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ABSTRACT OF THE DISSERTATION 

PALEOENVIRONMENTS AND GEOCHEMICAL SIGNALS FROM THE LATE 

BARREMIAN TO THE MIDDLE APTIAN IN A TETHYAN MARGINAL BASIN, 

NORTHEAST SPAIN: IMPLICATIONS FOR CARBON SEQUESTRATION IN 

RESTRICTED BASINS 

by 

Yosmel Sanchez-Hernandez 

Florida International University, 2014 

Miami, Florida 

Professor Florentin Maurrasse, Major Professor 

The hallmark of oceanic anoxic event 1a (OAE1a) (early Aptian ~125 Ma) 

corresponds to worldwide deposition of black shales with total organic carbon (TOC) 

content > 2% and a 13C positive excursion up to ~5‰. OAE1a has been related to large 

igneous province volcanism and dissociation of methane hydrates during the Lower 

Cretaceous. However, the occurrence of atypical, coeval and diachronous organic-rich 

deposits associated with OAE1a, which are also characterized by positive spikes of the 

13C in epicontinental to restricted marine environments of the Tethys Ocean, indicates 

localized responses decoupled from complex global forcing factors. 

The present research is a high-resolution, multiproxy approach to assess the 

paleoenvironmental conditions that led to enhanced carbon sequestration from the late 

Barremian to the middle Aptian in a restricted, Tethyan marginal basin prior to and 

during OAE1a. I studied the lower 240 m of the El Pui section, Organyà Basin, Spanish 

Pyrenees. The basin developed as the result of extensional tectonism linked to the 
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opening of the Atlantic Ocean. At the field scale the section consists of a sequence of 

alternating beds of cm – m-scale, medium-gray to grayish-black limestones and 

marlstones with TOC up to ~4%. 

The results indicate that the lowest 85 m of the section, from latest Barremian –

earliest Aptian, characterize a deepening phase of the basin concomitant with sustained 

riverine flux and intensified primary productivity. These changes induced a shift in the 

sedimentation pattern and decreased the oxygen levels in the water column through 

organic matter respiration and limited ventilation of the basin.  

The upper 155 m comprising the earliest – late-early Aptian document the 

occurrence of OAE1a and its associated geochemical signatures (TOC up to 3% and a 

positive shift in 13C of ~5‰). However, a low enrichment of redox-sensitive trace 

elements indicates that the basin did not achieve anoxic conditions. The results also 

suggest that a shallower-phase of the basin, coeval with platform progradation, may have 

increased ventilation of the basin at the same time that heightened sedimentation rates 

and additional input of organic matter from terrestrial sources increased the burial and 

preservation rate of TOC in the sediment. 
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1 INTRODUCTION 

The Phanerozoic sedimentary record registered various episodes of severe 

environmental perturbations that impacted geological systems and life at different scales. 

These episodes were particularly intense during the Mesozoic Era in which the 

supercontinent Pangaea began to fragment and separate into major north and south land 

masses (Fig. 1-1, Fig. 1-2), reshaping the ocean-land distribution and oceanic circulation 

patterns (Barron and Peterson, 1990). However, it was not until the Cretaceous Period 

when a more developed phase of the proto-Atlantic extending southward concomitant 

with the expansion of the seaway between Europe and Africa, separated South America 

and Africa (Fig. 1-2) and further influenced the global marine circulation (Barron et al., 

1995). 

Numerous studies have provided evidence that during the Cretaceous, in 

particular the mid-Cretaceous, Earth experienced greenhouse conditions (Barron et al., 

1995, Pucéat et al., 2003, Ando et al., 2008). This time was also characterized by high 

atmospheric pCO2 (Barron and Washington, 1985; Lasaga et al., 1985; Ekart et al., 1999; 

Beerling and Royer, 2002; Robinson et al., 2002; Huber et al., 2002; Wissler et al., 2003; 

Herrle and Mutterlose, 2003; Wang et al., 2014), high eustatic sea level (Haq et al., 1987) 

and a weak temperature gradient between low and high latitudes (Barron and 

Washington, 1982; Huber et al., 1995). 
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Figure 1-1 Global paleogeography and paleotectonics of the Late Jurassic ~150 Ma; (from 
http://cpgeosystems.com/paleomaps.html). 

 

Figure 1-2 Global paleogeography and paleotectonics of the Early Cretaceous ~120 Ma; (from 
http://cpgeosystems.com/paleomaps.html). 

One of the most relevant consequences of these global forcing processes during 

the Cretaceous is the worldwide deposition of sediments of variable carbonate content 

and unusually rich in organic matter, generally classified as black shales (Arthur, 1979), 

and related to oceanic conditions of severe oxygen deficiency, and even anoxia, referred 

to as oceanic anoxic events (OAE’s) (Schlanger and Jenkyns, 1976). Such organic-rich 

marine deposits accumulated at different time intervals under oxygen-depleted conditions 
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that varied in intensity and extent, depending on the physiography and severity of global 

forcing mechanisms (e.g., Borrego et al., 1996; Uličný et al., 1997; van de Schootbrugge 

et al., 2005; Armstrong et al., 2009; Maurrasse et al., 2010). Because of their economic 

significance as causal factors for the development of important hydrocarbon reservoirs 

(Arthur and Schlanger, 1979; Sanchez-Hernandez and Maurrasse, 2014) and their 

potential as models to understand the impact of major alterations of the carbon cycle in 

the global climate (Jenkyns, 2010), OAE’s remain an active topic of research.  

1.1  The record of OAE1a  

One of the most prominent anoxic episodes of the Cretaceous Period identified as 

Oceanic Anoxic Event 1a (OAE1a) occurred in the early-Aptian (~120 Ma), and lasted 

~1.2 Ma (Li et al., 2008). Organic-rich deposits associated with OAE1a are well 

documented in different worldwide locations (Figure 1-2) (Sliter, 1989; Sager et al., 

1993;Winterer and Sager, 1995; Menegatti et al., 1998; Erba et al., 1999; de Gea et al., 

2003; Erba, 2004; Jenkyns, 2010; Föllmi, 2012; Gaona-Narvaez et al., 2013; Elkhazri et 

al., 2013). The hallmark of OAE1a includes not only deposition of organic-rich 

sediments with total organic carbon (TOC) >2%, but also a pronounced positive 13C 

excursion of 4-6‰ in the chemostratigraphic record (Jenkyns, 1980; Arthur and Premoli-

Silva, 1982; Arthur et al., 1985; Jenkyns, 1995; Moullade et al., 1998; Erba et al., 1999; 

Leckie et al., 2002; Méhay et al., 2009; Khunt et al., 2011; Stein et al 2012; Papp et al., 

2013; Elkhazri et al., 2013). 



4 

 

Figure 1-3 Paleogeographic distribution (120 Ma) of black shales deposited during OAE1a (after Wang et 
al., 2011). 

The sharp shift in 13C identified in both organic matter and carbonates is 

preceded by a large negative excursion of ~ 4‰ that is globally correlated with the 

initiation of massive deposition of organic-rich beds in the marine environment 

(Weissert, 1989). Since primary producers preferentially incorporate the lighter isotope of 

the carbon series (12C), abrupt and large positive excursions in the organic carbon 

isotopic curve are generally interpreted as the result of rapid burial of organic matter 

(OM) during episodes of intensified biological productivity (Weissert, 1989; Arthur et al., 

1990). 

Considering both the vast amount and the light isotopic composition of carbon 

required to produce the global 13C negative anomaly registered at the onset of OAE1a, 

the coeval intense submarine volcanic activity in the Pacific Ocean (Larson et al., 1991a, 

b) was first postulated as the major forcing factor (Menegatti et al., 1998; Tejada et al., 

2009). However, the amount of CO2 released from the mantle at relatively depleted 13C 
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values has been considered insufficient for the amplitude of the negative carbon isotope 

shift (Jahren et al., 2005). Thus, dissociation of methane hydrates or thermal 

metamorphism of OM-rich sediments with extremely low 13C values have also been 

argued as an additional source for such a negative excursion in the carbon isotope record 

(Jahren et al., 2005; van Breugel et al., 2007; Méhay et al., 2009). 

The effects of these processes in the development of global marine anoxia are not 

completely understood, although an integrated proposed mechanism includes the 

following postulates: 1) Intense volcanism and the release of CO2 induced greenhouse 

conditions, resulting in a higher global average temperature that melted the polar ice and 

limited oceanic vertical circulation (Larson et al., 1999). 2) Simultaneous interaction of 

newly formed oceanic crust released chemical elements in the surrounding ocean water; 

hence the warmer, less dense water upwelled to the surface and acted as a nutrient source 

(Stinton and Duncan, 1997; Tejeda et al., 2009). There is still an active debate concerning 

to what extent active volcanism in the Pacific Ocean would have been able to alter the 

World Ocean average water temperature. 3) Intense exothermic processes and mantle 

out-gassing could have certainly reduced the concentration of dissolved oxygen in the 

water column. 4) Sustained supply of nutrients from continental weathering associated 

with high temperature and an accentuated precipitation cycle, coupled with concurrent 

volcanism, could have benefited opportunistic species blooms in marine surface waters 

(Sanchez-Hernandez et al., in press.) 5) Intense biological productivity generating large 

amounts of OM together with impoverished ventilation of bottom water masses could 

have overcome the bacterial oxidation rate in the water column, thereby resulting in 
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oxygen depletion with depth and leading to the preservation of extensive organic-rich 

black layers (Weissert et al., 1985; Bralower et al., 1994; Leckie et al., 2002). 

1.2  Geochemical and stratigraphic particularities in marginal basins prior to 
OAE1a 

Globally, the hallmark of OAE1a corresponds to 

worldwide deposition of black shales with TOC > 2% 

and a positive excursion up to ~5‰ in 13C. However, 

sedimentological and geochemical characteristics 

similar to OAE1a have also been identified in deposits 

corresponding to epicontinental seas and restricted 

marine environments of the Tethys Ocean prior to 

OAE1a (Mutterlose et al., 2009b; Huck et al., 2010), 

thus suggesting an independent paleoenvironmental 

response to complex regional factors (Mutterlose and 

Böckel, 1998; Huck et al., 2010) (Fig. 1-4) 

As the global climate transitioned to greenhouse 

conditions through the Barremian–Aptian boundary, it 

has been argued that the resulting marine transgression 

induced differential drowning of preexisting carbonate platforms (Weissert et 

al., 1998; Erba, 2004; Weissert and Erba, 2004; Föllmi et al., 2006; Barragan 

and Maurrasse, 2008; Huck et al., 2010), which led to the  development of restricted 

epicontinental seas and stagnation of deep-water masses in the Western Tethys marginal 

basins (Bralower et al., 1994; Mutterlose et al., 2009b). The concurrent acceleration of 

Figure 1-4 Comparative 13C profile 
of three Subalpine sections showing a 
broad positive excursion indicative of 
intensified 12C burial in the latest 
Barremian. 
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the hydrologic cycle (Hay and DeConto, 1999) periodically intensified continental runoff 

and strong pulses of fresh water collection in semi-enclosed basins. The vertical density 

contrast created under such conditions further constrained ventilation of the underlying 

water masses. Fluvial fluxes also acted as the carrier for the transport of biolimiting 

elements such as phosphorous (in the form of apatite and/or particulate and dissolved 

OM) and iron (in ferrous minerals) into the marine environment (Föllmi et al., 1994, 

Föllmi, 1996; Sanchez-Hernandez and Maurrasse, 2014). Thus, in nutrient-rich 

environments, enhanced primary productivity may increase the CO2 sequestration rate in 

OM, thereby intensifying export production (Fig. 1-5). Given that oxygenation of the 

water column in restricted basins is limited, intensified bottom export of OM further 

exacerbates the oxygen demand, which generates lower oxygen levels and enhances OM 

preservation in sediments. 

 

 

Figure 1-5 Integrated model for enhanced preservation of OM in extensional basins (Sanchez-Hernandez). 
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 Because the sedimentological record of the Tethys marginal basins consistently 

reveals intermittent black levels with TOC enrichment > 0.5% coincident with positive 

excursions of the 13C (e.g. Mutterlose and Böckel, 1998, Millán et al., 2009, Stein et al., 

2011), a combination of the different factors suggested offers a plausible mechanism to 

explain short-lived events before the occurrence of the global OAE1a. In addition, the 

applicability of the 13C profile to further our understanding of the causes of the 

perturbations in the carbon reservoir has evolved as a powerful tool for worldwide 

stratigraphic correlation and geochronology, as such variations have a global scope. In 

particular, the carbon isotopic profile ranging from the latest Barremian to the middle 

Aptian is commonly used to correlate global geological and biogeochemical events (e.g. 

major volcanism related to the emplacement of the Ontong Java Plateau (Larson, 1998; 

Larson and Erba, 1999) and enhanced bio-productivity (Leckie et al., 2002). Menegatti et 

al. (1998) proposed a subdivision of the 13C record of the latest Barremian to the middle 

Aptian in eight segments (C1 – C8) that allows for a structured form of correlation and 

the geochemical definition of the OAE1a occurring interval. 

1.3  Main Hypothesis 

The occurrence of organic-rich sediments in semi-restricted basins and their 

geochemical characteristics have been shown to be frequently decoupled from the 

complex global forcing factors (Mutterlose et al., 2009b; Huck et al., 2010; Khunt et al., 

2011) that induced deposition of black shales associated with the Lower Aptian OAE1a 

elsewhere. On the basis of these findings, it is reasonable to hypothesize that the 

extensive Barremian-Aptian hemipelagic deposits of the Organyà restricted Basin 
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(Garrido-Mejias, 1973; Peybernès, 1976; Caus et al., 1990; García-Senz, 2002; Bernaus 

et al., 2002; Gong et al., 2009) should also have a distinctive record for that time.   

1.4  Objectives 

To test the main hypothesis my scientific objectives were: 

1- To determine the causal factors for the deposition of organic-rich sediments in the 

semi-restricted Organyà Basin prior to OAE1a. 

2- To characterize the factors involved in the high sedimentation rates in the restricted 

Organyà Basin from the late Barremian to the early Aptian. 

3- To assess the influence of basin physiography and regional paleoenvironmental 

factors in the local expression of the global OAE1a. 

4- To develop a high-resolution 13Corg   profile for the Organyà Basin that can be used 

as a possible reference for global correlation for the latest Barremian to the middle 

Aptian. 

1.5 Summary of the methods and issues addressed 

To test my hypotheses and accomplish the proposed objectives I developed the 

following methodology: 

a- Extensive fieldwork and high-resolution sampling in order to understand the tectonic 

and structural setting of the Organyà Basin, as well as to identify field scale 

sedimentary features that may serve as depositional indicators. 

b- Thin section, smear slides and SEM analyses for microfossil and mineral content 

indicative of specific depositional settings and composition of the rock matrix. 
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c- Total carbon, total inorganic and total organic carbon to determine the preservation 

level of organic carbon in the sediment as well as the contribution of carbonate 

producers to the rock matrix. 

d- Major and trace element analyses to evaluate redox depositional conditions, intensity 

of terrestrial fluxes and nutrient levels. 

e- Bulk and clay mineral analyses to assess the mineralogical composition of the rock 

matrix and the provenance of the detrital fraction.  

f- Biomarkers analyses to determine the origin of the organic matter.  

1.6 Dissertation Structure 

I organized the dissertation in the form of research articles, each representing a 

chapter, that are either published, or submitted and each addressed one or several 

objectives: 

 Chapter Two covers the tectonic evolution of the Organyà Basin and describes the 

plaeoceanographic context of the basin within the lower Cretaceous. It also provides a 

general stratigraphic framework of the studied section and lithostratigraphic 

description of field and microscopic observations. 

 Chapter Three reports in detail the methods and materials applied in order to allow 

reproducibility of the results presented. 

 Chapter Four provides results of a detailed geochemical and stratigraphic assessment 

of the depositional conditions and controlling factors leading to the intermittent 

occurrence of organic-rich sediments and faunal variability on the basal 85 m of the 

El Pui section. The findings reveal a particular basinal response to local conditions 
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aside from the influence of global forcing factors and the relevance of restricted 

basins as carbon sinks (Sanchez-Hernandez and Maurrasse, 2014). 

 Chapter Five discusses the role of basin physiography and enhanced productivity in 

the sedimentation rate and carbon removal. It presents a detailed qualitative and 

quantitative assessment of the calcareous nannofossils assemblages and discussion of 

depositional conditions based on their distribution and preservation state. Biomarker 

analyses are applied to determine the sources of the OM and to explain the trend in 

the carbon isotopic signal. Comparisons with other well studied basins are included to 

provide a better understanding of the paleoenvironments of the Organyà Basin 

(Sanchez-Hernandez et al., 2014). 

 Chapter Six provides a detailed characterization of the microfacies which recorded 

the variability of the depositional conditions in response to redox and productivity 

changes in the basal 85 m of the El Pui section. It also covers the novel finding of 

roveacrinids (planktonic microcrinoids) facies in the Organyà Basin and the faunal 

assemblages that developed under the described environments (Sanchez-Hernandez 

and Maurrasse, submitted to Facies) 

 Chapter Seven discusses in detail the upper 155 m of the El Pui section and reveals 

the geochemical, stratigraphic, and sedimentary record of the OAE1a in the Organyà 

Basin, for the first time. It provides the identification of the C isotopic segments that 

define the occurrence of OAE1a, discusses the effect of local environmental 

conditions in the expression of OAE1a in the El Pui section and establishes the 

existence of precursory signals to OAE1a.  
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 Chapter Eight summarises the significance of my dissertation research and states the 

main accomplishments and conclusions. 
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2 GEOLOGIC AND STRATIGRAPHIC SETTING OF THE ORGANYÀ 
BASIN 

The Organyà Basin evolved through the breakup of pre-extensional Jurassic 

platforms (Seguret, 1972; Caus et al., 1990; Muñoz, 1991; Vergés, 1993) concurrent with 

the opening of the Atlantic Ocean, and coeval with the opening of the Bay of Biscay 

during Aptian–Albian times (Berástegui et al., 1990; 1993) (Fig. 2-1). The basin 

developed a system of depocenters with an E-W trend and irregular margins (Caus et al., 

1990) that allowed for the accumulation of shallow marine carbonates and hemipelagic 

sediments with abrupt facies differences. Geometrically, the depositional setting of the 

Organyà Basin resembles a graben with estimated dimensions of ~ 80 km along the 

extensional axis and up to 15 km wide (Dinarès-Turell and García-Senz, 2000). During 

the Mesozoic the basin filled with ~ 4500-5000 m of sediments, most of it corresponding 

to the Lower Cretaceous (Bachmann and Willens, 1996), and subsidence increased, 

providing ample accommodation space for the high sedimentation rate (up to ~20 cm/ky) 

(García-Senz, 2002; Gong, 2008).  

During the upper Albian-Cenomanian the extensional system inverted to 

transpressive (Puigdefàbregas and Souquet, 1986; Muñoz, 1992; Bond and McClay, 

1995) leading to a significant erosion of mainly late Albian deposits and augmented 

terrigenous input. Shallow-water carbonate platform deposits are also recorded from this 

time. Later, in Campanian times, a period of compression and subduction started as the 

result of the interaction between the European and Iberian plates which led to the basin 

inversion and the development of the Bóixols thrust system and the Santa Fè syncline 
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(Vergés and Muñoz, 1990). Exposure of Lower Cretaceous sediments (mainly Aptian to 

Albian) occurs at both limbs of the Santa Fè syncline. 

 
Figure 2-1 The opening of the Bay of Biscay during the Mesozoic with the main tectonic features and adjacent 
terrains. After García-Mondejar (1996). 

The tectonic history of the basin can be summarized in three main phases: 

1) Early Cretaceous extensional tectonism associated with the opening of the Bay of 

Biscay (Berástegui et al., 1990, 1993; Vergés, 1993) led to the development of the 

Organyà Basin as result of the breakup of Jurassic platforms (Caus et al., 1990). It was 

the time when several other small sedimentary basins also developed along the edges of 

the Iberian and European plates. 

2) A Cretaceous phase of development of carbonate platforms characterized by a 

high subsidence rate and the accumulation of thick carbonate sequences. This phase of 
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sedimentation also coincides with the accumulation of organic-rich layers suggested to be 

possibly correlative with OAE1a (Bernaus et al., 2003). 

3) Latest Cretaceous /early Cenozoic collision of the Iberian Plate with Europe led to 

the emergence of the Organyà Basin (García-Senz, 2002). The first stages of tectonic 

extension modified the paleogeographic configuration of the region as extensional 

processes caused the formation of a wider seaway between Europe and Iberia. During the 

Barremian-early Aptian, a phase of intense rifting took place and subsidence and net 

sedimentation rate approximately doubled (Bachmann and Willems, 1996; García-Senz, 

2002). Sediments from that interval reflect a marine setting, and higher influx of 

terrigenous materials suggests a more elevated topography in the adjacent areas (Gong et 

al., 2009).  

2.1 Overall stratigraphic framework of the Organyà Basin. 

The Bòixols thrust sheet comprises three megasequences corresponding to the 

Triassic- Jurassic, Lower Cretaceouss (Berriasian–Cenomanian), and Cenomanian–

Maastrichtian (Berástegui et al., 1990). My research section is part of the Lower 

Cretaceous megasequence that has been studied by several authors (Garrido-Mejias, 

1973; Peybernès, 1976; García-Senz, 2002; Bernaus et al., 2002) and stratigraphically 

subdivided in five major depositional units proposed by Berástegui et al. (1990), García-

Senz et al. (1995), and García-Senz, (2002) (Fig. 2-2). The El Pui section which is the 

object of the present study is part of the Cabó Formation that represents a late Barremian-

early Aptian time frame (Fig. 2-3). 
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2.2 The El Pui section 

The uppermost unit of the south-central Pyrenees of 

Spain is the Bòixols Thrust Sheet that incorporates the 

sedimentary succession of the Organyà Basin (Seguret, 

1972; Peybernès, 1976; Muñóz et al., 1984; Verges and 

Muñóz, 1990; García-Senz, 2002). The Sierra de Prada is 

part of that unit and its southern flank shows a remarkable 

homoclinal structure with northward vergence and an 

overall E-W strike (Fig. 2-3) The strata dip uniformly 

southward with an average angle between 40° and 50° 

(Fig. 2-3). Typically, the southern flank of the Sierra de 

Prada has an essentially dip-slope topography that is 

further affected by differential lithification of the strata, 

which are generally planar with a dip parallel to bedding.  

My study comprises the lower part of ~1100 m of 

limestone and marls (Fig. 2-3, Fig. 2-4) that are exposed in 

the southern flank of the Sierra de Prada often designated as Cabó Marls 

(Peybernès and Souquet, 1973; Peybernès, 1976; Martínez, 1982; García-Senz, 

2002; Bernaus et al., 2002, 2003; Moreno-Bedmar, 2010; Sanchez-Hernandez 

and Maurrasse, 2014). The studied sedimentary succession including the upper most part 

of the Prada Formation and the designated Cabó Marls has been assigned an overall latest 

Barremian to early Aptian age on the basis of paleontological studies of ammonites, and 

benthic and planktic foraminifera (Peybernès and Souquet, 1973; Peybernès, 1976; 

Figure 2-2 Synthetic stratigraphic 
column of the Organyà Basin 
with the geochronological 
distribution of the five more 
important lithologic groups. After 
García-Senz (2002). The black 
arrow indicates the studied 
interval. 
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Martínez, 1982; Berástegui et al., 1990; Bachmann and Willems, 1996; Bernaus et al., 

2002, 2003; Moreno-Bedmar, 2010).  

 

Figure 2-3 Field view of the first ~30 m of the El Pui section showing the bedding of the sequence. See 
geologist in the extreme left and right along the road for scale. 

More specifically I focus on the El Pui section (42°14' 36.00"N, 1°13' 33.67"E) 

where differential erosion of the beds along dip slopes facilitated the development of 

subsequent streams that cut deeply into the layers (Fig. 2-3, Fig. 2-4). These stream 

valleys form step-like profiles with water gaps that offer excellent spatial and temporal 

continuity of outcrops. I studied the lower 240 m of the section, named after the local 

area known as El Pui (Fig. 2-4). At the field scale the section consist of a sequence of 

alternating beds of cm to m scale of medium gray (N5) to grayish black (N2) 

consolidated, but somewhat friable, shaly limestones, and marls with no conspicuous 

primary structures (color is assigned on fresh samples). The carbonate-rich facies include 

intermittent organic-rich layers (TOC > 0.5%) that herald conditions of increased 
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deposition of organic matter, and fluctuating paleoenvironments in the basin, and have 

been suggested to include the record of the lower Aptian OAE1a (Bernaus et al., 2003). 

The upper 150 m of the section include intermittent intervals that suggest a cyclic pattern 

associated with the influence of local as well as global factors environmental (Bachmann 

and Willems, 1996) 

 

Figure 2-4 Lower part of the El Pui section that shows the continuous parallel bedding that favors excellent 
outcrop conditions for high resolution sampling. 
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3 MATERIAL AND METHODS 

The multiproxy approach used to assess criteria indicative of temporal 

environmental changes in the basin was achieved as follows: 

3.1 Field measurement and sampling of the stratigraphic section  

In order to select a suitable section for the study, the fieldwork started with a 

preliminary reconnaissance of the geology of the Organyà region, and examination of the 

entire stratigraphic succession exposed along the southern flank of the Prada Mountain in 

the El Pui area. The studied section was selected to include the marly sequence of the 

Cabò Formation (García-Senz, 2002) reported in the published literature as late 

Barremian to the Late Aptian (Peybernès and Souquet, 1973; Peybernès, 1976; Martínez, 

1982; Caus et al., 1990; Berástegui et al., 1993; García-Senz, 2002; Bernaus et al., 2002; 

2003; Moreno-Bedmar, 2010). 

The field method I used involved systematic bed-by-bed descriptions and 

sampling (Folk, 1959, 1962, 1980), including the physical stratigraphy, field-scale 

structures, and measurement of bed thickness with a Jacob’s staff and a measuring tape. I 

used a combined letter and numerical designation for rock colors of dry rocks in 

reference to the “Rock-color chart” distributed by the Geological Society of America, 

which is based on the modified Munsell color system (Goddard et al., 1963). Further 

details of the method are described in Chapter 6 (Sanchez-Hernandez and Maurrasse, 

submitted). I collected a total of 482 samples for laboratory analyses during three field 

seasons (2010; 2011; 2012), and samples were labeled in continuous numeric order with 

the year as reference and common denominator for the batch collected that year. Sample 

positions were recorded in a continuous series of photographs for further accuracy in 
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determining their respective points in the stratigraphic column. The samples were 

collected targeting each apparent bed, giving an average sampling interval of ~50 cm 

along the 440 m of the studied section. The lowest 87 samples were collected on fresh 

outcrops along a recently (2 years) built private dirt road leading to the top of the Sierra 

de Prada. The remaining samples were taken along erosional ridges and valleys, as 

described in Chapter four (Sanchez-Hernandez and Maurrasse, 2014). In order to ensure 

lesser influence of weathering, the samples were taken at least 5 cm deep from the 

surface of the recently exposed rock masses. At least one thin section per sample was 

made for petrographic analysis. 

3.2 Laboratory analyses 

3.2.1 Petrographic analysis 

Petrographic and microfacies analyses were carried out on all samples with 

conventional transmitted light microscopy (Olympus BH-2 microscope). Sample 

selection for these analyses was based on three main factors: color of fresh cut specimen, 

abundance of benthic fauna, and presence of unidentified grains in thin sections. As a 

complement to field scale observations, the microscopic study also paid special attention 

to the presence/absence of benthic fauna, bioturbation and early diagenetic minerals 

indicative of redox conditions.  

The total inorganic carbon (TIC) in most of the rocks of the sequence are above 

30% dry weight (Sanchez-Hernandez and Maurrasse, 2014); therefore, for the 

petrographic analysis, including designation of allochems and assignment of microfacies 

name, I followed guidelines proposed by numerous authors for classification of carbonate 

rocks (Folk, 1962; 1974; 1993; Dunham, 1962; Ehlers and Blatt, 1999; Flügel, 2010). 
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The petrographic analysis of thin sections was also used to determine the bioturbation 

index, which was assigned a value from 0 to 6, based on previous assessment by Droser 

and Bottjer (1986) and formulated in description proposed by Taylor and Goldring 

(1993).  

These analyses provide information about sedimentary facies, mineral 

composition, and concentration and identification of faunas. Because of the scarcity of 

both benthic and planktic foraminifera throughout the section (less than 15 per 10 cm2 of 

thin section) a specific scale was created to define their relative abundance: more than 10 

specimens per 10 square centimeters is equivalent to abundant (>10/10 cm2 abundant); 

between 10 and 4 specimens per 10 cm2 (10-4/10 cm2), scarce; and less than 4 specimens 

per 10 cm2 (<4/10 cm2), rare. Visual estimate for allochems versus matrix was used 

according to the method proposed by Terry and Chillingarian (1955).  

3.2.2 Micropaleontology and age 

The microscope work on calcareous nannofossils was performed by Dr. Mihaela 

Melinte (GEOECOMAR, Romania) on an Olympus BH-2 petrographic microscope with 

a magnification of ×1500. Calcareous nannofossils were examined using simple smear 

slides (Lamolda et al., 1994) and standard light-microscope techniques (Bown and 

Young, 1998). In order to achieve quantitative analyses, at least 300 specimens were 

counted in each smear-slide, in longitudinal transverses, randomly distributed. 

The individual abundance of the observed taxa was considered as follows: P - 

present: 1 specimen (s) />50 fields of view (FOV); R-rare: 1s/21-50 FOV; F-few: 1s/11-

20 FOV; C-common: 1s/2-10 FOV; A-abundant: >1s/FOV. The individual taxonomic 
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diversity, in percentage, was considered from the total counted taxa following the 

procedure outlined in Lamolda et al. (1994), and Melinte and Lamolda (2007).  

Because most of the samples were lithified I achieved only limited success in 

obtaining individual planktonic foraminifera (Fig. 4.5, Sanchez-Hernandez and 

Maurrasse, 2014) from partly indurated marl. The few loose specimens obtained were 

extracted with liquid nitrogen [LN2] following the treatment proposed by Remin et al 

(2012). The new LN2 method falls into the category of freeze-thaw method in which a 

rock sample previously soaked in water is treated alternately with LN2, and then boiling 

water until the sample is sufficiently disintegrated. Depending on the state of induration 

of the rock, the procedure may necessitate 15–20 cycles in order to obtain a satisfactory 

of coarse residue for microscopic examination. The effective mechanism of this method 

resides in the fact that LN2 [-196°C] causes complete and instantaneous formation of ice 

crystals in the pore system that expands by approximately 10%. The sudden addition of 

boiling water [100°C] produces a significant temperature shift of 300°C, and the 

difference in thermal expansion between rock matrix and the various microfossils leads to 

partial disintegration and the release of the foraminifera from the matrix (Remin et al., 

2012). The micropaleontological analysis for planktonic foraminifera was accomplished 

primarily with thin sections using the help of illustrations in the published literature (e.g. 

Caron, 1985; Premoli Silva et al., 1999; Verga and Premoli-Silva, 2002; Premoli Silva 

and Verga, 2006).  

The taxonomic name Globigerinelloides is used for the species G. blowi based on 

the works of Verga and Premoli-Silva (2002), and Premoli Silva and Verga (2006), as 

they clearly establish the validity of the genus Globierinelloides to be applied to this 
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taxon. Also, as discussed in Sanchez and Maurrasse (Chapter 6) these authors defined 

other taxa such as G. maridalensis and G. paragottisi, which in the case of the El Pui 

samples the sediments were too indurated to obtain free specimens that would have 

allowed unequivocal differentiation with co-occurring G. blowi. For chronostratigraphic 

correlation and paleogeographic reconstruction I used established standard works by 

Bolli et al. (1985); Caron (1985); Premoli Silva et al. (1999); Verga and Premoli-Silva 

(2002); Ogg and Ogg, (2008); Blakey (2011); and Walker et al. (2012). 

3.2.3 Scanning Electron Microscopy 

In order to obtain more detailed paleontological and sedimentological 

information, 55 small cubes (~1 cm3) of rock were cut and semi-polished for Scanning 

Electron Microscopy (SEM) and Energy Dispersive Spectrometry (EDS). The analyses 

were performed at the Florida Center for Analytical Electron Microscopy (FCAEM) 

located at FIU using a JEOL JSM 5910LV scanning electron microscope with an EDAX 

energy dispersive spectroscope. Samples for SEM and EDS analyses were selected at 

levels with different TOC and TIC content along the sedimentary sequence. 

Energy dispersive spectroscopy (EDS) was also performed to determine the 

composition of the rock matrix and non-biogenic grains. For the analyses, samples were 

carbon coated to the orange thickness (150 Å) and processed in Compo mode under 

backscattered electron imaging detection. Areas of interest were first determined and 

inspected in secondary electron imaging and later switched to backscatter for qualitative 

elemental analysis. Relative composition was determined using the Compo mode and 

both diffractograms and X-ray maps generated to evaluate the grain size and rock matrix 

composition. 
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3.2.4 Total carbon/carbonate – TC, TIC, TOC 

Total carbon (TC) and total inorganic carbon (TIC) were measured at Florida 

International University (FIU) for 420 samples (Appendix 1) following the standard 

analytical procedures of our carbonate laboratory facility (Sanchez-Hernandez and 

Maurrasse, 2014). The measurements were performed on a LECO CR-412 carbon 

analyzer, which uses an infrared cell to measure the CO2 produced by combustion of 

0.250 g of powdered sample placed in a furnace at 1450°C. Calibration of the LECO CR-

412 was performed using calcite (C64-500, Fisher Scientific) and dolomite (Dolomitic 

Limestone NIST 88b) as standard reference materials. The measured carbon was 

standardized to pure calcite, and the results of TC and TIC are expressed as a percentage 

by weight of bulk CaCO3. The analytical precision of the results was of ± 5%. 

In preparation for TC measure, every piece of rock was cut using a diamond saw 

in order to remove the exposed surface. Small pieces (1-2 cm) were cut, dried at 45°C for 

24 h and powdered using a Bell-Art micromill with a tungsten-carbide chamber and 

hardened blade. Powdered samples were later put in the oven at 60°C for 2 h and stored 

in a desiccator until analysis was carried out. TC was determined from 0.250 ± 0.003 g of 

rock powder. To obtain the TIC (CaCO3), an aliquot of the same powdered samples was 

placed into a furnace at 580°C for 2 h in order to burn off all organic matter, before being 

processed by the LECO CR-412 analyzer. Given that the instrument provides all results 

as a CaCO3 weight percent, the difference (TC-TIC) was divided by 8.33 (molecular 

weight of CaCO3 divided by molecular weight of C:100.086/12.011) to obtain total 

organic carbon (TOC) expressed as a weight percent of carbon. TIC values are used to 

assign a lithologic classification based on the nomenclature adopted in our sedimentary 
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laboratory. Hence, the relative percentage of total measured CaCO3 (TIC) indicates: 

limestone, > 65% CaCO3; marly-limestone, 60-65% CaCO3; marlstone, 30-60% CaCO3; 

calcareous mud-rock/shale, 10-30% CaCO3; and mud-rock/shale, 0-10% CaCO3.  

3.2.5 C-stable isotope on the organic fraction (13Corg) 

Carbon isotope analyses on the organic fraction of 420 samples from the El Pui 

section (Appendix 1) were conducted on a Finnigan Delta C EA-IRMS (with TC/EA), at 

the Southeast Environmental Research Center, FIU. The analytical technique uses 0.1-1.0 

mg samples of powdered dry rock. The homogenized rock samples require initial 

dissolution of the inorganic carbon (CaCO3) in a 1M HCl solution. The carbon isotope 

ratios are expressed on a per mil (‰) basis relative to the Vienna Pee Dee Belemnite 

standard (VPDB). Carbon ratios obtained were repeatedly compared with a laboratory 

reference gas under identical conditions. Precision of isotopic analyses for replicate 

samples, the international standard IAEA-CH-6 (Sucrose) and our lab standard (glycine) 

was better than ± 0.025‰. 

3.2.6 Major and trace element analyses 

The method and calibration applied follow the methodology of Arroyo et al., 

(2009). Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) 

was used in order to determine the concentrations of trace and major elements. ICP-MS 

analyses were conducted at the FIU Forensic Center using a quadrupole ELAN DRC II 

(Perkin Elmer LAS, Shelton CT USA), in the standard operation mode. A 266 nm Nd-

YAG laser (LSX 500, CETAC, USA) was used for this work. Best ablation results, 

previously evaluated as the best precision and accuracy for reference standards were 

obtained using a depth profile ablation mode with a 200 μm spot size and 10 Hz. 
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Ablations were conducted as discrete scans in previously prepared pressed sample pellets, 

in four different locations in the same pellet die.  

I analyzed 124 small rock fragments of ~ 1 cm3 selected from areas with no 

evidence of weathering, and processed as described for TC preparation. Fine powdered 

samples were weighed between 0.5 and 1.0 g, and a Scandium solution (1000 ppm in 3% 

HNO3) added as internal standard, dried at 80°C overnight, homogenized with a ball-mill 

for 10 min and converted to pellets using a manual press. As control samples, two sand 

blanks of known composition were prepared using identical steps and conditions as for 

the actual samples. Two additional samples (included in the 124 measured) 

corresponding to the same level as C12-257 and C12-259, respectively but with different 

lateral position (C12-257A and C12-259A) were analyzed to test the horizontal 

homogeneity of the trace element concentration (Appendix 2). Although the test was only 

peformed for two samples, the results provided acceptable presicion for the elements 

concentration. Standards and sand blanks were run at the beginning and end of the 

sample line. Concentrations of Ni, V, Cr, P, Fe, Cu, U, Th, Co, and Mo and major 

elements such as Al, Si and Ti are reported herein (Appendix 2). No significant external 

contribution from the sample preparation process was identified. Data processing was 

performed using the Glitter software (ARC National Center for Geochemical Evolution 

and Metallogeny of Continents).  

Results of every measurement were averaged for each sample and the relative 

standard deviation (standard deviation/mean) calculated. Percentages of the relative 

standard deviation were consistently below 10% for all the elements measured, although 

accuracy of the measurements for every sample is different and depends on factors as 
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choice of standards and abundance of measured element. The error of the measurements 

is reported as the average standard deviation per element (Appendix 2). The following 

soil and sediment standards were used for evaluation of the analytical performance of the 

method: a) marine sediment reference material, PACS-2 (National Research Council of 

Canada, Ottawa, Canada); b) soil reference material, SRM NIST2710 (Montana Soil), 

and c) NIST2704 (Buffalo River Sediment), US Department of Commerce, National 

Institute of Standards and Technology, Gaithersburg, MD, USA). 

3.2.7 Biomarker analysis 

Fossil biomarkers or biologically-derived residual compounds found preserved in 

sediments are increasingly used in sedimentary geology as a critical tool that provides 

information on the origin and type of organic matter, environmental conditions of 

deposition and maturity of the carbon compounds affected by subsequent diagenetic 

processes (Peters et al., 2005). They are reliable because they cannot be synthesized by 

non-biological processes and can be preserved over long geological times with little 

change in the original structure of the living organisms or parent molecules (Simoneit, 

2004).  

In preparation for biomarker determination, small rock slabs corresponding to 36 

different samples were powdered in a Bell-Art micromill. A careful cleaning process, 

with water, detergent, deionized water and acetone, was completed between samples. 

Biomarkers were analyzed following the procedures described in Jaffé et al. (2001). 

Samples were subjected to Soxhlet extraction for 24 h with 300 ml 100% methylene 

chloride (Optima, Fisher, USA) as solvent. HCl (10%) activated copper was added during 

the extraction to eliminate elemental sulfur. Total extracts were concentrated by rotary 
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evaporation and saponified with 0.5 N KOH to separate into neutral and acid fractions. 

The neutral fractions free of elemental sulfur were further fractionated by elution with 

hexane to obtain saturated hydrocarbon fraction using Pasteur pipette columns packed 

with silica gel. A known quantity of squalene was added as internal standard for 

quantification purpose and the hydrocarbon fraction was run on GC/MS with a Hewlett-

Packard 6890 GC linked to a HP 5973 quadrupole MS system, fitted with Rtx-1MS 

columns (30 m long, 0.25 mm ID, 0.25 m df) from RESTEK, USA. The GC oven was 

programmed to hold initial temperature of 40°C for 1 min, and then ramped at a rate of 

6°C/min to a final temperature of 300°C held for 20 min. Identification of compounds 

was performed by comparison of chromatographic retention time, comparison with the 

mass spectra library and previous mass spectra reported in the literature. The 

concentration of n-alkanes was normalized to organic carbon (OC) as ng/g OC. 

3.2.8 Bulk and clay mineral analysis 

Mineralogical analyses of 30 samples (Appendix 3) were performed at the Illinois 

State Geological Survey (ISGS) using X-ray diffraction (XRD) following the 

methodology described by Moore and Reynolds (1997). For the XRD procedure, the 

samples were micronized in a McCrone micronizing mill with deionized water for 10 

min. Then transferred to 50 mL centrifuge tubes, which were placed in the centrifuge for 

20 min at 2000 rpm. The clear supernatant was poured off and the remaining material 

dried overnight at 40°C. When completely dried the material was mixed lightly with a 

mortar and pestle and then packed into an end-loading sample holder as a random powder 

bulk-pack. The random powder bulk-pack was analyzed with a Scintag XDS 2000 

diffractometer. Step-scanned data was collected from 2° to 60° 2θ with a fixed time of 5 
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sec per 0.05° 2θ for each sample. All resulting traces were analyzed using the semi-

quantitative data reduction software from Materials Data Inc. (MDI) known as Jade®. 

The clay mineral composition was determined using oriented slides of the clay 

size < 2 m fraction with semi-quantitative values of the clay mineral assemblage 

calculated from ethylene glycol (EG) solvated slides (Hughes and Warren, 1989; Hughes 

et al, 1994; Moore and Reynolds, 1997).  

In preparation for XRD 20 g - 30 g of each sample was soaked for about 10-12 h 

in deionized water and protected from external agents. As water interacts with the sample 

small clay particles are released into the solution. Further stirring of the solution 

mechanically induced clay release from the sample. After settling, about 1/3 of the water 

was removed from the beaker. The beaker was then refilled with deionized water and two 

drops of sodium hexametaphospate is added as a dispersant. The mix was stirred and then 

allowed to settle for 15 min. The generated supernatant was pipetted and several drops 

were added onto a glass slide and let to dry overnight. 

Alternate treatments with EG for 24 h, and heating to 490°C, were also applied in 

order to establish a better comparison in peak intensity ratios among the expandable 

clays. Step-scans from 2°-34° 2θ with a fixed time of 5 sec per 0.05° 2θ were conducted 

for each sample. The diffractograms generated were superimposed (Fig. 3-1) for peak 

identification and mixed layer clay assessment. 
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Figure 3-1 Comparative sketch of the diffractograms obtained for the El Pui samples. The number of peaks 
and their corresponding intensity can be used to assess the presence of mixed layered clay. 
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4 GEOCHEMICAL CHARACTERIZATION AND REDOX SIGNALS 
FROM THE LATEST BARREMIAN TO THE EARLIEST APTIAN IN A 
RESTRICTED MARINE BASIN: EL PUI SECTION, ORGANYÀ BASIN, 
SOUTH-CENTRAL PYRENEES 

Sanchez-Hernandez, Y., Maurrasse, F.J-M.R., 2014. Geochemical characterization and 
redox signals from the latest Barremian to the earliest Aptian in a restricted marine basin: 
El Pui section, Organyà Basin, south-central Pyrenees. Chemical Geology 372, 12–31. 

Abstract  

The Organyà Basin located in the south-central Spanish Pyrenees developed in 

the northern part of the Iberian Peninsula mainly during a Barremian to early Albian 

phase, when Iberia rifted and rotated counter-clockwise away from Europe. Extension 

was followed by strong subsidence in the basin resulting in the development and 

accumulation of carbonate platforms and deeper-water hemipelagic sediments. 

Here we present the multiproxy results of a high-resolution lithostratigraphic and 

geochemical study of the lowest 85 m of the El Pui section in the Organyà Basin, 

Catalunya, Spain. The sequence comprises series of limestone and marlstone interbeds 

spanning the latest Barremian and the earliest Aptian. Our results show that intermittent 

dark limestone and marlstone layers associated with extremely low diversity and scarce 

benthic fauna, low bioturbation index (0-3) and high TOC (up to 1.7 wt%), indicate 

recurrent oxygen-deficient conditions within the lowest 31 m of the section and more 

uniform oxygenation in the upper 54 m. SEM analyses reveal a high abundance of 

calcareous nannofossils as the source of carbonate throughout the section. EDS analyses 

confirmed the presence of clastics (mainly aluminum silicates) in the matrix. Sustained 

high primary productivity was the result of a constant supply of nutrients, especially 

biolimiting elements (P, Fe), from terrestrial fluxes as indicated by excellent linear 
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correlation with Al, Si and Ti. 13Corg values within the high TOC intervals show 

excursions of up to 2.0‰ suggesting important isotopic changes in the carbon reservoir. 

Relatively high enrichment of Ni, and minor of U and Cr with respect to the average 

shale concurrent with high Ni/Co ratios, and punctuated high U/Th values, suggest the 

existence of intermittent reducing benthic conditions in these intervals. However, V is 

depleted, indicating that reducing conditions were weak with the absence of an 

anoxic/euxinic phase.  

In the present study we document that basin physiography along with the nature 

of the adjacent geologic terranes surrounding the Organyà Basin induced a sustained 

nutrient supply, thereby enhancing constant productivity, which intensified OM 

respiration in the water column. Density stratification may have also temporarily 

exacerbated oxygen deficiency (without an anoxic phase) that enhanced OM preservation 

from the late Barremian to the earliest Aptian. 

4.1 Introduction 

The Mesozoic Era recorded severe greenhouse conditions associated with a series 

of widespread Oceanic Anoxic Events (OAEs) (Schlanger and Jenkyns, 1976; Jenkyns, 

1980). The Barremian–Aptian transition was marked by intense tectonic, volcanic, and 

paleoceanographic changes (Arthur et al., 1985; Bralower et al., 1994; Larson and Erba, 

1999; Aguado et al., 1999; Weissert and Erba, 2004; Neal et al., 2008; Tejada et al., 

2009; Föllmi, 2012) concurrent with greenhouse conditions (Föllmi et al., 2006; Ando et 

al., 2008; Méhay et al., 2009), lower temperature gradient between low and high 

latitudes, and intensified hydrological cycle (Hay and Deconto, 1999). Such conditions 

may have led to increased continental runoff (that enhanced marine productivity) and 
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higher eustatic elevations (Barron et al., 1989, 1995). The early Aptian also shows 

differential drowning of preexisting carbonate platforms (Föllmi & Gainon, 2008; 

Barragan and Maurrasse, 2008; Godet et al., 2013; Masse and Ferneci-Masse, 2013) 

development of restricted epicontinental seas, and stagnation of deep-water masses 

(Bralower et al., 1994) in the Western Tethys. 

A combination of these factors produced stressful conditions that contributed to 

the occurrence of the early Aptian Oceanic Anoxic Event 1a (OAE1a) (~125 Ma, Erba, 

2004; Li et al., 2008), which was one of the most intense episodes of widespread marine 

anoxia in the Cretaceous Period. OAE1a is well documented in different worldwide 

locations (Menegatti et al., 1998; Larson and Erba, 1999; Erba, 2004; Li et al., 2008; 

Jenkyns, 2010, among others). Its hallmark in the stratigraphic record includes not only 

deposition of organic-rich sediment (TOC >2%) that lasted for about 1.2My (Li et al., 

2008), but also involves a pronounced positive 13C excursion of 2-5‰ (Jenkyns, 1980; 

Arthur and Premoli-Silva, 1982; Arthur et al., 1985; Menegatti et al., 1998; Leckie et al., 

2002; Méhay et al., 2009; Millán et al., 2009).  

Because OAE1a is most significant as an interval of worldwide accumulation of 

organic-rich sediments, it has been the subject of most scientific investigations of Early 

Cretaceous anoxic events. While most studies centered essentially on the event, however, 

the gradual environmental response to the transition between normal conditions in the 

late Barremian to extreme conditions in the early Aptian (Mutterlose and Böckel, 1998; 

Godet et al., 2008; Mutterlose et al., 2009; Stein et al., 2011, 2012; Pauly et al., 2013) 

still remains to be fully understood. Indeed, in order to better discern the mechanisms 

associated with these changes, biological and environmental responses to changing 
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conditions prior to OAE1a need to be better known, because several studies have 

recognized the occurrence of highly positive excursions of 13C not associated with 

known widespread OAE’s. Case in point is the Upper Barremian stage B7 (e.g. Alvier 

section, Wissler et al., 2003), the C1segment from Menegatti et al. (1998) (e.g. Cismon 

section, Erba, 1999; Cassis–La Bédoule section, Stein et al., 2012) and the late 

Barremian–early Aptian interval at Cluses section (Huck et al., 2011). Such 13C 

increments suggest enhanced 12C sequestration due to preservation of OM in part 

recorded in several Tethyan sections (Föllmi et al., 2012). These events are of particular 

interest to further our understanding of the Earth systems localized response to 

greenhouse conditions and increased carbon sequestration. 

The El Pui section of the Organyà Basin, south-central Spanish Pyrenees 

(Séguret, 1972; Peybernès, 1976; Muñoz et al., 1984; Berástegui et al., 1990; García-

Senz, 2002)  (Fig. 4-1A, Fig. 4-2 A, B), contains an expanded continuous sequence of 

medium gray (N5) to grayish black (N2) hemipelagic sediments (Fig. 4-3 A, B) that 

offers an excellent opportunity to study the paleoenvironmental response to changing 

global conditions concomitant with tectonic evolution of the basin between the late 

Barremian and early Aptian (Fig. 4-1 A, B; Fig. 4-2 A, B). In the present study we 

integrate high-resolution stratigraphic and geochemical analyses using various proxies: 

total inorganic carbon (TIC), total organic carbon (TOC), stable isotopes of organic 

carbon (13Corg), and major and trace element concentrations, in order to reconstruct local 

paleoenvironmental conditions from the latest Barremian to the earliest Aptian prior to 

the occurrence of the OAE1a in the Organyà Basin (Fig. 4-2 A, B). In addition, 

considering the paleogeographic position of the basin (Peybernès, 1976; Berástegui, et 
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al., 1990, Masse et al., 2000; García-Senz, 2002), the study improves our knowledge of 

the local response of the restricted Organyà Basin to increasing greenhouse conditions in 

the development and accumulation of organic-rich sediments. It also reveals the possible 

causes and mechanisms of enhanced organic carbon (OC) sequestration during the late 

Barremian––early Aptian interval. 

 

 

Figure 4-1 A) Simplified geologic map of the Organyà Basin (modified from Bernaus et al., 2003) showing 
the location of the study area, the overall age and lithologies in the southern flank of Sierra de Prada. Short 
lines symbol (├) show the strike and dip of the homoclinal sequence. B) Simplified geologic cross section 
of the studied area through X-Y drawn from a 1:50.000 topographic map of Cabó from the Institut Cartogràfic 
de Catalunya (http://www.icc.cat)  
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4.2 Geographic and geologic setting  

The south-central Pyrenees of Spain comprise numerous thrust sheets whose 

uppermost unit, the Bòixols Thrust Sheet, incorporates the sedimentary succession of the 

Organyà Basin (Fig. 4-2A) (Seguret, 1972; Peybernès, 1976; Muñóz et al., 1984; Verges 

and Muñóz, 1990; García-Senz, 2002). The Sierra de Prada is part of that unit and its 

southern flank shows a remarkable homoclinal structure with northward vergence and an 

overall E–W strike. The strata dip uniformly southward with an average angle between 

40 and 50° (Fig. 4-1A, Fig. 4-3A). Typically, the southern flank of the Sierra de Prada 

has an essentially dip-slope topography that is further affected by differential lithification 

of the strata, which are generally planar with a dip parallel to bedding. The El Pui section 

(42° 14' 36.00"N, 1° 13' 33.67"E) is situated on the southern limb of the Sierra de Prada 

(Fig. 4-1 A, B) where differential erosion of the beds along dip slopes facilitated 

development of subsequent streams that cut deeply into the layers (Fig. 4-3 A, B). These 

stream valleys form step-like profiles with water gaps that offer excellent spatial and 

temporal continuity of outcrops (Fig. 4-3A, B). We studied the lower 85 m of the section, 

named after the local area known as El Pui (Fig. 4-1A, B; Fig. 4-2B). The studied section 

is part of a continuous sequence extending eastward past the nearby town of Cabó (Fig. 

4-1A), the namesake of the marly sequence, coined the Cabó Formation (García-Senz, 

2002). 
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 Previous studies indicate that the 

basin developed during extensional 

processes related to counter-clockwise 

rotation of Iberia from the late Jurassic to 

early Cretaceous, concurrent with the 

opening of the Atlantic Ocean leading to 

the opening of the Bay of Biscay during 

Aptian-Albian times (Berástegui et al., 

1990, 1993). About 4500 m of shallow 

water to hemipelagic sediments 

accumulated in the Organyà Basin during 

the Cretaceous (Fig. 4-2A), with 

approximately 1000 m corresponding to 

the Barremian-early Aptian interval 

(García-Sens, 2002) (Fig. 4-2A). The 

studied sedimentary succession 

including the upper most part of the 

Prada Formation and the designated Cabó Marls has been assigned an overall latest 

Barremian to early Aptian age (Fig. 4-1 A, Fig. 4-2A, B), based on paleontological 

studies of ammonites, and benthic and planktic foraminifera (Peybernès and Souquet, 

1973; Peybernès, 1976; Martínez, 1982; Berástegui et al., 1990; Bachmann and Willems, 

1996; Bernaus et al., 2002, 2003; Moreno-Bedmar, 2010).  

Figure 4-2 A) Synthetic stratigraphic column and age
distribution of the lower Cretaceous of the Organyà
Basin (from García Senz, 2002), the Barremian-Aptian 
boundary has been modified after Moreno-Bedmar 
(2010). B) Chronostratigraphic column of the 85 m
studied at El Pui with fossil and lithologic 
characterization. All the facies studied correspond to the
mudstone classification of Dunham (1962). Circled
numbers to the right of the fossil content indicate the
bioturbation index after Taylor and Goldring (1993).
See legend for explanation of symbols. 
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Three main phases characterized the tectonic evolution of the basin and 

influenced the variability of the sedimentary sequence:  

1) Early Cretaceous extensional tectonism associated with the opening of the Bay of 

Biscay (Berástegui et al., 1990, 1993; Vergés, 1993) led to the development of the 

Organyà Basin as result of the breakup of Jurassic platforms (Caus et al., 1990). It 

was the time when several other small sedimentary basins also developed along the 

edges of the Iberian and European plates. 

2) A Cretaceous phase of development of carbonate platforms characterized by a high 

subsidence rate and the accumulation of thick carbonate sequences. This phase of 

sedimentation also coincides with the accumulation of organic-rich layers above the 

studied 85 m, suggested to be possibly correlative with OAE1a (Bernaus et al., 2003). 

3) Latest Cretaceous /early Cenozoic collision of the Iberian Plate with Europe led to the 

emergence of the Organyà Basin (García-Senz, 2002). 

The first stages of tectonic extension modified the paleogeographic configuration 

of the region as extensional processes caused the formation of a wider seaway between 

Europe and Iberia. During the Barremian–early Aptian, subsidence rates increased and 

the net sedimentation rate approximately doubled (Bachmann and Willems, 1996; 

García-Senz, 2002). Sediments from that interval reflect a marine setting, and higher 

influx of terrigenous materials suggests a more elevated topography in the adjacent areas 

(Gong et al., 2009).  

The segment studied comprises only the lower part of the Cabó Marls, reported to 

reach an estimated total thickness of ~800 m of gray to black limestones and marls (Fig. 

4-3B) (Caus et al., 1990; Berástegui et al., 1990, Bernaus et al., 2003). At the field scale 
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the lower 85 m consist of a sequence of alternating beds (0.15-3.0 m) of medium gray 

(N5) to grayish black (N2) consolidated, but somewhat friable, shaly limestones, and 

marls with no conspicuous primary structures (color is assigned on fresh samples). 

Certain levels of recurrent black, well-consolidated limestone beds (Fig. 4-3B) herald 

conditions of increased deposition of organic matter, and fluctuating paleoenvironments 

in the basin.  

 

Figure 4-3 El Pui section: A) Panoramic view of the lower 25 m (sediment thickness) of the sampled area 
showing a continuous succession. B) Close up view of the yellow oval that corresponds to the stratigraphic 
interval from ~15 m to ~20 m showing the lithology along a road cut to the top of Sierra de Prada; note the 
well-consolidated dark limestone beds. 

4.3 Material and Methods 

The multiproxy approach used to assess environmental changes in the basin was 

achieved as follows: 

4.3.1 Petrographic analysis 

Two hundred seven (207) samples were collected targeting each apparent bed, 

giving an average sampling interval of ~40 cm along the 85 m of the studied section. The 

lowest 87 samples were collected on fresh outcrops along a recently built private dirt-
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road leading to the top of the Sierra de Prada. The remaining samples were taken along 

erosional ridges and valleys, as previously described. In order to ensure lesser influence 

of weathering, the samples were taken at least 5 cm deep from the surface of the recently 

exposed rock masses. At least one thin section per sample was made for petrographic 

analysis. Because of the scarcity of both benthic and planktic foraminifera throughout the 

section (less than 15 per 10 cm2 of thin section) a specific scale was created to define 

their relative abundance: more than 10 specimens per 10 square centimeters is equivalent 

to abundant (>10/10 cm2 abundant); between 10 and 4 specimens per 10 cm2 (10-4/10 

cm2), scarce; and less than 4 specimens per 10 cm2 (<4/10 cm2), rare. Petrographic and 

microfacies analyses were carried out on all samples with conventional transmitted light 

microscopy (Olympus BH-2 microscope). In addition, 55 small cubes (~1 cm3) of rock 

were cut and semi-polished for Scanning Electron Microscopy (SEM) and Energy 

Dispersive Spectrometry (EDS) in order to obtain more detailed paleontological and 

sedimentological information. Sample selection for these analyses was based on three 

main factors: color of fresh cut specimen, abundance of benthic fauna, and presence of 

unidentified grains in thin sections. As a complement to field scale observations, the 

microscopic study also paid special attention to the presence/absence of benthic fauna, 

bioturbation and early diagenetic minerals indicative of redox conditions. The 

petrographic analysis of thin sections was also used to determine the bioturbation index, 

which was assigned a value from 0 to 6, following the description proposed by Taylor 

and Goldring (1993). These analyses provide information about sedimentary facies, 

mineral composition, concentration and identification of faunas.  
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4.3.2 Total carbon/carbonate –TC, TIC, TOC 

Total carbon (TC) and total inorganic carbon (TIC) were measured at Florida 

International University (FIU) for all samples following the standard analytical 

procedures of our carbonate laboratory facility. The measurements were performed on a 

LECO CR-412 carbon analyzer, which uses an infrared cell to measure the CO2 produced 

by combustion of 0.250 g of powdered sample placed in a furnace at 1450 ˚C. Calibration 

of the LECO CR-412 was performed using calcite (C64-500, Fisher Scientific) and 

dolomite (Dolomitic Limestone NIST 88b) as standard reference materials. The measured 

carbon was standardized to pure calcite, and the results of TC and TIC are expressed as a 

percentage by weight of bulk CaCO3. The analytical precision of the results was of ± 5%. 

In preparation for TC measure, every piece of rock was cut using a diamond saw 

in order to remove the exposed surface. Small pieces (1-2 cm) were cut, dried at 45 °C 

for 24 h and powdered using a Bell-Art micromill with a tungsten-carbide chamber and 

hardened blade. Powdered samples were later put in the oven at 60 °C for 2 h and stored 

in a desiccator until analysis was carried out. TC was determined from 0.250 ± 0.003 g of 

rock powder. To obtain the TIC (CaCO3), an aliquot of the same powdered samples was 

placed into a furnace at 580 °C for 2 h in order to burn off all organic matter, before 

being processed by the LECO CR-412 analyzer. Given that the instrument provides all 

results as a CaCO3 weight percent, the difference (TC-TIC) was divided by 8.33 

(molecular weight of CaCO3 divided by molecular weight of C:100.086/12.011) to obtain 

total organic carbon (TOC) expressed as a weight percent of carbon. TIC values are used 

to assign a lithologic classification based on the nomenclature adopted in our sedimentary 

laboratory. Hence, the relative percentage of total measured CaCO3 (TIC) indicates: 
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limestone, > 65% CaCO3; marly-limestone, 60-65% CaCO3; marlstone, 30-60% CaCO3; 

calcareous mud-rock/shale, 10-30% CaCO3; and mud-rock/shale, 0-10% CaCO3.  

4.3.3 C-stable isotope on the organic fraction (13Corg) 

Carbon isotope analyses on the organic fraction of 147 samples from the El Pui 

section were conducted on a Finnigan Delta C EA-IRMS (with TC/EA), at the Southeast 

Environmental Research Center, FIU. The analytical technique uses 0.1-1.0 mg samples 

of powdered dry rock. The homogenized rock samples require initial dissolution of the 

inorganic carbon (CaCO3) in a 1M HCl solution. The carbon isotope ratios are expressed 

on a per mil (‰) basis relative to the Vienna Pee Dee Belemnite standard (VPDB). 

Carbon ratios obtained were repeatedly compared with a laboratory reference gas under 

identical conditions. Precision of isotopic analyses for replicate samples, the international 

standard IAEA-CH-6 (Sucrose) and our lab standard (glycine) was better than ± 0.025‰. 

4.3.4 Major and trace element analyses 

The method and calibration applied follow the methodology of Arroyo et al., 

(2009). Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) 

was used in order to determine the concentrations of trace and major elements. ICP-MS 

analyses were conducted at the FIU Forensic Center using a quadrupole ELAN DRC II 

(Perkin Elmer LAS, Shelton CT USA), in the standard operation mode. A 266 nm Nd-

YAG laser (LSX 500, CETAC, USA) was used for this work. Best ablation results, 

previously evaluated as the best precision and accuracy for reference standards were 

obtained using a depth profile ablation mode with a 200 μm spot size and 10 Hz. 

Ablations were conducted as discrete scans in previously prepared pressed sample pellets, 

in four different locations in the same pellet die.  
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We analyzed forty-two (42) samples of small rock fragments selected from areas 

with no evidence of weathering, and processed as described for TC preparation. Fine 

powdered samples were weighted between 0.5 and 1.0 g, and a Scandium solution (1000 

ppm in 3% HNO3) added as internal standard, dried at 80 °C overnight, homogenized 

with a ball-mill for 10 min and converted to pellets using a manual press. As control 

samples, two sand blanks of known composition were prepared using identical steps and 

conditions as for the actual samples. Standards and sand blanks were run at the beginning 

and end of the sample line. Concentrations of Ni, V, Cr, P, Fe, U, Th, and Co, and major 

elements such as Al, Si and Ti are reported herein (Table 4-1). No significant external 

contribution from the sample preparation process was identified. Data processing was 

performed using the Glitter software.  

Results of every measurement were averaged for each sample and the relative 

standard deviation (standard deviation/mean) calculated. Percentages of the relative 

standard deviation were consistently below 10% for all the elements measured, although 

accuracy of the measurements for every sample is different and depends on factors as 

choice of standards and abundance of measured element. The following soil and sediment 

standards were used for evaluation of the analytical performance of the method: a) 

marine sediment reference material, PACS-2 (National Research Council of Canada, 

Ottawa, Canada); b) soil reference material, SRM NIST2710 (Montana Soil), and c) 

NIST2704 (Buffalo River Sediment), US Department of Commerce, National Institute of 

Standards and Technology, Gaithersburg, MD, USA). 
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4.3.5 SEM and EDS analyses 

A JEOL JSM 5910LV available at the Florida Center for Analytical Electron 

Microscopy (FCAEM) at FIU was used to perform SEM analyses on selected samples. 

SEM images were taken on partially polished fragments of rocks and thin sections. 

Samples for SEM examination were coated using a Gold/Palladium target in order to 

improve conductivity and reduce surface charging on the specimen. Both secondary and 

backscattered electron images were produced. In order to determine the qualitative 

composition of non-biogenic grains energy dispersive spectroscopy (EDS) was also 

performed on polished fragments of rock coated with carbon to the orange thickness (150 

Å).  

4.4 Results 

4.4.1 Petrographic analysis 

The general variation in lithology and fossil characterization for the El Pui section 

is summarized in the simplified stratigraphic column (Fig. 4-2B). The bioturbation index 

varies throughout the sequence between 0 and 3 out of 6 (Taylor and Goldring, 1993), 

with the smallest values corresponding to intervals impoverished in benthic organisms. 

SEM micrographs reveal calcareous nannofossil fragments as the main source of 

carbonate in the rock matrix (Fig. 4-4) with minor contribution from benthic and 

planktonic foraminifera. Typical microfacies at all levels of the studied sequence are 

characterized by a matrix of dark, fine micrite with less than 20% allochems (Folks, 

1962) that consist of minute echinoderm spine fragments, rare ostracods, and benthic and 

planktic foraminifera. Globigerinelloides blowi  (Bolli, 1959; Caron, 1985; Premoli Silva 

and Verga, 2006), was effectively first identified at about 4 m above the base of the 



56 

section, and two well-preserved specimens were obtained at 16 m (Fig. 5A) and 36 m 

respectively. Thin section studies also revealed the presence of this taxon within the 85 m 

interval (Fig. 4-5B, C). G. blowi has been assigned a relative chronological position 

within the late Barremian-early Aptian time interval (Caron, 1985; Erba, 1994).  

 

Figure 4-4 SEM micrograph of samples at different levels within the studied section. C10-19 left: Arrow 
points to coccolith fragments. C10-19 right: Lower arrow points to small calcite spheres, remains of coccoid 
bacteria; upper arrow indicates dispersive pyrite. C10-30: Arrow points to a relatively well preserved 
calcareous nannofossil. C10-48: Arrow indicates dispersive pyrite in a carbonate matrix of calcareous 
nannofossil fragments. C10-50: Cyanobacterial structure. C11-87: Arrows point to abundant framboidal 
pyrite less than 10 m in size; black circles enclose calcareous nannofossils. 
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Relative abundance of benthic fauna varies throughout the section, 

with lesser values (scarce to rare) in the lower part of the studied 

section as observed in the following stratigraphic segments:1) 0-

1.0 m, and 2) 4.0-6.0 m, two sub-intervals with scarce specimens 

of small (< 80 m) uniserials; 3)10.0-15.5 m, a large sub-interval 

characterized by rare benthic specimens which become completely 

absent between 12.0 and 13.0 m; 4)17.5 to about 19.0 m, sub-

interval that encloses rare uniserial taxa; and 5) from about 27.0 to 

38.0 m, another large interval (11 m thick) where there are scarce, 

small benthic foraminifera represented by uniserial as well as 

coiled morphotypes. In contrast, the last interval is also marked by 

higher presence and diversity of planktic foraminifera (up to 10 

specimens per 10 cm2), while benthic taxa also vary within the 

scarce classification (4-10/10 cm2) throughout. SEM secondary and 

backscattered imaging revealed the presence of dispersive 

framboidal pyrite (Fig. 4-4, C10-19, C10-48, and C11-87) which 

increases significantly from ~27 to 33.0 m; while EDS allowed the identification of small 

quartz grains, and feldspars (Fig. 4-6).  

Figure 4-5 Illustrations 
of G. blowi. A: picture 
taken with a Leica 
reflected light 
microscope of a 
relatively well-
preserved whole 
specimen obtained at 
~16 m; B and C: 
photomicrograph of G. 
blowi in thin section at 
12 m and 33 m 
respectively. 
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Figure 4-6 Figure 6. SEM with EDS analysis performed on samples showing the presence of siliciclastic 
material. Diagrams show the qualitative elemental composition of the grains analyzed. Micrographs show 
the texture of the fine matrix and the random distribution of the grains. Arrows pointing to the elemental 
diagram originate at small squares where EDS was performed. 

4.4.2 TOC, TIC, and 13Corg 

TOC content measured in 147 samples revealed fluctuating values ranging from 

~0 to 1.74%, with most of the samples rich in organic carbon (≥ 1.0%) recorded within 

the lower 31 m of the section [Appendix 1 (samples C10-01 – C11-207 for current 

chapter), Fig. 4-7A, B]. Higher TOC values occur within the following levels:  at about 1 

m, 4.0-7.2 m, 10.0-15.5 m, 18.0-18.7 m, 27.7-31.1 m, and at 41.8 m, respectively. 

Notably, with the exception of the 41.8 m level, all the high TOC values are coincident 

with levels included in the previously identified intervals that are characterized by 

relatively low abundance of benthic foraminifera and correspond to the lowest 31 m (Fig. 

4-7A, B). 

TIC fluctuates between 43.5 and 87.6% in an indeterminate rhythmic fashion 

(Appendix 1, Fig. 4-7C). The carbonate content stays consistently above 65% throughout 

the stratigraphic column, except for five marly intervals in the lower part of the section 

(0-0.3 m, 1.8-3.0 m, 4.7-6.5 m, 12.0-13.0 m, and 14.8-15.2 m), two upper intervals (52.6-

56.9 m and 75.8-84.5 m), and discrete occurrences at 48.7 m and ~62 m where TIC stays 
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below 65% but mostly higher than 50%. In general, TIC shows poor correlation with the 

TOC (Fig. 4-7B, C). Abundant calcareous nannofossils confirm the autochthonous 

biogenic origin of the carbonate fraction in the El Pui sediments. 

 
Figure 4-7 Lithostratigraphy and carbon chemostratigraphy: A) Simplified chronostratigraphic column of the 
studied section. B) Vertical variation in TOC. Star symbols indicate levels of high TOC concurrent with 
positive excursions in 13Corg. C) Vertical variation in TIC. D) Vertical variation in 13Corg including the 
characteristic late Barremian – lower Aptian carbon isotope segments C1-C3 from Menegatti et al. (1998). 
The C segments define patterns in the 13Corg curve that are widely used for chemostratigraphic correlation. 

13Corg values measured in the bulk organic fraction vary between -25.95 and -

22.57‰ (Appendix 1, Fig. 4-7D). The lowest 4 m show relatively small variations (< 

0.5‰) in 13Corg, followed by a positive spike with a maximum increase of ~1.3‰ from 

4.3 to 4.7 m. Also, characteristically higher 13Corg values occur at intervals 16.4-20.5 m 
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(>-24.09‰), and 27.5-28.4 m (>-24.09‰), respectively. The succeeding relatively long 

interval (28.5-51.0 m) yielded comparably low variations (less than 0.5‰ in 13Corg), 

which average -24.23‰, with an overall steady trend lasting up to about 51.3 m (Fig. 4-

7A, D). From 51.6 to 55.6 m, 13Corg increases positively by more than 0.75‰ with an 

average value of -23.71‰.  Subsequent 13Corg values fluctuate toward a negative trend, 

reaching the lowest number of -25.93‰ at the 73 m sampling level. 13Corg values remain 

low, with hardly any change, within the succeeding 5 m, and then rise again by about 

0.5‰ to -25.33‰ at the top of the section.  

4.4.3 Major and trace elements analyses 

Major and trace element concentrations are reported here as parts per million 

(ppm) and parts per thousand (ppt), (Appendix 2, samples C10-02 – C11-207 for current 

chapter). They were measured in 42 selected samples distributed along the stratigraphic 

column with variable TOC content. In order to have a clearer understanding of the 

intensity of fluvial fluxes and authigenic enrichment of trace metals, major and trace 

element concentration are also presented as Aluminum normalized values (Fig. 4-8, 

Table 4-1) plotted versus depth and compared to the corresponding average shale value 

(Turekian and Wedepohl, 1961; Wedepohl, 1971, 1991; Brumsack, 2006). Subsequent to 

the work of Turekian and Wedepohl (1961), and Wedepohl (1971), other studies 

(Wignall and Myers, 1988; Calvert and Pedersen, 1993; Morford and Emerson, 1999; 

Rimmer, 2004; Algeo and Maynard, 2004; Tribovillard et al., 2005, 2006; Algeo and 

Tribovillard, 2009; Algeo and Rowe, 2012) have used lithophile elements (Al, Si, and Ti) 

and redox sensitive trace elements (RSTE) (U, Ni, V, Cr), and/or their normalized values 

to reconstruct paleoenvironmental conditions. 
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Linear plots of Al, Si and Ti show excellent positive correlation between the three 

elements (Fig. 4-9A, B). The highest values of Si/Al (2.3), and Ti/Al (~0.07) are found at 

~15.5 m (Sample C10-37, Table 4-1), and coincide with relative high TOC (>1.0%). The 

lowest absolute concentrations occur at 41.8 m (sample C10-109) with values of ~6 ppt 

for Al, ~12 ppt for Si and ~0.2 ppt for Ti (Appendix 2). Phosphorous concentration varies 

between 107 and 424 ppm, with an average value of 222 ppm (Appendix 2), and shows a 

good positive correlation with Al (Fig. 4-9C). P/Al values are consistently above the 

average shale throughout the section (Fig. 4-8). Iron ranges between 3.0 and 21.7 ppt, 

with an average of ~7.7 ppt (Appendix 2). It shows an excellent correlation with Al (Fig. 

4-9D) and the Fe/Al ratio is consistently between 70 and 95% of the average shale Fe/Al 

ratio with few discrete occurrences as low as 55% (Fig. 4-8). 

 
Figure 4-8. Stratigraphic correlation of major and trace elements normalized to Al concentration († represents 
values ×10-4). C1- C3 corresponds to 13Corg carbon isotope segments in the El Pui section based on the 
“Cismon” carbon isotope subdivision proposed by Menegatti et al. (1998). The studied 85 m correspond to 
the G. blowi Zone. The two far right columns in the chart show the redox indices Ni/Co and U/Th, and are 
included for vertical comparison. Dashed lines represent the Al normalized concentration of each 
corresponding element in the average shale from Wedepohl (1971, 1991). Dashed lines in the Ni/Co and 
U/Th plots indicate the redox fields proposed by Jones and Manning (1994) (see also Fig. 4-10). Dotted line 
to the left in the U/Th plot reflects the standard value suggested by Wignall and Myers (1988) for normal 
mudstones. The asterisks (*) for the redox indices in this figure indicate dysoxia as a general term for  oxygen 
limited conditions as proposed by Wignall and Myers (1988). The shaded interval refers to recurrent oxygen 
deficient conditions within the lower 31 m of the section.  
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Ni/Al values are consistently higher than the value for the average shale 

throughout the section (Fig. 4-8). The highest peaks are located within the lower 27 m 

with a maximum of 41.2 × 10-4 (Table 4-1). The Ni/Al fraction shows less variation in 

the upper 58 m where the values are closer to the referenced shale (7.7 × 10-4) (Fig. 4-8, 

Table 4-1). Ni shows poor correlation with Al (R2 ~0.42) (Fig. 4-9E) suggesting an 

incorporation pathway different to simply detrital fluxes. 

Cr/Al remains higher than 10.2 × 10-4 (average shale) at all levels (except at 0 m, 

10.0) and covaries with Ni/Al. The ratio decreases to values very close to the reference 

line from 27 to 85 m (Fig. 4-8). For values of Al < 25 ppt the linear trend with Cr shows a 

good fit, whereas for values of Al > 25 ppt the dispersion of the Cr values increases (Fig. 

4-9F). The general fit is moderated with an R2 ~ 0.67.  

Uranium like Ni shows a poor correlation with Al (R2 ~ 0.35) (Fig. 4-9H), which 

is consistent with different mechanisms of absorption into the sediment. In the lower 31 

m U/Al ratios reach different levels of minor enrichment compared to the average shale 

(Fig. 4-8). The remaining values are close to the shale line or below (with the exemption 

of level 41.8 m) suggesting a direct relationship between U and TOC, as the latter also 

decreases with respect to the lowest 31 m interval. V/Al reflects a relatively small 

depletion, and in few points, equal values to the average shale (Fig. 4-8). V correlation 

with Al is excellent (R2 ~ 0.94) (Fig. 4-9G) implying that its presence in the basin has a 

detrital origin.  
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Table 4-1 Aluminum normalized values of selected major and trace elements measured in the El Pui section 
and calculated values of the redox indices (Ni/Co, U/Th) used in this study. († = ×10-4). 

 

Sample Id Height (m) Si/Al Ti/Al P/Al Fe/Al V/Al † Cr/Al †Ni/Al † U/Al † Ni/Co U/Th

C-10-02 0.3 2.1 0.05 0.008 0.4 11.6 10.0 4.6 0.4 10.3 0.3

C-10-08 1.9 2.2 0.04 0.010 0.3 9.0 15.7 18.8 0.4 22.8 0.3

C-10-14 4.3 2.1 0.05 0.012 0.4 12.7 25.0 36.3 0.8 31.7 0.5

C-10-18 5.8 2.0 0.04 0.009 0.4 11.8 17.8 20.9 0.5 16.3 0.4

C-10-21 8.0 2.1 0.05 0.013 0.4 12.8 18.4 20.7 0.3 26.5 0.2

C-10-25 10.3 2.2 0.05 0.015 0.4 13.0 12.2 4.9 0.7 13.7 0.5

C-10-28 11.5 2.1 0.05 0.011 0.4 12.1 21.2 24.8 0.4 14.5 0.3

C-10-31 13.7 2.0 0.04 0.014 0.4 14.1 20.2 26.3 1.3 13.6 1.0

C-10-34 14.8 1.9 0.05 0.009 0.4 11.8 11.7 11.0 0.4 20.4 0.3

C-10-37 15.5 2.3 0.07 0.010 0.4 12.0 20.4 30.8 0.4 22.1 0.3

C-10-40 16.4 2.3 0.04 0.022 0.5 15.4 26.4 40.4 0.9 22.0 0.6

C-10-43 17.0 2.0 0.04 0.015 0.4 13.8 32.8 21.6 0.5 23.6 0.4

C-10-47 18.0 2.0 0.04 0.015 0.4 12.4 17.5 22.2 0.6 28.3 0.5

C-10-50 18.6 1.8 0.05 0.012 0.4 13.2 16.1 23.9 0.6 25.2 0.4

C-10-54 19.7 1.9 0.04 0.010 0.4 12.3 17.6 24.8 0.4 32.4 0.3

C-10-57 20.5 2.0 0.05 0.010 0.4 12.7 16.9 22.9 0.4 32.4 0.3

C-10-61 21.8 1.9 0.04 0.010 0.4 12.7 12.0 8.7 0.3 14.1 0.3

C-10-65 23.3 1.8 0.04 0.011 0.4 12.7 13.2 17.0 0.3 30.3 0.3

C-10-69 24.9 1.9 0.04 0.009 0.4 13.0 14.9 14.5 0.6 22.8 0.5

C-10-71 26.1 2.1 0.04 0.018 0.4 15.1 26.2 41.2 1.2 28.3 0.9

C-10-75 27.0 1.9 0.05 0.010 0.4 12.8 16.8 13.3 0.6 18.2 0.5

C-10-83 30.5 2.0 0.05 0.011 0.4 14.3 13.1 6.7 0.7 13.9 0.5

C-11-87 32.3 1.9 0.04 0.011 0.4 12.3 14.3 9.7 0.3 3.1 0.4

C-11-93 35.6 1.8 0.04 0.008 0.4 12.1 12.7 6.3 0.3 2.8 0.4

C-11-97 37.1 2.0 0.04 0.011 0.4 12.4 12.9 8.1 0.4 5.4 0.4

C-11-105 40.5 2.0 0.03 0.010 0.3 12.7 15.0 19.7 0.5 30.1 0.5

C-11-107 41.5 2.0 0.04 0.016 0.5 14.9 19.8 24.0 1.0 12.1 1.2

C-11-109 41.8 2.1 0.04 0.018 0.5 14.0 19.1 19.5 0.6 10.8 0.6

C-11-115 43.1 1.9 0.03 0.007 0.4 11.4 12.0 12.2 0.2 3.5 0.2

C-11-123 45.0 1.9 0.04 0.014 0.4 13.1 15.8 23.9 0.4 23.6 0.4

C-11-131 46.9 1.9 0.04 0.013 0.3 12.1 17.4 10.6 0.3 4.7 0.3

C-11-137 48.7 1.9 0.04 0.008 0.3 13.0 15.3 19.4 0.4 27.9 0.4

C-11-145 51.3 2.0 0.04 0.012 0.4 14.8 16.6 21.3 0.5 24.8 0.5

C-11-153 55.1 1.9 0.04 0.009 0.4 11.8 14.5 19.5 0.2 6.3 0.2

C-11-165 59.1 1.9 0.04 0.010 0.4 11.9 11.1 7.6 0.2 6.0 0.3
C-11-175 64.0 1.9 0.04 0.009 0.4 12.2 13.9 13.1 0.5 6.2 0.5

C-11-181 66.3 1.9 0.03 0.011 0.3 13.2 17.5 12.2 0.5 3.2 0.6

C-11-185 67.6 1.9 0.04 0.009 0.4 12.0 12.1 11.0 0.3 6.7 0.3

C-11-193 69.7 1.9 0.04 0.018 0.4 13.5 16.4 16.5 0.5 21.0 0.6

C-11-197 70.7 1.9 0.04 0.009 0.3 11.1 12.7 7.1 0.3 7.1 0.3

C-11-203 78.3 2.1 0.04 0.017 0.4 14.3 14.1 11.2 0.6 3.7 0.6

C-11-207 84.5 2.0 0.04 0.010 0.3 11.5 10.2 6.7 0.2 3.3 0.2
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Elemental ratios of Ni/Co and U/Th were calculated and plotted as an additional 

supporting proxy to assess redox conditions (Fig. 4-8). Jones and Manning (1994) 

proposed Ni/Co ratios as a good index to infer oxygenic conditions, suggesting that 

values less than 5 (<5) correspond to oxic levels, those in the 5-7 interval fit dysoxic 

conditions, and values greater than 7 (>7) characterize suboxic to anoxic conditions (Fig. 

4-10). In the case of the U/Th ratio the same authors suggested a value of 0.75 for the 

oxic/dysoxic boundary, and >1.25 for the dysoxic/suboxic transition (Fig. 4-10). 

However, Wignall and Myers (1988) proposed that in normal mudstones the minimum 

Th/U value in which U is considered detrital is 3 (0.33 for U/Th). This idea implies that 

at El Pui, sediments with U/Th > 0.33 (Fig. 4-8) could also hold authigenic U because of 

existent reducing conditions and/or incorporation with OM.  

 

Figure 4-9 Linear plots of selected elements versus Al, showing the correlation coefficient used to support 
the interpretation on provenance. A) Silicon; B) Titanium; C) Phosphorous; D) Iron ; E) Nickel; F) Chromium 
; G) Uranium; H) Vanadium.  
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Varying factors (e.g., redox potential, pH, sulfur abundance, chemical availability, 

TOC values and sediment provenance), may induce conflicting results for these 

paleoredox proxies (Rimmer, 2004; Rimmer et al., 2004; Algeo and Maynard, 2008; 

Algeo and Rowe, 2012; Xu et al., 2012) thus limiting their applicability in the absence of 

additional proxies. Because of possible ambiguities, in the present work such redox 

indices are used as a possible reference of oxic and oxygen deficient conditions 

regardless of the intensity of the reducing phases and the values shown in Fig. 4-10 are of 

illustrative purposes only. 

In general, neither Ni/Co nor 

U/Th appears to show specific 

correlation with TOC at El Pui. The 

Ni/Co ratio is consistently >10.0 in the 

lower 30.5 m of the section with an 

average of ~22 (Fig. 4-8, Table 4-1), 

whereas in the upper 54 m it shows a 

value as low as 2.8 and varies up to 30.1. Within this upper part, low values of Ni/Co 

(<10) occur at intervals 32.3-37.1 m, and 55.1-84.5 m, respectively; with the exception of 

level 69.7 m (sample C11-193) where the value reaches 21.0. Similar high values occur 

intermittently at levels 40.5 m (30.14, sample C11-105); 45.0 m (23.57, sample C11-

123); 48.7 m (27.9, sample C11-137) and 51.3 m (24.81, sample C11-145) (Table 4-1). 

 The U/Th index varies independently from Ni/Co and stays regularly below 0.75 

in the entire section, but mostly over 0.33 (Fig. 4-8). Nonetheless, peaks > 0.75 occur as 

Figure 4-10 Redox fields classification based on oxygen
levels after Tyson and Pearson (1991) and redox indices
after Jones and Manning (1994). The suggested limits for
the Ni/Co and U/Th are not of strict application in this
work. 
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exceptions approximately at 13.7 m (0.97), 26.1 m (0.86) and 41.5 m (1.16) (Table 4-1; 

Fig. 4-8). 

4.5 Discussion 

4.5.1 Carbon isotope chemostratigraphy and age correlation 

Organic and inorganic carbons produced by living organisms and preserved in 

marine sediments provide a record that encodes valuable information about 

environmental conditions (Scholle and Arthur, 1980; Schlanger et al., 1987; Hayes, 1993; 

Jenkyns, 1995; Meyers, 1997). Assuming minor effects for possible local species-specific 

fractionation (e.g. Ravelo and Fairbanks, 1995) and despite some degree of chemical 

transformations (Dean et al., 1986) the isotopic record being ocean-wide allows 

unambiguous chronological links of the overall ocean isotopic carbon reservoir between 

different areas. In some cases the preservation state of the OM, the biological 

fractionation and/or the degree of diagenesis of the carbonate fraction can affect the 

original isotopic composition leading to discrimination between 13Ccarb and 13Corg to 

select the most reliable indicator. 

In general the 13C curve of carbonates and organic matter show covariation and 

can be used indistinctively to asses changes in the carbon pool linked to major events 

(Erba, 1994; Jahren et al., 2002; Leckie et al., 2002; Erba, 2004; Weissert and Erba, 

2004; Tejada et al., 2009). For example, the chemostratigraphy of the Cismon section 

(Weissert, 1989; Menegatti et al., 1998) has been widely used as a standard reference 

curve for Barremian––Aptian correlation (Erba et al., 1999; Godet et al., 2006; Millán et 

al., 2009; Huck et al., 2011; Stein et al., 2012; Papp et al., 2013; Gaona-Narvaez et al, 

2013a; 2013b) and is characterized by temporal subdivisions of the 13Ccarb and 13Corg 
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values into isotopic segments labeled C1 to C8 (Menegatti et al., 1998). This widely 

recognized carbon isotopic subdivision as well as the standard pattern registered by the 

13Corg and 13Ccarb curves have been calibrated with planktonic foraminifera, 

nannofossils and ammonites biostratigraphy at other Tethyan sections (Menegatti et al., 

1998; Moullade et al., 1998; Kuhnt et al, 1998; Erba et al., 1999; De Gea et al., 2003; 

Erba, 2004, Weissert and Erba, 2004; Godet et al., 2006; Najarro et al., 2010; Stein et al., 

2011, 2012; Papp et al., 2013) and is used here to assess temporal correlation at El Pui 

(Fig. 4-11). In general there is good agreement with the use of microfossils between 

different sites, although discrepancies may occur with exclusive use of larger taxa such as 

ammonite (Reboulet et al., 2006; Millán et al., 2009; Moreno-Bedmar, 2010; Reboulet et 

al., 2012).  

At El Pui, in the lowermost part of the section 13Corg values fluctuate following 

an overall positive trend that reaches a peak of -22.6‰, at ~14.3m (Fig. 4-7D, Fig. 4-

11F). The peak is followed by a negative excursion to a value of ~-24.5‰ at ~15.5 m. A 

very similar trend and values are also identified at the lower part of La Bédoule section 

(Fig. 4-11B) where it corresponds to the upper level of segment C1. Comparatively, the 

same pattern is observed in the Cismon section (Fig. 4-11A) where the upper part of 

segment C1 falls within the latest Barremian correlative with the lower part of the G. 

blowi Zone, and is marked by a positive progression that ends in a peak, followed by a 

negative trend that defines the limit of C1 and the onset of C2. In the Pădurea Craiului 

section this transition is less pronounced but shows a very similar shape (Fig. 4-11C). 

However, at the Igaratza section (Fig. 4-11D) the same pattern was identified in the 

earliest Aptian, whereas in the reconstruction of geological events from Erba (2004) (Fig. 
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4-11E) the C1-C2 limit is also located within the late Barremian. Also, in the reference 

Cismon section segment C2 overlaps the Barremian-Aptian boundary, which is situated 

in the G. blowi Zone and correlates with a negative excursion in 13Ccarb preceding the 

spike followed by declining 13C values harbinger to the sharp negative excursion 

associated with segment C3 (Menegatti et al., 1998; Erba et al., 1999; Erba, 2004). The 

boundary correlates with the base of magnetic polarity Chron MO (Channell and Erba, 

1992; Erba et al., 1999; Channell et al., 2000; Erba, 2004). El Pui, being part of the Cabó 

Marls, comprising ~800 m of sediments in ~5 Ma, is an expanded section (Seguret, 1972; 

Peybernès, 1976; Berástegui et al., 1990; García-Senz, 2002), thus the C2 segment 

interval is more developed than in the Cismon reference section (Fig. 4-7D), and the 

position of the comparable inflection point in the 13Corg curve within the G. blowi Zone 

is at 15.5 m (Figs. 7D, 11F). Similarly to the reference section the approximate level of 

the Barremian- Aptian boundary is placed at that level. Such assignment considers the 

fact that the inflection that defines the time boundary is followed by a positive recovery 

(Fig. 4-11A, E). The subsequent decrease of 13C values throughout the C2 interval up to 

the sudden drop is widely accepted to correlate with segment C3. The El Pui section 

provides an amplified vertical record of segment C2 similar to the Cassis-La Bédoule 

section, in contrast with the Cismon section, which is a more condensed sequence (Fig. 4-

11A, B, F).  

The C3 segment also occurs in the early Aptian within the G. blowi Zone (e.g. 

Erba, 1994; Menegatti et al 1998, Moullade et al., 1998; Najarro et al., 2010; Gaona-

Narvaez et al, 2013a; 2013b) and its initiation is defined by a pronounced negative 

excursion in 13C of ~2‰ followed by a less pronounced positive recovery (Fig. 4-11A, 
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C, D, E). The same pattern is also identified at El Pui at about 70 m from the base of the 

section (Figs. 4-7D, Fig. 4-11F) and within the G. blowiZone. 

 

Figure 4-11 Geochemical correlation of 13C for several Tethys sections: A) Cismon (Menegatti et al., 1998); 
B) Cassis-La Bédoule (Stein et al., 2012); C) Pădurea Craiului (Papp et al., 2013); D) Igaratza (Millán et al., 
2009); E) chemostratigraphic synthesis of the late Barremian - Aptian from Erba (2004); and F) El Pui, this 
study. The light blue areas indicate intervals of correlation. Gray shaded rectangles correspond to the interval 
of OAE1a. The approximate Barremian-Aptian boundary at El Pui is proposed based on geochemical 
correlation with calibrated sections. C1- C8 segments represent trends in the 13Ccarb and 13Corg defined by 
Menegatti et al. (1998). 
 

The level assigned to the Barremian–Aptian transition zone is in agreement with 

previous paleontological studies of ammonites and benthic and planktonic foraminifera 

for the Organyà Basin as follows: 1) Peybernès (1976) and Martínez (1982 a) identified 

the Deshayesites forbesi ammonite zone corresponding to the lower Aptian in the lower 

part of the Cabó Marls at about 20 m from the top of the Prada Formation (García-Senz, 

2002) (Fig. 4-2A), while Bernaus (1995) identified the G. blowi Zone at the same level. 

This stratigraphic position indicated that the base of the Cabó Marls can be confined to 

the uppermost Barremian–earliest Aptian interval with a time boundary located within 
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the first 20 m. 2) Recent ammonite biostratigraphic analysis of the Cabó Marls (Moreno-

Bedmar, 2010, his Fig. 4-22) identified ammonites of the Imerites giraudi Zone 

belonging to the uppermost Barremian in the lower part of the Cabó Marls. Ammonite 

taxa identified further up-section reveal assemblages that he referred to the Deshayesites 

oglanlensis Zone, or the first ammonite zone of the lower Aptian. Nonetheless, the 

distribution of ammonites in the section and their variable preservation did not allow for 

an exact definition of the Barremian–Aptian boundary, which was presumed to lie within 

the first 15 to 20 m of the Cabó Marls, and therefore is compatible with our proposed 

assigned transition zone at approximately 15.5 m.  

OAE1a has been reported to occur in the uppermost part of the G. blowi and/or 

within the superjacent  L. cabri Zone for most Tethyan sections (Erba, 1994; Bellanca et 

al., 2002; Erba, 2004; Föllmi et al., 2006; Coccioni et al., 2006; Castro et al., 2006), but 

at El Pui L. cabri does not occur in the lower part of the section, its first occurrence is 

reported at more than 200 m from the base (Schwenke, 1993; Bernaus, 1995). Therefore, 

the published biochronologic data concur with the present results, which suggest that the 

occurrence of the event should be about 115 m higher up section.  This is compatible 

with the carbon isotope stratigraphy yielding a positive excursion no greater than 2‰, 

while OAE1a elsewhere is characterized by a spike of about 4‰ (Erba, 1994; Jenkyns, 

1995; Föllmi, 1996; Menegatti et al., 1998; Immenhauser et al., 2005). Thus, the 

geochemical and paleontological data in the studied 85 m of the El Pui section concur 

with our assignment of carbon isotope segments C1 to lower part of C3, which occur 

prior to the onset of OAE1a as described in Menegatti et al. (1998).   
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4.5.2 Role of basin physiography on nutrient-driven productivity 

Enhanced nutrient delivery to the ocean due to intensified runoff in the latest 

Barremian–early Aptian has been proposed as the cause for increased biological 

productivity that led to the burial of sediments highly enriched in organic matter 

(Weissert, 1989; Erba, 1994; Bralower et al., 1994). Global forcing mechanisms related 

to climates are well recognized as causal factors for wide-scale intensified continental 

runoff (Dunham et al., 1988; Bralower et al., 1994; Erba, 1994; Föllmi, 1996), but 

adequate local physiographic conditions can also produce environments that 

independently replicate similar effects at a regional scale (e.g. Bréhéret, 1988; Föllmi et 

al., 1994; Papp et al., 2013). Nutrient fluxes from land to epicontinental seas and 

restricted marine environments may be further enhanced by physiographic conditions and 

adjacent landmasses (Ponton and Maurrasse, 2006; Föllmi et al., 2012; Föllmi, 2012). 

Based on average TOC values of 0.99% in shales from the continental shelf and 

slope, and 0.33% for carbonates (Durand, 1980), black, TOC-rich (up to 1.74% for this 

study), hemipelagic facies of the El Pui section suggest enhanced carbon preservation 

during the late Barremian-early Aptian interval. Moreover, the lowest 31 m of the section 

shows pronounced positive excursions (up to ~2.00‰) in 13Corg that coincide with 

values of TOC > 1.0% (Fig. 4-7B, D) thus indicating a direct relationship between 

increased primary productivity and organic carbon sequestration.  Similar relationships 

have been described in several coeval sections from the western Tethys, notably: Cassis-

La Bédoule (Stein et al., 2012), Cismon (Menegatti et al., 1998), Igaratza section (Millán 

et al., 2009), Gorgo a Cerbara	(Stein et al., 2011). In agreement with previous evidence 

indicative of continental runoff provided elsewhere (Brumsack, 2006), the temporal 
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variation of Al, Si and Ti in the El Pui section allows us to assess the role of continental 

runoff in productivity. As shown in Fig. 4-9 (C, D) positive correlation of biolimiting 

elements (P, Fe) with Al implies a direct relationship between OM production in the 

Organyà Basin and sustained nutrient input from fluvial fluxes.   

In the studied section, P is consistently enriched with respect to the average shale 

(Fig. 4-8). Long-term effects of phosphorus in the global cycle are tectonically driven 

through time as the terrestrial input to the ocean originates essentially from the 

weathering of rocks and minerals, particularly apatite [Ca5(PO4)3OH] that undergoes 

carbonation (Föllmi, 1996; Filippelli, 2002). Phosphorous enrichment in sediments is 

thus interpreted as the result of high nutrient levels in the ocean (Föllmi, 1995; Bodin et 

al., 2006; Stein et al., 2012). Based on the paleophysiography of the area (Peybernès, 

1976; Ábalos et al., 2002; García-Senz, 2002, Masse et al., 2000) we may postulate that 

enhanced transport of phosphorus to the Organyà Basin from river fluxes not only 

derived from the result of weathering due to prevailing warm humid conditions (Barron, 

1989; Föllmi, 1996), but also because of intensive fresh water collection and rapid down-

slope delivery intensified by elevation differences and low permeability of the eroding 

adjacent Paleozoic crystalline rocks uplifted during the Variscan (Hercynian) Orogeny  

(Peybernès, 1976; Muñóz et al., 1984; Berástegui et al., 1990; García-Senz, 2002).  

Iron is an important biolimiting element in the ocean, as demonstrated for regions 

far from continental margins as well as deep ocean upwelling areas (Martin, 1992, 

Jickells et al., 2005).  Iron concentration in the El Pui sediments shows an average 

fluctuation of 70-95% of that of the average shale (Fig. 4-8). Since the lithology at El Pui 

is predominately calcareous (average TIC > 50%), such concentration of Fe (~3 to 22 ppt, 
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average ~7.7 ppt; Appendix 2) indicates that sufficient Fe was supplied to the basin to 

support enhanced primary productivity. In Fig. 4-8, Fe covaries with P, thus indicating a 

commonality of source and transport mechanism for both.  

Positive linear correlation of the biolimiting elements with aluminum (Fig. 4-9C, 

D) supports their steady supply from terrigenous fluxes, thus indicating that sustained 

surface productivity in the Organyà Basin must have essentially depended on continental 

runoff. Such condition would be similar to the modern Black Sea that may be taken (to a 

lesser extent) as a present analog (e.g. Giosan et al., 2012) where ample flux of lighter-

density freshwater induces water column stratification that prevents mixing and recycling 

of bottom nutrients. Unlike normal open ocean conditions characterized by major upward 

recycling of nutrients that maintains productivity, limited recycling in the Organyà Basin 

implies that sustained OM productivity occurred in a system such that P gained from 

surface waters sufficiently balanced losses by export production and burial in the 

sediment. Furthermore, because P/Al and Fe/Al show moderate covariation with high 

TOC, the values suggest the existence of enrichment pathways for P different from its 

biotic incorporation in the sediment. 

 In fact, covariation between Al-normalized Ti, Si, P and Fe (Fig. 4-8) suggests 

that an appreciable amount of phosphate may have been adsorbed to particulate inorganic 

phosphorus or Fe-Mn oxide/oxyhydroxide particles from chemically weathered-

phosphorus in river fluxes (Compton et al., 2000). Therefore, we infer that P is not only 

buried as constituent of organic matter, but it is also present as P-adsorbed to riverine 

abiotic particulate matters, which may account for its relatively higher enrichment factor 

compared to Fe. Because that time interval of the early Aptian coincides with the onset of 
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pronounced oceanic magmatic episodes of the Ontong Java Large Igneous Provinces in 

the Pacific (Neal et al., 1997; 2008), arguably P scavenging on such particles might have 

also been related to their abundance from hydrothermal activities, and enhanced 

productivity (Stinton and Duncan, 1997; Tejada et al., 2009). However, since this interval 

also coincides with the time of fastest episode of counterclockwise rotation of Iberia with 

respect to Eurasia (Gong et al., 2009), closest proximity of the Organyà Basin to 

magmatic effusion related to this tectonic phase may have had more influence on its 

sedimentation based on the limited circulation pattern that we can infer from 

paleogeographic reconstruction (Masse et al., 2000). 

In summary, the combined effects of sustained riverine P and Fe fluxes, enhanced 

by basin physiography, may be invoked as causal factors for enduring productivity 

conducive to eutrophication of the surface waters and accelerated OM flux to the 

sediment in the restricted Organyà Basin. The prevalence of calcareous nannofossils in 

the matrix (Fig. 4-4: C10-19, C10-30, C11-87) certainly proves that they contributed to 

significant OM generation. Nevertheless, high uncommon abundance of these primary 

producers cannot be considered solely as the cause of high TOC (up to 1.74%), because 

the OM/CaCO3 burial ratio of these organisms is too low (1/6, Hay, 2002), therefore the 

dilution effect will considerably decrease the OC content. Since microbial mats and 

cyanobacterial blooms have been documented to thrive under similar paleoenvironments 

(Bralower et al., 2002; Duque-Botero and Maurrasse, 2005), such organisms (including 

non-calcifying bacteria) may have also been important contributors to the OM production 

in the Organyà Basin. In fact, microstructures found in the studied samples (Fig. 4-4: 

C10-50, C11-87) are comparable to cyanobacterial structures described elsewhere 
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(Tribovillard, 1998; Duque-Botero and Maurrasse, 2005; 2008), thereby confirming 

bacterial contribution to the OC content of El Pui sediments. 

4.5.3 Redox conditions 

Alternating levels of TOC > 1.0% in the lowest 31m of the section denotes the 

existence of a mechanism that limited OM oxidation.  It is also conceivable that the TOC 

values may have been mitigated by abundant supply of CaCO3 (TIC > 50%) from 

calcareous nannofossils mixed with terrestrial material from fluvial fluxes. The scarcity 

of benthic fauna throughout this interval concurrent with a bioturbation index < 3 implies 

intermittent poorly oxygenated bottom waters (Wignall and Myers, 1988). Since 

variations of Al, Si and Ti indicate continental runoff as a major factor in productivity, 

import of terrestrial OM to the basin could have been significant. Nonetheless, given the 

large negative fractionation of organically-derived carbon compounds from terrestrial 

environments (Dean et al., 1986; Meyers, 1997), an increase in recycled respired (13C 

depleted) CO2 would have greatly depleted the isotopic composition of the TOC in the El 

Pui sediments, and caused a notable negative shift of the 13Corg. On the contrary, as 

shown in Fig. 4-7 (D), 13Corg follows an increasing trend within the lowest 15 m and 

remains stable with punctuated excursions up to about 31 m. Pronounced positive 

excursions in 13Corg coincide with levels high in TOC suggesting heightened 12C 

removal due to pulses in primary productivity (Fig. 4-7B, D). In addition, preliminary 

biomarker analysis has indicated autochthonous origin of the OM (Sanchez-Hernandez 

and Maurrasse, 2012a; 2012b). 
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4.5.3.1 Oxygen levels based on morphology and abundance of benthic foraminifera 

Benthic foraminiferal assemblages have been extensively used to document 

variations in oxygen levels (Wignall and Myers, 1988; Moodley and Hess, 1992; 

Loubere, 1996; Bernhard and Bowser, 1999; Patterson et al., 2000). Morphologic 

changes, size and wall thickness, as well as variations in diversity and abundance of 

benthic foraminifera can be used to reliably describe oxygen concentration below 2 ml/l 

(Murray, 2001), which may be correlated to the classification of oxygen level shown in 

Fig. 4-10.  

Sediments from the El Pui section include scarce to rare benthic foraminifera, 

most specimens show sizes less than 100 m, and at some levels less than 80 m 

(particularly in the lower 31 m). Diversity is very low throughout, with < 4 species found 

at the same level. These characteristics attest to existent stressful bottom conditions 

(Murray, 2001) that prevented benthic foraminifera from effective colonization of the sea 

floor. Limiting conditions do not appear to be related to availability of food because TOC 

values are consistently > 0.5% at most levels. In fact, all benthic taxa disappear between 

12 and 13 m where TOC values reach a maximum of 1.74%, and recur as few uniserial 

and rare coiled morphotypes in superjacent levels. Such effects in abundance, diversity 

and morphology of benthic foraminifera in active populations are characteristic of 

environments with limited oxygen concentration (Fig. 4-10) (Wignall and Myers 1988; 

Jorissen et al., 1995; Bernhard and Sen Gupta 1999; Levin et al., 2001).  

Concurrence of high TOC values with absence of benthic foraminifera may have 

been related to intensify export of OM to the sediment and increased oxidation rate 

within the water column that produced oxygen depletion. The fact that the interval of 12 
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to 13 m is solely where benthic foraminifera abundance was extremely low indicates that 

strong oxygen deficiency was short termed and not recurrent in the studied 85 m. From 

31 m to 85 m, benthic foraminifera abundance remains less than 15/10 cm2, but slightly 

higher than within the lower interval and with a broader size range. 

The occurrence pattern of benthic foraminifera in the lowest 31m of the section is 

compatible with recurrent dysoxic to suboxic conditions (Fig. 4-10) with possibly oxic 

stages, whereas in the upper 54 m their abundance suggests more oxygenic conditions 

with uncommon (if present) weak dysoxic facies (Wignall and Myers, 1988; Tyson and 

Pearson, 1991, Murray, 2001). Their presence also indicates that anoxic conditions or 

euxinia (Meyer and Kump, 2008) did not develop in the basin during the studied period.  

4.5.3.2 Redox sensitive trace elements (RSTE) and oxygen levels 

Studies of modern organic-rich oxygen-depleted marine environments have 

established the relationship between higher concentrations of certain RSTEs (e.g., U, Mo, 

Cd, Zn, V, Cu, Co, Ni, and Cr) and reducing states in ocean basins (Berner, 1974; 

Emerson et al., 1983; Pohl and Hennings, 1999; Kremling, 1983; Wijsman et al., 2001; 

Anderson and Raiswell, 2004; Brumsack, 2006; Dellwig et al., 2010), thereby providing 

a firm foundation to interpret paleoredox conditions in ancient sediments. 

Hence, RSTEs have been applied to infer paleoredox states in organic-rich 

deposits associated with oxygen-depleted environments on a variety of time scales (Tuttle 

et al., 1983; Brumsack, 1989; Arthur et al., 1990; Hatch and Leventhal, 1992; Calvert and 

Pedersen, 1993; Jones and Manning, 1994; Aksu et al., 1995; Calvert et al., 1996; 

Nijenhuis et al., 1999; Rimmer, 2004; Rimmer et al., 2004; Algeo and Maynard, 2004; 

Doveton and Merriam, 2004; Schultz, 2004; Tribovillard et al., 2005; Tribovillard et al., 
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2006; Bodin et al., 2006; März et al., 2008; Algeo and Tribovillard, 2009; Hetzel et al., 

2009; Sliwinski et al., 2011; Xiong et al., 2012; among others).  

The El Pui sediments show a fluctuating abundance of benthic foraminifera and 

bioturbation index < 3.0 (Fig. 4-2B) that suggest recurrent oxygen-depleted conditions 

with short-termed re-oxygenation episodes (Rhoads and Morse, 1971; Wignall and 

Myers, 1988; Tyson and Pearson, 1991). Oxygen-depleted environments favor the 

fixation of trace elements in the sediment, especially in the presence of strong microbial 

activity that can use RSTEs in their metabolic pathways (e.g. Anderson et al., 1989, 

Calvert and Pedersen, 1993). Microbial organisms also contribute to the amount of 

particulate and dissolved OM in the water column leading to higher oxygen consumption 

and greater availability of organic compounds for the synthesis of organo-metallic 

ligands (Anderson et al., 1989; Patterson et al., 1995). Furthermore, in undisturbed 

reducing sediments trace metals can be strongly fixed into sulfidic minerals (Huerta-Diaz 

and Morse). However, if re-oxygenation of the bottom waters takes place (enhanced 

circulation and/or less OM productivity) organic compounds and authigenic minerals can 

be reoxidized resulting in the release of trace metals (Khalid, et al., 1978; Petersen et al., 

1995; Tribovillard et al., 2006). In consequence, the reliability of RSTEs as a redox proxy 

is more consistent in environments with long-lasting, strong reducing conditions 

(anoxic/euxinic) and less predictable in intermediate phases of oxygen deficiency (Algeo 

and Maynard, 2004; Rimmer et al., 2004; Tribovillard et al., 2006; Algeo and Maynard, 

2008).   

Because RSTEs show significantly less enrichment in weak reducing sedimentary 

facies with respect to the average shale when compared to anoxic/euxinic environments 
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(Wedepohl, 1971, Algeo and Maynard, 2004; Tribovillard et al., 2005; Tribovillard et al., 

2006), their application in this work together with the redox indices (Ni/Co and U/Th) is 

coupled with the benthic foraminifera proxy to more reliably address paleoredox 

depositional environments in the studied sequence. In fact, the application of these 

proxies at El Pui suggest the absence of a strong development of a sulfidic phase that 

would have restricted the formation of insoluble sulfidic minerals resulting in limited 

enrichment of RSTEs.  

The Lower 31 m 

At El Pui, Ni/Al, Cr/Al and U/Al values fluctuate in the lowest 31 m with 

constant minor enrichment (Fig. 4-8), a pattern which can be interpreted as indicative of a 

prolonged phase of recurring limited reducing conditions (Fig. 4-8). These ratios are 

compatible with the morphology and scarcity of benthic foraminifera throughout that 

interval, which also suggest pervasive occurrence of intermittent oxygen-deprived 

episodes, but no anoxia (Rhoads and Morse, 1971; Wignall and Myers, 1988; Tyson and 

Pearson, 1991). However, the poor correlation of Ni and U with Al (Fig. 4-9E, H) 

indicates that their presence in the sediment may be associated with a mechanism 

different from exclusive terrestrial fluxes, instead they could be related to minor sulfides, 

as corroborated by the presence of dispersive pyrite (Fig. 4-4, C10-48; C11-87). By 

contrast, V/Al is slightly depleted with respect to the average shale, and its excellent 

correlation with Al (Fig. 4-9G) thus reveals its terrigenous origin in the sediment. 

Perhaps, the difference in the mechanism of absorption of V and Ni under 

reducing conditions could also be invoked to explain the contrast between low V and 

relatively high enrichment of Ni within the lowest 31 m of the studied section (Fig. 4-8). 
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Indeed, under weak reducing conditions and chemical availability of both Ni2+ and VO2+, 

the Vanadyl species may be partially blocked by sulfide complexation (Lewan, 1984; 

Killops and Killops, 2005) resulting in enhanced absorption of Ni. Therefore, a relatively 

higher enrichment of Ni with respect to the average shale within the lowest 31 m at El 

Pui (Fig. 4-8, Appendix 2) could be consistent with Ni absorption into organic 

compounds under a weak reducing state (Morse and Luther, 1999; Algeo and Maynard, 

2004), whereas V depletion within the sequence further confirms that strong reducing 

phases did not develop within that time interval of the studied section (Breit and Wanty, 

1991; Lipinski et al., 2003).  

As shown in Fig. 4-7 (B, D) short-duration spikes of 13Corg  synchronous with 

high TOC at 4.7 m, 8.0 m, 13.0 m, 14.3 m, 16.4 m, 17.4 m, 18.2 m, and 19.7 m, also 

correlate with predominance of calcareous nannofossils in the matrix (Fig. 4-4). These 

productivity pulses may have induced enhanced Ni intake by plankton and its fixation 

with OM, hence subsequent incorporation to the sediment (Tribovillard et al., 2006; 

Akinlua et al., 2010). Nonetheless, the presence of framboidal pyrite with sizes between 5 

and 10 m (Fig. 4-4, C10-19, C10-48, C11-87), supports some degree of Ni 

incorporation in sulfides, as Wilkin et al. (1996, 1997) suggested that this size range is 

indicative of a reducing sediment-water interface. In the case of El Pui such conditions 

may have developed few centimeters below the sediment water interface because the 

presence of benthic fauna rules out full-scale anoxia. Thus, besides the potential of Ni 

incorporation in organo-metallic compounds, the presence of pyrite within the lower 31 

m of the sequence may account in part for Ni retention in the sediment as insoluble 

sulfides (Huerta-Diaz and Morse, 1992).  
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As shown in Fig. 4-8, the lower 31 m interval includes two small spikes in U/Al 

and U/Th at 13.7 and 26.1 m, which are further compatible with a weak reducing 

environment (Dypvik and Harris, 2001). Such values of U concentration may be related 

to incorporation in the sediment by organisms and/or complexation with OM (Anderson 

et al., 1989). Its limited enrichment, however, may imply that some loss of U may have 

taken place due to remobilization related to short oxygenic phases in the basin (Morford 

and Emerson, 1999; Morford et al. 2001, Tribovillard et al., 2006).  

Regarding the small relative enrichment of Cr in the lower 31 m, since a 

combination of high TOC content and terrigenous elements is characteristic of that 

interval both factors could also account for such Cr/Al values (Algeo and Maynard, 2004; 

Tribovillard et al., 2006). Because its enrichment is attenuated with respect to that of Ni, 

the Cr values can be interpreted as the result of limited incorporation of Cr into the pyrite 

structure (Huerta-Diaz and Morse, 1992) (Fig. 4-8). 

The Upper 54m 

The upper 54 m of the studied section includes TOC values that remain below 

1%, and the 13Corg follows and overall negative progression (Fig. 4-7D, Fig. 4-11F) 

suggesting remineralization and incorporation of recycled 12C to the reservoir because of 

OM oxidation. This trend concurs with low level of enrichment of Ni, Cr, and U that 

simultaneously decreases (in some cases depleted), with less variability than their record 

in the lower interval (Fig. 4-8). The Ni/Co ratio shows extreme fluctuation between the 

oxic and dysoxic region from 40 to 50 m, with most of the values in the uppermost 35 m 

of the section falling into the oxic zone albeit a small digression between 65 and 70 m 

(Fig. 4-8). Because of the extreme abundance of nannofossils, and the lack of pyrite 
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throughout the upper 54 m, the spikes in the Ni/Co ratios suggest some degree of Ni 

retention in the structure of calcareous nannofossil (Calvert and Pedersen, 1993; 

Whitfield, 2002) rather than any redox mechanism as proposed for the lower 31 m of the 

section. A similar process may be invoked for the small U/Al and U/Th peaks recorded at 

42 m. 

4.6 Conclusions 

The high-resolution study of the El Pui section in the restricted Organyà Basin, 

south-central Spanish Pyrenees, reveals that the 13Corg values concur with the 13C 

signature of the late Barremian carbon record elsewhere in the Tethys Ocean. 

Chemostratigraphic correlation with other Tethyan sections allowed the identification of 

the C1-C2 and C2-C3 segments boundary resulting in a more accurate temporal 

constraint of C2, which falls within the G. blowi Zone, thus consistent with a late 

Barremian-early Aptian age range of the studied section. 

13Corg positive excursions (up to ~2.00‰) in the lower 31 m coincide with TOC 

> 1.0%, thus showing a direct relationship between intensified primary productivity and 

organic carbon preservation. In addition, relative enrichment of P (up to ~2.8 times) and 

Fe (70 - 95%) with respect to the average shale confirms sustained availability of these 

biolimiting nutrients to support enhanced primary productivity. Positive linear correlation 

between P and Fe with Al points to continental runoff as the source of nutrients to the 

basin. The lack of good correlation between P and TOC suggests that productivity in the 

Organyà Basin may have depended essentially on terrigenous fluxes with very limited 

upward recycling of P. Paleogeographic reconstruction of the restricted basin combined 

with existing climatic conditions also support the results that suggest that punctuated low 



83 

oxygen conditions are related to intensified OM oxidation in the water column and 

limited ventilation of bottom waters due to possible density stratification. 

Ni/Al values (up to 5.4 times the average shale), and concurrent minor relative 

enrichment of U and Cr within the lower 31 m indicate incorporation of these elements to 

the sediments trough complexation with OM, and limited bacterially mediated 

sulfidization. Persistently high Ni/Co values (>7) and low abundance of benthic (<10/10 

cm2) foraminifera support the occurrence of a weak dysoxic phase within the same 

interval, whereas depletion of V and low U/Th values suggest that anoxia/euxinia did not 

develop in the basin. 

The upper 54 m shows more stable TOC values (< 1.0%), the 13Corg follows and 

overall negative progression characteristic of carbon isotope segment C2. The pattern 

suggests remineralization and incorporation of recycled 12C to the reservoir because of 

OM oxidation and increased level of water column ventilation. Decreased enrichment of 

Ni, Cr and U, lower Ni/Co ratios and slightly more abundant benthic foraminifera are 

further indication that oxygen levels increased in the basin. 

This study highlights the effects of physiographic conditions in marine restricted 

basins where sustained nutrient input coupled with enhanced primary productivity leads 

to higher oxygen consumption in the water column and oxygen-deficient facies, thereby 

making these regional basins important organic carbon sinks aside from major worldwide 

forcing mechanisms. 
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5 ASSESSING THE FACTORS CONTROLLING HIGH SEDIMENTATION 
RATES FROM THE LATEST BARREMIAN–EARLIEST APTIAN IN THE 
HEMIPELAGIC SETTING OF THE RESTRICTED ORGANYÀ BASIN, NE 
SPAIN 

Sanchez-Hernadez, Y., Maurrasse, F. J-M.R., Melinte-Dobrinescu, M.C., He, D., Butler, 
S.K., 2014. Assessing the factors controlling high sedimentation rates from the latest 
Barremian–earliest Aptian in the hemipelagic setting of the restricted Organyà Basin, NE 
Spain. Cretaceous Research 51, 1-21. 

Abstract 

The Organyà Basin, south–central Spanish Pyrenees, developed as a marginal 

depocenter during a rapid extensional phase of anticlockwise rotation of the Iberian plate. 

As a result of increased subsidence, an important change in sedimentation occurred from 

the late Barremian to the Aptian leading to unusually high sediment accumulation rates. 

Approximately 1000 m of hemipelagic marls and limestones accumulated during this 

time interval.  

Here we studied the basal 85 m of the hemipelagic facies of the El Pui section, 

Organyà Basin, that are characterized by alternating 15 cm - ~ 3 m thick beds of 

limestone and marls. Geochemical analyses indicate high total inorganic carbon (TIC) 

values (average 70%) suggesting enhanced CaCO3 production and deposition. SEM 

analyses of the samples indicate a high abundance of calcareous nannofossils, which 

together with the absence of shallow-water taxa characteristic of the Urgonian carbonate 

platform of Organyà, and the lack of sedimentary facies attributable to carbonate 

platform components, point to nannofossils as the main source for the elevated TIC. 

Organic-rich levels (total organic carbon (TOC) up to 1.74%) concurrent with positive 

excursions up to 2‰ in Corg, imply enhanced preservation of organic matter (OM) in 

the basin. In addition, pronounced peaks of Corg higher than the global average suggest 
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superimposed local factors related to intensified 12C removal due to primary productivity. 

Biomarker analyses and the Corg profile suggest an autochthonous origin of the OM 

from phytoplankton and possible additional contributions from microbial communities.  

X-ray diffraction (XRD) results attest sustained terrestrial fluxes as the source of 

nutrients to the basin because of a 30% average non-carbonate bulk mineral content in the 

sediment. The non-carbonate fraction is dominated by quartz (average, 14%) whereas the 

clay mineral assemblages are characterized by high illite content (> 73 relative%) with 

minor concentrations of kaolinite (< 5%), illite /smectite mixed layers (< 17%) and 

chlorite (< 15%), consistent with a provenance from the Paleozoic metamorphic terranes 

adjacent to the Organyà Basin. 

The integrated results suggest a high sediment accumulation rate (5-7.5 cm/ky) 

and enhanced carbon burial during the latest Barremian – earliest Aptian in the 

hemipelagic setting of the El Pui section.  

5.1 Introduction 

The causes of the occurrence of high accumulation rates within the Barremian – 

Aptian time interval (~125 Ma) [(e.g. Angles section, southern France (Wissler et al., 

2002); northern Germany (Mutterlose et al., 2009); La Bédoule section southeast France, 

(Kuhnt et al., 2011); Sierra del Rosario eastern Durango state Mexico (Núñez-Useche and 

Barragan, 2012); Blid and Ecleja Formations of the Pădurea Craiului Massif (Papp et al., 

2013); see other locations in Bralower et al. (1994)] have been associated with intensified 

weathering and transport of continental materials to the marine environment, thereby 

increasing the nutrient load, especially in epicontinental seas and restricted marine 

settings (Arthur, 1979; Scott, 1992; Larson and Erba, 1999; Duque-Botero and 



103 

Maurrasse, 2005; Föllmi and Gainon, 2008; Melinte- Dobrinescu and Roban, 2011; 

Föllmi, 2012; Masse and Ferneci-Masse, 2013). Such increased terrigenous fluxes within 

that time interval have been related to greenhouse conditions (Weissert, 1989; Erba, 

1994; Weissert et al., 1998; Frakes, 1999; Pucéat et al., 2003). However, reported dry, 

colder periods in the late Barremian (Ruffell and Batten, 1990; Malkoč and Mutterlose, 

2010) suggest that seasonality could have also been a major factor in controlling nutrient 

supply to restricted marine basins.  

In the case of semi-enclosed basins the transport of terrestrial material may be 

further enhanced by physiographic conditions, as for example the proximity of 

landmasses and magnitude of elevation differences, as well as the nature of the 

surrounding terranes. As observed in modern environments (e.g. Grégoire et al., 2004; 

Oguz, 2006) these factors can be critical in promoting special conditions favorable to 

unusual sustained blooms of certain groups of organisms, particularly primary producers, 

and notably opportunistic or eurytopic taxa.  

The paleoenvironmental record provides a glance of similar effects on primary 

producers that benefited from significant nutrient supply associated with sustained 

terrigenous input (Erba, 1994; Meyers, 1997; Aguado et al., 2013). Furthermore, the 

lower Cretaceous record provides evidence that in some fertile marginal basins of the 

Tethys Ocean enhanced productivity may have intensified both the export of carbonate 

and organic matter (OM) to the sediment (Koutsoukos et al., 1991a, 1991b; Mutterlose 

and Böckel, 1998; Stein et al., 2011; Sanchez-Hernandez and Maurrasse, 2014). Higher 

bottom export of OM adversely affects oxygen levels in the water column because of an 

accelerated respiration rate, and in basins with limited ventilation, OM influx may exceed 
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remineralization. Such process may induce severe dysoxia [oxygen restricted conditions 

as indicated by Wignall and Myers (1988), Chapter 4], which further enhance 

preservation of organic carbon (OC) in the sediments (e.g. Black Sea; Grégoire et al., 

2004; Oguz, 2006). 

In the Organyà Basin, upper Barremian–lower Aptian hemipelagic facies of 

mostly dark limestones and marls overlying shallow-water carbonate platform deposits of 

the Prada Formation suggest a deepening depocenter with similar temporal development 

of oxygen deficient phases (Peybernès and Souquet, 1973; Peybernès, 1976; Martínez, 

1982; Caus et al., 1990; Berástegui et al., 1990; Dinarés-Turell and García-Senz, 2000; 

García-Senz, 2002; Bernaus et al., 2002; 2003). The section was deposited during a 

period of unusually high sedimentation rates of pelagic carbonate concomitant with 

terrigenous material. Coeval sites in the Western Tethys are also reported to include 

hemipelagic sediments with high accumulation rates and oxygen-deficient episodes (e.g. 

Arthur, 1979; Mutterlose et al., 2009; Melinte- Dobrinescu and Roban, 2011), but unlike 

the other sites, recent studies have demonstrated that the El Pui sequence of the Organyà 

Basin is predominantly calcareous (TIC: 49-88%) and to a lesser extent terrigenous 

(Sanchez-Hernandez and Maurrasse, 2014). So far, this apparent unusual characteristic of 

the semi-restricted Organyà Basin has not been addressed, and the main source and 

factors involved in the high carbonate accumulation at El Pui remain to be fully 

understood.  

The present study aims to determine the sedimentation rate and characterize the 

factors that controlled such mass accumulation rates in the El Pui section (Fig. 5-1) 

during the latest Barremian – earliest Aptian through a comprehensive analysis of 
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different criteria: composition of the nannofossil assemblages; geochemical analyses: 

carbon content and isotopic variation (TOC, TIC, 13Corg), biomarker analysis; bulk and 

clay mineral content; and scanning electron microscope (SEM) with energy dispersive 

spectrometry (EDS).  

5.2 Geological setting and paleoceanography of the study area 

The El Pui section is located in the south-central Spanish Pyrenees (42° 14' 44.46" 

N, 1° 13' 31.49" E, top of the studied 85 m), near the town of Cabó (Fig. 5-1), and is part 

of the Organyà Basin. The section is named after the adjacent locality of that name (42° 

14' 21.94" N, 1° 13' 36.85"E) (Fig. 5-1) situated on the southern limb of the Sierra de 

Prada where differential erosion of the beds along dip slope facilitated development of 

subsequent streams that cut deeply into the layers (Fig. 5-2A). These stream valleys form 

step-like profiles with water gaps that offer excellent spatial and temporal continuity of 

outcrops.  

 

Figure 5-1 General geographic location and simplified geologic map of the Organyà area modified from 
García-Senz (2002). The arrow next to El Pui represents the approximate location of the studied section. 

 The Organyà Basin evolved through the breakup of pre-extensional Jurassic 

platforms (Seguret, 1972; Muñoz, 1991; Caus et al., 1990) concurrent with the opening of 
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the Atlantic Ocean, and simultaneously with the opening of the Bay of Biscay during 

Aptian–Albian times (Berástegui et al., 1990; 1993). In such complex paleogeographic 

setting (Fig. 5-3), a sequence of approximately 1000 m of limestone and marls (Fig. 5-

2B, C, Fig. 5-4A) accumulated during the Barremian–Aptian interval (García-Senz, 

2002), and the succession often designated as Cabó Marls has been assigned an overall 

latest Barremian – early Aptian age, (Peybernès and Souquet, 1973; Peybernès, 1976; 

Martínez, 1982; Bernaus et al., 2002, 2003; Moreno-Bedmar, 2010; Sanchez-Hernandez 

and Maurrasse, 2014).  

 

Figure 5-2 (A) Overview of the first ~30 m of the section showing distinct continuous interbeds of limestones 
and marls characteristic of the entire studied sequence at El Pui. (B) Black limestone facies are more common 
in the lowest 15 m of the section. (C) Marly facies are more characteristic of the upper 40 m of the section. 
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The hemipelagic facies of the Organyà Basin accumulated during a Cretaceous 

extensional phase characterized by high subsidence rates that provided ample 

accommodation space for deposition. The carbonate-rich facies include intermittent 

organic-rich layers (TOC: 0.5%-1.74%) throughout (Bernaus et al., 2003) concomitant 

with an overall positive trend in 13Corg (Figs. 4A-D) but here we focus on hemipelagic 

facies (Fig. 5-5, 5-6) with a depositional time frame from the latest Barremian – early 

Aptian, prior to the occurrence of ocean anoxic event 1a (OAE1a). 

 
Figure 5-3 Paleoceanographic reconstruction of the western Tethys during the early Aptian modified from 
Masse et al. (1993). Also, details of bathymetry and paleoenvironments are incorporated from Mancinelli 
and Chioccini, (2006), and Godet et al. (2013). Red star shows the relative position of the Organyà Basin in 
the paleophysiographic context of the Early Cretaceous of Western Tethys. 
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5.3 Materials and methods 

5.3.1 Carbon analysis 

Total inorganic carbon (TIC) and total organic carbon (TOC) was determined in 

147 samples (Fig. 5-4B, C) of the studied section using standard analytical procedures 

used at Florida International University (Gaona-Narvaez et al., 2013; Sanchez-Hernandez 

and Maurrasse, 2014). These authors also described procedures for carbon isotope 

analyses of the values used herein (Fig. 5-4D). Calculations followed the standard 

equation δ13C (permil, ‰) = [(13C/12C)sample /(13C/12C)std - 1] × 1000. Also, as adopted in 

Sanchez-Hernandez and Maurrasse (2014) the lithologic terminology applied herein uses 

measured CaCO3 (TIC) values as follows: limestone, > 65% CaCO3; marly-limestone, 

60% - 65% CaCO3; marlstone, 30% - 60% CaCO3; calcareous mud-rock/shale, 10% - 

30% CaCO3; mud-rock/shale, 0 - 10% CaCO3.  

5.3.2 Biomarker analysis 

In preparation for biomarker determination, small rock slabs corresponding to 24 

different samples (Fig. 5-7) were powdered in a Bell-Art micromill. A careful cleaning 

process, with water, detergent, deionized water and acetone, was completed between 

samples. Biomarkers were analyzed following the procedures described in Jaffé et al. 

(2001). Samples were subjected to Soxhlet extraction for 24 hours with 300 ml 100% 

methylene chloride (Optima, Fisher, USA) as solvent. HCl (10%) activated copper was 

added during the extraction to eliminate elemental sulfur. Total extract were concentrated 

by rotary evaporation and saponified with 0.5 N KOH to separate into neutral and acid 

fractions. The neutral fractions free of elemental sulfur were further fractionated by 

elution with hexane to obtain saturated hydrocarbon fraction using Pasteur pipette 
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columns packed with silica gel. A known quantity of squalene was added as internal 

standard for quantification purpose and the hydrocarbon fraction was run on gas 

chromatography-mass spectrometry (GC-MS) with a Hewlett-Packard 6890 GC linked to 

a HP 5973 quadrupole MS system, fitted with Rtx-1MS columns (30 meters long, 0.25 

mm ID, 0.25 um df) from RESTEK, USA. The GC oven was programmed to hold initial 

temperature of 40°C for 1 min, and then ramped at a rate of 6°C/minute to a final 

temperature of 300°C held for 20 min. Identification of compounds was performed by 

comparison of chromatographic retention time, comparison with the mass spectra library 

and previous mass spectra reported in the literature (Fig. 5-8). The concentration of each 

biomarker was normalized to organic carbon (OC) as ng/g OC. 

5.3.3 Bulk and clay mineral analysis 

Mineralogical analyses of 10 samples (Table 5-1, Table 5-2, Fig. 5-9, 5-10) were 

performed at the Illinois State Geological Survey (ISGS) using X-ray diffraction (XRD) 

following the methodology described by Moore and Reynolds (1997). For the XRD 

procedure, the samples were micronized in a McCrone micronizing mill with deionized 

water for 10 min. Then they were transferred to 50 mL centrifuge tubes, which were 

placed in the centrifuge for 20 min at 2000 rpm. The clear supernatant was poured off 

and the remaining material dried overnight at 40°C. When completely dried the material 

was mixed lightly with a mortar and pestle and then packed into an end-loading sample 

holder as a random powder bulk-pack. The random powder bulk-pack was analyzed with 

a Scintag XDS 2000 diffractometer. Step-scanned data was collected from 2° to 60° 2θ 

with a fixed time of 5 seconds per 0.05° 2θ for each sample. All resulting traces were 
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analyzed using the semi-quantitative data reduction software from Materials Data Inc. 

(MDI) known as Jade® and a summary presented in Fig. 5-11. 

The clay mineral composition was determined using oriented slides of the clay 

size < 2 m fraction with semi-quantitative values of the clay mineral assemblage 

calculated from ethylene glycol (EG) solvated slides (Hughes and Warren, 1989; Hughes 

et al, 1994; Moore and Reynolds, 1997).  

In preparation for XRD 20 g - 30 g of each sample was soaked for about 10 - 12 h 

in deionized water and protected from external agents. As water interacts with the 

sample, small clay particles are released into the solution. Further stirring of the solution 

mechanically induced clay release from the sample. After settling, about 1/3 of the water 

was removed from the beaker. The beaker was then refilled with deionized water and two 

drops of sodium hexametaphospate were added as a dispersant. The mix was stirred and 

then allowed to settle for 15 min. The generated supernatant was pipetted and several 

drops were added onto a glass slide and let to dry overnight. 

Alternate treatments with EG for 24 hours, and heating to 490°C were also 

applied in order to establish a better comparison in peak intensity ratios among the 

expandable clays. Step-scans from 2° - 34° 2θ with a fixed time of 5 sec per 0.05° 2θ 

were conducted for each sample. 

5.3.4 Microscopy 

The microscope work on calcareous nannofossils was performed at 

GEOECOMAR on an Olympus BH-2 petrographic microscope with a magnification of 

×1500. Calcareous nannofossils were examined using simple smear slides (Lamolda et 

al., 1994) and standard light-microscope techniques (Bown and Young, 1998) in 25 
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samples along the stratigraphic column, following the spatial distribution indicated in 

Fig. 5-12. The criteria for sample selection followed apparent changes in facies at the 

field, as well as at the microscopic scale; for samples in the lower 31 m variations in 

TOC, TIC and 13Corg were also considered. In order to achieve quantitative analyses, at 

least 300 specimens were counted in each smear-slide, in longitudinal transverses, 

randomly distributed. 

The individual abundance of the observed taxa was considered as follows: P - 

present: 1 specimen (s) />50 fields of view (FOV); R-rare: 1s/21-50 FOV; F-few: 1s/11-

20 FOV; C-common: 1s/2-10 FOV; A-abundant: >1s/FOV. The individual taxonomic 

abundance, in percentage, was considered from the total counted taxa (Melinte and 

Lamolda, 2007).  

SEM analyses were performed at the Florida Center for Analytical Electron 

Microscopy (FCAEM) located at FIU using a JEOL JSM 5910LV scanning electron 

microscope with an EDAX energy dispersive spectroscope. The twenty-five samples 

selected for calcareous nannofossil analysis were also evaluated in SEM and EDS (Fig. 5-

5, 5-12). 

SEM images were taken on partially polished fragments following the procedures 

described in Sanchez-Hernandez and Maurrasse (2014). Energy dispersive spectroscopy 

(EDS) was also performed to determine the composition of the rock matrix and non-

biogenic grains. For the analyses, samples were carbon coated to the orange thickness 

(150 Å) and processed in Compo mode under backscattered electron imaging detection. 

Areas of interest were first determined and inspected in secondary electron imaging and 

later switched to backscatter for qualitative elemental analysis. Relative composition was 
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determined using the Compo mode and both diffractograms and X-ray maps generated to 

evaluate the grain size and rock matrix composition. 

5.4 Results 

5.4.1 Carbon geochemistry 

The total carbon (TC) present in the hemipelagic deposits of the El Pui section is 

distributed between the carbonate (CaCO3) fraction (TIC) and the preserved organic 

fraction (TOC) from export production (Fig. 5-4B, C). SEM analyses show that the main 

carbonate components in the rocks of El Pui are essentially from nannoplankton remains 

(Fig. 5-5). In this regard the TIC together with the TOC, albeit possible remineralization 

even under reduced conditions should provide an indication of the magnitude of 

carbonate productivity.  

Total carbon fluctuates between 49% and 92% in the studied 85 m of the section, 

with 85% of the measured values > 70% TC (Sanchez-Hernandez and Maurrasse, 2014). 

The TOC content fluctuates between ~0 and 1.74%, with most of the levels rich in 

organic carbon (≥ 1.0%) recorded within the lower 31 m of the section (Fig. 5-4B). The 

lower interval also shows high-frequency variability in TOC with alternation between 

high and low values. The variation in TOC diminishes from 31 m to the 85 m level, 

including minor shifts of 0.4% and 0.8%, except for a value of 1.1% at ~ 41.8 m (Fig. 5- 

4B) 

The carbonate values measured as TIC fluctuate between 43.5% and 87.6% with 

no evident correlation with TOC (Fig. 5-4C). TIC stays more consistently above 60%, 

with only 10% of all the values below 60wt% throughout the stratigraphic column. TIC 
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values lower than 60% are registered at 1.8 m, 4.7 - 6.1 m, 12.2 -13.0 m, 54.3 m, 56.3 m, 

57.0 m, 78.3 m, and 81.1 m, respectively. 

 
Figure 5-4 Simplified lithological log and geochemical variations in the 85 m El Pui section. (A) Simplified 
chronostratigraphic column including lithological variations, oxic, dysoxic levels, and relevant nannofossil 
events. (B) TOC. (C) TIC. (D) 13Corg. The “C” Subdivisions correspond to the carbon isotopic segments 
after Menegatti et al. (1998) that have been proposed for the El Pui section in Sanchez-Hernandez and 
Maurrasse (2014). 

The carbon isotopic ratio of OM (13Corg) is a proxy that allows to evaluate 

several factors such as: type of organic matter accumulated in the basin, variations in the 

carbon reservoir associated with productivity pulses, increased OM oxidation rate, and/or 

input of 12C to the carbon pool (Hunt, 1970; Newman et al., 1973; Gearing et al., 1977; 

Dean et al., 1986; Dunham et al., 1988; Prahl et al., 1994; Meyers, 1994, 1997). Carbon 

stable isotope values (13Corg) in the bulk OM fraction vary between -25.95 and -22.57‰ 
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with an average of -24.33‰ (Fig. 5-4D). An overall positive trend defines the lowermost 

14.3 m with several negative and positive fluctuations. From ~10.8 m to ~13.0 m a 

positive excursion of ~ 2‰ indicates important changes in the organic carbon isotopic 

composition (Fig. 5-4D). From ~ 16.4 m to 26.5 m the 13Corg follows a gentle negative 

trend that ends at 26.5 m with a positive excursion of ~0.8%, which coincides with a 

spike in TOC at 27.7 m, suggesting a link between OM preservation and carbon isotopic 

changes at that level. 

 

Figure 5-5 SEM micrographs of calcareous nannofossils including the sample code and corresponding 
stratigraphic position. The carbonate matrix is dominated by disaggregated calcareous nannofossil fragments 
at any level in the studied section. At higher magnification the fragments surrounding better preserve 
Nannoconus sp. on B resemble those shown in C. 
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From 28 m to 51 m 13Corg values fluctuate more uniformly between -24.5‰ and 

-24.0‰ without any major variation. However, from 52.6 m - ~70.0 m a more defined 

negative trend with intermittent fluctuations of up to 1‰ characterizes the 13Corg record. 

Continuously a new positive excursion of ~1‰ is immediately followed by a negative 

spike of ~ 1.5‰ that reaches a section minimum of -26.0‰ at 73.0 m (Fig. 5-4D). The 

last 12 m of the section yields only minor fluctuations in 13Corg between -26.0‰ and -

25.3‰ (Fig. 5-4D). 

 
Figure 5-6 Microfacies of selected samples at different levels of the stratigraphic column showing texture 
and composition characteristic of a hemipelagic setting with dominant calcareous nannofossils shown in Fig. 
5. A-) sample C10-05 at ~1.2 m, dark micritic matrix with small planktonic foraminifera in the center; B-) 
sample C10-16 at ~ 4.9 m, abundant calcispheres and small planktonic foraminifera in a fine, dark carbonate 
matrix with traces of kerogen; C-) sample C10-42 at ~16.8 m, fine micritic matrix; and D-) sample C10-87 
at ~32.3 m, fine micritic matrix with coiled benthic foraminifera in the center. Pictures B, C, and D were 
taken using a white polarized light source. Scale bar represents 0.5 mm 

5.4.2 Biomarkers 

Biomarkers are residual complex organic compounds found in rocks and 

sediments that can preserve the main structural features of the parent molecules from 

living organisms after deposition (Peters and Moldowan, 1993; Meyers, 1997; Brassell 
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and Dumitrescu, 2004). Generally, these compounds remain stable during sedimentation 

and early burial retaining molecular fossils biosignatures that have been used to provide 

details on the taxonomic origin of the preserved organic matter.  

 
Figure 5-7 Relative stratigraphic position of 10 of the 24 samples analyzed for n-alkanes and their 
corresponding bar diagrams: n-alkanes abundance in ng/g (y axis) with respect to the carbon chain length (x 
axis). Notice the absence of even or odd carbon number preference. 

Because marine and terrestrial organisms produce n-alkanes with 

characteristically different carbon chain lengths, n-alkanes have been previously used to 

determine the provenance of the organic matter (Giger et al., 1980; Meyers, 1997; 
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Dumitrescu and Brassell, 2005, 2006; Peters et al., 2005). Indeed, the presence of n-

alkanes with chain length longer than C20 (> C20) are commonly thought to be indicative 

of higher plant OM that is terrestrial in origin, whereas chains shorter than C19 (< C19) are 

presumed to be mainly derived from marine planktonic organisms and /or microbial 

communities (Cranwell, 1973; Cranwell et al., 1987; Forster et al., 2004; Peters et al., 

2005). However, n-alkanes should be used with caution because the abundance of these 

compounds can be modified by the level of maturity of the organic matter (Quijano et al., 

2012). Nonetheless, despite this apparent constraint Jinggui et al., (2002) and Skret and 

Fabianska, (2009) have successfully assessed the origin of organic matter in overmature 

samples using n-alkanes.  

The GC-MS results (ion m/z 57 extracted) for 24 samples analyzed in the El Pui 

section revealed significant enrichment of short chain n-alkanes with chain length < C20 

and no odd or even carbon chain predominance as shown for ten of the samples (Fig. 5-7,  

5-8). Although Bernaus et al. (2003) reported thermally mature OM in the Organyà 

Basin, the pristane/phytane (Pr/Phy) ratios in the analyzed samples at El Pui (Appendix 

4) remain consistently below 2, which suggests that they did not reach an overmature 

state (ten Haven et al., 1987; 1988; Powell, 1988). Such results are consistent with 

previous use of n-alkanes and may support the assessment of the origin of the OM in the 

El Pui samples. Hence the detection of only carbon chain lengths < C20 and 13Corg values 

consistent with marine sources (Meyers, 1997) implies a most likely autochthonous 

origin of the OM (Giger et al., 1980; Cranwell et al., 1987). 
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Figure 5-8 Chromatograms of selected samples along the studied section. Notice the absence of n-alkanes 
with carbon chain number > C20. For relative position of the samples, see Figure 5-7. 

5.4.3 Clay and bulk mineral assemblages 

The clays investigated refer to the fine fraction phyllosilicate minerals (< 2 m) 

that include kaolinite, illite, illite/smectite mixed-layer clay, and chlorite. Clay minerals 

have been used to estimate paleoenvironmental conditions, intensity of weathering and 

depositional environments at different time scales and in particular during the Mesozoic 

(Ruffell et al., 2002; Dera et al., 2009; Pauly et al., 2013). The fractionation of clay 

mineral may be influenced by climatic conditions, tectonic events, diagenetic processes 

related to pressure and temperature, and geochemical reactions, but commonly clay 

minerals in sediments are of detrital origin and represent the composition of the source 
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rock (Burtner and Warner, 1986; Weaver, 1989; Bayhan et al., 2001; Kotel’nikov and 

Zinchuck, 2008.  

 
Figure 5-9 Characteristic difractograms of XRD analyses for sample C10-58 (glycolated (GLY) and heated 
(HTD)). Qualitative identification of a small amount of mixed-layered clay is represented by the small peak 
near 5.2° 2θ on the EG solvated sample. The broad peak near 17.7° 2θ points to a most likely illite/smectite 
random interlayering.  Heating the sample produces a pattern lacking the small peak near 5.2° 2θ with an 
overall resemblance to that of a pure illite pattern with a weakened 003 peak. 

El Pui section XRD clay mineral analyses were performed in ten samples 

distributed along the stratigraphic column (Fig. 5-9, 5-10) in order to assess the origin of 

the non-carbonate detrital fraction. The diffraction patterns obtained from the EG 

solvated samples (Fig. 5-9) yielded kaolinite, mixed layer illite/smectite, chlorite and 

illite (Table 5-1, Fig. 5-9). Relative kaolinite content is small with minor variations (1% - 

5%) and an average content of 2%. Mixed layer illite/smectite relative content varies 

between 6% and 17%, whereas chlorite fluctuates between 3% and 15% with pronounced 

increases in percentage at ~14 m and 62 m with no specific pattern of change. Illite 

represents most of the clay fraction and its abundance stays relatively stable throughout 

the section with values fluctuating between 73% and 90% (Table 5-1, Fig. 5-10). Since 

clay mineral assemblages at all stratigraphic levels analyzed show a strong dominance of 
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illite (>73%), while illite/smectite, chlorite and 

kaolinite remain consistently low, these results 

are considered to represent the overall clay 

mineral content of the entire 85 m section.  

The bulk mineralogy of the El Pui sediments 

was also determined for the ten samples 

analyzed for clay minerals (Table 5-2) with 

identical purpose. Their composition consists 

mainly of CaCO3 (as described in the TIC 

section, > 50%), quartz (6% - 25%), clay 

minerals (3% - 15%), plagioclase (P)-feldspar 

(2% - 7%), minor concentrations of K-feldspar 

(0 - 2%, with an average of 0.5%), low presence of dolomite (0 - 3%, 

with an average of ~ 1.4%) and fluctuating presence of 

pyrite/marcasite (0- 5%, average ~1.2%). The average bulk mineral 

composition of the El Pui samples obtained from the XRD and 

complementing results from EDS analyses is illustrated in Fig. 5-11. 
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Figure 5-10 Relative percentages of clay
minerals at different levels of the studied
section. Notice that the assemblages are
dominated by illite with minor variations in the
concentration of illite/smectite mixed layer,
chlorite and kaolinite. Because of the
consistency in the concentrations these
measurements are considered to represent the
general average variation of the 85 m studied.

Figure 5-11 Pie diagram of the average mineral
composition of limestones and marls in the El
Pui section from bulk mineral measurements
and EDS analyses. 



121 

5.4.4 Microscopy: light microscope, SEM and EDS 

Microscopic analyses of the samples for nannofloral content and distribution 

reveal that on the whole the assemblages are characterized by low diversity (number of 

species) and high abundance (number of specimens). Preservation of nannofloras in all 

samples ranges from poor to moderate based on classes of preservation established as 

follows: P (Poor) – between 50% and 75% of specimens show overgrowth and/or 

recrystallization; M (Moderate) - between 25% and 50% of specimens show overgrowth 

and/or recrystallization. 

In total 35 taxa of calcareous nannofossils were identified throughout the studied 

sequence. The dominant taxon is represented by Watznaueria barnesae, which averages 

about 44%, but may reach up to 69% (Fig. 5-12) within the 22 m to 28 m interval. This 

taxon occurs with constantly lower relative percentage in the upper part of the section 

(Fig. 5-12).  

The second most abundant component of the nannofloras is represented by 

species of the genus Nannoconus (Fig. 5-5B, 5-12). The nannoconid narrow-canal group 

includes Nannoconus steinmannii, N. colomii and N. bermudezii whereas the nannoconid 

wide-canal group includes N. bucheri, N. vocontiensis, N. kamptneri, N. truittii and N. 

wassallii, and shows a clear dominance over the narrow-canal group in all investigated 

samples. As shown and Fig. 5-12, the lowest part of the section (up to about 11 m) yields 

about 30% nannoconids, but the overlying interval (15.2 m to 27.7 m) includes a 

substantial decrease with variations between 7% and 11% coincident with an increase in 

the percentages of Watznaueria barnesae. The nannoconids increase substantially (to 

over 40% of the total nannofloras) towards the upper part of the section. All taxa 
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identified in the nannofloral assemblages belong to the NC 6 Biozone, coincident with 

the Chiastozygus litterarius Zone (Roth, 1978).  

 
Figure 5-12 (A) Simplified lithological log and nannofossil events in the studied 85 m of El Pui section. 
Chemostratigraphic correlation and relative position of the Barremian-Aptian boundary discussed in the text 
suggest that the R. angustus appearance at El Pui coincides with its true first occurrence. B, C, D, and E: 
vertical variation in the relative abundances of Watznaueria barnesae, Nannoconus sp., narrow canal 
nannoconids, and wide canal nannoconids, respectively. All the samples represented were analyzed using 
light microscope and SEM with EDS. 

SEM micrographs shown in Fig. 5-5 illustrate a significant contribution of 

nannofossils to the matrix with highly abundant disaggregated nannoconids fragments. 

Qualitative EDS analyses also indicate CaCO3 as the main constituent of the rock matrix, 

a finding that is in agreement with the bulk powder mineral results. The EDS results 

revealed additional minor presence of siliciclastic material (Sanchez-Hernandez and 

Maurrasse, 2014). X-ray maps generated on five samples (at 0, 15.2, 27.7, 32.3 and 69.7 
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m respectively) to monitor the elemental distribution of Ca, C, Al, Ti, Si and K in 

different areas of the matrix allow for further differentiation of the proportion of CaCO3 

with respect to the detrital fraction represented by Al, Ti and Si. The relative distribution 

of potassium was jointly monitored as a possible indication of illite and/or K-feldspar 

distribution, although we recognize that not all illite has K (Moore and Reynolds, 1997). 

5.5 Discussion 

5.5.1 Biochronology and paleontological significance of calcareous nannofossils in 
the El Pui section. 

Paleontological studies of ammonites, together with benthic and planktonic 

foraminifera of the Cabó Marls (Peybernès and Souquet, 1973; Peybernès, 1976; 

Martínez, 1982; Berástegui et al., 1990; Bachmann and Willems, 1996; Bernaus et al., 

2002, 2003; Moreno-Bedmar, 2010) assigned an overall upper Barremian- lower Aptian 

to the lower part of the sequence. That time interval can be estimated with an 

approximate duration of ~5 Ma (Walker et al., 2012).  

The present study provides the first nannofossil data on the Cabò Marls (~800 m) 

that may allow a useful chronology based on microplankton taxa. For example, relative 

predominance of wide canal nannoconids from 32 m (Fig. 5-12E) upward concurs with 

previous studies (Erba, 1994, 2004) that interpreted nannofacies dominated by wide canal 

nannoconids as indicative of the early Aptian (see also Aguado et al., 1999). As in other 

hemipelagic to pelagic sections of the Western Tethys (Aguado et al., 1997), applying 

biostratigraphy to define the exact position of the Barremian - Aptian boundary in the El 

Pui sequence has proven to be problematic. Recent chemostratigraphic correlation of the 

El Pui with other Tethyan sections further proposed a Barremian – Aptian boundary at 
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about 15.5 m from the base of the studied section (Sanchez-Hernandez and Maurrasse, 

2014). Even though the preservation state of the assemblages in the studied samples does 

not allow for a definitive chronologic assignment of the first occurrence (FO) of 

Rhagodiscus angustus, the fact that this taxon occurs elsewhere after the magnetic chron 

M0, above the Barremian-Aptian boundary (Erba, 1994), makes reasonable the 

assumption that its first identification in the studied section at 32 m (Fig. 5-12A) 

corresponds to its true first bioevent. 

Microscopic observations show that the preservation of the nannofossils in the 

lower ~31 m of the El Pui section varies from poor to moderate, and the poorly preserved 

samples characteristically occur where the highest relative percentages (31% - 69%, Fig. 

5-12) of the solution-resistant taxon Watznaueria barnesae are recorded. In addition, that 

part of the sequence contains the smallest relative percentages of nannoconids, as only 

three samples (out of 13 analyzed in the interval) have relative abundances above 30% 

(Fig. 5-12C). Such trends in abundance and preservation of nannofossils may indicate 

some measure of diagenetic overprint that might have affected their concentration. For 

instance, punctuated lower TIC values that occur at ~5.4 m (43%) and 13.0 m (44.9%) 

without significant variation in clays and TOC contents could be related to limited partial 

dissolution in microenvironments with lower pH because of prevailing dysoxic 

conditions (Sanchez-Hernandez and Maurrasse, 2014).  

By contrast, the upper 54 m consistently yield calcareous nannofossils that are 

moderately preserved with a balanced relative abundance between Watznaueria barnesae 

and nannoconids (Fig. 5-12B, C). Alteration of nannofossil remains in the upper interval 

appears to be related to increased bioturbation. 
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In pelagic environments calcareous nannofossil assemblages can be altered 

because of selective dissolution in the calcium carbonate compensation realm resulting in 

an increase in the relative proportion of solution resistant taxa (McIntyre and McIntyre, 

1971; Schneidermann, 1973; Roth and Coulbourn, 1982). Calcareous nannofossil 

assemblages dominated by Watznaueria barnesae have been reported as indicative of 

oligotrophic or low fertility environments (Roth, 1989; Roth and Krumbach, 1986; 

Premoli Silva et al., 1989; Watkins, 1989; Erba, 1992). They have also been considered 

to indicate heavily altered assemblages with respect to their original composition (Roth 

and Krumbach, 1986). However, the use of W. barnesae as indicative of oligotrophic 

conditions remains in question because it has been recognized as a strong eurytopic taxon 

(Mutterlose and Kessels, 2000; Lees et al., 2005; Aguado et al., 2013). Following these 

findings it has been proposed that percentage abundance of W. barnesae may indicate an 

inverse correlation with the success of other species, but not specific environmental 

signals (Lees et al., 2005; Aguado et al., 2013). Furthermore, as argued by Scarparo 

Cunha and Koutsoukos (1998) the trophic level associated with W. barnesae may vary as 

this species is recorded in laminated shales and marls of the Sergipe Basin, Brazil, 

interpreted as deposits of predominantly inner neritic environments (Koutsoukos et al., 

1991a; 1991b).  

In the case of the nannoconids, based on further knowledge of their environmental 

distribution and ecology, their classification as indicators of oligotrophic surface waters 

remains contentious (Bown, 2005). This uncertainty is further corroborated by their 

abundance and distribution in organic-rich layers during the late Barremian and the upper 

Albian (Kennedy et al., 2000; Herrle, 2002). Also, Scarparo Cunha and Koutsoukos 
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(1998) pointed out that most deposits rich in nannoconids usually yield low-diversity 

coccolith assemblages, which suggest community dynamics controlled by competitive 

displacement of very close resource utilization as nutrient levels fluctuated. 

Although the preservation state of calcareous nannofossils assemblages in the El 

Pui section suggest partial alteration from the original composition, geochemical analyses 

of the sediment together with productivity proxies (TOC, 13Corg) are consistent with the 

findings of Erba (1994), Mutterlose and Kessels (2000), Lees et al. (2005), and Aguado et 

al. (2013) that support a possible occurrence of assemblages dominated by W. barnesae 

and nannoconids in environments with high nutrient availability (P, Fe,) and enhanced 

primary productivity (Sanchez-Hernandez and Maurrasse, 2014). In order to better assess 

sediment provenance and accumulation rate in the El Pui section, we used integrated 

taxonomic data and chemostratigraphy (Sanchez-Hernandez and Maurrasse, 2014) based 

on carbon isotope (13Corg) segments defined by Menegatti et al. (1998).  

5.5.2 Assessing the provenance of sediment components in the El Pui section 

Facies distribution of rock sequences associated with the Organyà Basin is 

interpreted to indicate a marginal depression affected by adjacent Variscan crystalline 

rocks and surrounded by shallow-water carbonate platforms (Caus et al., 1990; 

Berástegui et al., 1990; García-Senz, 2002). In the case of the hemipelagic setting of the 

El Pui section, which is characterized by an unusually high accumulation rate (García-

Senz, 2002), questions therefore arose regarding the provenance of the main contributors, 

which determined the high sediment accumulation in the restricted marginal basin.  As 

for all sedimentary systems, it ensues three main possibilities: 1) siliciclastic contribution 
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from adjacent landmasses; 2) shedding of carbonate particles from the adjacent 

platforms; 3) in situ productivity. 

5.5.2.1 Siliciclastic 

Siliciclastics such as clays can be the major contributor to marginal basins as is 

known in the present (e.g., Cariaco Trench; Hoering, 1973).  In the El Pui section TIC 

prevails throughout with consistently high values, mostly above 60%, albeit two 

punctuated short intervals that register ~ 43 and 45 % in the lower 15 m (Fig. 5- 4). The 

siliciclastic fraction accounts for ~ 30 % of the bulk material in the sediment (Fig. 11) 

with a clay content dominated by illite (Fig. 5-10).  The sequence lacks primary 

sedimentary structures that can be associated with either proximal or distal turbidite 

depositional systems that could have enhanced the flux of allochthonous components. 

Therefore, the proportion of siliciclastic may not explain the high sedimentation rate in 

the basin. 

5.5.2.2 Platform shedding 

The transport of significant amounts of platform-derived carbonate bioclasts to 

deeper marine settings occurs mainly through high energy events (e.g. storms, turbidite 

currents, slumps) (Ericson et al., 1961; Droxler and Schlager, 1985). These allochthonous 

small bioclasts reveal characteristics of their original source and include typical neritic 

taxa (e.g., orbitolinids, annelids, miliolids, dasycladaceans photozoans, bivalves, 

brachiopods, calcareous algae) (Scholle et al., 1983; Scholle and Ulmer-Scholle, 2003; 

Flügel, 2010). Hence platform shedding could have been an important factor in the 

sedimentation system of the Organyà Basin with significant export of CaCO3 to the 

pelagic environment. Platform shedding components would have been easily 
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recognizable as demonstrated elsewhere in basins adjacent to platforms (e.g., off the 

Great Bahama Bank, Ericson et al., 1961; Betzer et al., 2000; Kroon et al., 2000; Sergipe 

Basin, Brazil, Koutsoukos et al., 1991a; 1991b; Scarparo Cunha and Koutsoukos, 

1998;Valanginian of the Vergol section SE France, Reboulet et al., 2003).  

Extensive carbonate platform deposits (Peybernès and Souquet, 1973; Peybernès, 

1976; Martínez, 1982; Caus et al., 1990; Berástegui et al., 1990; Dinarés-Turell and 

García-Senz, 2000; García-Senz, 2002; Bernaus et al., 2002; 2003) are coeval with the 

hemipelagic sediments of the Organyà Basin at El Pui. Facies analyses of the shallow-

water deposits of the Organyà area indicate that the Barremian–Aptian carbonate 

platforms included biotic communities dominated by calcareous algae, rudists, and 

orbitolinids (Bernaus et al, 2002; 2003). However, the hemipelagic sediments of the basin 

show no evidence of shallow-water bioclasts (Fig. 5-6). The thin section analysis of 207 

samples of the studied interval reveals a micritic matrix with absence of benthic taxa 

characteristic of the shallow water platform (Bernaus et al., 2002). Benthic foraminifera 

(5-6) are consistently very rare, and represent deeper water morphotypes as shown 

elsewhere in coeval deposits of the Tethys (Neagu and Cîrnaru, 2004). The lack of 

shallow-water components (Fig. 5-6) thus implies a limited contribution of allochthonous 

bioclasts to the total carbonate flux in the basin. The absence of sharp contrast between 

facies and the nearly homogeneous composition of the microfacies throughout the studied 

interval further suggest that transport of carbonate material by means of storm and marine 

currents may have been negligible.  

 Based on recent studies of past and present carbonate platform environments (e.g. 

Kroon et al., 2000; Wilson and Vecsei, 2005; Westphal et al., 2010) it is conceivable that 
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the absence of bioclasts from the shallow platforms could have been controlled by the 

degree of shelter provided by the existent physiography, more likely a flat homogeneous 

shelf (Caus et al., 1990, García-Senz, 2000). Because sediments of the studied section 

contain essentially planktonic components as remains of calcareous nannoplankton, they 

suggest that the inner part of the basin was outside the outer ramp or zone of influence of 

the platform areas during the latest Barremian – earliest Aptian. Assuming no 

accommodation control on the depositional system, therefore, accumulation would reflect 

conditions inherent to autecological factors that favored in situ productivity. Whether the 

absence of platform-derived components is due to the paleophysiography or prevailing 

low wind systems, this question is difficult to assess. Nonetheless, the sedimentological 

record of the El Pui section can be inferred to have accumulated away from aggradation 

of the platform ramp into the basin. 

5.5.2.3 In situ carbonate production 

Given that neither clastics from the adjacent landmasses, nor platform-derived 

particles provide sufficient evidence to constitute the bulk of the sediment components 

that contributed to enhance the accumulation rate of the El Pui sediments, a different 

controlling mechanism has to be invoked. The third alternative is to assess how in situ 

production of calcifying nannoplankton may account for the unusually thick sequence in 

that area of the Organyà Basin. 

 Periods of enhanced marine primary productivity in hemipelagic and pelagic 

environments may be recorded in sediments as enhanced deposition of biogenic 

carbonate and/or opal from the test of organisms, and also as higher organic carbon (OC) 

content (Zachos et al., 1989; Addison et al., 2012). However, these indicators do not 
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always concur because changes in biogenic carbonate dissolution rate and diagenetic 

processes can alter the proportion in which the biogenic carbonate is preserved in the 

sediment (e.g. Roth and Coulbourn, 1982; Aguado et al., 2013). Also, the OC content in 

sediments may depend on the respiration rate (oxygen availability) in the water column 

and the dynamic of microbial communities, as these organisms can follow different 

pathways for OM degradation regarding redox conditions (Valiela, 1984; Meyers, 1994). 

In the case of El Pui section the occurrence of high TOC values concurrent with high TIC 

and positive spikes in 13Corg (Fig. 5-4B, C, D) suggest enhanced primary productivity as 

the governing factor for the high TIC and TOC content in the sediment. 

Large variations in the accumulation of biogenically derived calcium carbonate in 

marine environments related to various physiographic and ecologic factors have been 

recognized since the “Challenger Expedition” (Murray and Renard, 1891) and subsequent 

works (e.g., Ericson et al., 1961; Tracey et al., 1971; Ziveri et al., 1995; Beaufort and 

Heussner, 1999). Since sediment accumulation in the El Pui section took place in the 

bathyal zone, present knowledge of the marine environment permits to infer that 

dissolution due to undersaturation with respect to CaCO3 related to the calcite 

compensation depth (Berger, 1970; 1976) may not account for much loss of carbonate 

from calcifying phytoplankton. Therefore, based on modern analogs of proposed 

relationship between production, transportation, and dissolution of coccoliths in the 

pelagic domain (Reid, 1962; Hulburt, 1962; Honjo, 1976; Kennett, 1982) we can 

postulate that at El Pui original assemblages and net production of biogenic carbonate 

should not be severely affected before accumulation.  
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Arguably, as the microscopic analysis revealed, some degree of dissolution may 

have taken place along prevailing oxygen-deficient unit (lower 31 m) because of partial 

acidification in the bottom waters, associated with enhanced export production of 

phytoplankton byproducts, partial remineralization and subsequent metabolic 

accumulation of CO2 (Mucci et al., 2011). Investigations of comparable modern marine 

systems on the effects of such conditions on biogenic pelagic carbonate (e.g. Peterson, 

1966; Berger, 1970; Colbourn et al., 1980; Roth and Coulbourn, 1982; Cullen and Prell, 

1984; Zachariasse et al., 1984; Burdige, 1991; Principato et al., 2006; Conley et al., 2009; 

Kemp et al., 2009) might support such assumption for the Organyà Basin. However, 

SEM analyses performed in the samples studied show that most of the micro-carbonate 

fragments in the El Pui could be attributed to calcareous nannofossils remains, coccoliths 

and nannoconids (Fig. 5-5). The distribution and appearance of the micro-carbonate 

particles suggest a higher influence of mechanical disaggregation of the nannoconids 

rather than dissolution (e.g., Lampert et al., 2002). Such indication implies that the 

applicability of traditional taxonomic methods and statistical analyses of microfaunal 

abundance and diversity may not provide reliable results (Roth and Coulbourn, 1982) to 

estimate trophic level and true assessment of original assemblages in the studied section. 

In fact, there is increasing evidence from both modern (McIntyre and Bé, 1967) and past 

environments that the actual record in the sediment results from multiple environmental 

(Mutterlose et al., 2005) and preservation factors that influence the composition of 

nannofossil assemblages observed in the biomass (e.g., Molfino and McIntyre, 1990; 

Scarparo Cunha and Koutsoukos, 1998; Gaudy and Champalbert, 2003; Sun et al., 2013). 
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At this stage, we cannot prove exactly what caused such sustained high 

production of carbonate by the nannoplankton, but studies of modern environments also 

provide a glance at the complexity of a great number of critical factors that may influence 

the productivity of calcifying organisms whose records still remain mostly unknown in 

the Barremian–Aptian time interval studied (e.g., level of Ca++ in the ocean, Arp et al., 

2001), the ecosystem food web (e.g., relationship between phytoplankton and 

protozooplankton, grazers and nutrient dynamics (Johnson and Sieburth, 1979; van 

Beusekom et al., 2009; Stelmakh, 2013) and intraspecific adaptative variability (Yakimov 

et al., 2007; Bowler and Scanlan, 2014; Kashtan, et al.,2014).  

5.5.3 Significance of 13C/TOC/TIC/Biomarkers in assessing productivity rates 

In an attempt to empirically assess the magnitude of productivity in the El Pui 

sequence, geochemical parameters tested to provide clues regarding the relationship 

between primary production and carbon isotope fractionation are applied. To evaluate 

such relationships our premise relies on established evidence that photosynthetic fixation 

of carbon involves an extensive negative fractionation (e.g. Fontugne and Duplessy, 

1978; Hayes, 1993; Popp et al., 1997) attested by the fact that primary producers 

preferentially incorporate 12C and therefore discriminate the 13C. Given such 

circumstance, as primary productivity and OM decomposition proceed simultaneously in 

oxic (O2 > 2.0 ml / lH2O) environments, the isotopic ratios are maintained in the reservoir 

because of proportional remineralization and upward recycling. However, in 

environments with sustained high primary productivity the oxygen demand in the water 

column increases significantly as the result of OM respiration. Furthermore, in basins 

with limited ventilation of bottom waters and high productivity these conditions 
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superimpose to create lasting oxygen depletion, hence heightening OC preservation from 

export production (Calvert et al., 1996; Paerl, 1997). In such cases, the removal rate of 

12C is uncompensated leading to 13C enrichment in the reservoir that will be later 

reflected in the isotopic composition of the preserved OM. The mechanism associated 

with significant carbon sequestration hence causes positive excursions of the 13C curve 

that can be used in paleoenvironmental reconstruction. 

In the use of the 13Corg profile it is also recognized that the isotope record is a 

blend of organic fractions that may be partially altered by the effects of extraneous 

factors. They can be related either to the ocean carbon reservoir (Arthur et al., 1985), 

biosynthetic fractionation (e.g. Hayes, 1993; Popp et al., 1997; Bentaleb et al., 1996; 

Boller et al., 2011) or maturity of the OM. Accordingly, the temporal fluctuations in the 

OC isotope values may be influenced to different extents by these factors regarding the 

depositional environment. Nonetheless profiles of 13Corg have been widely regarded to 

successfully reflect fluctuations in productivity (e.g. Coccioni et al., 1992; Meyers, 1997; 

Kuypers et al., 2002).  

 The fluctuating 13Corg pattern observed in the lower 14.3 m of the studied 

section (Fig. 5-4D) shows peaks of 12C removal more pronounced than for the overall 

13Corg global signature reported in the upper part of segment C1 and the onset of C2 (see 

Dumistrescu and Brassell, 2006, their Fig. 5-6 for a compilation of 13Corg in several 

sections). Despite assumed partial dissolution, the inverse variation of TIC with respect to 

TOC found at ~5.4 m, 6.1 m and ~13.0 m within that interval may suggest the occurrence 

of productivity pulses related to ecosystem variability as perhaps observed in modern 
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Black Sea (Grégoire, et al., 2004; Oguz, 2006; Boero et al., 2008; Stelmakh, 2013). 

Sanchez-Hernandez and Maurrasse (2014) indicated that the phosphorous and iron levels 

in the El Pui section are comparable or higher than for the average shale (Wedepohl, 

1971; 1991). Given that the basin was essentially a carbonate environment, such high 

values also imply that high availability of biolimiting nutrients was essential to maintain 

high productivity rate (Paytan and McLaughlin, 2007). In fact, significant enrichment of 

Ni in sediments from the section is consistent with increased transport to the sediment 

from particulate matter produced by calcareous nannoplankton.  

As shown in Fig. 5-4B, the temporal trend of TOC in the El Pui section defines 

two different accumulation patterns of carbon sequestration: the earliest pattern straddles 

the latest Barremian and the earliest Aptian and extends from 0 to 31 m; the subsequent 

one continues into the early Aptian from 31 to 85 m. The lower trend is characterized by 

discontinuous TOC spikes (> 1.0%) concurrent with positive excursions of 13Corg 

together with relatively elevated TIC values (Fig. 5-4C). Synchronous peaks on TOC, 

TIC and 13Corg suggest that enhanced local phytoplankton productivity in the Organyà 

Basin simultaneously intensified the oxygen demand in the water column and led to 

higher burial of organic carbon under oxygen-deficient sub-surface waters.  

The predominance of nannofossils, concomitant with high accumulation rates 

controlled by the TIC, further imply long-term sustained dense phytoplankton blooms in 

surface waters that may have activated competitive exclusion, which severely limited the 

survival of other faunal groups (Busson and Noel 1991; Boero et al., 2008). However, the 

calcareous phytoplankton production alone is unlikely to justify the amount of OM 

preserved, because the OM/CaCO3 ratio of these organisms is too low (1/6, Hay 2002; 
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Sanchez-Hernandez and Maurrasse, 2014). Perhaps, the apparent excess OM preserved in 

the El Pui sediments originated from a mechanism similar to that documented in modern 

oceans whereby phytoplankton exude organic compounds or transparent exopolymer 

particles (Jiao et al., 2010; Van Oostende et al., 2013). Such enrichment of labile 

compounds in surface waters also stimulates bacterial growth and oxygen demand in the 

water column.  

Concerning the unusual high abundance of biogenically derived carbonate from 

primary producers, a comparable case is related to calcifying coccoid cyanobacteria in 

the Cenomanian-Turonian restricted basins of the Indidura Formation at Parras, 

northeastern Mexico (Duque-Botero and Maurrasse, 2005; 2008; Duque-Botero et al., 

2009). In that basin the coccoid cyanobacteria dominated in a dysoxic to anoxic 

environment and produced between 43.0 to 78.3% carbonate that led to an accumulation 

rate ranging from 6.2 cm/ky to 10.0 cm/ky. Hence the results from the El Pui sequence 

may not be exceptional in the geologic record, and they suggest that similar conditions 

may have persisted in the semi-restricted Organyà Basin with different assemblages that 

led to high TIC together with elevated TOC as a result of increased biological activity in 

the photic zone.  

Because of sustained terrigenous fluxes (Sanchez-Hernandez and Maurrasse, 

2014) it is conceivable that significant OM could have been transported to the Organyà 

Basin, as demonstrated for other marginal basins (DSDP Site 398, Arthur et al., 1979; 

modern Cariaco Basin, Edgar et al., 1973a; Hoering, 1973), but the absence of higher n-

alkanes (C >25) and enriched presence of n-alkanes with C number C < 20 (Figs. 5-7, 5-

8), are indicative of autochthonous OM sources outweighing terrestrial plant input. Thus 



136 

the n-alkanes data lend support to essentially a primary marine phytoplankton origin of 

the OM (Cranwell, 1973; Cranwell et al., 1987; Forster et al., 2004; Peters et al., 2005). 

The carbon isotopes values further corroborate the biomarker data. Indeed, given the very 

large negative fractionation of organically-derived carbon compounds from terrestrial 

environments, an increase in recycled respired (13C- depleted) CO2 would have greatly 

depleted the isotopic composition of the TOC and caused a more negative shift of the 

13Corg. The results do not concur with such 13Corg- depleted record in the carbon isotope 

profile. Instead, a sustained increase is observed in the 13Corg from 0 to ~20 m with 

subsequent stable values that further indicates minimal involvement of terrestrially 

derived organic matter (Sanchez-Hernandez and Maurrasse, 2014). 

5.5.4 Assessing sediment accumulation rate 

Since radiometric data are non-existent for the sedimentary sequence of the 

Organyà Basin, it is assumed that previous time span estimates are valid and coherent 

with the GSA Time Scale (Walker et al., 2012).  

As the present study includes only the basal part of the El Pui sequence and 

precise biochronology is difficult, to better constrain the sedimentation rate in the studied 

section the carbon isotope segments are used, which can provide a more reliable time 

frame based on correlation of known sections (Menegatti et al., 1998; Moullade et al., 

1998; Kuhnt et al, 1998; de Gea et al., 2003; Erba, 2004; Stein et al., 2011, 2012; 

DeBond et al., 2012; Papp et al., 2013). The 85 m studied at El Pui comprise the upper 

part of 13Corg  isotope segment C1, the entire segment C2 and possibly the lower part of 

segment C3 (Menegatti et al.,1998; Sanchez-Hernandez and Maurrasse, 2014). Thus in 

the present state of the study segment C2 at El Pui extends from 15.5 m to at least about 
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70.7 m, which amounts to a thickness of ~ 55 m (Fig. 5-4D). In most sections this 

segment is confined to the upper Barremian - lowermost Aptian time interval. Although 

the actual duration is yet to be fully constrained, segment C2 has been shown to span 

between ~800 kyr and 1.2 myr (e.g. Erba et al., 1999; Erba 2004, DeBond et al., 2012). If 

we assume a similar extent for segment C2 in the El Pui section, the approximate overall 

dry bulk sediment accumulation rate for the 55 m of segment C2 would be constrained 

between at least ~5 cm/ky – 7.5 cm/ky, which is certainly high for marine hemipelagic 

facies.  

As compared to El Pui sediments, similar high sediment accumulation rates (~5.0 

- 7.5 cm/ky, or up to 10 cm/ky) have been reported for Lower Cretaceous sediments of a 

marginal basin at DSDP Site 398 (Arthur, 1979). That site also includes a lasting record 

of oxygen deficient-conditions. Sediments of Site 398 differ significantly from the rocks 

of the El Pui sequence, because their main components are reported to consist 

predominantly of siliciclastic materials related to fluxes from large deltas bordering the 

Proto-Atlantic during the Early Cretaceous (Arthur, 1979). In fact, carbonate values (see 

Arthur, 1979, Fig. 5-2) for the late Barremian - early Aptian at Site 398 yield a calculated 

average TIC of ~ 42% compared to an average of 70% recorded within the same time 

interval in the El Pui sediments. Also, unlike the El Pui sediments, the organic matter at 

Site 398 is predominately land derived (Arthur, 1979), hence they indicate a stronger 

steady input of terrestrially derived materials at that location. 

For comparison of an approximate modern analog, perhaps the most closely 

related physiographic condition to the Organyà Basin (Caus et al., 1990; Berástegui et al., 

1990) is that of the Cariaco Basin (Edgar et al., 1973a; 1973b). In fact, the Cariaco Basin 
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is a small pull-apart depression (length ~ 210 Km; width ~ 62 Km, and 82 Km, 

respectively; depth at the eastern sub-basin being 2550 m and the western 1380 m) in the 

Venezuelan continental margin (Edgar et al., 1973a; 1973b). The basin has anoxic waters 

below 360 m, and reveals high wet sediment accumulation rates of 75 cm/ky (Spiker and 

Simoneit, 1982). Like the inferred reconstruction of the Organyà Basin, the Cariaco 

marginal depression has restricted circulation, is adjacent to carbonate platforms and 

proximal to crystalline substrates. Published porosity measurements for the Cariaco Basin 

sediments obtained from undisturbed individual samples yielded values of 40% - 67%, 

and more consistently 56%, respectively (Edgar et al., 1973b). The highest values (50 – 

75 cm/kyr) of wet accumulation rates (Spiker and Simoneit, 1982), and the average 

porosity data (56%), thus yield dry bulk accumulation rates of 22 - 33 cm/kyr, 

respectively.  

These extremely high values apparently exceed the estimated values for the El Pui 

sequence, although they could actually be lessened due to the fact that Cariaco Basin 

sediments are normally consolidated (Bjørlykke, 2010), whereas the Cabò Marls are over 

consolidated such that intergranular volume is negligible. Unlike the Cabò Marls, 

however, the high rates obtained for the Cariaco Basin stem essentially from terrigenous 

materials in the sediments, as the TIC averages only ~ 25% (Edgar et al., 1973a). 

Similarly, fatty alcohols and acids with C chain lengths > C20 generally considered to be 

characteristic of the waxes of higher terrestrial plants define the organic matter in the 

Cariaco Basin (Hoering, 1973). 

 For further comparison, other modern basins with different physiographic 

settings and accumulating hemipelagic sediments show lower wet sedimentation rates, 
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e.g., 6 cm/ky proposed for slope sediments in the Gulf of Mexico (Aharon and Fu, 2000), 

and rates > 10 cm/ky reported for areas of the eastern Mediterranean Sea (Mercone at al., 

2000). These locations also show a prevalence of terrigenous components. 

The most important finding between the sites used for comparison with the El Pui 

sediments highlights the fact that values for the sedimentation rates of the hemipelagic 

facies of the Organyà Basin depended primarily on the carbonate production. The non-

carbonate fraction remains consistently on average less than 30% (Fig. 5-11). On that 

basis, the steady pattern of the proportion of the siliciclastic components in the El Pui 

sequence provides robust evidence to define its singularity and assume that the high 

sedimentation rate in the El Pui sequence was essentially related to steady high 

calcareous nannofossil productivity.  

5.5.5 Characterization of terrestrial fluxes in the Organyà Basin 

The distribution of the non-carbonate fraction in the El Pui sediments (Fig. 5-11) 

confirms sustained terrestrial fluxes to the basin, and assessing the sources of the mineral 

components provides a better understanding of the nutrient delivery mechanism and its 

effect on productivity. 

 Illite is the most abundant clay mineral in carbonate rocks and shales where its 

concentration generally represents the source composition rather than diagenetic 

alterations (Weaver, 1958). Burial diagenesis can also produce alteration of smectite into 

illite (Hower et al., 1976; Deer et al, 1977; Burtner and Warner, 1986; Eslinger and 

Pevear, 1988; Scott, 1992), but a high relative percentage of illite compared with the 

other clay minerals and small variability of its content with depth are evidence of a 

limited diagenetic effect (Weaver, 1958).  
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At El Pui the percentage 

of illite fluctuates consistently 

between 73% and 90%, and 

mixed layer illite/smectite does 

not surpass 17% (Table 5-1, 

Fig. 5-10). Such trend in 

relative concentration indicates 

similar content with depth, 

hence providing further 

evidence against significant diagenetic transformations in the sediment. The presence of 

stable mineral phases of chlorite (Fig. 5-9) along with abundant illite indicate a low 

degree of thermal alteration consistent with provenance from a source related to erosion 

of previous mudrocks affected by low-grade metamorphism (Weaver, 1958; Ehlers and 

Blatt, 1999). 

Chlorite is a common mineral characteristic of low-grade metamorphism, zeolite 

to greenschist facies (Deer et al., 1977); increasing lithostatic pressure and temperature 

can also induce thermal alteration of smectite into chlorite (Ferry et al., 1983). The 

random and variable occurrence of chlorite in the sequence (Table 5-1) further attributes 

its origin to terrigenous fluxes instead of in situ transformation in the sequence after 

deposition. The temporal distribution of clay minerals and mineral constituents 

characteristic of the El Pui sediments (Fig. 5-10) suggests that they derived from adjacent 

low-grade metamorphic rocks involved in earlier Paleozoic tectonic history (Variscan) of 

the area (Peybernès, 1976; Muñóz et al., 1984; García-Senz, 2002; Ábalos et al., 2002). 

Glycolated

Sample Id Height (m) Illite-Smec. Illite Kaolinite Chlorite

C10-04 0.7 6% 90% 1% 3%

C10-17 5.4 10% 77% 5% 9%

C10-19 6.1 11% 84% 2% 4%

C10-31 13.7 10% 73% 2% 15%

C10-58 20.8 9% 82% 2% 7%

C10-77 27.7 12% 82% 1% 5%

C10-85 31.3 10% 79% 2% 9%

C11-109 41.8 11% 78% 4% 7%

C11-169 62.0 13% 75% 3% 10%

C11-205 81.1 17% 77% 2% 4%

Table 5-1 Semi-quantitative clay mineral results from diffraction
patterns obtained from EG-solvated samples.  XRD traces
demonstrated the presence of expandable clay. The EG-solvated 
provide the most diagnostic patterns for analysis of the clay
minerals (Moore and Reynolds, 1997) 
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The relative high abundance of quartz with respect to feldspars (Fig. 5-11, Table 5-2) 

reveals a certain degree of sediment maturation related to the effects of chemical 

alteration, slow erosion and mechanical breakdown.  

Since conceptual reproduction of environmental conditions in the Organyà Basin 

indicates absence or limited upward recycling of biolimiting nutrients (Sanchez-

Hernandez and Maurrasse, 2014), data from the present study permits further inference 

that steady riverine fluxes carrying phosphorus from watersheds with apatite-bearing 

Paleozoic bedrocks (García-Alcade et al., 2002; Ábalos et al., 2002) were a governing 

factor controlling the unusually high calcareous phytoplankton contribution in the basin.  

 
Table 5-2 Semi-quantitative bulk mineral XRD results for the random powder packs of the 10 samples 
selected along the section.  These results were complemented with EDS analyzes to generate an average bulk 
mineral distribution for the entire section. 

Paleoclimatic reconstruction based on the clay mineral distribution was not the 

focus of the clay mineral analysis in this work, but the distribution of the clay fraction in 

the El Pui section is consistent with temperate-warm/ humid conditions as proposed by 

Aguado et al. (2013) despite the limited abundance of kaolinite whose deposition may 

have been controlled by the basin paleophysiography (Ruffell et al., 2002; Stein et al., 

2011). Perhaps, a modern analog can be found along the present western coast of the 

Sample Id Height (m) Clay Quartz K-feldspar P-feldspar Calcite Dolomite Pyrite/Marc.

C10-04 0.7 5% 17% 0% 5% 72% 1% 1%

C10-17 5.4 12% 25% 0% 5% 51% 2% 5%

C10-19 6.1 15% 25% 0% 7% 52% 1% 0%

C10-31 13.7 13% 14% 0% 6% 64% 1% 1%

C10-58 20.8 7% 9% 0% 3% 78% 3% 1%

C10-77 27.7 5% 7% 1% 2% 84% 1% 1%

C10-85 31.3 6% 10% 1% 3% 76% 3% 1%

C11-109 41.8 3% 6% 1% 2% 86% 1% 1%

C11-169 62.0 9% 14% 0% 5% 72% 0% 1%

C11-205 81.1 9% 17% 2% 5% 65% 1% 0%
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Black Sea where phytoplankton development is sustained during the whole year because 

surface waters are almost continuously enriched in nutrient from constant discharge of 

the Danube (Grégoire et al., 2004; Oguz, 2006). 

5.6 Conclusions 

The present study of the basal 85 m of the El Pui section reveals that unusually 

high accumulation rates (~5 cm/ky – 7.5 cm/ky) from the latest Barremian–earliest 

Aptian were primarily controlled by high carbonate content (up to 88%). SEM and 

petrographic analyses suggest high input of carbonate from calcareous nannofossil 

remains, which is consistent with high phytoplankton productivity as indicated by the 

geochemical data. 

Similar high sediment accumulation rates (5.0 cm/ky - 10 cm/ky) have been 

reported for Lower Cretaceous sediments from other marginal basins, but unlike the El 

Pui sequence they primarily contain terrigenous components. In contrast to similar coeval 

Cretaceous basins (e.g. DSDP Site 398; Moldavids, Carpathians) and modern marginal 

basins (e.g. Cariaco Basin), the hemipelagic facies of El Pui are distinctive because of the 

high carbonate content derived from calcareous nannofossils. 

Organic-rich levels (TOC: 0.5 - 1.7%) concurrent with positive excursions in 

Corg imply enhanced preservation of OM from export production. In addition, 

pronounced peaks of Corg higher than the global average suggest that local factors 

related to primary productivity were superimposed to global forcing mechanisms and 

intensified the 12C removal. Organic geochemical analyses (n-alkanes,Corg ) further 

support an autochthonous origin of the OM.  
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The average non-carbonate fraction of the sediments at El Pui accounts only for 

30% of the components, and consists predominantly of clays (9%) and quartz (14%). The 

clay mineral assemblages are dominated by illite (> 73%), which is compatible with a 

source from low-grade metamorphic rocks involved in earlier Paleozoic tectonic history 

(Variscan) of the area. Ubiquitous presence of the detrital minerals in the section further 

suggests steady input of nutrients by riverine fluxes carrying phosphorus that sustained 

high fertility of surface waters inducing high calcareous phytoplankton productivity.  

The results provide fundamental evidence that further our understanding on the 

controlling factors leading to high carbonate production recorded in the hemipelagic 

sediments of El Pui in the Organyà Basin. This study highlights the critical role that 

special physiographic conditions in restricted basins can play in creating uncommon 

environments that stimulate sustained primary productivity and influence the overall 

sedimentation. Many aspects of calcifying nannoplankton assemblages and ecosystems 

still remain conjectural, further multiproxy studies of the geological record are required 

in order to improve our assessment of all the factors involved. We can infer from the 

uniformity of the facies that accommodation space and sediment supply in the El Pui 

sequence were roughly balanced within the time interval corresponding to the lower part 

of the studied section.   
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6 MICROFACIES CHARACTERIZATION AND FAUNAL VARIATIONS 
IN THE UPPER BARREMIAN–LOWER APTIAN HEMIPELAGIC 
SEDIMENTS OF THE ORGANYÀ BASIN: PALEOENVIRONMENTAL 
IMPLICATIONS 

Sanchez-Hernadez, Y., Maurrasse F.J-M.R., (Submitted for publication to the Journal 
Facies, Springer) Microfacies characterization and faunal variations in the upper 
Barremian–lower Aptian hemipelagic sediments of the Organyà Basin: 
paleoenvironmental implications. (The format follows the guidelines of the Journal:  
http://www.springer.com/earth+sciences+and+geography/geology/journal/10347 

Abstract 

The Early Cretaceous sedimentary record of different geologic sections of the Tethys 

Ocean reveals varying depositional conditions that often fluctuated rapidly within the 

same basin, mostly related to eustatic sea level changes coupled with tectonic 

reconfiguration linked to the opening of the Atlantic Ocean. Here we present a high-

resolution microfacies analysis of the basal 85 meters of the El Pui section that includes a 

continuous Barremian/Aptian hemipelagic sequence corresponding to the Cabó 

Formation of the Organyà Basin, south-central Pyrenees. 

The succession of facies consists essentially of a series of interbeded sparsely 

fossiliferous marlstones, marly limestones and limestones with scarce to rare benthic and 

planktonic foraminifera, small ostracods, and echinoderm and ammonite microfragments. 

The dominant fabric of the microfacies is isotropic, but may become mildly isotropic at 

certain levels that display alternate low bioturbation index and enhanced preservation of 

OM indicative of an environment with varying oxygen levels. Continued enhanced 

surface productivity concomitant with stagnation of bottom waters, related to 

physiography, can best explain the main controlling factors that maintained special 

conditions of dysoxia and enhanced organic carbon burial in the basin. 
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The present study documents the first recurrent record of roveacrinids in the 

Barremian/Aptian interval of the Organyà Basin where their constant abundance indicates 

that these pelagic microcrinoids were a significant element of the food web, which 

benefited from heightened primary productivity under special conditions in the semi-

restricted Organyà Basin during that time. The results also reveal that the sedimentary 

succession recorded in the El Pui accumulated continuously without the effects of 

tectonism throughout the latest Barremian to the earliest Aptian phase of basin 

development. 

6.1 Introduction 

The geologic record provides significant examples of deposits that indicate severe 

oxygen-deficient environments in ocean basins as far back as the early Paleozoic era 

[e.g., in Eastern North America, Middle Cambrian Burgess Shale, ~505 Ma (Powell et al. 

2003); Middle Devonian epoch, Marcellus Shale ~ 384–390 Ma (Sageman et al. 2003); 

Pennsylvanian Kansas-type cyclothems ~ 311–290 Ma (Caldwell 1983; Algeo and 

Maynard, 2004)]. Nevertheless, the Cretaceous Period is most characteristic for recurrent 

organic-rich sediments that accumulated under widespread conditions of oxygen 

deficiency, or even culminated into anoxia known as oceanic anoxic events (OAEs) 

(Schlanger and Jenkyns 1976; Jenkyns 1980; Arthur and Premoli-Silva 1982; Arthur et 

al. 1985, 1990). OAEs are of major significance in the Cretaceous because their incidence 

had a remarkable impact on the sedimentary record (e.g., wide accumulation of black 

shales associated with large amounts of organic matter) and represent unusual bio-

geochemical changes in the ocean both prior to and after their occurrences (Jenkyns 

2010; Wang et al. 2011).  
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Complex conceptual models based on biogeochemical, stratigraphic and 

sedimentological studies have proposed a sequence of factors triggered by concurrent 

intensified volcanic and hydrothermal activities (Stinton and Duncan 1997; Weissert et 

al. 1998; Larson and Erba 1999; Tejada et al. 2009), and possible episodes of methane 

hydrate dissociation (Jahren et al. 2001, Méhay et al. 2009) as the causes for the vast 

deposition of organic-rich sediments during the Cretaceous OAEs. Such organic-rich 

deposits are not only characteristic of the pelagic environment, but also developed in 

various foreland basins, epeiric seas, and marginal basins that grew by rifting subsequent 

to the breakup of Pangaea in the Triassic Epoch (Olsen 1997; Masse et al. 2000).  

Marginal basins of the Tethys Ocean include a complex spatio-temporal record of 

organic carbon (OC) preservation because active tectonic reconfiguration (e.g., rotating 

microplates, extensional processes) and climate variability activated mechanisms that 

induced varying degrees of high marine productivity indicative of readjustments of the 

nutricline, and differential oxygenation at the basin scale that became recurrent starting in 

the Early Jurassic, Pliensbachian stage (Borrego et al. 1996; van de Schootbrugge et al. 

2005). These conditions recurred intermittently through the Lower Cretaceous  (e.g., 

Mutterlose et al. 2009; Föllmi 2012; Gaona-Narvaez et al. 2013; Pauly et al. 2013; 

Aguado et al. 2013), and regional physiographic factors and/or zonal climatic forcing 

mechanisms led to sediments in restricted basins that may include short episodes of 

enhanced OC sequestration with irregularity in duration and intensity in part decoupled 

from the tempo of major global forcing factors (e.g., Arthur 1979; Kuss and 

Schlagintweit 1988; Aguado et al. 1997; Masse 1998; Masse and Machhour 1998; 

Moullade et al. 1998; Scarparo-Cunha and Koutsoukos 1998; Bersezio et al. 2002; 
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Maurrasse and Ponton 2005; Abu-Zied 2007; Barragan and Maurrasse 2008; Michalík et 

al. 2008; Raisossadat and Shokri 2011; Föllmi et al. 2011; Leonide et al. 2012; Hu et al. 

2012; Husinec et al. 2012; Roban and Melinte-Dobrinescu 2012; Elkhazri et al. 2013). 

The complex factors controlling regional episodes of enhanced carbon sequestration in 

semi-enclosed basins and their relationship to global mechanisms are still not fully 

understood. The present analysis of facies complements a multiproxy study (Sanchez 

Hernandez and Maurrasse 2014; Sanchez-Hernandez et al. 2014) that charaterized the 

geochemical and sedimentary conditions from the uppermost Barremian to the earliest 

Aptian (Fig. 6-1) in the hemipelagic sediments of the El Pui section. The present 

objective is to further our understanding of the temporal changes revealed by the 

microfacies that reflect the paleoenvironmental conditions in the Organyà Basin prior to 

OAE1a.  

 

Figure 6-1 Geologic map of the Organyà area showing the relative position of the El Pui section (Adapted 
from Bachmann and Willens, 1996). 
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6.2 Physiographic and geologic settings 

The El Pui section (Figs. 6-1, 6-2) is located on the southern flank of the Sierra de 

Prada in the South Central Pyrenees, Catalunya, Spain. The sequence of strata that 

comprises the Prada Mountain west of the town of Cabó (Fig. 6-1) is incorporated in the 

predominantly E-W trending, folded structure of the Bóixols thrust sheet (Muñoz 1991; 

Bond and McClay 1995). Previous works (Berástegui et al. 1990; Bernaus et al. 2002, 

2003) described in detail the series of well-exposed tightly imbricated sequences 

immediately north of the town of Organyà  along the west side of the road cut on C-14 

(Fig. 6-1) following Riu Segre canyon, which cuts through the Cretaceous deposits.  

 

Figure 6-2 Distant view of the basal ~40 m of the El Pui section. Yellow arrows point to geologists seen on 
the site for scale. Note the well-defined, continuous interbeds of limestones and marlstones characteristic of 
the lower 85 m studied. 

The El Pui section is about 7 Km west of Organyà, and 1.5 Km west of the nearby 

village of Cabò (42° 14' 44.46" N, 1° 13' 31.49" E, top of the studied 85 m). The 

sequence is exposed along an easily accessible road cut starting at El Pui and follows a 

ridge adjacent to Llau de la Casa Vella del Pui (shown in Fig. 1 of Sanchez-Hernandez 

and Maurrasse 2014). The road goes toward the summit of Prada Mountain and provides 
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an exceptional spatio-temporal exposure of Cretaceous sediments. In the study area the 

stacked succession of the well-bedded sequence displays a unique Lower Cretaceous 

series (Figs. 6-2 – 6-6) that is laterally continuous and shows no clear evidence of 

significant syn- or post-depositional deformations. The absence of apparent subaqueous 

gravity flow or intraformational deformation within the studied sequence implies basin 

stability, and no syntectonic effects involving folding and thrusting during sedimentation 

in this part of the Organyà Basin, thus ensuring a normal continuous succession. 

Estimates of the Cretaceous series of the Organyà Basin give a thickness of ~4500 m of 

marine sediments, and approximately 1000 m would correspond to the Barremian–Early 

Aptian interval (Berástegui et al. 1990; 1993; García-Senz 2002; Bernaus et al. 2003). 

The apparent undisturbed succession in the El Pui area (Fig. 6-2) should therefore 

provide a detailed continuous record of the paleoenvironmental conditions of that time in 

the Organyà Basin. The long period of passive evolution under relative tectonic 

quiescence in that part of the Basin correlates with the time of the extensional/trans-

tensional regime associated with the opening of the Bay of Biscay.  

The base of the studied section begins with dark-colored carbonate rocks referred 

to in the literature as the “Cabó Marls” (Garrido-Mejías 1973; Peybernès and Souquet 

1973; Peybernès 1976; Berástegui et al. 1990; García-Senz 2002; subsequently used as 

Cabó Formation) superjacent to the biocalcarenites and calcirudites with rudists and 

annelids of the Prada Formation (Caus et al. 1990; García-Senz, 2002). The term 

“Formation” as an informal name applied to the sequence of marly rocks including the 

earliest Aptian was first used by Peybernès and Souquet (1973): “ In the series of black 

marls in the southern Pyrenees, where two formations are distinguished: the Cabó marls 
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(Bedoulian - Gargasian) and the Bóixols marls (lower Albian)”. Peybernès (1976) further 

applied the term “Formation” as an informal name using both lithologic and faunal 

content as distinctive characteristic features, as he exemplified with the units he 

designated as “Marnes noires à Hypacanthoplites”, or by a local name, or a combination 

of both. Subsequently García-Senz (2002) formally assigned the name Cabó Formation to 

the sequence, using international standards for stratigraphic nomenclature (AAPG-

NACSN, 1982). The type section is near the town of Cabó, namesake of the Formation. 

 

Figure 6-3 Near field view of the lower ~17 m of the stacked limestones and marlstones of the El Pui 
section. Note facies intervals as described in the text. 

  Because neither the composition, nor the hardness often used to designate these 

rocks as Cabó marls (sensu lato) can be uniformly applied to the lithologic succession in 

the Organyà Basin, we use the more appropriate nomenclature of Cabó Formation 

(García-Senz 2002). Despite some differences with the lithologies that define the type 

section (García-Senz 2002, p 51–59), the sequence defined at El Pui is now its equivalent 
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with lithologic names based on objective values of their actual content in total inorganic 

carbon (TIC) (Sanchez-Hernandez and Maurrasse 2014). 

6.3 Materials and Methods 

The study includes 207 samples of the lower 85 meters of the outcrop at El Pui. 

At the field scale we recorded variations in bed thickness, color, primary sedimentary 

structures presence or absence of visible faunal components, and bioturbation. 

 For initial lithologic designation in the field we made use of the different visual 

parameters such as bed thickness, apparent dominant coarse constituents, fissility (Ingram 

1953), and whether the rocks could be categorized as different types of limestones 

(Pettijohn 1957; Folk 1959; 1962), marlstones or mudrock. Final lithologic names were 

assigned after carbonate content analysis and are based on TIC content.  

 

Figure 6-4 Close-up view of part of the succession shown in Fig. 6-3 and immediately above. Note the 
Dark yellowish orange (10YR 6/6) of the weathered surface in contrast to the true Bluish gray (5B 6/1) of 
the unaltered rock. 
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In order to obtain an objective assessment of dry rock colors that may be 

indicative of the organic carbon content we used the “Rock-color chart” distributed by 

the Geological Society of America (GSA, Goddard et al. 1963), which is designed as a 

modified Munsell color system. The number and range on the chart were developed 

based on studies of more than 1300 rock specimens, and the chart is a simple booklet that 

can be used in the field as well as in the laboratory. It provides an objective 

representation of colors that permits the same visual correlation by different observers. It 

defines color with a combined letter and numerical designation and uses three simple 

variables: its hue (actual color), value (indicates lightness or tone, measures how light or 

dark a color is, as it will depend on whether the rock is dry, damp, or wet), and chroma 

(intensity). The system uses a grading scale so that value ranges from white (absolute 

white, highest number 10) to dark (absolute black, lowest number 0). A color of value 

“5” is midway between the two end colors. The symbol for hue is the letter abbreviation 

of the color of the rainbow. The Chroma increases from somber (lower number) to the 

most vivid colors (higher number). The color notation uses the order: hue, value and 

Chroma, with a space between the hue letter and the succeeding value number, and a 

slash between the two numbers for value (left) and Chroma (right), as for example in the 

color designation for Olive Gray (5Y 4/1). The N section of the chart represents the gray 

hues from absolute black (N1) to white (N9). Colors of the El Pui sequence were 

evaluated on freshly cut samples on dry outcrops, or individual air dry samples because 

wetting usually decreases the value number, thus making the rock specimen darker, 

although the Chroma may not change.   
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Microscopic analyses were carried out using a Wild-M5 binocular microscope for 

initial examination of cut samples, as well as washed residues, and an Olympus BH-2 

petrographic microscope equipped with conventional transmitted and/or polarized light 

for microfacies analysis.  

Semi-quantitative analyses using Scanning Electron Microscopy (SEM) and 

Energy Dispersive Spectroscopy (EDS) were obtained on selected samples representative 

of facies intervals to identify the components of the matrix and evaluate dominant 

constituents (Sanchez-Hernandez and Maurrasse, 2014). Selected samples were polished 

and acid etched based on the technique described by Folk (1993), and used in our 

laboratory (Duque-Botero and Maurrasse 2005) for imaging and semi-quantitative 

chemical analyses with a JEOL JSM 5910LV available at the Electron Microscopy 

facility of the Earth and Environment Department at FIU.  

 

Figure 6-5 Close-up view higher up the sequence showing part of the outcrop of microfacies MF5. 
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The nomenclature selected to describe and characterize microfacies is mostly after 

Folk (1980) modified from Folk (1962) classification scheme. Occasionally, we also refer 

to Dunham (1962) scheme, when convenient and for simplicity. At the microscopic scale 

we also consider fabric, primary microstructures including burrowing, presence or 

absence of planktonic and benthic organisms, as well as all other identifiable bioclasts 

(e.g. ostracod, ammonoid and echinoderm fragments), mineral content, and 

miscellaneous components indicative of conditions of sedimentation and diagenesis 

(pyrite).  

 

Figure 6-6 Close-up view of the outcrop comprising microfacies MF5 showing the transition from massive 
well consolidated limestones to marlstones. 

Textural terms used in the petrographic analyses are after Folk (1962), Dunham 

(1962), Friedman and Sanders (1978); Flügel (1982), and Scholle and Holmer-Scholle 

(2003). Estimate of grain size distribution was made in 20 fields of view at ×40 and × 

100 magnifications per thin section. Relative abundance of fossil components is given as 
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per 10 cm2 of a thin section, where abundant is considered for more than 10 specimens/10 

cm2; scarce = 10-4/10 cm2; rare = < 4/10 cm2 (Sanchez-Hernandez and Maurrasse, 2014).  

Concerning lithologic terms of the carbonate rocks, there is no definitive agreement in the 

literature on the range of appropriate carbonate values to define the different lithologies. 

Pettijohn (1957) suggested a detailed subdivision, including 35 to 65 percent carbonate 

for marls. Here we use the values adopted in Sanchez-Hernandez and Maurrasse (2014) 

based on measured CaCO3 (TIC) as follows: limestone, > 65% CaCO3; marly-limestone, 

60% - 65% CaCO3; marlstone, 30% - 60% CaCO3; calcareous mud-rock/shale, 10% - 

30% CaCO3; and mud-rock/shale, 0 - 10% CaCO3.  

Concerning foraminiferal nomenclature for the index taxon identified in the 

studied section we apply the taxonomic name Globigerinelloides for the species G. blowi 

(also commonly referred to in the literature as Blowiella blowi). The choice of this 

taxonomic name is based on the work of Verga and Premoli-Silva (2002, 2003) that 

clearly established the validity of the genus Globigerinelloides as applied to this taxon. 

Because the samples were well indurated, normal disaggregation method using a 

detergent was unsuccessful therefore we attempted the liquid nitrogen [LN2] method for 

foraminifera (Remin et al. 2012), which enabled extraction of a few loose specimens of 

G. blowi (Sanchez-Hernandez and Maurrasse 2014). However, the LN2 method did not 

yield loose specimens of the co-occurring species such as Globigerinelloides 

maridalensis and Globigerinelloides paragottisi, or any other planktonic foraminifera. 

Thin section analysis of sample C11-113 at the 43 m level (Fig. 6-7A) yielded 

morphotypes that could be conferred to G. maridalensis, which is in agreement with both 

the stratigraphic range assigned to this taxon in the earliest Aptian (Verga and Premoli-
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Silva 2002, 2003), and the chronology based on chemostratigraphy (Sanchez-Hernandez 

and Maurrasse 2014). 

 

Figure 6-7 A) Simplified lithologic column of the lower 85 m of the El Pui section with partial sample 
location and microfacies distribution. Color assignment to microfacies follows the same pattern throughout 
the column. B) Total organic carbon curve (TOC), and C) total inorganic carbon (TIC) as wt % CaCO3. 

Leupoldina (Bolli 1957; Caron 1985; emended Verga and Premoli Silva 2002) is 

also a characteristic genus reported from the late Barremian to the early Aptian (Premoli 

Silva et al. 1999; Verga and Premoli Silva 2002; Elkhazri et al. 2013) with variations in 

levels of occurrences that may be due to their rarity and susceptibility to diagenetic 

dissolution (Premoli Silva et al. 1999). In the El Pui section very rare morphotypes that 

could be attributed to leupoldinids were recorded starting at ~51m (sample C11-145, Fig. 

6-7A). However, none of the forms inferred to this genus could be conferred to a species 
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because of the complex shell type. As discussed and illustrated in Verga and Premoli 

Silva (2002), Leupoldina has tridimensional morphological features that are extremely 

complex. The forms vary from pseudosplanispiral to very slight trochospiral coiling, and 

chambers may be branching out (bi-tri or quadrifurcated) in various degrees with 

terminations that may include ampullae (e.g. Verga and Premoli Silva 2002). In addition, 

the Leupoldina shell shows such pronounced disaxial growth that results in an asymmetry 

of the last whorl with one side slightly convex and the other side slightly concave, or the 

last chamber completely shifted towards one of the sides (Verga and Premoli Silva 2002). 

Hence, Leupoldina morphotypes display such a great disparity of asymmetry that the 

main criterion that distinguishes the different species being the degree of involution 

cannot be unequivocally identified in thin sections.  Since the rocks at El Pui were too 

lithified to extract whole specimens that might provide unmistakable morphological 

characteristics of distinct Leupoldina species, the assignments here remain at the genus 

level.  

6.4 Results and discussion 

6.4.1 Overall lithology and macrofacies 

At the field scale the lower 85 m of the El Pui section consists of an interbeded 

sequence of essentially carbonate rocks that can be referred to as calcilutites (Folk 1962). 

The beds are essentially tabular, well indurated, and vary in thickness between 15 cm and 

3 m (Figs. 6-2 – 6-5) with scattered ammonites at intermittent levels (Moreno-Bedmar 

2010; Sanchez-Hernandez and Maurrasse 2014). The lithologic succession is 

characteristically dark in color, displaying various shades of grays (N7 – N6) to light 

olive gray (5Y6/1) on weathered surfaces, and medium dark gray (N4) to grayish black 
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(N2) on fresh cuts. Although color variation shows no relationship to rock texture, 

previous studies suggested that they might be related to fluctuations in OC and mineral 

content (Sanchez-Hernandez et al. in press). The rocks may show apparent fissility thus 

appearing shaly on weathered surfaces, but the flaky appearance (Ingram 1953) often 

dissipates at depth as the unaltered rock is well lithified. The cleavages that developed 

parallel to bedding plane are actually related to discrete shears due to tectonic stresses 

and strains, and in some cases the rocks appear softer due to shearing and partial 

weathering (Figs. 6-2 – 6-6).  

Owing to their dark color and the apparent weathered shaly structures rocks of the 

Cabó Formation are often associated with black shales, but TOC fluctuates up to 1.7% 

(Fig. 6-7B), and the measured TIC values remain above the treshold limit of 30% CaCO3 

for shales. In fact, the minimum recorded value is 43.5% at about 13 m (Fig. 6-7C) from 

the base of the studied section, which is part of the series of thickly bedded units that can 

be assigned to marlstones (Sanchez-Hernandez and Maurrasse, 2014).  

6.4.2 Microfacies description, intervals of occurrence and interpretation 

The most important lithologic characteristic of the Barremian–Aptian transition in 

the El Pui section is a significant change in microfacies character from the calcarenites 

and calcirudites (Urgonian type facies) of the Prada Formation (García-Senz 2002) to the 

calcilutites of the of the Cabó Formation. The shallow-water limestone facies of the Prada 

Formation are biocalcirudites, or packstones, commonly crowded with annelids, mollusk 

and echinoid fragments, and other bioclasts in a micritic matrix (Garrido-Mejías 1973; 

Berástegui et al. 1990; García-Senz 2002). In contrast, the basal part of the Cabó 

marlstones represents a sudden shift from shallow-water platform deposits to deeper 



176 

hemipelagic mudstone facies interpreted by Berástegui et al. (1990) as an offshore/slope 

and basinal deposit with very limited contribution from shallow platforms (García-Senz 

2002). This sharp contrast in sedimentation regime, bio-production and material sources 

has been related to tectonic reconfiguration of the area as the rifting episode of the 

Iberian and European plates accelerated during the early Aptian (Gong et al. 2009) thus 

producing numerous basins with complex bathymetries associated with differential 

flexural movement.  During this interval the development of an E-W trending graben 

(Dinarès-Turell and García-Senz 2000) characterizes a deepening phase of the Organyà 

Basin that underwent increased subsidence (García-Senz 2002). A coeval transgressive 

system (Bernaus et al. 2002) may have also contributed to rapid differentiation of the 

depositional conditions.  

The overall typical microfacies at all levels of the studied sequence are 

characterized by a matrix of dark yellowish brown (10YR 4/2 to 10YR 5/4) in plane-

polarized light, and consist of a fine mud (clay to fine silt sizes: 4 - ~30m) composed of 

mix carbonate (70%), OM (~ 1.0%), and siliciclastic: fine quartz (14%), clays (9%) and 

other minerals (6%). Both microscopic and SEM analyses reveal that sparry calcite is 

extremely rare while the major carbonate constituents in the micritic matrix are 

calcareous nannofossil remains (Fig. 6-8A–D) (Sanchez-Hernandez and Maurrasse 2014; 

Sanchez-Hernandez at al. in press), which account for most of the fine fraction. The 

allochemical fraction fluctuates between 5 and 35% and is mainly composed of 

comminuted echinoderm (roveacrinids) and ammonite shell microfragments, together 

with varying amount of calcispheres. All other microfossils are rare to very rare, 

consisting of ostracods, benthic and planktonic foraminifera (Figs. 6-9 – 6-16).  
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Figure 6-8 SEM micrographs of samples showing characteristic components of the matrix in the 85m 
section studied. A) C10-52, 19 m;  B) C10-77, 28 m; C) C11-87, 32 m);  and D) C11-137, 49 m. 
Calcareous nannofossil remains are consistently abundant and are the main components of the calcareous 
matrix throughout the studied sequence. Note framboidal pyrite (FP) in micrograph B. 

Microscopic compositional and textural changes allow for the identification and 

characterization of various hemipelagic microfacies (MF) of the El Pui section as 

follows: 

MF1: Sparsely fossiliferous micrite type 1 

MF1 occurs within the lowest 4.8 m of the studied section, and recurs between 

51.6-54.3 m (Figs. 6-3, 6-7A, 6-9A–G). This microfacies is characterized by a fine 

micritic matrix with 25-35% allochems that consists of small carbonate debris with 

fragment sizes between 10 m and 1 mm. Approximately 99% of the coarser components 

have size <50 m (silt size ranges). Larger skeletal grains account for only ~1% of the 

allochems and consist of thin shelled ammonite (< 60 m), and roveacrinid fragments 

(Fig. 6-9D, E, G). Planktonic and benthic foraminifera (Fig. 6-9C, F) are rare throughout 

and consistently of very small sizes <150 m, ostracods are rare and intermittent. The 
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microfabric is isotropic with a low bioturbation index ranging from 0 to 2 (Taylor and 

Goldring 1993). Interparticle pores in burrows and intraparticle pores are partially filled 

with kerogen, which may account for an average TOC of 0.5% (Fig. 6-7B). Calcispheres 

and pyrite (framboidal and dispersive) are common.  

 

Figure 6-9 Photomicrographs illustrating microfacies MF1. A) Sample C10-01, micritic matrix with a larger 
unidentified skeletal grain. B) Sample C10-04, bioturbated matrix with kerogen filling in interparticle pore 
spaces. C) Sample C10-05, very fine micritic matrix with a small planktonic foraminifera (Pk) (cf. G. blowi 
?). D) Sample C10-06, very fine micritic matrix with roveacrinid fragments. E) Sample C10-06, 
undetermined roveacrinid fragment in a fine carbonate mud. F) Sample C10-09, with well-preserved coiled 
benthic foraminifera in a carbonate mud with additional carbonate microfragments. G) Sample C10-09, 
undetermined roveacrinid fragment. 
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Interpretation 

In MF1 the primary sedimentary structures include essentially bioturbation, thus 

the lack of patterns indicative of hydrodynamic processes implies a calm environment, 

most likely within bathyal depth or deeper. The preserved biomass indicates that 

productive surface waters were apparently dominated by calcifying nannoplankton (Fig. 

6-8), with fewer calcispheres (Sanchez-Hernandez et al., 2014), and shelled heterotrophs 

including mostly roveacrinids and small thin-shelled ammonites. Planktonic foraminifera 

were rare suggesting that they played a minor role of the extant food web. Such scarcity 

or absence of planktonic foraminifera in environments with roveacrinids is also reported 

elsewhere (Peck 1943; 1955; Cros et al. 1991; Ferré and Berthou 1994; Ferré 1997; Ferré 

and Granier 2001).  

The absence of shallow-water components in the El Pui sediments suggests 

retrogradation of the surrounding carbonate platforms, and possibly the effect of sediment 

traps associated with the complex flexural architecture of the subsiding margin 

(Gabrielsen 2010). Since increased subsidence rates have been reported for the Organyà 

Basin in the early Aptian (Berástegui et al. 1990; García-Senz 2002) and 

paleophysiographic reconstructions suggest a most likely flat configuration of the 

platform (Caus et al. 1990), we favor a combination of subsidence and a natural barrier 

that blocked the input of carbonate debris into the hemipelagic domain. 

 The appearance of rare small (<150m) benthic foraminifera in MF1 

corroborates oxygen-deficient conditions (Wignall and Myers 1988) in bottom waters, as 

their scarcity cannot be attributed to lack of food supply because of extensive OM in 

burrows, intergranular and in intragranular pores (Fig. 9B, D), TOC averages 0.5%.  
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Although anoxia was not achieved, framboidal and dispersive pyrite (similar to Fig. 6-

8B) further suggest redox conditions favorable for OM preservation. The relatively high 

TOC, together with significant carbonate content (45.5 - 71.3%) within MF1 intervals are 

consistent with enhanced in situ surface productivity as indicated by the dominant 

calcareous nannofossil remains and skeletal detritus from higher pelagic heterotrophs 

(mesoplankton secondary consumers) (Fig. 6-9D, G) not characteristic of carbonate 

platform debris (García-Senz 2002).  

MF1A: Sparsely fossiliferous micrite 

MF1A is a variant of microfacies MF1 occurs only between 67.6 and 70.2 m 

(Figs.6- 7A, 6-10A–F). Its main characteristic is a relative decrease in the allochem 

content (<10%) with respect to MF1.  Benthic foraminifera remain rare and include only 

elongated uniserial and biserial morphotypes (Fig. 6-10A, E). Planktonic foraminifera are 

rare (Fig. 6-10D). MF1A shows some degree of anisotropic fabric, with low bioturbation 

index (0-1), which may explain the fabric closest to the original orientation of the 

bioclasts. The allochems >50 m are <1% of the total content and include also echinoid 

spines (Fig. 10B), small roveacrinid fragments (Fig. 6-10C), and possibly ostracods (Fig. 

6-10F).  

Interpretation 

Subfacies MF1A showing texture and fabric similar to MF1 with limited 

bioturbation and biserial benthic foraminifera points to a possible short episode of 

heightened oxygen depletion close to the water sediment interface that increased OM 

accumulation, possibly coupled with a surge in intensified plankton productivity 
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(Sanchez-Hernandez et al., in press). Oxygen depletion may have worsened, but the 

presence of the benthic foraminifera implies that anoxia was not fully achieved. 

 

Figure 6-10 Photomicrographs illustrating microfacies MF1A. A) Sample C10-64, benthic foraminifera in a 
very fine carbonate mud with dispersive amorphous OM. B) Sample C10-65, cross section of a small echinoid 
spine in a very fine carbonate mud with dispersive amorphous OM. C) Sample C11-19, roveacrinid fragment 
next to a microfracture in a fine matrix. D) Sample C11-191, planktonic foraminifera G. blowi. E) Sample 
C11-193, biserial benthic foraminifera (Bt) and microcarbonate fragments floating in a micritic matrix. F) 
Sample C11-189, undetermined bioclast, possibly an ostracod? 

MF2: Fossiliferous micrite 

MF2 is prevalent within the 85 m-studied interval of the El Pui section. It occurs 

intermittently within the following levels: 4.8-7.2 m, 13.5-16.4 m, 47-50 m, 51-51.6 m, 

54.3-67.6 m, 70.2-76 m and 81-85 m, respectively (Figs. 6-3, 6-4, 6-7A, 6-11A–H, 6-

12A–K). The textural appearance of microfacies MF2 is characteristically coarser, with a 

predominately isotropic microfabric (bioturbation index of 1-3), more diversified skeletal 

grains (20-35%), and rare larger-sized biserial benthic foraminifera than in MF1 (Figs. 6-

11E, 6-12D, K). Planktonic foraminifera vary between abundant (at ~5 m) and scarce in 

the other intervals, but are consistently very small (80-120 m) (Figs. 6-11B, 12C). SEM 

analysis reveals essentially calcareous nannofossils in the matrix similar to MF1.  
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The average TOC value (Fig. 6-7B) at levels coincident with MF-2 fluctuates 

between 0.5 and 0.9% and is recorded throughout in the texture as traces of dispersive 

kerogen, or as small accumulation in the inter- and intraparticle pores, as well as filling 

skeletal molds (Figs. 6-11E, G, 6-12D, G). The average TIC varies from ~51 to ~73% 

indicating strong carbonate dominance in the sediment (Fig. 6-7C). Bioclasts range in 

size from 10 m to 2 mm (Figs. 6-11, 12) with 80% of fragments < 60 m in size, ~15% 

between 60 and 200 m, and ~ 5% > 200 m. Elongated acicular particles < 50 m in 

size are also common (Fig. 6-11F).  

Interpretation  

MF2 includes significant amount of acicular carbonate particles together with 

millimeter scale tabular pieces that suggest active disintegration of ammonite shells 

nacreous layers (Birkelund and Hansen 1968; Kulicki 1979; 1996; Velásquez-Castillo et 

al. 2006) presumably from abundant very small pelagic species, because larger molds are 

very rare in the beds. Larger skeletal grains (Figs. 6-11D, 12E–G, I) have morphological 

and textural characteristics of roveacrinids (Peck, 1943; 1955; Cros et al. 1991; Ferré and 

Berthou 1994; Ferré 1997; Ferré and Granier 1997; 2001). Clearly the abundance of 

ammonite and roveacrinid debris suggests a trophic pyramid in the pelagic domain of the 

basin where these organisms might have been the primary or secondary consumers 

benefiting from the intricate food web sustained by high primary productivity (Scarparo 

Cunha and Shimabukuro 1997; Kruta et al. 2011). The proximity of landmasses and 

existing physiographic differences between the basin and surrounding terranes 

(Berástegui et al. 1990) permit to infer that constant fluxes of the most critical biolimiting 

element in the biological cycle (i.e. phosphorus) to the basin (Sanchez-Hernandez and 
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Maurrasse 2014) resulted in sustained high primary productivity, and an accelerated food 

chain in which roveacrinids and ammonites played an active role (Cecca 1998; Kruta et 

al. 2011).  

 

Figure 6-11 Photomicrographs illustrating microfacies MF2. A) Sample C10-16, fine carbonaceous matrix 
with benthic (Bt) slightly below center, planktonic (Pk) foraminifera, and abundant calcispheres (cs). B) 
Magnified view of part of photomicrograph shown previously in A. C) Sample C10-17, abundant 
microcarbonate fragments and skeletal components in a fine matrix. D) Sample C10-18, inferred section of 
a radial plate of an undetermined roveacrinid. The microcarbonate particles are thought to be from 
disintegration of these planktonic micro-echinoderms. E) Sample C10-20, biserial benthic (Bt) 
foraminifera. F) Sample C10-18, slightly bioturbated carbonate matrix with abundant comminuted skeletal 
debris. G) Sample C10-20, molds of planktonic (Pk) foraminifera replaced with kerogen in a micritic 
matrix. H) Sample C10-19, undetermined fossil remain embedded in a fine carbonate matrix (copepod ?, 
loricifera ? van der Wielen et al. 2005, Yakimov et al. 2007). 
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Figure 6-12 Photomicrographs illustrating microfacies type MF2, continued. A) Sample C10-31, oblique 
section of small echinoderm spine. B) Sample C10-31, undetermined roveacrinid fragment in a fine, dark 
carbonate mud. C) Sample C10-32, planktonic foraminifera. D) Sample C10-32, biserial benthic 
foraminifera (Bt) with chambers filled with OM. E, F) Sample C10-39, undetermined roveacrinid 
fragments in a fine micrite. G) Sample C11-153, comminuted ammonite shells. H) Sample C11-155, cross 
section of a small echinoid spine in a fine carbonate matrix with occasional subparallel fabric. I) Sample 
C11-161, undetermined roveacrinid fragment in a dark carbonate mud with dispersive amorphous OM. J) 
sample C11-165, echinoderm fragment. K) Sample C11-173, biserial benthic foraminifera in a micritic 
matrix. 
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By analogy with modern environments (Stelmakh 2013; Sun et al. 2013), which 

offer viable conceptual models of the complexity of marine ecosystems in the past, 

various organisms that might have been key participants of the heterotrophic planktonic 

communities (ciliates, copepods, tintinids, dinoflagellates, chaetognaths, salps), were not 

preserved in the sediments. Hence, our knowledge of the exact relationships between 

these various organisms, the roveacrinids and ammonoids in the food web, will remain 

imperfect. Nonetheless, the assumption based on the present is that the biomass of small 

ammonites and roveacrinids indicate that they were major components of the food chain 

in the pelagic domain of the Organyà Basin.  

A relatively high organic carbon content (average TOC >0.5%) suggests a 

chemically reducing phase for MF2, but the bioturbation index (1-3), and the presence of 

benthic foraminifera indicate that, if present, dysoxic conditions were weak (Sanchez-

Hernandez and Maurrasse, 2014; Chapter 4). Fig. 6-11H shows a unique specimen of an 

apparent soft-bodied organism reminiscent of either copepods? or loricifera? (Yakimov et 

al. 2007; Danovaro et al. 2010), which could withstand limited oxygenic conditions. 

Microfacies MF2 is consistent with stable synrift conditions in basin geometry 

and depositional energy as the matrix is still dominated by pelagic components.  

MF3: Sparsely fossiliferous micrite type 2 

MF3 (Fig. 6-13A–J) occurs in relatively short and intermittent episodes that 

characterize intervals 8.0-8.3 m, 9.6-11.5 m, 16.7-17.4 m, 50-51 m, and 76-81 m, 

respectively (Figs. 6-3, 4, 6-7A) The typical features of MF3 is a decrease in the 

allochemical content to ~10% as compared with MF1 and MF2. Planktonic foraminifera 

are rare with sizes ~100 m or less (Fig. 6-13A). Benthic foraminifera are scarce and 
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small, but increase in size (150 - 300 m) at certain levels (Fig. 6-13B, E, I). Scattered 

larger ammonoid fragments (Fig. 6-13J), roveacrinid (Fig. 6-13C, F, H) and other 

unidentified echinoids, still occur in the fine carbonate matrix and may account for <10% 

of the skeletal grains. The average TIC is ~78%, while TOC averages ~0.5%. Primary 

and secondary intraparticle pores are filled with organic matter (Fig. 6-13E– G). 

 

Figure 6-13 Photomicrographs illustrating microfacies MF3. A) Sample C10-21, lateral cut of a small 
planktonic foraminifera in a very fine, dark carbonate mud. B) Sample C10-24, partial view of a biserial 
benthic foraminifera in the same type of matrix as C10-21. C) Sample C10-25, roveacrinid skeletal 
fragment. D, E) sample C10-42, benthic foraminifera in a dark carbonate matrix. F, G, H) Sample C10-43, 
(F) transversal section of a roveacrinid cup; (G) undetermined bioclast; (H) oblique to transverse section of 
an undetermined roveacrinid. I) Sample C10-44, benthic foraminifera in a fine carbonate mud. J) Sample 
C11-203, ammonoid skeletal fragment in a fine carbonate mud (field of view is rotated relative to the 
normal bedding plane). 
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Interpretation 

The relative decrease in the allochemical content in MF3 appears to coincide with 

declining terrestrial input (Sanchez-Hernandez and Maurrasse, 2014), which might have 

affected the nutrient load, thereby negatively impacting the marine food web in the 

pelagic realm of the basin. Perhaps, a reduction of clastic fluxes contributed to maintain 

relatively high TIC values while TOC was not greatly affected because of because of 

continuously high primary productivity. Bioclasts appear intermittently oriented parallel 

to bedding plane (Fig. 6-13J), which suggests limited effects of bioturbation. We infer 

fluctuating dysoxic to oxic bottom waters based on the inconsistent pattern of the size and 

abundance of benthic foraminifera. Such variation in deposition in the Organyà Basin 

could be related to climate variability (Bachmann and Willems, 1996). MF3 is consistent 

with a basinal depositional environment that remained stable.   

MF4: Sparsely fossiliferous micrite type 3  

 MF4 characterizes the following intervals: 8.5-9.0 m, 12.2-13.5 m, 16.5-16.7 m, 

and 46-47 m, respectively (Figs. 6-3, 6-7A, 6-14A–H). MF4 is texturally closely related 

to MF2, from which it differs in allochemical content that ranges from 25-35% with 

~90% of fragments <50m, ~7% between 50 m and 250 m, and ~3% within the 250 

m and 700 m range (Fig. 6-14). Planktonic foraminifera are more common than in 

previous microfacies, and their sizes are typically ~120 m (Fig. 6-14C). Benthic 

foraminifera (Fig. 6-14E) are rare to absent, particularly between 12-13 m. Fragments of 

disintegrated roveacrinids, unidentified echinoderm spines predominate among bioclasts 

with size >250 m, although bits of ammonoid, and calcispheres are also present (Fig. 6-
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14D, F, G). The bioturbation index fluctuates 0-2, and burrowed areas may show 

irregular sub-parallel alignment of elongated micro components (Fig. 6-14G, H).  

 

Figure 6-14 Photomicrographs illustrating microfacies MF4. A, B, C, D) sample C10-22, (A, B) abundant 
acicular to microtabular carbonate particles in a fine-dark matrix; (C) planktonic foraminifera G. blowi; (D) 
unidentified bioclast (? possibly a fragment of the brachial plate of a roveacrinid). E) Sample C10-23, 
benthic foraminifera in a very fine matrix, chambers filled with kerogen. F) Sample C10-29, unidentified 
bioclast in a dark matrix with traces of kerogen. G) Sample C11-129, fine micrite with sub-anisotropic 
fabric. H) Sample C11-131, unidentified bioclast in a dark matrix with traces of OM. Arrows point to 
calcispheres (cs) and planktonic foraminifera (Pk). 

 



189 

Interpretation 

MF4 is consistent with basinal conditions in which the sediment source is 

dominated by calcifying primary producers and pulses of fine siliciclastics (Sanchez-

Hernandez and Maurrasse 2014). Abundance of comminuted skeletal material together 

with larger fragments in the matrix suggests that higher abundance of heterotrophs is 

conceivable as the result of increased primary productivity. Slight variations in mineral 

composition also characterize levels corresponding to MF4 with a small decrease in 

quartz content, minor changes in clay minerals that might reflect either effects of climatic 

processes or sporadic flexural subsidence (García-Senz 2002) that affected the 

physiography and entrapment of coarser detrital materials in more proximal areas. 

Because the percentages of illite, illite/smectite, and kaolinite show almost no change 

(Sanchez-Hernandez et al. in press) it supports basinal depositional conditions with 

limited influence of coarser terrestrial material.  

MF5: Sparsely roveacrinidal biomicrite 

 MF5 is the second most dominant type of facies, which occurs at the following 

intervals: 17.4-22.5 m, 23.3-30.5 m and 33.5-46 m (Figs. 6-4–6-7A, 6-15A–Q). The 

general groundmass distribution of MF5 consists of a fine micritic matrix and varying 

proportion of allochems (~ 5% - 15%) (Fig. 6-15). Coarse skeletal components >200 m 

make up ~1% of the total allochemical fraction. The continuous presence of roveacrinid 

fragments gives MF5 a distinctive character (Fig. 6-15B–D, G, I, O). Fragments of 

apparent micro-ammonite shells are also present, but are less common (Fig. 6-15P). 

Interval 17.4-22.5 m contains few intermittent molds of specimens between 2-4cm. 

Acicular particles interpreted as comminuted ammonite nacreous layer are common (Fig. 
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6-15N) (Kulicki 1979; 1996). OM and pyrite filling in microfossil molds are common, 

particularly in the interval 17.4-22.5 m (Fig. 6-15A). Planktonic foraminifera are 

generally common with average size of ~150 m (Fig. 6-15F, H), whereas benthic 

foraminifera fluctuates but remain scarce with various sizes (up to 500 m; Fig.6-15K). 

The bioturbation index is between 1 and 2 whereas TOC fluctuates from ~0.1-1.7% (Fig. 

6-7B). 

Interpretation 

MF5 is predominant within the lowest 31m of the section characterized by 

fluctuating dysoxic conditions (Sanchez-Hernandez and Maurrasse, 2014). The presence 

of amorphous OM together with occasional pyrite replacement in molds and as individual 

framboids (Fig. 6-8B), and subparallel alignment of allochems (Fig. 6-15H) are 

consistent with reducing conditions in the MF5 intervals. However scarce to rare benthic 

foraminifera indicates that anoxic conditions were not achieved within these intervals 

(Tyson and Pearson 1981; Wignall and Myers 1988). Pervasive bituminous OM suggests 

enhanced export production from intensified surface productivity, which concurs with the 

abundance of roveacrinids that have been associated with conditions of higher 

productivity and oxygen-limited environments (e.g. Santos Basin, southeastern Brazil, 

Dias-Brito and Ferré 2001). It is plausible that the trophic pyramid of the basin followed 

gradients similar to modern communities, which would imply that such low-diversity 

assemblages with high dominance of a few taxa are consistent with an ecological system 

that fostered high productivity of limited groups (e.g. Gaudy and Champalbert 2003; 

Grégoire and Lacroix 2001; Grégoire et al. 2004; Meier et al. 2004; Oguz 2006; Bison et 

al. 2009) either due to competitive exclusion, or that enhanced freshwater and nutrient 
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input at that time  triggered surface conditions favorable mainly to euryhaline primary 

producers, as suggest the high sedimentation rate dominated by nannoplankton remains.  

 

Figure 6-15 Photomicrographs illustrating microfacies MF5. A, B, C) Sample C10-46, (A) micritic matrix 
with interparticle pores filled with OM; (B) longitudinal section of the brachial plate of an undetermined 
roveacrinid; (C) roveacrinid fragment. D, E, F, G) Sample C10-47, D) R in the center: transversal section 
of a brachial plate of a roveacrinid (?), center and above: coiled benthic foraminifera (Bt), left upper corner: 
roveacrinid fragment; (E) ammonoid shell fragment (?); (F) planktonic foraminifera G. blowi ? (G) 
bioclast. H, I) Sample C10-50, (H) planktonic foraminifera in a dark micritic matrix with subparallel 
alignment; (I) roveacrinid fragment. J) Sample C10-55, tangential thecal section of a roveacrinid. K) 
Sample C10-56, relatively large biserial benthic foraminifera. L) Sample C10-59, oblique section of small 
echinoid spine in a matrix with abundant dispersive OM and pyrite. M) Sample C10-69, unidentified 
bioclast. N) Sample C10-74, abundant acicular fragments from disintegration of ammonite nacreous layer. 
O, P) Sample C10-75, (O) brachial fragment of roveacrinid, (P) section of a small ammonite shell. Q) 
Sample C10-83, small echinoid spine. 
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MF5A: Sparsely fossiliferous biomicrite  

 MF5A is a variant of MF5 occurring in two narrow intervals: 22.5-23.3 m and 

30.5-33.5 m, respectively (Figs. 7A, 16A–D). It is also a sparsely fossiliferous micrite 

with foraminifera and lesser abundance of roveacrinids. The matrix is very similar to 

MF5, but its distinguishing characteristic is a relative increase in planktonic foraminifera 

concurrent with a relative decrease in roveacrinid fragments. 

 

Figure 6-16 Photomicrographs illustrating microfacies MF5A. A) Sample C10-64, planktonic foraminifera 
in a fine micritic matrix with dispersive OM. B) Sample C10-65, uniserial benthic foraminifera in a very 
fine carbonate mud rich in OM. C) Sample C10-84, comminuted skeletal fragments in a fine micrite with 
small planktonic foraminifera (Pk) and calcispheres. D) Sample C10-85, small echinoid spine in a dark 
matrix of carbonate mud rich in OM and very fine skeletal grains. 

Interpretation 

The nearly inverse correlation in the proportion of planktonic foraminifera and 

roveacrinid fragments recorded in MF5A further points to a possible competitive 

exclusion relationship, as these pelagic microcrinoids might have played a pivotal role in 

the marine ecosystem as primary grazers of the restricted Organyà Basin, perhaps much 
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like the present day copepods. They might have relied on abundant primary producers as 

well as microplankton heterotrophs such as foraminifera for food resources, as suggest 

their remarkable presence in stressful as well as various eutrophic environments (Dias-

Brito and Ferré 2001; Ferré and Granier 2001, Ferré et al. 2005). MF5A suggests a stable 

basin with short intervals when conditions were less favorable to the roveacrinids. 

6.4.3 Paleoecologic significance of micro-ammonoids and roveacrinids in the El 
Pui sediments 

6.4.3.1 Ammonoids 

Visible and microscopic skeletal grains attributed to disaggregated small 

planktonic ammonite shells occur very sparsely in the sediments (Fig. 6-15P). As 

discussed with the various facies, in addition to the calcareous nannoplankton remains 

that constitute the dominant fraction of the micritic groundmass, comminuted shells as 

microtablets probably originated from the nacreous layer of phragmocones (Birkelund 

and Hansen 1968; Kulicki 1979; 1996), contribute up to 15 percent of the bioclasts below 

10 to 20 microns (Fig. 6-15N). Because of the unusually thin shells observed in thin 

sections (e.g. Fig. 6-15P) we presume that preservation of whole shells of the pelagic 

ammonoids in the Organyà Basin was limited, they disaggregated quickly upon death 

contributing to the marine snow. In fact, most cross sections show shell thicknesses less 

than 500 m, predominately within the range of 120 - 200 m, even in large bioclasts > 2 

cm across the thin sections. Based on the high proportion of bioclasts in the groundmass, 

it is evident that small pelagic ammonites must have been in great abundance in the upper 

water column of the basin of that time, and might have been important members of the 

secondary consumers in the food web. Whether such small ammonoids represent neanic 



194 

or dwarf taxa remains an open question because large specimens have also been found 

intermittently in the sequence where there are more comminuted ammonoid remains. 

Kruta et al (2011) suggested that different species of ammonoids may live at different 

depth levels in the water column, but the similarity in their buccal apparatus implies 

comparable feeding habit, which consisted of small organisms in the water column, 

including planktotrophic larvae. The abundance of roveacrinid fragments concomitant 

with comminuted small ammonite shells also permit to hypothesize a similar relationship 

may have existed between these two groups in the pelagic food web of the Organyà 

Basin. As observed in modern marine ecosystems unusual blooms of the primary 

producers could have fueled exceptional production of a complex trophic pyramid 

whereby roveacrinids belonged in the group of primary consumers while the larger sizes 

micro-ammonoids were part of the secondary consumers.  

6.4.3.2 Roveacrinids 

Roveacrinids are pelagic microcrinoids of the Roveacrinidae family (Peck 1943; 

1955; Cros et al. 1991; Ferré and Berthou 1994; Ferré 1997; Ferré and Granier 1997; 

2001; Farinacci and Manni 2003). The oldest roveacrinid occurrence in the western 

Tethys corresponds to the early Hauterivian of Busot (Alicante, Spain) where they have 

been reported by Ferré and Granier (1997); however roveacrinids are most commonly 

identified in sections from the Albian to the Maastrichtian in other areas of the Tethys 

Ocean.  

Consistent gaps in the presence of roveacrinids in the sedimentary record suggest 

that these microcrinoids where possibly r-strategists with special abilities to colonize 

stressful environments (Dias-Brito and Ferré 2001). The occurrence of roveacrinids in the 
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Albian of the Santos Basin, southeastern Brazil, interpreted as neritic to shallow bathyal 

with hypoxic conditions is in agreement with such hypothesis (Dias-Brito and Ferré, 

2001).  

At El Pui roveacrinids remains occur consistently in sediments from the latest 

Barremian to the earliest Aptian, but mainly within microfacies MF5 (Figs. 6-7A, 6-17) 

Although their occurrences are not confined exclusively to MF5, higher abundance 

concurrent with TOC-rich intervals associated with intensified primary productivity and 

reducing bottom conditions (Sanchez-Hernandez and Maurrasse 2014) provide further 

evidence to relate their presence with such environments.  

 

Figure 6-17 Thin section of sample C10-51 at 18.8 m (MF5) showing a dislocated roveacrinid arm with 
pinnules. Magnified views shown below were taken at the point indicated by the arrows.  Note the 
microtabular structure of the shell, which may account for at least 10% of the allochemical constituents.   

The roveacrinids in the El Pui sediments are the first reported for the Barremian–

Aptian of the marginal basins in the south-central Pyrenees, which was probably 

comparable to restricted basins elsewhere in the early phase of the Atlantic (Cros et al. 

1991; Dias-Brito and Ferré 2001; Ferré and Granier 2001; Farinacci and Manni 2003). 
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Fragments observed in thin sections point to their very small sizes, perhaps smaller than 

those found in sections elsewhere in the Tethys, although fragments of theca and 

occasionally pinnules can be observed (Fig. 6-17) (Ferré and Berthou 1994; Ferré 1997; 

Ferré and Granier 1997; 2001; Farinacci and Manni 2003). Since they were epipelagic, 

they might have been more efficient consumers of the phytoplankton than their 

competitors, and oxygen deficiency in the lower part of the water column did not affect 

their survival. 

6.5 Conclusions 

Hemipelagic sediments in the El Pui section of the Organyà Basin include a 

continuous record from the late Barremian to the early Aptian that indicates a deepening 

depocenter which developed over a rapidly subsiding carbonate platform. Flexural 

interactions associated with rifting accelerated subsidence of the rifted basin and 

provided adequate accommodation space for rapid accumulation of a distinctive set of 

hemipelagic marlstones and limestones with predominant contribution from nannofossil 

remains. Skeletal grains consist essentially of comminuted roveacrinids and ammonoids 

that contributed up to 15% of the allochems at certain levels.  

The continuous 85m sequence studied implies no significant architectural changes 

affecting the extensional basin during that time interval. High-resolution record of the 

temporal evolution of the basin reveals five main microfacies and two subfacies that 

mirror paleoenvironmental changes in the basin mainly related to enhance primary 

productivity and the ensuing active trophic levels that influenced oxygen level, and 

favored organic matter preservation.  
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Roveacrinids are reported for the first time in Barremian–Aptian sediments along 

the northern margin of Iberia, and their presence in the periodically dysoxic environment 

of the Organyà Basin concurs with previous indication that these taxa are associated with 

stressful environments. Low diversity of all forms of organisms in El Pui sediments 

concur with such interpretation because phototrophs represented by calcareous 

nannoplankton together with heterotrophic microscopic planktonic roveacrinids and 

minuscule ammonoids dominated the ecosystem of the Organyà Basin at that time.  
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7 THE RECORD OF OCEANIC ANOXIC EVENT 1a (OAE1a) IN THE 
SEMI-RESTRICTED ORGANYÀ BASIN: IMPLICATIONS FOR 
UNDERSTANDING THE INFLUENCE OF REGIONAL FACTORS IN 
THE EXPRESSION OF OAE1a 

Abstract 

The early Aptian is characterized by the global occurrence of oxygen-deprived 

conditions in the oceans, and the hallmark of that time interval is the accumulation of 

organic-rich sediments during an episode of severe oxygen deficiency that led to anoxia, 

hence the term oceanic anoxic event 1a (OAE1a). The high-resolution, multi-proxy study 

(petrographic, TIC, TOC, carbon isotope, clay mineralogy, biomarkers) of the upper 

155m of El Pui section of the Organyà Basin reveals that low oxygen conditions 

prevailed throughout with varying degrees of depletion, as supported by elevated TOC 

values (>1%), but petrographic observations, molecular biomarkers, and redox sensitive 

trace elements (RSTEs) indicate that full anoxic conditions were not achieved, even at the 

corresponding level of OAE1a. As seen elsewhere, an overall facies change marked by 

increased terrigenous material characterizes the lower Aptian in the study area, but the 

nature of the lithologies associated with the organic carbon-rich deposits are expressed 

differently.  This comparison indicates that significant spatial heterogeneity occurred in 

sub-Tethyan basins during the same global oceanic conditions.  The recurrent appearance 

of facies characteristic of more oxic conditions imply that in certain areas local 

physiographic factors controlled sediment type, and overprinted global forcing 

mechanisms that depleted oxygen level elsewhere. 

The results provide the first high-resolution 13Corg profile for El Pui that 

replicates the carbon isotopic signature reported elsewhere in the Tethys Ocean. This 
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improved high-resolution chemostratigraphic curve offers an exceptionally detailed tool 

for precise worldwide chronostratigraphic correlation. The upper part of the El Pui 

section includes expanded and well-defined carbon isotope segments C2 (upper part), C3, 

C4, C5, and C6 (partial), which correlate with other Tethyan sections and allow for 

recognition of the lower Aptian OAE1a in at least 35 m of the section. 

7.1 Introduction 

The occurrence and impact of global climatic forcing events (e.g., intense 

volcanism, meteorite impact, and astronomical cycles) in the earth system can often be 

traced by analyzing depositional and compositional patterns in the sedimentary record. 

However the marine expression of such events is linked to the nature of the sedimentary 

environment (physiography, circulation patterns, water chemistry, biological composition 

on the biogeochemical cycle, and terrestrial fluxes), which may induce different specific 

responses locally as compared to global events at the regional scale.  

For instance, the environmental response of the oceanic system to greenhouse 

conditions and significant perturbations of the carbon cycle during the lower Aptian 

oceanic anoxic event 1a (OAE1a, 125 Ma) is well recognized for the deposition of 

organic carbon-rich sediments in pelagic and hemipelagic settings on a global scale 

(Schangler and Jenkins, 1976; Arthur and Schlanger, 1979; Scholle and Arthur, 1980; 

Bréhéret, 1988; Coccioni et al., 1989; Arthur et al., 1990; Bralower et al., 1999; Ando et 

al., 2002; Pucéat et al., 2003; Li et al., 2008). Besides the global extent of anoxia at that 

time, there is increasing evidence of coeval deposits in marginal basins that responded 

differently, and certain may lack the hallmark of organic-rich black shale (TOC > 0.5) 

characteristic of OAE1a (Kuhnt et al., 1998, Millán et al., 2009; Najarro et al., 2011; 
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Stein et al., 2012; Gaona-Narvaez, 2013). The different responses further suggest 

dominance of local conditions in the depositional expression of the event.   

Similar variations have also been documented in shallow-water deposits coeval 

with OAE1a, as the effects of differential drowning of carbonate platforms along the 

northern Tethyan margin (Föllmi et al., 1994; Wissler et al., 2003; Burla et al., 2008; 

Föllmi and Gainon, 2008, Gaona-Narvaez et al., 2013; Godet et al., 2013; Masse and 

Ferneci-Masse, 2013) contrast significantly with carbonate growing episodes in the 

southern Tethys (Immenhauser et al., 2004; 2005; Huck et al., 2010). Nonetheless, 

regardless of the sedimentary responses to the global perturbation, all the sites carry the 

same characteristic geochemical pattern that allows meaningful chemostratigraphic 

correlations and assess paleodepositional conditions for that time (Menegatti et al., 1998; 

Larson and Erba, 1999; Price, 2003; Kujau et al., 2012; Godet et., 2014). Indeed, the 

carbon isotope stratigraphy (13Carb and 13Corg) (Menegatti et al., 1998) defines eight 

chemostratigraphic segments (C1-C8) that characterize the late Barremian– middle 

Aptian time interval that has proven useful for stratigraphic correlation and relative 

chronology (e.g. Herrle et al., 2004; Moreno-Bedmar et al., 2009; Stein et al., 2012; 

Gaona-Narvaez, 2013; Papp et al., 2013; Sanchez-Hernandez and Maurrasse, 2014).  

Previous studies of the sedimentary deposits of the Organyà Basin (south central 

Pyrenees, Catalunya, Spain) (Peybernès and Souquet, 1973; Peybernès, 1976; Berástegui 

et al., 1990; Garcia Senz, 2000; Bernaus et al., 2003) have shown sequences associated 

with the basin that comprise shallow water, as well as hemipelagic deposits with 

exceptional continuous record from the late Barremian to the Albian (Berástegui et al., 

1990). The series of ~1100 m of limestones and marlstones accumulated during that time 
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(Bernaus et al., 2003) thus provides an expanded record of the basin suitable for high 

resolution studies that may unravel how that marginal basin responded to fluctuating 

environmental conditions associated with OAE1a.  

Here we apply a multiproxy approach that includes TIC, TOC, carbon isotope, 

biomarkers, clay mineralogy, fossil content and petrography to investigate earliest to 

middle Aptian hemipelagic facies of the El Pui section that may reveal temporal changes 

correlative with the basin response to changing paleoenvironments in relation to OAE1a 

(Sanchez-Hernandez and Maurrasse, 2014). The present work focuses on the upper 155 

m of the El Pui section in complement to previous studies of the lower 85 m (Sanchez-

Hernandez and Maurrasse, 2014; Sanchez-Hernandez et al., 2014). 

7.2 Geological setting 

The evolution of the Pyrenean basins from the Triassic to the Cretaceous was 

marked by two important rifting episodes: the first occurred in the Triassic, and the 

second in the lower Cretaceous (Choukrone et al., 1973; Berástegui et al., 1990). During 

the Cretaceous an intensified phase of spreading associated with the opening of the 

Atlantic Ocean was concurrent with the evolution of the Bay of Biscay that led to the 

development of marginal basins along the European and Iberian Plates (García-Senz, 

2002; Gong et al., 2009). Because of prevailing extensional tectonism at that time a 

system of E-W trending depocenters and irregular margins developed along the northern 

Iberian plate (Puigdefàbregas and Souquet, 1986) resulting in the accumulation of 

shallow-marine carbonates and their lateral equivalent of hemipelagic-pelagic sediments 

with marked facies contrasts (Caus et al., 1990). The Organyá Basin was one of these 

depocenters (Fig. 7-1A) that recorded the Early Cretaceous sedimentary history and 
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became exposed during a Late Cretaceous inversion (Berástegui et al., 1990; Mencos et 

al., 2010). 

The Alpine Orogeny caused inversion of the basin as a result of compressional 

tectonic that led to the development of the Bóixols thrust sheet containing Mesozoic 

rocks (Garrido-Mejías, 1973; Bond and McClay, 1995). The geometric structure of the 

depositional framework of the Organyà Basin is comparable to a graben with estimated 

dimensions of ~ 80 km along the extensional axis and up to 15 km wide (Dinarès-Turell 

and García-Senz, 2000). During the Mesozoic the basin filled with ~ 4500-5000 m of 

mostly Lower Cretaceous sediments (Bachmann and Willens, 1996) at the time when 

subsidence increased providing ample accommodation space for the high sedimentation 

rate (up to ~20 cm/ky) (García-Senz, 2002; Gong, 2008).  

 

Figure 7-1 A) Paleoceanographic map of the lower Aptian with the location of the Organyà Basin and the 
relative position of Iberia in the Western Tethys (after Masse et al., 1993; 2000). B) Simplified geologic 
map of the Organyà area with the relative position of the studied section (modified from Bernaus et al., 
2003; Sanchez-Hernandez and Maurrasse, 2014) 

The El Pui section of the Organyà Basin (Fig. 7-1B) (Sanchez-Hernandez and 

Maurrasse, 2014) is part of the Cabó Formation (García-Senz, 2002) and comprises a 

continuous and expanded sequence of hemipelagic sediments from the late Barremian to 
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the middle Aptian (~240 m). The excellent accessibility of the section is also 

complemented by an exceptional exposure of the beds along stream valleys with water 

gaps profiles. Here we focus on the upper part of the El Pui section that includes ~155 m 

of limestones and marlstones with beds varying in thickness from ~5 cm to 1 m, which 

Bernaus et al. (2003) suggested might include the record of the early Aptian OAE1a. 

7.3 Materials and Methods 

7.3.1 Sampling and petrographic analysis 

Two field campaigns were conducted and 273 samples collected in the upper 155 

m (85 -240 m) of the El Pui section, with sampling resolution averaging ~1 sample per 50 

cm. Samples were collected at closer intervals (up to 1 sample/10cm) where beds were 

thinner (e.g., 180-216 m). The sampling process targeted all the apparent beds as well as 

the lower and upper transition between beds. All samples were taken along erosional 

ridges and valleys of subsequent streams that clearly exposed bedding arrangement 

within the continuous sequence. Sample collection included digging into at least 5 cm of 

the exposed rock surface to provide access to fresh rocks. 

Petrographic and microfacies analyses were carried out on 273 thin sections of 

~6×2.5 cm. The sedimentological characterization was performed using a conventional 

transmitted light microscope (Olympus BH-2 microscope). As a complement to field 

scale observations, the microscopic study also paid special attention to the 

presence/absence of benthic fauna, bioturbation and early diagenetic minerals indicative 

of redox conditions.  
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7.3.2 Carbon analyses (TOC, TIC, 13Corg) 

Total inorganic carbon (TIC) and total organic carbon (TOC) were determined for 

all samples (273) in the 85-240 m interval following standard analytical procedures used 

at Florida International University (Gaona-Narvaez et al., 2013; Sanchez-Hernandez and 

Maurrasse, 2014). The measurements were carried out with a LECO CR-412 and the 

calibration was performed using calcite (C64-500, Fisher Scientific) and dolomite 

(Dolomitic Limestone NIST 88b) as standard reference materials. The measured carbon 

was standardized to pure calcite, and the results of TC and TIC are expressed as a 

percentage by weight of bulk CaCO3. TOC was determined form the subtraction of TIC 

for TC and divided by 8.33 (molecular weight of CaCO3). Analytical precision of the 

results was of ± 5% based on comparison with the standards true values.  

The lithologic nomenclature used for the sequence of 155 m of carbonate rocks is 

after Sanchez-Hernandez and Maurrasse (2014; Chapter 4) whereby measured CaCO3 

(TIC) values indicate: limestone, > 65% CaCO3; marly-limestone, 60% - 65% CaCO3; 

marlstone, 30% - 60% CaCO3; calcareous mud-rock/shale, 10% - 30% CaCO3; mud-

rock/shale, 0 - 10% CaCO3.  

Similarly, procedures for carbon isotope analyses follow the description in 

Sanchez-Hernandez and Maurrasse (2014; Chapter 4), and calculations are based on the 

standard equation δ13C (permil,‰) = [(13C/12C)sample /(13C/12C)std - 1] × 1000. Carbon 

ratios obtained were repeatedly compared with a laboratory reference gas under identical 

conditions. Precision of isotopic analyses for replicate samples, the international standard 

IAEA-CH-6 (Sucrose) and our lab standard (glycine) was better than ± 0.025‰. 
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7.3.3 Bulk and clay mineral analyses 

Mineralogical analyses of 20 samples at different levels of the stratigraphic 

column were performed at the Illinois State Geological Survey (ISGS) using X-ray 

diffraction (XRD) following the methodology described by Moore and Reynolds (1997). 

For the XRD procedure, the samples were micronized in a McCrone micronizing mill 

with deionized water for 10 minutes. Then they were transferred to 50 mL centrifuge 

tubes, which were placed in the centrifuge for 20 minutes at 2000 rpm. The clear 

supernatant was poured off and the remaining material dried overnight at 40°C. When 

completely dried the material was mixed lightly with a mortar and pestle, and then 

packed into an end-loading sample holder as a random powder bulk-pack. The random 

powder bulk-pack was analyzed with a Scintag XDS 2000 diffractometer. Step-scanned 

data was collected from 2° to 60° 2θ with a fixed time of 5 seconds per 0.05° 2θ for each 

sample. All resulting traces were analyzed using the semi-quantitative data reduction 

software from Materials Data Inc. (MDI) known as Jade®. 

The clay mineral composition was determined using oriented slides of the clay 

size < 2 m fraction with semi-quantitative values of the clay mineral assemblage 

calculated from ethylene glycol (EG) solvated slides (Hughes and Warren, 1989; Hughes 

et al, 1994; Moore and Reynolds, 1997).  

In preparation for XRD, 20 g - 30 g of each sample was soaked for about 10 - 12 

hours in deionized water and protected from external agents. As water interacts with the 

sample, small clay particles are released into the solution. Further stirring of the solution 

mechanically induced clay release from the sample. After settling, about 1/3 of the water 

was removed from the beaker. The beaker was then refilled with deionized water and two 
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drops of sodium hexametaphospate were added as a dispersant. The mix was stirred and 

then allowed to settle for 15 minutes. The generated supernatant was pipetted and several 

drops were added onto a glass slide and let to dry overnight. 

Alternate treatments of air dried samples, EG for 24 hours, and heating to 490°C 

were also applied in order to establish a better comparison in peak intensity ratios among 

the expandable clays. Step-scans from 2° - 34° 2θ with a fixed time of 5 seconds per 

0.05° 2θ were conducted for each sample. 

7.3.4 Major and trace element analysis 

Major and trace element (TE) concentrations were obtained using the 

methodology described in Sanchez-Hernandez and Maurrasse (2014; Chapter 4), 

applying calibration and detailed procedures developed at the FIU Forensic Center 

(Arroyo et al., 2009). The method combines Laser Ablation and Inductively Coupled 

Plasma Mass Spectrometry (LA-ICP-MS) using a 266 nm Nd-YAG laser (LSX 500, 

CETAC, USA) and a quadrupole ELAN DRC II (Perkin Elmer LAS, Shelton CT USA), 

in the standard operation mode. Ablations were conducted as discrete scans in previously 

prepared pressed sample pellets, in four different locations in the same pellet die.  

The following soil and sediment standards were used for evaluation of the 

analytical performance of the method: a) marine sediment reference material, PACS-2 

(National Research Council of Canada, Ottawa, Canada); b) soil reference material, SRM 

NIST2710 (Montana Soil), and c) NIST2704 (Buffalo River Sediment), US Department 

of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA). 

Elemental analyses were conducted on 80 selected samples along the 155 m 

interval based on apparent facies changes and marked shifts in TOC and TIC. 
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Concentrations of Ni, V, Cr, P, Fe, U, Th, and Co, and major elements such as Al, Si and 

Ti were measured using NIST 2704 as the main reference standard. Since there is no 

concentration of Mo reported for NIST 2704 its elemental distribution was established 

using PACS2 as the main reference standard material following identical procedure as for 

the other elements. The analytical precision for all concentrations was verified to remain 

better than ±10%.  No evidence of external contribution from the sample preparation 

process was identified. 

7.3.5 Biomarker analysis 

In preparation for biomarker determination, small rock slabs corresponding to 24 

different samples were powdered in a Bell-Art micromill. A careful cleaning process, 

with water, detergent, deionized water and acetone, was completed between samples. 

Biomarkers were analyzed following the procedures described in Jaffé et al. (2001). 

Samples were subjected to Soxhlet extraction for 24 hours with 300 ml 100% methylene 

chloride (Optima, Fisher, USA) as solvent. HCl (10%) activated copper was added during 

the extraction to eliminate elemental sulfur. Total extracts were concentrated by rotary 

evaporation and saponified with 0.5 N KOH to separate into neutral and acid fractions. 

The neutral fractions free of elemental sulfur were further fractionated by elution with 

hexane to obtain saturated hydrocarbon fraction using Pasteur pipette columns packed 

with silica gel. A known quantity of squalene was added as internal standard for 

quantification purpose, and the hydrocarbon fraction was run on gas chromatography-

mass spectrometry (GC-MS) with a Hewlett-Packard 6890 GC linked to a HP 5973 

quadrupole MS system, fitted with Rtx-1MS columns (30 meters long, 0.25 mm ID, 0.25 

um df) from RESTEK, USA. The GC oven was programmed to hold initial temperature 
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of 40°C for 1 minute, and then ramped at a rate of 6°C/minute to a final temperature of 

300°C held for 20 minutes.  

The analysis focused on the aliphatic fraction, more specifically on n-alkanes, 

which have been previously used to determine the provenance of the organic matter 

(Giger et al., 1980; Meyers, 1997; Dumitrescu and Brassell, 2005; Peters et al., 2005). 

Identification of compounds was performed by comparison of chromatographic retention 

time, comparison with the mass spectra library and previous mass spectra reported in the 

literature. The concentration of each biomarker was normalized to organic carbon (OC) 

as ng/g OC. 

7.4 Results 

7.4.1 Lithostratigraphy, and petrographic analysis 

At the field scale the upper 155 m of the El Pui section consists of interbeded 

limestones and marlstones (Fig. 7-2A) with the exposed surface varying in color from 

light gray (N7) to medium dark gray (N4) but, on fresh-dry samples the color variation 

ranges from medium dark gray (N4) to grayish black (N2).  

The interval between 85 ~150 m includes a monotonous sequence of marlstones 

and limestones that may appear flaky (Ingram, 1953) due to surficial weathering, but 

show excellent preserved conditions below. This interval shows an intermittent pseudo-

nodular aspect that becomes evident at ~125 m, and more accentuated at ~150 m where 

the rocks are well lithified (Fig. 7-3). Less indurated beds with coarser texture alternate 

with hard, finer-textured beds between ~185 and ~215 m, a succession that suggests the 

influence of high frequency astronomical cycles (Bachman and Willems, 1996). This 

interval is also characterized by the occurrence of relatively well-preserved sea urchins 
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(Fig. 7-4). Ammonites increase in abundance and size (2-3 cm to 10cm) upward in the 

studied interval and coincide with higher amount of iron oxide nodules and pyrite. Scarce 

belemnites are also present. 

 
Figure 7-2 A) Simplified stratigraphic log of the upper 155 m of the El Pui section (85-240 m) showing the 
relative lithological variations. The M and W on top of the column refer to the mudstone and wackestone 
classification of Dunham (1962). B) TIC profile along the studied interval. C) Temporal variation in the TOC 
correlated with the stratigraphic log and TIC. D) 13Corg profile along the stratigraphic column. 

Microscopically the interval between 85 and 150 m reveals a slight change in 

facies characterized by a fine micritic matrix (Fig. 7-5A, B) with less than 20% 

allochems, frequent sub-parallel microfabric and dispersive kerogen. In general 

abundance of benthic foraminifera is limited (<10 specimens/10 cm2) within this interval, 

and includes essentially scarce small uniserial and biserial morphotypes. A relatively 

sharp change in facies takes place at ~152 m with a transition from fossiliferous micrite 
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in the lower part to packed biomicrite (Fig. 7-5C) with skeletal components consisting 

mainly of echinoid fragments, and less benthic and planktonic foraminifera. However, the 

most contrasting change appears at ~182 m where the allochems reach ~60-70% (Fig. 7-

5D) , and remain prevalent up to ~199 m where they decline drastically to ~40% in a 

carbonate mud matrix (Fig. 7-5E) . Proportion and size of allochems decrease gradually 

upward and at the 213 m level reverted to a predominantly micritic matrix as found at the 

85 – 150 m interval.  

 

Figure 7-3 Field view of part of the studied section at about the 186 m level showing well-stratified pseudo-
nodular limestone. 

The change in allochemical 

content is also characterized by recurrence 

of dominant planktonic foraminifera and 

small calcispheres. The microfabric 

within that interval displays subparallel 

fabric, and these characteristics remain 

consistent up to the top of the studied 

Figure 7-4 Fossil echinoid found at level 187.5 m 
(sample C12-360). These echinoids are common in 
the 180 – ~200 m interval. 
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section at 240 m. That uppermost level shows a fine matrix containing only small 

allochems (<5%), and the rocks can be classified as fossiliferous micrites (Fig. 7-5F) 

(Folk, 1962). 

7.4.2 Inorganic, organic and isotopic carbon analyses (TIC, TOC and 13Corg) 

Fig. 7-2B, shows the total inorganic carbon (TIC) fluctuating between 40.9 and 

98.3% which is relatively high throughout the 155 m of the studied section, particularly 

between 160 and ~210 m with values mostly above 80%. This interval also coincides 

with an increase in the allochems and microcarbonate particles (Fig. 7-5D, E).  

 

Figure 7-5 Sedimentary microfacies prior to, during and after OAE1a in the El Pui section showing 
paleodepositional changes. A) Sample C12-216 at 92.5 m; fine carbonate matrix with kerogene content 
showing subparallel microfabric with low bioturbation. B) Sample C12-280 at 149 m; this level is 
characterized by an increase in the microcarbonate content and size in a dark carbonate mud. C) Sample 
C12-286 at ~153 m; showing increase abundance and size of carbonate debris. D) Sample C12-345 at ~182 
m; showing a sharp change in microfacies with abundant benthic foraminifera, echinoid and roveacrinid 
fragments, and other bioclasts. E) Sample C12-418 at ~202 m; a new change in microfacies type takes 
place at the onset of the positive excursion in 13Corg (Fig. 2D). F) Sample C12-480 at 240 m; a very dark 
fossiliferous micrite. Scale bar = 500 m  
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Total organic carbon (TOC) fluctuates from ~0 to 4.1% (Fig. 7-2C) but stays 

mostly in the range of 1- 2% with an average value of 1.5%. Most of the section shows a 

moderate enrichment in OC relative to the first part previously studied (Chapter 4: 

Sanchez-Hernandez and Maurrasse, 2014), as only ~10% of the samples yield values 

<1%. The high-resolution TOC curve does not follow an apparent specific repetitive 

pattern correlative with variations in TIC. 

As shown in Fig. 7-2D, 13Corg values fluctuate between -22.8 and -28.0‰. The 

interval between ~85 and ~145 m shows relatively minor variations around -25 to -24‰ 

with a maximum shift of <1‰. The superjacent level yields values that define a minor 

negative inflection of ~1‰ that ends at ~163 m. This short interval is characterized by a 

relative stable trend as 13Corg varies between -26 and -25‰. From 163 m upward in the 

sequence a distinct negative spike of ~2‰ occurs between 167m and 201m with the 

lowest values of -27.95‰ at 199 m.  That interval (167-201 m) characterizes a negative 

episode with moderate variation in 13Corg punctuated with two slightly more positive 

shifts of <1‰ at the 188 m, 189 m and 193 m levels, respectively. This negative episode 

is succeeded by a sharp positive excursion of ~4‰ beginning immediately above 201m, 

and rising sharply to a peak of -23.68‰ at 211.4m. The positive spike is followed by a 

stable trend around -24‰ up to ~228.8 m where a new positive excursion of ~1.5‰ ends 

at the 240 m level. 

7.4.3 Bulk and clay mineral analyses 

The bulk mineral content of 20 samples from selected intervals with apparent 

changes in facies (Fig. 7-6) was determined in order to assess the nature of the non-
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carbonate fraction, and as a possible proxy for terrestrial fluxes. The bulk XRD analysis 

results (Fig. 7-7, Appendix 3) further confirmed CaCO3 as the dominant constituent, and 

revealed the presence of quartz (5-22%), clay 

minerals (2-13%), K- and plagioclase (P) 

feldspars (2-9%), pyrite/ marcasite (0-3%), as 

well as dolomite (<2%) as accessory 

constituents of the matrix (Fig. 7-7). 

The clays investigated refer to the fine fraction 

phyllosilicate minerals (< 2 m) that include 

kaolinite, illite, illite/smectite mixed-layer clay, 

and chlorite. Clay minerals constitute a 

potential proxy to evaluate paleoenvironmental 

conditions, intensity of weathering and 

depositional environments (Burtner and 

Warner, 1986; Weaver, 1989; Ruffell et al., 

2002; Dera et al., 2009; Pauly et al., 2013). The 

results shown in Fig. 7-6 indicate that illite (44-72%) is the dominant component of the 

clay fraction followed by illite/smectite mix 

layer (12-39%), chlorite (7-18%) and the 

lowest is kaolinite (1-8%). This upper part of 

the sequence contains a more even distribution 

between illite and the poorly crystallized smectite or smectoid minerals (illite/smectite 

mix layered) in contrast with the lower 85 m of the section where illite is predominant 

Figure 7-6 Variations in the clay mineral content
along the stratigraphic log at discrete levels.
Emphasis was given to the interval marked by
rapid and pronounced fluctuation in the 13Corg 

(Fig. 2D) in order to better assess changes in
depositional conditions.  
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(Sanchez-Hernandez et al., 2014). Chlorite also shows a consistent relative increase 

whereas kaolinite remains low. 

7.4.4 Major and trace elements   

Concentrations of major and trace elements were measured in order to estimate 

the intensity of the terrestrial fluxes, availability of nutrients, and the magnitude of the 

authigenic enrichment as a proxy for redox conditions (Wignall and Myers, 1988; Calvert 

and Pedersen, 1993; Morford and Emerson, 1999; Rimmer, 2004; Algeo and Maynard, 

2004; Tribovillard et al., 2005; Sanchez-Hernandez and Maurrasse, 2014).   

Elemental concentrations are expressed as normalized values with respect to Al 

(Fig. 7-8) in order to compensate for the dilution effect. Normalized concentrations are 

compared to the average shale value (ASV) (Turekian and Wedepohl, 1961; Wedepohl, 

1971, 1991; Brumsack, 2006) to estimate level of enrichment or depletion of the studied 

elements. The element/Al ratios are plotted versus height in order to generate a 

comparative vertical profile. The absolute concentrations are included in Appendix 2. 
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Figure 7-7 Average mineralogical composition of sediments of the 85-240 m interval of the El Pui section.  

 

In order to make an integrated assessment of the paleoenvironmental conditions 

of the Organyà Basin we also focus on three sets of elements and their respective trend 

along the studied interval: 

1- Al, Si and Ti are derived from crustal rocks, thus their presence provides useful 

information about terrestrial input (Brumsack, 2006). As presented in Appendix 2 

(interval 85 – 240 m), Al fluctuates between 7179 and 55646 ppm with an average value 

of 22785 ppm. The Si/Al ratio stays mostly below the ASV (Fig. 7-8) with discrete 

higher values at 146 m and 168-172 m, respectively. Ti values show a relative small 

variation and two peaks that surpass the ASV identified at ~195 and ~199 m (Fig. 7-8). 

2- P and Fe are essential micronutrients incorporated in organic matter; hence they 

have been used as proxies for nutrient availability (Filippelli, 2002). As a major 

biolimiting element in the marine environment P/Al values in this part of the El Pui 
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section fluctuate (Fig. 7-8) mainly above the ASV, with higher abundance between 150 

and ~203 m, with more pronounced peaks at 180 m and 198 m, respectively. 

Contrariwise, Fe values (Fig. 7-8) remain below the ASV, but higher availability is 

recorded from 199 to ~210 m. 

3- V, Ni, Co, U, Cr, Cu, and Mo are redox sensitive trace elements (RSTEs)  that 

become enriched in sediments under reducing conditions (e.g. Algeo and Maynard, 2008; 

Sliwinski et al., 2011). Detail variations in the relative concentration of RSTEs shown in 

(Fig. 7-8). The segment within the 150-200 m interval is of special interest because most 

elements (Cr, Co, Ni, U and Mo) exhibit TE/Al ratios above the ASV. This interval also 

coincides with important changes in the 13Corg profile (Fig. 7-2D).
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Figure 7-8 Major elements and redox sensitive trace elements concentration normalized with respect to Al. The values are compared to the ASV (fine 
straight line) of Wedephol (1971; 1991) to assess partial enrichment indicative of chemically reducing depositional conditions. The small horizontal lines at 
~88 m correspond to the average calculated error for each element reported in the plots. (Al/Mean Al + Element/Mean Element). * values ×10-4.
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7.4.5  Biomarker analysis 

Assessing the origin of OM in the sediments of the Organyà Basin is a key 

component to understand the paleoenvironmental evolution of the basin. Given the 

physiographic complexity of the depositional environment (Berástegui et al., 1990) 

several sources of organic compounds are plausible to explain the OC enrichment of the 

El Pui sediments (e.g., terrestrial input, in situ organisms constituting the food web of 

surface waters, microbial or bacterial population in the water column under oxygen-

depleted conditions, and/or phytoplankton). Since n-alkanes have been previously used to 

estimate the provenance of the organic matter in different ancient marine environments 

(Giger et al., 1980, Meyers, 1997; Dumitrescu and Brassell, 2005; Peters et al., 2005) the 

analysis of the temporal distribution of such biomarkers has been carried out in 12 

samples of the upper 155 m of the El Pui section in order to assess the source of the 

carbon enrichment.  

The presence of n-alkanes with chain length longer than C20 

(> C20) are commonly thought to be indicative of higher 

plant OM thus from terrestrial origin, whereas chains 

shorter than C19 (< C19) are presumed to be mainly derived 

from marine planktonic organisms and /or microbial 

communities (Cranwell, 1973; Cranwell et al., 1987; Forster 

et al., 2004; Peters et al., 2005). However it has been argued 

that in overmature OM the original n-alkane composition 

can be altered leading to conflictive results (Quijano et al., 

2012). Since Bernaus et al. (2003) reported thermally mature OM in the Organyà Basin; 

Table 7-1 Pristane/phytane ratio 
of selected samples at different 
levels of the studied section. 

Sample Height (m) Pr/Phy
C12-470 227.0 1.6
C12-460 218.9 1.8
C12-405 199.5 0.8
C12-349 183.2 0.7
C12-337 178.0 1.1
C12-314 166.4 1.1
C12-287 153.0 1.4
C12-263 135.2 1.3
C12-261 132.6 1.3
C12-252 124.2 1.1
C12-249 120.0 1.3
C12-227 104.1 1.2
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here we use the pristane/phytane (Pr/Phy) ratio (Table 7-1) as a proxy to possibly rule out 

overmaturation. In fact, in organic-rich marine sediments the Pr/Phy is expected to 

increase with increasing maturity (ten Haven et al., 1987; Powell, 1988) and Pr/Phy ratios 

>2.5 may represent an overmature state of the OM in the absence of predominant 

terrestrial OM. Thus, high abundance of planktonic organisms (Sanchez-Hernandez et al., 

2014), TOC levels consistently >1%, and Pr/Phy ratios consistently <1.7 indicate that the 

OM in the El Pui was most likely preserved with n-alkanes distribution that characterizes 

the original composition.  

 

Figure 7-9 N-alkane distribution measured in 8 samples corresponding to different levels of the 
stratigraphic column. The presence of organic compounds with carbon chain lengths >20 indicates 
contribution of OM from terrestrial sources to the basin. 
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The n-alkane results (Fig. 7-9) reveal a mixed origin of the OM between 

autochthonous primary producers and terrestrial organic matter. However, the abundance 

of low molecular weight n-alkanes (C<19) and the lack of odd over even carbon-number 

dominance suggest a more significant contribution from autochthonous sources. Values 

of Pr/Phy ratio (Table 7-1) in the El Pui samples < 1.7 are in agreement with this 

hypothesis because it has been suggested that most OM of mainly marine source has 

values of Pr/Phy < 2.5 (Didyk et al., 1978; Powell, 1988).  

7.5 Discussion 

7.5.1 Constraints from the integrated 13Corg record of the El Pui section 

As the study of paleoenvironmental records incorporate new techniques that 

provide a more integrated set of data, a more robust and precise record of 

paleoenvironmental events can also be constructed. In the case of the El Pui section of the 

Organyà Basin new available geochemical and stratigraphic data permit to establish 

improved chemostratigraphic correlations and identification of paleoenvironmental 

events. The 13Corg results from the upper 155 m show a distinct and more pronounced 

negative excursion (2 ‰) at ~163 m than the one recorded in the lower part of the section 

(Sanchez-Hernandez and Maurrasse, 2014; Chapter 4) at the 70.6 m level that showed a 

decrease of  ~1.5‰ . Because this was the lowest inflection of the 13Corg curve it was 

assigned to the segment C3 of Menegatti et al. (1998) (Sanchez-Hernandez and 

Maurrasse, 2014; Chapter 4). In fact, without further 13Corg data at that time the 70.6 m 

shift simulates the pattern defined for C3, as both negative excursions are followed by 

positive spikes (2‰ and 4‰ for the lower and upper occurrences respectively).  Both 

carbon isotopic indicators also imply periods of increased 12C burial that is one the 
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geochemical signatures of OAE-1a. The present study of the 13Corg of the expanded 

section further reveals that the negative shift at 70.7 m is similar to, but lesser than, C3. 

The El Pui section thus reveals for the first time a clear illustration of this lesser event 

that could not be defined in more condensed sections (e.g., Menegatti et al., 1998; 

Wissler et al., 2003). In absence of reliable paleontological markers, as often is the case 

in black shales associated with OAE1a, the newly refined time constraint provided by the 

chemostratigraphic data offers a higher temporal resolution of events for global 

correlation. Considering that in the El Pui section both negative excursions (at 70.7 m and 

163.1 m respectively) occur within the Globigerinelloides blowi planktonic foraminiferal 

Zone and above the first occurrence of the nannofossil Rhagodiscus angustus the lack of 

an integrated record of 13Corg has proven to be problematic in order to precisely identify 

the occurrence of segment C3 (Menegatti et al., 1998). The new high-resolution 13Corg 

data from the El Pui section thus improve our understanding of the occurrence of segment 

C2, which now spans from the originally defined starting position at 15.5 m (Sanchez-

Hernandez and Maurrasse, 2014) up to the 163.1 m level, and includes a characteristic 

lesser negative inflection preceding the true onset of the more pronounced negative 

excursion distinguishing C3. Hence, in the El Pui section C3 is distinctly defined by a 

pronounced negative trend extending from 161.3 m to 203.7 m (Fig. 7-10). 

It is the general consensus that the major geochemical signature of the onset of 

OAE1a consists of a rapid and an extended positive excursion of ~4-5‰ subsequent to 

C3, and is identified as segment C4 (Menegatti et al., 1998) (Fig. 7-10). At El Pui C4 has 

a maximum positive excursion of ~4‰) and extends within interval 203.7 m – 211.4 m. 

The peak of this positive shift (C4) is followed by a relatively stable trend with low 



231 

13Corg variability between -24.5 and -24‰ assigned to C5, which continues up to 

228.8m. A subsequent positive spike of ~2‰ is assigned to C6 from 228.8 m up to the 

end of the studied section at 240 m) (Fig. 7-10). 

 

Figure 7-10 Chemostratigraphic correlation based on 13C of the El Pui section with other Tethyan sections. 
The C segments correspond to the 13C subdivision as proposed by Menegatti et al. (1998) for the lower 
Aptian. Shaded intervals correspond to the occurrence of the OAE1a. Note that the expanded character of 
the sedimentary sequence at El Pui allows for a detail description of the C segments. 

7.5.2 Facies variability and geochemical proxies as paleoenvironmental indicators 

From 85 m to 145 m the sedimentation pattern and components of the matrix 

display minor changes relative to the lower 85 m. A fine micritic matrix with frequent 

dispersive kerogen and occasional subparallel fabric suggesting little burrowing activity 

in the sediment characterizes the facies (Fig. 7-5A, B). Benthic foraminifera remain 

scarce (< 5 specimens/10 cm2) with the presence of mainly uniserial and biserial 

morphotypes. Planktonic foraminifera also remain scarce with sizes between (100-150 

m). Microcarbonate particles increase gradually from ~115 m upward.  



232 

The type of facies that developed over this 60 m interval is consistent with 

higher subsidence rates of the basin during the early Aptian (García- Senz, 2002; Gong 

2008). As the sediments imply, restricted conditions of the Organyà Basin persisted 

throughout that interval and sustained poor vertical mixing of the water column, hence 

limiting oxygenation of the deeper water masses. Lower bioturbation index (0 - 1) is 

consistent with limited abundance of benthic life. However a fully reducing phase was 

not achieved within that 60 m-interval because the trace elements distribution (Fig.7- 8) 

shows no apparent enrichment compared to the background values and the ASV. In 

addition, the Pr/Phy ratio yield values >1 that are consistent with oxic conditions 

(Powell, 1988) (Table 7-1).  

Since the sedimentation rate increased in the basin during the lower Aptian 

(García- Senz, 2002; Bernaus et al., 2003; Gong, 2008) the important question arose 

concerning the origin of the contributing particulate matters.  The geochemical results 

show very low variability of the 13Corg which together with Ni/Al ratios close to the 

background value within that interval suggests the absence of favorable biogeochemical 

conditions associated with enhanced organic matter productivity and/or oxygen 

depletion (Figs. 7-2D, 7-8). Therefore, they do not support high primary productivity as 

the plausible source of the increased carbonate content (Fig. 7-2B). Because the high 

TIC concurs with high abundance of microcarbonate particles, their correspondence 

suggests a possible contribution from surrounding carbonate platforms. Results of the 

bulk mineral content in the 85 ~150 m interval indicate that the non-carbonate fraction 

reaches values up to 48% (Appendix 3), which gives evidence of intensified terrestrial 

fluxes as indicated by peaks in the Si/Al ratio (up to 1.5 times the values in the lower 85 
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m) close to the average shale value (Fig. 7-8). Depending on existing physiography and 

climatic conditions, such terrigenous fluxes would have also brought land-derived 

organic matter into the basin. In fact, the n-alkanes results for samples C12-227 and 

C12-263 (Fig. 7-9) at 104 m and 135 m, respectively, confirm a mixed origin for the 

OM including contribution from terrestrial plants. The apparent discrepancy between 

the non-reducing condition revealed by the RSTE results and continuous OM burial can 

thus be explained by the high terrigenous input, which might have favored OM 

preservation. Actually, in a depositional setting with a high sedimentation rate, rapid 

export of OM matter bound to inorganic particles (Edenborn et al., 1987; Allen and 

Allen, 2013) decreases the exposure time to oxidation in the water column leading to 

enhanced preservation. Concerning the low abundance of benthic and planktonic 

foraminifera, high terrigenous fluxes can also be invoked as a factor causing a dilution 

effect.  

At ~150 m the matrix starts to become consistently coarser with intermittent 

evidence of allochthonous bioclasts (Fig. 7-5C, D) concomitant with further sustained 

increase in TIC (average ~80%) that continues up to ~200 m (Fig. 7-2B). Benthic and 

planktonic foraminifera, as well as echinoderm fragments fluctuate in abundance until 

~180 m where there appears an abrupt change from sparse-fossiliferous biomicrite to 

packed biomicrite. The packed biomicrite has a mean allochemical value of ~50-60% 

with abundant benthic foraminifera (coiled, uniserial, biserial), and skeletal debris of 

mainly echinoderm and mollusk, and lesser amount of sponge spicules. 

The dominant facies in the 150-200 m interval are interpreted as indicative of an 

environment of deposition affected by allochthonous contribution from the adjacent 
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outer platform. The sustained high carbonate values, abundant coarse bioclasts, and the 

maximum value of the Si/Al ratio of the whole section at ~170 m indicate mix sources 

for the particles that contributed to the high mass accumulation rate. Although this 

interval may be coincident with the onset of higher eustatic sea level, its 

chronostratigraphic position preceding the acute positive 13Corg excursion (Figs. 7-2D, 

7-10) characteristic of carbon isotope segment C4, suggests that maximum drowning 

was not yet attained (Föllmi et al., 2006; Föllmi and Gainon, 2008). Assuming a high 

sedimentation rate of up to 20 cm/ky for the platform carbonates (Gong, 2008) a 

progradation of the ramp could have intensified the carbonate supply to the basin, 

hence accelerating partial filling of the basin (Masse and Ferneci-Masse, 2013).   

Concerning basin response to global forcing factors, field scale occurrence of 

alternating cm- to dm-thick, less consolidated, and hard well-lithified pseudo-nodular 

limestone layers (Fig. 7-3), between 150 and 180 m interval could possibly be 

representative of high frequency cycles controlled by precession (21 ka) and 

eccentricity (ca.100 ka) (Bachmann and Willens, 1996). If this postulate is correct, the 

fluctuating pattern of the facies observed within that interval could be assigned to 

climatic cycles.  

Furthermore the abundance of biolimiting elements (P, Fe) within the 150-200 

m interval points to a nutrient rich environment where P and Fe concentrations reach 

several maxima (Fig. 7-8). In the case of the high Ni/Al index, the positive correlation 

with a peak in Si/Al implies that in addition to the autochthonous organic matter, 

enhanced incorporation of terrigenous OM increased Ni absorption in organometallic 

compounds that heightened Ni concentration in the sediments (Nijenhuis et al., 1999; 
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Akinlua et al., 2010; Sanchez-Hernandez and Maurrasse, 2014; Chapter 4). 

Nonetheless, the n-alkanes for samples C12-287, C12-314, C12-337 and C12-349 (Fig. 

7-9), and additional evidence from Pr/Phy ratios <1.4 for the same samples (Table 7-1), 

reveal that marine organic matter still predominates.   

Concerning oxygen levels, this interval did not develop anoxia because under 

strong reducing conditions and chemical availability of both Ni2+ and VO2+, the 

vanadyl species is preferentially incorporated into the organo-metallic ligands (Killops 

and Killops, 2005), which explains why Ni enrichment is related to terrestrial OM input 

rather than from anoxic conditions. Since V is not substantially enriched in the 150-200 

m interval, and only discrete peaks in U and Mo are present, a strong anoxic/sulphidic 

episode can be ruled out. Nevertheless, the temporal distribution of trace elements 

showing partial enrichment of Co, Ni, Cr, U and Mo (Fig. 7-8) concurrent with values 

of Pr/Phy < 1 at 183 m and 199 m (samples C12-349 and C12-405, respectively) and 

relatively high TOC values (Fig. 7-2C) support periodic dysoxic episodes. 

Variations in the relative abundance of non-carbonate minerals suggest a 

dilution effect by high carbonate input, whereas high relative percentages of illite, 

smectoid minerals, and chlorite (Fig. 7-6) coincident with pulses in the Si/Al ratio attest 

for active weathering of the surrounding metamorphic terranes (Sanchez-Hernandez et 

al., 2014) 

The uppermost interval of the El Pui section (200-240 m) shows an overall slow 

and gradual decrease in the abundance of carbonate bioclasts. From ~ 200 - 210 m the 

fine carbonate matrix contains 30-40 % allochems, mainly benthic foraminifera, 

echinoderm fragments and unidentified bioclasts. The type of facies corresponding to 
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this level can be described as a bioturbated packed biomicrite. The succeeding level 

above 210 m shows a significant decrease (<10%) of the allochemical content, and the 

matrix is dominated by fine microcarbonate particles. Subparallel microfabric is 

common in thin sections with pervasive kerogen in inter- and intraparticle pores. 

Facies characteristics of the uppermost part of the studied section suggest a 

transition from a depocenter under the influence of materials supplied from the outer 

ramp, as indicated by high allochthonous skeletal grains, to subsequent semi-restricted 

depositional conditions with calcilutites rich in OM.  Such changes may indicate further 

drowning of the adjacent carbonate platforms, probably corresponding with the second 

period of anoxia at the OR-4 sequence type of Bernaus et al. (2003). Combined tectonic 

movements, as proposed for the Provencal Platform during the early Aptian (Godet et 

al., 2013), and eustatic sea level rise (Haq et al., 1987; Skelton, 2003; Bernaus et al., 

2003) have been invoked as causal factors for maximum flooding of carbonate 

platforms at that time. In the northern Tethys the major drowning episode of carbonate 

platforms during the lower-middle Aptian has been associated with rising sea level 

shown to be correlative with the abrupt 13Corg  positive excursion (C4) (Figs. 7-2D, 7-

10) that characterizes the onset of OAE1a (Föllmi et al., 2006; Föllmi , 2008; Föllmi 

and Gainon, 2008). At El Pui the change in facies occurs toward the end of the 13Corg 

positive excursion (Figs. 7-2D, 7-10) hence we favored a transgressive sea level track 

for the modification of the depositional conditions. Considering that the sedimentation 

rate of the studied section was uncommonly high (Bachmann and Willens, 1996), 

flooding of the shallow-water environment may have been slower compared with 

coeval sections with lower mass accumulation rate (e.g., Pratt and Smewing, 1993). 
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During the phase of sedimentation when higher TOC values concur with a 

decreasing trend in the TIC, this inverse relationship probably reflects the demise of the 

carbonate platform and reduced export of CaCO3 to the basin. A simultaneous decline in 

the siliciclastic input is revealed by a decreasing trend in the Si/Al and Ti/Al fractions 

(Fig. 7- 8) and other non-carbonate components, which might have also lessened the 

influx of terrestrial OM to the basin. The high OC content and high accumulation rate 

registered within the 200 - 240 m interval could therefore be related to in situ high 

productivity, as the availability of biolimiting nutrients (P, Fe) remained stable (Fig. 7-8). 

Because enrichment levels of the redox sensitive trace elements remain low, and in some 

cases depleted with respect to the average shale (Fig. 7- 8), anoxic conditions did not 

develop within that interval. Values of the Pr/Phy ratio >1.4 also support such a 

conclusion. 

7.5.3 Main Controlling factors on the expression of OAE1a in the El Pui section 

The hallmark of the lower Aptian anoxic event 1a (OAE1a) has been recognized 

to include deposition of organic-rich black shales and a pronounced positive excursion of 

the 13C curve. In most cases there is relative enrichment of redox-sensitive trace 

elements concomitant with absence of benthic organisms as indicative of oxygen-

depleted depositional conditions (Bellanca et al., 2002; Tribovillard et al., 2004; Trindade 

et al., 2006; Stein et al., 2011; 2012). Different mechanisms have been proposed to 

interpret the deposition of OM- rich sediments: enhanced primary productivity and/or 

sustained supply of OM from allochthonous sources, fast export of OM to the sediment, 

and severe water column anoxia (Bralower et al., 1994; Weissert et al., 1998; Larson and 

Erba, 1999; Leckie et al., 2002). Certainly a combination of these factors most likely 
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caused the widespread occurrence of OAE1a in the pelagic domain; however, in marginal 

basins the influence of local factors can produce an exeptional record of the 

paleoceanographic and paleoclimatic conditions during major anoxic events (Kuhnt et al., 

1998; Luciani et al., 2006). 

In the El Pui section the relatively high TOC content of the upper 155 m is 

compatible with an environment depleted in oxygen, but the overall distribution of the 

redox sensitive trace elements in the interval corresponding to OAE1a (C4-C5) reveals 

limited enrichment that cannot be ascribed to anoxic depositional conditions. 

Furthermore, the presence of benthic foraminifera throughout the studied interval also 

suggests that bottom conditions did not reach a permanent anoxic phase, although their 

fluctuating abundance could indicate intermittent dysoxia (Wignall and Myers, 1988; 

Taylor and Goldring, 1993).  

In summary, relatively high content in OM in the upper 155 m of the studied 

section seems to have been controlled by a combination of concurrent factors that 

included high primary productivity and intensified accumulation rate enhanced by 

contribution of terrestrial organic material, as indicated by the n-alkanes results. The 

sediments in the interval from 150 - 200 m indicate that deeper basinal environments 

generated by higher flexural subsidence induced conditions that exacerbated oxygen 

depletion of bottom waters through oxidation of OM in the water column prior to OAE1a 

in the time interval from 150-200 m. The productivity proxies (TOC, P/Al, Ni/Al) 

support increased autochthonous productivity and partial import of OM. In addition, 

higher partial enrichment of RSTEs (U, Mo, Co) together with Pr/Phy ratios <1 point to 

reducing conditions.  
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Worldwide precursory signals of OAE1a in the sediment record suggest 

progressive environmental shifts towards higher trophic levels and accentuated oxygen 

deficiency concomitant with global forcing factors (e.g., outgassing of volcanic CO2, 

elevated average temperature (Tejada et al., 2009) that triggered anoxia. However, the 

effects of global factors coupled with basin physiography led to different responses in 

semi-enclosed basins where partial preservation of OM became accentuated without the 

development of anoxia, as is the case for the Organyà Basin. 

7.6 Conclusions 

High-resolution petrographic and geochemical analyses of the upper 155 m of the 

El Pui section in the semi-enclosed Organyà Basin, south-central Spanish Pyrenees, 

reveal that during the early Aptian depositional conditions favored partial preservation of 

OM mainly through increased sedimentation and shorter OM transit time in the water 

column because of increased sedimentation rate. The results also show limited 

enrichment and/or partial depletion of RSTEs, and the presence of benthic foraminifera, 

which implies that development of anoxic conditions in the basin can be ruled out. 

The 13Corg profile for El Pui replicates the carbon isotopic signature reported 

elsewhere in the Tethys Ocean, and further provides an improved high-resolution 

chemostratigraphic means for precise worldwide chronostratigraphic correlation for the 

latest Barremian–middle Aptian. The upper part of the El Pui section includes well-

defined carbon isotope segments C2 (upper part), C3, C4, C5, and C6 (partial), which 

correlate with other Tethyan sections and allow for recognition of the lower Aptian 

OAE1a in the uppermost 35 m of the section. A change in microfacies indicative of more 

pronounced hemipelagic conditions concurrent with the onset of the distinct positive 
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excursion (C4) in 13Corg points to an accentuated platform drowning event as reported 

for other Tethyan sections related to higher eustatic elevations at that time.  

The integrated results of the study (upper 155 m of the El Pui section) highlight 

the effects of local physiographic conditions in the local sedimentary response of marine 

restricted basins to global environmental changes. In contrast to the general trend 

recorded elsewhere, in the Organyà Basin enhanced organic carbon sequestration during 

OAE1a developed in the absence of strong anoxic conditions. Enhanced burial of organic 

matter was the result of a combined system of intensified primary productivity, oxygen 

deficiency in the water column, and a higher mass accumulation rate, which led to rapid 

burial and preservation of the OM.    
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8 GENERAL CONCLUSIONS 

The major objective of my research was to identify and further our understanding 

of the factors involved in the sedimentary response, and particularly in enhanced organic 

carbon sequestration, of the semi-restricted Organyà Basin to changing 

paleoenvironmental conditions prior to and during oceanic anoxic event 1a (OAE1a) 

from the Late Barremian to the Middle Aptian.  

To achieve the objectives an integrated methodology that include: organic and 

inorganic geochemistry, petrographic analyses, and sedimentology was developed. The 

results tested the prooposed hypotheses and support the following conclusions: 

1) From the latest Barremian to the lowest Aptian paleoenvironmental conditions in 

the deeper hemipelagic domain of the Organyà Basin were mainly controlled by 

local factors related to increased subsidence rate, intensified primary productivity 

fueled by sustained terrestrial fluxes that supplied biolimiting elements (P, Fe), 

and by the development of episodic oxygen depleted conditions. These combined 

factors led to increased organic carbon sequestration in the basin that resulted in a 

TOC content of up to 1.7%. The results also reveal that restricted marine basins 

can also produce environments that independently at the local scale replicate the 

effects of global forcing mechanisms. 

2) The supply of critical nutrients to the basin from adjacent terranes stimulated 

sustained in situ primary productivity that greatly influenced the overall 

sedimentation rate. Extremely high productivity of calcareous nannoplankton 

generated a mass accumulation rate of at least ~5.0 cm/kyr from the latest 

Barremian to the lowest Aptian highlighting the role of phytoplankton in the 



252 

sequestration of not only organic but also inorganic carbon. Comparative studies 

with modern restricted basins revealed the unique character of the Organyà Basin 

in which the biogenically produced CaCO3 dominated the sediment content 

instead of siliciclastic material. 

3) Here I report the first recorded occurrence of roveacrinids in Barremian–Aptian 

sediments along the northern margin of Iberia. Their presence in the periodically 

eutrophic and oxygen-restricted environment of the El Pui sediments concurs with 

previous indications that these taxa are associated with extreme environments not 

suitable for high diversity planktonic communities. Low diversity of all forms of 

organisms in the El Pui sediments concur with such interpretation because 

phototrophs represented by calcareous nannoplankton together with heterotrophic 

microscopic planktonic roveacrinids and minuscule ammonoids dominated the 

ecosystem of the Organyà Basin at that time.  

4) In the upper 155 m of the El Pui sequence, physiographic factors coupled with 

high sediment accumulation rates and sea level fluctuations induced a particular 

sedimentary response of the semi-restricted Organyà Basin that contrasts with the 

general view of enhanced OM preservation confined to anoxic conditions. 

Regional factors caused favorable depositional conditions for the export and 

preservation of OC in the sediment in the absence of an anoxic water column. 

In addition to the major conclusions my dissertation research has contributed to the 

investigation of restricted basins of the Lower Cretaceous as follows: 

a) My study is the first to examine the geochemistry of the El Pui section, and it 

provides significant new data (geochemical, petrographic, stratigraphic, 
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mineralogical, and paleontological) concerning oceanographic conditions around 

the Barremian-Aptian boundary that may have an extended applicability for 

global interpretation. 

b) I have generated a high-resolution 13Corg profile for the extended El Pui section 

that improves the present knowledge of the isotopic variability of the global 

carbon reservoir from the late Barremian to the middle Aptian, and better defined 

carbon isotopic C-segments serve as an additional means for chemostratigraphic 

correlation and relative chronology. Using the 13Corg curve produced in this 

dissertation a more precise Barremian/Aptian boundary has been proposed for the 

El Pui section. The 13Corg has also been used to identify the interval 

corresponding to OAE1a and provide new details on the isotopic characteristics of 

each C segment. 

In summary, the results of my dissertation provide valuable new data to further 

our understanding of the modern Earth system response to global environmental changes 

and the role of semi-enclosed basin in carbon sequestration. Such results have also 

economical implications as they expand the present knowledge of depositional conditions 

in marginal basins and their relationship with the development of hydrocarbon source 

rocks. 
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APPENDICES 

APPENDIX 1 

Appendix 1 Sample code, stratigraphic height and Total Carbon (TC), Total Inorganic Carbon (TIC), Total 
Organic Carbon and 13Corg of all the samples analyzed for the dissertation research. The presicion of the 
laboratory analyses are also included. 

 

Sample ID Height (m) TC(wt% ) TIC(wt% ) TOC (wt% ) δ
13

Corg (‰)

C-10-01 0.0 63.6 60.1 0.4 -25.51

C-10-02 0.3 67.7 63.1 0.6 -25.28

C-10-03 0.6 71.8 71.3 0.1 -25.54

C-10-04 0.7 79.1 70.5 1.0 -25.54

C-10-05 1.2 75.3 68.9 0.8 -25.38

C-10-06 1.7 76.3 71.3 0.6 -25.18

C-10-07 1.8 60.0 54.6 0.7 -25.01

C-10-08 1.9 65.4 60.8 0.6 -25.33

C-10-09 2.3 66.4 63.5 0.3 -25.32

C-10-10 2.6 67.8 63.4 0.5 -25.32

C-10-11 2.8 71.9 63.9 1.0 -25.11

C-10-12 2.9 70.4 64.5 0.7 -25.12

C-10-13 3.8 67.2 65.4 0.2 -25.22

C-10-14 4.3 74.4 67.8 0.8 -25.18

C-10-15 4.7 49.2 45.5 0.4 -23.87

C-10-16 4.9 67.0 57.9 1.1 -24.26

C-10-17 5.4 54.7 43.8 1.3 -24.33

C-10-18 5.8 57.8 50.1 0.9 -24.36

C-10-19 6.1 61.7 47.2 1.7 -25.20

C-10-20 7.2 77.9 66.7 1.3 -24.91

C-10-21 8.0 75.5 73.7 0.2 -24.20

C-10-22 8.5 84.0 78.3 0.7 -24.46

C-10-23 9.0 72.3 65.3 0.8 -24.66

C-10-24 9.6 83.1 79.6 0.4 -24.73

C-10-25 10.3 84.9 74.5 1.2 -24.93

C-10-26 10.8 81.8 75.3 0.8 -24.92

C-10-27 10.8 80.4 75.7 0.6 -24.67

C-10-28 11.5 75.6 68.6 0.8 -24.27

C-10-29 12.2 57.9 51.6 0.8 -23.83

C-10-30 13.0 48.9 43.5 0.6 -22.79

C-10-31 13.7 79.7 66.7 1.6 -23.99

C-10-32 14.3 79.4 74.2 0.6 -22.57

C-10-33 14.7 83.3 77.6 0.7 -24.05

C-10-34 14.8 71.6 61.5 1.2 -24.17
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APPENDIX 1 continued… 

 

Sample ID Height (m) TC(wt% ) TIC(wt% ) TOC (wt% ) δ
13

Corg (‰)

C-10-35 15.1 71.3 63.4 1.0 -24.18

C-10-36 15.2 66.6 61.9 0.6 -24.11

C-10-37 15.5 82.7 74.0 1.0 -24.46

C-10-38 15.9 87.1 84.0 0.4 -24.10

C-10-39 16.1 92.5 86.1 0.8 -24.10

C-10-40 16.4 89.6 85.1 0.5 -23.19

C-10-41 16.6 84.2 66.1 1.0 -23.31

C-10-42 16.8 85.8 81.3 0.5 -24.09

C-10-43 17.0 86.4 83.4 0.4 -23.68

C-10-44 17.2 85.7 81.5 0.5 -23.79

C-10-45 17.4 74.1 67.1 0.8 -23.21

C-10-46 17.6 75.2 70.5 0.6 -23.97

C-10-47 18.0 91.3 82.4 1.1 -23.90

C-10-48 18.2 82.6 70.1 1.5 -23.15

C-10-49 18.3 82.6 71.0 1.4 -23.59

C-10-50 18.6 82.5 72.5 1.2 -24.00

C-10-51 18.8 76.6 71.3 0.6 -23.78

C-10-52 19.1 76.4 72.5 0.5 -23.97

C-10-53 19.7 73.8 66.9 0.8 -23.85

C-10-54 19.7 72.7 69.5 0.4 -23.40

C-10-55 19.9 87.0 83.6 0.4 -23.61

C-10-56 20.2 82.1 78.8 0.4 -24.01

C-10-57 20.5 85.3 78.8 0.8 -23.95

C-10-58 20.8 84.6 82.9 0.2 -24.15

C-10-59 21.1 85.5 84.3 0.1 -23.96

C-10-60 21.4 80.1 77.6 0.3 -24.16

C-10-61 21.8 74.2 71.4 0.3 -24.15

C-10-62 22.0 78.8 74.7 0.5 -24.15

C-10-63 22.3 73.7 71.1 0.3 -24.06

C-10-64 22.8 77.3 74.4 0.3 -24.20

C-10-65 23.3 74.2 69.8 0.5 -23.95

C-10-66 24.0 79.8 77.4 0.3 -24.26

C-10-67 24.2 80.7 77.5 0.4 -24.18

C-10-68 24.5 85.0 78.3 0.8 -23.89

C-10-69 24.9 85.8 82.1 0.5 -24.23

C-10-70 25.5 89.7 81.0 1.0 -24.19

C-10-71 26.1 89.8 87.6 0.3 -24.24

C-10-72 26.3 86.0 83.5 0.3 -24.42
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APPENDIX 1 continued… 

 

Sample ID Height (m) TC(wt% ) TIC(wt% ) TOC (wt% ) δ
13

Corg (‰)

C-10-73 26.6 84.7 83.5 0.1 -24.31

C-10-74 26.9 86.8 80.2 0.8 -24.07

C-10-75 27.0 81.8 81.1 0.1 -24.24

C-10-76 27.5 84.0 82.2 0.2 -23.45

C-10-77 27.7 83.8 70.8 1.6 -23.37

C-10-78 28.0 77.4 77.4 0.1 -24.04

C-10-79 28.4 86.0 75.0 1.3 -24.09

C-10-80 28.7 84.2 75.2 1.1 -24.15

C-10-81 29.5 87.1 80.4 0.8 -24.19

C-10-82 29.9 82.7 81.4 0.2 -24.28

C-10-83 30.5 85.0 70.6 1.7 -24.37

C-10-84 31.1 84.8 74.0 1.3 -24.19

C-10-85 31.3 79.4 74.1 0.6 -24.14

C-10-86 31.9 82.2 75.9 0.8 -24.12

C-11-87 32.3 79.2 73.1 0.7 -24.35

C-11-89 32.9 78.9 73.0 0.7 -24.47

C-11-91 33.5 76.8 70.3 0.8 -24.50

C-11-93 35.6 73.2 67.5 0.7 -24.29

C-11-95 36.2 77.5 71.5 0.7 -24.15

C-11-97 37.1 80.2 76.2 0.5 -24.35

C-11-99 37.5 84.5 80.7 0.5 -24.35

C-11-101 38.3 83.3 79.2 0.5 -24.35

C-11-103 39.4 82.3 78.1 0.5 -24.27

C-11-105 40.5 80.3 74.1 0.7 -24.20

C-11-107 41.5 88.3 85.3 0.4 -24.08

C-11-109 41.8 89.6 80.9 1.0 -24.25

C-11-111 42.3 84.8 80.8 0.5 -24.27

C-11-113 42.7 85.0 81.7 0.4 -24.33

C-11-115 43.1 85.2 81.3 0.5 -24.32

C-11-117 43.6 84.9 80.7 0.5 -24.42

C-11-119 43.9 82.0 77.3 0.6 -24.50

C-11-121 44.4 80.4 75.7 0.6 -24.50

C-11-123 45.0 80.7 75.9 0.6 -24.39

C-11-125 45.5 78.3 74.0 0.5 -24.05

C-11-127 45.8 76.6 72.1 0.5 -23.98

C-11-129 46.3 74.9 70.0 0.6 -24.13

C-11-131 46.9 78.9 75.3 0.4 -24.17

C-11-133 47.3 77.8 73.7 0.5 -24.12
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Sample ID Height (m) TC(wt% ) TIC(wt% ) TOC (wt% ) δ
13

Corg (‰)

C-11-135 48.0 79.6 75.0 0.6 -24.03

C-11-137 48.7 67.4 61.5 0.7 -23.90

C-11-139 49.5 72.1 67.6 0.5 -24.18

C-11-141 50.3 74.4 71.0 0.4 -24.19

C-11-143 50.8 72.6 68.5 0.5 -24.20

C-11-145 51.3 70.8 67.9 0.4 -24.10

C-11-147 51.6 81.5 77.7 0.5 -23.79

C-11-149 52.6 70.8 65.0 0.7 -23.44

C-11-151 54.3 59.4 52.9 0.8 -23.98

C-11-153 55.1 70.2 63.5 0.8 -23.53

C-11-155 55.6 72.4 66.4 0.7 -23.82

C-11-157 56.3 58.4 52.6 0.7 -24.27

C-11-159 57.0 63.6 57.9 0.7 -24.55

C-11-161 57.9 72.1 65.5 0.8 -24.15

C-11-163 58.3 74.9 68.4 0.8 -24.10

C-11-165 59.1 76.1 71.6 0.5 -24.20

C-11-167 60.3 81.2 76.5 0.6 -24.43

C-11-169 62.0 66.6 59.6 0.8 -24.62

C-11-171 63.1 83.7 79.4 0.5 -24.50

C-11-173 63.6 78.1 72.5 0.7 -24.20

C-11-175 64.0 75.5 69.2 0.8 -24.03

C-11-177 64.7 75.1 69.6 0.7 -24.58

C-11-179 65.4 73.1 68.5 0.6 -24.32

C-11-181 66.3 87.7 84.4 0.4 -25.25

C-11-183 67.0 86.8 81.5 0.6 -24.55

C-11-185 67.6 75.6 70.4 0.6 -24.60

C-11-187 68.3 85.5 82.5 0.4 -24.81

C-11-189 68.8 83.0 79.4 0.4 -25.47

C-11-191 69.3 83.1 79.8 0.4 -25.42

C-11-193 69.7 87.2 84.3 0.3 -24.90

C-11-195 70.2 83.9 80.3 0.4 -25.52

C-11-197 70.7 73.8 66.9 0.8 -24.45

C-11-199 73.0 82.4 77.6 0.6 -25.93

C-11-201 75.7 65.2 59.6 0.7 -25.95

C-11-203 78.3 64.9 59.1 0.7 -25.89

C-11-205 81.1 63.7 58.1 0.7 -25.36

C-11-207 84.5 70.0 64.9 0.6 -25.33

C-12-208 86.0 74.2 61.9 1.5 -24.84
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Sample ID Height (m) TC(wt% ) TIC(wt% ) TOC (wt% ) δ
13

Corg (‰)

C-12-209 86.6 80.5 64.3 2.0 -24.73

C-12-210 87.3 58.8 44.7 1.7 -24.08

C-12-211 88.0 75.7 69.0 0.8 -24.48

C-12-212 88.9 58.7 55.6 0.4 -23.95

C-12-213 89.5 61.2 44.5 2.0 -24.22

C-12-214 90.2 57.9 42.8 1.8 -24.32

C-12-215 90.9 57.3 43.2 1.7 -24.44

C-12-216 92.5 71.1 59.8 1.4 -24.13

C-12-217 93.6 64.4 52.9 1.4 -24.18

C-12-218 94.2 63.6 46.2 2.1 -24.78

C-12-219 95.4 65.0 47.8 2.1 -24.33

C-12-220 96.1 77.0 57.1 2.4 -24.03

C-12-221 97.4 93.1 78.9 1.7 -24.70

C-12-222 99.2 68.4 50.8 2.1 -24.04

C-12-223 100.2 65.0 50.3 1.8 -24.24

C-12-224 101.0 65.8 50.6 1.8 -23.98

C-12-225 102.1 68.0 49.6 2.2 -24.16

C-12-226 103.0 61.2 43.4 2.1 -23.76

C-12-227 104.1 62.3 40.9 2.6 -24.13

C-12-228 104.9 58.4 44.1 1.7 -23.78

C-12-229 105.7 65.7 53.5 1.5 -24.22

C-12-230 106.5 60.3 51.7 1.0 -24.17

C-12-231 107.2 64.4 56.2 1.0 -24.02

C-12-232 108.6 90.9 80.0 1.3 -23.78

C-12-233 109.8 86.7 77.5 1.1 -23.67

C-12-234 110.9 83.8 70.4 1.6 -23.78

C-12-235 111.4 77.2 57.4 2.4 -24.26

C-12-236 112.4 74.8 62.5 1.5 -23.96

C-12-237 113.2 77.8 64.7 1.6 -24.10

C-12-238 113.5 73.2 61.3 1.4 -23.99

C-12-239 114.0 87.9 77.6 1.2 -24.04

C-12-240 114.6 80.4 68.5 1.4 -24.11

C-12-241 115.2 79.6 66.6 1.6 -24.05

C-12-242 115.8 77.1 72.0 0.6 -24.00

C-12-243 116.2 72.9 59.7 1.6 -23.89

C-12-244 116.3 78.7 65.0 1.6 -23.75

C-12-245 116.8 65.7 53.5 1.5 -23.93

C-12-246 117.3 82.4 70.3 1.4 -23.80
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Sample ID Height (m) TC(wt% ) TIC(wt% ) TOC (wt% ) δ
13

Corg (‰)

C-12-247 118.1 85.0 76.4 1.0 -24.06

C-12-248 119.6 75.5 62.8 1.5 -23.87

C-12-249 120.0 89.1 63.9 3.0 -23.91

C-12-250 121.9 77.3 63.0 1.7 -24.41

C-12-251 123.0 70.7 59.1 1.4 -24.27

C-12-252 124.2 82.1 58.3 2.9 -24.48

C-12-253 125.1 70.9 56.9 1.7 -24.57

C-12-254 126.4 66.1 63.7 0.3 -24.42

C-12-255 127.7 78.5 73.9 0.6 -24.25

C-12-256 129.2 70.2 58.7 1.4 -24.66

C-12-257 130.0 72.0 57.0 1.8 -24.53

C-12-258 130.4 77.4 59.9 2.1 -24.71

C-12-259 131.6 71.7 57.2 1.7 -24.57

C-12-260 132.0 76.0 55.5 2.5 -24.32

C-12-261 132.6 59.0 49.9 1.1 -24.72

C-12-262 134.4 70.0 57.1 1.5 -24.08

C-12-263 135.2 98.5 64.1 4.1 -24.42

C-12-264 135.9 75.5 56.8 2.2 -24.23

C-12-265 136.3 85.2 69.8 1.8 -24.22

C-12-266 137.0 75.9 64.2 1.4 -24.44

C-12-267 138.0 80.8 68.3 1.5 -24.51

C-12-268 138.7 75.4 64.9 1.3 -24.83

C-12-269 139.9 82.1 62.1 2.4 -24.47

C-12-270 140.6 77.2 62.7 1.7 -24.46

C-12-271 141.4 73.7 62.5 1.3 -24.60

C-12-272 142.0 77.6 67.7 1.2 -24.66

C-12-273 143.5 85.3 71.6 1.6 -24.67

C-12-274 144.1 85.0 71.4 1.6 -24.58

C-12-275 144.7 89.9 77.6 1.5 -24.58

C-12-276 145.2 93.8 75.8 2.2 -24.49

C-12-277 146.0 87.7 71.9 1.9 -24.52

C-12-278 147.7 76.0 64.7 1.4 -25.03

C-12-279 148.4 69.7 52.4 2.1 -25.40

C-12-280 149.4 95.9 71.5 2.9 -25.58

C-12-281 150.1 81.9 67.9 1.7 -25.14

C-12-282 150.9 93.6 80.2 1.6 -25.53

C-12-283 151.4 76.1 61.7 1.7 -25.55

C-12-284 151.7 80.2 64.0 1.9 -25.22
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Sample ID Height (m) TC(wt% ) TIC(wt% ) TOC (wt% ) δ
13

Corg (‰)

C-12-285 152.1 72.8 63.5 1.1 -25.18

C-12-286 152.7 92.2 78.9 1.6 -26.00

C-12-287 153.0 94.1 80.8 1.6 -25.99

C-12-288 153.6 90.1 78.6 1.4 -26.05

C-12-289 154.1 99.1 83.3 1.9 -25.76

C-12-290 154.4 82.9 70.8 1.5 -25.86

C-12-291 155.1 82.9 76.6 0.8 -25.70

C-12-292 155.4 84.9 71.9 1.6 -25.38

C-12-293 155.8 90.0 75.8 1.7 -25.63

C-12-294 156.4 87.7 70.8 2.0 -25.55

C-12-295 156.6 91.8 78.0 1.7 -25.59

C-12-296 156.9 90.1 90.0 0.0 -25.58

C-12-297 157.3 92.8 77.7 1.8 -25.56

C-12-298 158.1 92.7 76.9 1.9 -25.35

C-12-299 158.7 93.4 76.8 2.0 -25.23

C-12-300 158.9 84.5 69.1 1.9 -25.40

C-12-301 159.4 88.9 76.3 1.5 -25.78

C-12-302 159.8 91.3 80.6 1.3 -25.66

C-12-303 160.2 92.7 76.1 2.0 -25.58

C-12-304 160.8 97.6 80.7 2.0 -25.68

C-12-305 161.3 96.4 81.1 1.8 -25.22

C-12-306 161.6 98.2 87.1 1.3 -25.46

C-12-307 162.0 93.9 80.6 1.6 -25.31

C-12-308 162.4 85.1 71.5 1.6 -25.36

C-12-309 163.1 82.2 68.5 1.6 -25.16

C-12-310 163.5 95.1 78.2 2.0 -25.59

C-12-311 163.9 87.5 74.9 1.5 -25.84

C-12-312 165.3 93.4 85.8 0.9 -26.57

C-12-313 165.9 91.8 85.6 0.7 -26.93

C-12-314 166.4 94.2 87.3 0.8 -26.97

C-12-315 166.9 96.4 86.1 1.2 -26.87

C-12-316 167.2 96.5 83.3 1.6 -27.13

C-12-317 167.5 97.5 82.9 1.8 -27.20

C-12-318 168.1 99.6 84.2 1.8 -27.23

C-12-319 168.5 99.3 84.9 1.7 -27.22

C-12-320 169.0 97.7 86.0 1.4 -26.97

C-12-321 169.4 98.3 86.6 1.4 -27.06

C-12-322 169.9 97.1 88.2 1.1 -26.92
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Sample ID Height (m) TC(wt% ) TIC(wt% ) TOC (wt% ) δ
13

Corg (‰)

C-12-323 170.3 96.4 83.4 1.6 -26.65

C-12-324 170.6 97.6 86.3 1.4 -26.85

C-12-325 171.0 97.8 84.4 1.6 -27.13

C-12-326 171.4 98.5 84.9 1.6 -27.23

C-12-327 171.7 98.2 83.6 1.8 -26.80

C-12-328 172.1 98.2 84.3 1.7 -26.85

C-12-329 172.6 98.5 85.3 1.6 -26.96

C-12-330 173.2 93.1 79.5 1.6 -26.50

C-12-331 173.8 95.1 85.3 0.2 -26.60

C-12-332 174.0 94.1 88.6 0.7 -26.73

C-12-333 174.5 99.5 93.2 0.8 -26.82

C-12-334 175.1 94.8 80.8 1.7 -26.80

C-12-335 176.0 95.5 84.0 1.4 -26.87

C-12-336 177.1 98.0 92.9 0.6 -26.54

C-12-337 178.0 92.5 88.4 0.5 -26.57

C-12-338 178.4 94.1 88.3 0.7 -26.99

C-12-339 178.6 96.8 89.6 0.9 -26.61

C-12-340 178.9 98.9 88.2 1.3 -26.74

C-12-341 179.4 96.9 83.0 1.7 -26.50

C-12-342 180.6 100.7 85.7 1.8 -27.11

C-12-343 180.8 96.6 85.7 1.3 -27.11

C-12-344 181.6 99.2 88.8 1.2 -27.14

C-12-345 181.9 100.2 98.3 0.2 -27.18

C-12-346 182.0 95.5 89.1 0.8 -27.10

C-12-347 182.4 99.2 86.8 1.5 -27.05

C-12-348 182.8 94.8 83.1 1.4 -27.19

C-12-349 183.2 98.8 85.0 1.7 -27.26

C-12-350 183.6 93.6 81.1 1.5 -26.99

C-12-351 183.8 95.4 80.6 1.8 -27.07

C-12-352 184.2 92.4 87.5 0.6 -27.31

C-12-353 184.6 91.1 79.3 1.4 -27.10

C-12-354 185.2 93.9 81.1 1.5 -27.27

C-12-355 185.7 94.6 82.4 1.5 -27.17

C-12-356 186.0 96.9 84.3 1.5 -27.34

C-12-357 186.2 96.3 83.4 1.6 -27.50

C-12-358 186.7 97.0 86.0 1.3 -27.60

C-12-359 187.3 94.5 81.8 1.5 -27.37

C-12-360 187.6 94.4 84.7 1.2 -27.64



262 

APPENDIX 1 continued… 

 

Sample ID Height (m) TC(wt% ) TIC(wt% ) TOC (wt% ) δ
13

Corg (‰)

C-12-361 187.9 94.2 82.0 1.5 -27.50

C-12-362 188.3 91.1 86.1 0.6 -27.03

C-12-363 188.7 92.6 80.3 1.5 -26.13

C-12-364 189.1 95.1 81.5 1.6 -27.28

C-12-365 189.2 89.8 76.8 1.6 -27.30

C-12-366 189.4 98.8 81.8 2.0 -26.42

C-12-367 189.6 89.8 71.4 2.2 -27.29

C-12-368 190.0 90.1 77.3 1.5 -27.40

C-12-369 190.3 94.9 81.7 1.6 -27.38

C-12-370 190.8 93.9 80.6 1.6 -27.62

C-12-371 191.0 92.1 79.0 1.6 -27.75

C-12-372 191.4 91.7 77.8 1.7 -27.59

C-12-373 191.6 93.7 79.6 1.7 -27.46

C-12-374 192.0 96.5 82.7 1.6 -27.37

C-12-375 192.4 82.9 69.7 1.6 -27.35

C-12-376 192.8 79.9 73.9 0.7 -27.33

C-12-377 193.1 98.6 86.2 1.5 -27.69

C-12-378 193.4 88.9 75.7 1.6 -27.16

C-12-379 193.6 85.8 74.0 1.4 -26.29

C-12-380 193.8 93.6 79.5 1.7 -27.29

C-12-381 194.0 92.5 82.3 1.2 -27.32

C-12-382 194.1 97.9 88.7 1.1 -27.37

C-12-383 194.4 96.0 84.7 1.4 -26.96

C-12-384 194.5 93.3 83.9 1.1 -27.45

C-12-385 194.8 98.1 85.7 1.5 -27.46

C-12-386 195.2 93.3 83.6 1.2 -27.44

C-12-387 195.5 95.8 83.8 1.4 -27.28

C-12-388 195.8 94.1 82.1 1.4 -27.25

C-12-389 196.2 98.8 83.3 1.9 -27.47

C-12-390 196.3 93.9 84.4 1.1 -27.09

C-12-391 196.5 95.2 82.0 1.6 -27.25

C-12-392 196.7 95.9 93.2 0.3 -27.28

C-12-393 196.9 93.5 81.6 1.4 -27.30

C-12-394 197.1 95.5 82.3 1.6 -27.41

C-12-395 197.4 98.9 86.5 1.5 -27.71

C-12-396 197.8 93.9 81.8 1.4 -27.11

C-12-397 198.0 95.3 82.5 1.5 -27.59

C-12-398 198.2 95.4 84.4 1.3 -27.17
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Sample ID Height (m) TC(wt% ) TIC(wt% ) TOC (wt% ) δ
13

Corg (‰)

C-12-399 198.4 95.9 82.8 1.6 -27.43

C-12-400 198.6 99.9 86.7 1.6 -27.78

C-12-401 198.8 98.7 88.3 1.2 -27.95

C-12-402 198.9 87.7 74.7 1.6 -27.76

C-12-403 199.0 98.2 86.1 1.4 -27.85

C-12-404 199.4 95.9 82.0 1.7 -27.80

C-12-405 199.5 95.4 81.8 1.6 -27.40

C-12-406 199.8 94.2 82.9 1.3 -27.43

C-12-407 199.9 93.3 80.6 1.5 -27.78

C-12-408 200.2 96.6 83.4 1.6 -27.73

C-12-409 200.6 94.4 82.6 1.4 -27.71

C-12-410 200.7 91.7 83.7 1.0 -27.54

C-12-411 200.8 96.7 86.4 1.2 -27.69

C-12-412 201.0 97.0 85.2 1.4 -27.73

C-12-413 201.1 89.4 78.0 1.4 -27.45

C-12-414 201.3 86.0 74.1 1.4 -27.24

C-12-415 201.5 97.8 88.3 1.1 -27.54

C-12-416 201.6 94.7 87.1 0.9 -27.50

C-12-417 201.7 93.9 82.0 1.4 -27.41

C-12-418 201.8 87.7 72.3 1.8 -27.17

C-12-419 202.0 96.8 84.7 1.5 -26.92

C-12-420 202.1 84.7 75.2 1.1 -27.38

C-12-421 202.2 96.5 83.7 1.5 -27.46

C-12-422 203.1 96.4 81.9 1.7 -27.30

C-12-423 203.3 95.7 86.0 1.2 -27.25

C-12-424 203.4 98.7 85.4 1.6 -27.42

C-12-425 203.7 97.9 80.6 2.1 -27.56

C-12-426 203.8 93.9 81.3 1.5 -27.42

C-12-427 204.0 94.4 81.3 1.6 -27.20

C-12-428 204.5 90.6 76.4 1.7 -26.72

C-12-429 205.1 88.9 76.5 1.5 -26.41

C-12-430 205.3 94.7 81.3 1.6 -26.39

C-12-431 205.6 92.0 79.7 1.5 -26.75

C-12-432 205.8 99.1 87.1 1.8 -26.64

C-12-433 206.4 90.5 77.4 1.6 -26.67

C-12-434 206.7 96.1 82.9 1.6 -26.82

C-12-435 207.9 88.8 75.8 1.6 -25.99

C-12-436 208.2 92.4 76.9 1.9 -26.22
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Sample ID Height (m) TC(wt% ) TIC(wt% ) TOC (wt% ) δ
13

Corg (‰)

C-12-437 208.8 96.9 83.5 1.6 -25.31

C-12-438 209.4 78.0 66.6 1.4 -25.04

C-12-439 209.9 84.2 71.0 1.6 -24.36

C-12-440 210.2 89.6 75.2 1.7 -24.08

C-12-441 210.6 93.4 80.0 1.6 -23.82

C-12-442 211.0 96.2 89.5 0.8 -23.84

C-12-443 211.4 95.4 82.0 1.6 -23.68

C-12-444 211.6 81.7 70.9 1.3 -23.72

C-12-445 211.8 90.0 82.7 0.9 -23.92

C-12-446 212.1 93.2 83.0 1.2 -24.18

C-12-447 212.7 79.6 72.6 0.8 -24.30

C-12-448 212.9 78.9 69.8 1.1 -24.06

C-12-449 213.1 90.0 77.6 1.5 -24.32

C-12-450 213.4 83.1 74.6 1.0 -24.20

C-12-451 213.8 80.8 69.9 1.3 -24.21

C-12-452 214.1 83.4 71.4 1.5 -24.24

C-12-453 214.7 83.0 70.2 1.5 -24.10

C-12-454 215.2 81.3 74.5 0.8 -24.02

C-12-455 215.7 82.8 73.3 1.1 -24.04

C-12-456 216.2 81.0 71.8 1.1 -23.94

C-12-457 216.8 77.2 71.3 0.7 -24.29

C-12-458 217.4 86.3 83.7 0.3 -24.23

C-12-459 218.1 76.0 64.3 1.4 -24.30

C-12-460 218.9 66.3 56.3 1.2 -24.21

C-12-461 220.1 92.3 61.0 3.8 -23.94

C-12-462 220.9 67.1 54.8 1.5 -24.32

C-12-463 221.5 71.2 58.9 1.5 -24.18

C-12-464 222.2 83.7 68.5 1.8 -24.34

C-12-465 222.9 81.7 72.1 1.2 -24.29

C-12-466 224.4 76.8 66.4 1.3 -24.33

C-12-467 225.1 72.3 60.4 1.4 -24.78

C-12-468 225.6 81.2 67.8 1.6 -24.51

C-12-469 226.3 78.4 64.2 1.7 -24.34

C-12-470 227.0 75.6 63.2 1.5 -24.21

C-12-471 227.5 69.2 56.3 1.5 -24.29

C-12-472 228.3 70.2 59.1 1.3 -24.60

C-12-473 228.8 75.5 59.5 1.9 -24.62

C-12-474 229.6 67.1 57.6 1.1 -24.31
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Sample ID Height (m) TC(wt% ) TIC(wt% ) TOC (wt% ) δ
13

Corg (‰)

C-12-475 230.5 65.0 54.0 1.3 -24.24

C-12-476 231.8 67.8 55.9 1.4 -24.01

C-12-477 233.3 77.9 57.1 2.5 -23.95

C-12-478 234.9 76.7 70.8 0.7 -22.98

C-12-479 236.9 72.8 60.7 1.5 -22.83

C-12-480 240.0 65.8 52.3 1.6 -22.76

Pressicion ±2% ±2% ±1.2
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Appendix 2 Major and trace element concentrations of all samples analyzed for the El Pui section. The 

average standar deviation is reported as the average for each element.

 

Sample Id Height Al Si P Ti V Cr Fe Co Ni Cu Th U Mo

Units → (m) (ppm) (ppm) (ppm) (ppt) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

C-10-02 0.3 34128 73233 282 1.7 39.7 34.0 13.9 1.5 15.7 7.9 4.6 1.3 N/A

C-10-08 1.9 40709 88241 413 1.7 36.7 63.9 13.5 3.4 76.6 15.4 5.2 1.7 N/A

C-10-14 4.3 27479 56871 342 1.3 35.0 68.7 11.1 3.1 99.7 9.9 4.3 2.2 N/A

C-10-18 5.8 49042 95678 424 2.1 57.9 87.2 21.7 6.3 102.3 16.3 6.1 2.4 N/A

C-10-21 8.0 21214 44051 285 1.0 27.2 39.0 8.9 1.7 43.9 5.8 2.8 0.7 N/A

C-10-25 10.3 16712 35954 253 0.9 21.7 20.3 7.5 0.6 8.2 4.3 2.6 1.2 N/A

C-10-28 11.5 24259 51435 268 1.2 29.4 51.5 10.4 4.1 60.1 7.7 3.4 0.9 N/A

C-10-31 13.7 27995 55525 384 1.2 39.3 56.4 10.5 5.4 73.8 13.1 3.7 3.5 N/A

C-10-34 14.8 32049 61787 292 1.5 37.7 37.4 11.3 1.7 35.2 7.4 4.8 1.3 N/A

C-10-37 15.5 18804 43613 189 1.2 22.6 38.4 6.7 2.6 57.9 5.1 3.0 0.8 N/A

C-10-40 16.4 10004 23431 222 0.4 15.4 26.4 5.2 1.8 40.4 4.7 1.4 0.9 N/A

C-10-43 17.0 13610 27662 200 0.6 18.8 44.7 5.7 1.2 29.4 5.8 1.9 0.7 N/A

C-10-47 18.0 14985 30373 227 0.6 18.6 26.3 5.7 1.2 33.3 5.7 2.0 1.0 N/A

C-10-50 18.6 24234 44120 294 1.1 32.0 38.9 8.8 2.3 58.0 7.1 3.2 1.4 N/A

C-10-54 19.7 31230 60739 320 1.4 38.3 55.1 12.2 2.4 77.4 9.4 3.9 1.3 N/A

C-10-57 20.5 14090 27649 138 0.7 17.9 23.8 6.0 1.0 32.2 4.7 1.8 0.5 N/A

C-10-61 21.8 26127 49551 269 1.2 33.1 31.3 9.3 1.6 22.8 11.5 3.3 0.9 N/A

C-10-65 23.3 28409 52535 326 1.2 36.0 37.5 10.2 1.6 48.2 8.7 3.7 1.0 N/A

C-10-69 24.9 16054 30797 147 0.7 20.9 23.9 6.8 1.0 23.3 5.0 1.9 1.0 N/A

C-10-71 26.1 10541 22594 194 0.4 16.0 27.6 4.5 1.5 43.4 5.8 1.4 1.2 N/A

C-10-75 27.0 16955 31833 170 0.8 21.7 28.5 6.3 1.2 22.5 5.5 1.9 1.0 N/A

C-10-83 30.5 21860 43243 250 1.0 31.3 28.6 8.1 1.1 14.7 6.7 2.7 1.5 N/A

C-11-87 32.3 15909 29714 169 0.6 19.6 22.7 5.7 5.0 15.5 4.1 1.5 0.6 0.7

C-11-93 35.6 21294 39148 176 0.8 25.7 27.0 7.5 4.9 13.5 6.2 1.8 0.7 0.6

C-11-97 37.1 14086 27633 153 0.6 17.5 18.2 5.2 2.1 11.4 3.9 1.3 0.5 0.7

C-11-105 40.5 15812 31318 159 0.5 20.1 23.7 5.2 1.0 31.2 5.4 1.5 0.8 1.9

C-11-107 41.5 7078 13801 112 0.3 10.5 14.0 3.4 1.4 17.0 3.0 0.6 0.7 1.1

C-11-109 41.8 5978 12407 107 0.2 8.4 11.4 2.9 1.1 11.7 2.1 0.5 0.3 0.7

C-11-115 43.1 26880 50055 187 0.9 30.5 32.4 9.6 9.3 32.8 6.3 2.2 0.5 1.1

C-11-123 45.0 15257 29319 213 0.6 20.1 24.1 5.5 1.6 36.5 5.3 1.2 0.5 2.1

C-11-131 46.9 16263 30532 205 0.6 19.7 28.3 5.5 3.7 17.2 5.5 1.5 0.4 0.8

C-11-137 48.7 22550 43729 172 0.9 29.4 34.5 7.8 1.6 43.8 7.3 2.2 0.8 2.8

C-11-145 51.3 18049 35716 219 0.7 26.8 29.9 6.5 1.6 38.5 7.3 1.9 1.0 2.8

C-11-153 55.1 22287 43135 199 0.9 26.3 32.2 8.0 6.9 43.4 4.4 2.1 0.4 2.1

C-11-165 59.1 17659 33279 174 0.7 21.0 19.6 6.7 2.2 13.4 5.4 1.6 0.4 0.5

C-11-175 64.0 19728 38301 187 0.7 24.1 27.5 7.0 4.2 25.8 11.3 1.9 1.0 1.3

C-11-181 66.3 10726 20635 114 0.4 14.2 18.8 3.7 4.0 13.1 4.0 0.9 0.5 0.9

C-11-185 67.6 18289 34596 173 0.7 22.0 22.2 7.9 3.0 20.2 6.3 1.5 0.5 0.8
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Sample Id Height Al Si P Ti V Cr Fe Co Ni Cu Th U Mo

Units → (m) (ppm) (ppm) (ppm) (ppt) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

C-11-197 70.7 21001 39068 193 0.8 23.2 26.6 7.2 2.1 14.9 7.4 2.2 0.6 0.6

C-11-203 78.3 8369 17797 138 0.3 12.0 11.8 3.5 2.5 9.4 4.7 0.8 0.5 0.5

C-11-207 84.5 23672 46212 229 0.8 27.1 24.1 8.1 4.8 15.8 6.4 2.0 0.5 0.3

C12-208 86.0 34572 84381 448 1.3 49.0 47.5 14.7 23.2 39.8 12.2 4.9 1.5 1.7

C12-211 88.0 30907 94243 325 1.3 41.6 46.8 16.0 14.7 48.8 9.7 5.1 1.4 2.6

C12-214 90.2 55646 124440 383 1.9 66.8 66.7 23.5 13.2 50.5 14.3 6.9 1.6 1.3

C12-217 93.6 47407 98239 281 1.7 51.0 68.6 16.7 15.1 71.4 9.0 5.5 1.1 3.8

C12-220 96.1 35720 78423 313 1.4 40.3 51.4 13.7 11.1 65.8 9.0 5.1 1.3 3.3

C12-223 100.2 45325 94834 236 1.8 48.7 54.6 15.5 13.5 42.0 9.9 6.1 1.2 2.0

C12-226 103.0 53753 113991 440 1.9 48.5 69.5 19.9 18.5 60.4 9.7 6.7 1.5 2.1

C12-229 105.8 47540 110842 273 1.7 52.5 56.0 17.8 12.6 61.0 12.1 6.3 1.2 2.0

C12-232 108.6 15776 45858 211 0.7 18.1 22.6 6.5 6.1 26.9 5.2 2.1 0.8 1.2

C12-235 111.4 41399 93357 285 1.8 45.9 78.4 14.9 29.9 65.0 9.3 5.5 1.2 2.4

C12-238 113.5 37903 87061 346 1.3 44.0 66.8 14.1 18.8 67.8 11.7 5.1 1.3 3.1

C12-241 115.2 32984 84512 294 1.1 36.7 53.6 12.4 19.9 49.7 9.1 4.0 1.2 2.0

C12-244 116.3 26267 80343 260 1.2 29.7 46.9 10.8 11.4 41.2 7.5 4.2 1.0 1.9

C12-247 118.1 24712 68018 238 0.9 31.2 43.9 11.1 7.5 57.8 8.3 3.2 1.2 3.3

C12-250 121.9 35944 86263 355 1.4 40.7 51.2 14.2 23.3 44.0 16.3 4.4 1.1 1.5

C12-253 125.1 38933 91279 293 1.3 44.2 62.5 16.3 21.2 60.9 10.2 5.3 1.2 3.6

C12-256 129.2 38765 97404 309 1.5 45.7 62.3 15.6 20.6 69.0 10.9 4.8 1.0 2.3

C12-257 130.0 11295 34052 122 0.4 14.3 17.1 3.9 2.3 13.7 2.9 1.1 0.6 1.3

C12-257A 130.0 11729 35139 130 0.5 13.6 14.5 4.1 1.8 12.5 1.9 1.2 0.7 1.1

C12-259 131.6 38507 94352 312 1.4 45.7 60.0 16.3 16.5 73.8 9.6 4.9 2.3 5.0

C12-259A 131.6 39606 91863 319 1.3 46.4 59.5 17.7 12.9 76.5 9.9 6.0 2.9 3.8

C12-262 134.4 34671 97373 229 1.6 41.6 73.1 17.5 21.7 99.1 10.8 4.8 1.1 5.5

C12-265 136.3 27438 74775 246 0.9 34.9 37.8 12.9 9.2 46.1 8.0 3.6 1.1 2.5

C12-268 138.7 34701 83180 249 1.3 43.4 57.0 15.0 12.3 63.8 9.6 4.0 0.9 3.3

C12-271 141.4 34833 97086 269 1.4 39.2 58.9 14.1 22.2 57.8 9.1 4.3 2.2 3.3

C12-274 144.1 26093 78941 333 0.9 31.4 60.4 11.6 13.6 47.0 11.2 3.0 1.2 2.9

C12-277 146.0 23210 76071 255 1.1 28.6 34.9 10.2 12.2 38.1 5.5 3.6 1.2 1.9

C12-280 149.4 23989 55470 212 1.4 34.2 37.6 9.8 9.2 34.9 6.3 4.0 1.0 2.4

C12-283 151.4 38630 89951 209 1.5 51.3 63.9 12.0 15.7 38.9 10.3 6.0 3.4 5.0

C12-284 151.7 31649 72908 301 1.1 40.4 50.9 12.0 15.3 52.4 20.3 5.2 4.0 9.0

C12-285 152.1 43719 106061 230 1.8 50.4 72.6 15.6 18.6 63.6 10.4 5.9 3.0 5.7

C12-286 152.7 13939 32815 162 0.4 16.7 26.9 7.7 8.2 34.1 6.4 1.8 0.9 8.4

C12-290 154.4 28162 63803 152 1.1 37.8 40.1 8.4 7.2 29.9 8.2 3.9 0.9 2.1

C12-293 155.8 19300 43860 169 0.7 24.9 31.0 6.8 5.8 30.2 6.8 2.7 1.2 2.5

C12-296 156.9 20732 47854 290 0.6 24.4 29.2 6.9 9.4 20.7 8.3 2.7 1.1 1.4

C12-299 158.7 16005 38771 135 0.9 19.4 26.9 7.6 10.4 30.3 6.2 2.5 1.1 8.4

C12-302 159.8 18771 43242 147 0.6 21.7 26.8 6.0 6.4 22.2 4.3 2.4 0.9 1.8
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Sample Id Height Al Si P Ti V Cr Fe Co Ni Cu Th U Mo

Units → (m) (ppm) (ppm) (ppm) (ppt) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

C12-303 160.2 20559 47029 148 0.6 24.1 29.2 6.5 4.2 20.3 4.8 2.7 1.1 1.3

C12-306 161.6 14686 34731 148 0.5 18.5 21.7 4.9 3.4 15.9 2.7 2.0 0.7 1.1

C12-309 163.1 31568 77488 184 1.2 39.5 41.1 9.6 13.2 28.2 6.3 4.0 1.3 1.1

C12-312 165.3 15697 38818 152 0.7 15.5 25.6 6.2 13.3 24.8 5.8 2.5 0.6 1.3

C12-315 166.9 9977 31067 97 0.4 14.6 20.9 4.4 4.2 25.0 3.4 1.4 0.9 2.3

C12-318 168.1 9573 28347 95 0.4 14.2 24.4 4.2 4.8 30.9 3.4 1.3 0.5 3.1

C12-321 169.4 7179 25592 75 0.3 10.8 19.8 3.8 15.0 30.6 3.0 1.0 0.5 2.7

C12-324 170.6 10561 32507 78 0.3 13.9 24.0 5.5 7.2 36.8 4.3 1.3 0.9 3.3

C12-327 171.7 8752 30283 73 0.3 12.2 17.5 3.8 6.2 22.4 2.8 1.3 0.6 2.5

C12-333 174.5 9336 27708 114 0.3 13.6 17.5 4.5 6.3 18.2 3.1 1.0 0.7 1.6

C12-336 177.1 13576 40800 86 0.5 21.6 24.7 5.9 6.1 28.6 4.6 1.7 0.8 2.3

C12-339 178.6 10260 28039 74 0.4 16.4 22.5 5.1 4.0 24.8 3.9 1.2 0.9 1.8

C12-342 180.6 8939 26189 140 0.4 13.6 16.3 4.0 6.7 19.3 2.5 1.0 0.6 0.9

C12-345 181.9 7398 22653 84 0.3 9.1 15.5 3.6 4.9 19.3 2.1 0.9 0.5 1.5

C12-348 182.8 13112 35219 80 0.5 19.4 22.7 5.5 4.9 23.9 3.8 1.4 0.6 1.4

C12-351 183.8 16665 44840 92 0.6 25.6 28.7 6.0 4.0 25.2 3.7 1.9 0.8 1.3

C12-360 187.6 12757 34307 89 0.5 18.8 26.7 4.8 5.3 24.8 3.3 1.5 0.6 1.0

C12-363 188.7 11139 31576 63 0.4 16.1 23.3 4.0 4.4 20.2 3.2 1.3 0.4 1.0

C12-366 189.4 13666 36552 88 0.5 20.3 26.2 5.5 8.6 22.9 3.3 1.4 0.6 1.4

C12-369 190.3 12596 35703 83 0.6 19.3 29.9 6.0 13.2 39.3 3.5 1.4 0.7 1.7

C12-372 191.4 18699 53138 102 0.8 25.6 33.1 6.1 20.9 27.2 3.3 2.1 0.7 1.3

C12-375 192.4 29686 83392 212 1.5 46.5 57.3 11.8 28.6 48.3 7.5 3.2 1.3 2.2

C12-378 193.4 21738 58256 121 1.0 33.9 39.8 7.7 11.6 25.8 5.0 2.3 0.9 1.6

C12-381 194.0 19275 54036 117 0.9 29.4 35.1 6.6 18.0 18.5 4.5 2.0 0.9 0.8

C12-384 194.6 15585 33276 127 1.1 31.3 36.7 7.6 22.1 28.2 10.7 1.5 1.0 0.5

C12-387 195.5 13069 30821 131 0.6 23.6 25.6 5.5 19.4 17.5 2.7 2.0 0.8 0.3

C12-390 196.3 16798 35618 126 0.9 31.9 35.9 7.8 8.5 23.3 7.3 1.4 0.7 1.4

C12-393 196.9 14524 33190 184 0.8 24.5 24.6 5.9 10.2 16.3 3.5 2.0 0.6 0.6

C12-396 197.9 15559 33874 172 0.9 30.4 35.0 7.4 10.0 23.5 6.5 1.4 1.0 0.7

C12-399 198.4 13680 29042 282 0.7 21.7 24.6 7.2 16.2 22.5 4.4 1.7 0.9 0.9

C12-401 198.8 7721 16809 103 0.7 14.1 23.4 5.3 18.7 19.9 4.7 0.7 0.6 0.6

C12-404 199.4 14562 29824 204 0.6 24.1 24.3 6.3 11.4 19.8 3.7 1.7 1.2 1.0

C12-406 199.8 16561 36802 263 0.9 30.4 33.7 6.5 10.3 16.2 7.5 1.5 0.8 0.7

C12-412 201.0 25416 51523 162 1.5 39.0 64.7 8.3 14.7 29.4 8.2 2.5 1.1 1.2

C12-414 201.3 27268 56546 224 1.3 42.8 43.3 10.7 13.9 28.5 5.9 3.3 1.0 1.2

C12-417 201.7 17078 43417 266 0.9 34.4 48.7 7.8 19.6 22.3 8.4 1.7 0.8 0.9

C12-422 203.1 15561 31466 116 1.0 24.7 31.0 7.7 7.8 23.6 7.5 1.4 0.8 1.0

C12-425 203.7 16472 35539 192 0.8 22.2 24.6 7.4 10.1 19.9 3.9 2.5 1.0 1.0

C12-428 204.5 20739 44507 154 1.1 28.9 40.5 11.9 10.3 23.4 13.8 1.9 0.9 2.3
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Sample Id Height Al Si P Ti V Cr Fe Co Ni Cu Th U Mo

Units → (m) (ppm) (ppm) (ppm) (ppt) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm)

C12-434 206.7 16074 33063 133 0.8 19.5 29.0 6.1 8.5 18.9 5.7 1.3 0.6 0.6

C12-439 209.9 30822 62606 246 1.4 31.3 43.9 14.0 13.0 24.3 6.9 3.5 1.2 0.7

C12-449 213.1 23064 50544 151 1.1 33.2 36.9 14.5 30.8 29.3 4.8 2.9 0.9 0.7

C12-458 217.4 30470 60152 286 1.2 36.7 38.1 13.3 8.8 20.2 4.3 3.3 0.8 0.9

C12-471 227.5 51471 93983 425 1.7 75.6 69.6 21.6 20.4 41.7 9.3 5.3 1.2 0.5

C12-477 233.3 49841 95192 450 1.7 71.7 59.8 22.5 21.0 36.8 8.0 6.1 1.5 1.0

Ave. Std → 2382 4781 43 0.2 12.1 5.4 1.2 2.0 7.0 1.6 0.4 0.2 0.2
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Appendix 3 Semi-quantitative bulk mineral composition of selected samples along the stratigraphic log. 

 

  

Sample Id Height (m) Clay Quartz K-feldspar P-feldspar Calcite Dolomite Pyrite/Marc.

C10-04 0.7 5% 17% 0% 5% 72% 1% 1%

C10-17 5.4 12% 25% 0% 5% 51% 2% 5%

C10-19 6.1 15% 25% 0% 7% 52% 1% 0%

C10-31 13.7 13% 14% 0% 6% 64% 1% 1%

C10-58 20.8 7% 9% 0% 3% 78% 3% 1%

C10-77 27.7 5% 7% 1% 2% 84% 1% 1%

C10-85 31.3 6% 10% 1% 3% 76% 3% 1%

C11-109 41.8 3% 6% 1% 2% 86% 1% 1%

C11-169 62.0 9% 14% 0% 5% 72% 0% 1%

C11-205 81.1 9% 17% 2% 5% 65% 1% 0%

C12-211 88.0 6% 15% 2% 4% 66% 1% 3%

C12-229 105.8 13% 22% 2% 7% 51% 1% 0%

C12-249 120.0 8% 15% 2% 4% 66% 1% 1%

C12-252 124.2 12% 17% 2% 5% 56% 3% 3%

C12-288 154.1 4% 8% 1% 2% 82% 2% 1%

C12-326 171.4 2% 7% 1% 3% 85% 1% 1%

C12-376 192.8 3% 13% 1% 3% 76% 1% 1%

C12-408 200.2 2% 6% 0% 2% 87% 2% 1%

C12-412 201.0 3% 7% 1% 3% 83% 2% 1%

C12-415 201.5 2% 5% 1% 2% 86% 1% 2%

C12-416 201.6 3% 9% 1% 1% 83% 2% 1%

C12-431 205.6 2% 7% 1% 2% 83% 1% 1%

C12-435 207.9 3% 8% 1% 3% 79% 2% 1%

C12-437 208.8 2% 7% 1% 4% 84% 1% 1%

C12-441 210.6 2% 7% 1% 5% 79% 2% 2%

C12-445 211.8 2% 8% 2% 5% 79% 1% 0%

C12-446 212.1 2% 6% 1% 4% 85% 1% 1%

C12-461 220.1 7% 15% 2% 3% 65% 2% 3%

C12-471 227.5 3% 13% 2% 3% 75% 2% 2%

C12-478 234.9 10% 13% 2% 3% 67% 1% 1%
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Appendix 4 Pristane/phytane ratio of all samples analyzed for n-alkane composition with the corresponding 
stratigraphic level. 

 

Sample Height (m) Pr/Phy

C10-04 0.7 1.5

C10-05 1.2 2.2

C10-17 5.4 1.7

C10-19 6.1 1.6

C10-20 7.2 2.5

C10-23 9.0 1.9

C10-25 10.3 1.4

C10-31 13.7 1.6

C10-34 14.8 1.8

C10-41 16.6 1.6

C10-48 18.2 1.5

C10-50 18.6 1.6

C10-58 20.8 0.9

C10-70 25.5 1.7

C10-77 27.7 0.9

C10-79 28.4 1.6

C10-80 28.7 1.6

C10-83 30.5 1.6

C10-87 32.3 2.1

C11-109 41.8 1.2

C11-117 43.6 1.6

C11-149 52.6 1.4

C11-175 64.0 1.7

C11-199 73.0 1.1

C12-227 104.1 1.2

C12-249 120.0 1.3

C12-252 124.2 1.1

C12-261 132.6 1.3

C12-263 135.2 1.3

C12-287 153.0 1.4

C12-314 166.4 1.1

C12-337 178.0 1.1

C12-349 183.2 0.7

C12-405 199.5 0.8

C12-460 218.9 1.8

C12-470 227.0 1.6
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