In this chapter, a novel personalized news recommendation system, PENETRATE, is pro-

posed to provide attractive news reading lists to online readers. Our system takes into

consideration the reading behaviors of both individual user and a group of users when per-

forming recommendation. The group behavior shows us the general topics that the user

might be interested in, whereas the individual behavior provides us personalized informa-

tion for further filtering news articles. Extensive empirical results demonstrate the efficacy

of our system.

The system can be improved in terms of both accuracy and efficiency. In particular,

the time cost of ensemble hierarchical clustering (as introduced in Section 6.2.1) can be

further reduced by carefully design, e.g., utilizing distributed frameworks or Map-Reduce

programming model. We also plan to incorporate the temporal information into the rec-

ommendation paradigm (as introduced in Section 6.2), i.e., the recommendation should be

biased to more recent preference of online users.
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CHAPTER 7

Topic III: application in disaster management domain

Business closures caused by disasters can cause millions of dollars in lost productiv-

ity and revenue. A study in Contingency Planning and Management shows that 40% of

companies that were shut down by a disaster for three days failed within 36 months. Thin

margins and a lack of a well-designed and regularly tested disaster plan can make com-

panies, particularly small businesses, especially vulnerable[ZST+10]. We believe that the

solution to better disaster planning and recovery is one where the public and private sec-

tors work together to apply computing tools to deliver the right information to the right

people at the right time to facilitate the work of those working to restore a communi-

tys sense of normalcy. While improved predictive atmospheric and hydrological models

and higher quality of building materials and building codes are being developed, more

research is also necessary for how to collect, manage, find, and present disaster informa-

tion in the context of disaster management phases: preparation, response, recovery, and

mitigation[HCL+10, McE].

In the United States, the Federal Emergency Management Agency (FEMA) has recog-

nized the importance of the private sector as a partner in addressing regional disasters. The

State of Florida Division of Emergency Management has created a Business and Industry

Emergency Support Function designed to facilitate logistical and relief missions in affected

areas. Four counties, Palm Beach, Broward, Miami-Dade, and Monroe, which constitute

the Southeastern population of South Florida and include over 200 000 business interests,

are developing Business Recovery Programs to help facilitate faster business community

recovery through information sharing and collaboration.

Disaster management researchers at Florida International University have collaborated

with the Miami-Dade Emergency Operations Center (EOC), South Florida Emergency

Management and industry partners including Wal-Mart, Office Depot, Wachovia, T-Mobile,
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Ryder Systems, and IBM to understand how South Florida public and private sector en-

tities manage and exchange information in a disaster situation. The efficiency of shar-

ing and management of information plays an important role in the business recovery in a

disaster[SLD+08]. Users are eager to find valuable information to help them understand

the current disaster situation and recovery status. The community participants (the disaster

management officials, industry representatives, and utility agents) are trying to collabo-

rate to ex- change critical information, evaluate the damage, and make a sound recovery

plan. For example, it is critical that companies receive information about their facilities,

supply chain, and city infrastructure. They seek this information from media outlets like

television/radio newscasts, employee reports, and conversations with other companies with

which they have a relationship. With so many sources of information, with different lev-

els of redundancy and accuracy, possibly generated by a variety of reports (structured and

unstructured), it is difficult for companies to quickly assimilate such data and understand

their situation.

We have learned that a large-scale regional disaster may cause a disruption in the normal

information flow, which in turn affects the relationships between information producers and

consumers. Effective communication is critical in a crisis situation. What is not very well

known is how to effectively discover, collect, organize, search, and disseminate real-time

disaster in- formation.

Our study of the hurricane disaster information management domain has revealed two

interesting yet crucial information management issues that may present similar challenges

in other disaster management domains. The first issue is that reconstructing or creating in-

formation flow becomes intractable in domains where the stability of information networks

is fragile and can change frequently. However, important information networks often carry

and store critical information between parties, which dominates the flow of resources and

information exchanges. The consequence is that the ability and the efficiency of commu-
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nication degrade once critical networks are disrupted by the disaster and people may not

have alternative paths to transfer information. For example, once power is disabled and un-

interruptable power supplies fail after a hurricane, computing and networking equipment

will fail unless preventative measures are taken. However, maintaining a fuel-consuming

generator is not always possible.

Another issue is the large volume of disaster situation information. Reading and assimi-

lating situational information are very time consuming and may involve redundant informa-

tion. Thus, to quickly reassemble or create information flows for multiparty coordination

activities during disaster situations, technologies that are capable of extracting informa-

tion from recent updates, delivering that information without conflict or irrelevance, and

representing preferential information are needed.

This research is mainly focused on the second issue. Research in disaster management

addresses the needs and challenges of information management and decision making in

disaster situations[BBP+09, BBPK08, LDP+10a]. We have developed an understanding of

those needs for hurricane scenarios. The information delivery should support users com-

plex information needs tailored to the situation and the tasks; and the information should

be synthesized from heterogeneous sources and tailored to specific contexts or tasks at

hand. It should be summarized for effective delivery and immediate usefulness for making

decision.

7.1 Challenges

The approaches and the tools that are used for information sharing vary based on the task

and scale of the participating agencies or the types of information exploration platforms.

Commercial systems, such as WebEOC[Web] and E-Teams[ET] used by Emergency

Management departments located in urban areas, can access multiple resources. A Disas-

ter Management Information System developed by the Department of Homeland Security
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is available to county emergency management offices and participating agencies to provide

an effective reports/document sharing software system. The National Emergency Man-

agement Network[Net] allows local government to share resources and information about

disaster needs; The RESCUE Disaster Portal is a web portal for emergency management

and disseminating disaster information to the public[HCL+10]; The Puerto Rico Disaster

Decision Support Tool is an Internet-based tool for disaster planners, responders, and re-

lated officials at the municipal, zone, and state level for access to a variety of geo-referenced

information [Too].

Efforts, such as GeoVISTA [MRJ+11], facilitate the information distribution process

in disasters. GeoVISTA monitors tweets to form situation alerts on a map-based user in-

terface according to the geo-location associated with the tweets. Such a system applies

geographic information sciences to scientific, social, and environmental problems by ana-

lyzing geospatial data [MRJ+11].

These useful situation-specific tools provide query interfaces, and GIS and visualiza-

tion capabilities to simplify the users interaction and convey relevant information. The

primary goal of these systems are message routing, resource tracking, and document man-

agement for the purpose to support situation awareness, demonstrate limited capabilities

for automated aggregation, data analysis, and mining[HCL+10].

Through careful study of existing disaster information management systems and close

cooperation with domain experts and local departments, we have identified four key design

challenges for disaster information sharing platforms and tools.

1. Effective techniques to capture the status information: Participants need to commu-

nicate status through many channels, including email, mailing lists, web pages, press

releases, and conference calls. It is desirable to capture such status information when

it is available and to prevent redundant reporting. To facilitate the reuse of such ma-

terials, users should be able to update status information via unstructured documents
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such as plain text, Adobe PDFs, and documents. It is necessary to identify the useful

information in the documents.

2. Effective and interactive information summarization methods: It is important to build

a summarized view to support under- standing the situation from reports. Multi-

document summarization provides users with a tool to effectively extract important

and related ideas of current situations. Previous text summarization techniques gave

users a fixed set of sentences based on the user query. An interactive summarization

interface is needed to help users navigate collected information at different granular-

ities, and locate their target information more efficiently.

3. Intelligent information delivery techniques: Data can be collected through different

channels and may belong to different categories. During disaster preparation and

recovery, users do not have the time to go through the system to find the in- formation

they want. Structured information can help people make decisions by providing them

with actionable and concrete information representation and exploration. However,

navigating large datasets on a mobile device is particularly inefficient. An interactive

tabular interface can help users filter useful information by adaptively changing query

conditions and user feedback.

4. Dynamic community generation techniques: In information sharing tasks, identify-

ing a group of recipients to which a certain type of information is conveyed can

improve the efficiency of communication. In addition, identifying how participants

interact with these communities in a disaster situation may reveal information help-

ful in a recovery scenario. User recommendation techniques can automatically and

interactively generate potential recipients for different pieces of information. In addi-

tion, user recommendation techniques can help to dynamically organize user groups

according to various information sharing tasks.
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We created an information-rich service on both web-based and mobile platforms in

the disaster management domain to address the design challenges. In particular, to ad-

dress the first challenge, we apply information extraction to automatically extract the status

information from documents. To address the second challenge, we apply hierarchical sum-

marization to automatically extract the status information from a large document set and

also provide a hierarchical view to help users browse information at different granularities.

To address the third, we create a user interface capability called the dynamic dashboard

to improve information quality to match users interests, and use document summarization

techniques to give users fast access to multiple reports. In addition, a dynamic query form is

designed to improve information exploration quality on mobile platforms. It captures users

interests by interactively allowing them to refine and update their queries. To address the

fourth challenge, for community discovery, we adopt spatial clustering techniques to track

assets like facilities, or equipment, which are important to participants. The geo-location of

such participants can be organized into dynamic communities, and these communities can

be informed about events or activities relevant to their spatial footprints. For user recom-

mendation, we use transactional recommendation history combined with textual content to

explore the implicit relationship among users.

7.2 Data-driven techniques for disaster information management

7.2.1 Spatial clustering with constraints

Spatial data clustering identifies clusters, or densely populated regions, according to some

distance measurement in a large, multidimensional data set [TSK05b, Han05]. Many spa-

tial clustering techniques [ZFLW02, EKSX96, ZL02b] have been developed for identifying

clusters with arbitrary shapes of various densities and with different physical constraints. In

practice, communities formed by geographically related entities can be of various shapes.
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So we extend DBScan [EKSX96], a well- known density-based clustering algorithm, which

is capable of identifying arbitrary shape of clusters, to generate dynamic communities.

We consider the method of spatial clustering with constraints [ZST+10]. Generally,

there are three types of constraints [HKP06]: 1). Constraints on individual objects: Such

constraints are non-spatial instance level constraints that can be preprocessed before per-

forming clustering algorithms. 2). Constraints as clustering parameters: Such constraints

are usually confined to the algorithm itself. Usually, user-specified parameters are given

through empirical studies. 3). Constraints as physical obstacles: Such constraints are

tightly intertwined with clustering process. It is clear that physical obstacles are such con-

straints which prevent two geographically close entities from being clustered together. In

real case, the bridge, highway and rivers are of this type. We focus on object constraints and

physical constraints. Object constraints: We have two ways to obtain object constraints:

1) users submit formatted reports through report interface. Those reports are immediately

recorded in the database; 2) our system extracts entity status from reports. For example,

Table 7.1 shows the information extracted from Emergency Operational Center (EOC) in-

ternal reports, which can be used as object constraints.

Service Time Status
Miami-Dade County Oct 24, 2005 Close

Public Schools Oct 24, 2005 Close
Rail Service Oct 22, 2005 6:30 p.m. Open

Miami International Airport Oct 22, 2005 6:30 p.m. Open
... ... ...

I-94 North Entry Oct 26 - 28, 2005 Close
Hurricane Evacuation Center Oct 23, 2005 afternoon Close

Table 7.1: Information extracted from the EOC reports

Obstacle constraints: Polygon is a typical structure in spatial analysis to model ob-

jects. Obstacles modeled by a polygon can be represented as a set of line segments after

performing polygon reduction [ZL02a].
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Figure 7.1: Hierarchical representation of spatial clustering with constraints.

Figure 7.1 shows the communities generated by clustering all open facilities and com-

panies in Miami with the constraint: “I75 closed.” In order to deal with un- balanced size

of clusters, we provide users with an interactive mechanism to track the subcommunity

information within a large size community. Further clustering process will be trig- gered in

the runtime when a user selects a larger community and wants to see the cluster informa-

tion within such a commu- nity at a finer granularity. By using this mechanism, users can

obtain clusters with different granularities and more meaningful results. Figure 7.1 shows

the interactive clustering results within the largest cluster.

7.2.2 User recommendation

To formalize user recommendation service, an interaction or transaction is defined as the

process of a user sharing a report with one or more other users [ZST+11]. So, the reports

sharing transaction database can be treated as a hypergraph with each node representing a

registered user and a set of edges created at the same time from one node to a set of nodes

representing an occurred transaction.
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There are three important factors associated with each edge: Time: The time that the

transaction happened. It indicates the importance of recency. In general, the more recently

a transaction happens, the more important the report is to those users involved. Direction:

The relation of an interaction. An edge pointed from node A to node B indicating that

A shares some information with a set of users including B. The direction indicates that

the shared information is more important to the sender than to receivers. Textual Content:

Each transaction is associated with some certain textual content, so the content of an edge

means that someone thinks such content is important or related to some group of users. In

practice, a personalized user recommendation requires the algorithm to identify potential

users who have frequent and active interactions with the sender and are also interested in

some certain topics. In completion of two recommendation tasks, we extend both [CC08]

and [RBDD+10] by taking the direction, timeliness and textual content of the interaction

into consideration to generate: 1) a suggested user list for specific report and 2) a suggested

user list for specified seeds (users).

Figure 7.2: Transactional user group.

There could be multiple transactions associated with a specified user and each trans-

action involves a group of users, as shown in Figure 7.2. Even though transactions may
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include the same sender and receivers, they are treated as unique in the transactional hy-

per graph since they are associated with unique timestamps. Despite the textual content of

each transaction, the contribution of each group made to current user seeds can be easily

evaluated by Interaction Rank proposed in [RBDD+10].

To build the user profile, we consider textual content in all transactions related to the

user. Carvalho[CC08] introduced a centroid vector-based representation which aggregates

all related documents to build a user profile. In our method, we consider transaction direc-

tions and assign document sending weight Ws or receiving weight Wr respectively. We use

term frequency-inverse document frequency (TF-IDF) transformation to represent textual

content as a vector. So the user profile can be represented as:

profile(u) = Ws ·
∑
d∈S(u)

tfidf(d) +Wr ·
∑
d∈R(u)

tfidf(d), (7.1)

where tfidf(d) is defined as

tfidf(d)i = TFIDF (d)ti, (7.2)

where t = time(now)−time(n)
λ

indicates an over-time exponential decay of each document’s

contribution. S(u), R(u) are sets of documents which sent and received by u respectively.

So, for a report d, user u s preference to this report can be simply generated by computing

the cosine similarity between the users profile and the TF-IDF vector of d as:

preference(u, d) = cos(profile(u), tstfidf (d)). (7.3)

Practically, user profile is stored separately and will not be updated in each calculation.

Typically, it will be updated when there is new event announced or regularly every few

days.

We extended the friend-finding algorithm proposed in [RBDD+10] to generate a list

of user recommendations by aggregating the groups contribution to a user and considering
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Figure 7.3: Suggesting user routine
Input: u, the user; d, the report; S, the seeds
Output: R, recommended user list

1: G← GetTransactionlGroups(u)
2: for group g ∈ G do
3: for user c ∈ G, c 6∈ S do
4: if c 6∈ R then
5: R[c]← 0
6: end if
7: R[c]← R[c] +GroupScore(c, S, g, d)
8: or R[c]← R[c] + CommunityScore(c, S, g)
9: end for

10: end for

the relevance between users and reports. Algorithm is described in Figure 7.3. Score of

each user in the list represents the interaction preference with respect to the given user and

report

The group score or community contribution used in From the algorithm described in

Figure 7.3, the interaction preference of a user is the aggregated value of the contribution

that each transaction made to the user. There are two types of contribution measurements

with respect to different tasks. We use group score and community score to represent

contributions for report sharing and community user recommendation respectively.

The group contribution GC described below represents the contribution that a user

group contributes on the user. There are two situations considered, 1) In order to suggest

users related to a document, we consider the preference (similarity) between the document

and a user; 2) In order to help user form a meaningful group, we consider the similarity

between users. We defined GC as an aggregated score of users’ preferences to a specific

document considering the direction and timeliness of each interaction.

For the first situation, we use similarities between each user in a group with report d:

GC(d, g) = Ws ·
∑

i∈O(u,g)

s(i, d)t +Wr ·
∑

i∈I(u,g)

s(i, d)t, (7.4)
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where s(i, d) =
∑

u∈i preference(u, d).

For the second situation, we simply modified the GC(d, g) as GC(c, g) and s(i, d) as

GC(d, g) =
∑
u∈i

cos(profile(u), profile(c)), (7.5)

to calculate similarity without document information. In both situations, O(u, g) and

I(u, g) are sets of sending and receiving interactions/transactions which user u was in-

volved.

Recommending a report to group of users involves historic recommendation trans-

actions and the reports textual content. The score that a transaction contributes to a user is

the aggregation of preferences of a group of users to the given report:

GroupScore(c, S, g, d) =

 GC(d, g) if S ∩ g 6∈ φ;

0 otherwise.

Recommending users to form communities involves historic transactions without tex-

tual information. The score that a transaction contributes to a user is the aggregation of

similarities between the user and users in the group:

CommunityScore(c, S, g) =

 GC(c, g) if S ∩ g 6∈ φ;

0 otherwise.

By specifying a couple of users as seeds, our recommendation components can dynam-

ically generate more users related to the given textual content and list of users with high

concurrence.

7.3 System development

We designed and implemented a web-based prototype of a Business Continuity Informa-

tion Network (BCiN) that is able to link participating companies into a community net-

work, provide businesses with effective and timely disaster recovery information, and
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facilitate collaboration and information exchange with other businesses and government

agencies. We also designed and implemented an All-Hazard Disaster Situation Browser

(ADSB) system that runs on Apples mobile operating system (iOS), and iPhone and iPad

mobile devices. Both systems utilize the data processing power of advanced informa-

tion technologies for disaster planning and recovery under hurricane scenarios. They can

help people discover, collect, organize, search, and disseminate real-time disaster informa-

tion [ZST+10, HCL+10]. This study introduces a unified framework that systematically

integrates the different techniques developed in [ZST+10] and [ZST+11]. The idea is

that such a framework can be utilized when dealing with different systems or applications

separately (e.g., BCiN and ADSB), and hopefully can be easily applied to other scenarios

having critical information sharing and management needs.

7.3.1 Business continuity information network (BCiN)

BCiN is a platform of information sharing, integration, extraction, and processing for dis-

aster management and recovery. It is also a data mining solution for disaster management

and recovery that is able to process and analyze the data from diverse and heterogeneous

information sources of different types (categorical events and continuous data) with dif-

ferent formats (structured and unstructured: database records, document news, reports)

[ZST+10]. BCiN system demo is shown in Figure 7.4.

Based on observations we have made during our preliminary research, we have identi-

fied several key problems that inhibit better information sharing and collaboration among

both private and public sector participants for disaster management and recovery. In this

project, we will focus on these problems. 1. How can the system quickly capture the status

report information? Participants will communicate status reports through many channels,

including direct emails, mailing lists, web pages, press releases, conference calls. It is de-

sirable to capture such status information the minute it is available and prevent redundant
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Figure 7.4: BCiN system components.

reporting. To facilitate the reuse of such materials, users can upload status information in

the form of unstructured documents such as plain text, Adobe PDFs, and Microsoft DOC.

It is thus necessary to identify the useful information in the documents.

2. How can the system effectively understand the situation from a large collection of

reports? In larger organizations, or in cases where there is a large accumulation of compa-

nies in an area, like a corporate park, reports about a particular area can be redundant. It is

important to build a summarized view to understand the situation users are interested from

these reports.

3. How can we automatically capture user interests and effectively deliver the relevant

information to the users? The status reports are collected through many different channels

and are concerned about different categories. During disaster preparation and recovery,

users typically don’t have the time and patience to go through the system to find the infor-

mation they want.
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4. How can we take advantage of the community information for disaster recovery?

Participating companies and organizations interact in different communities, such as being

members of the same industry sector, or using the same shipping company. Identifying

how participants interact with these communities in a disaster situation is very important

since it may reveal information that would be helpful in a recovery scenario.

BCiN system overview

Figure 7.5: BCiN system architecture.
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The BCiN system allows company users to submit reports related to their own business,

and government users to make announcements on the public issues. To collect more in-

formation during the disaster, BCIN can monitor the news published on the websites and

takes the news as its input. Like traditional information systems, these reports and news,

and the status information of entities they contain can be retrieved and accessed by queries.

For example, reports can be viewed according to alert categories or geo- locations, and re-

sources can be viewed according to status or usages. Furthermore, BCIN not only displays

users-submitted information but also conducts necessary and meaningful data processing

work. BCIN makes recommendations based on the current focus and dynamically adapts

based on the users interests. BCIN summarizes reports and news to provide users with brief

and content-oriented stories, preventing users from being troubled when searching in huge

amount of information. By introducing the concept of Community, BCIN offers users a

hierarchical view of important reports or events around them.

In this system, we discuss the following four main information processing and represen-

tation components: Information Extraction, Dynamic Dashboard, Report Summariza-

tion, and Dynamic Community Generation. These four components utilize and develop

data mining and machine learning techniques and apply them to disaster management and

recovery. The system architecture is shown in Figure 7.5.

Information Extraction: As a data pre-processing component, we adopt sequence tag-

ging and classification methods to extract the structured information from text to integrate

different input without a unified format. The detailed approaches used for information

extraction are presented in Chapter 5.

Dynamic Dashboard: In order to improve the relevance of information to match the

users interests we have created a user interface capability called the Dynamic Dashboard.

The dynamic dashboard analyzes user interactions such as what kinds of reports the par-

ticipant has submitted and viewed and automatically recommends similar information to
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display on the dashboard. The dynamic dashboard provides with the users a convenient

and fast approach to obtain the disaster information that they probably want during the

emergent time. The dynamic dashboards content is personalized with the concerns of dif-

ferent users. The main contributions of the dynamic dashboard lie in two parts. 1) It

automatically removes the redundant companies reports, news and other information by

clustering methods. 2) It ranks the information by both the relevance to the current user

and the importance of information. The details is beyond the scope of my dissertation.

Report Summarization: the BCIN system provides users a report summary which is

generated from multiple reports to show the updated changes about the process of the dis-

aster. In the summarization process, structured information extracted from text and stored

in the database is used to generate the summary to reflect the latest and changed status of

an entity. Details of summarization approaches are beyond the scope of my dissertation.

Community Generation: Participating companies and organizations interact in differ-

ent communities, such as being members of the same industry sector, or using the same

shipping company. Identifying how participants interact with these communities in a dis-

aster situation is very important since it may reveal information that would be helpful in a

recovery scenario. Using spatial relationship techniques we can track assets like facilities,

or equipment, which are important to the participants. The geolocation of such participants

can be organized into dynamic communities, and these communities can be informed about

events or activities relevant to their spatial footprints. By generating dynamic communities,

users can directly select those events happening around them and make more efficient and

accurate decision. We adapt spatial clustering in an interactive way to provide users a multi-

level view of related communities. We apply spatial clustering with constraints to generate

communities that are geographically related, the details are described in Section 7.2.

These components are tightly integrated to provide a cohesive set of services and con-

stitute a holistic data-driven solution for disaster management and recovery.
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(a) News List. (b) Display Single News.

(c) Share News with Community. (d) Community Generation.

Figure 7.6: ADSB system components.
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7.3.2 All-hazadous disaster situation browser (ADSB)

ADSB is a collaborative solution on mobile platform designed for information sharing,

integration, extraction, and processing. It can help the user efficiently identify, organize,

and deliver important information. In ADSB, registered users can submit reports by typing

plain texts as well as attach resources of other formats such as PDF and Doc. The system

users can also tag those reports to manage their interested information or post comments

to interact with other users. ADSB provides hierarchical summaries generated from user

specified keywords to briefly capture important information. Also, a set of suggested query

forms helps the users efficiently refine the query results. At last, users can also organize

their important friends into groups according to different information management tasks.

Figure 7.6 illustrates the major components of the system. A video demonstration 1 accom-

panying the dissertation is available for obtaining details of system functionalities.

During prototyping ADSB to integrate those critical features into the mobile platform,

we have identified the following three key tasks to fully utilize the advantages and overcome

the limitations of major mobile devices.

1. Design and develop effective and interactive information summarization methods

to help users understand large collection of reports. It is typically difficult for read-

ers to extract useful information from a large quantity of documents. Multi-document

summarization provides users with a tool to effectively extract important and related

ideas of current situations. However, previous text summarization techniques gave

users a set of sentences based on user query. The summarization is fixed once the

query is determined. Note that mobile devices are generally with a small display and

limited input capabilities. An interactive summarization interface is needed to help

users navigate collected information at different granularities, and locate their target

information more efficiently

1http://users.cis.fiu.edu/ lzhen001/demo/demo.htm
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2. Design and develop intelligent information delivery techniques to help users quickly

identify the information they need. The data is collected through many different

channels and belongs to different categories. During disaster preparation and recov-

ery, users do not have the time and patience to go through the system to find the

information they want. Structured information can be of important value to help

people make decisions by providing them with actionable and concrete information

representation and exploration. However, navigating the large result set on the mo-

bile device is particularly inefficient. An interactive tabular interface can largely help

users filter useful information by adapting changing query conditions and user feed-

backs.

3. Design and develop dynamic community generation techniques for reports recom-

mendation and user group organization. In information sharing tasks, identifying a

group of recipients to which a certain type of information is conveyed to can highly

improve the efficiency of communication and gain valuable feedback. But on mo-

bile device, managing the groups of friends within the limited display often makes

user miss highly related friends. User recommendation techniques can offer a user

such convenience by automatically and interactively generating potential recipients

for different pieces of information. In addition, user recommendation techniques

can help users effectively and dynamically organize user groups according to various

information sharing tasks.

ADSB system overview

ADSB adopts the open source REST (REpresentational State Transfer) framework named

Restlet which is a lightweight, comprehensive and fully Java implemented web architecture

model designed for both server and client Web applications[Wik, Fie00]. The implemen-

tation of the ADSB API is entirely HTTP-based and follows CRUD (Create, Read, Update
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and Delete) rules by specifying a corresponding HTTP response code. As a Restful re-

source, ADSB API supports both XML and JSON formats. Due to the simplicity and

flexibility of Restlet framework, ADSB API allows us to: 1) Conveniently interact with

multiple information domains; 2) Quickly create components and functions based on infor-

mation management processes; 3) Improve end-user programmability and configurability;

4) Can be easily released to third party clients to embed our data service into different

application.

Figure 7.7: ABSB system architecture.

The above-mentioned system information processing and representation functionalities

are integrated with the following three critical modules: Hierarchical Summarization,
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Dynamic Query Form, and User Recommendation. The system architecture is shown in

Figure 7.7.

Hierarchical Summarization: ADSB system provides users with reports summaries

which are generated from multiple reports. The Affinity propagation method is applied

on the sentence similarity graph to build hierarchical summaries in an agglomerative way.

The exemplar generated by affinity propagation for each sub- cluster can be used as a

summary of that cluster. Details of summarization approaches are beyond the scope of this

dissertation.

Dynamic Query Form: After obtaining document graph and attribute graph which

represent relationships among document set and attribute set respectively, we iteratively

calculate similarities between documents and attributes separately by running the random

walk model. The suggested query condition can be generated based on each given docu-

ment and previously selected attributes. Details of dynamic query form is beyond the scope

of this dissertation.

User Recommendation: ADSB provides an interface for users to share a single report

with other people. Such sharing transactions are good indications of users preferences and

can help us identify meaningful users groups. We utilize the transactional hyper-graph and

the textual content to generate the suggested user list by ranking the interaction preference

of each user based on the given report and the selected user seeds. The details are described

in Section 7.2.

These modules are tightly integrated to provide a cohesive set of services and constitute

a holistic effort on developing a data- driven solution for disaster management and recovery.

7.3.3 Disaster situation browser (SitRep)

Disaster Situation Reporting System (Disaster SitRep), shown in Figure 7.8, is essentially

a disaster information collecting, integration, and presentation platform. It is implemented

134



to address three critical tasks that can facilitate information acquisition, integration and

presentation by utilizing domain knowledge as well as public and private web resources for

major disaster recovery planning and management [ZST+12].

Figure 7.8: Disaster SitRep system components.

The following three key tasks have been identified to fully utilize the advantages and

overcome the shortcomings of traditional general search and information management plat-

form that have never been applied to disaster management domain.

1. Design and develop effective and dynamic concept hierarchy generation and reuse

methods in disaster management domain to help the domain experts, the crawler

and search engine behave efficiently in situation. Concept hierarchy, as means

of formalizing and sharing knowledge, provides domain experts and knowledge en-

gineers support for modeling specific domain of the world and can be applied in

various areas to implement intelligent knowledge and information management sys-

tem. However, building the hierarchy from scratch is a costly process that requires

massive human labor, so automatically improving concept hierarchy generation and
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reuse becomes a challenging but critical task. Combining existing hierarchy with

concepts extracted from Semantic Web contents largely helps to extend and enrich

existing structural concepts in a given domain.

2. Design and develop intelligent focused web crawling techniques to manage the

data acquiring process and to increase the information coverage and relevance in

disaster domain. Heterogeneous data collected from various sources bring difficul-

ties to assimilate information at different levels. The strategies for general purpose

search engine will lead to many irrelevant web pages being indexed and also the

seeds set will be expanded unexpectedly. Intelligent crawling strategies are needed

to systematically control the crawling process to guarantee the indexed web contents

with high quality and relevance. Also the given seeds can be expanded to a certain

level and finally converge to a good seeds list. On the other hand, the query results

are required to be personalized to remove duplicity and increase diversity.

3. Design and develop data integration techniques for disaster events identification

and extraction. In disaster situation, many recovery processes are running in a con-

fused mass. Undergoing activities and important situations are hard to detect from

many information channels in unformatted patterns. How to understand the informa-

tion and organize useful knowledge in a unified manner becomes especially helpful

for government officials, disaster management agents, business continuity staff, and

even public users suffer from disorders during disaster recovery phases. After getting

related information from the web, particular techniques need to be designed to inte-

grate the raw data into certain format that are ready to be used by the search engine

and topic visualization modules.
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Disaster SitRep system overview

Figure 7.9: Disaster SitRep system architecture.

The complete disaster management domain vertical search engine will be decomposed into

3 major components shown in Figure 7.9:

Taxonomy Generation: Based on our cooperation with domain experts, we initial-

ize fundamental disaster taxonomy from disaster expertise. As the system keeps running,

more web contents are crawled and extracted from unforeseen sources and new disaster

terminologies are dynamically generated and are appended to the existing taxonomy. We

propose a semi-supervised hierarchical clustering algorithm to enrich and modified previ-

ous taxonomy. Details of taxonomy generation and extension approaches are discussed in

Section 5.1 in Chapter 5.
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Foucsed Crawling: Our focused crawler is implemented to discover more disaster

information by intelligently traversing the web contents based on their relevance to ongoing

disasters. Usually, the more a web page is related to a certain topic, the higher probability

it contains more resources (including hyperlinks to other web pages or possibly relevant

concepts) in the same domain. The disaster taxonomy in the previous stage can be utilized

to classify web pages into various disaster categories. In general, there are two levels of

judgments that help scoring the relevance of a page:

• Web Page Classifier: The classifier adopts hierarchical classification strategy to au-

tomatically categorize a crawled web page into different aspects according to the

disaster taxonomy or simply report that current web page is irrelevant to any disaster

topic.

• Queue Prioritizer: From the categorization results, the focused crawler adjusts the

priority of each web page in the queue to guarantee that the most related web resource

will be accessed earliest during the crawling process.

Combining these two functionalities, the focused crawling module attempts to assign

the most relevant web page with the highest score to make sure such resource can be down-

loaded earliest. By properly designing those two parts, the crawler can access more related

web resources by accessing fewer web pages. Also, as we crawl more disaster related con-

tent, it can largely contribute to extend our current taxonomy by including more concepts.

Details are discussed in Section 5.2 in Chapter 5.

Event Extraction: Textual documents and situation reports crawled from the websites

do not usually provide actionable information immediately, such as time, location, status,

etc. The replication of information from various resources also challenges the search engine

to provide highly related and diversified content to users. To gain further insight about the

disaster event rather than a collection of textual documents, we need a domain- oriented

skeleton for each type of disasters. The domain- oriented skeleton is the set of structural
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attributes that we try to extract from disaster documents. This part is beyond the scope of

this disseration.

7.4 System operation and evaluation

Through a series of interviews with public and private sector partners we identified the

specific information both side could share and needed as part of their preparedness and

recovery processes. The system then functionally established four key capabilities: Mes-

saging, Reporting, Resources, Situational Browsing, so we can do things like alert a user

via messages that a particular resource has been reported available at a local business. The

proposed enhancements to the base system we have discussed in this chapter. The system

provides new ways to connect reports, with resources, and the people/communities that

need it.

FIU has spent over $600K in the development of the application and has received over

$400K in sponsored research or industry donation. The system is monitored 24/7 via scripts

that verify application, database, web server, and hardware availability. The system is man-

aged in a revision control system and is run through a test suite that validates key function-

ality such as report submission, field validation, and role based access control. Over 100

companies (local and national) and government agencies in the south Florida area are uti-

lizing the system,working closely with County emergency managers to collaborate on their

mutual interest of disaster preparedness, response and recovery. The private sector bene-

fits by receiving timely, accurate, information which impacts business operations and has

the ability to report in situational information regarding disaster impact and infrastructure

needs which are a priority for their business resumption. The public sector benefits by help-

ing the business community receive and better understand disaster related information and

can use disaster related situational reports from private sector to make better assessment of

disaster impact.
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Before the deployment of the BCIN, in a disaster situation, simultaneous reports from

thousands of participants would overwhelm participants, making it very difficult to assess

the status without dedicating a significant amount of time by all parties to process this

potentially huge volume of information.

Using the proposed information extraction and report summarization techniques, the

flooding status of an important commerce area such as Dadeland can be determined even

if there are 1,000 companies providing status information. For instance, if these Dadeland

based companies each logs into the system and enters a Flood report, or uploads a relevant

document that contains relevant information, in an unstructured format, such as flooding

area, depth, and public safety issues (nearby canals, down powerlines). The exercise has

shown that the proposed techniques are able to identify critical common features of the

flooding and summarize these, providing situational reporting in the Dynamic Dashboard.

Further, if many of these companies are displaced by the damage, Dynamic Community

Generation can inform community members about logistical concerns or assistance oppor-

tunities available.

Up to now, BCIN has been exercised at Miami-Dade County Emergency Management

for the hurricane disaster management and recovery for three times. Miami-Dade, Florida

is a very concentrated urban area (4th largest in the US), with tens of thousands of com-

mercial concerns in a 25 square mile area. Miami-Dade County Emergency Management

is interested in assisting this large, diverse business ecosystem to prepare and recovery

quickly from hurricane impact.
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Date Description of the Exercise
Jun. 01 2009 In Florida Dept. of Emergency management’s Statewide

Hurricane Exercises, BCiN was utilized in a scenario where
Miami-Dade County Emergency Management Business
Recovery Desk facilitated the logistics to deploy portable
ATMs at Shelters and PODs in Miami-Dade County.

Jun. 29 2009 In Maimi-Dade UASI exercise, BCiN supported communi-
cating and collaborating with several companies that partic-
ipated in the event as observers.

Aug. 20 2009 In a full scale company BCiN training, about 30 companies
were given injects to provide information to resolve differ-
ent information requests.

May 10 2010 In Maimi-Dade Dept. of Emergency Management’s
Statewide Hurricane Exercise, out systems were responsi-
ble for disseminating and responding to injects during the
source of the exercise for both government and company
users.

Jul. 29 2010 In Miami-Dade company exercises, over 50 company atten-
dees used our systems for a training exercise.

May 12 2011 In the county of West Palm Beach exercise, we demon-
strated the system to WPB Dept. of Emergency Manage-
ment and companies.

Table 7.2: Evaluation Exercises.

Our system evaluation process consists of presenting the system to emergency man-

agers, business continuity professionals, and other stakeholders for feedback and perform-

ing community exercises. The exercises involve a real-time simulation of a disaster event

integrated into an existing readiness exercise conducted each year. This evaluation exposes

information at different time intervals and asks the community to resolve different scenarios

by using the tool. The evaluation is a form of a table-top exercise in which injected infor-

mation provides details about the current disaster situation and specifies potential goals and

courses of action. Participant use the system to gather information to assess the situation

and provide details about the actions they will take. We gather information about what in-

formation they found to derive their conclusions (or lack thereof). This information allows

us to better understand how those techniques improve the information effectiveness.
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Table 7.2 describes the exercises. In a regional disaster such as a hurricane, business

continuity professionals are under extreme pressure to execute their continuity of operation

plans because many of the usual sources of information and services about the commu-

nity and supply chain are completely disconnected, sporadic, redundant, and many times

lack actionable value. The system focuses user input and collaboration around actionable

information that both public and private sector can use.

To validate the usability and performance of our system, the participants and the EOC

personnel at Miami-Dade participated in the questionnaire session after the exercise. A set

of ten questions was designed to evaluate our system where nine of them are multiple choice

questions with a five-level scale (strongly agree, agree, not sure, disagree, and strongly

disagree) and the last one is an open-ended question. Some of the multiple choice questions

are: Are you able to identify related reports that you are interested in? Are you able to

identify the correct modules for your tasks? Are you able to switch between different

modules? Are the system generated summaries useful? The open-ended question is about

feedback and suggestions from the users. On average, about four EOC personnel and 30

participants attended each exercise. The evaluation demonstrated that most of participants

are satisfied with the performance of the tools. Specifically, seven out of nine multiple

choice questions received “strongly agree” or “agree” from over 90% of the participants,

implying a high level of satisfaction with our system.

The feedback from our users is positive and suggests that our system can be used not

only to share the valuable action- able information but to pursue more complex tasks like

business planning and decision making. There are also many collaborative missions that

can be undertaken on our system, which allows public and private sector entities to leverage

their local capacity to serve the recovery of the community. We summarized the feedback

as follows.

1) Positive feedback: a) the system is easy to use; b) re-lated reports are well orga-
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nized based on personalized user groups; and c) reports summarization is representative

and interesting.

2) Some suggestions: a) related multimedia information, including images and video,

could be shown during navigation; b) report summaries could be organized based on some

points of interests.

7.5 Conclusion

We identified four key design challenges to support multi-party coordination during disas-

ter situations. We proposed a unified framework that systematically integrates the different

techniques that are developed in our previous work [ZST+11, ZST+10]. Such a framework

can be utilized when dealing with different systems or applications separately (e.g., BCiN

and ADSB), and they are essentially collaborative platforms for preparedness and recovery

that helps disaster impacted communities to better understand what the current disaster sit-

uation is and how the community is recovering. The system evaluation results demonstrate

the effectiveness and efficiency of our proposed approaches.

During the system implementation and assessment process, the users provided sugges-

tions, limitations and possible enhancements. Our future efforts will be focusing on the

following tasks: developing efficient tools to automatically crawl related information from

public resources including news portals, blogs, and social Medias; capturing the current

users interests and construct appropriate query form; and understanding users intends to

provide them with actionable answers to their information inquiries.
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CHAPTER 8

Conclusion and future work

In this dissertation, several algorithms on domain taxonomy generation based on en-

semble and semi-supervised hierarchical clustering are discussed and important vertical

search engine components including focused crawler, information extraction and user in-

terest modeling are provided. Those implemented techniques can be used to build a domain

specific, intelligent, and personalized search engine system.

Particularly, to generate taxonomy efficiently, we introduced and discussed a framework

for ensemble hierarchical clusterings based on descriptor matrices and a semi-supervised

hierarchical clustering framework based on ultra-metric dendrogram distance. Three im-

portant components of the framework are studied, including Dendrogram Selection, Den-

drogram Description and Dendrogram Combination. The triple-wise relative constraints

are introduced, particularly for hierarchial clustering, to describe the merge preference

among instances. Our contributions include the following two aspects:

• We propose two ensemble selection schemes based on tree distances, investigate five

different dendrogram descriptor matrices, and develop a novel method for fitting an

ultra-metric from the aggregated descriptor matrix. Our descriptor matrices based

framework can be naturally generalized to ensemble both partitional clustering and

hierarchical clustering results as partitional clustering results can be easily repre-

sented using distance matrices.

• Two techniques are developed to solve semi-supervised hierarchical clustering prob-

lem. The optimization-based technique minimizes the distance between the original

dissimilarity matrix and the target ultra-matrix using the ultra-metricity and relative

constraints. The transitive dissimilarity based technique takes those relative con-

straints into the ultra-metric transformation process.
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There are several avenues for future work. First, techniques for scaling up the ensemble

process to large-scale datasets will be investigated. Second, our studies show that selecting

a relatively smaller subset is likely to produce better ensemble results. One interesting

question is how to determine the ensemble size. Another interesting yet related direction

is that rather than picking representative dendrograms, we can associate every generated

dendrogram with a weight. So when considering the ensemble, dendrograms with larger

weights can contribute more than dendrograms with smaller weights. Third, another aspect

of interest is to provide a formal analysis on cluster separation enhancement using transitive

dissimilarity.

To capture user’s interests, we implement a novel personalized news recommendation

system, PENETRATE, to provide attractive news reading lists to online readers. Our sys-

tem takes into consideration the reading behaviors of both individual user and a group of

users when performing recommendation. The group behavior shows us the general topics

that the user might be interested in, whereas the individual behavior provides us personal-

ized information for further filtering news articles. Extensive empirical results demonstrate

the efficacy of our system.

The system can be improved in terms of both accuracy and efficiency. In particular,

the time cost of ensemble hierarchical clustering (as introduced in Section 6.2.1) can be

further reduced by carefully design, e.g., utilizing distributed frameworks or Map-Reduce

programming model. We also plan to incorporate the temporal information into the rec-

ommendation paradigm (as introduced in Section 6.2), i.e., the recommendation should be

biased to more recent preference of online users.

Finally, we apply techniques in disaster information management domain. We identi-

fied four key design challenges to support multi-party coordination during disaster situa-

tions. We proposed a unified framework that systematically integrates the different tech-

niques that are developed in our work [ZST+11, ZST+10]. Such a framework can be
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utilized when dealing with different systems or applications separately (e.g., BCiN and

ADSB), and they are essentially collaborative platforms for preparedness and recovery that

helps disaster impacted communities to better understand what the current disaster situa-

tion is and how the community is recovering. The system evaluation results demonstrate

the effectiveness and efficiency of our proposed approaches.

During the system implementation and assessment process, the users provided sugges-

tions, limitations and possible enhancements. Our future efforts will be focusing on the

following tasks: developing efficient tools to automatically crawl related information from

public resources including news portals, blogs, and social Medias; capturing the current

users interests and construct appropriate query form; and understanding users intends to

provide them with actionable answers to their information inquiries.
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