
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

4-15-2014

Operational Actual Wetland Evapotranspiration
Estimation for South Florida Using MODIS
Imagery
Cristobal N. Ceron
Florida International University, ccero001@fiu.edu

DOI: 10.25148/etd.FI14071129
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Ceron, Cristobal N., "Operational Actual Wetland Evapotranspiration Estimation for South Florida Using MODIS Imagery" (2014).
FIU Electronic Theses and Dissertations. 1454.
https://digitalcommons.fiu.edu/etd/1454

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1454?utm_source=digitalcommons.fiu.edu%2Fetd%2F1454&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida 

 

 

 

OPERATIONAL ACTUAL WETLAND EVAPOTRANSPIRATION ESTIMATION 

FOR SOUTH FLORIDA USING MODIS IMAGERY 

 

 

A thesis submitted in partial fulfillment of 

the requirements for the degree of 

MASTER OF SCIENCE 

in 

GEOSCIENCE 

by 

Cristobal Ceron 

 

 

 

 

2014 

 

 



ii 
 

To: Dean Kenneth G. Furton      
 College of Arts and Sciences     
 
This thesis, written by Cristobal Ceron, and entitled OPERATIONAL ACTUAL 
WETLAND EVAPOTRANSPIRATION ESTIMATION FOR SOUTH FLORIDA 
USING MODIS IMAGERY, having been approved in respect to style and intellectual 
content, is referred to you for judgment. 
 
We have read this thesis and recommend that it be approved. 
 
 

_______________________________________ 
Pete Markowitz 

 
_______________________________________ 

Dean Whitman 
 

_______________________________________ 
René Price, Co-Major Professor 

 
_______________________________________ 

Assefa Melesse, Co-Major Professor 
 

 
Date of Defense: April 15, 2014 
 
The thesis of Cristobal Ceron is approved. 
 
 

 
 

_______________________________________ 
   Dean Kenneth G. Furton 

  College of Arts and Sciences 
 
 

______________________________________ 
Dean Lakshmi N. Reddi 

University Graduate School 
 
 
 

 
Florida International University, 2014 

  



iii 
 

 

 

 

 

 

 

 

 

© Copyright 2014 by Cristobal Ceron 

All rights reserved.  

 
  



iv 
 

 

 

 

 

 

 

 

 

 

 

 

DEDICATION 

To my Mom, Sister, Brother, and Father. Love you guys. 

 

 
 

 

 

 

 

 

 

 

 

 

 



v 
 

 

 

 

 

 

 

ACKNOWLEDGMENTS 

 I would like to thank Dr. Assefa Melesse for giving me the opportunity to explore 

a new area of science and for his valuable advice and guidance. I would also like to thank 

Dr. René Price and Dr. Dean Whitman for taking the time to be part of my committee and 

for the support and advice they have provided. Also, thanks go out to Dr. Pete Markowitz 

for his many years of help and support.  

 I would also like to include my lab mates Hari Kandel and Shimelis Behailu for 

the many tips and tricks they shared which saved me days of work.  Finally, I benefited 

from the help and support of Priscilla Pamela, Luis Lebolo, Vashti Sawtell, and Seth 

Manthey. Thank you guys for being so smart. 

 

 



vi 
 

ABSTRACT OF THE THESIS 

OPERATIONAL ACTUAL WETLAND EVAPOTRANSPIRATION ESTIMATION 

FOR SOUTH FLORIDA USING MODIS IMAGERY 

by 

Cristobal Ceron 

Florida International University, 2014 

Miami, Florida 

Professor Assefa Melesse, Major Professor 

 The purpose of this study is to validate the ability of the Simplified Surface Energy 

Balance (SSEB) approach and the Simple Method to provide AET estimates for wetland 

recovery efforts. The study utilizes the MODIS sensor aboard NASA's Terra satellite and 

SFWMD solar radiation data to derive AET values for South Florida. The SSEB/Simple-

Method approach provided mixed results with good agreement with control values during 

dry season (rave (59) = 0.700, pave < 0.0005) and poor agreement during wet season (rave(46) 

= 0.137, pave = 0.304). Further refinement is needed to make this method viable for yearly 

estimates due to the poor performance during wet season months. This approach can prove 

useful for short term wetland recovery assessment projects that occur during the dry season 

and/or long term projects that compare AET rates from a site from dry season to dry season.  
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CHAPTER 1: INTRODUCTION 
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1.1. Motivation and Background 

 Wetlands provide a wide range of services and benefits to a region. They provide 

erosion protection to coastlines and sediment control for large areas (Maltby, 2009). They 

provide extensive habitat for a wide range of wildlife including nursery habitats for 

numerous fish and shellfish species and breeding, nursing, and migratory habitat for large 

number of waterbirds (Aber, 2012). Furthermore, wetlands provide a welcoming 

environment for many species of reptiles, amphibians, some mammals, and a myriad of 

insect and plant species (Lepage, 2009; Maltby, 2009, Aber, 2012). Wetlands act as a giant 

filter cleaning both natural and man-made waste from the local water supply, help recharge 

aquifers, and provide drinking water for many communities across the world (Aber, 2012; 

Lepage, 2011). Finally, wetlands can be ideal sites for recreational activities such as 

camping, fishing, and hunting and for educational and scientific study (Abtew, 2013).  

 Unfortunately, some of the very characteristics that make wetlands so unique, 

diverse, and beneficial have also contributed to the destruction of many wetland areas. By 

their very nature, wetlands have a propensity to flood. Over the years, many wetlands have 

been drained or seen their water sources diverted in order to stop or control the flooding of 

developed (or soon to be developed) areas (Abtew, 2013; Maltby, 2009). Similarly, many 

wetlands have been drained in order to take advantage of the rich soils created in a wetland 

environment. The drained areas are replaced with agricultural fields or grazing land for 

livestock (Mitsch, 2000; Abtew, 2013). Wetlands that are not directly developed still suffer 

from effects of urban and agricultural development. Polluted runoff from agricultural and 

urban areas can “poison” wetlands, affecting the natural chemistry of these areas (Maltby, 
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2009). Many of these problems currently affect one of the largest wetland environments in 

the world: South Florida’s Everglades National Park. 

Figure 1.1. Average annual net loss and gain of wetland acreage for U.S. from 1950 to 
2009. Source: U.S Fish and Wildlife Service. Image taken from Dahl, 2009. 

 

 

1.2. Study Area: South Florida  

 Loss of wetlands is a worldwide problem and the U.S. has experienced major losses 

in recent history (Figure 1.1). It is estimated that during the late part of the 20th century, the 

US was losing wetlands at the rate of 60,000 acres per year (Davis, 2013). Fortunately, 

concerted conservation and remediation efforts have helped slow down the loss of wetland 

environments. South Florida offers a perfect microcosm of the threats faced by the world’s 

wetlands and the efforts being made to protect these unique ecosystems from disappearing. 

The South Florida area is dominated by three major ecosystems: natural, agricultural, and 

urban (Fig. 1.2). The eastern edge of South Florida is covered mostly by urban sprawl 
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Figure 1.2. Map of the South Florida Region. Wikimedia Commons, 
http://en.wikipedia.org/wiki/File:Evergladesareamap.png 
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which is in close proximity to extensive natural areas to the west and south. These natural 

areas include Everglades National Park, Big Cypress National Preserve, Biscayne National 

Park, and many smaller wild wetland areas. Also, agricultural lands are scattered across 

the South Florida landscape, the most significant of which is the Everglades agricultural 

areas near and around the southern edge of Lake Okeechobee. The interactions between 

these three closely linked ecological systems are of major interest to scientists and 

researchers looking to better understand the nature of wetlands and looking to design 

wetland restoration and conservation plans that balance the needs of people with those of 

nature. South Florida offers the perfect natural laboratory to explore wetland science and 

wetland restoration methods. 

 Unsurprisingly, decades of urban and agricultural development have severely 

altered the hydrology and ecology of the South Florida region, including those of the 

aforementioned Florida Everglades, one of the largest wetland ecosystems in the world 

(Abtew, 1996). Canals and other waterways divert most of the natural water flow for the 

sake of flood control, crop irrigation, and urbanization projects. To combat the negative 

effects this development has had on this wetland ecosystem, Florida approved the Water 

Resource Development Act (WRDA) in 2000. The act contains within it the 

Comprehensive Everglades Restoration Plan (CERP), which aims to capture water that 

now flows unused to the ocean and to redirect it to wetland areas in need of new water flow 

(U.S. Army Corps of Engineers, 2013).  

 The CERP is a massive restoration undertaking covering 16 Central and South 

Florida counties. It is composed of more than 60 individual elements, it is expected to take 
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30 years to complete, and has an estimated price tag of about 9.5 billion dollars (U.S. Army 

Corps of Engineers, 2013). The CERP aims to enhance both the ecologic and economic 

values of the South Florida area by increasing the size of natural areas, improving the 

habitat, abundance, and diversity of native plant and animal species, and improving the 

hydrological regime of wetland areas. Although this large and complex project often 

demands complex and nuanced solutions from many scientific and non-scientific 

disciplines, the driving idea of the whole restoration program is a simple one: Restore the 

historic water flow (Fig. 1.3). So, as the CERP outlines, the first step to wetland restoration 

is to add water. In fact, hydrology is the most important factor influencing the success of a 

wetland restoration (Clewell, 1989) and understanding hydrologic processes of wetlands is 

key in their effective restoration (Mitsch, 2000).  

Figure 1.3. Past, Present, and Future Water Flow through the South Florida Region. 
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Figure 1.4. The Water Cycle. Evapotranspiration is just one of many ways water is 
transported. U.S. Geological Survey http://ga.water.usgs.gov/edu/watercycle.html 

 

 

1.3. Evapotranspiration as an Indicator of Wetland Recovery. 

 With many restoration efforts now underway, the question becomes how to assess 

the success of the restoration methods being used. Again, water provides a solution. Water  

has a direct impact on the ecosystem dynamics of wetlands and hydrologic variables such 

as hydroperiod, flow velocity, flow duration, flow variability, and evapotranspiration 

provide a glimpse at the wetland’s health (Gurnell et al., 2000; Price et al., 2000; Jansen, 

2004). Of these hydrological “vital signs”, evapotranspiration (ET) proves an important 

indicator of hydrological recovery (Oberg, 2005). Evapotranspiration is the combined 

measurement of water being lost to the atmosphere as a result of evaporation from open 

water sources and transpiration from plants. In general ET is only one of many components 

of the water cycle (Fig. 1.4) but it is one of the principle methods of water transport in 
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South Florida wetlands. For example, the Everglades experiences a yearly rainfall of 

around 50 inches and an estimated yearly ET total of about 40 inches (German, 2000). So, 

a large portion of the water received by the Everglades through precipitation is returned to 

the atmosphere through evapotranspiration and measuring these rates can provide a 

glimpse at the workings of healthy wetland ecosystems.  

 The reasoning behind how ET can serve as an indicator of wetland recovery is 

relatively simple. A healthy wetland area will be fully or partially inundated for most of 

the year. The water will provide the necessary conditions for wetland flora to grow and 

thrive. The combination of above-surface water and healthy plant population will result in 

high rates of both evaporation and transpiration (high ET). Now, an unhealthy wetland area 

will be dry for most, if not all, of the year. The lack of the necessary flooding needed to 

maintain a healthy wetland ecosystem will prevent the growth of native flora. The lack of 

above-surface water and healthy plant population results in low evaporation and 

transpiration rates (low ET). Hence, measuring the ET rates of a treated wetland and 

comparing them to the ET rates of healthy wetlands can provide a measure of how well the 

treated wetland is recovering. Furthermore, studying ET rates over prolonged periods of 

time can give information on the speed and efficiency of the restoration techniques applied 

at a given site.  So, ET can be an important measure of wetland health, the question now 

becomes what technique is best suited for measuring ET rates for the South Florida region. 

1.4. Measuring ET. 

 The two most basic methods for finding ET are based on mass conservation and 

energy conservation. The mass conservation approach,-more commonly referred to as the 
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“water balance” approach in the literature, uses the terrestrial water cycle to derive a water 

conservation equation. The equation states that water coming into the system as 

precipitation can leave the system through rivers, evapotranspiration, or remain in the 

system stored underground or in above ground reservoirs. 

ܲ െ ܧ െ ܳ െ ௗ௪

ௗ௧
ൌ 0                                              (1.1) 

Where P is precipitation, E is evapotranspiration, Q is surface runoff, and dw/dt is the 

change of terrestrial water storage (Wang and Dickingson, 2012). Precipitation includes 

both rain and snow and can be measured using rain gauges or satellite imagery. Surface 

runoff refers to the water flowing into rivers and/or streams and then out of the system. Q 

can be measured using stream gauges. Water storage refers to water that seeps into the 

ground and it is stored in aquifers or stays above ground stored in lakes and/or reservoirs. 

Water storage change is difficult to measure and for an annual time scale dw/dt is often 

assumed to equal 0. For shorter time scales, measuring slight variations of the Earth’s 

gravitational field can provide estimates of dw/dt (Tapley et al., 2004a, 2004b). With values 

for P, Q, and dw/dt the equation is solved to obtain an estimate of evapotranspiration. 

 The energy conservation method defines the source of incoming energy into a 

natural system and how this energy is used within the system. Evaporation (as well as 

transpiration) is the phase change of water from liquid to gas, which takes a certain amount 

of energy to occur. It stands to reason then that the amount of evapotranspiration will 

depend on the amount of energy available to transform water to water vapor. The question 

then becomes what are the sources of energy and how is this energy used by a natural 
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(wetland, prairie, grassland, etc…) system. The answer comes in the form of the following 

energy conservation equation: 

ܴ௡ െ ܪ െ ܩ െ ܧߣ ൌ 0                                               (1.2) 

Where Rn is net radiation, H is sensible heat flux, G is soil heat flux, and λE is latent heat 

flux (Abtew, 2013). The variable Rn is the only source of incoming energy and it is the 

difference between incoming and outgoing shortwave radiation added to the difference 

between the incoming and outgoing long-wave radiation. The sensible heat flux, H, is the 

energy that goes into heating up the atmosphere above the land surface. Soil heat flux, G, 

is the energy that is absorbed by the ground causing the soil to warm up. Lastly, sensible 

heat flux, λE, is the energy that powers the phase change of water from liquid to gas. This 

phase change occurs without a temperature change, so sensible heat does not contribute to 

atmospheric temperature changes above the land surface. The sensible heat flux term 

consists of two values: The latent heat of vaporization (λ) and evapotranspiration (E). 

Hence, evapotranspiration can be calculated using eq. 2, if Rn, H, and G are known. What 

distinguishes many energy-balance methods from one another is how these three variables 

are computed. 

 Aside from the two major methods described above, there are more direct methods 

that rely on specialized equipment to provide an estimate of ET. These methods include 

Lysimetry, pan-evaporation, scintillometry,and eddy covariance (EC) (Abtew, 2013). 

Detailed descriptions of these methods are discussed further in the Literature Review 

section of this thesis. The aforementioned techniques work best for relatively small study 

areas. The equipment used for these methods is expensive and work best with regular 



11 
 

upkeep and maintenance, hence, they quickly become inconvenient when studying large 

areas (i.e., South Florida). Similarly, mass and energy conservation techniques also become 

less convenient as the size of the study area increases since larger sets of data (i.e., more 

sensors) are needed to account for the inputs and outputs of each conservation equation. 

Fortunately, Et can also be effectively calculated through satellite imaging techniques 

(Melesse et al., 2006, 2007). The importance and value of satellite imagery lies in its 

accessibility, which allows for ET studies of large and/or inaccessible areas. The purpose 

of the present study is to evaluate an ET measuring method that relies on satellite imagery 

to cover a large study area. The methodology is described in detail in the next section. 

1.5. The Simple Method and the Simplified Surface Energy Balance Equation. 

 The study will calculate weekly Actual Evapotranspiration (AET) values using a 

combination of methodologies that have not been used in tandem before. Actual 

evapotranspiration (AET) is a measurement of the true amount of water being 

evapotranspirated by an area of land (the term evapotranspiration often refers to AET, 

although it can also refer to potential and/or reference evapotranspiration). It is given by 

the following equation: 

ܶܧܣ ൌ ሺݐܧ௙ሻሺܲܶܧሻ                                                          (1.3) 

Where PET stands for Potential Evapotranspiration and Etf is the evapotranspiration 

fraction. Potential evapotranspiration is an estimate of the maximum possible amount of 

water that can evapotranspirate from an area (similar to what potential energy represents 

in an energy system). Evapotranspiration fraction (Etf) is a factor which estimates what 

portion of the total available water will actually evapotranspire. The variable Etf can be 
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calculated in many ways, and can include factors such as surface temperature, atmospheric 

pressure, wind speed, and humidity as inputs.  

 For the current study, two methods -one for calculating PET and the other for 

calculating Etf- will be used together for the first time to provide AET estimates for the 

South Florida region. Potential evapotranspiration (PET) is calculated using the Simple 

Abtew model (Abtew, 1996), also called the “Simple Method”. The Abtew model was 

developed using lysimeter measurements of open water evaporation and of wetland 

evapotranspiration in the South Florida region. Through his study Abtew found that, in 

South Florida, evaporation from shallow lakes, evapotranspiration from wetlands, and 

potential evaporation occur at very similar rates (Abtew, 1996). This means most of the 

available water is being evapotranspirated as opposed to leaving the system through other 

means. With this in mind, Abtew proposed a simple equation relating the potential Et 

(which in this case would be close to actual Et) to solar radiation, Rn. The equations is as 

follows: 

ܶܧܲ ൌ ଵܭ
ோೞ
ఒ

                                                     (1.4) 

Where Rs is solar radiation, λ is the latent heat of vaporization, and K1 is a calibration 

coefficient equal to 0.53 for the South Florida region. 

 The value of Etf is calculated using the Simplified Surface Energy Balance Method 

(SSEB) equation (Senay et al. 2007). The SSEB is derived from a more complex model 

called SEBAL (Bastiaanssen et al. 1998a, b, 2005) which uses energy conservation 

arguments to estimate evapotranspiration rates. Although the technical aspects of the model 
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are complex, the underlying ideas guiding the SSEB model are not. The SSEB model 

utilizes surface temperature measurements to calculate the ET fraction. It assumes that 

areas with high surface temperature will have low ET rates (low ET fraction value), and 

that areas with low surface temperature will experience high ET rates (high ET fraction 

values). The idea here is that when incoming solar radiation energy hits a dry, poorly 

vegetated area most of that energy goes into heating up the ground and atmospheric layer 

right above the ground (the H and G terms in the energy conservation equation). The energy 

then raises the overall temperature of that area. On the other hand, when incoming solar 

radiation hits a wet, vegetated area, a large portion of the energy goes into latent heat, that 

is, powering the phase change from water to water vapor (the λE term in the energy 

conservation equation). Since phase changes occur without an increase in temperature, 

these wet areas remain relatively cool. The SSEB uses remotely sensed temperature values 

(i.e. temperatures gathered by satellite sensors) to calculate ET fraction. The SSEB 

equation states: 

௙ݐܧ ൌ
ሺ்೓ି்ೣ ሻ

ሺ்೓ି ೎்ሻ
                                                       (1.5) 

Where Th and Tc are the average hottest and average coldest temperatures, respectively, of 

a land surface temperature (LST) image provided by satellite mounted spectroradiometer. 

The value of Tx is the LST value for an area of interest within the satellite image ("scene").  

 The SSEB model equation for ETf relies on satellite LST data which for this study 

is provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard 

NASA’s TERRA satellite (Fig. 1.5). The TERRA satellite circles the Earth on a sun 
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synchronous polar orbit that travels from North Pole to South Pole every 99 minutes. This 

allows MODIS to image Earth’s entire surface every one to two days. The MODIS 

instrument uses 36 spectral bands to image the Earth at resolutions of 250, 500, and 1000 

meters, providing information on cloud/aerosol properties, ocean phytoplankton densities, 

surface and cloud temperature, among other atmospheric, land, and ocean surface 

phenomena. The preset study, MODIS provides the necessary spatial and temporal 

dimensions needed to estimate weekly evapotranspiration rates across the expansive South 

Florida Region.  

1.6. Research Questions, Hypothesis, and Goals. 

 The main goal of my Master’s project is to validate a model that will provide 

weekly Actual Evapotranspiration estimates for the South Florida region using the “Simple 

Method” technique in combination with an SSEB remote sensing methodology. In the 

process, my study will produce actual evapotranspiration estimates and maps for the South 

Florida region with a focus on wetland areas in and around Everglades National Park and 

Big Cypress National Preserve.  

Hence, the current project aims to aid future restoration assessment studies by providing a 

simple and accessible method of calculating Et values. More specifically, this Master’s 

project will attempt to answer the following research questions: 

Question 1. Is the SSEB/Simple Method approach applicable for the Everglades study 

area? 
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By “applicable” it is meant that this procedure is not severely limited by the geography or 

any other variable associated to the study site that is not yet accounted for.  

Question 2. Is the SSEB/Simple Method approach useful for the Everglades study area? 

By “useful”, it is meant that the procedure will provide comparable results to those obtained 

by more standard methods (Florida Water Management Data) while still maintaining its 

simplicity and ease of use. 

Question 3. How many meteorological stations are sufficient to provide accurate 

evapotranspiration values for the Everglades study area? 

Hypothesis 1. Surface Temperature and solar radiation are sufficient variables to 

accurately calculate Actual Et values for the Everglades study area. 

Hypothesis 2. The Actual Et values derived from the SSEB approach will have a 

significant correlation to the values provided by the South Florida Water Management 

district, with a correlation coefficient (R) above 0.7.  

Hypothesis 3. A total of nine weather stations will provide enough solar radiation data to 

calculate accurate Actual Et values for the Everglades study site. 

Goal 1. Create actual spatial ET maps for the study area on a weekly timeframe. 

Ideally, this procedure will be automated as much as possible, hence providing a reliable 

and easily accessible source for obtaining ET maps. 

Goal 2. Create a template for applications to similar study sites. 

The template will include procedural information as well as the GIS tools needed to carry 
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out the analysis. Because of the remote sensing aspect of this method, this template may 

prove of great benefit for remote study areas that, unlike the Everglades study area, do not 

have the benefit of weather stations located nearby. 
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CHAPTER 2: LITERATURE REVIEW
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2.1. Wetlands Dynamics and Hydrology 

 A broad review of wetland ecosystem dynamics, wetland hydrology, and wetland 

restoration and managing techniques was carried out to attain a good foundation of the 

overlying science and themes inspiring this study (Maltby, 2009; Lepage, 2011; Abers, 

2012). These general overviews on wetland properties provide various definitions of what 

characterizes a wetland. Definitions may change from country to country and even from 

region to region and institution to institution. Although varied, all definitions share a 

similarity succinctly expressed by the American Environmental Protection Agency 

definition of a wetland (Wetland Definitions, 2013):  

“[wetlands are] those areas that are inundated or saturated by surface or groundwater at a 
frequency and duration sufficient to support, and that under normal circumstances do 
support, a prevalence of vegetation typically adapted for life in saturated soil conditions. 
Wetlands generally include swamps, marshes, bogs and similar areas." 

 

Wetlands can be further categorized by factors such as climate, hydrogeomorphology, 

hydroperiod, and water chemistry, among other factors (Arthington, 2012), but in general 

they share the quality of being covered by water for prolonged periods of time. Stating the 

importance of water to the well-being of wetlands seems obvious (and it is), yet the ways 

hydrological variables affect wetland ecology are varied and sometimes much more 

nuanced than assumed. It is known that hydrological variables such as water flow velocity, 

flow duration, flow variability, hydroperiod, and evapotranspiration play important roles 

in the ecosystem dynamics of wetlands (Cole and Brooks, 2000; Gurnell et al., 2000; Price 

et al., 2000; Melesse et al. 2006, 2007). Water impacts several major aspects of wetland 

health including soil composition (Faulkner, 1989; Venterink, 2002), vegetation cover (van 

der Valk, 1994; Todd, 2010; Cooper, 2012), and wildlife diversity (Bunn, 2002; Davidson, 
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2012; Konar, 2013). Clearly, hydrological factors affect every major ecological aspect of 

wetlands. 

 The great influence that hydrology has on wetland ecosystems makes it one of the 

most important factors influencing wetland restoration (Clewell, 1989; Mitsch, 2000). 

Although wetland restoration must include expertise from many different fields and 

consider numerous factors (Maltby, 2009; Abers, 2012; Zedler, 2000), examples of the 

importance of hydrological factors on wetland recovery are numerous (Bendix, 2000; 

Wassen, 2006; Money, 2009) and apply to wetlands across the world (Turner, 1997; 

Bedford, 1999; Acreman, 2007; Cowdery 2008). The importance of hydrological variables 

to wetland health makes the ability to accurately measure these variables crucial to 

restoration efforts. As mentioned before, many different hydrological variables contribute 

to the overall hydrological scheme of a wetland. My study focuses on one of these 

variables, evapotranspiration (ET), which is the amount of water lost to the atmosphere as 

a result of both evaporation from open water sources and transpiration from plants. 

Evapotranspiration has shown to be an important indicator of wetland hydrological and 

vegetation recovery (Oberg, 2005; Melesse et al. 2006, 2007; Abtew, 2013). Furthering 

evapotranspiration’s appeal as a measure of wetland health and recovery, satellite imagery 

techniques allow for ET collection of large wetland areas (Melesse et al. 2006, 2007). The 

inclusion of remote sensing tools means that ET can be used to provide a picture of how 

well large scale wetland recovery efforts are progressing without the need for large 

networks of ground-based sensors collecting the necessary data.  
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2.2. ET Calculation Methods  

 Having established evapotranspiration as the variable of interest of the present 

study, a concerted effort to understand past and present methods of calculating ET was 

carried out. It is an understatement to say that there are many ways to calculate ET. Good 

overviews of the many methods for finding evapotranspiration are provided in Allen 

(2011), Fisher (2011), and Abtew (2013). Evapotranspiration can be measured directly or 

indirectly. Pan evaporation, lysimetry, and eddy covariance (EC) were the most common 

and most often utilized direct methods of finding ET. Pan evaporation, which consists of 

measuring the water level in a standard sized container over a set period of time (i.e., daily) 

and calculating how much of the depth change is due to evaporation (Abtew et al. 2011; 

Shuttleworth, 1993). Lysimetry, which uses an instrument (i.e., lysimeter) that recreates a 

small section of the surrounding environment and measures the water mass-balance of that 

section. Mass changes of the tank are attributed to gains from precipitation, losses from 

infiltration (water flowing out the bottom of the tank), and evapotranspiration. Precipitation 

and infiltration are measured and used to solve for ET (Abtew, 2013). Lysimeters have 

been used for calibrating and validating other ET models (Makkink, 1957; Allen et al., 

1989) as well as developing new models (Abtew, 1996). Eddy Covariance (EC) is a 

technique that relies on the correlation between the vertical motion of vapor and the circular 

motion of wind above the land surface (Abtew, 2013). The wind’s circular motion, referred 

to as eddies, transports vapor towards or away from the land surface, impeding of 

facilitating the ET rate from the ground (Wang and Dickingson, 2012). Eddy covarience 

has been used to test, validate, and develop ET models (Mu, 2011; Glenn, 2011; Douglas, 
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2009), over large study areas (Jia, 2012; Liu, 2012) including global models (Miralles, 

2010; Mu, 2007). 

 Although pan evaporation, lysimmetry, and EC systems are routinely used to 

validate and develop ET models, these methods utilize ground-sited instrumentation that is 

often expensive and difficult to use for large scale studies at the regional level. These 

limitations can be overcome by utilizing models that rely on empirical, measured, or 

modeled data to indirectly calculate ET (Courault, 2005; Taconet, 1985, Enku, 2011). The 

models can be loosely placed in three categories: Temperature-based models, radiation-

based models, and energy-balance models. Temperature-based models assume mean air 

temperature in the most influential variable affecting ET. The relative ease by which 

temperature can be measured is one of the main reasons for utilizing these models (Xu and 

Sighn, 2001). Solar radiation models assume that ET is most influenced by solar radiation. 

Much like temperature, solar radiation data are easy to collect and widely available, making 

solar radiation models an attractive option for finding ET. Energy balance models estimate 

ET by solving the energy-balance equation (Eq. 1.2). The models attempt to account for 

all the physical factors that influence evapotranspiration. These factors include solar 

radiation, temperature, wind speed and direction, vapor pressure, atmospheric density, 

aerodynamic resistance, canopy resistance, stomatal conductance of plants, leaf area index, 

soil moisture, soil composition, among many others (Abtew, 2013; Allen, 2011). What 

usually differentiates one model from the next is the choice of factors used to solve for Rn, 

G, and H (Eq. 1.2). Examples of these models include SEBAL (Bastiaanssen, 1998a,b), 

METRIC (Allen, 2007), and the Penman Method (Abtew, 2013). The models have been 
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tested over a wide range of ecosystems and been validated using more direct ET measuring 

techniques such as EC measurements (Bastiaanssen, 1998b; Douglas, 2009; Serrat-

Capdevila, 2011; Timmermans, 2007). Out of the myriad of methods available for 

calculating ET, two are of special interest in this study: Abtew’s “Simple” Method and the 

Simplified Surface Energy (SSEB) method.  

2.3. Abtew’s Simple Model and the SSEB  

  Abtew’s “Simple” Method is a radiation-based model. The Abtew method had been 

tested against other solar-radiation models (Xiu and Singh, 2000), compared to evaporation 

methods (Delclaux and Coudrain, 2005), and used in rainfall-runoff models (i.e., mass 

conservation) (Oudin et al., 2005). Throughout these studies the Abtew model has shown 

comparable results to more standard methods. More recently, the model has been used to 

estimate evaporation from Lake Ziway in the Ethiopian Rift valley, providing estimates 

close to those produced through energy conservation models (Melesse et al., 2009). The 

Abtew model has also been used to estimate ET for the Ganzu Province in Northwest China 

(Zhai, 2010) and the Fogera flood plain in Ethiopia (Enku, 2011). For both these sites, the 

Abtew method provided satisfactory results when the constant coefficient was calibrated 

for each study site.  

 The SSEB method was developed to monitor and assess the performance of 

irrigated agriculture in Afghanistan (Senay et al., 2007). The model assumes that the 

temperature difference between land surface and near-surface air varies linearly with land 

surface temperature, an idea first used by the SEBAL model and also applied to the 

METRIC model (Senay et al., 2007). The SSEB model further assumes that this difference 
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between land surface temperature and near-surface air temperature is linearly related to soil 

moisture (Senay et al., 2007). Soil moisture is linearly related to evapotranspiration (Senay, 

2003; Allen, 1998), hence ET can be estimated using the near-surface temperature 

difference between land and air. The SSEB method has been tested against METRIC and 

shown to be applicable on a wide range of topographical regions (Senay, 2011). 

Furthermore, the SSEB method has been used as a base for more refined models (Savoca, 

2013; Senay, 2013) that compare well to eddy covariance measurements. 

 One of the key elements that make the SSEB method so useful for this study is its 

utilization of satellite image for data input. Utilizing land surface temperature (LST) data 

from satellite sensors allows for coverage of large study areas like the South Florida region. 

Remote sensing techniques, such as LST imaging by satellite sensors, have been widely 

used to calculate ET rates (Courault, 2005; Immerzeel, 2007; Kustas, 1997). Regional scale 

ET studies (Glenn, 2011; Price, 1990; Jia, 2012) and global scale ET studies (Miralles, 

2010; Wang, 2008) have been carried out using various satellite based measurements. The 

current study uses the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard 

NASA’s Terra satellite to collect LST data. MODIS LST products have been used for both 

regional studies (Cammalleri, 2012; Enku 2011) as well as global (Mu, 2007) ET studies. 

The MODIS LST data have also been validated using ground truthing  (Tang, 2010; Wan, 

2008; Coll, 2009). NASA’s Land Processes Distributed Active Archive Center (LP 

DAAC) processes, archives, and distributes all MODIS data and provided all LST data 

used in this study. The LP DAAC’s website, https://lpdaac.usgs.gov/, contains further 

technical information on the technical aspects of MODIS data.
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CHAPTER 3: METHODOLOGY 
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3.1. Evapotranspiration Fraction (Etf) Calculation. 

 The Etf calculation process begins with the acquisition of MODIS Land Surface 

temperature (LST) and emissivity 8-day data. The MODIS data can be downloaded from 

several sources available through: https://lpdaac.usgs.gov/data_access. The MODIS sensor 

collects raw digital signals which are used to calculate reflectance and Earth-exiting 

radiance (Various, 2012). LST data is calculated using the radiance data (MOD021KM) in 

combination with, geolocation data (MOD03), atmospheric temperature and water profile 

data (MOD07_L2), cloud mask data (MOD35_L2), and land-cover ((MOD12Q1) and 

snow cover data (MOD10_L2) (Wan, 2006). The MOD11A2 products use 8 daily 1-km 

LST products (MOD11A1) to create the average of clear sky LST’s for 8-day periods. In 

order to be classified as “clear sky” an image or pixel must pass several tests which look 

for signs of cloud cover. The details of the “clear sky” validation process are given by 

Ackerman, 2010. The data outputted by the MODIS sensor are projected onto a sinusoidal 

grid of “tiles” composed of 36 columns and 18 rows. The study area is located on tile (10, 

6), where the first number corresponds to the column and the second to the row of the grid. 

Figure 3.1 shows the grid system and a sample unedited LST image if the study area. 

Images from January 1, 2008 to December 31, 2010 were downloaded using the bulk 

download tool provided by the USGS site (http://earthexplorer.usgs.gov/bulk/help). There 

are 46 images per year, bringing the total number of images to 138.  

 The MODIS MOD11A2 data sets provide an 8-day clear day/night average of LST 

and emissivity values as well as several quality assurance layers. A single product (i.e. 

image) consists of 12 layers. 
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Figure 3.1. SIN Grid and MOD11A2 Image. 

 

 

Each layer is made up by 0.93 km x 0.93 km pixels and each pixel contains a single number 

value whose meaning depends on the layer being studied. For example, each pixel in layer 

1 provides a temperature in Kelvin and each pixel in layer 3 provides a time in hours. A 

detailed description of each layer’s content is depicted in Table 3.1. Once downloaded, the 

images are then loaded into ArcGis10 software for processing. The process that follows is 

all done within ArcMap 10 and uses the tools and resources provided by this program.  

 Obtaining a workable image of the study area takes several steps. First, the 8-day 

daytime 1km LST layer (layer 1) is extracted from the full product using the “Extract 

Subdataset” tool in ArcToolbox. The LST layer is then re-projected to the more useful 

geographical coordinate system  
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Table 3.1. MOD11A2 Image Layer Information. LP DAAC, 
https://lpdaac.usgs.gov/products/modis_products_table/mod11a2 

 

 

“NAD_1983_HARN_StatePlane_Florida_East_FIPS_0901” from its original sinusoidal 

projection using the “Project Raster” tool on ArcToolbox. The new projection uses units 

of meters, keeps the original pixel size of 926.63 m by 926.63 m, and it is used for all of 

the maps created in this study. A more detailed look at the projection is given in Table 3.2. 

 Once projected, the image is clipped to include only the South Florida region using 

the “Extract by Mask” tool on ArcToolbox. At this point, the pixel values can be converted 

from degrees Kelvin to degrees Fahrenheit using the following equation: 

௢	ܨ ൌ ሾଽ
ହ
ሺ. 02 ∗ 	௦ܭ

௢ െ 273ሻ ൅ 32]                                       (3.1) 

Where Ks is the temperature in Kelvin given in each pixel and 0.02 is a scale factor needed 

to convert the pixel temperature to true surface temperature in Kelvin. 
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Table 3.2. Analysis Projection Details. 

 

 

The unit conversion process is not necessary since only the ratio of temperatures is needed 

to create the Etf maps for each 8-day period. 

 The image is now ready to be used for the Etf calculation using the SSEB equation. 

High temperature (Th) and low temperature (Tc) benchmarks are needed for the calculation 

but extreme temperature values that may not be representative of the average highest or 

average lowest temperatures must be avoided (i.e., outliers). To minimize the effect of 

these extreme values on the Etf calculation, each pixel temperature value is averaged with 

the values of the surrounding 8 pixels (a 3x3 pixel area) using the “Focal Statistics” tool in 

ArcToolbox. Fig. 3.2 shows a visual representation of the “focal statistics” averaging 

procedure.  
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Figure 3.2: Focal Statistics Averaging Method. 

 

 

 A new layer is created where the new, average temperatures replace the original 

temperature values. A corresponding Th and Tc value is extracted from this new image 

layer using the “Get Raster Properties” tool from ArcToolbox. The SSEB equation is now 

applied to the previous un-averaged image pixel by pixel using the “Map Algebra” tool in 

ArcToolbox: 

ݐܧ ௫݂ ൌ
்೓ି்ೣ

்೓ି ೎்
                                                           (3.2) 

Where Th and Tc are extracted from the average temperature layer and Tx represents each 

individual pixel on the temperature layer created previous to the averaging step. The 

resulting temperature layer may have values greater than one or less than zero, which 

correspond to temperature values higher than the average high temperature and lower than 
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the average low temperature. These values usually correspond to outlier pixels and are dealt 

with by converting negative values to Etf = 0 (no evapotranspiration from that pixel) and 

converting values over one to Etf = 1 (Pixels evapotranspirate at PET rates). The process 

of replacing outlier values is also done with the “Map Algebra” tool. The final layer is 

composed of individual pixels that contain Etf values between 0 and 1. A diagram showing 

the process of creating Etf maps is given in Figure 3.3 and a list of ArcMap tools used in 

the analysis (with directions on how to find them in the ArcMap program) is given in Table 

3.3. Etf maps were created for all 130 8-day periods. 

3.2. Potential Evapotranspiration (PET) Calculation. 

 Solar radiation data were downloaded from the South Florida Water Management 

DBHYDRO online database 

(http://xportal.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu). The data are 

located under the “Hydrological and Physical” data section of the database and categorized 

as part of the “meteorological” datasets. The data were found using the “data type” search 

parameter “Total Solar Radiation” and ordered by “station”. A total of 15 stations were 

chosen for this study (Table 3.4). The stations were chosen in order to cover a significant 

portion of the study site and to provide a long enough data record to extend from 2008 to 

2010, the time period for which control data is available. Solar radiation data for these 

stations are available as instant (30 min interval) values or as a daily mean solar radiation 

value in units of KW/m2. For the current study, the mean values were used. Daily mean 

solar radiation data were downloaded for the 15 sites for the period of January 1, 2008 to 

December 31, 2010.  
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Figure 3.3. Diagram of the Etf Map Creation Process.. 



 

 

32 
 

Table 3.3. ArcMap 10 Tools List. 
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 The daily mean solar radiation values were loaded into an excel spreadsheet. These 

values provide an estimate of the average solar radiation a 1m x 1m square of land received 

in one second on a particular day. In order to estimate the total amount of solar radiation 

that square of land received in one day, the following equation is used: 

߮ௗ ൌ
ሺଶସ∗ଷ଺଴଴∗ఝ೔ሻ

ଵ଴଴଴
                                                     (3.3) 

Where φd is the mean daily solar radiation in MJ/m2*day and φi is the mean solar radiation 

in KW/m2. The factor of 1000 is used to convert KW to MW and the (24*3600) term 

corresponds to the number of seconds in one day.  

 The converted values are then used to calculate PET values for each day using the 

Simple Method: 

ܶܧܲ ൌ 	݇ଵ
ఝ೏
ఒ
	                                                      (3.4) 

Where k1 is an empirical factor equal to 0.53 and λ is the latent heat of vaporization of 

water, taken to be 2.45 MJ/kg. The PET values calculated from this formula are represented 

in units of mm/day (often expressed only with mm next to the number since the daily rate 

is assumed) by using the fact that 1 kg is equal to 1 x 106 mm3 and 1 m2 is equal to 1 x 106 

mm2. The daily PET values were averaged into 8 day periods to match the MODIS satellite 

data. Each year (2008-2010) is averaged separately, that is, the first period for 2008 is from 

January 1st to January 8th and the last period is from December 26th to December 31st (note 

that the last period contains less than 8 days). This pattern begins again in 2009, with the 

first period starting on January 1st and ending on January 8th.
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Table 3.4. Weather Stations Information. 
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 A GIS layer containing the large majority of monitoring sites located in the South 

Florida region was obtained from the SFWMD GIS database 

(http://my.sfwmd.gov/gisapps/sfwmdxwebdc/dataview.asp?query=unq_id=1588). It was 

from this vast layer that the 15 relevant monitoring station point features were acquired 

and placed onto a separate layer (Fig. 3.4). The 8 day average PET values were loaded onto 

this new 15 point layer as data table elements of the corresponding monitoring station.  

 Next, the “Geostatistical Tool” provided by ArcMap 10 was used to create 

interpolated PET value surfaces for each 8 day period using the corresponding 15 data 

points for each period. The Baysian-Krigging method was used with an iteration value of 

100, and a smoothing factor of 0.4. Baysian-Krigging provided the most consistent results 

of any of the available interpolation methods and was recommended because of the small 

number of data values available for the interpolation. Furthermore, iterations over 100 (500 

to 1000) showed no significant improvement in the interpolation results but noticeably 

increased the processing time. Similarly, smoothing factors over 0.4 did not produce visible 

improvement on the interpolation results. Once the interpolated PET layer was created, it 

was expanded to cover the whole South Florida region and saved to a new raster layer in 

order to match the format of the Etf layer. This process was conducted for all 138 8-day 

periods stretching from January 1, 2008 to December 31, 2010. 

3.3. Actual Evapotranspiration (AET) Calculation and Validation  

 To create the final AET layer, the Etf layer and PET layer are multiplied together 

using the “Map Algebra” tool in ArcToolbox: 
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Figure 3.4. Map of Weather Stations that Provided Solar Radiation Data. 
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ܶܧܣ ൌ ௙ݐܧ ∗  (3.5)                                                   ܶܧܲ

The calculation is carried out pixel by pixel, meaning that the program matches up the Etf 

pixel with the PET pixel that represents the same geographical location and multiplies the 

values in those pixels together. The output of the multiplication process is the modeled 

AET map of the study area. The final output is AET in units of mm and each pixel has 

dimensions of 0.96 km by 0.96 km. 

 The USGS eddy covariance AET data were used to test the validity of the modeled 

AET data. The USGS data were part of an earlier study (Shoemaker, 2011) which collected 

data from 5 sites located inside Big Cypress National Preserve (Fig. 3.5). Each site is 

distinguished by the type of land cover the ET measuring equipment was installed upon. A 

description of the sites can be seen in Table 3.5. The latitude and longitude of each of these 

stations were used to code a point layer in ArcMap. The point layer was then used to extract 

the pixel values of Etf, PET, and AET from the corresponding layers. The values extracted 

correspond to the pixels atop which the control stations lay. These values were then 

compared to the 8 day averaged AET values from the control sites. 

 The statistical comparison and analysis of the data were carried out using SPSS 

software and the majority of the graphs were created in excel software. Basic statistics 

including the calculation of the mean, standard deviation of the mean, standard error, 

median, kurtosis and skewness of the data were calculated for the control data and 

experimental data. The control AET, experimental AET, and PET data sets were checked 

for normality using both histogram analysis and the Shapiro-Wilk normality test. The test 

was done for all five control sites separately. 
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Figure 3.5. AET Control Site Locations. 
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Table 3.5. AET Control Sites.  

 

 

  The correlation between the control and experimental AET, and PET data sets were 

checked for normality using both histogram analysis and the Shapiro-Wilk normality test. 

The test was done for all five control sites separately. The correlation between the control 

and experimental AET data was tested using several different techniques. These techniques 

include several nonparametric “rank tests” (Related-Samples Sign Test, related samples 

Wilcoxon Signed Rank Test, the related samples Friedman’s Two-Way Analysis of 

Variance by Ranks), the related samples Kendall’s Coefficient of Concordance, the 

Pearson’s correlation coefficient and the Spearman’s correlation coefficient. 

 Upon inspection of the data, it was decided to separate the full data set into dry and 

wet season subsets. The dry set includes values from November to April of each year and 

the wet set includes values from May to October of each year. Once separated, both the dry 

season and wet season datasets were subjected to the same tests for normality and 
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correlation carried out for the full set. The correlation between the calculated PET data and 

the control data was also explored using the correlation tools described previously.  

Figure 3.6. Validation Analysis Workflow. 
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CHAPTER 4: RESULTS 
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 Evapotranspiration fraction (Etf), potential evapotranspiration (PET), and actual 

evapotranspiration (AET) maps were created for the period from January 1, 2008 to 

December 31, 2010. Each map contains the average data of 8-day observation periods and 

are labeled using the Julian date of the first day of observation within the corresponding 8 

day period. For example, the map from 2008001 (January 1, 2008) was created using the 

average values of data collected from January 1, 2008 to January 9, 2008. All maps use the 

“NAD_1983_HARN_StatePlane_Florida_East_FIPS_0901” projection, use units of 

meters for distance, and are composed of 926 m x 926 m pixels. Fig. 4.1 shows samples of 

Etf, PET, and AET maps created for a single 8 day period. Etf, PET, and AET data can be 

extracted for any pixel within a corresponding map, but for the analysis and validation of 

the model, only the values of five sites (pixels) were extracted from the maps. Results from 

each of the major components of the model (i.e. Etf calculation, PET calculation, and final 

AET calculation) are first considered separately and then considered as a complete model 

during the validation analysis. 

 

4.1. PET Calculation Results. 

 Solar radiation data from 15 stations were used for the majority of the PET 

calculation. The major exception was the period between January 1, 2008 and May 20, 

2008 where data from “Ave Maria” station were not available. During this period only 14 

data points were used to create the interpolated PET surface. Other periods of missing data 

are listed on Table 4.1. There were a total of 84 missing days of solar radiation, which 

translates to about 5.6 days per station, and about 0.51% of all days with available data. 
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There was no station (aside from AVE MARIA) where data were missing for an entire 8-

day averaging period.  The “Bayesian-Kriging” interpolation method used to create the. 

PET surfaces provided workable results but the accuracy of the interpolated values suffered 

from the lack of data points available.  In general, the interpolated surfaces can vary 

noticeably from one time period to the next (fig. 4.2). The lack of consistency among the 

created PET surfaces seems to extend from the lack of data points used to create the 

surfaces (15 points, one from each solar radiation station) since Kriging interpolation works 

best with a larger set of normally distributed data (Clark, 1987). Unfortunately, the data 

available for each interpolation is rarely normally distributed due to the relatively small 

number of data points. Furthermore, the Bayesian-Kriging method could not consistently 

accommodate for extreme values. The method consistently underestimated high values and 

overestimated low values. This had the effect of “narrowing” the range of PET values of 

the interpolated surface. This effect can be seen when comparing the PET calculated from 

data at the solar radiation stations with the PET extracted from the interpolated PET 

surfaces at the control sites (fig. 4.3). PET vs. time plots for each individual control site are 

given in appendix A. 

 The most noticeable feature of the first plot is the strong seasonal trend experienced 

by PET values over the study period. High PET values occur during summer (wet) months 

while low PET values occur during winter (dry) months. The interpolated values at the 

control sites also show this seasonal trend, which bodes well for the utility of the of the 

interpolation method chosen. That said, the calculated PET values do show higher 

maximums and lower minimums of PET when compared to the extracted values, with the
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Figure 4.1. PET, Etf, and AET maps for observation period 2008025. This period includes data from January 25th to February 1st of 
2008.  
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Table 4.1. Dates of missing solar radiation data. 
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Figure 4.2. Sample Interpolated PET Surfaces. 
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calculated high and low being around 6 mm and 1.1 mm respectively while the interpolated 

maximum and minimum being around 5.5 mm and 1.8 mm, respectively. This again shows 

the tendency of the interpolation to “narrow” the PET values.  

4.2. Etf Calculation Results. 

 A total of 138 Etf maps were created covering the study period starting on Jan. 1, 

2008 and culminating on Dec 31, 2010. A visual survey of the maps shows constant areas 

of low Etf values across the urban area of South Florida, as well as the agricultural zones 

located south of Lake Okeechobee. Wetland regions inside Big Cypress national preserve 

and Everglades National Park, as well as the water conservation areas show higher Etf 

values throughout the study period. As expected, wetter (cooler) areas produce higher Etf 

values than dryer (hotter) areas. 

 Unfortunately, a number of Etf maps contained missing pixels due to the original 

MOD11A2 satellite image having missing temperature data (figure 4.4). The majority of 

these incomplete maps occur during the wetter summer months and are due to prolonged 

cloud cover over the majority or entirety of an 8 day observation period. This cloud effect   

not only produces missing data, but also seems to underestimate Etf values for all pixels 

within an affected map. This can be seen in Figure 4.5, which plots the Etf values at the 

control sites from 2008 to 2010. The plot shows how Etf values fall to values around 0.2 

during wet season, a time of year where Etf is expected to be at its highest (Shoemaker, 

2011). This pattern repeats for all five sites and it is a direct effect of the missing 

temperature data due to extended periods of cloud cover.
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Figure 4.3 Comparison between PET values calculated at solar radiation monitoring stations and the interpolated PET values 
calculated at the 5 control sites. Low outlier numbers are due to missing data. The single high outlier point occurred at station 
JBTS on November 16-23 of 2008 (JD 2008321) and is accredited to equipment malfunction. 
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Table 4.2 shows the mean Etf value for the dry months, wet months, and the whole study 

period for the five control sites. Mean Etf is higher during dry season (0.559) than wet 

season (0.473) yet both seasons have comparable maximum values (0.878). It is clear that 

that the wet season data is being critically underestimated and bringing the total mean down 

to a lower value than expected (0.518).  

Table 4.2. Means and Standard Deviations of Etf for Control Sites. 

 

 

4.3. AET Calculation Results 

 A total of 138 AET maps were created for the study period starting on Jan. 1, 2008 

and Dec. 31, 2010. The AET maps mirror patterns seen in the PET maps, with higher AET 

areas within wetlands (Everglades, Big Cypress) and the water conservation areas  (Fig. 

4.6). The urban area and the agricultural zones consistently show lower AET values 

throughout the study period. Several AET maps contain missing pixels due to the effect 

carried over from the Etf maps. Again, these missing pixels due to cloud cover effects occur 

mostly during the wet part of the year. This effect can be readily seen on all five control 

sites (Fig. 4.7) where the model data brakes down during the wet months of each year. It 

can also be seen that during the dry portions of the year the model performs much better, 
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Figure 4.4. Sample 8-day averaged Etf Maps. Areas with missing data are 
shown in grey. 
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Figure 4.5. Averaged 8-day Etf Values for the Five Control Sites in Big Cypress.. 

 

 

matching the trends seen in the control data. Figure 4.8 shows Model AET plotted against 

Control AET. The plots show that the model underestimates AET values for all five sites.  

 Basic statistical information for each site’s AET data is given in Appendix B and 

comparison statistics between control AET and model AET are given in Table 4.3. The 

average control AET across the five sites has an average mean value of 2.61 mm while the 

average mean for the modeled values is 1.92 mm. The average bias (difference between 

model mean and control mean) is -0.696 mm which is 26.0% of the average control mean. 

The marsh sites show the lowest bias value with -0.406 mm while the Wet Prairie site has 

the largest bias at -0.938 mm. The average RMSE across the five control sites is 1.25 mm, 

constituting 46.3% of the average control mean.  The Pine upland site shows the lowest 
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Figure 4.6. Sample 8-day Averaged AET Maps. Grey areas represent missing data.
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Figure 4.7. Control AET and Model AET and PET at Five Control Sites. 
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Figure 4.8. Comparison between Control and Model AET for Control Sites. 

 

 



 

55 
 

 RMSE with a value of 0.983 mm while the Wet Prairie site shows the highest RMSE with 

a value of 1.384 mm.  

 Normality test results are summarized on Table 4.4. The Dwarf Cypress and Marsh 

site control data show strong signs of normality while none of the experimental data sets 

show strong signs of normality. All PET data sets show strong signs of being normally 

distributed. The results of Rank tests performed for each site are listed on Table 4.5 and 

histograms of the differences are provided in Appendix C. Again it is evident that the model 

is underestimating the AET values for each site with the majority of differences between 

model values and control values being negative. The Wet Prairie site showed the most 

disparity between positive and negative differences (19 positive, 144 negative) while the 

Marsh site showed the least disparity (40 positive, 64 negative). Table 4.6 shows the results 

of Pearson’s (r), Kendall’s (τ), and Spearman’s (ρ) correlation tests performed on the model 

and control data. All tests show a slight positive correlation between the two data sets for 

all five sites. All three tests rank the Cypress Swamp site as having the highest correlation 

(r(105) = 0.454, p < 0.0005; τ = 0.280, p < 0.0005; ρ =0.374, p < 0.0005) with a high 

statistical significance (p-value < 0.05). Furthermore, all three tests rate the Dwarf Cypress 

site as having the lowest correlation (r(105) = 0.173, p = 0.083; τ = 0.122, p =0.07; ρ = 

0.130, p = 0.195) but with a weak statistical significance (P-value > 0.5). Although the data 

may not show strong signs of normality both the normal correlation test (Pearson’s) and 

the nonparametric tests (Kendall’s and Spearman’s) show similar results for the correlation 

of data at each of the five sites. 
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Table 4.3. Statistical Comparison between Control and Model AET for full Data.  

 

 

Table 4.4. Normality Test Results for Full Dataset. Data is considered normally 
distributed when p > 0.05.  

 

 

 

 

 



 

57 
 

Table 4.5. Rank Test Results for Full Dataset. The rank test performed consisted of 
subtracting the control AET values from the model AET values (i.e. AETm – AETc). 

 

 

Table 4.6. Results of Correlation Tests between Full Data Control AET and Model AET.

 

Data were separated into Dry Season (data between November and April) and Wet Season 

(data between May and October) sets to evaluate the accuracy of the model during each 

season and the effect each season has on the overall accuracy of the model.  
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 Dry season model data shows a much better agreement with control data than that 

of the complete dataset across all five sites (Fig. 4.9). Model AET vs. Control AET plots 

(Fig. 4.10) again show underestimation of values by the model, but in general there is a 

much better agreement with control values. Basic statistical information for each site’s 

AET data is provided in Appendix B and a comparison between “Dry” control AET and 

“Dry” model AET is given in Table 4.7. The average “Dry” control AET across the five 

sites has an average mean value of 2.14 mm while the average mean for the modeled values 

is 1.93 mm. The average bias is -0.213 mm which is -9.4% of the average control mean. 

The Pine Upland site shows the lowest bias value with -0.042 mm while the Wet Prairie 

site has the largest bias at -0.414 mm. The average RMSE across the five “Dry” control 

sites is 0.602 mm, constituting 28.1% of the average control mean.  Again, the Pine upland 

site shows the lowest RMSE with a value of 0.463 mm while the Wet Prairie site shows 

the highest RMSE with a value of 0.701 mm. 

 Normality tests for the “Dry” data are summarized on Table 4.8 and histograms of 

the data are provided in Appendix C. None of the control data sets show strong signs of 

normality. Experimental data sets for the Cypress Swamp, Dwarf Cypress, and Marsh sites 

show signs of normality, while the Pine Upland and Wet Prairie sites show no strong signs 

of normality. Again, all PET data sets show signs of being normally distributed. The results 

of Rank tests performed for each site for the “Dry” periods are listed on Table 4.9 and 

histograms of the differences are provided in Appendix C. The Cypress Swamp, Dwarf 

Cypress, and Wet Prairie sites still show more negative differences than positive ones, 

meaning that control values are still being underestimated. But, the disparity between 
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negative differences and positive differences is much less than that seen for the complete 

dataset. The Pine Upland and marsh site show equal or near equal numbers of positive and 

negative differences. Table 4.10 shows the results of correlations tests performed on the 

model and control “Dry” datasets. All tests show a much stronger positive correlation 

between the two data sets for all five sites. All three tests rank the Dwarf Cypress site as 

having the highest correlation (r(59) = 0.791, p < 0.0005; τ = 0.566, p < 0.0005; ρ = 0.753, 

p < 0.0005) with a high statistical significance (P-value < 0.05). Furthermore, all three tests 

rate the Marsh site as having the lowest correlation (r(59) = 0.568, p < 0.0005; τ = 0.393, 

p < 0.0005; ρ = 0.549, p < 0.0005) (Pearson’s = 0.568, Kendall’s = 0.393, Spearman’s = 

0.549) with a strong statistical significance (P-value < 0.05). Again, although the data may 

not show strong signs of normality, both the normal correlation test (Pearson’s) and the 

nonparametric tests (Kendall’s and Spearman’s) show similar results for the correlation of 

“Dry” data at each of the five sites. 

Table 4.7. Statistical Comparison between Control and Model AET for Dry Data. 
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Figure 4.9. Dry Season Control AET, Model AET, and PET values at Control Sites. 
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Figure 4.10. Dry Season Comparison between Control and Modeled AET Data. 
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 Wet season model data shows a clear disagreement with control data across all five 

sites (Fig. 4.11). Model AET vs. Control AET plots (Fig. 4.12) show a severe 

underestimation of values by the model and a much worse agreement than that seen in 

“Dry” season data. Basic statistical information for each site’s AET data are given in 

Appendix B and a comparison between “Wet” control AET and “Wet” model AET is given 

in Table 4.11. 

Table 4.8. Normality Test Results for Dry Season Data. Data is considered normally 
distributed when p > 0.05. 

 

 

Table 4.9. Rank Test Results for Dry Season Dataset. The rank test performed consisted of 
subtracting the control AET values from the model AET values (i.e. AETm – AETc). 
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Table 4.10. Results of Correlation Tests between Dry Season Control AET and Model AET. 

 

 

 The average “Wet” control AET across the five sites has an average mean value of 

3.19 mm while the average mean for the modeled values is 1.91 mm. The average bias is -

1.281 mm which is -39.6% of the average control mean. The Marsh site shows the lowest 

bias value with -0.871 mm while the Cypress Swamp site has the largest bias at -1.654 mm. 

The average RMSE across the five “Wet” control sites is 1.725 mm, constituting 53.9% of 

the average control mean. Again, the Marsh site shows the lowest RMSE with a value of 

1.409 mm while the Cypress Swamp site shows the highest RMSE with a value of 2.013 

mm. 

 Normality tests for the “Wet” data are summarized on Table 4.12 and histograms 

of the data are provided in Appendix C. The control data for the Dwarf Cypress and the 

Marsh site show signs of normality while the Cypress Swamp, Pine Upland, and Wet 

Prairie data do not show strong signs of normality. None of the experimental data show 

strong signs of normality and the PET data for all five sites show strong signs of being 

normally distributed. The results of Rank tests performed for each site for the “Wet” 
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periods are listed on Table 4.13 and histograms of the differences are given in Appendix 

C. All sites show more negative differences than positive. Table 4.14 shows the results of 

correlations tests performed on the model and control “Wet” datasets. All tests show weak 

or no correlation between the control and model datasets and only the Wet Prairie site has 

a consistent statistically significant correlation value (r(46) = 0.434, p = 0.004). All other 

sites have so significant statistical correlation and show practically the same correlations a 

randomly generated set of points would show. All the tests show that the model does not 

successfully recreate the excepted AET values during the wet season. 

 

Table 4.11. Statistical Comparison between Control and Model AET for Wet Data.  
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Figure 4.11. Wet Season Control AET, Model AET, and PET values at Control Sites. 
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Figure 4.12. Wet Season Comparison between Control and Modeled AET Data.  
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Table 4.12. Normality Test Results for Wet Season Data. Data is considered normally 
distributed when p > 0.05. 

 

 

Table 4.13. Rank Test Results for Wet Season Dataset. The rank test performed consisted 
of subtracting the control AET values from the model AET values (i.e. AETm – AETc). 

 

 

Table 4.14. Results of Correlation Tests between Wet Season Control AET and Model 
AET. 
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 Comparisons between control AET and modeled PET were carried out for the wet 

season data due to the poor performance of the model and the propensity for AET rates to 

reach PET rates during the wet season. As before, rank tests (Table 4.15) and correlation 

tests (Table 4.16) were performed to see how closely control AET data approached the 

calculated PET values for each site during the wet season. We see that PET is 

predominately larger than the control AET (i.e. PET – Control AET > 0 for the majority of 

data pairs) but that these two datasets are better correlated than Model and Control AET. 

This correlation between PET and control AET can further be seen in Figure 4.13. 

Table 4.15. Rank Test Results for Wet Season Dataset. The rank test performed consisted 
of subtracting the PET values from the model AET values (i.e. PET – AETc). 

 

 

Table 4.16. Results of Correlation Tests between Wet Season Control AET and Model 
PET. 
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Figure 4.13. Wet Season Comparison between modeled PET and Control AET Data. 
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CHAPTER 5: DISCUSSION
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5.1. Summary of Results, Hypothesis, and Goals. 

 The main objective of this study was to validate the applicability of using the 

“simple method” in conjunction with the SSEB method to produce AET estimates for the 

South Florida region. This is the first time these models have been used in tandem to 

produce AET estimates for South Florida. The model utilizes solar radiation data from 15 

South Florida sites to calculate PET values using the “simple model”. These values are 

then interpolated to create a surface of PET values which stretches over the South Florida 

region. MODIS temperature images are used to create Etf maps using the SSEB approach. 

The PET surface and Etf maps are then multiplied together to create final AET maps of the 

study area. The model data was compared to USGS eddy covariance tower data at five 

different sites located inside Big Cypress National Preserve. The comparison data used 

stretch from January 1st, 2008 to December 31st 2010.  

 The model showed varying degrees of success depending on the time of year. There 

was a clear distinction between certain parts of each year. MODIS temperature data for 

hotter, wetter months like August and September had a higher instance of missing and low 

value pixels than images taken during cooler, dryer months (December, January). Hence, 

the data were separated into “Dry” (data from November to April of each year) and “Wet” 

(data from May to October of each year) sets to see how each distinct season affected the 

overall trends seen in the complete dataset. 

 Dry months experienced closer agreement between model and control data with an 

average RMSE and bias across the five sites of 0.602 mm and -0.213 mm respectively. 

Furthermore, control and model AET values showed significant correlation at all five sites 
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with the lowest correlation occurring at the Marsh site (r(59) = 0.568) and the highest 

occurring at the Dwarf Cypress Swamp (r(59) = 0.791). Control and modeled AET values 

experienced little agreement during Wet season months. The average RMSE and bias for 

the five control sites were 1.725 and -1.281 respectively. No site showed a significant 

correlation between control and modeled AET values. Wet season control values did show 

a stronger correlation with PET values, demonstrating that as expected, AET tends to be 

high and close to the PET values during wet season.  

 The first major question this study set out to answer was whether the combination 

of these two methods was applicable to the South Florida study area. By “applicable” it 

was meant that the procedure is not severely limited by the geography or any other variable 

associated with the calculation process. It was hypothesized that surface temperature and 

solar radiation would be sufficient variables to accurately calculate Actual Et values for the 

study area. The results show that these two variables can provide reasonable values of AET 

during dry periods of the year. But, poor quality and missing temperature data during 

extended periods of cloud cover mostly experienced during the wetter parts of the year, 

lead to critically underestimated AET values. Extended cloud cover periods occurred 

frequently during the wet seasons of the 3 year period. Cloud cover was the main source 

of missing and underestimated temperature data. The missing and low temperature pixels 

values translated to low or missing Etf values which in turn resulted in missing or severely 

underestimated AET values. Derived PET and Etf values using this model provide 

satisfactory estimates of AET when cloud cover was not continuously present for long 

periods of time as seen for most 8-day periods occurring during the dry season.  
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 This analysis also asked whether the SSEB/Simple Method approach would be 

useful for the Everglades study area. By “useful”, it was meant that the procedure will 

provide comparable results to those obtained by more standard methods (Florida Water 

Management Data) while still maintaining its simplicity and ease of use. It was 

hypothesized that the Actual Et values derived from the SSEB/simple model approach 

would have a significant correlation to control values provided by USGS, with a correlation 

coefficient (R) of at least 0.7. Again, the utility of the model is affected by the season of 

the year. Dry periods showed high correlation values between control and modeled AET 

values. Three of the control sites showed a correlation value (R) higher than 0.7 (Dwarf 

Cypress, Pine upland, and Cypress Swamp), while the remaining two sites (Marsh and Wet 

Prairie) showed a correlation value higher than 0.5. Data obtained for each site during wet 

periods show very little correlation between control and modeled data. All five sites show 

correlations lower than 0.5 during wet season and control values show stronger correlations 

to experimental PET than to experimental AET. These results again confirm the tendency 

of the model to perform much better during dry periods than during wet periods of the year. 

 It must be noted that the validation sites were all located in a wetland environment 

and there were no validation sites within urban or agricultural regions. This is important 

since the k-coefficient (k = 0.53) used in the Simple Equation corresponds to a wetland 

environment. Hence, the PET values calculated in the current study may not be 

representative of the PET values of urban or agricultural regions. A new k-coefficient may 

be needed to better represent the PET values seen in these regions. A larger number of 

validation sites, covering both agricultural and urban areas, are needed to assess the 
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accuracy of the current model when predicting both PET and AET rated at urban and 

agricultural regions. Unfortunately, no long term, easily accessible AET monitoring sites 

were found within urban or agricultural to provide validation data for the current study. 

Hence, further study is needed to validate the accuracy of the Simple-Model/SSEB 

methodology for urban and agricultural environments. 

 The study also aimed to answer how many ground based stations are sufficient to 

provide accurate evapotranspiration values for the Everglades study area. The study only 

had 15 available stations from which to collect solar radiation, hence it was expected that 

these 15 sites would be enough to create reliable PET maps of the study region. In practice, 

the 15 sets of solar radiation data were enough to create the PET maps needed to calculate 

AET maps. That said, the interpolation method (Baysian-Kriging method) had a tendency 

of underestimating high PET values and overestimating low values. This “narrowing” of 

values is seen in the majority of interpolated PET maps and it is most pronounced when 

either the lowest and/or highest PET value used to create the interpolation is an outlier. 

Because of this narrowing effect on interpolated PET values it is not recommended to use 

less sources of solar radiation data than the 15 used in this study. A quick test using only 9 

stations reproduced similar surfaces as those created with 15 stations, but it is 

recommended to use as many sources of data as possible in order to optimize the output of 

the interpolation method. This is because Kriging interpolation works best with a normally 

distributed set of data, which is tough to achieve with 15 or fewer data points. It is 

anticipated that the narrowing effect experienced is due to the small number of data points 

being interpolated and that a much larger set of data points would reduce this effect. 
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5.2. Comparison to Previous Studies and Challenges Experienced. 

 Several previous studies have provided ET estimates for the South Florida region. 

In general, annual ET for South Florida is estimated to be about 137 cm by the SFWMD 

(Abtew, 2003). All previous studies reviewed show the strong seasonal pattern seen in this 

study (German, 2000; Douglas, 2009; Abtew, 2004; Bidlake 1996), where the highest ET 

rates are measured during wet season months and lower ET rates are measured in dry 

season months. The method tested in this study does not provide useful ET estimates for 

wet season months, making the calculation of yearly estimates not feasible. Hence a direct 

comparison between yearly ET rates provided by this model and others is not possible. 

Instead of yearly ET comparison, dry season ET comparisons are made. Abtew (1996) used 

Lysimeters to calculate ET of a marsh site from 1993 to 1994. The average ET of dry 

season months (Nov. to Apr.) were 3.16 mm/day in 1993 (Jan. estimate not included) and 

2.74 mm/day in 1994. The lowest dry season ET of the study period corresponded to 

January of 1994 (1.9 mm/day) and the highest ET corresponded to April of 1993 (4.8 

mm/day). Douglas (2009) conducted a broader study relying on several methods, including 

the Priestly-Taylor and Penman-Monteith methods, to calculate ET for a wide range of site 

across Florida. Among the sites were several marsh sites inside Everglades National Park 

and a few pine forest sites in Northern Florida. The marsh sites showed an average ET of 

3.0 mm/day and the Pine forest sites had an average ET of 2.05 mm/day. Estimates from 

Lysimeter sites (sawgrass and cattail) carried out from 1996 to 1999 give dry season ET 

average estimates ranging from 1.42 mm/day (Jan. cattail) to 4.9 mm/day (Apr. Sawgrass) 

(Mao, 2002). Dry season ET estimates ranging from about 1.5 mm/day to about 4.5 
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mm/day are seen in the majority of ET studies of wetland regions across Florida (German, 

2000; Douglas, 2009; Abtew, 2004; Bidlake 1996). 

 The ET estimates calculated in this study fall within the range seen in the 

aforementioned studies. In general the estimates calculated through the Simple/SSEB 

method fall towards the low end of the range. For example, the marsh site had a dry season 

average of 1.97 mm/day over the observation period which is lower than the average seen 

at similar sites in Abtew’s and Douglas’s studies. Similarly, the Pine Upland site had an 

average dry season of 1.77 mm/day, which again is lower that the ET estimates of previous 

studies. The control values provided by Shoemaker (2011) – 2.01 mm/day for the Marsh 

site and 1.82 mm/day for the Pine Upland site -  show that the low dry season ET estimates 

are not necessarily due to poor model performance, but that the dry seasons ET rates 

experienced during the study period were lower than those of previous study periods. The 

average experimental dry season ET across all five sites was 1.92 mm/day which falls 

within the range of ET values observed in previous studies (German, 2000; Abtew, 1996; 

Douglas, 2009). The average control dry season AET across all five sites was 2.14 mm/day. 

These averages show that the model does tend to slightly underestimate the AET values 

for all five sites. 

 A second interesting feature of the experimental AET data is evident when looking 

at the dry season averages (Table 5.1). The averages for dry season AET are relatively 

close to one another, and the higher the control AET value is, the more severe the model 

underestimation becomes. The most probable reason for this feature in the experimental  
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Table 5.1. Mean Control and Experimental AET values for five control sites. 

 

 

data is the “narrowing” of estimated PET values due to the Bayesian-Kriging interpolation 

method utilized. Steep, or relatively steep, changes in solar radiation (and consequently 

PET) estimates are not well represented when only 15 data points are used to create the 

interpolated surfaces used as part of the final AET calculation. In a way, the surfaces are 

“too smooth” and are unable to accurately represent areas of unusually high or low PET. 

Even with this smoothing effect in place, the error parameters (coefficient of variation, 

RMSE, Bias/Meanobs, RMSE/Meanobs) calculated for dry season experimental AET values 

fall within errors usually seen in remote sensing based methods, which range from 15% to 

40% (Allen, 2011; Kustas, 1996).  

 More specifically, Allen (2011) states that AET estimates through remote sensing 

methods can expect errors (defined as one standard deviation away from the true mean) 

between 10% and 30%. The metric in this study that provides the most similar definition 

of error as defined by Allen is RMSE/Meancon, which also gives an estimate of how far 

away the experimental values fall from the true values (in this case taken to be the control 

value). The average RMSE/Meancon of the five control sites was 28.1%, meaning that on 
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average the experimental values were about 30% away from the control value. In a similar 

study to that carried out in this study, Jiang (2009) used daily LST data to provide daily 

AET estimates in the South Florida region. His results showed a range for RMSE/Meancon 

from 23.1% to 45% across 11 sites, with an average of 30.8%, which again is similar to the 

RMSE/Meancon observed across the five sites used in this study for dry season months. In 

general,  the Simple/SSEB method provided AET estimates in line with previous studies 

using relatively simple techniques which do not require the technical expertise, large 

equipment and maintenance costs, nor time that other methods require (Abtew, 2004; Enku, 

2011; Douglas, 2009; Courault, 2005). 

 The calculation of AET estimates carried out in this study experienced common 

challenges faced by similar wetland AET estimation studies. First and foremost, prolonged 

periods of cloud cover experienced during wet season months had a serious effect on the 

LST data provided by the MODIS sensor. This lead to a serious underestimation of Etf, 

and consequently AET, estimates. Jiang (2009) was also faced with the problem of clouded 

out remotely sensed images and applied a model where missing pixels were approximated 

by using neighboring pixels and pixels from previous observations. This can work, as Jiang 

(2009) showed, but not when a large portion of the observation area is clouded out for a 

long time (the better part of 8 days in this study). In this situation, there are just not enough 

pixels to use as reference to estimate the missing pixel values. The ability to acquire useful 

LST data under cloudy conditions would definitely improve the AET estimates provided 

by this study and it remains a major challenge for any methodology that relies on remote 

sensing to provide useful AET estimates for the South Florida or any region. 
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 The second major challenge faced by this study was the lack of a comprehensive 

and coordinated source of meteorological data, specifically solar radiation data, for the 

South Florida region. The SFWMD DBHYDRO database provided the study with 15 solar 

radiation data sources, which proved sufficient for methodology carried out in this study. 

But, the final AET estimated could have benefited from a much larger number of solar 

radiation data sources. As previously mentioned, the interpolation technique used to create 

the PET surfaces works best with a large set of data (50 or more points). Finding fifty or 

more sources of quality, long-running solar radiation measurements in the South Florida 

region proved impossible. Another noticeable issue with the availability of solar radiation 

data has to do with the distribution of weather stations providing useful data. Figure 3.4 

shows the unsymmetrical distribution of stations providing solar radiation data, with most 

of the stations located on the northern edge of the study area and very few stations located 

on the southern edge. The lack of stations providing solar radiation data from areas inside 

Everglades National Park is evident and speaks to the great challenge of installing and 

maintaining monitoring equipment within such a large and often inaccessible area. That 

said, a more expansive and comprehensive network of basic weather monitoring stations 

would alleviate one of the major challenges faced by AET estimation studies in the South 

Florida region. 
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CHAPTER 6: CONCLUSION AND RECOMMENDATIONS 
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6.1. Conclusion 

 The Simple-Method/SSEB model tested in this study provided mixed results. On 

one hand, AET estimates provided by the model had good agreement with control EC 

values during dry season months.  For these dry months, the model proved to be both 

applicable and useful (as defined at the outset of this study) and provided AET values that 

may help wetland recovery assessments. On the other hand, AET estimates for wet season 

months were severely underestimated and should not be used for any restoration 

assessment. The main source of error for wet month AET estimates came from poor LST 

data from the MODIS sensor, which suffered from many prolonged periods (the majority 

or the whole 8-day observation period) of cloud cover.  

 The model shows promise as a quick and simple monitoring tool for wetland 

recovery but needs improvement. It is notable that the simplicity of the model, which relies 

only on temperature and solar radiation data, can produce comparable results to more 

complex methods when the input data used is of good quality. Furthermore, this study 

demonstrated the model’s ability to successfully cover a study area as large as the South 

Florida region. The model’s ability to cover such a vast study area is a clear benefit that 

saves on time and on equipment costs. Unfortunately, the underestimation of AET values 

during wet season months limits the model’s use and prevents it from providing accurate 

weekly estimates over a full year time span. Weekly, accurate estimates seem feasible for 

dry season months.  

 The close agreement between model and control AET values during dry season 

months show that the model can work given good quality input data. The poor performance 

of the model during wet season months does not necessarily discredit the ability of the 
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model to predict accurate AET values, but it certainly hinders its usage. As it stands, the 

model is best suited for shorter term studies conducted during the dry months of the year. 

It may also be well suited for multi-year comparisons of dry season AET rates. Hence, the 

model works best for assessing short term (months during dry season) changes experienced 

by a wetland due to restoration efforts. Long term effects can be explored by comparing 

dry season AET rates from year to year and noting any overall increase or decrease of AET 

rates from one year to the next.  

6.2. Recommendations 

 Several aspects of the Simple-Model/SSEB approach tested in this study can benefit 

from further refinement. First and foremost, better methods of gathering LST data are 

needed to replace the poor quality data that abounds during wet season months.  Second, a 

larger network of solar radiation monitoring stations would help create more accurate PET 

maps for the South Florida region. Finally, Etf calculation may benefit from the 

introduction of new parameters (not just temperature) in order to increase the accuracy of 

final AET estimates. The following section elaborates on these main recommendations and 

gives possible solutions to make the procedure tested in this study more robust and practical 

to use. 

 First, a better estimation of wet season AET rates in necessary for this model to 

truly achieve the goals set out at the beginning of the study. To do so, the low quality 8-

day temperature data provided by MODIS during certain parts of the year must be 

overcome. The missing and underestimated LST data from MODIS were the main source 

of error for the final AET values. The 8-day composite temperature images are created by 
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averaging the “clear sky” pixels from 8 single day temperature images. Defining a “clear 

sky” pixel is a rather complex endeavor detailed in Ackerman (2010), but in simple terms, 

a clear sky pixel is free from most, if not all, cloud contamination. In order to have a 

missing pixel in the 8-day composite image the majority (or all) of the single day images 

must have that pixel missing as well (i.e. clouded out). But, there is a chance that a clear 

sky pixel exists within one of the 8 single day images.  

 The single day LST data can provide one method of overcoming poor 8-day LST 

images. Single day LST images may be used instead of the 8-day average LST images to 

calculate the corresponding Etf, in the hopes that one clear image is more representative of 

the actual LST’s for an 8-day period than an average that includes days with missing LST 

data. Finding this clear single day temperature requires looking into the “clear_sky_days” 

layer of the MODIS image (See Table 3.1). This layer provides a number for every pixel 

that, when converted to binary, tells which days/nights had clear sky temperature values. 

The pixel values can be extracted using ArcMap software and then single day temperature 

images that have clear sky pixels can be downloaded using the same process described in 

the methodology section (in this case the MODIS product being downloaded is MOD11A1 

instead of MOD11A2). These single day clear sky temperature values are then used to 

calculate the Etf for the pixel of interest. 

 This procedure was tested for a few 8-day periods that exhibited missing and 

underestimated pixels. Unfortunately, this procedure did not produce better Etf values than 

the original method. First, many of the pixel labeled as “clear day” were only clear during 

the nighttime. The binary flag provided by the “clear-sky” layer returns as “clear day” if 

either the day or night pixel is clear. Many of the 8-day periods investigated had all 8 days 
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clouded out for a given pixel even though the “clear_sky_days” flag returned a clear flag 

for one day (or more) within the specific period. The positive flag was due to the pixel 

having a “clear” temperature value at night. Another issue afflicting the process of finding 

single day temperatures to substitute for 8-day average temperatures is how different days 

accounted for “clear sky” data for different pixels.  

 For example, if one is looking to substitute temperature values for five different 

pixels within the same 8-day period, it may be necessary to look at five different single day 

images. This means processing five extra images in order to obtain new Etf values. This 

might be feasible for a small amount of pixels over a small number of 8-day periods, but it 

makes trying to replace hundreds of pixels (common for the wet season images) over 

several months’ worth of images rather unmanageable. For now, the clearest solution for 

this problem is the acquisition of better temperature data. More complete data may be 

available from other satellite based sensors such as LandSat (Allen, 2005). For now, this 

study shows that calculated PET values give a better estimation of the control AET values 

than the modeled AET during the wet months of the year. Hence, looking at PET values 

during wetter months can at least give an idea of the AET rates for the study region. 

 Dry season AET results, which showed that the model can provide useful estimates, 

can also be improved by increasing the number of solar radiation data sources. The solar 

radiation data provided by SFWMD were of good quality, have been actively collected for 

a long period of time, and are easily accessible online. So, it would be of great benefit to 

future studies to have more stations providing such quality solar radiation. As mentioned 

before, having access to more than the 15 stations used in this study would allow for better 
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PET surface interpolations. Just as beneficial would be for those solar radiation stations to 

cover a wider range of the study site. For this study, the majority of solar radiation stations 

were located towards the northern edge of the study site. Only four stations were available 

to cover the entire South and Southeastern edges of the study area. In other words, only a 

few stations were used to represent the solar radiation being received for a large expanse 

of the study site, an expanse that covered most of Everglades National Park. The lack of 

coverage in these areas led to the underrepresentation of solar radiation variability within 

them, leading to less accurate PET estimates. So, adding stations to provide better, more 

even coverage of the study site would be just as beneficial to the final PET estimates (and 

consequently the AET estimates) as adding more solar radiation stations.  

 Improvements to the Etf estimation procedure can also help improve the accuracy 

of final AET estimates. Aside from correcting the aforementioned LST data issues, the Etf 

estimates could benefit from incorporating factors other than just LST into their 

calculation. This is currently being done in other studies that incorporate more complex 

techniques of calculating Th and Tc, (Senay, 2013; Savoca, 2013). The approaches being 

tested may increase the accuracy of the final AET estimates, but they do so at the expense 

of simplicity. Whether these improvements in accuracy are worth sacrificing the simplicity 

of the model is a question that is still open to debate. The use of other remote sensing 

platforms which can provide higher resolution data and/or compliment the data provided 

by MODIS would also benefit final AET estimates accuracy. Lastly, ground based 

atmospheric temperature measurements (not remotely sensed) may help fill in data gaps 
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found in the MODIS LST images; but, land surface temperature values and atmospheric 

temperature readings may not produce similar ETf results.  

 All in all, this study showed that the combination of the “Simple” model and the 

SSEB method can work well together to provide AET estimates. The model is easy to use, 

can cover a large area, and can produce similar results to the more established Eddy 

Covariance method. The main issue keeping this model from being a viable way of 

calculating reliable, weekly AET estimates is a lack of quality LST data for wet periods of 

the year. Although limited, this model can be a quick and relatively simple way of obtaining 

AET estimates to assess the success of wetland restoration projects. By working within the 

current limitations of the model, a short term (months) continuous monitoring of a treated 

wetland area can be conducted; Long term monitoring of wetland AET can also be 

conducted by comparing specific periods of time (during dry season) from year to year.  
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Appendix A. 

Figure A.1. Full Model Etf Data of Control Sites. 
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Figure A.2. Full Model PET Data of Control Sites. 
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Appendix B. Basic Statistical Information of Validation Data Sets. 

 

Table B.1. Control AET Full Data Set Statistics. Values are given in mm.  
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Table B.2. Modeled AET Full Data Statistics. Values are given in mm. 
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Table B.3. Modeled PET Full Data Statistics. Values are given in mm. 
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Table B.4. Control AET Dry Season Data Set Statistics. Values given in mm. 
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Table B.5. Modeled AET Dry Season Data Statistics. Values given in mm. 
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Table B.6. Modeled PET Dry Season Data Statistics. Values are given in mm. 
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Table B.7. Control AET Wet Season Data Set Statistics. Values given in mm. 
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Table B.8. Modeled AET Wet Season Data Statistics. Values given in mm. 
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Table B.9. Modeled PET Wet Season Data Statistics. Values are given in mm. 
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Appendix C. Histograms, Q-Q plots, and Rank Tests. 

 

Figure C.1. Histograms - Full Control AET Data.  
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Figure C.2. Q-Q Plots - Full Control AET Data. 
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Figure C.3. Histograms – Full Model AET Data. 
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Figure C.4. Q-Q plots - Full Model AET Data. 
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Figure C.5. Histograms – Full Model PET Data. 
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Figure C.6. Q-Q plots - Full Model PET Data. 
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Figure C.7. Histograms – Dry Season Control AET Data.  
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Figure C.8. Q-Q Plots – Dry Season Control AET Data. 
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Figure C.9. Histograms – Dry Season Model AET Data. 
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Figure C.10. Q-Q Plots – Dry Season Model AET Data. 
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Figure C.11. Histograms – Dry Season Model PET Data. 

 

 

 

 



 

118 
 

Figure C.12. Q-Q Plots – Dry Season Model PET Data. 
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Figure C.13. Histograms – Wet Season Control AET Data.  
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Figure C.14. Q-Q Plots – Wet Season Control AET Data. 
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Figure C.15. Histograms – Wet Season Model AET Data. 
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Figure C.16. Q-Q Plots – Wet Season Model AET Data. 
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Figure C.17. Histograms – Wet Season Model PET Data. 
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Figure C.18. Q-Q Plots – Wet Season Model PET Data. 
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Figure C.19. Rank Tests between Control and Modeled AET – Full Dataset. 
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Figure C.20. Rank Tests between Control and Modeled AET – Dry Season Dataset. 
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Figure C.21. Rank Tests between Control and Modeled AET – Wet Season Dataset. 
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Figure C.22. Rank Tests between Control AET and Modeled PET – Wet Season Dataset. 
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