
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-20-2014

Formal Modeling and Analysis Techniques for
High Level Petri Nets
Su Liu
sliu002@fiu.edu

DOI: 10.25148/etd.FI14071134
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Liu, Su, "Formal Modeling and Analysis Techniques for High Level Petri Nets" (2014). FIU Electronic Theses and Dissertations. 1522.
https://digitalcommons.fiu.edu/etd/1522

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1522&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1522&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1522&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1522&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1522?utm_source=digitalcommons.fiu.edu%2Fetd%2F1522&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

FORMAL MODELING AND ANALYSIS TECHNIQUES FOR HIGH LEVEL

PETRI NETS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Su Liu

2014

To: Dean Amir Mirmiran
School of Computing and Information Science

This dissertation, written by Su Liu, and entitled Formal Modeling and Analysis
Techniques for High Level Petri Nets, having been approved in respect to style and
intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Shu-Ching Chen

Peter J Clarke

Jinpeng Wei

Armando Barreto

Xudong He, Major Professor

Date of Defense: June 20, 2011

The dissertation of Su Liu is approved.

Dean Amir Mirmiran
School of Computing and Information Science

Dean Lakshmi N. Reddi
University Graduate School

Florida International University, 2014

ii

© Copyright 2014 by Su Liu

All rights reserved.

iii

DEDICATION

To my parents and my girlfriend.

iv

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my advisor Professor Xudong

He for his excellent and persistent guidance and caring in the last six years. He

offered me a great atmosphere for doing research: not only he can always provide

a solution to me when I have a research problem but also he guides me to find

the solution with great patience. Without his help this dissertation will never be

finished.

I also want to thank all of my dissertation committee members Professor Shu-

Ching Chen, Professor Peter J Clarke, Professor Jinpeng Wei and Professor Ar-

mando Barreto for their questions and suggestions from different angles and appre-

ciate their patience to help me and encourage me to finish my PhD study.

Besides, I want to thank Reng Zeng and Zhuo Sun for their great help as research

companions and as roommates. I can always discuss problems in research and in

life with them.

Last but not least, I have to thank my parents and my girlfriend for supporting

me all the time.

v

ABSTRACT OF THE DISSERTATION

FORMAL MODELING AND ANALYSIS TECHNIQUES FOR HIGH LEVEL

PETRI NETS

by

Su Liu

Florida International University, 2014

Miami, Florida

Professor Xudong He, Major Professor

Petri Nets are a formal, graphical and executable modeling technique for the spec-

ification and analysis of concurrent and distributed systems and have been widely

applied in computer science and many other engineering disciplines. Low level Petri

nets are simple and useful for modeling control flows but not powerful enough to

define data and system functionality. High level Petri nets (HLPNs) have been de-

veloped to support data and functionality definitions, such as using complex struc-

tured data as tokens and algebraic expressions as transition formulas. Compared to

low level Petri nets, HLPNs result in compact system models that are easier to be

understood. Therefore, HLPNs are more useful in modeling complex systems.

There are two issues in using HLPNs - modeling and analysis. Modeling concerns

the abstracting and representing the systems under consideration using HLPNs, and

analysis deals with effective ways study the behaviors and properties of the resulting

HLPN models. In this dissertation, several modeling and analysis techniques for

HLPNs are studied, which are integrated into a framework that is supported by a

tool.

For modeling, this framework integrates two formal languages: a type of HLPNs

called Predicate Transition Net (PrT Net) is used to model a system’s behavior and

a first-order linear time temporal logic (FOLTL) to specify the system’s properties.

vi

The main contribution of this dissertation with regard to modeling is to develop a

software tool to support the formal modeling capabilities in this framework.

For analysis, this framework combines three complementary techniques, simula-

tion, explicit state model checking and bounded model checking (BMC). Simulation

is a straightforward and speedy method, but only covers some execution paths in

a HLPN model. Explicit state model checking covers all the execution paths but

suffers from the state explosion problem. BMC is a tradeoff as it provides a certain

level of coverage while more efficient than explicit state model checking. The main

contribution of this dissertation with regard to analysis is adapting BMC to analyze

HLPN models and integrating the three complementary analysis techniques in a

software tool to support the formal analysis capabilities in this framework.

The SAMTools developed for this framework in this dissertation integrates three

tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchi-

cal structural modeling and property specification, and PIPE+Verifier for behavioral

verification.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Motivation . 1
1.2 Contributions . 3
1.2.1 Modeling . 5
1.2.2 Analysis . 5
1.2.3 Tools - PIPE+, SAMAT and PIPE+Verifier 6
1.2.4 SAMTools: A Tool Set for Formal Modeling and Analysis of PrT Nets 6
1.3 Outline . 8

2. BACKGROUND . 10
2.1 An Overview to Petri Nets . 10
2.2 Formal Definitions . 11
2.2.1 Low Level Petri Net . 11
2.2.2 Predicate Transition Net . 12
2.2.3 A PrT Net Model . 14
2.2.3.1 Dining Philosophers Problem . 14
2.2.3.2 Modeling the 5-Dining Philosophers Problem in Low Level Petri Nets 15
2.2.3.3 Modeling the 5-Dining Philosophers Problem in PrT Net 15
2.3 Nondeterminism in PrT Nets . 16

3. RELATED WORK . 17
3.1 High Level Petri Net Tools . 17
3.1.1 Colored Petri Nets Tool . 17
3.1.2 ALPiNA . 17
3.1.3 Neco . 19
3.2 Symbolic Model Checking Tools . 19
3.2.1 Alloy . 19
3.2.2 Java Path Finder . 19
3.2.3 CBMC and SMT-CBMC . 20
3.2.4 MCMT: A Model Checker Modulo Theories 20
3.3 Software Architecture Modeling and Analysis Frameworks 20

4. MODELING . 23
4.1 Modeling with PrT Nets . 23
4.1.1 Behavior Modeling . 23
4.1.1.1 A Net Graph . 24
4.1.1.2 Place Type (Token Type) . 24
4.1.1.3 Transition Conditions . 25
4.1.1.4 Arc Label . 27
4.1.1.5 Declarations: . 27

viii

4.1.1.6 Tokens and Abstract tokens . 28
4.1.1.7 Place Bound . 29
4.1.2 Property Modeling . 29
4.1.2.1 Temporal Formulas . 31
4.1.2.2 Defining Properties . 32
4.1.3 PIPE+ Tool . 32
4.1.3.1 PIPE . 33
4.1.3.2 PIPE+: Extension on PIPE . 35
4.1.4 Modeling In PIPE+ . 41
4.1.4.1 Shared Memory Model . 41
4.1.4.2 Token Ring . 41
4.1.4.3 Abstract State Machine Model . 41
4.1.4.4 A Seabed Rig Robotic System . 43
4.2 Hierarchical Modeling . 44
4.2.1 The SAM Framework . 45
4.2.2 The Foundation of SAM . 46
4.2.3 Hierarchical Structure Modeling . 48
4.2.4 Behavior Modeling . 49
4.2.4.1 Modeling Modulely and Hierarchically 49
4.2.4.2 An Example . 49
4.2.4.3 Communications among Components 50
4.2.5 Property Modeling . 50
4.2.5.1 Composition Level Properties . 50
4.2.5.2 System Level Properties . 50
4.2.6 Modeling in SAMAT Tool . 51
4.2.6.1 Functional View of SAMAT . 51
4.2.6.2 Design View of SAMAT . 51
4.2.6.3 SAM Hierarchical Model in SAMAT 53
4.2.6.4 Inheritance Class Design in SAMAT 55
4.2.6.5 FOLTL Editor . 55
4.2.6.6 PIPE+ . 56
4.2.6.7 XML Transformer . 57
4.2.6.8 An Example - Alternating Bit Protocol 57

5. ANALYSIS . 61
5.1 Simulation . 61
5.1.1 Graphical Simulation . 62
5.1.2 Transition Occurrence Scheduling Algorithm 63
5.1.2.1 Fairness of Picking a Token to Fire 63
5.1.2.2 Instantiating a Transition Constraint 64
5.1.2.3 Enabling and Firing a Transition . 64
5.1.3 Parser and Interpreter . 65
5.1.4 The Complete Simulation Process . 66

ix

5.1.5 Simulating 5-Dining Philosophers Problem in PIPE+ 67
5.2 Explicit State Model Checking . 68
5.2.1 Overview . 68
5.2.2 The SPIN Model Checker and PROMELA 69
5.2.3 Translating PrT Net Models to PROMELA 70
5.2.4 FOLTL Formula . 74
5.2.5 Translation Correctness . 74
5.2.6 Verification using SPIN . 75
5.2.7 Checking 5 Dining Philosophers Problem 76
5.2.8 Checking Seabed Rig Robotic Workflows 76
5.2.9 Checking Alternate Bit Protocol in SAMAT 77
5.3 Bounded Model Checking . 78
5.3.1 Overview . 78
5.3.2 Satisfiability Modulo Theories . 80
5.3.2.1 Z3 . 81
5.3.3 General Idea of BMC using SMT Solver 81
5.3.4 Represent PrT Nets in SMT Context 82
5.3.4.1 Define States in SMT Context: . 83
5.3.4.2 Define the Initial State . 84
5.3.4.3 Define Transitions in SMT Context 84
5.3.4.4 Define Properties in SMT Context: 85
5.3.5 A Translation Example - Dining Philosophers Problem 85
5.3.6 Building the Error Path . 88
5.3.7 Bounded Model Checking in PIPE+Verifier 90
5.3.7.1 Selected Benchmark Problems from Model Checking Contest @ Petri

Nets . 90
5.3.7.2 Dining Philosophers Model . 90
5.3.7.3 Shared Memory Model . 91
5.3.7.4 Token Ring . 92
5.3.7.5 Abstract State Machine Model . 92
5.4 A Refinement of Bounded Model Checking 93
5.4.1 Motivation . 93
5.4.2 Generate a Reduced Formula . 95
5.4.2.1 Preliminary Definitions . 96
5.4.2.2 Preprocessing By Locking Transitions 98
5.4.2.3 A Pattern . 99
5.4.3 The Correctness of the Pattern . 101
5.4.4 Error Path . 103
5.4.5 Experiment on Reduced Model: Shared Memory Model 104
5.4.6 Experiment on Reduced Model: Seabed Rig Robotic Workflow 105
5.5 Analyzing Hierarchical Models . 106
5.5.1 Generating An Integrated Flat Petri Net Model 106

x

6. MODELING AND ANALYSIS IN SAMTOOLS 109
6.1 SAMTools . 109
6.1.1 An Overview of SAMTools . 110
6.2 An Example of Using SAMTools: Mondex 111
6.2.1 Mondex . 111
6.2.2 Modeling Mondex in SAMTools . 112
6.2.2.1 Structure Modeling . 112
6.2.2.2 Behavior Modeling: Concrete Purse 112
6.2.2.3 Property Specification . 115
6.2.3 Analyzing Mondex in SAMTools . 116
6.2.3.1 Simulation . 116
6.2.3.2 Explicit State Model Checking . 118
6.2.3.3 Bounded Model Checking . 118

7. CONCLUSION AND FURTHER RESEARCH 120
7.1 Conclusion . 120
7.2 Future Work . 122
7.2.1 Extension on Timed Petri Nets . 122
7.2.2 Extention with an Adaptor . 123

BIBLIOGRAPHY . 124

VITA . 137

xi

LIST OF FIGURES
FIGURE PAGE

1.1 Overall Structure of Framework . 4

1.2 Tools for Our Framework . 7

1.3 An Overview of SAMTools . 8

2.1 An illustration of a transition (firing rule): (a) The marking before firing
the enabled transition t. (b) The marking after firing t, where t is
disabled. 13

2.2 5-Dining Philosophers Problem in Low Level Petri Net 15

2.3 5-Dining Philosophers Problem in PrT Net 16

4.1 Model Dining Philosophers Problem in PIPE+: The Net Structure . . . 25

4.2 Define Place Type in PIPE+ . 26

4.3 Define Transition Pickup in PIPE+ . 27

4.4 Specify Initial Marking in Place Philosophers_Thinking in PIPE+ . . . 30

4.5 Specify Initial Marking in Place Chopsticks in PIPE+ 30

4.6 Specify Initial Marking in Place Philosophers_Eating in PIPE+ 30

4.7 Package Diagram for PIPE . 33

4.8 The Hierarchy of PetriNetOjbect Classes 35

4.9 Extensions on DataLayer for PIPE+ 36

4.10 Structure of Class Token . 37

4.11 Shared Memory Model . 42

4.12 Token Ring Model . 42

4.13 Abstract State Machine Model . 43

4.14 Robots motion sequences workflow . 44

4.15 PrT Net Model for the Roboic Motion Workflow 45

4.16 Hierarchical SAM Specification Model 47

4.17 The SAM Hierarchical Model . 48

xii

4.18 The Functional View of SAMAT . 52

4.19 The Design View of SAMAT . 54

4.20 The Architecture of SAM Model Package 55

4.21 ABP Model in SAMAT . 58

4.22 Behavior Model of ABP’s Component Sender 58

4.23 Behavior Model of ABP’s Component Channel 59

4.24 Behavior Model of ABP’s Component Receiver 59

5.1 An Enabled Transition Formula Calculation Process 65

5.2 Simulate Dining Philosophers Problem in PIPE+ 67

5.3 Model Checking PrT Nets Process . 69

5.4 Model Checking 5-Dining Philosophers Problem 76

5.5 Model Checking the ABP in SAM Tool 77

5.6 BMC HLPN Process . 80

5.7 SMT context for bounded model checking 82

5.8 An inner view of dining philosophers problem in HLPN model 83

5.9 State definitions of 5-dining philosophers in SMT logic 86

5.10 Initial State of 5-Dining Philosopher in SMT Logic 86

5.11 State Transition of 5-Dining Philosophers in SMT Logic 87

5.12 Property Definition of 5-Dining Philosophers in SMT Logic 88

5.13 A simple model . 95

5.14 A Preprocessing Pattern . 99

5.15 Generating Analysis Model by Horizontal Connection 107

6.1 The Functional View of SAMTools . 110

6.2 Mondex Composition Model in SAM . 112

6.3 Concrete Purse Model in PrT Nets . 113

6.4 Place Type and Initial marking of ConPurse 114

xiii

6.5 Place Type and Initial Marking of Msg_in and Msg_out 114

6.6 Transition startFrom’s Formula . 115

6.7 Simulate Mondex Model . 117

6.8 A Simulation Run of Mondex in SAMTools 117

6.9 Explicit State Model Checking Mondex in SAMTools 118

6.10 Bounded Model Checking Mondex in SAMTools 119

xiv

CHAPTER 1 INTRODUCTION

1.1 Motivation

Nowadays, hardware and software systems are becoming larger than ever and their

complexities are growing even faster. However, errors are intolerable in some of

the critical systems, such as astronomy control systems, electronic commerce, high-

way and air traffic control systems, and medical instruments. In 2010, the giant

automaker Toyota’s reputation dropped significantly due to its stuck accelerator

problem. Toyota has to recall vehicles up to 2.3 million in USA, 1.8 million in

Europe and 75000 in China [5]. In order to prevent these accidents caused by

subtle errors, reliable hardware and software systems are desired. Furthermore, as

the involvement of such systems into our lives increases, producing reliable systems

becomes urgent.

Formal methods have been developed to tackle this problem [29]. Formal meth-

ods are mathematically based languages, techniques and tools for specifying and

verifying systems. A method is formal if it has sound mathematical basis [114].

Formal methods build a mathematically rigorous model of a complex system and

use mathematical proof to ensure correct behavior of the system. Unlike traditional

system designs that use extensive testing to test system behaviors but can only draw

limited conclusions, formal methods offer further insurance as they only accept sys-

tems that have been proved correctly [21]. Along with the development of formal

methods, some well known formal specification languages are developed, such as Z

[102], VDM [66], FSMs [80], Statecharts [52], CSP [58], LOTOS [62], Alloy[64] and

Petri Nets [91].

1

Among these formal languages, Petri nets are a promising tool for modeling and

analyzing information processing systems that are characterized as being concur-

rent, asynchronous, distributed, parallel, nondeterministic, and/or stochastic. Petri

nets play a unique role for its graphical modeling and dynamic executable charac-

teristics. A Petri net model is a directed bipartite graph that consists with simple

graphical elements, such as places, transitions and directed arcs and they use tokens

to simulate dynamic behaviors. This dynamic semantics of Petri nets make them

powerful to describe dynamic systems and becomes widely recognized in industry.

In addition, Petri nets are a formal language that can be defined with the integration

of mathematical tools, such as state equations and algebraic equations. Thus, they

can be used by both practitioners and theoreticians and can be a bridge between

the two.

There are many types of Petri nets, which can be classified into two categories:

1. Low level Petri nets are [98] simple nets with only graphical elements such

as places, transitions, directed arcs and tokens, which are suitable to model

control flows but cannot effectively model data and functionality in complex

systems.

2. High level Petri nets (HLPNs) [6] are a more expressive formalism developed

to handle data and functionality in addition to control flows. The high level

concepts in HLPNs include complex structured data as tokens and algebraic

expressions as transition conditions.

As data is getting critical in our real world system and can influence the behavior

of the system, HLPNs become more popular in modeling high level systems such

as software systems. Compared to low level Petri nets, HLPNs use less graphical

elements to represent richer information and are more closely matched to real world

2

systems, thus using HLPNs simplifies our modeling process by building a more

understandable and more compact system model. Therefore, HLPNs become more

pragmatic in modeling complex and data oriented models.

In this dissertation, we introduce a framework for HLPNs modeling and analysis.

An overall structure of this framework is shown in Figure 1.1. The framework can

be applied to model a complex system formally in HLPNs and to analyze the models

through different automatic methods. The framework is based on the integration of

Predicate Transition Net (PrT Net) [53] (a class of HLPNs) and first-order linear

time temporal logic (FOLTL). PrT Nets are used to model the behaviors of a system

and FOLTL is used to specify its properties. Besides, the model in this framework

can be analyzed through various automatic analysis methods, including simulation,

explicit state model checking by traditional model checkers [67] and bounded model

checking through SMT solvers [26, 11]. The bounded model checking method for

PrT Nets is also refined by removing redundant subformulas. In addition, we present

our prototype tool set, SAMTools, not only from an user’s view but also from a

developer’s view so that the tool set becomes open source to the formal method

worldwide research community.

1.2 Contributions

The main contribution of this dissertation is a framework and a supporting software

tool set that can model a system in PrT Nets formally and analyze the model

automatically using three alternative methods.

3

Figure 1.1: Overall Structure of Framework

4

1.2.1 Modeling

For modeling, we developed a software tool PIPE+ [83] with a graphical editor that

allow a user to model a system into PrT Nets graph with drag and drop actions.

And the high level concepts can be specified on the net graph directly. In addition,

the system’s propertys can also be integrated into the model with PIPE+’s graphical

editor.

For hierarchical modeling, we developed another tool SAMAT [84] that can

support SAM, a framework for hierarchical software architecture modeling. Using

SAMAT modeling editor, models are drawn via drag and drop actions and specified

through components and connectors. SAMAT supports modeling in multiple layers

of components thus models can be specified hierarchically using a top down manner.

SAMAT also integrates PIPE+ to develop behavior models in PrT Nets.

1.2.2 Analysis

For analysis, we integrate three methods: simulation, explicit state model checking

and bounded model checking.

1. Simulation: a simulator is developed specifically for PrT Nets that can execute

the model by randomly firing a transition or generating a transition firing

sequence. A report of the simulation is generated after each simulation;

2. Explicit state model checking: an adapter is developed to automatically con-

vert a PrT Net model into a PROMELA [60] model and then checked by SPIN

[60] model checker;

3. Bounded model checking: adapting this checking technique to PrT net with

satisfiability module theories (SMT) and developed an automatic method to

5

convert a PrT net model into a first order logic formula and then checked

by an SMT solver. This method is implemented in a software tool called

PIPE+Verifier [82]. Besides, a refinement method is developed and presented.

The refinement method aims to produce a reduced model that preserves reach-

ability properties of the original model but removes redundant subformulas,

thus it prevents unnecessary checking time by SMT solvers. The proof of the

equivalence under reachability properties between the original model and the

reduced model is presented.

1.2.3 Tools - PIPE+, SAMAT and PIPE+Verifier

Three independent tools are developed for supporting the techniques described

above:

1. PIPE+ is developed for PrT Nets behavior modeling and simulation;

2. SAMAT is developed for hierarchical architecture modeling and analysis with

explicit state model checking;

3. PIPE+Verifier is developed for bounded model checking PrT Net models.

Figure 1.2 presents the functionalities of our tools supported:

1.2.4 SAMTools: A Tool Set for Formal Modeling and Anal-

ysis of PrT Nets

An software tool set that integrates all the functionalities mentioned above is devel-

oped and open sourced on GIT. A high level view of SAMTools is shown in Figure

1.3.

6

Figure 1.2: Tools for Our Framework

7

Figure 1.3: An Overview of SAMTools

1.3 Outline

In Chapter 2, we first give an overview of Petri nets and its applications. We formally

define both low level and high level Petri nets and then show some examples to give

a brief idea of Petri nets.

In Chapter 3, we list some related HLPNs modeling and analysis tools, sym-

bolic model checking tools and some software architecture modeling and analysis

frameworks.

Chapter 4 describes modeling based on PrT Nets, including behavior and prop-

erty modeling. We present our tool PIPE+ [83] to implement and realize the ideas

in modeling with PrT Nets. Besides, for scalability, we also describe a hierarchical

way of modeling software architecture, which is also based on PrT Nets and soft-

ware architecture components. And we present another tool implemented by ourself

called SAMAT to do hierarchical modeling.

8

Chapter 5 describes three analysis methods to PrT Nets models, including sim-

ulation, explicit state model checking and bounded model checking. They are com-

plimentary analysis methods that have advantages to specific requirements. These

methods are all automated and supported by our tools PIPE+, SAMAT [84] and

PIPE+Verifier [82] respectively. In addition, we defined a situation to refine the

bounded model checking method on PrT Nets by solving a reduced formula and

proved the equivalence between the original model formula and reduced model for-

mula.

Chapter 6 presents a integration of our tools into a tool set called SAMTool.

Finally in Chapter 7, we summarize this dissertation, discuss the usefulness and

future improvements to this work.

9

CHAPTER 2 BACKGROUND

2.1 An Overview to Petri Nets

Petri Nets were firstly introduced by Carl Adam Petri [23]. And high level Petri nets

were proposed by Hartmann Genrich and Kurt Lautenbach [48]. According to [91],

after years of researching in Petri Nets, they became popular and can be applied to in

a lot of areas. For example, performance evaluation [8, 96], communication protocols

[37, 68], distributed software systems [45, 75], distributed database systems [94, 112],

concurrent and parallel programs [49, 71], flexible manufacturing/industrial control

systems [34, 92], discrete event systems [72], multiprocessor memory systems [88,

101], data flow computing systems [81], fault-tolerant systems [95], programmable

logic and VLSI arrays [32, 97], asynchronous circuits and structures [69, 70], compiler

and operating systems [13, 93], office information systems [43, 59], formal languages

[33] and logical program [47].

A Petri net structure consists of a finite set of places (drawn as circles), a finite

set of transitions (drawn as bars), a finite set of directed arcs (drawn as arrows), and

a set of tokens (drawn as dots) to define an initial marking. The arcs connect from

a place to a transition or vice versa, never between places or between transitions.

The places from which an arc runs to a transition are called the input places of the

transition; the places to which arcs run from a transition are called the output places

of the transition. The places can contain multiple tokens and thus are of multi set

type (or bag). A distribution of tokens over the places of a net is called a marking.

A transition may fire whenever there are enough tokens in all input places.

According to the international standard [6], a high level Petri net graph com-

prises: a net graph, place types, place marking, arc annotations, transition condition

10

and declarations. The net graph is the net structure; place types are non-empty sets,

restrict the data structure of tokens in the place; place markings are collection of

elements (data items) associated with places, called tokens; arc annotations are in-

scribed with expressions which may comprise constants variables (e.g., x, y) and

function images (e.g., f(x)); transition conditions are Boolean expressions inscribed

in; declarations comprising definitions of place types, typing of variables and function

definitions. For net execution, the most important is transition enabling. Enabling

a transition involves the marking of its input places. When an enabled transition oc-

curs, the enabling tokens from input place’s are subtracted and the resulting tokens

of the transition Boolean expression are added to the output places.

2.2 Formal Definitions

2.2.1 Low Level Petri Net

Since HLPNs are developed based on Low level Petri nets (LLPNs), we first present

a formal definition of LLPNs. The formal definition is adopted from [91].

A Petri net is a 5-tuple, PN = (P, T, F,W,M0)where :

P = {p1, p2, · · · , pm}is a finite set of places (represent as circles),

T = {t1, t2, · · · , tn}is a finite set of transitions (represent as bars),

F ✓ (P ⇥ T) [(T ⇥ P)is a set of arcs,

W : F ! {1, 2, 3, · · · }is a weight function,

M0 : P ! {0, 1, 2, 3, · · · }is the initial marking,

P \ T = ↵and P [T 6= ↵.

11

Markings are shown by placing tokens within circles. A Petri net structure

N = (P, T, F,W) without any specific initial marking is denoted by N . A Petri net

with the given initial marking is denoted by (N,M0).

The behavior of systems can be described in terms of system states and their

changes. A state of marking in a Petri net model is changed according to a transition

t 2 T is enabled and fired. A state marking sequence is denoted as ⇡ = M0M1M2 · · · .

Since the marking can only be changed by firing transition, a state transition se-

quence is denoted as ' = M0
t0�!M1

t1�!M2
t2�! · · · .

The place p 2 P from which an arc runs to a transition t is called the input

place of the transition t; the place p 2 P to which an arc run from a transition t

is called the output place of the transition t. A transition t is said to be enabled if

each input place p of t is marked with at least of w (p, t) tokens, where w (p, t) is

the weight of the arc from p to t. A firing of an enabled transition t removes w (p, t)

from each input place p of t, and adds w (p, t) tokens to each output place p of t.

Figure 2.1 illustrates a simple LLPN model and a transition firing. In Figure 2.1

(a), there are three places PH2, PO2 and PH2O, one transition t. To enable transition

t, it requires two tokens from PH2 and one token from PO2 as the weight of the arc

from PH2 to t is 2. After firing transition t, shown in Figure 2.1 (b), t consumed

two tokens from PH2 and one tokens from PO2, then produced two tokens to PH2O.

2.2.2 Predicate Transition Net

Predicate Transition Nets (PrT Nets) are a class of HLPNs defined in [55, 53]. They

are based on low level Petri nets structure N by incorporating high level definitions.

The syntax and static semantics of HLPNs defined by a tuple (HLPN = (N,Spec, ins)),

12

Figure 2.1: An illustration of a transition (firing rule): (a) The marking before firing
the enabled transition t. (b) The marking after firing t, where t is disabled.

1. where N is partial similar to low level Petri nets representing the net structure

N = (P, T, F).

2. Spec = (S,OP,Eq) is the underlying specification, and consists of a signa-

ture S = (S,OP) and a set equations Eq. The signature S = (S,OP) includes

a set of sorts S and a family OP = (OPs1,...,sn,s) of sorted operations for

s1, . . . , sn, s 2 S.

3. ins = (', L, R,M0) is a net inscription that associates a net element in N with

its denotation in Spec:

(a) ' is a data definition of N associates each place p.

(b) L is a label of the net represents the relation of two elements connected

with arcs.

(c) R is well-defined constraint associates each transition in T , which defined

in a first-order logic formula.

(d) M0 is an initial marking assigns a multi-set of tokens to each place in P .

13

Dynamic semantics of PrT Nets are:

1. Markings of a Petri net N are mappings M : P !MCONs.

2. An occurrence mode of N is a substitution ↵ = {x1 c1, . . . , xn cn}, which

instantiates typed label variables.

3. Given a marking M, a transition t 2 T and an occurrence mode ↵, t is enabled

at M iff the predicate is true: 8p : p 2 P. (L (p, t) : ↵) ✓M (p) ^R (t) : ↵.

4. If t is enabled at M , t may fire in occurrence mode ↵. The firing of t with ↵

returns the marking M 0 defined by M 0 (p) = M (p) � L (p, t) : ↵ [L (p, t) : ↵

for p 2 P .

5. A state transition sequence M0T0M1T1 . . .of N is either finite when the last

marking is terminal (no more enabled transitions in the last marking) or infi-

nite, in which each is an execution step consisting of a set of non-conflict firing

transitions.

2.2.3 A PrT Net Model

2.2.3.1 Dining Philosophers Problem

Developed by [38], Dining Philosophers problem is a famous model often used in

concurrent algorithm design to illustrate an inappropriate use of shared resources

generating deadlocks. Five philosophers are sitting at a round table around a bowl

of spaghetti but only one chopstick is placed between each pair of adjacent philoso-

phers. The philosophers are only in two states, thinking and eating. Initially, they

are in thinking state. Each philosopher must pick up chopsticks from both his left

and right sides to enter the eating state and he can only pick up the chopstick on

his left or the one on his right as they become available. A philosopher cannot enter

14

Figure 2.2: 5-Dining Philosophers Problem in Low Level Petri Net

eating state before he get both chopsticks. After he finishes eating, he needs to put

down both forks so they become available to others.

2.2.3.2 Modeling the 5-Dining Philosophers Problem in Low Level Petri

Nets

In order to see the advantage of using PrT Net, we first see the problem modeled

with low level Petri nets illustrated in Figure 2.2.

2.2.3.3 Modeling the 5-Dining Philosophers Problem in PrT Net

Figure 2.3 illustrates a 5-Dining Philosophers problem modeled in PrT Net. The

net consists of three places PPhil_Thinking, PChopsticks, PPhil_Eating and two transitions

15

Figure 2.3: 5-Dining Philosophers Problem in PrT Net

TPickup and TRelease. All the places’ token type is hinti. PPhil_Thinking and PChopsticks

are both initiated with markings that have five tokens {h0i,h1i,h2i, h3i,h4i}. TPickup’s

transition condition is p = c1^ (p+1)%5 = c2^e = p. TRelease’s transition condition

is p = r ^ c1 = r ^ c2 = (r + 1)%5.

2.3 Nondeterminism in PrT Nets

In low level Petri nets, nondeterminism is when multiple transitions are enabled

at the same state, anyone of them may fire. But in high level Petri nets, tokens

are not identical any more, in addition to the nondeterminism in low level Petri

nets, the consuming of the tokens or multiple tokens that can enable a transition

is nondeterministic. For example in Figure 2.3, TPickup may consume token {[0]}

from PPhil_Thinking and {[0], [1]} from PChopsticks, and TPickup may also consume

token {[1]} from PPhil_Thinking and {[1], [2]} from PChopsticks... The nondeterminism

results in different markings in PPhil_Eating.

16

CHAPTER 3 RELATED WORK

3.1 High Level Petri Net Tools

In [4], there are a number of Petri Net tools developed in the past decades. Unfor-

tunately, many of the tools described in the database as well as in literature are no

longer maintained or available and few of them support HLPNs, especially the high

level Petri net definitions and notations proposed in 2001 international standard [6].

Model Checking Contest @ Petri nets (MCC) [73, 74] is held annually to assess Petri

nets based formal verification tools and techniques. Some of the tools participating

in MCC are quite actively maintained tools. We select some well maintained tools

and list them in Table 3.1.

Some of them are further introduced below.

3.1.1 Colored Petri Nets Tool

Colored Petri Nets (CPNs) [65] are a kind of high level Petri nets that use tokens

with typed values and functional programming language Standard ML [107] to define

the guards of transitions. CPN Tools [1] is an industrial strength tool that is widely

used to analyze modeled systems through simulation and model checking. CPN

Tools integrates a model checking engine that explicitly searches the whole state

space of a model.

3.1.2 ALPiNA

ALPiNA [61] is a model checker for algebraic Petri nets (APNs), which use algebraic

abstract structured data type (AADTs) to define data and term equations to define

17

Table 3.1: Tools for High Level Petri Nets
Name Petri Net Type

ALPiNA Algebraic Petri Nets, Timed Petri Nets
CPN Tools Colored Petri Nets

Cunf Contextual Net
GreatSPN High Level Petri Nets, Stochastic Petri

Nets, Timed Petri Nets
ITS-Tools (Time) Petri Nets, ETF, DVE, GAL

LoLA High-level Petri Nets, Place/Transition
Nets

Maria High LevelPetri Nets, Modular High level
nets, Labelled state transition systems

Neco High Level Petri Nets
PEP High Level Petri Nets, Place/Transition

Nets, Timed Petri Nets
PetriSim High Level Petri Nets, Place/Transition

Nets, Timed Petri Nets
PROD High Level Petri Nets, Place/Transition

Nets
Sara Place/Transition Nets

Renew Object-oriented PNs, High Level Petri
Nets, Place/Transition Nets, Timed Petri

Nets
YAWL High Level Petri Nets

18

transition guards. To symbolically model checking APNs, ALPiNA uses an extended

binary decision diagrams (BDDs) to represent state space.

3.1.3 Neco

Neco [46] is a Unix toolkit that checks the reachability and other properties of high

level Petri nets. Neco supports high level Petri nets annotated with Python objects

and Python expressions. For model checking, Neco explicitly builds state space .

3.2 Symbolic Model Checking Tools

3.2.1 Alloy

Alloy analyzer [64] is a software tool for analyzing a system defined in Alloy specifica-

tion language. The analysis in Alloy is based on reducing a model to a propositional

formula and leveraging a SAT solver to solve the formula.

3.2.2 Java Path Finder

JPF [111] is a verification and testing environment for Java that integrates tech-

niques such as model checking, program analysis and testing. Despite its state

compression technique, JPF still cannot avoid the state explosion problem espe-

cially in terms of memory and time in checking high level data structures such as

array.

19

3.2.3 CBMC and SMT-CBMC

C Bounded Model Checker (CBMC) [27] is an SAT based bounded model checker on

C programs. SMT-CBMC [11] is an SMT based model checker that has significant

improvement over the traditional SAT based model checkers. SMT-CBMC encodes

sequential C programs into more compact first-order logic formulas that can be

solved by SMT solvers.

3.2.4 MCMT: A Model Checker Modulo Theories

MCMT [50] is a fully declarative and deductive symbolic model checker for safety

properties of infinite state systems whose state variables are arrays. The idea is to

use classes of quantified first-order formula to represent an infinite set of states of

the system so that the computation of pre-images boils down to symbolic manip-

ulations. By performing backward reachability search procedure, fix-point can be

found accurately by recursively calling underlying SMT solver. However, limitations

on the MCMT tool are found when states contain complex data structures that are

hard to represent and when state space getting too large that cause failure while

calculating fix point.

3.3 Software Architecture Modeling and Analysis Frameworks

In the past decades, many software architecture modeling and analysis frameworks

were proposed and their supporting tools were built. Some of them are:

1. Wright [9] is an architectural specification language that uses CSP [58] to

specify the interactions among components as well as temporal properties.

20

Wright leverages FDR as its model checking engine that uses compression

functions for reducing the number of states and transitions.

2. Darwin/FSP [85] is a software architecture framework for modeling and ana-

lyzing behaviors of architectures of concurrent and distributed systems. The

software architecture is specified in finite state process (FSP) algebra in terms

of labeled transition systems and FLTL [51] that express fluent-based proper-

ties with LTL. In addition this framework uses LTSA tool for model animation

and model checking (deadlock detection and liveness properties).

3. CBabel is a declarative language that describes software architecture with

modules and connectors. CBabel ADL is mostly used to model evolvable and

reconfigurable architectures and focus only on safety properties. CBabel ADL

specifications can be translated to Maude [42] input language and checked by

Maude model checker.

More related frameworks are included in some comparative studies[121, 40]. Ta-

ble 3.2 presents a list of architecture modeling and analysis frameworks and their

supporting tools.

21

Table 3.2: Software Architecture Frameworks
Framework
Name

Hierarchical
Struc-
ture

Formalism Tool Verification
Engine

Wright No CSP Wright FDR
Darwin/FSP Yes FSP and FLTL Darwin LTSA
Archware Yes Archware ADL

and Archware
AAL

ArchWare CADP

CHARMY No State and
Sequence Diagram

and PSC

Charmy SPIN

CBabel No CBabel ADL and
LTL

CBabel Maude

Auto
FOCUS

Yes Model-based AF3 NuSMV and
Cadence SMV

PoliS No PoliS and PoliS
TL

N/A PolisMC

Fujaba Yes UML and
LTL/CTL

Fujaba UPPAAL

SAM Yes Petri Nets and
FOLTL

SAMTools SPIN, Z3

22

CHAPTER 4 MODELING

In this chapter, we present some fundamental concepts of our framework, such

as behavior modeling based on PrT Net and property specification with first-order

linear time temporal logic. We not only present the theoretical concepts of a PrT Net

model, but also use an example of 5 Dining Philosophers problem 2.3 to illustrate

the process via practical modeling leveraging a supporting tool developed by us,

PIPE+ [83].

4.1 Modeling with PrT Nets

Modeling a system is to create an abstraction of the system that can be investigated

to find defects and potential improvements. Modeling a system often requires con-

siderable knowledge and experience and very time consuming. PrT Nets [53] are a

type of HLPNs and are formally defined that are good at modeling distributed and

concurrent systems. Using PrT Nets as a foundation can facilitate the modeling

process. In addition, by leveraging high level concepts such as structured tokens

and algebraic formulas, PrT Nets are capable of modeling data-oriented systems.

4.1.1 Behavior Modeling

Behavior modeling in PrT Net includes building a low level Petri net graph and

integrating high level concepts into the net model. Since a PrT net is a class of

HLPNs, and according to [6], a HLPN comprises: a net graph, place types, place

marking, arc labels, transition condition and declarations.

23

4.1.1.1 A Net Graph

Building the net N in PrT Net is the same as that in low level Petri nets. Since N

consists of a finite set of places (drawn as circles), a finite set of transitions (drawn

as bars), a finite set of directed arcs (drawn as arrows), and a set of tokens to define

an initial marking. Directed arcs connect only between a place and a transition.

In general, places are used to describe conditions, data or resources; transitions

are used to describe events, tasks or computation steps. They can be specified

into different object depends on the specific systems. Places can only connect with

transitions by directed arcs.

For example in Figure 2.3, place PPhil_Thinking and PChopsticks are input places

for transition TPickup. PPhi_Thinking denotes a condition that which philosopher is in

thinking status and PChopsticks provides resources of available choices of chopsticks

to pick. TPickup describes an event that a philosopher in thinking status pick two

chopsticks and then enter eating status PPhil_Eating.

This net can be modeled by PIPE+ tool graphically by drag and drop actions

(Figure 4.1).

4.1.1.2 Place Type (Token Type)

The main difference between high level and low level Petri nets is that tokens are no

longer black dots, but complex structured data. Places are non-empty sets served

as container to tokens. Place type is the type of the place container that restrict

token’s data type (the data structure of tokens) in the it. In PrT Net, each place

has a place type, they can be distinct from other places.

For example, in the Dining Philosophers problem in Figure 4.1, place PPhil_Thinking

contains a set of philosophers ID, so its place type can be defined by [Int]. Figure

24

Figure 4.1: Model Dining Philosophers Problem in PIPE+: The Net Structure

4.2, shows an editing panel in PIPE+ tool that allows users to create a type with

two primitive data types, Integer and String. PPhil_Thinking’s place type is defined

as a singleton type [int].

4.1.1.3 Transition Conditions

Transition conditions control the flow of tokens. PrT Nets use a subset of first-

order logic to define transition condition formulas. Typically a formula consists

of two parts: preconditions and postconditions. Preconditions are conditions that

need to be satisfied to enable a transition; postconditions are assignments that if

preconditions are satisfied, the transition is fired that tokens are built and distributed

to related output places.

Variables in the formula are consist of variables from arc labels. Because arc

label variables are instantiated by connected tokens from connected input places,

25

Figure 4.2: Define Place Type in PIPE+

variables in transition formula can also be instantiated by arc label variables. Thus

a transition formula cannot contain any free variable that does not appear in the

connected arc labels, otherwise no instantiation values can be found for free variables

thus the calculation result is non-determined.

A transition formula is specified as a whole and does not explicitly separate its

preconditions and postconditions. However, the pre and post conditions can be

separated implicitly. Since formula variables are mapping to connected arc labels

and arcs can be differentiated with input arcs and output arcs, a clause with only

input variables (from input arc label) are preconditions and a clause with output

variables (from output arc) involved are postconditions.

The grammar for a user to build a transition formula is defined in BNF and can be

referred to Appendix 7.2.2. In the 5-Dining Philosophers Problem in Figure 4.1, the

transition TPickup specified in PIPE+ Tool transition editing panel is shown in Figure

4.3. By convention, the regular letter denotes simple variable and capital letter

26

Figure 4.3: Define Transition Pickup in PIPE+

represents a set variable, the difference of them are discussed below. In TPickup’s

formula, e and C1 are output variables, thus the clauses of them are postconditions.

4.1.1.4 Arc Label

Arc label indicates the type of variables to be instantiated with tokens. We denote

the variable on arc label as arc variable. There are two types of arc variables:

1. Simple variable: denotes the token is instantiated with one regular token from

connected place;

2. Set variable: denotes the token is instantiated with a token set from connected

place. A token set may contain 0 or more tokens;

For example in Figure 4.1, the arc variable p on the arc connect PPhil_Thinking and

TPickup is simple variable and C on the arc connect PChopsticks and TPickup is set

variable.

4.1.1.5 Declarations:

In the standard [6], declarations include the place type definitions, type definitions,

and and function definitions. In PIPE+, the declaration mechanism is realized in the

27

modeling process through defining place data types, transition condition formulas

and arc annotations.

For Dining Philosophers problem in Figure 4.1, PPhil_Thinkng defines the token in

this place means the philosopher is in thinking state, PPhil_Eating defines the token

in this place means the philosopher is in eating state and PChopsticks defines the token

in this place indicates the chopstick is in idle state and available for a philosopher

to pick up.

4.1.1.6 Tokens and Abstract tokens

As mentioned above, there are two types of arc variables in PrT Net. Similarly,

there are two types of token:

1. Regular token: we also called it token in brief. Regular token is to be instanti-

ated with simple variable in arc label. It is a tuple that constructed by different

primitive types of data such as integer or string. It often used to describe in-

dividual elements with a list of properties. For example, a student may be

defined as a token with properties [ID, Name, Gender, AccountNumber];

2. Abstract token (abToken): abstract token is to be instantiated with set vari-

able in arc label. It is a set container that has a list of tokens. Using abToken

is a little special because it instantiates a token set, the correlated transition

formula needs to use quantifier like 9 and 8. For example, a library booklist is

specified using a place Pbooks and the arc variable is B, the correlated transition

formula must be 9x 2 B or 8x 2 B, where x is a user defined variable.

However, the nested sets are flattened by duplicating some fields. For example, in a

library system, a user may borrow a list of books, so that the database (power set) in

library system is username, password, books, borrowedbook1, book2, ... that is con-

28

verted into username, password, book1, username, password, book2. This design

trades space for simplicity and can be improved in the future.

While specifying a model in PrT Net, adding tokens/abTokens to place is to

specify the initial marking M0. In modeling dining philosophers problem using our

PIPE+ Tool, we add tokens to places shown in Figure 4.4 and 4.5. In PPhil_Thinking,

tokens are integers that declared as philosophers’ ID. In PChopsticks, tokens are in-

tegers that declared as chopsticks’ ID. In the initial marking, PPhil_Eating is empty

shown in Figure 4.6.

4.1.1.7 Place Bound

Theoretically, a place is a multi-set that can contain unlimited number of tokens.

However, for analysis reason, sometimes we need to define a bound to it that limit

the maximum number of tokens in each place. In practical, every place contain has

a limit size. Thus, by leveraging model checking, these bounds limits the state space

of the model and improves the efficiency. Otherwise, the model checking method

can suffers from the state explosion problem easily.

4.1.2 Property Modeling

As the goal of our modeling is to check whether a model N satisfies property f ,

denotes as N |= f . During modeling process, properties f need to be specified. In

this framework, first-order linear time temporal logic (FOLTL) is used to specify

the properties (or constraints).

29

Figure 4.4: Specify Initial Marking in Place Philosophers_Thinking in PIPE+

Figure 4.5: Specify Initial Marking in Place Chopsticks in PIPE+

Figure 4.6: Specify Initial Marking in Place Philosophers_Eating in PIPE+

30

4.1.2.1 Temporal Formulas

Following the definitions in [56], a predicate is a boolean valued function. A predicate

p is said to be true under certain state S if SJpK is true. A transition is a special

predicates that contain primed state variables that indicates the next state, denoted

as S 0JpK. A transition relates to two consecutive states, the current state and the

next state, where the unprimed state variables refer to the current state and primed

ones refer to the next state. Thus, a transition connects the relation of two states.

Temporal logic formulas are built from elementary formulas (predicates and tran-

sitions in PrT nets) using logical connectives ¬ and ^ (and derived logical connec-

tives _,) and ,), the existential quantifier 9 (and derived universal quantifier 8)

and the temporal always operator ⇤ (and the derived temporal sometimes opera-

tor }). The vocabulary and models of FOLTL used in PrT Nets are based on the

high-level Petri net formalism and follow the approach defined in [79]. An example

FOLTL formula is ⇤((x>y)) } (b=1)), where variables are restricted to those arc

variables in the underlying PrT nets.

The semantics of temporal logic is defined on a sequence of states in the behavior

of the net model. As the behavior reflects the execution sequence of the net model,

a temporal logic formula defines the execution sequences in a net model.

Let u and v be two arbitrary, p be an n-ary predicate, t be a transition, x1, x2, ..., xn

are variables. � = JM0,M1, ...K be a behavior, we define the semantics of temporal

formulas recursively as follow:

1. �Jp(x1, x2, ..., xn)K ⌘M0Jp(x1, x2, ..., xn)K;

2. �JtK ⌘M0JtKM1;

3. �J¬uK ⌘ ¬�JuK;

4. �Ju ^ vK ⌘ �JuK ^ �JvK;

31

5. �J8x.uK ⌘ 8xJuK;

6. �J⇤uK ⌘ 8n 2 Nat�nJuK;

7. �JuUvK ⌘ 9k�kJvK ^ 80 n < k�nJuK.

A temporal formula u is satisfiable, denoted as � |= u, iff there is an execution �

such that �JuK.

4.1.2.2 Defining Properties

For example in Dining Philosophers problem, a property indicates the two neighbor

philosophers cannot eat at the same time can be specified by the following equation:

⇤¬ (marking (Eating) = Phili ^marking (Eating) = Phili+1)

4.1.3 PIPE+ Tool

To support the practical applications of Petri nets formalism, tools for designing

and executing Petri nets are necessary. Although there are many existing tools for

supporting low level Petri nets, few tools are available for high level Petri nets.

There is especially a lack of tools to support high level Petri net notation proposed

in the international standard [6]. In this section, we present a tool, called PIPE+,

to support a subset of HLPNs. PIPE+ can modeling a HLPN model graphically

with drag and drop and it provides an editor to specify high level concepts into the

graphical net, such as customized data structures and transition formulas. Besides,

PIPE+ provides a simulator for analyzing models by simulation.

PIPE+ is built upon an existing low level Petri net tool PIPE (Platform Inde-

pendent Petri Net Editor) [20] and is an open source tool and thus is available for

various enhancements from worldwide research community.

32

Figure 4.7: Package Diagram for PIPE

4.1.3.1 PIPE

PIPE [20] is a Platform Independent Petri net Editor to edit, animate and analyze

low level Petri nets, which has clear design and incorporates the latest XML Petri

net standards of storing format, the Petri Net Markup Language (PNML). It is im-

plemented in Java and can be logically divided into three major components, shown

in Figure 4.7: the graphical user interface (GUI), a layer managing the interactions

between the GUI and the modules (DataLayer), and analysis modules.

Graphical User Interface PIPE’s graphical user interface is developed using

Java Swing API as it provides full GUI functionalities and mimics the platform it

runs on. Besides, as PIPE is a cross platform application this was deemed useful for

providing a native look and feel. The GUI component includes GUIFrame, GUIView

and classes such as action, handler and widgets supporting Swing APIs. From a user

perspective, there are two major parts: Editor and Simulator.

• Editor: Users are able to edit a low level Petri net by clicking and drawing

Petri net graphical elements through the menu bar, toolbar. On the toolbar, it lists

all the Petri net element thumbnails, such as place, transition and arc, which can be

selected and added to the white canvas (tabbed pane) of the editor. Besides, these

33

added elements’ annotations and attributes can be defined by selecting one of the

elements and pop up an editing dialog box.

• Simulator: There is a switcher button between editor mode and simulation

mode. Using the simulator, a user is able to fire a random transition or fire a num-

ber of transitions randomly selected among enabled ones. The simulation process

includes subtracting tokens from input places and adding them to output places

while firing a transition. Besides, the animation history is displayed on the left

bottom of the interface frame by listing transition’s label orderly.

Internal Architecture of PIPE—The DataLayer The core component of

PIPE is the data layer, which maintains states and contains all the classes used to

represent a Petri net. Figure 4.8 shows the hierarchy of important Petri net object

classes, including Arc, Place and Transition classes inherited from PetriNetObject

because they have common variables and methods, such as id, name, location, etc.

In the data layer component, each Petri net is encapsulated by an instance of the

DataLayer class, which contains all the Petri net objects stored in a list enabling the

easy addition of new objects. It contains not only methods to access all its internal

objects and to return its internal lists, but also methods to calculate the current

markup, initial markup, forwards incidence matrix, backwards incidence matrix,

combined incidence matrix and enabled transitions.

In addition, PIPE has analysis module to do analysis and conclusions on the

properties of Petri net model, such as boundedness, liveness, reachable markings

and so on.

Formatted Input and Output PIPE is capable of saving and loading nets and

writing the Petri net data layer into a Petri net Markup Language (PNML). An

34

Figure 4.8: The Hierarchy of PetriNetOjbect Classes

Extensible Stylesheet Language Transformation (XSLT) is used to transform it be-

tween PNML and XML files.

4.1.3.2 PIPE+: Extension on PIPE

Similar to PIPE, PIPE+ is also an editor and a simulator. The editor is to model a

system visually through a graphical interface. The goal is to utilize all the benefits

that a HLPN provided with convenience. The details are presented below according

to the HLPN concept’s six elements in [6]. The simulator is no longer a simple black

dot token animation game but to manage the movement of meaningful data. We

developed a mandatory compiler with an interpreter to process token data inside

transition conditions, which are defined using restricted first-order logic. Besides, a

simulation algorithm is applied to ensure its fairness and improve its performance.

A Net Graph Since the graphical elements of a HLPN are the same as low level

ones, PIPE’s graphical editor is retained.

35

Figure 4.9: Extensions on DataLayer for PIPE+

Place Type and Place Marking The main difference between high level and

low level Petri nets is that tokens are no longer black dots, but complex structured

data. Place types are non-empty sets that restrict the data structure of tokens in

the places. The data structure is an array of basic types, such as integer and string,

and defined by user. For example, assuming a log in user account as a token has two

elements, username and password, which are represented by two basic data types,

string and integer. In a HLPN’s place, a place data type is inscribed to restrict the

data structure of tokens. In another way, the data type of tokens can be added into

the place has been already defined beforehand.

To implement the concept that tokens with data structure, a data storage system

is needed. Based on PIPE, the data layer package is modified by adding three classes:

DataType, Token, abToken (Figure 4.9).

1. DataType: The main data structure in class DataType is a list storing basic

types’ name, which is used to show what data structure the token or place

holds. The data structure consists of an array of basic types, such as string,

36

Figure 4.10: Structure of Class Token

integer, etc. For our tool, basic types are limited to strings and integers for the

simplicity but are adequate for most of applications. For the convenience of

extension on basic types, we introduce a new structure BasicType to data layer.

The structure BasicType (see Figure 4.10) includes a flag data field "Kind" to

indicate which type it is (in PIPE+, 0 represents integer, 1 represents string).

Space is allocated to both integer and string since it is undecided before the

“Kind” is defined. Further extension on basic types needs to enhance the class

BasicType by allocating extra space and redefine “Kind”.

2. Token: Class Token is added to the data layer to maintain data value. The

important field is a list storing instances of value with type of the BasicType,

see Figure 4.10. Token is a basic data storage element in the places and its

value is calculated by the transitions. The simulation process is fetching data

value from the token’s BasicType and fill the calculated result value to another

token’s BasicType.

3. Abstract Token: Since first-order logic covers quantification, the whole collec-

tion of tokens in a place need to be checked by transition condition expressions.

For example, if an expression includes “9x 2 X”, all the tokens in “X” needs

to be checked to see whether a “x” exists, so the whole collection of tokens

37

is fetched while checking enabledness of a transition. The tokens in this type

of place are defined as a power set. A new class abToken (abstract token) is

added into the data layer to store the power set. It has a field storing a list of

regular tokens with the same data type, so it also has a data type to restrict

the tokens data structure. We flatten the nested power sets by duplicating

some fields. For example, in a library system, one user may borrow a list

of books, so that the database (power set) in library system is {username,

password, books_borrowed{book1, book2,...} } is converted into {username,

password, book1}, {username, password, book2}. This design sacrifices the

space for the convenience of implementation, which can be further improved.

As a result, the places in PIPE+ stores a list of regular tokens or an abstract token

that contains a collection of regular tokens. Whether the connected transition can

fetch a regular token or an abstract token depends on the place is a power set or

not. The user can add, edit and delete tokens from places to create a net marking.

In PIPE+, a place stores tokens by List container, the place’s capacity is built as

unbounded (remember it has nothing to do with the number of different tokens that

may appear in a particular place). However, in the discussion of [57], bounded and

unbounded places have the same expressive power. A bounded place is preferable

for the reason of visualization and redundancy.

In PIPE+, copies of token are allowed to store in the same place. Since whether

the place needs to remove its copies of token depends on what the model it is, this

can be further improved by supporting an option of copy remove.

Transition Conditions and Arc Annotations Transition conditions are guards

controlling the flowing of the tokens. PIPE+ use first-order logic to define transition

condition formulas, which, syntactically, consists of variables and logic operators.

38

Variables in the formula are predicates that can be instantiated by value from input

tokens. Combined with logic operators the formula can be calculated. Semantically,

as transition is a guard to control token flows, it has to check the value of tokens

from input places and formulate new tokens conform to the output place type,

the formula consists of two parts: pre-condition and post-condition. However, in

PIPE+, the user is not supposed to separate the two conditions explicitly, because

the interpreter can differentiate them by the type of variables.

In PIPE+, arc annotations are variables to assist transition expression calcula-

tion by mapping token values to expression’s predicate variables. Arc variables are

restricted to be appeared in the connected transition expression’s variables for the

mapping. Since a transition is connected by input and output arcs and arcs are

connected to places, the predicate variables in the transition expressions are classed

into input variables and output variables. For example, in Figure 2.3, p is input

variable while e is output variable.

Unless the transition formula cannot be satisfied by the value of the tokens

fetched into symbol table, the tokens from input places (both regular token and

abstract token) are consumed. However, a power set place with an abstract token

usually has a backward arrow that makes it an output place as well, so the abstract

token is returned to the place according to the post condition of the transition

formula. In the case when the formula is unsatisfied, the currently fetched tokens

in the symbol table are not consumed, so they are returned to the input places.

• Restricted First Order Logic Transition Formula Expression: In PIPE+, it is

called restricted because the grammar we built for the tool has limitations.

Since each predicate variable has to be instantiated, the user cannot use free

variable that does not appear in the arc annotation, otherwise the calculation

result is undetermined. Also, it does not support predefined function, like

39

f(n), since the meaning of the function has to be declared beforehand, which

is equivalent to define its operations in a single logical sentence by using the

connecting operator “
V

”, which simplifies the implementation of expression

interpreter. However, the restricted version of first-order logic is still very

powerful, because it does support complex expressions, such as:

(a = b) ^ 9c 2 C((c[1] > c[2]) ^ (C 0 = C\{b} [{[a[1], a[2]]})) (4.1)

In Equation 4.1, lower case letters represent regular tokens, upper case rep-

resent power set; C’ by convention represents output variables and also is a

power set (upper letters); it further indicates the clause is a post-condition

because output variables at the left side of the equation means assignment;

c[n] means the nth element value in c’s data structure.

• Declarations: In [6], it comprising definitions of place types, typing of vari-

ables and function definitions. In PIPE+, the declarations are already in the

modeling process by defining place data types, transition condition formulas

and arc annotations.

Extensions On GUI The GUI package in PIPE mainly consists of a GUIFrame,

a GUIView, and some supporting classes. The GUIFrame is PIPE’s graphical frame

includes a menu, a toolbar and a status bar. The GUIView is the panel to draw

Petri net graphical elements. Since requirements and concepts for PrT Nets are

token storage and flow, our modification to PIPE’s GUI is focused on Petri net

elements places, transitions and arcs. The common procedure to extend PIPE’s

GUI is adding new selections on graphical elements’ property setting menu for new

features. In PIPE+, after modifying the gui.handler package for each Petri net

element class, the new selections are shown in a popup menu by right clicking a

40

Petri net element. The places now have the choices of defining data type and

editing tokens; the transitions can contain logical formulas; the arcs can be labeled

by variable key. These new features are triggered by additional selections on GUI

and used through customized panels or dialogs.

4.1.4 Modeling In PIPE+

We selected some benchmark models from Model Checking Contest @ Petri nets

(MCC) [73, 74] and other resources and modeled them in PIPE+. In the following

chapters, these model will also be analyzed.

4.1.4.1 Shared Memory Model

In [24], a shared memory model involving P processors was given. These processors

can access their local memories as well as compete for shared global memory using

a shared bus. P is the number of processors and is scalable. It can be modeled as

P number of tokens.

4.1.4.2 Token Ring

A token ring [39] model shows a system with a set of M machines connected in

a ring topology. Each machine can determine if it has the privilege (the right) to

perform an operation based on its state and its left neighbor.

4.1.4.3 Abstract State Machine Model

In [110], a method for checking symbolic bounded reachability of abstract state

machines was presented. An abstract state machine written in AsmL was trans-

41

Figure 4.11: Shared Memory Model

Figure 4.12: Token Ring Model

42

Figure 4.13: Abstract State Machine Model

lated into a logic formula checked by an SMT solver with rich background theories

including set comprehensions.

4.1.4.4 A Seabed Rig Robotic System

Seabed Rig and Energid Inc. are developing a graphical tool for constructing motion

sequences that require the cooperation for multiple robots called Rig Drill Floor

(RDF) sequences generation tool. Our tool PIPE+ have been used for assisting

detecting design errors for the generated motion sequences for several robots. It

is still an on going project as we are showing a small example of how it can be

benefited.

A workflow of two robots, Robot and Roughneck, is showing in Figure 4.14.

Each column is a workflow sequence of a robot. Atomic tasks (box) for the robots

are stacked in the appropriate columns and are executed in a FIFO manner. “Cues”

43

Figure 4.14: Robots motion sequences workflow

in the box indicates synchronization of two tasks among robots. A HLPN model is

built by PIPE+ (Figure 4.15).

4.2 Hierarchical Modeling

Although HLPNs is a compact form of low level Petri nets, it becomes difficult to

manage as the systems are getting larger and more complex. Hierarchy mechanisms

allows us to decompose the target systems into modules thus simplify our modeling

44

Figure 4.15: PrT Net Model for the Roboic Motion Workflow

process. By leveraging hierarchical modeling in PrT Nets, we are not only able to

handle systems with bigger size, but also producing a more understandable model

that easier for future development and maintenance.

SAM [113][55] is a general formal framework for specifying and analyzing software

architecture and has been developed in Florida International University for years.

SAM supports hierarchical modeling and analysis of software architecture. The

formal foundation of SAM is based on PrT Net and FOLTL, thus SAM is able to

hierarchically and modulely models and analyzes PrT Net.

4.2.1 The SAM Framework

The architecture in SAM is defined by a hierarchical set of compositions, in which

each composition consists of a set of components (rectangles), a set of connectors

(bars) and a set of constraints to be satisfied by the interacting components. The

45

component models the behavior (Petri net) and communication interfaces (called

ports, represented by semicircles). The connectors specify how components interact

with each other . The constraints define requirements imposed on the components

and connectors, and are defined by temporal logic formulas.

Figure 4.16 shows a hierarchical SAM specification model. The boxes, such as

A1 and A2, are called compositions, in which A1 is component and A2 is connector.

Each composition may contain other compositions, for example A1 containing three

compositions: B1, B2 and B3. Each bottom-level composition is either a component

or a connector and has a property specification (a temporal logic formula). The be-

havior model of each component or connector is defined using a Petri net. Thus,

composing all the bottom-level behavior models of components and connectors im-

plicitly derives the behavior of an overall software architecture. The intersection

among relevant components and connectors such as P1 and P2 are called ports.

The ports form the interface of a behavior model and consist of a subset of Petri

net places.

4.2.2 The Foundation of SAM

The foundation of SAM is based on two complementary formal notations: predicate

transition nets [48, 53] (a class of high-level Petri nets) and a first-order linear-time

temporal logic [87].

1. Predicate transition nets (PrT nets), a class of high-level Petri nets (HLPNs),

are used to define the behavior models of components and connectors. A PrT

net comprises a net structure, an underlying specification and a net inscription

[53]. A token in PrT nets contains typed data and the transitions are inscribed

with expressions as guards to move or stop the tokens.

46

Figure 4.16: Hierarchical SAM Specification Model

2. First-order linear time temporal logic (FOLTL) is used to specify the prop-

erties (or constraints) of components and connectors. The vocabulary and

models of our temporal logic are based on the PrT nets. Temporal formulae

are built from elementary formulae (predicates and transitions) using logical

connectives ¬ and ^ (and derived logical connectives _,) and ,), the ex-

istential quantifier 9 (and derived universal quantifier 8) and the temporal

always operator ⇤ (and the derived temporal sometimes operator }).

SAM supports the behavior modeling using PrT nets [83] and property specification

using the FOLTL. SAM supports structural as well as behavioral analysis of soft-

ware architectures. Structural analysis is achieved by enforcing the completeness

requirement imposed on the components and connectors within the same composi-

tion, and the consistency requirement imposed on a component and its refinement.

47

Figure 4.17: The SAM Hierarchical Model

Behavioral analysis requires the checking of system properties in FOLTL satisfied

in the behavioral models in PrT nets.

4.2.3 Hierarchical Structure Modeling

In SAMTools, the graphical editor allows users to build a model through drag-and-

drop actions of drawing and connecting components and connectors. Horizontally,

components are connected with each other through connectors and arcs. Vertically,

components can be decomposed and refined by a new layer that consists of, again,

components, connectors and arcs. The bottom level component is a PrT net cap-

turing the behavior of a subsystem. The hierarchical model stored in SAMTools is

shown in Figure 4.17. A user can model an arbitrary number of levels through this

recursive layered structure.

48

4.2.4 Behavior Modeling

4.2.4.1 Modeling Modulely and Hierarchically

The behavior of SAM model is specified modulely. Each component in SAM’s

architecture contains a PrT Net model and they can communicate with each other

through connector, so we specify PrT Net separately for each component but need

to take into account the outputs and inputs by interacting with output and input

connectors.

The behavior of SAM model is specified hierarchically. Since each component

may contain sub-components and each sub-component contains a PrT Net model,

this allows us to specify a model hierarchically either from top down direction or

from bottom up direction.

Therefore, with these mechanisms, we can decompose complex behaviors of a

big model into small behavior models and can specify the behavior model through

hierarchical layers. Besides, building a model in this way, we get a model with better

maintainability that can be easily understood and extended.

4.2.4.2 An Example

For example, in an electronic transaction system relates to two counter parties.

Each one of them should generate a request, one for send money and one for receive

money, and a communication channel needs to be built. Thus, we can model a

system’s top layer behavior with three components, counter party 1, counter party

2 and a channel. Then, for counter party 1 and 2, it has a behavior model for

generate send money request, a behavior model for receive money receiver and a

transaction verification process. For the channel, it has a behavior model for receive

49

message, processing message and send message. Therefore, all the behavior models

constructs the whole transaction behavior model.

4.2.4.3 Communications among Components

The behavior models are specified modulely in different components. They can

communicate with other components through connectors. For each behavior model

in a component, a place is defined as input interface place and mapped to the input

port of the component, a place is defined as output interface place and mapped to

the output port of the component. The port are served as window of the component

and connect connectors. Thus the behavior models from different components can

be connected through connectors. Since some properties to be analyzed may relates

to the whole system, a strategy to unite all the behavior models together is described

in Section 5.5.1.

4.2.5 Property Modeling

4.2.5.1 Composition Level Properties

Since in each composition, a property may be defined and must be satisfied regardless

of other compositions. This composition-level property specification is obtained by

conjoining the property specifications of all components and connectors.

4.2.5.2 System Level Properties

System level properties are defined regard to the whole system, so the property may

related to any place in a behavior model. Considering the system as a big model,

the system level property is specified just similar to the properties in regular model.

Before analyzing a system property, it is necessary to build the overall model by

50

connecting all the behavior models distributed in different components and layers.

The building process is explained in the Section 5.5.1.

4.2.6 Modeling in SAMAT Tool

We implemented SAMAT tool to support SAM Framework modeling and analysis.

4.2.6.1 Functional View of SAMAT

SAMAT is comprised of a modeling component, a SAM model, and an analysis

component (Figure 4.18). The modeling component has three functions: structure

modeling creates hierarchical compositions, behavior modeling specifies behaviors

of software components/connectors using Petri nets, and property modeling defines

property specifications using temporal logic. The SAM specification is a hierarchi-

cal structure integrating the results of structure, behavior, and property modeling,

which can be transformed into XML format. The analysis component contains a

translator to generate a model suitable for model checking.

4.2.6.2 Design View of SAMAT

SAMAT is a platform independent (implemented in Java) and visual software archi-

tecture modeling and analysis tool. As shown in Figure 4.19, SAMAT is designed

using the Model-Vew-Control pattern.

1. The model of SAMAT includes a hierarchical layer of SAM compositions that

builds the SAM model in Figure 4.18. It also include the functionalities of gen-

erating flat Petri net model and conjunctions of FOLTL formulas for analysis

purpose.

51

Figure 4.18: The Functional View of SAMAT

52

2. The graphical interface of SAMAT is developed using Java Swing API as it

provides full GUI functionalities and mimics the platform it runs on. It con-

sists of a SAM composition editor, a PIPE+ editor, a FOLTL editor and

an analysis displayer. The composition editor is used for modeling the SAM

compositions into a hierarchical structure; the PIPE+ editor is used for mod-

eling the behaviors of SAM model via PrT nets; the FOLTL editor is used for

defining the properties into FOLTL formulas; the analysis displayer is used for

showing the analyzing result generated by SPIN [60].

3. The controller is comprised of composition controllers, a XML transformer

and a PROMELA translator. The composition controllers provide options

to specify detailed properties of a SAM composition; the XML transformer

transforms SAMAT model into hierarchical XML format for storage purpose;

the PROMELA translator translates the generated flat Petri net model and

the conjunction of FOLTL formulas into PROMELA language, which is the

input to SPIN.

SAMAT integrates two external tools: PIPE+ [83] for behavior modeling and SPIN

[60] for model analysis.

4.2.6.3 SAM Hierarchical Model in SAMAT

SAMAT stores the SAM model in a hierarchical way. As we can see in Figure 4,

the SAM model’s data structure are in layers. In addition to the SAM composi-

tions, the top layer contains a sub-composition model called sub-layer that has the

same elements of the parent one except the bottom layer, which instead of a sub-

composition model, is a Petri nets model. Therefore, each sub-composition model

also has allocated space for its own sub-composition and a user can model arbitrarily

number of levels by this recursive layer structure.

53

Figure 4.19: The Design View of SAMAT

The Petri nets layer in the bottom of Figure 4.17 is the behavior model of its

parent composition. In this case, it is a high-level Petri net formalism modeled in

PIPE+ editor. Once a Petri net model is created, it is transformed and saved in

XML format and is appended to its parent SAM composition.

In this way, SAMAT is capable of storing hierarchical layers of the SAM ar-

chitecture model. SAMAT supports a top-down approach to develop a software

architecture specification by decomposing a system specification into specification

of components and connectors and by refining a higher level component into a set of

related sub-components and connectors at a lower level. From the SAMAT’s GUI,

each component provides options for a user to define a sub layer or a behavior model.

If the sub-layer is selected, a new tab of drawing canvas is built in the mainframe

editor with designated title of “parent name :: sub composition name”. Furthermore,

if the sub composition can be further decomposed, another new tab will be built.

If the behavior model option is selected, PIPE+ is triggered for the user to build a

54

Figure 4.20: The Architecture of SAM Model Package

behavior model using Petri nets. Therefore, the top-down decomposition process is

straightforward.

4.2.6.4 Inheritance Class Design in SAMAT

The design of the SAM model package in SAMAT must include all the SAM’s

graphical elements (i.e. components, connectors, arcs and ports). Figure 5 illustrates

the class design hierarchy diagram. For the reusability and extensibility purpose, all

of the SAM graphical elements are derived from SamModelObject class that holding

basic features of a graphical object such as position, label and handler. Furthermore,

Arc, Port and RectangleObject classes are inherited from SamModelObject, and

Component and Connector classes are inherited from RectangleObject class.

4.2.6.5 FOLTL Editor

One of the underlying formalism in SAMAT is FOLTL. The vocabulary and models

of FOLTL used in SAMAT are based on the high-level Petri net formalism and follow

the approach defined in [79]. An example FOLTL formula is ⇤((x>y)) } (b=1)),

where variables are restricted to the underlying behavior models’ arc variables. Since

in each composition, SAMAT integrates a FOLTL formula editor where a user can

specify system properties, the composition-level property specification is obtained

by conjoining the property specifications of all components and connectors. The

55

FOLTL compiler checks the syntax of a FOLTL formula and the translator generates

constraint code in PROMELA.

4.2.6.6 PIPE+

The other formalism in SAMAT is PrT nets, which are a class of high-level Petri nets.

We integrate an existing open source high-level Petri net tool PIPE+ [83] to specify

the behavior model of the SAM architecture. PIPE+ is capable of specifying and

simulating high-level Petri nets proposed in [6]. SAMAT leverages PIPE+’s editing

mode in which a high-level Petri net behavior model can be developed graphically

with dragging and dropping actions. The high-level Petri net model is comprised

of:

1. A net graph consists of places, transitions and arcs.

2. Place types: These are non-empty sets restricting the data structure of tokens

in the place.

3. Place markings: A collection of elements (tokens) associated with places. For

analysis purpose, a bound of tokens’ capacity on each place is necessary, so

that verification run on SPIN can always stop.

4. Arc annotations: Arcs are inscribed with variables that contributes to the

transition expression formula variables;

5. Transition conditions: A restricted first-order logic formula Boolean expression

is inscribed in a transition. It is called restricted because the grammar doe

not permit free variables.

With all of the above high-level Petri net concepts specified, the behavior model is

formally defined and can be verified by model checking engines.

56

4.2.6.7 XML Transformer

SAMAT transforms a SAM structure model into a XML model based on its hierar-

chical structure; and then appends the high-level Petri net XML model generated

by PIPE+ to it. In this way, the SAM structural and behavior models are complete

and are stored and loaded via XML saver and loader.

4.2.6.8 An Example - Alternating Bit Protocol

The alternating bit protocol (ABP) [106] is a simple yet effective protocol for reli-

able transmission over lossy channels that may lose or corrupt, but not duplicate

messages. It has been modeled and analyzed in [56]. ABP consists of a Sender, a

Receiver and a Channel. The Sender sends messages through lossy Channel to the

Receiver and the Receiver reply with confirm number also through the Channel.

In this section, we present how to build a model for ABP in SAMAT.

Since ABP consists of a Sender, a Receiver and a Channel, we can naturally

use three components to model them. Both Sender and Receiver connect with

Channel and use Channel to communicate, thus we connect the components with

connectors. The model is graphically built in Figure 4.21.

For each component, we need to specify its behavior models in PIPE+ graphical

editor that integrated into SAMAT. For example in Figure 4.22, the behavior model

is specified by PrT Net. The details of specifying PrT Net is the same as one

mentioned before. Besides, for analysis reason, we need to choose the place from

the behavior model for the port in the upper level component Sender as interface to

communicate with other components. We denote them port place. In Sender, the

port Accept is PAccept, the port DataOut is PDataOut and the port ActIn is PActIn.

57

Figure 4.21: ABP Model in SAMAT

Figure 4.22: Behavior Model of ABP’s Component Sender

58

Figure 4.23: Behavior Model of ABP’s Component Channel

Figure 4.24: Behavior Model of ABP’s Component Receiver

59

At last, since the connector in the top layer ABP model only pass messages but

do not modify data, so the condition formula in the connector is OutputMessage =

InputMessge. The message of connector’s arc label is instantiated by tokens from

port place.

60

CHAPTER 5 ANALYSIS

The goal of modeling a system is to investigate it more conveniently and sys-

tematically. In this chapter, we present three analysis methods in our framework

for PrT Nets models, simulation, explicit state model checking and bounded model

checking (BMC). Simulation reflects dynamic semantics of Petri Nets, which shows

a behavior of a Petri net model. However, similar to test method for a software,

simulation only explores one state transition sequence of a model a time. Thus,

simulation is speedy but with less path checking coverage. On the other hand, ex-

plicit state model checking explores all the state transition sequence in a model, but

since HLPNs’ high level concepts brings in big complexity, this method sometimes

becomes inefficient because of the state explosion problem. BMC only covers a cer-

tain level of state transition sequence, such as exploring paths within length k , but

more efficient. BMC trades off some coverage for efficiency, but it becomes useful

when we know the coverage predefined is enough.

5.1 Simulation

Petri nets models are executable, which means by making simulations, it is possible

to visualize the behavior of the systems modeled by Petri nets. The behavior is

reflected by token flows. Simulating a Petri net model for one step means firing

a transition in the model, denoted as M
t�! M 0, which means a token sent from

t’s input place to t’s output place. A simulation run results in a state transition

sequence ' = M0
t0�! M1

t1�! M2
t2�! · · · , where the net is modified by a sequence of

transition firings.

61

HLPNs are executable as well [6]. Simulation in HLPNs is similar to low level

ones as it reflects the behavior of a model with token flows. However, in HLPNs,

tokens are not identical as they represent different data, its simulation algorithm

need to consider the enabling of transition formula and the fairness of token to be

fired in a place.

Currently, there are many tools equipped with simulator that can run simulation

on specific HLPNs models. Such as CPN tools[76], Maria [86], Renew [78]. However,

simulation go through only one path per execution, which means it does not provide

guarantee to any verification property. Simulation often used in non-critical and

fault tolerant systems. We implemented PIPE+ with a simulator to graphically

specify and simulate PrT nets model. PIPE+ simulator can execute the PrT net

step by step. The execution results in a sequence of fired transitions and generates

a sequence of state markings, which can be used to investigate the behavior of the

system. A simulator not only needs to execute the net model visually, but also has

to ensure the correctness, fairness and good performance. The PIPE+ simulator

has the following features.

5.1.1 Graphical Simulation

Since in a low level Petri net, tokens are just black dots flowing from one place

to another and the animation is visible to the user. In contrast, tokens in HLPNs

are complex structured data, and thus are inappropriate to be displayed graphically

during the simulation. A user can view the result stepwise by looking into the

contents of places and by checking the summary of the simulation. In PIPE+, to

view the tokens in the Places, a user can open the place editing panel to display

the value of tokens under the text area of token list. Furthermore, the firing history

62

and summary is retained in PIPE+ by listing the fired transition name orderly and

updated instantly after each transition firing.

5.1.2 Transition Occurrence Scheduling Algorithm

A scheduler is needed to coordinate the simulator’s token flow strategy efficiently.

Since the performance of the simulator is mostly affected by the checking of tran-

sition constraints, PIPE+ chooses the scheduling algorithm from [89] to minimize

the recalculation of transition constraint checking. The idea is to keep track of

disabled transitions discovered during the search of enabled transitions using the

locality principle, that is an occurring transition only affects the marking of imme-

diate neighboring places and hence enabling only a limited number of neighboring

transitions. In the implementation, an unknown list and a disabled list are main-

tained. All transitions initialized as unknowns will be randomly picked and checked

for enabling status. If the status of a transition is disabled, the transition will be

moved to the disabled list. Upon the firing of a transition, the status the neighbor-

ing transitions in the disabled list will be changed to unknown. Therefore, using the

disabled transition list avoids the unnecessary costly transition constraint checking.

5.1.2.1 Fairness of Picking a Token to Fire

Unlike low level Petri nets that tokens are identical black dots, in HLPNs, tokens

are structured data whose values may be different. A place in HLPNs is a set of

tokens with no order. Theoretical, if a number n of the tokens in place P can enable

a transition T , one of the tokens is picked randomly to instantiate the transition

condition and is consumed after firing the transition. However, a token may not

63

able to be fired forever if the newest added tokens to P is fired every time checking

T .

Because of this problem, we need to maintain the liveness of every token in P ,

thus in this simulation algorithm we maintain a FIFO list, that the newest token to

P is always added to the tail of the list. To prevent the situation that a transition

cannot be enabled as the head token in its input place cannot enable a transition, we

move the head token to the tail every time a head token is checked by a transition

condition and cannot enable the transition. In this way, every token got a chance

to be checked and fired.

5.1.2.2 Instantiating a Transition Constraint

In high level Petri nets, tokens are meaningful data. In evaluating a transition

constraint the variables are to be instantiated. Since a transition may connect to a

number of input places, where each place contains a list of tokens, to see whether the

transition is enabled or disabled,all the possible combinations of instantiated tokens

from its input places need to be checked. For example, if there are three input places

and each place has 3 tokens, the total number of combinations are 3⇥ 3⇥ 3 = 27.

If one of the three input places is a set, it contains only one abstract token. So the

combinations reduce to 3⇥ 3⇥ 1 = 9.

5.1.2.3 Enabling and Firing a Transition

A transition enabling calculation process is shown in Figure 5.1: In step (1), each

token in the connected place is firstly bounded to the connected arc variable; a

pair, {variable, token}, is fetched into a symbol table of the transition (note the

pair with output variable’s token value is temporarily empty and to be filled by

the result of the expression calculation). In step (2), the input variables in the

64

Figure 5.1: An Enabled Transition Formula Calculation Process

transition expression can locate token values through the symbol table. In step

(3), after transition expression calculation, the output variables are assigned the

resulting values and the symbol table’s output variable pairs are filled with the

values. In step (4), the output pairs’ tokens are added to the connected output

places according the arc’s variables. For example, c is instantiated with[bob] from

the symbol table and token [bob] is added to the output place.

5.1.3 Parser and Interpreter

Because logical formulas need to be parsed and interpreted, we build a compiler

with a parser and an interpreter for the restricted first-order logic. The parser

includes a scanner, which is built by a lex file and generated by jflex 1.4.3 [3]. A

BNF grammar is built in cup file and generated by leveraging the tool jcup v11

[2]. Since a transition formula does not explicitly separate pre and post conditions,

while only pre-conditions need to be calculated to determine the transition is enabled

or not, the interpreter has to differentiate pre and post conditions. The key is to

identify the post-condition, which usually starts with an output variable equaling to

an expression, for example, in (1), C 0 = C \ {b} [{[a [1] , c [2]]} is a post-condition

because C 0 is an output variable. Therefore the interpreter checks a clause with

an "=" operator, if the left hand side of "=" is an input variable, this clause is a

65

pre-condition and "=" is interpreted as relational equality operator; on the other

hand, if it is an output variable, the clause is a post-condition and "=" means an

assignment.

5.1.4 The Complete Simulation Process

1. All transitions in the net are initially stored in an unknown list, and a disabled

list is initialized to be empty;

2. A transition is randomly selected from the unknown list and its constraint is

checked;

3. During the checking process of the selected transition, all the connected arcs

and places of the transition are found;

4. Combinations of tokens from the transition’s input places are orderly chosen

to fill in its symbol table. Since symbols in symbol table are pairs of [key,

object]. The keys are from arcs label and the objects are regular tokens. If

the input place has a power set type, an abstract token is sent as an object;

otherwise only the first token is sent and the remaining tokens are still in place.

The object of any key from an output arc is empty ;

5. The parser checks the syntactical correctness of a formula. Then, the inter-

preter evaluates the formula and returns a boolean result: if it is true, the

transition is enabled and fires immediately; if it is false, the transition is not

enabled under the current marking, the tokens in symbol table will go back

to the input places. If all the combinations of input tokens cannot enable the

transition, the transition is moved into the disabled list.

6. After firing a transition, the tokens in the symbol table are sent to the output

places according to the variables of output arc sand are added to the tail of

66

Figure 5.2: Simulate Dining Philosophers Problem in PIPE+

output places’ token list. The scheduler moves dependent transitions from the

disabled list to the unknown list. Return to step 2.

7. In step 2, when unknown list is empty, the simulation process ends.

5.1.5 Simulating 5-Dining Philosophers Problem in PIPE+

After the Dining Philosophers problem specified completely, user can click the green

flag toggle button to get into the simulation mode. By clicking the button of ran-

domly fire a HLPN transition, PIPE+ will check all the transition and fire one of

them. The fired transition will turn red indicating it is fired and will be added to

the firing history queue.

67

In Figure 5.2, a transition firing sequence is shown in left column � = TPickup !

TPickup ! Trelease. By firing the first two TPickup transition, philosopher 0 and 2

picked up chopsticks and PPhil_Eating now has token {[0], [2]}. After firing the third

transition Trelease, philosopher 0 released chopsticks and goes to thinking status.

Thus, the final marking after firing � in PPhil_Eating is philosopher number 2.

5.2 Explicit State Model Checking

We call this explicit state model checking to differentiate with bounded model check-

ing. Explicit state model checking is actually a classic model checking method, thus

we sometimes use model checking for short. Model checking [67] refers to exhaus-

tively and automatically checking a system model and see whether a property is

satisfied on this morel or not. As model checking verifies a model completely, it can

be used to prove whether a model N meets a specification f , denoted as N |= f .

Another advantage of this method is the verification process can be automated, thus

compared to manual analysis, it improves the efficiency of verification process and

avoid potential mistakes made by human beings.

5.2.1 Overview

Investigating a system by simulation is similar to test a system, it is convenient,

efficient and straightforward but it cannot be used to verify properties on all the

behaviors of a system. For example in Figure 5.2, simulate the model may generate

an infinite sequence TPickup ! TRelease ! TPickup ! TRelease · · · , but never find a

state where no philosopher can get two chopsticks at the same time. Thus, formal

verification is required, especially when we already have a formal model (PrT Nets

model). Model checking [30] is a verification process that exhaustively and automat-

68

Figure 5.3: Model Checking PrT Nets Process

ically check whether a model M meets its given specification f , denoted as M |= f .

Thus, using model checker as backend engine to verify PrT Nets is a natural way to

prove properties on a model.

Our framework integrates a model checker SPIN [60] to verify specified properties

defined in linear temporal logic [79] formula. A HLPN model combined with LTL

formula is first translated into PROMELA (Process or Protocol Meta Language)

model [60], which is input language to SPIN, and then checked by SPIN. If a the

property formula is satisfied, then M |= f is proved; otherwise, a counterexample is

produced. The model checking process is shown in Figure 5.3.

We implemented a tool SAMAT that is able to automate the whole analysis

process. SAMAT automatically translate HLPN model and FOLTL formula into

a PROMELA model and leverages its integrated SPIN model checker to check the

model.

5.2.2 The SPIN Model Checker and PROMELA

SPIN [60] is a model checker for automatically analyzing finite state concurrent

systems. SPIN has been used to check logical design errors in distributed systems,

such as operating systems, data communications protocols, switching systems, con-

current algorithms, railway signaling protocols, etc. A concurrent system is modeled

in the PROMELA (Process or Protocol Meta Language) modeling language [60] and

69

properties are defined as linear temporal logic formulas. SPIN can automatically

examine all program behaviors to decide whether the PROMELA model satisfies

the stated properties. In case a property is not satisfied, an error trace is generated,

which illustrates the sequence of executed statements from the initial state. Be-

sides, SPIN works on-the-fly, which means that it avoids the need to pre-construct

a global state graph or Kripke structure, as a prerequisite for the verification of

system properties.

A SPIN model in PROMELA consists of three types of objects: processes, mes-

sage channels and variables. Processes specify the behavior, while the channels and

variables define the environment for processes to run. The processes are global

objects and can be created concurrently, which communicate via message passing

through bounded buffered channels and via shared variables. Variables are typed,

where a type can either be primitive or composite in the form of arrays and records.

5.2.3 Translating PrT Net Models to PROMELA

The translation process maps a high-level Petri net model to a PROMELA model.

The resulting PROMELA model needs to capture the concepts of HLPNs defined in

[6] and preserves the dynamic semantics of a given HLPN model. The PROMELA

program’s major parts are definitions of places and place types, transition enabling

and firing inline functions, a main process and an init process that defines the initial

marking.

The translation map is shown in Table 5.1:

• Translating places: We predefine each message type (place type) into a

new structure. Places and place types are mapped to PROMELA’s buffered

channels and predefined message types. In addition, structured tokens are

70

Table 5.1: Mapping from High-level Petri net to PROMELA
High-level Petri net PROMELA

Place Channel
Place Type Typedef Structure

Token Message
Transition Inline Function

Initial Marking Message in Channel

mapped to typed messages in PROMELA. Because SPIN verifies a model by

exhaustive state searching, we set bounds to limit the number of tokens in

places. The bounds are then mapped to the lengths of the channels. A sample

PROMELA program resulted from place translation is shown below:

#de f i n e Bound_Place0 10

typede f type_Place0 {

i n t f i e l d 1 ;

shor t f i e l d 2

} ;

chan Place0 = [Bound_Place0]

o f { type_Place0 } ;

Translating transitions: In PrT Nets, a transition expression consists of a

precondition and a postcondition. The precondition defines the enabling con-

dition of the transition, and the postcondition defines the result of the transi-

tion firing. Each precondition and postcondition are translated into two inline

functions, is_enabled() and fire(), respectively. To check the precondition of a

transition expression, we first consider a default condition that whether each

of the input place has at least one token by checking the emptiness of each

mapped channel. The evaluation process includes non-deterministically re-

ceiving a message from an input channel to a local variable, and instantiating

71

and evaluating the expression. A sample PROMELA program from transition

translation is shown below:

i n l i n e is_enabled_Trans it ion0 {

}

i n l i n e f i r e_Trans i t i on0 { . . . }

i n l i n e Trans i t i on0 {

is_enabled_Trans it ion0 () ;

i f

: : Trans it ion0_is_enabled

�> f i r e_Trans i t i on0

: : e l s e �> sk ip

f i

}

• Defining main process: The dynamic semantics of a Petri net is to non-

deterministically check and fire enabled transitions, so the main process is

defined by including all the transitions in a loop, “do ... od”. Since PROMELA

has finer granularity and a transition firing process includes multiple sub-steps,

we aggregate them into an atomic construct. A sample PROMELA program

for an overall PrT net structure is shown below:

proctype Main (){

. . .

do

: : atomic { Trans i t i on0 }

: : atomic { Trans i t i on1 }

od

72

}

• Defining initial marking: PROMELA has a special process “init{}”, which

is often used to prepare the initial state of a system. Therefore, the initial

marking is defined in init process by declaring typed messages and send them

into buffered channels. A PROMELA prototype is shown below:

i n i t {

type_Place0 P0 ;

P0 . f i e l d 1 = 1 ;

P0 . f i e l d 2 = 0 ;

Place0 ! P0 ;

run Main ()

}

• Using basic data types: The basic data types supported in PIPE+ are

integer and string, which are mapped to “int” and “short” in PROMELA re-

spectively.

• Handling non-determinism: In PrT Nets, tokens are meaningful data and

usually different from each other and thus different firing orders result in dif-

ferent markings. Therefore, a non-deterministic inline function is defined and

is called to non-deterministically pick a token from an input place each time

a precondition is evaluated.

• Supporting power set: PIPE+ supports quantifiers in restricted first-order

logic formulas in transition expression, the domain of each quantified variable

is a list of tokens as a power set contained in a place. For this type of places,

we are not dealing with one message but all the messages in the channel, we do

73

not put all received messages into a local variable but directly manipulate the

channel. The strategy is when the first message is received from the channel,

it is used and then is sent back immediately.

5.2.4 FOLTL Formula

Since SPIN recognize LTL as inputs, and PrT Nets specify properties using FOLTL

formula, it is natural to covert FOLTL to LTL without quantifier 9 and 8. Since

first-order logic is undecidable, but as the FOLTL formula we specified in PrT Net

model has restricted domain, when come across quantifiers, the translation need to

instantiate the subformula behind quantifiers. Therefore, the instantiated formula

can be wrapped by following PROMELA’s syntax:

l t l f {/∗ formula ∗/}

5.2.5 Translation Correctness

The translation correctness is ensured by the following completeness and consistency

criteria [117, 10]

Let N be a given HLPN and PN be the resulting PROMELA program from the

translation.

• Completeness Each element in N is mapped to PN according to the mapping

rules listed in Table 1.

• Consistency The dynamic behavior of N is preserved by PN as follows:

– A marking of N defines the current state of N in terms of tokens in

places, our place translating rule correctly maps each marking into a

corresponding state in PN ;

74

– The initial marking of N is correctly captured by the initial values of

variables in the init{} process of PN ;

– The enabling condition and firing result of each transition t in N is cor-

rectly inline functions “is_enabled_Transition_i” and “fire_Transition_i”

respectively;

– The atomicity of enabling and firing a transition in N is preserved in PN

by language feature “atomic{}”.

– An execution of N is firing sequence ⌧ = M0t0M1t1...Mntn..., where

Mi(i 2 nat) is a marking and ti(i 2 nat) denotes the firing of transi-

tion ti. Each execution is correctly captured by the construct “do ... od”

in the “Main” PROMELA function, which produces an equivalent execu-

tion sequence � = S0T0S1T1...SnTn, where Si(i 2 nat) is a state and Ti

denotes the execution of inline function “Transition_i”.

The proofs of the completeness and consistency are straightforward and can

be found in [117, 10] .

5.2.6 Verification using SPIN

The two inputs to SPIN are a PROMELA model and a property formula. SPIN

performs verification by going through all reachable states produced by the model

behaviors to check the property formula. If the property formula is unsatisfied,

it produces a trail file indicating the error path. SPIN also provides a simulation

function to replay the trail file so that any error path that leads to the design flaw

can be visualized. Our framework encapsulates the verification process in SPIN and

displays the verification result as well as captured error path by SPIN.

75

Figure 5.4: Model Checking 5-Dining Philosophers Problem

5.2.7 Checking 5 Dining Philosophers Problem

The 5 dining philosophers problem is checked with the property neighbor philoso-

phers are not eating at the same time. We set the bound of each place as 5. The

result in Figure 5.4 says the property is satisfied with 0 error; which took 2 seconds

and 2.539Mb memory.

5.2.8 Checking Seabed Rig Robotic Workflows

The Seabed Rig robotic workflow specified in Figure 4.15 is checked by SPIN with

properties that two robots finished their tasks and moved back to the initial position.

76

Figure 5.5: Model Checking the ABP in SAM Tool

However, since the model is a small example, and no errors can be found in this

workflows with two robots.

5.2.9 Checking Alternate Bit Protocol in SAMAT

In Figure 5.5, the top layer of ABP model in SAMAT consists of three compo-

nents and four connectors. The first component “Sender” has a behavior model

shown in Petri net. On the right, it shows the FOLTL editor to editing formula

<>(Deliver(m) = 5). After the modeling process, SAMAT automatically generates

PROMELA code as an input for SPIN and displays the model checking result after

SPIN finished model checking. In this case an error is found, the replayed simulation

on the error path is shown below the model checking result. The error indicates the

ABP specification model in [56] is incorrect. A deadlock state (a none final state

such that none of the transitions are enabled) can be reached when an acknowl-

edgement message was corrupted in the channel and a resend message successfully

77

reached the receiver’s DataIn place. This discovery highlights the great benefits and

usefulness of SAMAT.

5.3 Bounded Model Checking

5.3.1 Overview

Bounded Model Checking (BMC) with satisfiability solving [18, 26] was proposed

as an alternative approach to address the state explosion problem in the traditional

model checking approach. BMC does not explore the whole state space compared

to the explicit state model checking, so that it does not face the state explosion

problem.

According to [18], BMC is best for checking safety (reachability) properties. In

BMC, a feasible symbolic execution of a transition system and the negation of some

safety properties are translated into a propositional formula �, which is checked by

a satisfiability solver. If the formula � is satisfiable, a counter example is found and

thus the safety property does not hold. On the other hand, if the formula is not

satisfiable up to a pre-defined upper bound k, the safety property holds up to k.

Thus this approach is not a complete technique for safety property analysis. The

threshold k is hard to determine according to [26], which is as hard as explicit state

model checking. But in real world applications, sometimes we know k beforehand.

Although this approach is not a complete technique for safety property analysis, it

has been shown to be very effective in detecting the violation of safety properties in

many real-world applications.

In this section, BMC PrT Nets is achieved by an automatic approach that en-

coding PrT Nets model into a formula � and then checked by SMT solver. Since

78

encoding a low level Petri net model into a propositional logic formula and then

checked by SAT solver is straightforward, but encoding a HLPN model is not since

PrT Nets using structured data and algebraic expressions to define functionality. In

recent years, great progress has been made on satisfiability modulo theories (SMT)

[35, 90] solvers that can check the satisfiability of a subset of first-order logic for-

mulas with a variety of underlying theories including linear arithmetic, difference

arithmetic and arrays. These SMT solvers are expressive enough to represent the

data and algebraic expressions in PrT Nets naturally. Furthermore, SMT solvers

are becoming more efficient according to the annual competitions results from SMT

[16], and have been successfully integrated into verification tools such as CBMC

[11], SLAM2 [14], and VS3 [103]. Therefore, BMC PrT Nets is promising and an

automatic approach is needed.

In this framework, this automatic method for BMC is defined and implemented.

PrT Nets models are encoded through the theory of set [77] that has been integrated

to some SMT solvers, where a place can have zero or more tokens. Similar to BMC,

this method specifies a k value before checking, which defines the upper bound of

transition firing actions (state changes). For each negated safety property reached

within k steps, a transition firing sequence leading to an error state is generated.

However, this method is incomplete because the upper bound k is often not given

in real applications. Reference [28] discussed the complexity of finding a complete

threshold. [18] shows BMC can check formulas in ACTL* [44].

A tool called PIPE+Verifier is implemented to support this method and auto-

mate the BMC process. After a HLPN model and its specified properties are defined,

PIPE+Verifier automatically convert the HLPN model and the negated properties

into a first-order logic formula. The formula is then checked by an SMT solver Z3

[36]. Figure shows the BMC process.

79

Figure 5.6: BMC HLPN Process

5.3.2 Satisfiability Modulo Theories

Satisfiability modulo theories (SMT) [35] support a combination of theories such as

bit-vectors, rational and integer linear arithmetic, arrays, and uninterpreted func-

tions. SMT solvers are the extensions of satisfiability (SAT) solvers and directly

applicable to the decision problems expressed in first-order logic formulas with re-

spect to the multiple background theories.

For example, an SMT solver can decide whether a formula in the theory of linear

arithmetic is satisfiable:

(x+ y 0) ^ (qb _ a ^ (y = 0)) ^ (x 0)

where x, y are integer variables and a, b are Boolean variables. If the formula is

satisfiable, the SMT solver returns a variable assignment satisfying the formula.

Some important high level theories supported by SMT solvers are listed below as

the foundation of our method.

• Arrays: The theory of arrays [105, 12] in SMT solvers are different from the

ones in standard programming languages. In SMT, an array’s size can be in-

finite. There are two built in functions: select : ARRAY ⇥ INDEX !

ELEM and store : ARRAY ⇥ INDEX ⇥ ELEM ! ARRAY where

80

ARRAY, INDEX, ELEM are the sorts of the array, the index of the array

and the elements in the array.

• Tuples: The theory of tuples [77] supports a data structure with a list of

components and access to individual components by projection.

• Sets: A set is a collection of objects. Reference [77] has defined a set theory,

which has been implemented in several SMT solvers [17]. The theory of sets

in SMT solvers supports a list of set operations including set member 2, set

subset ✓, set union [, set intersect \ and set difference \.

5.3.2.1 Z3

In recent years, the efficiency of SMT solvers has been greatly improved. An annual

SMT competition is held every year [17] and the participants include CVC4 [15], Z3

[36], MathSAT [25], Opensmt [22], and Yices [41]. Among them, Z3 [36], developed

by Microsoft Research Institution, is reported to have the largest number of users

and supports almost all the popular SMT background theories such as rational and

integer arithmetic, bit-vectors, array theory, and set theory. In addition, Z3 has been

adopted as the backend verification engine for a variety of tools, such as VS3 [103],

SLAM2 [14] and CBMC [11]. Z3’s developing team provides api and documentation

for different programming languages (C, C++, .NET, Python). Therefore, we have

selected and integrated Z3 into our tool as the backend satisfiability solving engine.

5.3.3 General Idea of BMC using SMT Solver

In BMC, a logic formula �k is constructed from a given Mk, including the initial

state I and unrolled transition relations T , and some negated safety properties f .

Since transition T in �k is unrolled k times, the length of �k is dependent on k. The

81

DEF
s : STATETUPLE

ASSERT
Initial_marking(s0)

^
k�1̂

i=0

Transition(si, si+1)

^
k_

i=0

Negated_property(si)

CHECK

Figure 5.7: SMT context for bounded model checking

logic formula �k is represented in equation 5.1:

�k
.
= I(s0) ^

k�1̂

i=0

T (si, si+1) ^
k_

i=0

f(si) (5.1)

where I (s0) is the characteristic function of the initial state, T (si, si+1) is the

characteristic function of the transition relation, and f(si) represents the negated

safety property in unrolled state si (0 i k). If �k is satisfiable, there is a fir-

ing sequence or a state transition path from the initial state I(s0) to a state si

(0 i k) that satisfies f , thus violates the safety property. Otherwise, the safety

property holds in M within k transition firings.

The general SMT logic context for BMC is shown in Figure 5.7.

5.3.4 Represent PrT Nets in SMT Context

Our goal is to translate a given HLPN model to a logic formula shown in Figure

5.7, and then use an SMT solver to check its satisfiability.

82

Figure 5.8: An inner view of dining philosophers problem in HLPN model

Table 5.2: High level Petri net elements mapped to SMT theory
HLPN Elements SMT Theory In PIPE+Verifier

HLPN Model Tuple (Places) STATETUPLE
Place Type Set (Tokens) SETiSORT
Token Type Tuple (Integer or String Values) DTiSORT

Primitive Data Integer or String INTSORT

5.3.4.1 Define States in SMT Context:

In HLPN, a state si is defined by a marking that is a distribution of tokens in

places. Each place can contain 0 or more tokens (the number may be bound or

unbound) and tokens can be structured data. To define a state in SMT context, a

hierarchical layered data structure is constructed. A state si is defined by a tuple

whose components are places: si
.
=< p0, p1, . . . , pn >. Each place pj (0 j n)

is defined by a set containing m � 0 tokens: pj
.
= {tok0, tok1, . . . , tokm}. Each

token tokk (0 k m) is defined by a tuple of primitive data elements: tokk
.
=<

e0, e1, . . . , el >. Figure 5.8 shows an inner view of a HLPN model. In Figure 5.8,

the tuple of places is <PPhil_Thinking, PChopsticks, PPhil_Eating>, place PPhil_Thinking

has 5 tokens {h0i,h1i,h2i,h3i,h4i} and each token tokk has only one field hIDi whose

type is Integer. In the SMT context, a state is defined by type STATETUPLE. The

hierarchical data structure that constitutes STATETUPLE is shown in Table 5.2.

83

5.3.4.2 Define the Initial State

The Inital_marking (s0) in Figure 5.7 is defined from the initial marking M0 of a

HLPN model. The state s0 contains tokens of all the places marked in M0.

5.3.4.3 Define Transitions in SMT Context

Transition(si, si+1) in Figure 5.7 is a binary relation between the current state si and

the next state si+1. In BMC, the upper bound of the transition firing sequence is k,

thus the state transition of �k is unrolled k times, denoted as
Vk�1

i=0 Transition(si, si+1).

A HLPN model consists with n � 0 transitions t0, t1, . . ., tn, and any one of them

may fire if enabled, thus Transition(si, si+1) is represented by a disjunction of the

transitions in the HLPN model
Wn

j=0 tj(si, si+1). Transitions in �k is defined as an

formula shown in Equation 5.2:

k�1̂

i=0

(Transition(si, si+1)) =
k�1̂

i=0

(
n_

j=0

tj(si, si+1)) (5.2)

Each transition in the HLPN model tj(si, si+1) with a precondition (captured by

c0) and a post-condition (captured by c1) are defined in an if-then-else structure

if c0 then c1 else c2 , representing (c0 =) c1) ^ (¬c0 =) c2). The translation

schema is described below:

• If condition c0:

– Using set membership operation to check if each input place in si has at

least one token;

∗ In state si, each transition condition clause corresponds to a con-

straint;

– Case True c1:

84

∗ Tokens are removed from tj’s input places of state si using set differ-

ence operation;

∗ New tokens are added to tj’s output places of state si+1;

∗ Tokens in unrelated places in state si remain the same in those places

in si+1;

– Case False c2: tokens in all places in the next state si+1 are the same as

in the current state si.

5.3.4.4 Define Properties in SMT Context:

To check a safety property, we define Negated_property(si) as the negation of the

safety property. If there exists a state si satisfies Negated_property(si), the safety

property is violated at si. Thus, a disjunction of Negated_property(si) 0 i k

is asserted in �k.

5.3.5 A Translation Example - Dining Philosophers Problem

Figure 2.3 illustrates a dining philosopher problem modeled in HLPN. The net con-

sists of three places PPhil_Thinking, PChopsticks, PPhil_Eating and two transitions TPickup

and TRelease. All the places’ token type is hinti. PPhil_Thinking and PChopsticks are

both initiated with markings that have five tokens {h0i, h1i, h2i, h3i, h4i}. TPickup’s

transition condition is p = c1^ (p+1)%5 = c2^e = p. TRelease’s transition condition

is p = r ^ c1 = r ^ c2 = (r + 1)%5.

From the dining philosophers HLPN model given in Figure 2.3, we obtain the

following translation:

1. State Definition: As shown in Figure 5.9, a state consists of three places,

PPhil_Thinking, PChopsticks and PPhil_Eating, which are defined as three sets in

85

DEF.

STATETUPLE ⌘ hPPhil_Thinking : SETSORT,

PChopsticks : SETSORT,

PPhil_Eating : SETSORT i
SETSORT ⌘ {set : DTSORT}
DTSORT ⌘ {int : INTSORT}

State ⌘ {s0 : STATETUPLE

s1 : STATETUPLE

...

sk : STATETUPLE }

Figure 5.9: State definitions of 5-dining philosophers in SMT logic

Initial_marking(s0) ⌘ PPhil_Thinking(s0) = {h0i, h1i, h2i, h3i, h4i}
^PChopsticks(s0) = {h0i, h1i, h2i, h3i, h4i}
^PPhil_Eating(s0) = ;

Figure 5.10: Initial State of 5-Dining Philosopher in SMT Logic

86

k�1̂

i=0

Transition(si, si+1) ⌘ (TPickup(s0, s1) _ TRelease(s0, s1))

^(TPickup(s1, s2) _ TRelease(s1, s2))

...

^(TPickup(sk�1, sk) _ TRelease(sk�1, sk))

T Pickup(s, s
0) ⌘

IF p 2 PPhil_Thinking

^ l 2 PChopsticks

^ r 2 PChopsticks

^ p = l ^ (p+ 1)%5 = r

THEN
P 0
Phil_Thinking = PPhil_Thinking � {p}
^ P 0

Chopsticks = PChopsticks � {l}� {r}
^ P 0

Phil_Eating = PPhil_Eating [{p}
ELSE
P 0
Phil_Thinking = PPhil_Thinking

^ P 0
Chopsticks = PChopsticks

^ P 0
Ehil_Eating = PPhil_Eating

TRelease(s, s
0) ⌘

IF p 2 PPhil_Eating

THEN
P 0
Phil_Thinking = PPhil_Thinking + {p}
^ P 0

Chopsticks = PChopsticks [{p}
[{(p+ 1)%5}

ELSE
P 0
Phil_Thinking = PPhil_Thinking

^ P 0
Chopsticks = PChopsticks

^ P 0
Phil_Eating = PPhil_Eating

Figure 5.11: State Transition of 5-Dining Philosophers in SMT Logic

87

k_

i=0

Negated_property(si) ⌘ (f(s0) _ f(s1) _ ... _ f(sk))

f ⌘ PPhil_Eating = {h0i, h1i}

Figure 5.12: Property Definition of 5-Dining Philosophers in SMT Logic

STATETUPLE. All of the sets have the same set type DTSORT , and their

element types are INSORT .

2. Initial state: place PPhil_Thinking set contains five philosophers whose IDs are

{h0i, h1i, h2i, h3i, h4i} and place PChopsticks has five chopsticks whose IDs are

{h0i, h1i, h2i, h3i, h4i}. Therefore, as shown in Figure 5.10, both places at state

s0 contain five tokens.

3. State transition: Transition is defined as k�1 transition steps that constrain

pairs of consecutive states. Each transition step is an if-then-else structure

that captures the pre-condition and post-condition of every local transition in

HLPN. In Figure 5.11, s indicates the current state and s0 indicates the next

state.

4. Property definition: negated property f (si) is state based, we need to define

k disjunctions of error states. If one of f (si) evaluates true, the whole formula

is satisfiable and an error state si is reached. Figure 5.12 defines a simple

negated safety property that the neighboring philosophers with ID {h0i , h1i}

can eat at the same time.

5.3.6 Building the Error Path

After checking a first-order logic formula �k is built, it is checked by an SMT solver.

If the result is �k satisfiable, an instantiation of all the variables in �k is found,

88

which means the error state (negated property satisfied state) is reachable. As the

goal of our checking is to found the error as well as the counterexample to the error

state. We need to find an error path that starts from the initial state and leads to

the error state.

To rebuild the error path according to the variable instantiations provided by

the SMT solver, we collect all the state tuples from s0 to sk. Since according to our

translation schema, �k describes the transitions of a HLPN model, a state change

is caused by a transition firing. The only differences between si to si+1 are the

markings of a set of places that is caused by a transition firing, thus the transition

must connect to all modified places in the place set. Besides, in this modified places

set, some of the place consumed tokens while others produced tokens, thus they are

partitioned into two sets: an input place set and an output place set. After mapping

back to the original net graph, the only transition t can be found through the two

sets of places where the input place set are the input places of t and the output place

set are the output places of t. Thus, after finding the transition t, a state transition

si
t�! si+1 can be rebuilt that constructs part of the error path. The rest of the path

can be rebuilt in a similar way.

For example in the Dining Philosophers problem in Figure 2.3, if the mod-

ified places set is {PPhil_Thinking, PChopsticks, PPhil_Eating} where the input set is

{PPhil_Thinking, PChopsticks} and the output place set is {PPhil_Eating} the transi-

tion must be TPickup. If the input set is {PPhil_Eating} and the output place set

is {PPhil_Thinking, PChopsticks} the transition must be TRelease.

89

5.3.7 Bounded Model Checking in PIPE+Verifier

We have implemented an automated prototype tool called PIPE+Verifier to support

our method and applied it to check relevant safety (reachability) properties in several

benchmark problems modeled in HLPN. All experiments were conducted on a 32-bit

Intel Core Duo CPU @3.0GHz box, with 4GB of RAM, running 32-bit Ubuntu.

5.3.7.1 Selected Benchmark Problems from Model Checking Contest @

Petri Nets

Model Checking Contest @ Petri nets (MCC) [73, 74] is held annually to assess

Petri nets based formal verification tools and techniques. Petri net verification tools

are compared with regard to the scaling abilities, efficiency, and property checking

capabilities on selected benchmark problems. The benchmark problems are modeled

in low level Petri nets and Colored Petri nets. However, none of the participating

tools produced any promising results on checking colored Petri net models. We have

translated several Colored Petri net models into PIPE+Verifier and analyzed their

safety (reachability) properties. We have examined the scalability of our tool by

changing parameters in the model and varying bound k. The running results are

presented below.

5.3.7.2 Dining Philosophers Model

In the previous section, we presented the 5-dining philosophers model. We have

selected the following two negated safety properties to check in PIPE+Verifier.

90

Table 5.3: Verifying Dining Philosophers Model
No.
of

Phils

Prop. Step
Bound

Verdict Prop.
Hold

Time
(seconds)

Heap Size
(Mb)

5 5.3 5 unsat yes 0.41 1.72
5 5.3 10 unsat yes 79.93 9.97
5 5.3 15 N/A N/A N/A N/A
5 5.4 2 sat no 0.25 1.25
10 5.4 2 sat no 0.76 1.62
20 5.4 2 sat no 3.23 2.63

⇤¬ (marking (Eating) = 4 ^marking (Eating) = 3) (5.3)

⇤¬(marking (Eating) 6= 4 ^marking(Eating) = 1 ^marking (Chopsticks) 6= 4)

(5.4)

The scaling parameter is the number (up to 20) of philosophers. The experiment

results are shown in Table 5.3. For property 5.3, PIPE+Verifier did not return a

result when bound k reached 15 due to the exponential growth of the search space

of Z3.

5.3.7.3 Shared Memory Model

In [24], a shared memory model involving P processors was given. These processors

can access their local memories as well as compete for shared global memory using

a shared bus. We have built a HLPN model based on the above shared memory

model and checked the following two negated safety properties:

⇤¬(marking (Ext_Mem_Acc) = h1, 5i ^marking (Ext_Bus) = 1) (5.5)

⇤¬(marking (Ext_Mem_Acc) = h1, 5i ^marking (Memory) 6= 4) (5.6)

91

Table 5.4: Verifying Shared Memory Model
No. of
Pro-

cessors

Prop. Step
Bound

Verdict Prop.
Hold

Time
(sec-
onds)

Heap
Size
(Mb)

5 5.5 5 unsat yes 0.07 0.86
5 5.5 10 unsat yes 0.3 1.54
5 5.5 15 unsat yes 1.49 2.53
5 5.6 3 sat no 0.75 1.80
10 5.6 3 sat no 1.3 2.09
20 5.6 3 sat no 13.05 4.35

The scaling parameter is the number (up to 20) of processors P. The results are

shown in Table 5.4.

5.3.7.4 Token Ring

A token ring [39] model shows a system with a set of M machines connected in

a ring topology. Each machine can determine if it has the privilege (the right) to

perform an operation based on its state and its left neighbor.

We have modeled a token ring using HLPN and selected the following two

negated safety properties to check:

⇤¬(marking (State) = h3, 0i ^marking (State) = h2, 4i) (5.7)

⇤¬(marking (State) = h3, 0i _marking (State) = h2, 4i) (5.8)

The scaling parameter is the number of machines M , which is up to 20. The

results are shown in Table 5.5.

5.3.7.5 Abstract State Machine Model

In [110], a method for checking symbolic bounded reachability of abstract state ma-

chines was presented. An abstract state machine written in AsmL was translated

92

Table 5.5: Verifying Token Ring Model
No. of
Ma-

chines

Prop. Step
Bound

Verdict Prop.
Hold

Time
(sec-
onds)

Heap
Size
(Mb)

5 5.7 5 unsat yes 0.32 1.34
5 5.7 10 unsat yes 24.12 5.56
5 5.7 15 N/A N/A N/A N/A
5 5.8 3 sat no 0.09 1.01
10 5.8 3 sat no 0.21 1.34
20 5.8 3 sat no 0.86 2.03

Table 5.6: Running time of checking Count model
Model
pro-
gram

Step
bound

Verdict Time of
M.Veanes’s

Tool

Time of
PIPE+Verifier

Count(5) 10 Sat 0.14s 1.43s
Count(5) 9 Unsat 1.5s 0.24s
Count(8) 16 Sat 2.2s 86.1s
Count(8) 15 Unsat 152s 15.26s

into a logic formula checked by an SMT solver with rich background theories in-

cluding set comprehensions. The running times of the prototype tool in [110] and

our tool PIPE+ Verifier on property Count(n) are shown in Table 5.6.

5.4 A Refinement of Bounded Model Checking

5.4.1 Motivation

Recall that bounded model check a Petri Net model, a formula �k is generated from

the net model. �k can be represented in equation 5.9:

�k
.
= I(s0) ^

k�1̂

i=0

T (si, si+1) ^
k_

i=0

f(si) (5.9)

93

A state si is represented by all the places’ marking in the net model. I (s0)

denotes the initial marking and f (si) represents negated properties. Equation 5.10

represents a transition between symbolic states si and si+1, each transition T is a

disjunction of all the transitions t in the Petri net model as each of them may be

enabled.

T (si, si+1) =
n_

j=0

tj(si, si+1) (5.10)

This naive method in equation 5.9 is not efficient as it exploring exhaustively

all the interleavings of a net’s transitions in depth k but without considering the

dependencies among them. The computation complexity of the naive method thus

becomes very high and sometimes difficult to compute a result if k is getting larger.

Based on some observations and properties of PrT Nets, the firing of a transition

depends on the existence of tokens from its input places P , thus depends on the other

transitions that producing tokens for P . If in a state s, a transition t’s input places

are empty or not enough token to enable t, the checkings on t at state s obviously

cannot able to fire. If in a state s, a transition t0s output places are not visible

to properties, firing t can only update the markings of its output places, thus if a

transition firing sequence �k only has a t but does not have another transition t0

consume tokens from t’s output places and firing after t, then firing t is redundant

in �k. With these observation, it is possible to avoid those redundant checkings by

SMT solvers and improve the efficiency of BMC.

For example, in Figure 5.13, the initial marking is P0 {tok0}, P1 {}, P2 {}, if we

want to check whether it can reach a marking where P2 {tok0}. The model formula

94

Figure 5.13: A simple model

produced by equation 5.9 within k = 2 is:

�k = I(s0)^(ti (s0, s1) _ to (s0, s1))^(ti (s1, s2) _ to (s1, s2))^(f(s0) _ f(s1) _ f(s2))

(5.11)

By naive checking , the generated formula �k covers all possible firing orders in-

cluding ti ! ti, ti ! to, to ! ti and to ! to, which is infeasible in the original PrT

Nets model. Firing ti twice cannot reach a marking in P2 because P2 is not directly

updated by ti. Firing to before ti is impossible because P1 is empty initially that

cannot enable to if ti have not yet fired. The only firing sequence feasible for this

model is ti ! to. If we have this information before checking, we can check only

feasible firing sequences directly by avoiding infeasible ones.

In this example, we get a reduced formula �0:

�
0
= I(s0) ^ (ti (s0, stemp) ^ to (stemp, s2)) ^ (f(s0) _ f(s1))

where stemp is an intermediate state for a consecutive firing of ti and to, and does

not need to be checked.

In this section, we are presenting a method to generate the reduced �
0 so that

avoid exploring redundant transition firing sequences. Besides, we prove the new

formula �0 preserves the reachability property in the original formula �.

5.4.2 Generate a Reduced Formula

While translating a HLPN model to �k through naive method, �k represents all

the permutations of transition firing sequences in the HLPN model within length

k. However, some of subformulas represent infeasible sequences in the HLPN model

95

and some of them is equivalent to another subformula, but they are still checked.

In this section, we are providing a new translation method to generate a reduced

formula �0 thus avoid checking these unnecessary subformulas.

5.4.2.1 Preliminary Definitions

Suppose a HLPN model N has a set of of n transitions T , a transition in N denotes

tj 2 T , where 0 j < n.

Definition 1. In HLPN, a transition firing sequence � of length k denoted as

�k = t0 ! t1 ! · · ·! tk�1| {z }
k

, where tj can be any transition in T . A �k is feasible if

there is a marking M0 can enable all the transitions in �k with �k ’s order, thus can

produce a state transition sequence M0t0M1t1...tk�1Mk. If none of M0 can produce

such sequence, �k is infeasible.

In equation 5.9, formula �ph =
Vk�1

i=0 T (si, si+1) represents all the possible �k in

a HLPN model.

Definition 2. A subformula !k is a formula represents a fire sequence �k in N ,

!k =
Vk�1

i=0 tj (si, si+1), where 0 j < n.

Combining equation 5.10, expanding �ph results in a disjunction of subformulas:

�ph = !0 _ !1 _ · · ·

Lemma 3. If �k is infeasible in HLPN model, !k evaluates to be false.

Proof. Since !k is a formula representation of a firing sequence �k in the HLPN

model, if �k is infeasible, one of transition in �k cannot be enabled. If the formula

represents tj in !k evaluate to be false, !k evaluates to be false.

96

Theorem 4. Suppose !k represents �k. If �k is infeasible in HLPN model, remove

!k from �ph does not affect the truth of �ph.

Proof. Denotes �ph is a reduced formula by removing !k from �ph. According to

lemma 3, !k evaluates to be false if �k is infeasible. Thus, �ph = �0
ph _ !k =

�0
ph _ false = �0

ph.

Definition 5. According to the definition in [30], an independence relation I ✓

T ⇥ T is a symmetric, antireflexive relation, satisfying two conditions for each state

s 2 S and for each (↵, �) 2 I:

Enabledness: If ↵, � 2 enabled (s) then ↵ 2 enabled (� (s)).

Commutativity: ↵, � 2 enabled (s) then ↵ (� (s)) = � (↵ (s))

The dependency relation D = (T ⇥ T) \I.

Lemma 6. If transition t and t0 has independence relation, switching the firing

order of them results in an equivalent !0
k of !k.

Proof. According to Def. 5’s commutativity property, firing t and t0 in either order

results in the same state. Thus switching their firing order in !k results in equivalent

!0
k.

Lemma 7. If two subformula !k and !0
k is equivalent, remove !0

k from �ph does not

affect the truth of �ph. �ph = �0
ph _ !0

k = �0
ph .

Proof. If !k and !0
k is equivalent, we can substitute !0

k with !k. �ph = �0
ph _

!k_!0
k =�0

ph _ !k _ !k= �0
ph.

Theorem 8. If !
0
k can be obtained by switching independent transitions t and t0

from !k, removing !0
k from �ph does not affect the truth of �ph.

97

Proof. From Lemma 7 and 6, this theorem is proved.

Definition 9. According to [30], a transition t (si, si+1) is invisible with respect to

property f if f (si) = t (si, si+1) ^ f (si+1) .

Therefore, from theorem 4 and 8, if we can generate a reduced formula �
0 that

avoid checking infeasible path and redundant equivalent path, we can improve our

checking efficiency and still get correct result.

To lock some transitions firing order, we need to analyze the dependencies in a

PrT Nets model.

Since a transition t’s input arc label li indicates the number of tokens from t’s

input place to be consumed and t’s output arc label lj indicates the number of tokens

to be produced and added to the connected output places.

5.4.2.2 Preprocessing By Locking Transitions

Because �k includes subformula !k that represents infeasible path in HLPN model as

well as redundant equivalent subformula, we can preprocess the formula to remove

these subformulas from �k. Denotes Tall as all the transitions in a HLPN model N .

Definition 10. A pattern Pat with a set of transitions Tp ✓ Tall is a subformula

that represents a segment of transition firing sequence of length n from state i to

state j in N . Pat = t0 (si, si+1)^t1 (si+1, si+2)^. . .^tn (sj�1, sj), where t1, ..., tn 2 Tp.

Definition 11. Locking a set of transitions Tp ✓ Tall with a pattern Pat means

each T (si, si+1) in the original model formula �k is substituted with T
0
(si, si+1) =

Pat _ Trest, where Pat (s0, s1) = t0 (si, st0) ^ t1 (st0, st1) ^ . . . ^ tn (stn, si+1) and st

represents a temporary state, Trest = Tall\Tp.

98

Figure 5.14: A Preprocessing Pattern

After locking Tp with pattern Pat on �k, the resulted reduced formula �0
j:

�
0

j = I(s0) ^
j�1̂

i=0

T
0
(si, si+1) ^

j_

i=0

f(si) (5.12)

where T
0
(si, si+1) = Pat _ Trest and j k.

Compare to the original formula �k, we need to build the Pat carefully for �0
j

has to be equivalent with �k under reachability properties:

1. only the false !k and redundant !k in �k are removed;

2. a transition t generating temporary state st is invisible to reachability prop-

erties.

5.4.2.3 A Pattern

Definition 12. An initial marking place pini is that pini has at least one token in

state s0; a property identified place pr is part of property f that pr needs to be

checked for the satisfiability of f .

99

In a HLPN model, a transition is connected with input arcs and output arcs,

each arc has a label indicating the type of tokens to instantiate the transition.

Definition 13. A simple variable input/outputs label denotes the transition con-

sumes/produces one token to the arc connected place. A set variable input/output

label denotes the transition consumes/produces a set token to the arc connected

place.

Definition 14. In PrT Nets, a transition t is enabled when:

1) If t’s input arc label is simple variable, the label connected place has at least

one token;

2) If t’s input arc label is a set variable, the label connected place has at least

one set token;

3) The token can instantiate t’s transition formula to be true.

Figure 5.14 shows a place Pp that is connected by a set of transitions Tp =

{ti0, ti1, . . . , tiu, to0, to1, . . . , tov}. Pp’s input transition set is Tpi = {ti0, ti1, . . . , tiu}and

output transition set is Tpo = {to0, to1, . . . , tov}.

Under the following conditions:

1. All the arc label connected to Pp are simple variables;

2. Pp is neither an initial marking place nor a property identified place;

3. Pp is the only output place of all Tpi and the only input place of all Tpo.

Let s
0 be a next state of s and s

00 be a next state of s0 . We can apply a locking

pattern:

100

Pat =
⇣
ti0

⇣
s, s

0
⌘
_ ti1

⇣
s, s

0
⌘
_ ... _ tiu

⇣
s, s

0
⌘⌘
^

⇣
to0

⇣
s
0
, s

00
⌘
_ to1

⇣
s
0
, s

00
⌘
_ ... _ tov

⇣
s
0
, s

00
⌘⌘

(5.13)

5.4.3 The Correctness of the Pattern

Lemma 15. In HLPN, if a transition t’s output places does not include a property

identified place, t is invisible to reachability property fr.

Proof. Reachability property fr in a HLPN refers to the property identified place

Pr’s marking. Since only add a token to Pr can update Pr’s marking with new value,

if fire t does not update Pr, t is invisible to fr.

Lemma 16. In a shortest subformula !k that evaluates �k to be true, if !k has a

ti 2 Tpi, it has a to 2 Tpo after ti, represents as ti (sj, sj+1)^ to (sk, sk+1) and j < k.

Proof. Because ti’s only output place is Pp, but Pp is assumed as not an property

identified place, according to lemma 15, ti is invisible to reachability property fr.

Since Pp’s output transition to 2 Tpo, if a subformula !k does not contain a to,

according to def. 9, f (s) = ti (s, s0)^ f (s0), so, ti becomes redundant thus !k is not

the shortest !k.

Lemma 17. In a shortest subformula !k that evaluates �k to be true, if !k has

to 2 Tpo, it must have ti before to.

Proof. Since there is no other than ti can enable to and to’s only input place Pp is

not an initial marking place still cannot enable to. If !k does not have a ti before

101

to, to cannot be enabled, thus a �k with only to is infeasible in N . Therefore, !k

cannot evaluate �k to be true.

Theorem 18. In a shortest subformula !k that evaluates �k to be true, if it has a

transition t 2 Tp, it must have both and with an order ti before to. Otherwise, !k is

false thus can be removed from �k.

Proof. From lemma 16 and 17, if !k has either ti or to, it must have both and in an

order that ti before to.

Lemma 19. A transition t does not depend on another transition t0 firing after t.

Lemma 20. A transition tm fires between ti 2 Tpi and to 2 Tpo in a Pat is either

independent of ti or independent of to.

Proof. Because tm fires between ti and to:

If tm is either t0i 2 Tpi or t0o 2 Tpo, we can let t0i or t0o be ti or to.

If tm includes a Pat, it only updates ti’s input places and to’s output places, thus

it does not update Pp’s marking, as to depends on Pp, to does not depend on tm.

Besides, according to lemma 19, tm does not depend on to as it happens before to.

Thus, tm is independent of to.

If tm 2 Trest, since tm is firing after ti, according to lemma 19, ti does not depend

on tm. Similarly, to firing after tm, tm does not depend on to. On the other hand,

since to only depend on ti but ti does not depend on tm, to does not depend on tm.

Thus, in this case, tm is independent of to.

Theorem 21. All the subformula !k that have a set of transitions in Tp and in

Pat0s order are equivalent to !0
k where t 2 Tp are in a consecutive manner like Pat.

102

Proof. If the Tp is in !k but not represent consecutive transition firings in N like

the Pat, at least one transition tm is firing between ti and to. According to lemma

6, if tm is independent of either ti or to, tm’s firing order in N can be switched with

ti or to and according to lemma 20, the switched !
00
k is equivalent with !k, we got

!k = !
00
k . Obviously since !

00
k = !

0
k, then !k = !

0
k.

Therefore, according to the theorem 18 and 21, the correctness of applying the

patten in �k and get a reduced formula �0
j is proved.

5.4.4 Error Path

After applying pattern to HLPN model and produced a reduced formula �0
k, the

error path can still be regenerated along with the pattern. Compared to the naive

method, there are two cases to consider:

1. If the error path �k does not contain a transition in the pattern, the generation

of error path is the same as the naive method;

2. If the error path �k contain a pattern, since the new path generated by SMT

solver is also a reduced state sequence because the Stemp is ignored in the new

path, to build a complete path, each state transition that are not reflected by

firing one transition need to refer to the pattern to see if it is result in firing a

sequence of transitions. If yes, the intermediate transitions in the pattern are

added to the path; otherwise, search and refer for the next pattern.

103

Table 5.7: Verifying Shared Memory Model with Refined Method
Processors Step

Bound
Time

(seconds)
Naive

Method

Time
(seconds)

Refined
Method

Heap Size
(Mb)
Naive

Method

Heap Size
(Mb)

Refined
Method

5 5 0.07 0.05 0.86 0.78
5 10 0.30 0.23 1.54 1.34
5 15 1.49 1.20 2.53 2.42
10 5 0.12 0.10 1.02 1.00
10 10 0.98 0.84 2.08 1.97
10 15 15.50 8.37 4.73 4.60

5.4.5 Experiment on Reduced Model: Shared Memory Model

Figure 4.11 shows a share memory model in PrT Nets. In this model, the pattern can

be applied to place POwnMemAcc’s input transition TBegin_Own_Acc and output tran-

sition TEnd_Own_Acc, thus the pattern is defined as TBegin_Own_Acc ^ TEnd_Own_Acc.

Table 5.7 presents a comparison of time and memory consumption of the naive

method and the refined method. Since we only applied one pattern in this model,

it still reflects some improvements. The formula we checked is shown in Equation

5.14:

⇤¬(marking (Ext_Mem_Acc) = h3, 0i ^marking (Ext_Mem_Acc) = h2, 4i)

(5.14)

104

Table 5.8: Verifying Seabed Rig Robotic Workflow Model with Refined Method
Step

Bound
Time

(seconds)
Naive

Method

Time
(seconds)

Refined
Method

Heap Size
(Mb)
Naive

Method

Heap Size
(Mb)

Refined
Method

5 0.20 0.14 1.09 0.94
10 0.40 0.25 1.80 1.48
15 0.60 0.38 2.60 2.19
30 1.41 1.04 4.98 4.17
50 3.55 2.03 8.42 6.44

5.4.6 Experiment on Reduced Model: Seabed Rig Robotic

Workflow

Figure 4.15 shows a Seabed Rig robotic workflow model in PrT Nets. In this

model, our pattern can be applied to place PRO_atGripperPos, PRO_atGripperAttach and

PRO_hasGripper. Thus, the pattern is contructed from the related transitions and

defined as in Equation 5.15:

Tp = TRO_MoveToGripper ^ TRO_MoveToGripperAttach ^ TRO_RetriveGripper

^ TRO_MoveToHomePos (5.15)

Table 5.8 presents a comparison of time and memory consumption of the naive

method and the refined method. The formula we checked is shown in Equation 5.16:

⇤¬(marking (RG_CenterDown) = h1, 1i (5.16)

105

5.5 Analyzing Hierarchical Models

As we have defined a hierarchical model SAM in Section 4.2, a supporting analysis

method should be defined. Compositional analysis is a possible solution but is only

effective to loosely coupled modules in a system [31]. An efficient way is to find an

equivalent PrT Nets model thus can leverage the three analysis methods mentioned

above.

5.5.1 Generating An Integrated Flat Petri Net Model

Because a SAM model is hierarchically and modulely specified and each component

in a different layer has its own behavior model, it is hard to leverage the three

existing analysis methods. However, by following the definition of SAM framework,

it is possible preprocesses the model by flattening the hierarchical structure and

integrating modulely distributed net models.

In this phase, all the individual behavior models for different components of

a SAM model need to be connected by directed arcs both horizontally and verti-

cally . Therefore, selecting interfaces among all the behavior models are important.

Because each behavior model has input places (places without any input arc, e.g.

Sender in Figure 4.16) and output places (places without any output arc, e.g. Re-

ceiver in Figure 4.16), these input and output places are chosen as candidate inter-

face places heuristically. Similarly, each SAM component has its input ports (P1 in

Figure 4.16) and output ports (P4 in Figure 4.16) for the communication with other

components, these input and output ports form the interface of the component.

The connection strategies are :

106

Figure 5.15: Generating Analysis Model by Horizontal Connection

• Horizontally: each SAM component has its input ports and output ports

specified by one of the interface places of the underlying Petri net model (e.g.

in Figure 5.15, Port 1 specified by P1 and Port 2 specified by P2). Integrating

Petri net models from different components in the same hierarchical layer is by

connecting the interface places. Moreover, the components in the same layer

are connected by SAM connectors and arcs, so that SAMTools transforms

them into Petri net transitions and arcs respectively. A new transition is

created for each connector during the transformation (e.g. in Figure 5.15

is T3). The pre-condition of such transition is true by default; however a

post-condition may be added. In the example, a post-condition “Y=X” is

added. The variables in the new transition formula match the connector’s

input and output arc variables. The sort of the variables is exactly the sort of

the interface places, specified in ports, through connected arcs. Corresponding

new arcs are added to preserve the flow relationships, which are connected with

the interface places in ports and related transitions. For example, a new arc

between place P2 in Port2 and T3 in Connector1.

• Vertically: The input or output ports not connected with any arcs in a

component are mapped to the corresponding input and output ports in the

parent component. For example in Figure 4.16, ports P1 and P2 in top layer

107

component A1 are mapped to the second layer’s input port P5 and output

port P8.

Thus, the behavior models are connected and flattened into an integrated flat HLPN

model that is ready to be checked via different analysis methods.

108

CHAPTER 6 MODELING AND ANALYSIS IN SAMTOOLS

6.1 SAMTools

Since 1990s, software architecture has become an active research area within soft-

ware engineering for studying the structure and behavior of large software systems

[100]. A rigorous approach towards architecture system design can help to detect

and eliminate design errors early in the development cycle, to avoid costly fixes at the

implementation stage and thus to reduce overall development cost and increase the

quality of the systems. SAM [113, 54, 55, 56] is a general framework for systemati-

cally modeling and analyzing software architecture specifications, whose foundation

is a dual formalism combining a Petri net model for behavioral modeling and a

temporal logic [55] for property specification. In this Chapter, we present a tool

set, called SAMTools, for modeling and analyzing SAM specifications. SAMTools

supports:

1. a software architecture description in a hierarchical manner through decom-

position and refinement;

2. dynamic behavioral simulation;

3. property analysis through explicit state model checking [30] using SPIN tools

[60];

4. property analysis through bounded model checking (BMC) [26] using SMT

solver Z3 [36].

109

Figure 6.1: The Functional View of SAMTools

6.1.1 An Overview of SAMTools

SAMTools is comprised of a modeling component, a SAM model, and an analysis

component (Figure 6.1). The modeling component has three functions: structure

modeling creates hierarchical compositions, behavior modeling specifies behaviors

of software components/connectors using Petri nets, and property modeling defines

property specifications using temporal logic. The SAM specification is a hierarchi-

cal structure integrating the results of structure, behavior, and property modeling,

which can be transformed into XML format. The analysis component includes three

complementary analysis methods: simulation, explicit state model checking and

bounded model checking (BMC). The simulator in SAMTools executes the behavior

model in PrT Nets. For explicit state model checking in SAMTools, a SAM model

is translated into an equivalent model in PROMELA [10] suitable for checking by

a widely used model checker called SPIN [60]. For BMC in SAMTools, a first-order

logic formula representing the model is generated and checked by an SMT solver

called Z3 [36].

110

6.2 An Example of Using SAMTools: Mondex

We use a smart card system, Mondex, as an example to demonstrate our modeling

and analysis methodology in SAMTools.

6.2.1 Mondex

Mondex [119] smart card system is an electronic purse payment system, which in-

volves a number of electronic purses with values and can exchange the values through

a communication device. Mondex was the first pilot project of the International

Grand Challenge on Verified Software [115], and was awarded the highest assur-

ance level of secure systems, ITSEC Level E6 [116]. Mondex was first formally

specified and proved using Z language [104]. Since 2006, several research groups

around the world have applied different formalism to specify and analyze the Mon-

dex. For example, Massachusetts Institute of Technology uses Alloy [63], University

of Southampton uses Event-B [7] and University of Bremen uses OCL (object con-

straint language) [99].

The refinement relation of two models in the Mondex are:

1. Abstract model is a very simple model with an atomic operation, payment,

which is transfer balance from one purse to another.

2. Concrete model is the actual implementation of the transaction protocol which

involves a sequence of non-atomic operations. Security issues needs to be

concern at this level. For example, a purse could disconnect at any time due

to power failure, a messages could be lost by the communication channel and

messages in channel are public readable by other purses.

111

Figure 6.2: Mondex Composition Model in SAM

6.2.2 Modeling Mondex in SAMTools

Our previous work [119, 118] formalized Mondex abstract and concrete purse models

using SAM. We give a brief description in this section.

6.2.2.1 Structure Modeling

A Mondex smart card system is composed of three components: Card Reader,

Connector and Purse Card. This architecture is modeled in SAM in Figure 6.2.

Purse communicates with card reader via connector component. To the Purse Card

component, it takes input massages and produce output messages via msg_in and

msg_out connectors.

6.2.2.2 Behavior Modeling: Concrete Purse

The Net Graph In a refined level, the purse’s behavior is specified in high level

Petri nets (Figure 6.3). The net model contains 3 places, ConWorld, msg_in and

msg_out (3 msg_out circles in 6.3 represents the same place). ConWorld place is

where purses are located. Each purse is a data structure of 15 data fields, such as

purse name, balance, sequence number, log, pay details and so on. Each msg repre-

sents a data structure of 10 data fields, such as operation type, name, value, sequence

112

Figure 6.3: Concrete Purse Model in PrT Nets

number and so on. Besides, there are 7 transitions in the model indicates the steps of

a payment process, including startFrom,startTo,readExceptionLog,req,val,ack, ex-

ceptionLogResult, exceptionLogClear and forged.

Place Type The semantics of place types have been defined in [120], we only il-

lustrate how they are modeled in SAMTools. As the modeling in SAMTools support

primitive data types: string and integer, we specify all the place types using this

two primitive data types. Figure 6.4 illustrates the place type of PConPurse. Figure

6.5 shows the place type of Pmsg_in and Pmsg_out.

Transition Formulas There are 7 transitions in Figure 6.3, but we only show the

transition Tstart_From in Figure 6.6.

Arc Labels The arc labels are specified on the net graph in Figure 6.3. For

example, the arc label between TstartFrom and Pmsg_in is msg_from, indicating a

113

Figure 6.4: Place Type and Initial marking of ConPurse

Figure 6.5: Place Type and Initial Marking of Msg_in and Msg_out

114

Figure 6.6: Transition startFrom’s Formula

simple variable. The arc label between TstartFrom and PConPurse is CF 0, indicating

a set variable.

Tokens and Abstract Tokens As specified in the Figure 6.4, PConPurse is a

power set place thus tokens is stored as a whole set and the token type is abstract

token. Pmsg_in and Pmsg_out are regular places that contain regular tokens shown in

Figure 6.5.

Place Bound The place bound is specified for the following analysis process that

requires to define the maximum token number in a place. We define them as 10.

6.2.2.3 Property Specification

As described in [118], two properties of Mondex are to be verified:

1. All Value Accounted: all value must be accounted, which is the sum of all

purses’ balances and lost components does not change;

2. No Value Created: no value may be created in the system, which states that

the sum of all the purses’ balances does not increase.

115

Suppose the system initiates with two purses, then the properties are specified in

FOLTL as:

1. ⇤ (purse1.balance+ purse2.balance+ lost_sum) = balance_sum

2. ⇤ (purse1.balance+ purse2.balance) balance_sum

6.2.3 Analyzing Mondex in SAMTools

As mentioned above, we illustrate SAMTools analysis functionalities by running

three analysis methods on Mondex HLPN model, simulation, explicit state model

checking and bounded model checking. All experiments were conducted on a 32-bit

Intel Core Duo CPU @3.0GHz box, with 4GB of RAM, running 32-bit Ubuntu.

6.2.3.1 Simulation

In SAMTools, simulation is the execution of PrT Nets. A global simulation runs on

the flattened PrT Nets model explained in Section 5.2. SAMTools imports PIPE+’s

simulator that can enable and fire transition, which results in a transition firing

sequence and markings. Users can either click “fire high level Petri nets” button to

generate the firing sequence step by step or automatically generate a firing sequence

up to a specified bound of firing actions. A simulation run is shown in Figure 6.7,

the firing sequence is stored in the animation history in the editor. In this example

is startTo - ether - startFrom - req - ether - val - ether - ack. In addition, SAMTools

also provides a simulation summary report (Figure 6.8) including the snapshots of

each state showing the distribution of high level tokens, transition firing sequences

and total time consumed during the simulation run.

116

Figure 6.7: Simulate Mondex Model

Figure 6.8: A Simulation Run of Mondex in SAMTools

117

Figure 6.9: Explicit State Model Checking Mondex in SAMTools

6.2.3.2 Explicit State Model Checking

Explicit state model checking in SAMTools is a push button process. After the

Mondex model and its properties are completely specified in PrT Nets, it is then

automatically translated into a PROMELA model, as shown in Figure 6.9. The

PROMELA model is sent to SPIN model checker, and SAMTools receives the check-

ing results of the model checking run in SPIN. If the property is not satisfied, an

error trace will be produced and trimmed to allow a user to find the cause of the

design error from the beginning.

6.2.3.3 Bounded Model Checking

Bounded model checking in SAMTools requires a user to define the length of the

checking paths k. The generated formula is sent to a SMT solver Z3 to check its

satisfiability. If the result is satisfiable, a path leads to an error state is produced and

trimmed to allow a user to find the cause of the design error from the beginning.

Otherwise, the system is safe within the predefined length of paths k. Since the

118

Figure 6.10: Bounded Model Checking Mondex in SAMTools

checking result is incomplete, a user can increase the k value and repeat the checking

process to increase confidence.

In the Mondex concrete purse model, up to nine transitions may be involved in

a transaction process, we set k = 9. The SAMTools encodes the generated formula

into a 5000 lines C file by using Z3 provided C language API. Then the c file is sent

to the Z3 solver. The checking report shown in the first line in Figure6.10 is unsat,

which means this transaction process is preserved since ¬f is not reachable within

k = 9 transition firing steps. The time and memory consumed for this checking

process are 27.85s and 11.42 Mbytes respectively.

119

CHAPTER 7 CONCLUSION AND FURTHER RESEARCH

7.1 Conclusion

This dissertation describes a framework that can formal modeling and analysis of

concurrent and distributed systems based on PrT Nets. The framework has the

following functionalities:

1. Modeling:

(a) Formal modeling a system’s behavior based on PrT Nets;

(b) Formal modeling a system’s property using FOLTL;

(c) Formal modeling a system modulely via components and connectors.

(d) Formal modeling a system hierarchically via hierarchical layers of com-

ponents and connectors.

2. Analysis:

(a) Simulating the PrT Nets model;

(b) Model checking the PrT Nets model with properties described in FOLTL;

(c) Bounded model checking the PrT Nets model with properties described

in FOLTL;

(d) Bounded model checking the PrT Nets model with an improved method;

(e) Analyzing a HLPN model specified modulely and hierarchically.

In addition, we implemented a tool set called SAMTools to automate the formal

modeling and analysis process, SAMTools has the following functionalities:

120

1. Modeling:

(a) Draw a Petri net graph through a graphical editor via drag and drop

actions;

(b) Specify high level concepts such as place type (token type), transition

formula, arc label, markings on the net graph;

(c) Specify FOLTL properties through the FOLTL input panel;

(d) Draw components and connectors graphically via drag and drop actions;

(e) Define a hierarchical model in a top down manner;

(f) Specify behavior model inside each components.

2. Analysis:

(a) Flattern hierarchical model;

(b) Connect modules of components;

(c) Simulate PrT Nets behavior model step by step or perform a simulation

run till no transition can be enabled;

(d) Model checking a HLPN model with properties in FOLTL with a bottom

click. Returns a counterexample if an error is found;

(e) Bounded model checking a HLPN model with safety (reachability) prop-

erties. Returns a state transition path if an error if found.

This framework and supporting tools can be very perspective in modeling critical

systems and gain reasonable results by choosing proper analysis method. Modeling

in PrT Nets is more closely to real world high level systems than low level Petri

nets, thus simplify the modeling process. Analysis by simulation is straightforward,

121

by model checking is complete and by bounded model checking is incomplete but

sometimes more efficient in practical problems and can get reasonable result when

the problem cannot be tackled by model checking. Besides, we refined the method

in automatic converting PrT Nets model into first-order logic formula by removing

subformulas describing infeasible interleavings and redundant transition sequences,

thus avoid unnecessary checkings and computations by SMT solvers.

Besides, SAMTools is implemented to automate the whole analysis process, thus

if a model is completely and properly specified, an analysis result can be gained by

a button click action. SAMTools allow us to experiment our ideas and to develop

new ideas on HLPNs conveniently.

7.2 Future Work

7.2.1 Extension on Timed Petri Nets

The framework can be extended with integrating timed Petri nets [108], since it

has been widely used in modeling and analysis of real time systems. A timed Petri

nets (Timed PN) models a discrete event dynamic system and for generating the

underlying stochastic processes. Timed PN have well defined semantics which un-

ambiguously defines the behavior of the net and these semantics make it possible to

implement simulators for timed PN as well as forming the basis for formal analysis

methods.

Besides, van der Aalst introduced time coloured Petri nets (Timed CPN) in [109],

that add time to PrT Nets. This enhanced the potential of usage of Timed PN to

high level systems by simplying the modeling process. Therefore, adding time can

diversify our framework to model a wider range of systems.

122

7.2.2 Extention with an Adaptor

In SAMTools, the model need to be built with drag and drop action. However, there

are a large number of colored Petri net models stored in colored PNML [19], thus

it is necessary to load them automatically. In this way, we can extend SAMTools

with an adapter that can accommodate various types of Petri nets format, so that

SAMTools can test more models easily.

123

BIBLIOGRAPHY
[1] Cpn tools. http://cpntools.org.

[2] Jcup parser generator. http://www2.cs.tum.edu/projects/cup.

[3] Jflex lexical analyzer generator. http://jflex.de.

[4] Petri net tool database. http://www.informatik.uni-
hamburg.de/TGI/PetriNets/tools/db.html.

[5] Toyota vehicle recalls. http://www.toyota.com/recall/.

[6] High-level Petri Nets - Concepts, Definitions and Graphical Notation, 2000.

[7] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and
reasoning in Event-B. STTT, 12(6):447–466, 2010.

[8] Marco Ajmone Marsan, Gianni Conte, and Gianfranco Balbo. A class of gen-
eralized stochastic petri nets for the performance evaluation of multiprocessor
systems. ACM Trans. Comput. Syst., 2(2):93–122, May 1984.

[9] Robert Allen and David Garlan. A formal basis for architectural connection.
ACM Trans. Softw. Eng. Methodol., 6(3):213–249, July 1997.

[10] Gonzalo Argote-Garcia, Peter J. Clarke, Xudong He, Yujian Fu, and Leyuan
Shi. A formal approach for translating a sam architecture to promela. In
SEKE, pages 440–447, 2008.

[11] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded
model checking of software using smt solvers instead of sat solvers. Int. J.
Softw. Tools Technol. Transf., 11(1):69–83, January 2009.

[12] Alessandro Armando, Silvio Ranise, and MichaÃ«l Rusinowitch. A rewrit-
ing approach to satisfiability procedures. Information and Computation,
183(2):140 – 164, 2003. <ce:title>12th International Conference on Rewriting
Techniques and Applications (RTA 2001)</ce:title>.

124

[13] Jean-Loup Baer and C.S. Ellis. Model, design, and evaluation of a compiler for
a parallel processing environment. Software Engineering, IEEE Transactions
on, SE-3(6):394–405, Nov 1977.

[14] Thomas Ball, Ella Bounimova, Rahul Kumar, and Vladimir Levin. Slam2:
static driver verification with under 4 In Proceedings of the 2010 Conference
on Formal Methods in Computer-Aided Design, FMCAD ’10, pages 35–42,
Austin, TX, 2010. FMCAD Inc.

[15] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In Pro-
ceedings of the 23rd international conference on Computer aided verification,
CAV’11, pages 171–177, Berlin, Heidelberg, 2011. Springer-Verlag.

[16] Clark Barrett, Leonardo De Moura, and Aaron Stump. Design and results
of the 1st satisfiability modulo theories competition (smt-comp. Journal of
Automated Reasoning, 35:2005, 2005.

[17] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2010.

[18] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without bdds. In Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Analysis of Systems,
TACAS ’99, pages 193–207, London, UK, UK, 1999. Springer-Verlag.

[19] Jonathan Billington, Søren Christensen, Kees Van Hee, Ekkart Kindler, Olaf
Kummer, Laure Petrucci, Reinier Post, Christian Stehno, and Michael Weber.
The petri net markup language: Concepts, technology, and tools. In Proceed-
ings of the 24th International Conference on Applications and Theory of Petri
Nets, ICATPN’03, pages 483–505, Berlin, Heidelberg, 2003. Springer-Verlag.

[20] Pere Bonet, Catalina Llado, Ramon Puijaner, and William Knottenbelt. Pipe
v2.5.: a petri net tool for performance modelling. In 23rd Latin American
Conference on Informatics, October 2007.

[21] J. Bowen and V. Stavridou. Safety-critical systems, formal methods and stan-
dards. Software Engineering Journal, 8(4):189 –209, jul 1993.

[22] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsitovich.
The opensmt solver. In Javier Esparza and Rupak Majumdar, editors, Tools

125

and Algorithms for the Construction and Analysis of Systems, volume 6015
of Lecture Notes in Computer Science, pages 150–153. Springer Berlin Heidel-
berg, 2010.

[23] C.A.Petri. Kommunikation mit automaten. bonn: Institut fÃŒr instru-
mentelle mathematik, schriften des iim nr. 2. 1962.

[24] Giovanni Chiola and Giuliana Franceschinis. Colored gspn models and auto-
matic symmetry detection. In PNPM, pages 50–60, 1989.

[25] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Se-
bastiani. The MathSAT5 SMT Solver. In Nir Piterman and Scott Smolka,
editors, Proceedings of TACAS, volume 7795 of LNCS. Springer, 2013.

[26] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded
model checking using satisfiability solving. In Formal Methods in System De-
sign, page 2001. Kluwer Academic Publishers, 2001.

[27] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ansi-c
programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 2988 of Lecture Notes
in Computer Science, pages 168–176. Springer Berlin Heidelberg, 2004.

[28] Edmund Clarke, Daniel Kroening, JoÃ«l Ouaknine, and Ofer Strichman.
Completeness and complexity of bounded model checking. In Bernhard Steffen
and Giorgio Levi, editors, Verification, Model Checking, and Abstract Inter-
pretation, volume 2937 of Lecture Notes in Computer Science, pages 85–96.
Springer Berlin Heidelberg, 2004.

[29] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the
art and future directions. ACM Computing Surveys, 28:626–643, 1996.

[30] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press,
2000.

[31] E.M. Clarke, D.E. Long, and K. L. McMillan. Compositional model checking.
In Logic in Computer Science, 1989. LICS ’89, Proceedings., Fourth Annual
Symposium on, pages 353–362, Jun 1989.

[32] M. Courvoisier, R. Valette, J. M. Bigou, and P. Esteban. A programmable
logic controller based on a high level specification tool. In Proc. of the 1983
Conf. on Industrial Electronics, pages 174–179, New York, 1983. IEEE.

126

[33] S. Crespi-reghizzi and D. Mandrioli. Petri nets and szilard languages. Infor-
mation and Control, 33(2):177 – 192, 1977.

[34] D. Crockett, A. Desrochers, F. DiCesare, and T. Ward. Implementation of a
petri net controller for a machining workstation. In Robotics and Automation.
Proceedings. 1987 IEEE International Conference on, volume 4, pages 1861–
1867, Mar 1987.

[35] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: in-
troduction and applications. Commun. ACM, 54(9):69–77, September 2011.

[36] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. In TACAS, pages 337–340, 2008.

[37] Michel Diaz. Modeling and analysis of communication and cooperation pro-
tocols using petri net based models. Computer Networks (1976), 6(6):419 –
441, 1982. Protocol Specification, Testing and Verification.

[38] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta Inf.,
1:115–138, 1971.

[39] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Commun. ACM, 17(11):643–644, 1974.

[40] L. Dobrica and E. Niemela. A survey on software architecture analysis meth-
ods. Software Engineering, IEEE Transactions on, 28(7):638 – 653, jul 2002.

[41] Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, 2:2, 2006.

[42] Steven Eker, JosÃ© Meseguer, and Ambarish Sridharanarayanan. The maude
ltl model checker and its implementation. In Thomas Ball and SriramK.
Rajamani, editors, Model Checking Software, volume 2648 of Lecture Notes
in Computer Science, pages 230–234. Springer Berlin Heidelberg, 2003.

[43] Clarence A. Ellis and Gary J. Nutt. Office information systems and computer
science. ACM Comput. Surv., 12(1):27–60, March 1980.

[44] E. Allen Emerson and Chin-Laung Lei. Modalities for model checking: branch-
ing time logic strikes back. Sci. Comput. Program., 8(3):275–306, June 1987.

127

[45] G. Estrin, Robert S. Fenchel, R.R. Razouk, and M.K. Vernon. Sara (system
architects apprentice): Modeling, analysis, and simulation support for design
of concurrent systems. Software Engineering, IEEE Transactions on, SE-
12(2):293–311, Feb 1986.

[46] Lukasz Fronc and Alexandre Duret-Lutz. Ltl model checking with neco. In
ATVA, pages 451–454, 2013.

[47] HartmannJ. Genrich and Gerda Thieler-Mevissen. The calculus of facts. In
Antoni Mazurkiewicz, editor, Mathematical Foundations of Computer Sci-
ence 1976, volume 45 of Lecture Notes in Computer Science, pages 588–595.
Springer Berlin Heidelberg, 1976.

[48] H.J. Genrich and K. Lautenbach. System modelling with high-level petri nets.
Theoretical Computer Science, 13(1):109 – 135, 1981.

[49] H.J. Genrich and P.S. Thiagarajan. A theory of bipolar synchronization
schemes. Theoretical Computer Science, 30(3):241 – 318, 1984.

[50] Silvio Ghilardi and Silvio Ranise. Mcmt: A model checker modulo theories.
In IJCAR, pages 22–29, 2010.

[51] Dimitra Giannakopoulou and Jeff Magee. Fluent model checking for event-
based systems. SIGSOFT Softw. Eng. Notes, 28(5):257–266, September 2003.

[52] D. Harel and E. Gery. Executable object modeling with statecharts. Computer,
30(7):31 –42, jul 1997.

[53] Xudong He. A formal definition of hierarchical predicate transition nets. In
Application and Theory of Petri Nets, pages 212–229, 1996.

[54] Xudong He and Yi Deng. Specifying software architectural connectors in sam.
International Journal of Software Engineering and Knowledge Engineering,
10(4):411–431, 2000.

[55] Xudong He and Yi Deng. A framework for developing and analyzing software
architecture specifications in sam. Comput. J., 45(1):111–128, 2002.

[56] Xudong He, Huiqun Yu, Tianjun Shi, Junhua Ding, and Yi Deng. Formally
analyzing software architectural specifications using sam. Journal of Systems
and Software, 71:1–2, 2004.

128

[57] Carlos A. Heuser and Gernot Richter. Constructs for modeling information
systems with petri nets. In Proceedings of the 13th International Conference
on Application and Theory of Petri Nets, pages 224–243, London, UK, UK,
1992. Springer-Verlag.

[58] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1985.

[59] AnatolW. Holt. Coordination technology and petri nets. In G. Rozenberg,
editor, Advances in Petri Nets 1985, volume 222 of Lecture Notes in Computer
Science, pages 278–296. Springer Berlin Heidelberg, 1986.

[60] Gerard Holzmann. Spin model checker, the: primer and reference manual.
Addison-Wesley Professional, first edition, 2003.

[61] Steve Hostettler, Alexis Marechal, Alban Linard, Matteo Risoldi, and Didier
Buchs. High-level petri net model checking with alpina. Fundam. Inf., 113(3-
4):229–264, August 2011.

[62] ISO/IEC. Information Processing Systems – Open Systems Interconnection:
LOTOS, A Formal Description Technique Based on the Temporal Ordering of
Observational Behavior, 1989.

[63] Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Trans.
Softw. Eng. Methodol., 11(2):256–290, April 2002.

[64] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2006.

[65] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri nets and
cpn tools for modelling and validation of concurrent systems. Int. J. Softw.
Tools Technol. Transf., 9(3):213–254, May 2007.

[66] Cliff B. Jones. Systematic software development using VDM (2nd ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[67] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model Checking.
The MIT Press, 1999.

[68] G. Juanole, B. Algayres, and J. Dufau. On communication protocol modelling
and design. In G. Rozenberg, editor, Advances in Petri Nets 1984, volume

129

188 of Lecture Notes in Computer Science, pages 267–287. Springer Berlin
Heidelberg, 1985.

[69] J. Robert Jump. Asynchronous control arrays. Computers, IEEE Transactions
on, C-23(10):1020–1029, Oct 1974.

[70] J. Robert Jump and P. S. Thiagarajan. On the interconnection of asyn-
chronous control structures. J. ACM, 22(4):596–612, October 1975.

[71] Richard M. Karp and Raymond E. Miller. Parallel program schemata: A
mathematical model for parallel computation. In Switching and Automata
Theory, 1967. SWAT 1967. IEEE Conference Record of the Eighth Annual
Symposium on, pages 55–61, Oct 1967.

[72] W. E. Kluge and K. Lautenbach. The orderly resolution of memory access con-
flicts among competing channel processes. IEEE Trans. Comput., 31(3):194–
207, March 1982.

[73] F. Kordon, A. Linard, M. Becutti, D. Buchs, L. Fronc, F. Hulin-Hubard,
F. Legond-Aubry, N. Lohmann, A. Marechal, E. Paviot-Adet, F. Pommereau,
C. Rodrígues, C. Rohr, Y. Thierry-Mieg, H. Wimmel, and K. Wolf. Web report
on the model checking contest @ petri net 2013, available at http://mcc.lip6.fr,
June 2013.

[74] Fabrice Kordon, Alban Linard, Marco Beccuti, Didier Buchs, Lukasz Fronc,
Lom-Messan Hillah, Francis Hulin-Hubard, Fabrice Legond-Aubry, Niels
Lohmann, Alexis Marechal, Emmanuel Paviot-Adet, Franck Pommereau,
César Rodríguez, Christian Rohr, Yann Thierry-Mieg, Harro Wimmel, and
Karsten Wolf. Model checking contest @ petri nets, report on the 2013 edi-
tion. CoRR, abs/1309.2485, 2013.

[75] Bernd Kramer. Stepwise construction of non-sequential software systems using
a net-based specification language. In G. Rozenberg, editor, Advances in Petri
Nets 1984, volume 188 of Lecture Notes in Computer Science, pages 307–330.
Springer Berlin Heidelberg, 1985.

[76] Lars M. Kristensen, SÃžren Christensen, and Kurt Jensen. The practitioner’s
guide to coloured petri nets. International Journal on Software Tools for
Technology Transfer, 2:98–132, 1998.

[77] Daniel Kröning, Philipp Rümmer, and Georg Weissenbacher. A proposal for
a theory of finite sets, lists, and maps for the smt-lib standard. In Informal

130

proceedings, 7th International Workshop on Satisfiability Modulo Theories at
CADE 22, 2009.

[78] Olaf Kummer and Frank Wienberg. Renew - the reference net workshop. In
Petri Net Newsletter, pages 12–16, 2000.

[79] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang.
Syst., 16:872–923, May 1994.

[80] D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines-a survey. Proceedings of the IEEE, 84(8):1090 –1123, aug 1996.

[81] N.G. Leveson and Janice L. Stolzy. Safety analysis using petri nets. Software
Engineering, IEEE Transactions on, SE-13(3):386–397, March 1987.

[82] Su Liu, Reng Zeng, and Xudong He. Bounded model checking high level petri
nets in pipe+verifier. Submitted.

[83] Su Liu, Reng Zeng, and Xudong He. Pipe+ - a modeling tool for high level
petri nets. International Conference on Software Engineering and Knowledge
Engineering (SEKE11), pages 115–121, 2011.

[84] Su Liu, Reng Zeng, Zhuo Sun, and Xudong He. Samat - a tool for software
architecture modeling and analysis. In SEKE, pages 352–358, 2012.

[85] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour analysis of soft-
ware architectures. In Proc. IEEE/IFIP Working Conf. Software Architecture
(WICSA), pages 35–50, Deventer, The Netherlands, The Netherlands, 1999.
Kluwer Academic Publishers.

[86] Marko Makela. Maria: Modular reachability analyser for algebraic system
nets, 2002.

[87] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[88] M.Ajmone Marsan and G. Chiola. On petri nets with deterministic and ex-
ponentially distributed firing times. In Grzegorz Rozenberg, editor, Advances
in Petri Nets 1987, volume 266 of Lecture Notes in Computer Science, pages
132–145. Springer Berlin Heidelberg, 1987.

131

[89] Kjeld H. Mortensen. Efficient data-structures and algorithms for a coloured
petri nets simulator. In 3rd Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools (CPN’01) Kurt Jensen (Ed.), pages
57–74. DAIMI PB-554, Aarhus University, August 2001.

[90] Leonardo Moura and Nikolaj Bjørner. Formal methods: Foundations and
applications. chapter Satisfiability Modulo Theories: An Appetizer, pages
23–36. Springer-Verlag, Berlin, Heidelberg, 2009.

[91] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, April 1989.

[92] Tomohiro Murata, N. Komoda, Kuniaki Matsumoto, and Koichi Haruna. A
petri net-based controller for flexible and maintainable sequence control and its
applications in factory automation. Industrial Electronics, IEEE Transactions
on, IE-33(1):1–8, Feb 1986.

[93] J. D. Noe. A petri net model of the CDC 6400. In Proc. of the ACM/SIGOPS
Workshop on Systems Performance Evaluation, pages 362–378, 1971.

[94] M.T. Ozsu. Modeling and analysis of distributed database concurrency control
algorithms using an extended petri net formalism. Software Engineering, IEEE
Transactions on, SE-11(10):1225–1240, Oct 1985.

[95] S. K. Paranjpe, A. B. Ektare, and D. P. Mital. Fault diagnosis of alignment
networks using petri nets. Int. J. Electron. (GB), 56(3):365–370, Mar, 1984.

[96] C.V. Ramamoorthy and G.S. Ho. Performance evaluation of asynchronous
concurrent systems using petri nets. Software Engineering, IEEE Transactions
on, SE-6(5):440–449, Sept 1980.

[97] F. J. Rammig. Hierarchical modulator description of VLSI systems. In Work-
shop Report. VLSI and Software Engineering Workshop, pages 112–116, Silver
Spring, MD, USA, 1983. IEEE Comput. Soc. Press.

[98] W. Reisig. Petri nets: an introduction. EATCS monographs on theoretical
computer science. Springer-Verlag, 1985.

[99] Mark Richters and Martin Gogolla. On formalizing the uml object constraint
language ocl. In Proc. 17th Int. Conf. Conceptual Modeling (ER’98, pages
449–464. Springer, 1998.

132

[100] Mary Shaw and Paul Clements. The golden age of software architecture. IEEE
Softw., 23:31–39, March 2006.

[101] T. Smigelski, Tadao Murata, and Masahiro Sowa. A timed petri net model and
simulation of a dataflow computer. In International Workshop on Timed Petri
Nets, pages 56–63, Washington, DC, USA, 1985. IEEE Computer Society.

[102] J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[103] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. Vs3: Smt solvers
for program verification. In Proceedings of the 21st International Conference
on Computer Aided Verification, CAV ’09, pages 702–708, Berlin, Heidelberg,
2009. Springer-Verlag.

[104] S. Stepney. An Electronic Purse: Specification, Refinement, and Proof. Techni-
cal monograph. Oxford University Computing Laboratory, Programming Re-
search Group, 2000.

[105] Aaron Stump, Clark W. Barrett, and David L. Dill. A decision procedure
for an extensional theory of arrays. In In 16th IEEE Symposium on Logic in
Computer Science, pages 29–37. IEEE Computer Society, 2001.

[106] Gerard Tel. Introduction to Distributed Algorithms. Cambridge University
Press, New York, NY, USA, 1994.

[107] Jeffrey D. Ullman. Elements of ML programming (ML97 ed.). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1998.

[108] J. van Benthem. The Logic of Time: A Model-Theoretic Investigation into the
Varieties of Temporal Ontology and Temporal Discourse. Synthese Library.
Springer, 1991.

[109] W.M.P. van der Aalst. Time Coloured Petri Nets and Their Application to
Logistics. Springer-Verlag, 1992.

[110] Margus Veanes, Nikolaj Bjørner, and Alexander Raschke. An smt approach
to bounded reachability analysis of model programs. In FORTE, pages 53–68,
2008.

133

[111] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio
Lerda. Model checking programs. Automated Software Engg., 10(2):203–232,
April 2003.

[112] K. Voss. Using predicate/transition-nets to model and analyze distributed
database systems. IEEE Trans. Softw. Eng., 6(6):539–544, November 1980.

[113] Jiacun Wang, Xudong He, and Yi Deng. Introducing software architecture
specification and analysis in sam through an example. Information & Software
Technology, 41(7):451–467, 1999.

[114] Jeannette M. Wing. A specifier’s introduction to formal methods. Computer,
23(9):8–23, September 1990.

[115] Jim Woodcock. First steps in the verified software grand challenge. Computer,
39(10):57–64, 2006.

[116] Jim Woodcock, Susan Stepney, David Cooper, John A. Clark, and Jeremy
Jacob. The certification of the mondex electronic purse to itsec level e6.
Formal Asp. Comput., 20(1):5–19, 2008.

[117] Reng Zeng and Xudong He. Analyzing a formal specification of mondex using
model checking. In ICTAC, pages 214–229, 2010.

[118] Reng Zeng and Xudong He. Analyzing a formal specification of mondex using
model checking. In ICTAC, pages 214–229, 2010.

[119] Reng Zeng, Jianling Liu, and Xudong He. A formal specification of mondex
using sam. In Service-Oriented System Engineering, 2008. SOSE ’08. IEEE
International Symposium on, pages 97 –102, dec. 2008.

[120] Reng Zeng, Jianling Liu, and Xudong He. A formal specification of mondex
using sam. In Proceedings of the 2008 IEEE International Symposium on
Service-Oriented System Engineering, pages 97–102, Washington, DC, USA,
2008. IEEE Computer Society.

[121] Pengcheng Zhang, Henry Muccini, and Bixin Li. A classification and compar-
ison of model checking software architecture techniques. Journal of Systems
and Software, 83(5):723 – 744, 2010.

134

Appendix

BNF For Restricted First-order Logic

• sentence ::= formula

• formula ::= atomicFormula | compoundFormula | complexFormula

• atomicFormula ::= NOT formula | term

• compoundFormula ::= formula AND formula | formula OR formula | formula

IMP formula | formula EQUIV formula

• complexFormula ::= quantifier userVariable domain variable DOT LPAREN

formula RPAREN

• term ::= constant | variable | empty | exp

• terms ::= term termRests

• termRest ::= COMMA term

• termRests ::= | termRests termRest

• exp ::= arith_exp | rel_exp | set_exp | LPAREN exp RPAREN

• rel_exp ::= term EQ term | term NEQ term | term GT term | term LT term

| term GEQ term | term LEQ term | term IN term: | term NIN term

• arith_exp ::= term MINUS term | term PLUS term | term MUL term | term

DIV term | term MOD term | MINUS term UMINUS

• set_exp ::= term UNION term | term DIFF term | LBRACE term RBRACE

| LBRACE LBRACK terms RBRACK RBRACE

• variable ::= ID | ID LBRACK index RBRACK

135

• userVariable ::= ID

• quantifier ::= FORALL | EXISTS | NEXISTS

• domain ::= IN | NIN

• constant ::= TRUE | FALSE | NUM | STR

• empty ::= EMPTY

• index ::= NUM

136

VITA

SU LIU

1985 Born, Yueyang, Hunan, China

2008 B.E., Software Engineering
Sun Yat-sen University
Guangzhou, China

2008–2014 Doctoral Candidate, Computer Science
Florida International University
Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Su Liu, Reng Zeng, Zhuo Sun, Xudong He. Bounded Model Checking High Level
Petri Nets in PIPE+Verifier. Accepted by International Conference on Formal En-
gineering Methods, 2014

Reng Zeng, Zhuo Sun, Su Liu, Xudong He. A Method for Improving the Precision
and Coverage of Atomicity Violation Predictions. submitted to International Con-
ference on Runtime Verification, 2014, under review

Su Liu, Reng Zeng, Xudong He. SAMTools - A Tool for Software Architecture
Modeling and Analysis in SAM. submitted to International Journal of Software En-
gineering and Knowledge Engineering, under review

Francisco R.Ortega, Armando Barreto, Naphtali Rishe, Malek Adjouadi, Su Liu.
Exploring Modeling Language for Multi-Touch Systems using Petri Net. The ACM
Interactive Tabletops and Surfaces Conference, pages 361-364, 2013

Su Liu, Reng Zeng, Zhuo Sun, Xudong He. SAMAT - A Tool for Software Architec-
ture Modeling and Analysis. International Conference on Software Engineering and
Knowledge Engineering, pages 352-358, 2012.

Reng Zeng, Zhuo Sun, Su Liu, Xudong He. McPatom: A Predictive Analysis Tool
for Atomicity Violation Using Model Checking. International SPIN Workshop on
Model Checking of Software, pages 191-207, 2012.

137

Su Liu, Reng Zeng, Xudong He. PIPE+ - A Modeling Tool for High Level Petri
Nets. International Conference on Software Engineering and Knowledge Engineer-
ing, pages 115-121, 2011.

Reng Zeng, Yu Huang, Su Liu, Peter J. Clarke, Xudong He, Gwendolyn W. van
der Linden, Jon L.Ebert. SC-xScript: An Embedded Script Language for Scientific
Computation in Embedded Systems. International Conference on Software Engineer-
ing and Knowledge Engineering, pages 308-314, 2011.

138

	Florida International University
	FIU Digital Commons
	6-20-2014

	Formal Modeling and Analysis Techniques for High Level Petri Nets
	Su Liu
	Recommended Citation

	Formal Modeling and Analysis Techniques for High Level Petri Nets

