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by 
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viii 

Professor Sharan Ramaswamy, Major Professor 

Articular cartilage injuries occur frequently in the knee joint. Several methods have 

been implemented clinically, to treat osteochondral defects but none have been able to 

produce a long term, durable solution. Photopolymerizable cartilage tissue engineering 

approaches appear promising; however, fundamentally, forming a stable interface between 

the tissue engineered cartilage and native tissue, mainly subchondral bone and native 

cartilage, remains a major challenge. The overall objective of this research is to find a 

solution for the current problem of dislodgment of tissue engineered cartilage at the defect 

site for the treatment of degraded cartilage that has been caused due to knee injuries or 

because of mild to moderate level of osteoarthritis. For this, an in-vitro model was created 

to analyze the integration of tissue engineered cartilage with the bone, healthy and diseased 

cartilage over time. We investigated the utility of hydroxyapatite (HA) nanoparticles to 

promote controlled bone-growth across the bone-cartilage interface in an in vitro 

engineered tissue model system using bone marrow derived stem cells. We also 

investigated the application of HA nanoparticles to promote enhance integration between 

tissue engineered cartilage and native cartilage both in healthy and diseased states. Samples 

incorporated with HA demonstrated significantly higher interfacial shear strength (at the 

junction between engineered cartilage and engineered bone and also with diseased 

cartilage) compared to the constructs without HA (p < 0.05), after 28 days of culture. These 

findings indicate that the incorporation of HA nanoparticles permits more stable anchorage 

of the injectable hydrogel-based engineered cartilage construct via augmented integration 

between bone and cartilage.   
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1.1 Introduction 

The aim of the study was to develop a photo polymerizable injectable tissue 

engineered cartilage model. This model possesses enhanced integration properties for the 

treatment of focal cartilage injuries and mild to moderate level of osteoarthritis   (≤50mm2). 

Our central hypothesis was that an osteoinductive approach will overcome the existing 

limitations of securing engineered cartilage within the defect space for the complete 

healing period. To test this hypothesis, we conducted an in-depth analysis of the integration 

of the newly formed tissue engineered cartilage to bone as well as to diseased and healthy 

cartilage tissues. 

1.2 Background 

Articular cartilage defects and lesions are one of the most common injuries that 

occur in the knee joint [1, 2]. Curl et al [1], demonstrated in their study of consecutive knee 

arthroscopies that up to 63% of the patients with knee-related symptoms suffered from 

chondral or osteochondral defects [3]. These defects may also progress to osteoarthritis if 

left untreated [4], which further involves degradation of articular cartilage, the sub chondral 

bone, the synovial capsule and membrane as well as the periarticular tissues [5].  

Cartilage provides a cushioning mechanism to minimize the impact to bone at joint 

locations, by completely covering its free surface.  Conversely, the degradation of articular 

cartilage leads to the exposure of bone and eventually, bone-to-bone contact which can 

cause considerable pain and stiffness in the joints. The extra cellular matrix of articular 

cartilage is composed of collagen–II and proteoglycans which are maintained and 

synthesized by chondrocyte cells. The tissue does not contain any vasculature hence, 

attributing to the slow rate of growth and repair [6, 7].  Architecturally, cartilage is 
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composed of 3 zones (Fig. 1.1) and can be classified according to the orientation of 

collagen fibers within the tissue [8, 9].  The superficial layer has a tangential orientation 

with respect to the free surface, while the middle transitional layer is more random. Finally, 

the deep zone is orientated orthogonally to the free surface. 

Several methods have been implemented clinically to treat osteochondral defects 

but none have been able to produce a long term, durable solution [10-12].  Current 

clinically used strategies involve permanent modification of the damaged articular surface 

using abrasion arthoplastry or shaving of chondral bone to remove any loosen bits or parts 

to ease out the pain. Another popular technique in severe cases of OA makes use of grafting 

procedures, such as mosaicplasty [13, 14] or osteochondral allograft transplantation.  In 

situations of complete cartilage loss and/or severe pain, total joint replacement is carried 

out, such that an implant consisting of artificial materials is implanted.  While these 

implants have demonstrated durability > 10 years, revisions are required and the procedure 

is expensive [15]. From a regenerative medicine standpoint, autologous chondrocyte 

transplantation (ACT) has been used to promote [16, 17] chondrogenesis.  In addition, of 

keen interest in cartilage tissue engineering, several approaches involve leveraging bone 

marrow derived stem cell (BMSC) release from the subchondral bone, which involve 

drilling [18] or microfracture [19] of the same with the hope that BMSCs will migrate in 

the defect area and promote cartilage repair.  While these tissue engineering approaches 

seem promising, fundamentally, there is still a need to better integrate the biomaterial to 

the host to allow for sufficient repair and regeneration of new cartilage tissue. 
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Figure 1.1:  Zonal structure of articular cartilage. The superficial zone contains collagen fibers 
aligned tangentially to the joint surface, whereas the intermediate zone has a more random 

orientation.  Finally, the deep zone of cartilage is characterized by a perpendicular arrangement of 
collagen fibers 

 

Successful integration will require overcoming the following two major challenges: 

1) the biomaterial scaffold that is used must initially be harmonized in the joint, and the 

ensuing developing tissue must amalgamate with the existing native tissue that surrounds 

it; 2) the mechanically hostile environment of the joint poses further challenges and thus 

must be overcome by tailoring suitable interfacial mechanical properties after integration 

of the biomaterial to subchondral bone, so that de novo cartilage tissue can adequately 

form. 

1.3 Objectives of the current research 

The overall objective of this research (Fig. 1.2) is to find a solution for the current 

problem of dislodgment of tissue engineered cartilage at the defect site for the treatment of 

degraded cartilage that has been caused due to knee injuries or because of mild to moderate 

level of osteoarthritis. For this, an in-vitro model is created to analyze the integration of 



5 

tissue engineered cartilage with the bone, healthy and diseased cartilage over time. This 

overall objective is achieved through the following specific aims: 

Aim 1: Promote integration between engineered cartilage to subchondral bone using 

hydroxyapatite nanoparticles in an optimized photopolymerizable hydrogel environments, 

which will permit controlled bone in-growth into a modest region (5-15%) of the 

engineered cartilage space, thereby providing enhanced anchorage.  

Aim 2: Enhance the integration between tissue engineered cartilage and surrounding native 

cartilage, again with hydroxyapatite nanoparticle incorporation in photopolymerizable 

hydrogel environments. 

Aim 3: Demonstrate the sustenance of engineered cartilage in presence of osteoarthritic 

diseased states, using approaches utilized in aim 2 and to show their integration in diseased 

state under hydroxyapatite nanoparticles environments.  
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Figure 1.2: Overall Strategy of the Research 

As observed by the reader, this chapter gives the background information and motivation 

for the ongoing project. The subsequent organization of this dissertation is as follows: 

Chapter 2 provides a comprehensive literature review of investigations that has been done 

by other researchers in the field of integrating and fixing the tissue engineering cartilage. 

It also provides the ideas of research areas that can be further exploited. Chapter 3 presents 

a study of the cellular cytotoxicity of five different human cell sources at different UV 

exposure times, with and without a commercially used photoinitiator. This chapter provides 

insights on the relative survivability of the different cells under UV light and photo initiator 

environments and forms a foundation for subsequent usage of some of these cell types 

(bone marrow stem cells and osteoblasts) for our tissue engineering experiments. Chapter 

4 describes the study for the investigation of the utility of hydroxyapatite (HA) 
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nanoparticles to promote controlled bone-growth across the bone-cartilage interface in an 

in vitro engineered tissue model system, using bone marrow derived stem cells. Chapter 5 

describes the integration of tissue engineering cartilage with healthy and diseased cartilage 

tissues when HA nanoparticles are utilized. Conclusions and scope of future research for 

this study will be discussed in Chapter 6. Recommendations will also be provided so that 

this research can enter into the next stage for in vitro model. 
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This chapter presents a critical review of investigations that have been conducted in 

integrating engineered cartilage to host tissue. The process of integration of tissue 

engineered constructs can be broadly classified into three main categories.  

a) Mechanical fixation 

b) Chemical Fixation 

c) Biological fixation 

2.1 Mechanical fixation 

2.1.1 Sutures 

Sutures have been extensively used to stabilize implants [1]. An ideal suture has 

characteristics of high tensile strength, excellent knot security, minimal tissue 

inflammation, and biocompatibility [2, 0]. Sutures are made of a variety of textile materials, 

including, Dexon, silk, nylon, polyethylene and Chitin [0, 5]. However sutures alone are 

not able to enable total fixation. Robertson et al [6], reported that the suturing process 

normally leads to the tearing of tissue when load is applied. Moreover premature suture 

breakage frequently occurs during application of a load. In some cases the suture threads 

actually pulled the implant away from the defect site resulting in dislodgement [6]. 

2.1.2 Screws 

Screws have been utilized to anchor tissue engineered constructs to bone [7]. They act as 

a stabilizing device that helps to retain the construct in the defect. The main disadvantage 

of screws is that they possess protruding components which create regions of stress 

shielding and can alter bone material properties.  In addition the protrusion may interfere 

with the seamless movement of joints at the articulating surfaces. 
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2.1.3 Cross Pins 

To overcome the limitations of screws, cross pins were utilized so as to augment stability 

to the implant. Cross pins are much thinner than screws, thus enabling them to fix the tissue 

engineered constructs to the bone without eliciting substantial tearing [8]. In this technique, 

many research groups [8, 9] used a pin fixture which degrades over time. Pins offer many 

advantages over screws, in that they prevent graft laceration and their heads are softer than 

screws, which reduces damage to the engineered constructs. 

2.1.4 Staples 

Robertson et al [6], reported that use of staples is the most effective method of mechanical 

fixation of tissue engineered constructs to bone. However the most common mode of 

failure for staples was their dislodgment after application of load.  In addition, Shall et al 

[10], reported that staple breakage and pull-out were the two main reasons for fixation 

inadequacies.  

Mechanical fixation manifests itself through a direct physical connection between implant 

and the bone. However the primary limitation in these approaches are that they form a 

sharp interface rather than a natural, graded integration between engineered to native tissue 

structures, which ultimately leads to implant loosening over a period of time. Considerable 

efforts have gone into determining novel ways of mechanically fixing implants to host 

tissue. Nonetheless, true integration of engineered to native tissues such as bone cannot be 

achieved without biological growth and assimilation across the interface.  In addition, 

mechanical fixation alone may cause secondary tissue damage owing to new defect 

creation during processes such as suturing and stapling, which cannot be easily repaired 

[11].  
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2.2 Chemical Fixation 

There are a number of chemical-based methods that have been attempted to fix tissue 

engineered constructs to bone in animal models such as  tissue adhesives [0, 13], treating 

the construct with enzymes[25, 26] and blocking signaling pathways [29]. These methods 

have shown some success in terms improving the mechanical stability and durability of the 

implant.  Some of the approaches which have used a chemical approach are described 

below: 

2.2.1 Tissue Adhesives 

Tissue adhesives have been used for minor wound repair [0]. They have been implemented 

in place of sutures and staplers for enabling improved outcomes for wound closure [13]. 

There are a variety of tissue adhesives that have been used clinically. The primary 

adhesives are described as follows: 

Cyanoacrylates are a class of tissue adhesives that have been extensively used. There are 

many derivatives of cyanoacrylates such as N-butyl cyanoacrylate, 2-Octylcyanoacrylate, 

butyl-2-cyanoacrylate and N-butyl-2-cyanoacrylate [14, 15, 16]. These cyanoacrylates are 

commonly referred to as “superglues”. They are liquid monomers which cause an 

exothermic reaction and form a flexible film at the tissue surface that will subsequently 

hold the two parts together [17]. Vote et al [18], reported that cyanoacrylate prevents the 

re-occurrence of epithelialization within the damaged area and the connective tissue. 

Cyanoacrylates also minimize infection because of their bacteriostatic properties which 

serve to inhibit the growth of gram positive organisms [15, 18]. 

Bioglue is another type of tissue adhesive that consists of albumin gluteraldehyde. It is 

composed of purified bovine serum albumin cross linked with gutaraldehyde.  Herget et al 
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[0], suggested that this glue was suitable for sealing lung parenchyma and bronchial 

anastomosis defects. They furthermore reported that bioglue is durable and its adhesive 

capability is effective [0].  Several surgical procedures utilize fibrin glue. This tissue 

adhesive is composed of fibrinogen and thrombin linked together with a bond formed via 

the coagulation reaction [20]. Fibrin glue also consists of antifibrinolytic agents, aprotinin 

and calcium chloride in addition to the primary fibrinogen and thrombin components [21]. 

It has been successfully and actively used as a sealant for pulmonary air leaks [22]. In 

addition, although fibrin glue is found to be chemically less toxic then cyanoacrylates, they 

possess less adhesive strength properties [23], thus limiting their use in tissue integration 

processes. 

2.2.2 Enzymatic Approaches 

Enzymatic treatment approaches work on the principle that selective enzymatic treatment 

of tissue engineered constructs will promote integration to the host tissue and thereby 

provide better fixation.  Many enzymatic treatments have been attempted and have 

demonstrated improved integration outcomes. For example, Hunziker et al [25], suggested 

that the removal of proteoglycans from the surface would enhance the repair of cartilage. 

Their hypothesis was based on the fact that the cells that are responsible for repairing and 

regenerating the tissue in cartilage injury do not adhere to proteoglycan rich surfaces. Thus 

the removal of these proteoglycan molecules from the surface of defects by the use of the 

enzyme, chondroitinase ABC would enhance the cartilage repair process. From their 

experiments, they were able to show that the repair cells adhered to the defect surface 

considerably better on removal of proteoglycan molecules; however, they were not able to 

show that the chondroitinase treatment actually enhanced the healing of the injured tissue. 
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Lee et al [26], reported that chondroitinase treatment at various concentrations of the 

enzyme and exposure durations altered adhesion behavior of transplanted cells for the 

repair of the injured tissue. However, low concentrations of the enzyme (0.25 U/mL) for 

15 minutes (and alternatively, 0.5 U/mL for 5 minutes) had no effect in improving adhesion 

of the cells. Bravenboer et al [27], suggested that integration of engineered cartilage 

constructs can be enhanced by enzymatic treatment of collagenase and hyaluronidase. They 

furthermore reported that treatment of these enzymes on the implanted tissue construct will 

increase the mechanical properties at the interface of engineered to host tissues. The same 

group had also previously showed that treatment with collagenase and hyaluronidase 

increased the cell density to the wound site [28]. Although there was significant increase 

in the integration strength of the implanted tissue model to native tissue using this dual 

enzymatic treatment, the reported values were ~ seven times lower than the actual strength 

of intact cartilage to subchondral bone [27].  Nonetheless, enzymatic treatments may offer 

a very promising addition when used in conjunction with potential tissue integration 

strategies that utilize biological fixation methodologies.  

2.2.3 Signaling Pathway /Biochemical Approaches 

A blocking signaling pathway responsible for degrading tissue may indirectly promote the 

integration of the tissue engineered construct to native tissue.  Recently Djouad et al [29], 

conducted experiments involving the blocking of the signaling pathway of extracellular 

regulated kinases (ERK).  They found that disintegration of the extracellular matrix in 

native cartilage is aggravated by the degradative signaling cascades which were initiated 

by proinflammatory cytokines. Thus blockage of extracellular regulated kinases 1 and 2 

were thought to improve the integration processes between engineered to host cartilage. 
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Elsewhere [30, 31], it was reported that interleukin 1-β(IL1- β) and tumor necrosis factor-

α(TNF-α) are two important factors that are mainly responsible for causing the 

extracellular matrix (ECM) degradation and that they stimulate the formation of ERK 1/2, 

a protein molecule which is responsible for cartilage degradation. Djouad et al [29], were 

successful in blocking IL1- β and TNF-α signaling and subsequently were able to measure 

improved biochemical and mechanical properties at the interface of engineered cartilage 

and native tissue. However the de novo cartilage tissue as a whole had lower mechanical 

properties; for example, their control samples had a Young’s modulus of 17.7- 5.5 kPa 

while their samples treated with IL1-b– and TNF-  recorded values of 7.30-2.8 kPa and 

11.5-1.7 kPa, respectively.  These results suggests that integration processes using 

signaling pathway alteration approaches may improve at the cost of deteriorated engineered 

tissue bulk mechanical properties.  Overall, a variety of chemical-based approaches have 

been used, but none of them have been capable of achieving durable integration with native 

tissues. Thus the demand for strong and durable integration of the engineered implant to 

native tissues [24] may only be possible with biological fixation measures. 

2.3 Biological Fixation 

Biological fixation approaches serve to enhance integration of tissues by true biological in-

growth and amalgamation. Some of the techniques that are used have been categorized 

below. 

 

2.3.1 Chondroitin Sulphate  
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The incapability of tissue adhesives to provide a stable and durable fixation over a period 

of time without causing any infection and maintaining the biocompatibility, particularly in 

the area of cartilage tissue engineering, led to integration studies involving multifunctional 

chondroitin sulphate [24]. Wang et al [24], reported that this material was chemically 

functionalized by two groups, methacrylate and aldehyde which can form a covalent bond 

to adhere to native cartilage on one side and the biomaterial scaffold on other side, thus 

forming a strong primer between the host and engineered tissues [24]. They also suggested 

that the material was bioactive as chondroitin sulphate is a principal component of cartilage 

ECM which would thereby serve to augment tissue repair. 

2.3.2 Chitosan 

Chitosan is a polysaccharide which is biocompatible, biodegradable, non-toxic and 

allergen free.  Chitosan has a hydrophilic surface which promotes both cell adhesion and 

proliferation [32]. Hoemann et al [33], indicated that Chitosan glycerol phosphate when 

mixed with blood in the cartilage defect space not only greatly improved integration with 

sub-chondral bone, but also resulted in enhanced hyaline cartilage tissue formation. 

However, chitosan has low strength [34], so it cannot be used alone in the fixation process. 

2.3.3 Hydroxyapatite 

Hydroxyapatite (HA) (or calcium phosphate) is a bioactive material found in the bone and 

teeth.  A few research groups have been working on providing enhanced engineered 

cartilage to bone anchorage through the use of this bio active material [35, 52]. One of the 

research group Lu et al [51], evaluated the potential of HA in alginate gel for regeneration 

of osteochondral interface and they were able to demonstrate successfully the formation of 

calcified cartilage like with the use of HA in their system. 
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A summary of the different integration methods for engineered cartilage tissue constructs 

to bone, which were presented in this chapter, is described in Table 2.1: 

Table 2.1: Summary of the advantages and disadvantages of different types of integration 
techniques [1-36] 

Fixation 

type 

Specific 

approaches 

Advantages Disadvantages 

Mechanical 
Fixation 

Sutures - Extensively used for   
retaining construct with the 

bone 

-     Inexpensive 

 

- Premature suture   
Breakage 

- Tearing of Tissue 
engineered constructs 

 

 Screws - Help in retaining the 
constructs with the bone 

- Protruding heads 
leads to the tearing of 
tissue and affects the 

bone shear 

 Cross Pin - Thinner than screws and soft 
heads 

- prevents graft laceration 

- Breakage 

 Staples - Most effective method for 
mechanical fixation 

- Dislodgement of 
staples after the 

application of load. 

-      Staple breakage 

-      Staple pull out 

    

Chemical 
Fixation 

Tissue Adhesives -  Durable 

 

- Some are not bio-
compatible 

- They prevent the 
epithelialization within 
the damaged area and 

connective tissue 
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- They may cause 
infection 

 Enzymatic 

treatment 

- promote integration between 
the implant and the native 

tissue 

- Alone this treatment 
cannot provide enough 

strength 

 Biochemical 

Approach 

- indirectly promote the 
integration of the tissue 

engineered constructs with 
native tissue 

-   They deteriorate 
engineered tissue bulk 
mechanical properties 

    

Biological 

Fixation 

Chondroitin 
Sulphate 

- Bioactive material Was not able to form a 
strong force of 

interaction between the 
host and the tissue 

engineered constructs 

 Chitosan -   Biocompatible 

-   Biodegradable 

-   Allergy free 

-   Non toxic 

- Low Strength 

 

 Hydroxyapatite -Bioactive material 

- Help in the formation of deep 
layer of cartilage from bone 
marrow derived stem cells 

- Ceramic, may break 
at a sudden load 

 

In summary, current paradigms in cartilage tissue engineering do not sufficiently address 

the issue of integrating engineered construct to native host tissue. The different approaches 

relating to this critical area, which are mechanically, chemically or biologically driven, 

have been discussed in this chapter and these techniques alone have not been able to 

provide a durable integration with the host tissue and fixation in the defect area.  
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Hence, the primary objective of the proposed research was to focus on the use of injectable 

polymers as a model system to assess integration processes and efficacy, leveraging a 

biological-fixation-based strategy. In line with other investigators [37, 38], my motivation 

for such an approach is that injectable approaches have the ability to introduce a monomer 

solution to fill arbitrarily-shaped defects while concomitantly incorporating any secondary 

substance; Polymerization (e.g. via UV exposure and photoinitiator inclusion) can then 

occur in situ [39].   

For biological fixation we chose to experiment with  hydroxyapatite nanoparticles in a 

photopolymerizable hydrogel system owing to its well-established  osteoinductive 

properties  The effects of hydroxyapatite incorporation were then assessed not only in the 

context of integration to bone, but also with healthy and disease cartilage tissues. 
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Chapter 3 

Relative survivability of different human cell types after exposure to 
photopolymerizable environments 

 

 

 

 

 

 

 

 

 

 

This chapter presents a study of the cellular cytotoxicity of five different human cell 

sources at different UV exposure times, with and without a commercially used 

photoinitiator. The work presented herein formed the foundation for subsequent protocols 

that were designed in conjunction with in vitro engineered tissue model systems for 
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evaluating integration of engineered bone to engineered cartilage.  This topic is presented 

in detail in chapter 4 of this dissertation.  In particular, osteoblasts which are very sensitive 

to photopolymerizable environments were able to remain viable for longer durations under 

specific incubation temperature and biochemical conditions as described below. 

3.1 Abstract 

Photopolymerizable hydrogels offer great potential in cartilage tissue engineering due to 

their ability to conform to irregular defect shapes and be applied in a potentially minimally 

invasive manner. An important process requirement in the use of photopolymerizable 

hydrogels is the ability of the suspended cells to withstand low intensity ultraviolet light 

(UV) exposure (4–5 mW/cm2) and photoinitiator concentrations. For cartilage integration 

with underlying subchondral bone tissue, robust localized osteoblast activity is necessary. 

Yet, while it is known that osteoblasts do not respond well to UV light, limited work has 

been conducted to improve their survivability. In this study, we evaluated the cellular 

cytotoxicity of five different human cell sources at different UV exposure times, with and 

without a commercially used photoinitiator. We were able to confirm that human 

osteoblasts were the least tolerant to varying 

UV exposure times in comparison to bone marrow stem cell, periodontal ligament cell, 

smooth muscle and endothelial cell lineages. Moreover osteoblasts cultured at 39 oC did 

not deteriorate in terms of alkaline phosphatase expression or calcium deposition within 

the extracellular matrix (ECM), but did reduce cell proliferation. We believe however that 

the lower proliferation diminished osteoblast sensitivity to UV and the photoinitiator. In 

fact, the relative survivability of osteoblasts was found to be augmented by the combination 

of a biochemical factor and an elevated incubation temperature; specifically, the use of 50 
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mg/L of the anti-oxidant, ascorbic acid significantly (P<0.05) increased the survivability 

of osteoblasts when cultured at 39 oC. We conclude that ascorbic acid at an incubation 

temperature of 39 oC can be included in in vitro protocols used to assess cartilage 

integration with bone ECM. Such inclusion will enhance conditions of the engineered 

tissue model system in recapitulating in vivo osteoblast activity. 

Keywords: Cytotoxicity, osteoblasts, ascorbic acid, photoinitiator, photopolymerizable 

hydrogels 

 

 

 

 

 

 

 

 

 

3.2 Introduction 

Tissue engineering has been emerging as the potential approach to restoring and enhancing 

tissue or organ function in the health care industry [1, 2]. In the musculoskeletal arena, 

photopolymerizable hydrogel approaches are thought to offer several advantages, namely 

that the geometry of defects to be filled with de novo tissue can be arbitrary, delivery may 

be carried out via injection [3] thus permitting minimal invasiveness and finally, hydrogel 
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materials are considerably less expensive than biodegradable fibrous scaffolds thus 

presenting a more cost effective procedure. In brief, a polymer mixture in monomer form 

is prepared, with a very low concentration of photoinitiator (0.02 to 0.05 % w/v) [4]; cells 

are suspended within the solution and the mixture is subsequently injected into the repair 

site. Next, the monomer solution is exposed to ultraviolet light (UV) at low intensity (4-

5mW/cm2) during which free radicals initiate polymerization [5].  Despite their critical 

function, the highly mobile free radicals cause a number of adverse effects such as damage 

to extracellular proteins as well as cell apoptosis and necrosis events [6, 7, 8].  

Our long term goal is to provide better anchorage and fixation between tissue engineered 

cartilage and the underlying subchondral bone for the treatment of mild to modest 

osteoarthritis, using a reliable engineered tissue model system for bone and cartilage.  This 

system requires a reasonable degree of survivability of osteoblasts so that integration can 

occur.  Previous experiments including our own experience suggests that osteoblasts 

ordinarily do not survive well under combined ultraviolet light and photoinitiator 

environments [90].  This may explain the limited success that has been achieved thus far 

in co-relation of in vitro to in vivo results and the successful integration of engineered 

cartilage to bone in vitro [10].  

Cartilage integration involves the following two challenges: first, the scaffold that is used 

initially must be harmonized in the joint; secondly, the ensuing developing tissue must 

anchor with the underlying bone to provide a strong fixation. We note that none of the 

existing techniques in cartilage tissue engineering have been able to restore a sustained 

articular surface because subchondral bone integration to de novo cartilage tissue via 

osteoblast activity at the interface has to date, not been sufficiently addressed [11]. Thus, 
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the main objective of this study was to determine how the detrimental effects of 

photopolymerization parameters to human osteoblast survivability could be minimized 

while still permitting sufficient gelation.  Primarily, these parameters were ultraviolet light 

(UV) exposure time and photoinitiator concentration. In addition, we included in this effort, 

four additional human cell sources as a means of comparison.  Since our focus was targeted 

on osteoblasts which are traditionally known to be cultured at relatively lower temperatures 

(34
o
C) [12], we also examined the role of in vitro temperature incubation on osteoblast 

viability. Finally, we focused our efforts on the utility of the antioxidant, ascorbic acid on 

augmenting the survivability of the osteoblasts. 

3.3 Material and Methods 

3.3.1 Cell Culture 

Five different cell lines were culture expanded and comparatively evaluated as a function 

of varying UV intensities and photoinitiator concentrations:   

3.3.1.1 Human Bone marrow derived Mesenchymal Stem Cells (HBMSCs) 

HBMSCs are a well characterized population of adult stem cells that can differentiate into 

other cell lines to produce cartilage, bone, fat and muscle tissue. HBMSCs (Science cell, 

Carlsbad, CA, USA) were seeded onto Poly D-lysine coated T-75 flasks (Fisher Scientific, 

Pittsburg, PA, USA). The cells were cultured until passage 3 (P3) in low glucose media 

(Dulbecco’s modified eagle medium, (DMEM), Invitrogen, Grand Island, NY, USA) 

supplemented with 10% fetal bovine serum ((FBS), ATCC, Manassas, VA, USA ) and 1% 

penicillin–streptomycin (ATCC). 
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3.3.1.2 Human Pulmonary Artery Endothelial Cells (HPAEC) 

HPAECs (Fisher Scientific) were seeded in T-75 flasks with proprietary endothelial cell 

growth medium (Fischer Scientific) and culture expanded to P4.  

3.3.1.3 Human Pulmonary Artery Smooth Muscle Cells (HPASMC) 

Human Pulmonary Artery Smooth Muscle Cells (HPASMC) (Genlantis, San Diego, CA, 

USA ) were cultured (up to P4) in T-75 flasks (Fisher Scientific) in proprietary smooth 

muscle cell growth medium (Genlantis). 

3.3.1.4 Human Osteoblasts (hFOB) 

Human Osteoblasts (hFOB 1.19) (ATCC) were  cultured (passage number was not 

provided by the depositor) in basal media  (Invitrogen) supplemented with 10% FBS 

(ATCC), 1% Penstrep (ATCC) and 0.3mg/ml of  an aminoglycoside antibiotic  (Sigma 

Aldrich, St Louis, MO, USA)  

3.3.1.5 Human periodontal ligament cells (HPDLCs) 

HPDLCs (P3) were received as a gift from the University of Miami, FL (Dr. Herman 

Cheung). The cells were cultured in basal media (up to P3) supplemented with 10% FBS 

(ATCC), 1% Penstrep (ATCC).  

3.3.2 Effect of UV light at different exposure times 

In order to study the effect of UV exposure times on the cells, a cell solution (105 cells/ml) 

was prepared for each cell type; 200µl was subsequently placed in each well of a 96 tissue 

culture well plate providing a final density of 20,000 cells/ well.  Cells (N = 4 /group) were 

exposed to 4-5mW/cm2 of long wave unfiltered UV light (365 nm) for time durations of 0, 
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5, 10, 15 and 20 minutes. These time intervals were chosen to provide adequate dynamic 

range of exposure times. After exposing the wells to different time intervals, the plates 

were incubated at 37 oC and 5% CO2 humidified environment for 2 days.  

3.3.3 Effect of Photoinitiator concentration on different cell lines 

We used the commercially available photoinitiator, Irgacure 2959 (BASF Corporation, 

Florham Park, New Jersey, USA) given its extensive usage in tissue engineering research 

studies [13, 14], and it’s relatively less toxic effect on cells. [8, 9] .Three concentrations 

were prepared: 0, 0.03% and 0.05 w/v ratios. Briefly, 50mg and 100 mg of Irgacure 2959 

were dissolved in 1ml of 70% ethanol solution. The contents were sterilized using 0.2μm 

syringe filters and subsequently, 6μl/ml and 5μl/ml of the solutions were added into 1ml of 

cell solution respectively to give the eventual desired w/v ratios of 0.03% and 0.05%. Cells 

were seeded in the 96 well plate as described in the UV exposure experiments (N = 

4/group).  The two different concentrations of photoinitiator were added in each of the 

respective groups and placed in an incubator for 2 days. Cells without photoinitiator 

exposure served as controls.  

3.3.4 Combined effects of UV exposure times and Photoinitiator concentration 

The five different cell lines (BMSCs, HPAEC, HPASMC, hFOB 1.19, PDLCs  ) were 

exposed to combined Photoinitiator (0.05% w/v ratio) and long wave UV light for different 

time durations of 0, 5, 10, 15 and 20 minutes. Well plates were housed in an incubator for 

2 days to permit cell growth.  

3.3.5 Effect of incubation Temperature 

We assessed the effect of incubator temperature on osteoblasts owing to the sensitivity of 

this cell type to this parameter. Osteoblasts were cultured in three 96 well plates. Wells in 
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the 96 well plate were grouped into 4 wells and each group was treated with both UV light 

exposure of 10 minutes and photoinitiator concentration as 0.05% w/v ratio. The wells 

without any treatment (N=4) acted as control. All samples were kept at 3 different 

incubation temperatures of 34o,37o and 39 oC for 48 hours and maintained at 5% CO2 in a 

humidified environment. 

3.3.5.1 Effect of temperature on the osteoblast phenotype 

3.3.5.1.1 Alkaline Phosphatase Activity  

The matrix maturation phase of osteoblasts is characterized by maximal expression of 

alkaline phosphatase (ALP) and once the mineralization is complete in the matrix, calcium 

deposits can be visualized in the extracellular matrix (ECM).  In order to assess ALP 

activity (n = 3 samples/group), osteoblasts were plated using the same media conditions as 

before (section 1.1) at 37 oC and 39 oC, via a colorimetric based assay (Abcam, Cambridge, 

MA, USA). After 3 days of culture, 20,000 cells were taken for each sample and were lysed 

in 100µl of assay buffer. Lysed cells were subsequently centrifuged at 13,000 g for 3 

minutes to remove the insoluble material. 30 µl of sample was taken in replicates of 3 for 

each sample in 96 well plates.  Next, 50 µl of sample of assay buffer was added to make a 

net volume of 80µl in the wells. In addition, background samples were made by taking 30 

µl of test samples, and adding 50 µl of assay buffer and 20 µl of stop solution. Thereafter, 

50µ of 5mM p-nitrophenyl phosphate solution was added to each well containing the test 

samples and background samples. The samples were covered to prevent exposure to light 

and the reaction and held at 25 oC for 1hr. Next the reaction was halted by the addition of 

10µl stop solution (Abcam) to each well (except to the background samples) and gently 
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shaken. The optical density was measured per manufacturer instructions using a microplate 

reader (wavelength of 405 nm; model Synergy HT, Biotek Instruments, Winooski, VT).  

3.3.5.1.2 Calcium Distribution  

As an indicator of the osteoblast maturation process during cell culture, sample calcium 

mineral distribution was evaluated using von-Kossa histological staining (IHCWORLD, 

Woodstock, MD, USA).  In brief, 20,000 cells/ml were grown on chamber slides (Fisher 

Scientific) and kept at the two different temperatures (37 oC and 39 oC) using the same 

media conditions as before (section 1.1). After 3 days the slides were washed with 

phosphate buffered solution and were fixed with 10% formalin (Fisher Scientific). Finally, 

the von-Kossa stain (IHC world, Woodstock, MD, USA) was applied by treating the slides 

with silver nitrate solution and exposing them to UV light for 1 hour, which served to 

highlight spatial locations of calcium deposits in the specimens.  

3.3.6 Effect of using anti-oxidants 

In order to assess the benefits of anti-oxidant incorporation on osteoblast survival rate, we 

used 50 mg/ml of ascorbic acid in our cell culture system. Photoinitiator concentrations of 

0.05% w/v ratio were added into the selected wells. Ascorbic acid was added to the wells 

(N=4) and exposed to long wave UV light for 10 minutes. Plates were incubated at three 

different temperatures of 34 oC, 37 oC and 39 oC for 2 days   

3.3.7 Cytotoxicity evaluation using sulforhodamine B (SRB) assay 

At the conclusion of each of the aforementioned experiments, a sulforhodamine B (SRB) 

assay (Sigma Aldrich) was performed to access cytotoxic effects of UV exposure times 

and photoinitiator concentrations on the different cells. The SRB assay is a measure of cell 
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cytoxicity as a function of proliferation rate of the surviving cells. The assay was performed 

similar to assays conducted previously [15]. In brief, the assay is based on the measurement 

of viable cellular protein content in the cells colorimetrically [16].  Cells were first fixed to 

the bottom of a well plate with 10% (wt/vol) trichloroacetic acid. After the cells were fixed, 

Sulforhoda-mine-B (SRB) dye was added for cell staining at a concentration of 0.4% 

(wt/vol) which bound to viable cellular proteins. Next, 1% (vol/vol) acetic acid was used 

to remove the unbound SRB dye. 10 mM Trizma-base was used then to extract the protein 

bound SRB. The optical density (OD) of the dye was measured [17] at 565 nm wavelength 

using a micro plate reader (Biotek, Winooski, VT). Comparisons were made between 

control and treated samples.  A higher OD value would translate to increased cell 

proliferation.  Cell cytotoxicity was reported based on ‘‘Relative Survival’’ which was 

determined from the absorbance values (n = 4 samples/group) measured.  For reporting 

purposes, a normalization process was carried out similar to previous studies [9].  In brief, 

results were normalized such that the average absorbance of the control groups was equal 

to one; first, the average absorbance of the background wells that contained only the 

specific cell culture medium and the SRB dye were subtracted from each of the individual 

absorbance values. Next, normalization was performed by dividing each of the absorbance 

values by the average absorbances of the corresponding control group of cells, without any 

exposure to UV and photo initiator, but otherwise grown under identical culture conditions.  

3.3.8 Statistical Analysis 

Statistical analysis was performed using commercially available software (SPSS, IBM, 

version 20, Armonk, New York, USA).  A one way ANOVA and post-hoc Tukey test was 
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used to determine statistical significance (P < 0.05) between groups in all experiments 

conducted.  

3.4 Results 

3.4.1 Effect of UV light at different exposure times 

The human cell sources investigated showed altered viability after exposures to UV light 

(4-5 mW/cm2) (Fig. 3.1). The periodontal ligament cells were the most resistant to UV 

exposure. On the other hand, the Osteoblast survival rate considereably decreased, 

particularly after > 10 minutes of UV exposure.  
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Figure 3.1: Cell toxicity results for different human cell sources after different UV exposure 
times. Cells were incubated at 37 oC 

3.4.2 Effect of Photoinitiator Concentration 

Fig. 3.2 demonstrates the survival rate of 5 different cell lines with different concentrations 

of photoinitiator (irgacure 2959; 0, 0.03% and 0.05%) and without UV exposure.  In 

general, the effect of photoinitiator alone had little effect on the different cell types.  

 

Figure 3.2 Cell toxicity results for different human cell sources incubated at 37 oC for 48 hours 
after exposure to different photoinitiator concentrations 

3.4.3 Combined effect of UV exposure and Photoinitiator  

The effect of combined UV exposure and a photoinitiator concentration of 0.05% (w/v) 

were assessed. This amount of photoinitiator concentration was chosen as it is very 

commonly used and reported in the literature [13, 14, 18]. The general trend was that of 
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exaggerated decrease in survivability in all five cell types studied (Fig. 3.3) in comparison 

to UV exposure alone (Fig. 3.1).  Our findings further suggested that osteoblasts cells were 

the least tolerant to the combined effect of UV light and Photoinitiator, ranging at ~ 17% 

for 10 minutes of UV exposure and only 6% at 20 minutes.  

 

Figure 3.3: Cell toxicity results for different human cell sources after exposure to different UV 
exposure time concentrations and a fixed photoinitiator concentration of 0.05% (w/v).Cells were 

incubated at 37 oC.  Note that osteoblast relative survivability was significantly reduced (P < 
0.05) at all UV exposure times shown in comparison with all the other cell types that were 

investigated 

3.4.4 Effect of incubation temperature 

After obtaining baseline information on the variability of osteoblast viability on UV 

exposure times and photoinitiator concentrations in comparison to other human cell 

sources, we proceeded to focus on further improving osteoblast survivability within the 



38 

framework of commonly utilized parameters in injectable photopolymerizable hydrogels.  

Namely these were UV exposure times of 10 minutes and a photoinitiator concentration of 

0.05% (w/v) [14, 18, 19].  We speculate that these numbers were chosen not only to ensure 

sufficient live cell numbers, but also to ensure sufficient gelation of the hydrogels.  Human 

osteoblast survivability under these conditions was approximately 17%. These experiments 

were conducted at 37 oC and we proceeded to augment it to 39 oC. At this higher 

temperature, a 5% increase in osteoblast survivability was observed (Fig. 3.4) 

 

Figure 3.4: Cell toxicity results for human osteoblasts as a function of incubator temperature. 
Cells were exposed for a total of 10 minutes under UV light and using a fixed photoinitiator 
concentration of 0.05% (w/v).  The “*” indicates that the difference between the groups was 

statistically significant (P<0.05). 
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3.4.5 Effect of Adding Ascorbic Acid 

When, 50 mg/L of ascorbic acid was added to the cultured cells, incubated at 39 oC, we 

found that the osteoblast viability improved to ~ 34%, an increase of 13% in comparison 

to cultures grown at identical conditions but without the antioxidant (Fig 3.5). The 

differences in normalized relative survivability (mean ± standard deviation) for osteoblasts 

culture with and without ascorbic acid antioxidant at 39 oC incubation temperature was 

found to be significant (P < 0.05) (Table 3.1). 

 

Figure 3.5: Survivability of osteoblasts with and without ascorbic acid. The “*” indicates that the 
difference between the groups was statistically significant (P<0.05) 
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Table 3.1: Osteoblast Relative Survivability with and without Ascorbic Acid antioxidant at 37 oC 
and 39 oC incubation temperatures 

Groups exposed to  0.05% w/v photoinitiatior concentration  and 
10 minutes of UV exposure; (n = 4 samples/group) 

Average Standard 
deviation 

37 degrees alone 0.17 0.02 

37 degrees + ascorbic acid 0.23 0.01 

39 degree alone 0.22 0.01 

39 degree + ascorbic acid 0.34 0.02 

3.5 Discussion  

In the past decade considerable efforts have focused on utilizing polymerizable 

scaffolds for tissue engineering [20, 21, 22, 23, 24]. In this context, the effects of UV 

exposure and photoinitiator concentrations on cell viability have always been a concern, 

but none more so than for osteoblasts which are extremely sensitive to ultraviolet light [9]. 

Accordingly, we attempted to augment the survivability of human osteoblasts in these 

environments by exploring additional variables, namely, a higher incubation temperature 

and incorporation of the antioxidant, ascorbic acid. These changes may serve to improve 

photopolymerizable approaches in bone tissue engineering and outcomes related to native-

engineered tissue integration approaches [24, 25]. In this regard, on-going research efforts 

in our laboratories are specifically attempting to target an approach to more successfully 

integrate subchondral bone to tissue engineered cartilage constructs.    

Osteoblasts were significantly reduced in survivability (P < 0.05) compared to all 

the other four human cell types (PDLCs, HPASMCs, HPAECs and BMSCs) investigated 

at all-time durations of UV exposure (5, 10, 15 and 20 minutes) when in concomitant 0.05 

% w/v photoinitiator environments.  These results confirmed that human osteoblasts were 
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considerably more prone to cell necrosis under combined UV light exposure and photo 

initiator concentrations.  When osteoblasts were exposed to commonly utilized parameters 

of 10 minutes of UV exposure and a 0.05% (w/v) concentration of photoinitiator (Irgacure 

2959, BASF Corporation, Florham Park, New Jersey), contrary to reports of using a 

relatively low incubation temperature of 34 oC for rapid cell division [26, 27] in our case, 

this lower temperature actually decreased cell viability.  In fact, we were able to further 

ameliorate osteoblast survivability under these environments (combined 10 minutes of UV 

exposure and 0.05% (w/v) photoinitiator concentration) at an elevated temperature of 39 

oC, suggesting thus, that for photopolymerization studies, osteoblasts require relatively 

higher, rather than reduced incubation temperatures.  We proceeded to conduct statistical 

analysis on temperature effects of osteoblast survivability and noted that temperature alone 

at 39 oC augmented the cellular viability significantly (P<0.05) in comparison to lower 

incubation temperatures (34 oC and 37 oC) (Fig.3.4).  This result illustrates the importance 

of this elevated temperature as a singular independent entity in promoting osteoblast 

viability. Meanwhile, anti-oxidation effects of ascorbic acid minimized free radical toxicity 

effects during UV polymerization and was found to be consistent with use of ascorbic acid 

elsewhere [28, 29, 30].  When ascorbic acid was combined with incubation temperatures 

at 39oC, osteoblast survivability was further enhanced significantly (P < 0.05), (Fig. 3.5); 

(normalized average ± standard deviation (n = 4 samples/group) osteoblast survivability 

for: i) 37 oC without ascorbic acid: 0.17 ± 0.02 ii) ascorbic acid at 37oC: 0.23 ± 0.01, iii) 

elevated temperature of 39 oC without ascorbic acid: 0.22 ± 0.01, iv) ascorbic acid at 39oC: 

0.34 ± 0.02).  We speculate that the increased osteoblast survivability at the higher 

temperature of 39 oC can be attributed to a reduction in the proliferation rate of the cells.  
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For example, Williams et al [9] showed that higher proliferation rates caused greater cell 

susceptibility to toxic components in photopolymerization environments (i.e., (UV and 

photoinitiator) and thereby resulted in decreased cellular viability.  Interestingly, use of 

either ascorbic acid or the 39 oC incubation temperature promoted roughly the same level 

of osteoblast survivability. However, we have for the first time demonstrated that the 

combined effects of ascorbic acid at a concentration of 50 mg/L and an elevated incubation 

of 39 oC significantly improves (P< 0.05) augmentation of osteoblast survival versus using 

only one of either of these two parameters (Fig. 3.5).  

Under these conditions, although the UV and photoinitator environments still 

considerably reduce human osteoblast survivability (owing to the innate sensitivity of 

osteoblasts to any changes to in vitro culture parameters) [9] in comparison to controls 

grown in more standard environments, we note that we still were able to maintain ~ 34% 

survivability; this is considerably greater than other osteoblast groups in our studies, as 

well as those that have been reported elsewhere [9].  In addition, we note that average 

osteoblast-like cell densities in osteoinductive environments are in the order of roughly 

240,000 cells/cm2 [310] whereas photopolymerizable tissue engineering studies use ~ 

850,000 cells/cm2 [32, 33].  Even though 850,000 cells/cm2 is closer to the higher end of 

amounts typically used, the 34% reduction (290,000 cells/cm2) is still the same order of 

magnitude as osteoblast-like cell densities [240,000 cells/cm2, [31] thought to be indicative 

of heightened osteoblast activity. Thus, in spite of the greater sensitivity of osteoblasts to 

UV exposure time and photoinitiator concentrations, the addition of ascorbic acid during 

UV and photoinitiator exposure at an incubation temperature of 39oC would retain 

sufficient live osteoblast numbers that in turn, would allow for an elevated level of cellular 
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activity (e.g. such as osteoinduction).  We noted however that an incubation temperature 

of 39 oC could potentially aggravate osteoblast ALP-activity and/or ECM-mineral 

distribution, and thus, we proceeded to look at Alkaline Phosphatase (ALP) expression and 

the presence of calcium deposits at 37 oC versus 39 oC.  We determined that ALP 

expression (Average ± standard deviation; n = 3 samples/group) was in the order of 2.26 ± 

0.12 U/ml and 2.00 ± 0.06 U/ml for cells cultured at 37 oC versus 39 oC for 3 days.  We 

believe that the relatively lower expression at 39 oC is due to the lower proliferation rate of 

the osteoblasts that we observed during the cell culture studies at this temperature.  

However the expression magnitudes at both temperatures are comparable to literature 

reports for ALP activity from osteoblasts that underwent similar (but not identical) cell 

culture, and which was found to be in the order of 2.23 ± 0.14 U/ml [34]. Overall therefore, 

we believe our findings for osteoblasts cultured at 39 oC while relatively lower than that at 

37 oC, was due to the slower proliferation rate rather than a result of the cells being 

adversely affected. 

We also assessed elevated temperature effects on the ability of the osteoblasts to 

synthesize calcium primarily because crystalline salts deposited in the matrix of bone are 

composed principally of calcium and phosphate, which are combined to form 

hydroxyapatite crystals and an indicator of healthy cellular activity. We confirmed that as 

observed during cell culture studies that at 39 oC, proliferation rate was affected and lesser 

cell numbers were seen after 3 days of cell culture.  However calcium mineral deposition 

was clearly visualized in regions surrounding cells in both the 37 oC and 39 oC conditions 

(Fig. 3.6), thereby providing preliminary evidence that the ability of osteoblasts to produce 

calcium is not affected at 39 oC.  
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Figure 3.6: Von-Kossa staining conducted at 37 oC and 39 oC after 3 days of osteoblast culture.  
Osteoblasts appear as elongated structures staining red while blue arrows point to examples of 

calcium deposited by the osteoblasts, which stain black.  Osteoblast proliferation rate was 
observed to be slower at 39 oC.  On the other hand, this slower rate improved relative 

survivability of the cells, because high proliferation rates have shown to make cells more 
vulnerable to toxic effects (UV and photoinitiator concentrations) present in photopolymerized 

environments [9] 

It is important to point out that the intended application of our findings is not in the clinic 

as cartilage tissue engineering is still an emerging field as indicated by several leading 

groups in the area [35, 36, 37]; rather, these conditions can readily be used in in vitro 

engineered cartilage tissue model systems where injectable hydrogels are being actively 

experimented with [38, 39, 40, 41, 42].  The benefit of incorporating our findings is that 

controlled in vitro experiments to assess integration studies for engineered cartilage to bone 

extracellular matrix can be achieved without compromising osteoblast activity, a critical 

component to the integration process, prior to progressing to more variable in vivo models. 

3.6 Conclusions 

In conclusion, for studies involving cellular photopolymerization protocols, we have 

demonstrated that significant improvement (P < 0.05) of human osteoblasts in situ are 

possible by combined usage of an increased incubation temperature of 39 oC and the use 



45 

of ascorbic acid at a concentration of 50mg/L.  We speculate that further improvements to 

osteoblast survivability may be possible by fine tuning the ascorbic acid concentration 

further and/or with the use of additional antioxidants such as uric acid and Beta-Carotene.  

A limitation of our approach was that we conducted our investigations in monolayer culture 

as opposed to 3-Dimensional (3-D) matrices, such as hydrogels.  However, we expect our 

results to represent a “worst case scenario” since the UV environments which severely 

diminishes osteoblast viability was introduced by means of direct exposure, while in the 

case of tissue engineered 3-D constructs, cells remain suspended within a gel or scaffold 

material, thus offering some level of protection.  We therefore recommend the 

implementation of the enhanced osteoblast culture parameters found herein for cellular 

experiments that involve photopolymerizable materials. 

 

 

 

 

 

 

 

 

 

 



46 

3.7 References 

1. Nerem RM, Sambanis A (1995) Tissue Engineering: From Biology to Biological 
Substitutes. Tissue Eng 1:3-13 
 

2. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue    engineering 
applications. Biomaterials 23:4307-14  
 

3. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R 
(1999) Transdermal photopolymerization of poly(ethylene oxide)-based  injectable  
hydrogels  for  tissue- engineered cartilage. Plast Reconstr Surg 104:1014-22 
 

4. Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, Langer R (2000)  
Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-
interpenetrating networks. J Biomed Mater Res 51:164-71 
 

5. Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J (2003) In vitro 
chondrogenesis of bone marrow-derived mesenchymal stem cells in a 
photopolymerizing hydrogel. Tissue Eng 9:679-88 
 

6. Moan J, Berg K, Kvam E, Western A, Malik Z, Rück A, Schneckenburger H (1989) 
Intracellular localization of photosensitizers- Ciba Found Symp 146:95-107 
 

7. Terakado M, Yamazaki M, Tsujimoto Y, Kawashima T, Nagashima K, Ogawa J, Fujita 
Y, Sugiya H, Sakai T, Furuyama S (1984) Lipid peroxidation as a possible cause of 
benzoyl peroxide toxicity in rabbit dental pulp--a microsomal lipid peroxidation in 
vitro. J Dent Res 63:901-5 
 

8. Atsumi T, Murata J, Kamiyanagi I, Fujisawa S, Ueha T (1998) Cytotoxicity of 
photosensitizers camphorquinone and 9-fluorenone with visible light irradiation on a 
human submandibular-duct cell line in vitro. Arch Oral Biol 43:73-8 
 

9. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH (2005) Variable 
cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels 
and cell encapsulation. Biomaterials 26: 1211-18 
 

10. Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, Fairbrother DH, 
Cascio B, Elisseeff JH (2007) Multifunctional chondroitin sulphate for cartilage tissue–
biomaterial integration. Nat Mater 6:385-92  
 

11. Buckwalter AJ, Mankin J (1998) Articular cartilage repair and transplantation. Arthritis 
Rheum 41:1331-42 
 



47 

12. Bodine PV, Trailsmith M, Komm BS (1996) Development and characterization of a 
conditionally transformed adult human osteoblastic cell line. J Bone Miner Res 11:806-
19 
 

13.  Kim J, Hefferan TE, Yaszemski MJ, Lu L (2009) Potential of Hydrogels Based on 
Poly(Ethylene Glycol) and Sebacic Acid as Orthopedic Tissue Engineering Scaffolds. 
Tissue Eng Part A 15:2299–07 

14. Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J (2005) The effect of 
incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on 
osteogenesis of bone marrow stromal cells. Biomaterials 26:5991–98 
 

15. Tang Y, McGoron AJ (2009) Combined effects of laser-ICG photothermotherapy and 
doxorubicin chemotherapy on ovarian cancer cells. J Photochem Photobiol B 97:138-
44 
 

16. Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity 
screening. Nat Protoc 1:1112-6 
 

17. Pisco L, Kordian M, Peseke K, Feist H, Michalik D, Estrada E, Carvalho J, Hamilton 
G, Rando D, Quincoces J (2006) Synthesis of compounds with antiproliferative activity 
as analogues of prenylated natural products existing in Brazilian propolis. Eur. J. Med. 
Chem 41:401-07 
 

18. Burdick JA, Anseth KS (2002) Photoencapsulation of osteoblasts in injectable RGD-
modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315-23 
 

19. Namba RM, Cole AA, Bjugstad KB, Mahoney MJ (2009) Development of porous PEG 
hydrogels that enable efficient, uniform cell-seeding and permit early neural process 
extension. Acta Biomater 5:1884-97 
 

20. Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL (2001) Smooth muscle cell 
growth in photopolymerized hydrogels with cell adhesive and proteolytically 
degradable domainssynthetic ECM analogs for tissue engineering. Biomaterials 
22:3045-51 
 

21. Paxton JZ, Donnelly K, Keatch RP, Baar K (2009) Engineering the Bone–Ligament 
Interface Using Polyethylene Glycol Diacrylate Incorporated with Hydroxyapatite. 
Tissue Eng Part A 15:1201-09 
 

22. Chan-Park MB, Zhu AP, Shen JY, Fan AL (2004) Novel photopolymerizable 
biodegradable triblock polymers for tissue engineering scaffolds: synthesis and 
characterization. Macromol Biosci 4:665-73 
 



48 

23. Beamish JA, Zhu J, Kottke-Marchant K, Marchant RE (2010) The effects of 
monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) 
diacrylate hydrogels used for tissue engineering. J Biomed Mater Res A 92:441-50 
 

24. Ramaswamy S, Wang DA, Fishbein KW, Elisseeff JH, Spencer RG (2006) An analysis 
of the integration between articular cartilage and nondegradable hydrogel using 
magnetic resonance imaging. J Biomed Mater Res B Appl Biomater 77:144–48 
 

25. Ramaswamy S, Gurkan I, Sharma B, Cascio B, Fishbein KW, Spencer RG (2008) 
Assessment of tissue repair in full thickness chondral defects in the rabbit using 
magnetic resonance imaging transverse relaxation measurements. J Biomed Mater Res 
B Appl Biomater 86:375-80 
 

26. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg 
TC (2000) Bisphosphonates Directly Regulate Cell Proliferation, Differentiation, and 
Gene Expression in Human Osteoblasts. Cancer Res 60:6001-07 

27. Harris SA, Enger RJ, Riggs BL, Spelsberg TC (1995) Development and 
characterization of a conditionally immortalized human fetal osteoblastic cell line. J 
Bone Miner Res 10:178-86 
 

28. Nojiri H, Saita Y, Morikawa D, Kobayashi K, Tsuda C, Miyazaki T, Saito M, Marumo 
K, Yonezawa I, Kaneko K, Shirasawa T, Shimizu T (2011) Cytoplasmic superoxide 
causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-
linking. J Bone Miner Res 26:2682-94  
 

29. Montecinos V, Guzmán P, Barra V, Villagrán M, Muñoz-Montesino C, Sotomayor K, 
Escobar E, Godoy A, Mardones L, Sotomayor P, Guzmán C, Vásquez O, Gallardo V, 
van Zundert B, Bono MR, Oñate SA, Bustamante M, Cárcamo JG, Rivas CI, Vera JC 
(2007) Vitamin C is an essential antioxidant that enhances survival of oxidatively 
stressed human vascular endothelial cells in the presence of a vast molar excess of 
glutathione. J Biol Chem 282:15506-15 
 

30. Martinez EC, Wang J, Gan SU, Singh R, Lee CN, Kofidis T (2010) Ascorbic acid 
improves embryonic cardiomyoblast cell survival and promotes vascularization in 
potential myocardial grafts in vivo. Tissue Eng Part A 16:1349-61 
 

31. Rajzer I, Menaszek E, Bacakova L, Rom M, Blazewicz M (2010) In vitro and in vivo 
studies on biocompatibility of carbon fibres. J Mater Sci Mater Med 21:2611-22 
 

32. Ramaswamy S, Greco JB, Uluer MC, Zhang Z, Zhang Z, Fishbein KW, Spencer RG 
(2009) Magnetic resonance imaging of chondrocytes labeled with superparamagnetic 
iron oxide nanoparticles in tissue-engineered cartilage. Tissue Eng Part A 15:3899-910 
 

33. Ramaswamy S, Uluer MC, Leen S, Bajaj P, Fishbein KW, Spencer RG (2008) 
Noninvasive assessment of glycosaminoglycan production in injectable tissue-



49 

engineered cartilage constructs using magnetic resonance imaging. Tissue Eng Part C 
Methods 14:243-9 
 

34. Li SH, Guo DZ, Li B, Yin HB, Li JK, Xiang JM, Deng GZ (2009) The stimulatory 
effect of insulin-like growth factor-1on the proliferation, differentiation, and 
mineralisation of osteoblastic cells from Holstein cattle. Vet J 179:430-6 
 

35. Prestwich GD (2011) Hyaluronic acid-based clinical biomaterials derived for cell and 
molecule delivery in regenerative medicine. J Control Release 155:193-9 
 

36. Nöth U, Steinert AF, Tuan RS (2008) Technology insight: adult mesenchymal stem 
cells for osteoarthritis therapy. Nat Clin Pract Rheumatol 4:371-80 
 

37. Elisseeff J (2004) Injectable cartilage tissue engineering. Expert Opin Biol Ther 
4:1849-59 
 

38. Sukarto A, Yu C, Flynn LE, Amsden BG (2012) Co-delivery of Adipose-Derived Stem 
Cells and Growth Factor-Loaded Microspheres in RGD-Grafted N-Methacrylate 
Glycol Chitosan Gels for Focal Chondral Repair. Biomacromolecules 13:2490-502 
 

39. Papadopoulos A, Bichara DA, Zhao X, Ibusuki S, Randolph MA, Anseth KS, 
Yaremchuk MJ (2011) Injectable and photopolymerizable tissue-engineered auricular 
cartilage using poly(ethylene glycol) dimethacrylate copolymer hydrogels. Tissue Eng 
Part A 17:161-9 

40. Roberts JJ, Nicodemus GD, Greenwald EC, Bryant SJ (2011) Degradation improves 
tissue formation in (un)loaded chondrocyte-laden hydrogels. Clin Orthop Relat Res 
469:2725-34 
 

41. Zhang C, Sangaj N, Hwang Y, Phadke A, Chang CW, Varghese S (2011)  
Oligo(trimethylene carbonate)-poly(ethylene glycol)-oligo(trimethylene carbonate) 
triblock-based hydrogels for cartilage tissue engineering. Acta Biomater 7:3362-9 
 

42. Lee HJ, Yu C, Chansakul T, Hwang NS, Varghese S, Yu SM, Elisseeff JH (2008) 
Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-
mediated microenvironment. Tissue Eng Part A 14:1843-51 

 

 

 

 

 



50 

 

 

 

 

 

 

 

 

Chapter 4 

Improvements in Integration of Engineered Cartilage to Bone Matrix Using 

Hydroxyapatite 

 

 

 

 

 

 

 

 

 

 



51 

This chapter describes the interaction of engineered cartilage to an engineered bone system 

with and without hydroxyapatite (HA) environments, specifically over the spatial transition 

zone between the two materials.   Through a systematic series of mechanical, biochemical, 

cellular and histological outcomes, we present compelling evidence here suggesting that 

HA significantly improves integration of engineered cartilage to a bone matrix. 

4.1 Abstract 

Articular cartilage injuries occur frequently in the knee joint. Photopolymerizable cartilage 

tissue engineering approaches appear promising; however, fundamentally, forming a stable 

interface between the subchondral bone and tissue engineered cartilage components 

remains a major challenge. We investigated the utility of hydroxyapatite (HA) 

nanoparticles to promote controlled bone-growth across the bone-cartilage interface in an 

in vitro engineered tissue model system using bone marrow derived stem cells. Samples 

incorporated with HA demonstrated significantly higher interfacial shear strength (at the 

junction between engineered cartilage and engineered bone) compared to the constructs 

without HA (p < 0.05), after 28 days of culture. Interestingly, this increased interfacial 

shear strength due to the presence of HA was observed as early as 7 days and appeared to 

have sustained itself for an additional three weeks without interacting with strength 

increases attributable to subsequent secretion of engineered tissue matrix. Histological 

evidence showed that there was ~7.5 % bone in-growth into the cartilage region from the 

bone side. The mechanism of enhanced engineered cartilage to bone integration with HA 

incorporation appeared to be facilitated by the deposition of calcium phosphate in the 

transition zone. These findings indicate that controlled bone in-growth using HA 



52 

incorporation permits more stable anchorage of the injectable hydrogel-based engineered 

cartilage construct via augmented integration between bone and cartilage.  

4.2 Introduction 

Articular cartilage defects and lesions are one of the most common injuries that occur in 

the knee joint[1,2]. Curl et al, [1] demonstrated in their study of consecutive knee 

arthroscopies that up to 63% of the patients with knee-related symptoms suffered from 

chondral or osteochondral defects [3]. These defects may also progress to osteoarthritis if 

left untreated [4], which further involves degradation of articular cartilage, the subchondral 

bone, the synovial capsule and membrane as well as the periarticular tissues [5]. Patients 

suffering from cartilage lesions and other degenerative cartilage diseases currently have 

limited treatment options available. One technique that is often used clinically to treat these 

defects is autologous chondrocyte transplantation (ACT); however there is no significant 

evidence that this approach yields superior results compared to standard treatment of care, 

such as with physical therapy and anti-inflammatory medication [6,7]. Furthermore, ACT 

has limited applicability as in some cases, when there is no intact cartilage rim, the covering 

of the chondrocyte suspension with a periosteal flap or a collagen sheet is often insecure 

restricting the usage of this technique to only certain types of injuries [2]. 

A possible solution lies in tissue engineering strategies for cartilage repair. It involves the 

implantation of a biological scaffold in the defect that would degrade over a period of time 

and promote tissue repair within the defect space [8]. However, one major problem is the 

lack of retention of the tissue engineered cartilage. Scaffolds need to be retained during the 

majority of the regenerative process at their implantation site in order for the treatment 

strategy to be successful. For this to occur, a stable anchor for the scaffold is required which 
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will prevent it from being dislodged. Previous studies have taken approaches based on the 

principles of mechanical [9-12], chemical [13-15] and biological fixation [16-18] in order 

to form novel strategies of integration, but have demonstrated limited success in terms of 

scaffold retention within the defect for the entire duration of the tissue repair process, which 

can extend up to 4 weeks [19]. Another limitation with the cartilage transplantation is the 

lack of its integration with the host tissue. Lane et al [20], showed that after a 6 month 

period there was no integration between the host and osteochondral plug that was inserted 

into fixed articular cartilage defects. Similarly, there were other studies [21,22] that showed 

a lack of integration between the engineered cartilage and host tissues. 

In cartilage tissue engineering, injectable hydrogels have shown great potential as scaffold 

support structures. With their similarity to the water content in biological tissues, hydrogels 

have been used extensively for tissue engineering applications. They can be injected at 

room temperature and will take the form of the defect during low-intensity ultraviolet (UV) 

photopolymerization. Thus, they offer a great advantage over fibrous scaffold approaches, 

particularly for the treatment of small to medium sized focal osteochondral defects arising 

from injury or mild to moderate osteoarthritis. In the generalized treatment approach, 

initiation of bleeding through bone microfracture will cause human bone marrow derived 

stem cells (HBMSCs) to migrate to the defect space. UV-initiated gelation will cause the 

monomer hydrogel solution, which would have been already pre-treated with chondrogenic 

factors (e.g. transforming growth factors such as TGFβ), to cross link, thereby 

encapsulating the cells [23].  Very likely, the surgical procedure will be relatively straight 

forward, short in duration and potentially minimally invasive. However, even though 

photopolymerizable hydrogel approaches have demonstrated great potential in cartilage 
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tissue engineering, there is still a need to tailor enhanced mechanical stability; that would 

lead to the retention of the engineered tissue construct at the implant location so that de 

novo cartilage can be formed under optimal conditions, i.e., with the hydrogel scaffold still 

remaining within the defect space. In order to accomplish this, in this study, we used 

hydroxyapatite (HA) nanoparticles, to promote controlled bone in-growth from the ventral 

bone location to the dorsal cell-encapsulated, injectable hydrogel location in an in vitro 

engineered tissue model system, so that enhanced anchorage of the engineered cartilage 

could be achieved via a stronger interface.  

4.3 Material and methods 

4.3.1 Overview 

An in vitro bone and cartilage model was created using osteoblast-seeded Agar scaffolds 

and HBMSC-seeded photo polymerizable poly (ethylene glycol) diacrylate, respectively. 

The main focus of the study was to evaluate the effect of HA on augmenting integration 

between the bone and cartilage layers as a function of time. Experimental time points were: 

Day 1, Day 7, Day 14 and Day 28. Outcomes were assessed via cell viability, biochemical 

assays (Sulfated Glycosaminoglycans (sGAGs), DNA, Alkaline Phosphatase), histology 

and RT-PCR. Finally, direct mechanical testing was performed at the bulk and interface 

scale using compression and shear tests 

4.3.2 Cell Culture 

4.3.2.1 Human Bone marrow derived Mesenchymal Stem Cells (HBMSCs) 

HBMSCs (Science cell, Carlsbad, CA, USA) were seeded onto Poly D-lysine coated T- 75 

flasks (Fisher Scientific, Pittsburg, PA, USA). Characterization of HBMSCs was 
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confirmed by the supplier via positive immunostaining for CD73, CD105 and particularly, 

CD 90 (Thy-1) a stem cell marker [24]. After stem cell differentiation, lipid staining was 

also confirmed. Additional characterization of these HBMSCs showed that they retain their 

phenotype in cell culture for up to 15 cell doubling cycles and therefore remained stable 

for the duration of our cell culture  experiments in which expansion continued for up to 6 

cell doubling periods. The cells were cultured in low glucose media (Dulbecco’s modified 

eagle medium, (DMEM), Life Technologies, Grand Island, NY, USA) supplemented with 

10% fetal bovine serum ((FBS), ATCC, Manassas, VA, USA ) and 1% penicillin–

streptomycin (ATCC), per manufacturer’s  recommendations [25], until passage 3 (P3). 

4.3.2.2 Human Osteoblasts (hFOBs) 

The hFOBs (hFOB 1.19,ATCC) were cultured in basal media (Catalog #: 11039-021; Life 

Technologies) which consisted of 1:1 mixture of DMEM and Ham's F-12, and included 

Lglutamine (2.5mM) and HEPES (15.01mM). We additionally supplemented the basal 

media with 10% FBS (ATCC), 1% Penstrep (ATCC) and 0.3mg/ml of an aminoglycoside 

antibiotic (Catalog #: G8168, Sigma Aldrich, St Louis, MO, USA). The hFOBs from the 

supplier (ATCC) were originally transfected from discarded limb tissue [26] to create an 

immortalized cell line; upon arrival to our laboratory, the cells were culture expanded until 

passage 4 (P4).  

4.3.3 Tissue Engineering Experiments 

4.3.3.1 Tissue Engineered Bone 

Engineered bone was prepared using 2% Agar scaffold [27] in which osteoblast cells were 

encapsulated. Briefly, 2.5 % of Agar solution (Fischer Scientific) was prepared and heated 

to a temperature of 70oC. Meanwhile, osteoblasts were trypsinzed and 20 million cells were 
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dissolved in 200 µl of cell media (Same as media utilized in hFOB cell culture; Catalog 

#1039021; Life Technologies). Once the Agar solution started to boil, it was removed from 

the hot plate and allowed to cool in a room temperature environment. When the temperature 

reached 40oC, 64 µl of Agar solution was mixed with 16 µl of cell suspension and were 

cast for 5 minutes in custom designed molds (5mm in diameter and 4.1 mm in length) at 

room temperature. Each gel construct consisted of a 2% Agar solution with a suspension 

of ~1.6 million osteoblasts and at this juncture, remained immersed in the media used to 

culture the osteoblasts.  

4.3.3.2 Tissue Engineered Cartilage 

Engineered Cartilage was prepared using 15% PEGDA solution with 0.5% w/v HA. This 

concentration was chosen after preliminary testing established that it yielded a good 

compromise between robust cell viability and a strong potential for effective tissue 

integration through osteoinduction (Data not shown). A 15% w/v PEGDA solution was 

prepared by dissolving 150 mg of PEGDA powder (Glycosan Biosystems, Salt Lake City, 

UT) and 5 mg of HA nanoparticles (Catalog # 677418, Sigma Aldrich) in Phosphate buffer 

saline (PBS) (Sigma Aldrich). The protocol for hydrogel preparation with the exception of 

the incorporation of HA nanoparticles was very similar to that previously reported by Durst 

et al [28] and Yang et al [29]. Each HA nanoparticle was characterized by a < 200 nm 

particle size, a surface area > 9 m2/g by the supplier (Sigma-Aldrich) and has been used 

previously for bone substitute studies [30,31]. Subsequently, 100 mg/ml of photoinitiator 

solution (Irgacure 2959, Ciba Specialty Chemicals, Tarytown, NY) in 70% ethanol was 

constituted and added to the monomer solution (5μl/ml), followed by thorough stirring. 

This resulted in a 0.05% w/v ratio of the photo initiator concentration. HBMSC's at a 
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concentration of 20 million cells/ml were introduced just prior to UV exposure. Next, the 

solution was irradiated with UV light at 4-5 mW/cm2 for 7 minutes to induce 

polymerization. We previously established that HBMSC viability was unaffected by the 

UV intensity and exposure timescales utilized here [32].  

After the respective engineered cartilage and bone segments were prepared, the former was 

placed on top of the latter construct. Subsequently, they were both physically held together 

with a thin stainless steel pin (Fischer Scientific, Catalog # 26002-10) that was pierced 

through both the layers. Each of these 2 layer constructs were transferred into a well (in a 

24 well plate), with each well containing 1 ml of chondrogenic media (Fisher Scientific, 

Catalog # SH3088902); the samples were then incubated in a humidified environment at 

37oC and 5% CO2. This chondrogenic media was so-called because it contains proprietary 

growth factors from the supplier (Fisher Scientific) to direct differentiation of HBMSCs to 

chondrocytes [33]. Constructs were similarly made with cells but without hydroxyapatite 

in them i.e., the constructs without HA. In addition, acellular controls with and without 

hydroxyapatite particles were also made in the similar fashion. In sum, four groups were 

ultimately prepared: Group 1: PEGDA No HBMSC-No HA; Group 2: PEGDA-HA No 

HBMSC; Group 3: HBMSC encapsulated in PEGDA No HA and finally Group 4: HBMSC 

encapsulated in PEGDA-HA. Groups were cultured for 7, 14 and 28 days. 

4.3.4 Cell Viability 

A Live-Dead assay using Calcein AM/Ethidium homodimer (Life Technologies) staining 

to assess the viability of cells [34] within the constructs was conducted following the 

manufacturer's protocol on osteoblasts-encapsulated Agar constructs as well as on 

HBMSC-encapsulated in PEGDA (Group 3) and HBMSC-encapsulated in PEGDA-HA 
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(Group 4) samples; Briefly, samples from different group at different time points (Day1, 

Day 7, Day 14 and Day 28) were cut using a blade to a thickness of 1 mm and then were 

stained with Calcein AM and Ethidium homodimer in PBS solution and incubated for 30 

minutes. Next, they were washed 3 times with PBS solution to remove the background 

fluorescence and subsequently visualized under the fluorescent microscope (Olympus 

IX81, Olympus America Inc., Miami FL) at excitation and emission wavelengths of 468nm 

and 568nm respectively. Images of the samples were taken with each image encompassing 

an area of 4.32 mm2. A mean ± standard deviation (SD) of percentage (%) cell viability 

was subsequently computed at the different time points by counting cells on representative 

images (ImageJ software, NIH, Bethesda, MD) and calculating the ratio of live cells (green 

dots) to the sum of live and dead cells (red dots) and finally, multiplying by a 100% (n =3 

images/group/time point). 

4.3.5 Glycosaminoglycan and DNA Characterization 

The wet weight of the constructs were initially obtained, and then followed by the dry 

weight after 48 hours of lyophilization of the constructs [35] for each group (n=3 

samples/group) per time point. The dried constructs were crushed using a tissue grinder 

and digested in 1ml of papain digest solution (0.2M sodium phosphate buffer pH 6.5, 0.1M 

sodium acetate, 0.01M EDTA, 0.005M cysteine HCl, and 2 mg of papain lyophilized 

crystals/10ml extraction buffer) for 16 hours at 65oC. Sulfated Glycosaminoglycan 

(sGAGs) concentration was determined by using dimethylmethylene blue dye [36] 

(Biocolor, Blyscan Glycosaminoglycan Assay, County Antrim, UK). Once the samples 

were digested in papain, 100 µl of the sample was taken and mixed with 1 ml of dye in a 

mechanical shaker for 30 minutes. During this time period, a sulphated 
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glycosaminoglycan-dye complex was formed and precipitated out from the soluble 

unbound dye when centrifuged for 10 minutes. The precipitate was then dissolved in the 

dissociation agent, and absorbance at 565 nm was measured using a microplate reader 

(Biotek) and compared with known, standard solutions of chondroitin 4-sulfate (Biocolor) 

to calculate the sGAG values. Specifically, dilution of a sterile solution of bovine tracheal 

chondroitin 4-sulfate (100 µg/ml; Biocolor) with de-ionized water was performed to obtain 

the following six known standard concentrations of sGAG: 0, 0.1, 0.2, 0.33,4,5 µg/ml 

chondroitin 4-sulfate. Final presentation of sGAG concentrations were normalized with 

respect to the sample dry weight (μg/mg dry weight). 

The papain-based digestion protocol for the DNA assay was identical to the sGAG assay 

described earlier. The DNA content in the constructs was calculated using the Quant-iT™ 

PicoGreen dsDNA kit (Life Technologies) as in previously described studies [37]. Samples 

were incubated with the Quant-iT™ PicoGreen reagent for 2-5 minutes, and then the 

fluorescence was measured at an excitation and emission of 485nm and 520nm, 

respectively, using a microplate reader (Synergy HT, Biotek, Winooski, VT). Fluorescence 

values measured from the DNA assay were converted to DNA based on fluorescence 

measured from known standard DNA concentrations. Known standard concentrations were 

obtained by dilution of a stock DNA solution provided by the manufacturer (Lambda DNA, 

Biocolor). The stock DNA solution was diluted in a buffer (10 mM Tris-HCl, 1 mM EDTA, 

pH 7.5) to obtain the following five concentrations of DNA solution: blank (0 pg/ml), 

25pg/ml, 250pg/ml. 2.5ng/ml and 25ng/ml. A standard curve was plotted after the 

fluorescence of the known DNA concentrations was measured and subsequently, this curve 
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was used to convert the fluorescence-derived signal of the tissue engineered constructs to 

DNA concentrations. 

4.3.6 Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)  

To confirm the chondrogenic phenotype of differentiated HBMSCs in PEGDA and to 

verify the possibility of undesirable expression of bone markers in the tissue engineered 

cartilage in the presence of HA, quantitative real time-polymerase chain reaction (qRT-

PCR) was performed on the samples of HBMSC's encapsulated in PEGDA in HBMSC 

media, HBMSC's encapsulated in PEDGA in chondrogenic media and HBMSC's 

encapsulated in PEGDA-HA in chondrogenic media, after 4 weeks of culture in their 

respective media. Total mRNA was extracted for each group using the SV total RNA 

isolation kit (Promega, Madison, WI). First, 3 samples from each group were crushed and 

pooled into 1 and subsequently, the RNA isolation procedure was followed as described 

by the manufacturer (Promega). Next, 5µg of mRNA was used for the reverse transcriptase 

reaction as previously established [37, 38]. The mRNA for 3 groups was converted into 

cDNA using the GoScript_Reverse Transcription kit (Promega). The cDNA was 

synthesized using an oligo(dT) primer, according to the manufacturer’s instructions. The 

qRT-PCR was performed using the GoTaq  qPCR Master Mix (Promega). The PCR tubes 

contained forward and reverse primers and SYBR green I dye reagent along with the 

cDNA, which was obtained during reverse transcription. The primers (Table 1) were 

designed using the Basic Local Alignment Search Tool (BLAST) program, National Center 

for Biotechnology Information (NCBI) to amplify the target sequences. Step-One Real-

Time PCR System (Life Technologies) was used to detect the signals when the mixture 

was followed by thermal cycling conditions per manufacturer’s instructions (Promega). 
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Finally, the expression of the following markers: GAPDH, SOX9, aggrecan, collagen II, 

osteocalcin, scleraxis were measured for the different groups. Finally, the change in cycle 

threshold (Cт) values were averaged and normalized with GAPDH using the ΔΔCт method 

[39]. Fold changes were calculated as 2- ΔCт, and the gene expression ratio of each of the 

three groups was plotted. 

Table 4.1: Quantitative RT-Polymerase Chain Reaction primer sequences used in this study 
 

Genes Forward Primer Reverse Primer 

GAPDH AATGAAGGGGTCATTGATGG  AAGGTGAAGGTCGGAGTCAA  

SOX9 GTAATCCGGGTGGTCCTTCT GTACCCGCACTTGCACAAC  

Aggrecan GCGAGTTGTCATGGTCTGAA  TTCTTGGAGAAGGGAGTCCA  

Collagen II AGACTTGCGTCTACCCCAATC GCAGGCGTAGGAAGGTCATC 

Osteocalcin CACTCCTCGCCCTATTGGC CCCTCCTGCTTGGACACACAAAG

4.3.7 Mineralization Assessment: 

Mineralization of the 2 layer constructs (n=3 samples/group) at the interface was quantified 

using a colorimetric based assay qualitatively via an Alkaline Phosphatase (ALP) Assay 

kit (Abcam, Cambridge, MA, USA). Samples were cut from the interface 1 mm from each 

side, and then were homogenized in the assay buffer. The samples were then added to p-

nitrophenyl phosphate (p-NPP) and incubated for 60 minutes at 25oC. Next, stop solution 

from the kit was added to arrest hydrolysis of p-NPP to p-nitrophenol. The optical density 

was then measured using a microplate reader set to a wavelength at 405nm (Synergy HT, 

BioTek, Winooski, VT) to measure the level of released p-nitrophenol. Results were 
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presented as enzyme specific activity per volume of sample solution (enzyme units per liter 

(U/L)).  

Mineral distribution on the 2 layer constructs was evaluated using the Von-Kossa 

and Alcian Blue Stain kit (IHC world, Woodstock, MD, USA). Staining was performed 

such that simultaneous visualization of both bone and cartilage matrix deposition could be 

observed on the same tissue section. Briefly the sectioned samples were first treated with 

silver nitrate solution and exposed to UV light for 60 minutes and then with Alcian Blue 

stain. Sections (25µm) were then washed with distilled water and observed under a 

microscope. 

Tissue fill quantification: 

Representative histological images were analyzed to quantify the % of engineered tissue 

in the transition zone, defined as the region between the engineered bone to engineered 

cartilage layers (ImageJ). First the entire area of the cartilage region was measured and 

next, the transition zone areas were computed (ImageJ). The transition zone area as a % of 

the entire cartilage area was subsequently calculated to reflect the % filling of tissue within 

the transition zone. In addition, for the constructs with HA, the calcium deposits as a % of 

the transition zone area was also computed. This enabled a determination of the % tissue 

in the transition zone that was exclusively filled by engineered bone-derived calcium 

phosphate matrix, at the conclusion of 4-weeks. 

4.3.8 Mechanical Properties 

4.3.8.1 Compression 

Scaffold mechanical properties were determined by performing unconfined static 

compression testing on the constructs (n=3 samples/group) using a mechanical testing 
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device (Bose, Eden Prairie, MN) with a displacement rate of 0.05 mm/sec. The 

experimental group for compression testing consisted of HBMSC-encapsulated in PEGDA 

(Group 3) and HBMSC encapsulated in PEGDA-HA (Group 4), whereas the control groups 

included osteoblasts in Agar, as well as corresponding acellular controls for PEGDA 

(Group 1) and PEGDA-HA (Group 2). Tests were conducted on samples at Day 1, Day 7, 

Day 14, and Day 28 for all 5 groups. Briefly, the diameter of each tissue engineered 

construct was initially measured using a vernier caliper. Next, the constructs were placed 

between the flat metal platens and the load was recorded at 0.05 mm increments using a 

displacement rate of 0.05 mm/sec. Corresponding stress and strain were subsequently 

computed. The compressive modulus was taken to be the slope in the initial linear region 

of the stress-strain curve [40]. 

4.3.8.2 Shear 

The interfacial shear stress between the PEGDA-based, tissue engineered cartilage and the 

Agar-based bone substrate was determined by performing a shear test at the interface 

location of the 2 layers. For each 2 layer group, Agar with osteoblast-HBMSC-

encapsulated in PEGDA (Group 5) and Agar with osteoblast-HBMSC-encapsulated in 

PEGDA-HA (Group 6)), (n = 6 samples/group) samples to be tested for each time point 

were placed horizontally on the platen on an individual basis. One side of the sample was 

affixed with super glue to the lower platen. The other side of the sample was similarly 

glued to the upper platen. Then the upper platen was increased in height with a 

displacement rate of 0.05 mm/sec with load-displacement data recorded simultaneously at 

every 0.003 mm displacement. The test was arrested when the 2 layers separated from each 

other and there was a sudden decrease in the load. 
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4.3.9 Statistics 

Statistical analyses of the results obtained from the biochemical, DNA and ALP assays as 

well as from the cell viability and mechanical testing experiments were performed using 

commercially available software (SPSS, IBM, version 20, Armonk, NY, USA). A one way 

ANOVA and post hoc Tukey test was used to compare means and to determine statistically 

significant differences (p < 0.05) between groups respectively. In cases where only two 

groups were compared, the one way ANOVA simply reduced to a t-test for independent 

groups.  

4.4 Results 

4.4.1 Cell Viability 

The viability of the cells in the engineered scaffolds was observed over a period of 28 days 

at 4 time points (Day 1, Day 7, Day 14 and Day 28). At 28 days, Osteoblasts remained very 

viable in the Agar gel (Fig. 4.1 a and Table 4.2).  

 

 

Figure 4.1 (a): Live Dead assay over a 4 week period for Osteoblasts in agar scaffold. Images 
clearly showed that cells remained viable over this time frame with a much larger density of live 

(green dots) versus dead (red dots) cells. 

Similarly, HBMSCs were also found to be very viable within the PEGDA environments 
without HA (Fig. 4.1 (b) and Table 4.2).  
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Figure 4.1 (b): Live Dead assay over a 4 week period for HBMSCs in PEGDA. Images clearly 
showed that cells remained viable over this time frame with a much larger density of live (green 

dots) versus dead (red dots) cells. 

The incorporation of HA into the PEGDA hydrogels did produce relatively lower cell 

counts compared to samples without HA (p < 0.05). However it should be noted that the 

clustering of cells in the vicinity of HA particles resulted in enlargement of the green 

intensity regions (Fig. 1c) thereby very likely underestimating the number of live cells in 

the PEGDA with HA group. In spite of this ~ 65% of cells were found to be viable at 28 

days (Table 2). 

 

Figure 4.1 (c): Live Dead assay over a 4 week period for HBMSCs in PEGDA-HA. Images 
clearly showed that cells remained viable over this time frame with a much larger density of live 

(green dots) versus dead (red dots) cells. 

Table 4.2: Quantitative assessment of percentage cell viability in samples subjected to the live-
dead assay 

Sample Day 1 Day 7 Day 14 Day 28 

Agar 
osteoblast 

77.96 ± 1.19 

 

78.72 ± 0.70 

 

81.86 ± 0.30 

 

83.42± 0.47 
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PEGDA with 
HBMSC 

74.53 ± 0.90  

 

 

75.46 ± 0.50 

 

 

93.55 ± 0.95 91.94± 1.02 

PEGDA HA 
with HBMSC 

73.47 ± 0.94 65.83 ±0.76  69.97 ± 0.75  73.84 ± 0.42 

 

4.4.2 Glycosaminoglycan and DNA Characterization 

Proteoglycan deposition in both HBMSC-seeded scaffolds (PEGDA and PEGDA-HA) 

increased over a period of 4 weeks. At day 1, both scaffolds had similar amounts of sGAGs 

deposition; at 28 days no statistically significant difference (p > 0.05) in sGAGs could be 

detected between the cellular scaffolds regardless of whether HA was utilized or not (Fig. 

4.2). It was observed however that the sGAG concentration for PEGDA constructs was 

5.64 ± 0.98 
௚

௠௚	ௗ௥௬	௪௘௜௚௛௧
 , while for PEGDA-HA constructs the sGAGs concentration was 

found to be 6.78 ± 0.15 
௚

௠௚	ௗ௥௬	௪௘௜௚௛௧
 after 4 weeks.   



67 

 
Figure 4.2: S-GAG content in HBMSC seeded-PEGDA and PEGDA-HA constructs. The “*” 

indicates that the difference between the groups was statistically significant (p < 0.05) 

 

The DNA content for HBMSC cellular PEGDA constructs remained relatively unchanged 

temporally. On the other hand, similar samples with the incorporation of HA showed a 

significant increase (p < 0.05) in DNA content (Fig. 4.3).  



68 

 
Figure 4.3: DNA concentration of HBMSC encapsulated in PEGDA and PEGDA HA scaffolds. 
The “*” indicates that the difference between the groups was statistically significant (p < 0.05) 

 

4.4.3 Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

It was observed that after culturing the constructs in chondrogenic media for 28 days, there 

was an increase in the Aggrecan, Sox 9, and Type II collagen gene expression of the 

BMSCs, indicative of chondrogenic differentiation of the HBMSCs. It was also observed 

that the HBMSCs encapsulated in PEGDA-HA constructs showed minimal increase in 

expression of bone marker osteocalcin and minimal decrease in Type II collagen 

expression (Fig. 4.4). Overall, HBMSCs encapsulated in PEGDA-HA showed similar 

expression of these genes compared to the non-HA counterparts.  
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Figure 4.4: qRT-PCR of HBMSC grown over a period of 4 weeks in BMSC media and 

chondrogenic media. Results indicate that cells exposed to HA underwent similar chondrogenic 
differentiation to unexposed counterparts 

4.4.4 Mineralization 

The mineralization at the interface of the 2 layer, cellular PEGDA-Agar structures was 

determined using the ALP assay. The results (Mean ± SD; U/L) are summarized as follows: 

Day 1 - PEGDA without HA: 0.2 ± 0.02; PEGDA with HA: 0.22 ± 0.09; Day 14 - PEGDA 

without HA: 1.12 ± 0.29; PEGDA with HA: 2.2 ± 0.10; Day 28 - PEGDA without HA: 2.1 

± 0.16; PEGDA with HA: 5.2 ± 0.25. The interface with HA exhibited higher ALP activity 

(p < 0.05) when compared to the constructs without HA at the end of a 4 week duration 

(Fig. 4.5 a). Confirmation of the enhanced mineralization under HA environments was 

additionally evidenced by histology using the Von-Kossa staining at the interface, 
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specifically in the form of positive staining for calcium phosphate matrix (black staining; 

Fig. 4.5 (b)).  

No evidence of calcium phosphate was evident in the histology of samples without HA 

(Fig. 4.5 (b)). In addition, without the use of HA, the gap between engineered cartilage and 

bone decreased only negligibly beyond two-weeks (by an additional 1% of original gap 

area). On the other hand, histological image analysis determined that calcium phosphate 

matrix comprised roughly 7.5% of the entire cartilage area when HA was incorporated in 

the engineered constructs. Moreover, when HA was incorporated, the interfacial gap 

between engineered cartilage to engineered bone was found be filled with tissue with ~ 

53% and 90% filling at 2 and 4 weeks respectively. Roughly 66% (area within the white 

dots; Fig. 4. 5(b)) of the transition zone (sum of areas within the white and yellow dots; 

Fig. 4.5(b)) comprised of calcium phosphate deposits after 4 weeks. 

 
 

Figure 4.5 (a): ALP Activity using colorimetric method. The “*” indicates that the difference 
between the groups was statistically significant (p < 0.05). 
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Figure 4.5 (b): Von Kossa - Alcin Blue histology images of 2 layer constructs.  Above: Agar 
osteoblast and PEGDA-HBMSC and Below: Agar osteoblast PEGDA-HA-HBMSC.  Results 
showed that there was an increase in ALP activity at day 28 for the tissue engineered cartilage 

exposed to HA nanoparticles. The histological findings (Fig. 4.5(b)) confirmed the colorimetric 
assessment of ALP activity (Fig 4.5(a)). The boundary of the transition zone was traced as 

indicated by the dotted yellow lines.  At Day 1, a clear gap was apparent between the engineered 
cartilage and bone regions.  Progressive filling of the transition zone subsequently occurred with 
calcium phosphate matrix deposits (black staining).  At week 2, roughly 53% of the initial area of 

the transition zone was filled by the deposit in constructs with HA.  By week 4, ~ 90% of the 
transition zone was filled in constructs with HA while it was ~70% filled in the constructs 
without HA. White dotted line indicates the bone in growth into the cartilage region. Area 
measurements were made using Image analysis software (ImageJ, NIH, Bethesda, MD). 

 

4.4.5 Mechanical Properties 

The Young's modulus of the acellular and cellular scaffolds of all groups (acellular: 

PEGDA ±  HA; cellular: HBMSC-seeded PEGDA ± HA) was assessed using unconfined 

static compression testing. The results revealed no significant differences after 28 days (p 

> 0.05) between the acellular groups. Similarly, the cellular groups exhibited comparable 
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stiffness properties between each other (p > 0.05). However, there was a statistically 

significant difference (p < 0.05) in the temporal evolution of the Young's modulus of 

cellular samples grown, which increased over the 4 weeks (Fig. 4.6). 

 

The integration between engineered bone and cartilage constructs was assessed using 

mechanical shear loading and it was found that there was a statistically significant (p<0.05) 

difference in the integration strength between the groups when compared at both 1 week 

and at 4 weeks of tissue culture, i.e., Agar with osteoblast-HBMSC-encapsulated in 

PEGDA and Agar with osteoblast-HBMSC-encapsulated in PEGDA-HA. Furthermore, the 

shear strength of Agar with osteoblast-HBMSC-encapsulated in PEGDA-HA was 

significantly higher than the Agar with osteoblast-HBMSC-encapsulated in PEGDA-only 

at 4 weeks (p <0.05). At 28 days, the mean ± SD shear strength for the group that 

incorporated HA exhibited shear strength in the order of: 5.91 ± 0.59 kPa while in the 

constructs without HA it was found to be: 3.60 ± 0.11 kPa (Fig. 7). The % increase in 

interfacial shear strength after addition of HA at 28 days was found  

Figure 4.6:  Compression test results. The “*” indicates that the difference between the groups 
was statistically significant (p < 0.05). Results showed that the presence of HA in acellular 

PEGDA and tissue engineered cartilage did not affect the mechanical integrity of PEGDA as well 
as that of the tissue engineered cartilage. There was a significant increase (p < 0.05) in the 

Young's modulus in the cellular groups when comparing Day 1 to Day 28. This demonstrated 
increased engineered tissue formation over 4 weeks resulting in increased stiffness of the cellular 

constructs. 

The integration between engineered bone and cartilage constructs was assessed using 

mechanical shear loading and it was found that there was a statistically significant (p<0.05) 

difference in the integration strength between the groups when compared at both 1 week 

and at 4 weeks of tissue culture, i.e., Agar with osteoblast-HBMSC-encapsulated in 
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PEGDA and Agar with osteoblast-HBMSC-encapsulated in PEGDA-HA. Furthermore, the 

shear strength of Agar with osteoblast-HBMSC-encapsulated in PEGDA-HA was 

significantly higher than the Agar with osteoblast-HBMSC-encapsulated in PEGDA-only 

at 4 weeks (p <0.05).  At 28 days, the mean ± SD shear strength for the group that 

incorporated HA exhibited shear strength in the order of: 5.91 ± 0.59 kPa while in the 

constructs without HA it was found to be: 3.60 ± 0.11 kPa (Fig. 4.7).  

 

Figure 4.7: Shear Testing Results. The “*” indicates that the difference between the groups was 
statistically significant (p < 0.05). Results showed that there was enhanced integration with bone 
at day 28 compared to day 1 in both groups evaluated. However, there was a significant increase 

in tissue integration at day 28 when HA was present showing its importance in enhancing the 
anchorage of tissue engineered cartilage to bone 



74 

  

The % increase in interfacial shear strength after addition of HA at 28 days was found to 

be 64%.  Meanwhile, the % temporal increase in interfacial shear strength of samples 

cultured from 7 to 28 days differed negligibly between the with and without HA groups 

(over this timeframe, samples without HA increased by 99% whereas in HA-incorporated 

samples, it was found to be 101%). We note in addition however that there was already a 

~ 62 % increase in the interfacial shear strength of samples with HA inclusion after only 7 

days of tissue culture and therefore was comparable to the augmentation in strength that 

was found after 28 days (64%). 

4.5 Discussion 

The use of injectable hydrogels to support chondral and osteochondral cartilage filling has 

been extensively investigated over the past 15 years. Some prominent works are 

summarized here: Elisseeff et al [41] used an injectable hydrogel approach for the creation 

of neocartilage in vivo which could be implemented via a transdermal photopolymerization 

approach. Another study used a new class of injectable hydrogels derived from water-

soluble chitosan and oxidized hyaluronic acid [42] which was highly amenable for cartilage 

tissue engineering applications. Guo et al [43] fabricated an injectable hydrogel bilayered 

construct in vivo to mimic the osteochondral layer. Another group, Nettles et al [44], 

suggested the use of another type of injectable elastin like polypeptide for the use of 

cartilage repair in vivo. 

The overall consensus after meticulous in vivo studies was that lack of integration between 

hydrogel and host tissue yielded inconsistent levels of cartilage filling and repair. Some 

efforts to ameliorate the integration have been followed by various groups using 
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mechanical, chemical or biological fixation [45]. For example, screws [46] and sutures [10] 

have been utilized previously to mechanical affix engineered cartilage to subchondral bone. 

Wang et al [16] demonstrated that chondroitin sulphate methacrylate could be used as an 

engineered cartilage to bone adhesive by demonstrating stable and durable fixation over a 

period of 5 weeks; however, further investigations were needed to demonstrate a 

consistently successfully outcome. Elsewhere, Hoemann et al [17] indicated that Chitosan 

glycerol phosphate when mixed with blood in the cartilage defect space not only formed 

greatly improved integration with sub-chondral bone, but also resulted in enhanced hyaline 

cartilage tissue formation. Indeed, in vivo (primarily in the rabbit model) cartilage tissue 

engineering studies have shown convincing bone marrow stem cell migratory responses 

towards the ostechondral interface and subsequent tissue remodeling when chitosan was 

utilized [47,48]. 

With a persistent lack of conclusive success in effective integration, the objective of this 

study was to evaluate the use of hydroxyapatite (HA) in nano particulate form, to promote 

the integration between tissue engineered cartilage grown in an injectable hydrogel 

substrate, to bone extracellular matrix (ECM). HA nanoparticles were found to settle at the 

inferior end of the cylindrical hydrogel specimens. Under these HA-rich environments, we 

determined first that the HBMSC viability and proliferation remained stable. Further, the 

cells exhibited chondrogenic differentiation in PEGDA+ HA environments through robust 

expression of articular cartilage genes, Aggrecan, Sox-9 and type II collagen (Fig. 4). Upon 

verification that HA was safe to incorporate within the PEGDA hydrogels, we proceeded 

with investigations on mechanical properties and integration effectiveness of PEGDA+ HA 

based engineered cartilage to bone ECM. Interfacial shear stress was significantly 
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increased when HA was used (p < 0.05; Fig. 8). Histological findings demonstrated 

traversing of the PEGDA to Bone interface with the creation and a distinct presence of a 

calcium phosphate-rich transition zone (Fig. 5b). 

The incorporation of HA in an injectable photopolymerizable system was able to provide 

an enhanced anchorage of engineered cartilage to bone ECM; to our knowledge we are the 

first to demonstrate this finding in photopolymerizable hydrogels. However, other 

laboratories have attempted to augment the interfacial mechanical properties of engineered 

cartilage and subchondral bone using biomaterials such as chitosan particles [48], porous 

calcium polyphosphate [49], chitosan-chondroitin sulfate [50]. One group even used HA 

in conjunction with non-photopolymerizable alginate hydrogels and reported on its shear 

mechanical properties [18,51]. As data was reported as shear moduli [18], we first 

computed the shear moduli of our PEGDA-HA constructs at 14 and 28 days in the linear 

region of the mean stress-strain curve (n = 6 samples; curve not shown), which persisted 

up to ~ 5% strain. The computed shear moduli from Khanarian et al [18] was ~ 1.8 and 3.5 

kPa at 14 and 28 days respectively, whereas we found the shear moduli for the PEGDA-

HA samples to be in the order of 33.6 ± 1.9 kPa at 14 days and 40.2 ± 3.7 kPA at 28 days 

(n = 6 samples/group). This evaluation indicates that the shear moduli determined here is 

an order of magnitude large  than other reports in the literature on osteochondral scaffold 

shear properties which incorporated HA. However, it should be noted that this is not a 

direct comparison because shear properties were measured using a rheometer [18], whereas 

we assessed shearing properties at the interface of engineered cartilage and engineered 

bone. Interestingly, we found that the benefit of HA incorporation was seen as early as 

after 7 days of culture at which point there was already a substantial increase in interfacial 
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shear strength (by ~ 62%) in comparison to corresponding samples without HA (Fig. 7). 

The presence of HA had a negligible effect on the subsequent % temporal increase in 

interfacial shear strength between 7 and 28 days of tissue culture (% increase in samples 

with HA: 101% and in samples without HA: 99%). As a result, at 28 days, there was similar 

% interfacial shear strength improvement in the samples with HA versus the samples 

without HA (by ~ 64%) in comparison to the corresponding % increase observed at 7 days 

(by 62%). This finding suggests that HA augments the interfacial shear strength of 

engineered cartilage to engineered bone constructs during the early, i.e., the first week of 

tissue development, and this benefit carries forward beyond this period in a relatively 

unaffected manner. From a translational standpoint, the incorporation of HA for 

osteochondral repair will thus have a pronounced effect in terms of the interfacial shear 

strength of the tissue engineered cartilage construct to the subchondral bone during the 

early stages (first 7 days) following treatment, after which standard tissue integration 

process will continue, likely unaltered. Thus, future in vivo studies in cartilage tissue 

engineering that will incorporate HA into their development protocol could likely assess 

maximum interfacial shear strength improvement of engineered cartilage to host bone 

tissue that is directly attributable to HA, as early as 1 week following implantation. 

Alkaline phosphatase activity was found to be higher in the groups when HA was used. 

Histological studies also demonstrated controlled growth of calcium phosphate deposits at 

the interface. We interpret that the augmented calcium phosphate deposits were due to 

migration of osteoblasts from the bone ECM to the inferior region of the tissue engineered 

cartilage layer that ultimately led to the creation of a transition zone; again this was directly 

attributable to the presence of HA particles at the interface. However it is important to note 
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that the transition zone characterized by calcium phosphate, i.e., bone-related ECM 

occupied ~ 7.5 % of the total cartilage region, whereas the rest of this area was rich in 

engineered cartilage tissue. Thus, in the context of osteochondral defects we anticipate that 

the majority of the space would still be filled by cartilaginous tissue, except for an in-

growth of calcium phosphate from subchondral bone (promoted by HA nanoparticles), 

which would thereby assist in securing the engineered cartilage construct in-place. Indeed, 

histological evidence suggested that a temporal narrowing of the interfacial gap between 

engineered cartilage to bone progressively occurred over 4 weeks when HA was used (~ 

53% and 90% filling at 2 and 4 weeks respectively), via the creation of a transition zone, 

primarily characterized by calcium phosphate ECM deposits (Fig. 6b). The incorporation 

of HA in the engineered constructs permitted ~ 66% of the transition zone to be comprised 

of calcium phosphate deposits after 4 weeks. Conversely a calcium phosphate-rich 

transition zone was absent when HA was not utilized. In addition, in the constructs without 

HA, the gap between engineered cartilage and bone decreased only negligibly beyond two-

weeks (by an additional 1% of original gap area) demonstrating that in an in vitro 

framework, tissue filling of the transition zone can be enhanced during extended culture 

periods (> 2 weeks) using HA nanoparticles. Recently St. Pierre et al [49], reported that 

the presence of a calcified zone at the osteochondral junction augmented the interfacial 

shear strength by ~ 3.3 times in comparison to when a calcified matrix was absent. Taking 

this finding in the context of our study, HA may have initiated sparse calcium phosphate 

deposition in the transition zone during the early stages of tissue culture (1 week) which 

contributed to the increase in interfacial shear strength. 
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Even though our results with HA appear promising, our model was restricted to in vitro, 

static processes and did not mimic in vivo physiological loading states or interactions from 

surrounding such as the synovial fluid. Secondly, the cells utilized were from healthy 

sources, yet very frequently osteochondral and chondral defects are common in individuals 

who have mild to moderate disease states such as osteoarthritis. We are currently 

examining the effect of disease on our proposed approaches of integration effectiveness 

utilizing HA. Finally, even though significant improvement in integration strength with 

HA was observed (p < 0.05), the critical strength needed for effective cartilage tissue repair 

and regeneration outcomes clinically has not been identified. In addition native human 

cartilage to bone failure shear strength has been reported to be at least three orders of 

magnitudes higher (~ 7.25 MPa) [52]. Thus, whether or not the improvements found in the 

constructs with HA will translate into enhanced cartilage repair in vivo still remains to be 

proven.  

Nonetheless, we in summary demonstrated that the significant improvement (p < 0.05) in 

the integration strength of tissue engineered cartilage with underlying engineered bone can 

be obtained with the use of hydroxyapatite nanoparticles, which aggregate at the inferior 

end of the injectable photopolymerizable hydrogels. The process of interfacial shear 

strength improvement between engineered cartilage to engineered bone constructs seems 

to have occurred during the early tissue culture period (first 7 days), and this increase 

carried forward to extended durations (up to 28 days) without interaction with the 

subsequent intrinsic augmentation in strength due to de novo tissue formation processes. 

The mechanism of improved integration and as a consequence, enhanced anchorage of the 
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engineered cartilage constructs appeared to be due to the osteoblast secretion of calcium 

phosphate deposits, induced by the presence of HA. 

Meanwhile, the bulk of the engineered cartilage region still consisted of de novo tissue 

formation rich in cartilage ECM. We therefore propose the incorporation of HA 

nanoparticles as a means to enhance the integration of engineered cartilage to subchondral 

bone in future photopolymerizable hydrogel-based cartilage tissue engineering studies. 
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Chapter 5 

Improvement in integration of engineered cartilage with native cartilage matrix in 

healthy and diseased state 

 

 

 

 

 

 

 

 

 

 

This chapter describes the interaction of engineered cartilage to a healthy and diseased 

mimics of cartilage in HA rich environments. This chapter provides evidence that the 

incorporation of HA can be beneficial for enhancing the integration of a tissue engineered 

scaffold to a defect space even if the native cartilage has become diseased.  
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5.1 Abstract 

We previously reported that Hydroxyapatite (HA) nanoparticles promote engineered 

cartilage to bone matrix integration.  In the present study, using a similar approach, we 

investigated the effectiveness of integrating tissue engineered cartilage derived from 

human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic 

cartilage mimics in an in vitro engineered tissue model system.  We found that there was a 

statistically significant (p<0.05) higher shear strength in the tissue engineered cartilage 

from HBMSCs without HA particles which was integrated with healthy chondrocyte-

derived cartilage matrix as compared to the corresponding counterparts with HA. However 

we found the opposite effect in osteoarthritic environments, wherein the HBMSC-derived 

cartilage integrated with cartilage matrix with HA particles exhibited a significantly higher 

(p<0.05) interfacial shear strength as compared to when HA was not incorporated; 

histological evidence subsequently confirmed that a distinct spatial transition zone, rich in 

calcium phosphate deposits, is likely to have attributed to this higher interfacial strength. 

These findings collectively point towards an important role for HA nanoparticles in treating 

osteochondral defects when osteoarthritis is a co-morbidity.  We speculate that the calcified 

layer formation at the interface in the osteoarthritic environment in the presence of HA is 

due to similarities in gene expression in this diseased state in comparison to bone matrix.  

5.2 Introduction 

Articular cartilage lesions in the knee frequently occur following an injury. Curl et 

al [1] demonstrated that up to 63% out of a total of 31514 knee arthroscopies suffered from 

chondral lesions. Another study by Hjelle et al [2], found that 61% out of 1000 knee 
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arthroscopies had chondral or osteochondral lesions. Ultimately, an absence of an intrinsic 

healing capacity in chondrocytes prevents it from permitting complete restoration of the 

lost tissue. With limited treatment options, the sustained presence of cartilage defects may 

lead to the onset of osteoarthritis [3-5], which will accelerate the tissue loss. Numerous 

studies have been done [6, 7] to treat articular cartilage defects in the knee but none of them 

have been able to provide consistently favorable outcomes.   

Tissue engineering approaches have been shown to hold great promise for treating 

cartilage defects. Tissue engineering generally involves the implantation of a 

biodegradable scaffold within the defect space that will degrade over time and 

concomitantly, it will support tissue repair/regeneration processes, initiated by cells present 

within the defect space [8]. Since the knee is highly mobile, an added prerequisite for 

cartilage tissue engineering is the retention of new cartilage within the defect, i.e., the 

scaffold would need to be retained in the defect site during the early phases of the 

regenerative process to promote sufficient tissue filling. We note that such retention would 

not only require effective integration of de novo cartilage with the underlying subchondral 

bone (in the case of osteochondral defects), but in addition, would also need to integrate 

well with surrounding native cartilage tissues.  To permit such integration, previous studies 

have utilized approaches based on the principles of mechanical [9-12], chemical [13-15] 

and biological fixation [16-18]. While these investigations were promising, consistent 

success was again lacking. 

Recently, injectable hydrogels incorporating hydroxyapatite (HA) nanoparticles 

have shown great potential in enhancing the integration of engineered cartilage to bone 

matrix [18, 19]. The targeted treatment was intended for small to medium sized 



89 

osteochondral defects (< 50 mm2) that could arise either from an injury and/or from mild 

to moderate levels of osteoarthritis [20]. In addition, our recent experience suggested that 

HA directly promoted enhanced integration of the engineered cartilage to the bone matrix 

by the creation of an intermediate calcium phosphate rich transition zone, thereby 

permitting greater stability of the implant [19].  We note that previous studies have 

described that a graded transition in material properties between two different tissue 

matrices is an indicator of integration effectiveness [21]. However, as described earlier, 

complete spatial integration must require fusion of the engineered cartilage to the 

surrounding native cartilage as well, and not only to bone.  This is particularly the case in 

chondral defects where the surrounding native tissue is characterized completely by 

articular cartilage. In this context, here, we report on the utility of HA nanoparticles in 

promoting the integration between engineered cartilage derived from human bone marrow 

mesenchymal stem cells (HBMSCs) with the chondral matrix secreted by healthy (HCs) 

human chondrocytes (HCs). The experiments were subsequently repeated with human 

osteoarthritic chondrocytes (HCOAs) in place of the HCs, so as to understand the impact 

of this diseased state on cartilage-cartilage integration processes, in considering that some 

level of osteoarthritis is usually present in knee articular cartilage, containing injury-

induced defects [22]. 

5.3 Material and methods 

5.3.1 Overview 

An in vitro healthy and diseased engineered cartilage model system originating 

from human chondrocytes was integrated with HBMSC-derived cartilaginous engineered 
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matrix and evaluated after 28 days of growth. The cartilage matrix from the chondrocytes 

was prepared using agar scaffolds that encapsulated in a segregated manner, the healthy 

and osteoarthritic chondrocytes populations. Meanwhile the HBMSCs were seeded onto 

photopolymerizable poly (ethylene glycol) diacrylate (PEGDA). Assessment was 

conducted in terms of viability, mechanical testing, histological and gene expression at the 

following time points: Day 1, Day 7, Day 14 and Day 28. 

 5.3.2 Cell Culture 

5.3.2.1 Human Bone marrow derived Mesenchymal Stem Cells (HBMSCs)  

HBMSCs (Science cell, Carlsbad, CA, USA) were seeded onto Poly D-lysine 

coated T-75 flasks (Fisher Scientific, Pittsburg, PA, USA). The cells were cultured in 

manufacturer supplied proprietary medium (AdvanceSTEM Mesenchymal Stem Cell 

Expansion Kit (Thermo Scientific, Waltham, WA) until passage three (P3). 

5.3.2.2 Healthy Human Chondrocytes (HC) 

HCs (Cell Applications Inc., San Diego, CA, USA) were sourced from non-

pathologic articular cartilage. They were cryopreserved at passage 2 (P2) when shipped by 

the manufacturer. When the cells were received, they were plated in T-75 flasks (Fisher 

Scientific, Pittsburgh, PA, USA) and allowed to proliferate. The cells were cultured in the 

Human Chondrocyte Media (Cell Applications, San Deigo, CA) until P4 and were 

subsequently used for the experiments. 
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5.3.2.3 Human Chondrocytes-Osteoarthritis (HCOA)  

HCOA (Cell Applications) were isolated from the articular cartilage from patients 

with Osteoarthritis. They were received from the manufacturer at P1 and prior to usage in 

the experiments, they were cultured, and propagated in the human chondrocyte media (Cell 

Applications) until P4. 

5.3.3 Tissue Engineered Healthy Cartilage 

Engineered healthy cartilage was prepared using 2% Agar scaffold [23] in which 

adult chondrocytes were encapsulated. 2.5 % of Agar solution (Fischer Scientific) was 

prepared and heated to a temperature of 70oC. Meanwhile, chondrocytes were trypsinzed 

and 20 million cells were dissolved in 200µl of cell media. Once the Agar solution started 

to boil, it was removed from the hot plate and allowed to cool in a room temperature 

environment.  When the temperature reached 40oC, 64 µl of Agar solution was mixed with 

16 µl of cell suspension and casted for 5 minutes in custom designed molds (5mm in 

diameter and 4.1 mm in length) at the room temperature. Each gel construct consisted of a 

2% Agar solution with a cellular suspension consisting of ~1.6 million chondrocytes. 

5.3.4 Tissue Engineered Diseased Cartilage 

Tissue engineered osteoarthritic cartilage was prepared in the same manner as tissue 

engineered healthy cartilage except for the use of HCOAs instead of HCs. 

5.3.5 Stem-Cell derived Tissue Engineered Cartilage 

BMSC derived engineered cartilage was prepared using our previously established 

protocols [19]. Briefly, the constructs were fabricated using 15% PEGDA solution with a 

0.5 % w/v HA. 15% PEGDA solution was prepared by dissolving 150 mg of PEGDA 
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powder obtained from Glycosan Biosystems ( Salt Lake city, UT) and 5 mg of HA 

nanoparticles (Catalog # 677418, Sigma Aldrich) in 1 ml Phosphate buffer saline (PBS) 

(Sigma Aldrich). Subsequently, 100 mg/ml of photoinitiator solution (Irgacure 2959, Ciba 

Specialty Chemicals, Tarrytown, NY) in 70% ethanol was added to the monomer solution 

in a concentration of (5μl/ml) to get a final concentration of 0.05% w/v of photo initiator. 

HBMSCs were introduced just prior to UV exposure at a concentration of 20 million 

cells/ml. Next, to induce polymerization, the solution was irradiated with UV light at 4-5 

mW/cm2 for 7 minutes that  we previously demonstrated did not antagonize the viability 

of the cells [24].  

Once the chondrocyte-derived HC and HCOA engineered cartilage segments were 

prepared, samples of engineered cartilage matrix secreted from HBMSCs were positioned 

on top of the chondrocyte-based constructs, i.e., either healthy or osteoarthritic, to mimic 

adjacent healthy and diseased native articular cartilage environments respectively. The 

two-layered constructs were subsequently physically held together with a thin stainless 

steel pin (Fischer Scientific, Catalog # 26002-10) that was pierced through both the layers. 

The two layer constructs were transferred to 24-well plates, and supplied with 1 ml of 

chondrogenic media per sample (Fisher Scientific, Catalog # SH3088902) that were then 

incubated in a standard cell culture incubator operating under 95% air, 5% CO2, 37oC and 

humidified conditions. 

Cellular constructs were similarly made without HA. In sum, four groups of 2 layers 

specimens were ultimately prepared as follows: 1) HCs encapsulated in Agar-HBMSCs 

encapsulated in PEGDA without HA 2) HCs encapsulated in Agar-HBMSCs encapsulated 

in PEGDA with HA, 3) HCOAs encapsulated in Agar-HBMSCs encapsulated in PEGDA 
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without HA, and 4) HCOAs encapsulated in Agar-HBMSCs encapsulated in PEGDA with 

HA.  

5.3.6 Cell Viability 

To assess the viability of HCs and HCOAs encapsulated in Agar constructs as well 

the HBMSCs encapsulated in PEGDA constructs with and without HA, a Live-Dead assay 

was conducted using Calcein AM/Ethidium homodimer (Life Technologies, Carlsbad, CA) 

staining following the manufacturer's protocol. 

In brief, 1 mm sections from the different groups were grown to different time 

points (Day1, Day 7, Day 14 and Day 28) and were cut using a blade and subsequently 

stained with Calcein AM and Ethidium homodimer in PBS solution and incubated for 30 

minutes. Next, to remove the background fluorescence they were washed 3 times with PBS 

solution and then visualized under a fluorescent microscope (Olympus IX81, Olympus 

America Inc., Miami, FL) at excitation and emission wavelengths of 495/515 nm and 

495/635 nm for Calcein AM and Ethidium homodimer respectively. Viability of HBMSCs 

in PEGDA environment with and without the incorporation of HA was previously reported 

by our research group [19].  

5.3.7 Mechanical Testing 

The interfacial shear strength between the PEGDA-based tissue engineered 

cartilage and the agar based healthy (or alternatively, diseased) engineered cartilage 

substrates were determined by performing shear testing at the interface of the 2 layers. 

Samples to be tested (n =6/group) were placed horizontally on the platens. One side of the 

sample was adhered to the upper platen while the other end was secured to the lower platen, 
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both using super glue. The upper platen was subsequently displaced at a rate of 0.05 

mm/sec with data logging conducted at every 0.03 mm of displacement. The test was ended 

when the 2 layers were observed to separate from each other that were also accompanied 

with a sudden rapid decrease in the loads recorded. 

5.3.8 Histology 

Calcium and GAG matrix distribution at the interface of two layer constructs for 

Group 1-4 specifically 1) HCs encapsulated in Agar-HBMSCs encapsulated in PEGDA 

without HA 2) HCs encapsulated in Agar-HBMSCs encapsulated in PEGDA with HA, 3) 

HCOAs encapsulated in Agar-HBMSCs encapsulated in PEGDA without HA, and 4) 

HCOAs encapsulated in Agar-HBMSCs encapsulated in PEGDA with HA was evaluated 

using the Von-Kossa and Alcian Blue Stain kit (IHC world, Woodstock, MD, USA). 

Briefly the samples from each group were first fixed in 10% formalin. They were then 

embedded in molds using OCT. Sections were cut using cryostat (25 micron thickness) and 

were stained using the manufacturer’s protocols. In short, sectioned samples were first 

washed with PBS three times to remove the OCT. Then they were treated with silver nitrate 

solution and exposed to UV light for 60 minutes. Next, they were stained with Alcian Blue 

Stain, washed with distilled water and observed under a microscope to visualize both the 

calcium and cartilage matrix deposition at the same time on the same tissue section. 

5.3.8.1 Energy-Dispersive X-ray Spectroscopy 

To quantify the composition of elements found within the transition zone of two 

distinct engineered tissue matrices treated with HA, energy-dispersive x-ray spectroscopy 

(EDS) was performed (JEOL 6330F Field Emission Scanning Electron Microscopy (FEG-
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SEM), (JEOL Ltd, Akishima-Shi, Tokyo).  Specifically in an effort to obtain unambiguous 

spectra, because the transition zone between engineered cartilage and bone possessed a 

relatively large spatial region for assessment. For continuity in the text, the EDS results are 

presented directly in the “Discussion” section since they were obtained to primarily 

corroborate our histological findings,  

5.3.9 Quantitative Real Time-Polymerase Chain Reaction q(RT-PCR) 

To assess the gene expression of the stem cell-generated de novo cartilage tissue, 

quantitative real time-polymerase chain reaction (qRT-PCR) analysis was conducted, both 

at the interface and at the spatial location 4 cm from the interface, well within the stem-cell 

derived engineered tissues. First, engineered cartilage derived from HBMSC’s after 28 

days of culture was extracted from each group (1. HCs encapsulated in Agar-HBMSCs 

encapsulated in PEGDA without HA 2. HCs encapsulated in Agar-HBMSCs encapsulated 

in PEGDA with HA, 3. HCOAs encapsulated in Agar-HBMSCs encapsulated in PEGDA 

without HA, and 4. HCOAs encapsulated in Agar-HBMSCs encapsulated in PEGDA with 

HA.).  

Each sample was subsequently cut into 2 parts. One part comprised of the transition region 

of 1 cm and the remaining part of the spatial region of the engineered cartilage from 

HBMSCs. Three samples from each group were cut in the similar fashion and, crushed and 

pooled together for analysis. This was repeated for another 2 samples from each group that 

generated a total number of pooled samples as n=3 for each of the interfacial and distal 

cartilage locations for q(RT-PCR) assessment. Total mRNA was extracted from each group 

three times using the SV total RNA isolation kit (Promega, Madison, WI).  Subsequently, 
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the RNA isolation procedure was followed as described by the manufacturer (Promega).  

Next, 5µg of mRNA was used for the reverse transcriptase reaction as previously reported 

[25, 26]. GoScript Reverse Transcription kit (Promega) was used for converting the mRNA 

for the four groups into cDNA using an oligo(dT) primer, according to the manufacturer’s 

instructions.  

The qRT-PCR was performed using the GoTaq_qPCR Master Mix (Promega). The 

forward and reverse primers and SYBR green I dye reagent along with the cDNA, which 

was obtained during reverse transcription were mixed in PCR tubes. The primers (Table 1) 

were designed using the Basic Local Alignment Search Tool (BLAST) program, National 

Center for Biotechnology Information (NCBI) to amplify the target sequences.  Step-One 

Real-Time PCR System (Life Technologies) was used to detect the signals when the 

mixture was followed by thermal cycling conditions as per manufacturer’s instructions 

(Promega). Finally, the expression of the following markers: GAPDH, Aggrecan, SOX9, 

Collagen II, MMP13, Runx2, Collagen X, Collagen I, Osteocalcin were measured for the 

different groups. The choice of these markers was made mainly to access the quality of 

formed de novo cartilage. Aggrecan, Sox9 and Collagen II were selected as they were 

healthy cartilage specific markers [27, 28]. High expression of MMP13, Runx2, Collagen 

I were the indication of the deep zone calcified cartilage or hypertrophic cartilage [29, 30]. 

High expression of Collagen I and osteocalcin indicated the formation of oteoarthritic 

cartilage [31]. Finally, to interpret the results, the change in cycle threshold (Cт) values 

were averaged and normalized with GAPDH using the ΔΔCт method [32]. Fold changes 

were calculated as 2- ΔCт, and the gene expression ratio of each of the four groups was 

plotted. 
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5.3.10 Statistics 

Statistical analysis was performed for the results obtained from cell viability, shear 

testing and q(Rt-PCR). The results obtained were reported as means ± standard deviation. 

Commercially available software (SPSS, IBM, version 20, Armonk, NY, USA) was used 

to perform the statistics. To compare means and to determine statistically significant 

differences (p < 0.05) between groups respectively for shear testing a one way ANOVA 

and post hoc Tukey test was used.  In cases where only two groups were compared, t-test 

for independent groups was utilized. 

 

 

 

 

 

 

 

Table 5.1: Quantitative RT-Polymerase Chain Reaction Primer Sequences 
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5.4 Results  

5.4.1 Cell Viability 

The viability of the cells in the engineered scaffolds was observed over a period of 

28 days at 4 time points (Day 1, Day 7, Day 14 and Day 28). We found that the HCs (Fig. 

5.1 (a)) and HCOAs (Fig. 5.1 (b)) were both viable more than 85% in the Agar gel at 28 

days of growth (Table 5.2). 

 
Figure 5.1 (a): Live Dead assay over a period of 28 days for HCs encapsulated in agar scaffold. 
The images clearly showed that cells remained viable over this time frame with a much larger 

density of live (green dots) versus dead (red dots) cells 
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Figure 5.1 (b): Live Dead assay over a period of 28 days for HCOAs encapsulated in agar 
scaffold. The images clearly showed that cells remained viable over this time frame with a much 

larger density of live (green dots) versus dead (red dots) cells 

Table 5.2 Quantitative assessment of percentage cell viability in samples subjected to the live-
dead assay 

 

5.4.2 Mechanical Testing 

The integration of tissue engineered cartilage derived from HBMSC’s (with and 

without HA nanoparticles) with healthy and diseased cartilage matrix mimics was assessed. 

We found a statistically significant (p<0.05) difference in the shear strength between HCs 

encapsulated in Agar - HBMSCs encapsulated in PEGDA without HA  and HCs 

encapsulated in Agar - HBMSCs encapsulated in PEGDA with HA after both 7 days and 

28 days of tissue culture (Fig. 2). Furthermore the integration strength of HCs encapsulated 

in Agar - HBMSCs encapsulated in PEGDA without HA was significantly higher (p<0.05) 

than the integration strength of HCs encapsulated in Agar - HBMSCs encapsulated in 

PEGDA with HA group after 28 days of tissue culture.  It was in the order of 6.87 ± 0.74 
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KPa for HCs encapsulated in Agar - HBMSCs encapsulated in PEGDA without HA. 

Meanwhile the corresponding group with HA demonstrated shear strength of 5.55 ± 0.36 

KPa. (Fig. 5.2) 

 

Figure 5.2: Interfacial shear test results of tissue engineered cartilage joined with healthy cartilage 
mimics with and without the presence of HA.  The “*” indicates that the difference between the 

groups was statistically significant (p < 0.05). Enhanced integration of tissue engineered cartilage 
with healthy cartilage at day 28 compared to day 1 was found in both groups. However, there was 
a significant increase (p < 0.05) in interfacial shear strength at day 28 when HA was not present. 

This finding demonstrated that the presence of HA did not promote integration in healthy 
cartilage environments 

 
When comparing the shear strength of engineered cartilage with diseased cartilage 

mimics with and without the inclusion of HA nanoparticles, we found that there was a 

statistically significant difference in shear strength at all-time points (Day 7, Day 14 and 
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Day 28) between HCOAs encapsulated in Agar - HBMSCs encapsulated in PEGDA 

without HA and HCOAs encapsulated in Agar - HBMSCs encapsulated in PEGDA with 

HA.  We also found that the HCOAs-based samples which included HA nanoparticles 

exhibited statistically significant (p<0.05) higher shear strength when compared with the 

group without the HA nanoparticles. The value of shear strength after 28 days of tissue 

culture was found to be 5.39 ± 0.25 KPa while for the corresponding group without HA, it 

was in the order of 4.16 ± 0.8 KPa (Fig. 5.3). 

 

Figure 5.3: Interfacial shear test results of tissue engineered cartilage joined with osteoarthritic 
cartilage mimics with and without presence of HA. The “*” indicates that the difference between 

the groups was statistically significant (p < 0.05). Enhanced integration of tissue engineered 
cartilage with osteoarthritic cartilage at day 28 compared to day 1 was found in both groups. 

However, there was a substantial increase in interfacial shear strength at day 28 when HA was 
present. This finding demonstrated that the presence of HA significantly (p < 0.05) promoted 

integration in osteoarthritic cartilage environments. 
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5.4.3 Histology 

Histological sections revealed that HCs encapsulated in Agar-HBMSCs encapsulated in 

PEGDA with HA did not form a transition zone, but instead presented with a physical 

spacing or gap between the two engineered constructs (Fig. 5.4). By transition zone, we 

refer to a defined spatial region located between the tissue engineered two-layer constructs 

(e.g. between HBMSCs engineered cartilage and HCs / HCOAs engineered cartilage), that 

is made up of heterogeneous components derived from the two layers and is relatively 

much larger than the size of the actual interface.  However regardless of whether or not HA 

was present, a  narrowing of the gap was observed to have occurred in the constructs at 28 

days in comparison to samples evaluated after 1 day of tissue culture (Fig. 5.4).  

After 28 days of tissue culture, in HCOAs encapsulated in Agar-HBMSCs 

encapsulated in PEGDA with HA, a thin transition zone was formed between HBMSC-

derived engineered cartilage and HCOA-derived cartilage; on the other hand, when HA 

was not utilized, only a narrowing of the gap between the two layers was observed as was 

previously seen in the HC groups (Fig 5.5).  

 



103 

 

Figure 5.4: Von Kossa - Alcian Blue histology of tissue engineered cartilage derived from 
HBMSCs integrated to HC-secreted cartilage matrix with and without HA incorporation. At Day 

1, a clear gap was apparent between the engineered cartilage and healthy cartilage regions for 
both groups.  Progressive narrowing and filling of tissue subsequently occurred. 
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Figure 5.5: Von Kossa - Alcian Blue histology of tissue engineered cartilage derived from 
HBMSCs integrated to HCOA-secreted cartilage matrix with and without HA incorporation. At 
Day 1, a clear gap was apparent between the engineered cartilage and diseased cartilage regions 

for both groups.  Progressive filling of the transition zone with calcium phosphate deposits 
(indicated by dotted yellow lines) in the group with HA was found to occur. 

5.5.4 Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

After 28 days of culture in chondrogenic media, it was observed that HBMSCs 

derived tissue engineered cartilage within HCs encapsulated in Agar-HBMSCs 

encapsulated in PEGDA without HA exhibited relatively high expression of Aggrecan, 

SOX9 and Collagen II genes in both the proximal and distal regions (relative to the 

interface with HCs-derived engineered cartilage). In addition, there was a higher gene 

expression of MMP13, Runx2 and collagen X at proximal to the interface but not at the 



105 

distal region in HBMSCs derived tissue engineered cartilage within HCs encapsulated in 

Agar-HBMSCs encapsulated in PEGDA with HA (Fig. 5.6). 

 

Figure 5.6: q(RT-PCR) of HBMSCs derived engineered cartilage integrated to HC-secreted 
cartilage matrix at a region of 1 cm (proximal) and 4cm (distal) from the interface within the  
HBMSC portion. In samples with and without HA, the results indicated a high expression of 

Aggrecan, SOX9 and Collagen II genes at both the proximal and distal positions, indicating the 
formation of healthy cartilage. In addition, in the samples with HA, high gene expression of 

MMP13, Runx2 and collagen X at the proximal location was found, indicating the presence of a 
calcified cartilage matrix at the interface. 

 
Similarly, for HBMSCs derived cartilage within HCOAs encapsulated in Agar-

HBMSCs encapsulated in PEGDA without HA, it was found that there was a relatively 

higher gene expression of Sox9, Collagen II, MMP13, Runx2, Collagen X, osteocalcein at 

the interface as well as to the regions deep within the HBMSCs-secreted engineered matrix. 
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Gene expression of Type I collagen was nonetheless high at both the interface and deep in 

the HBMSCs derived engineered cartilage within HCOAs encapsulated in Agar-HBMSCs 

encapsulated in PEGDA without HA sample. However, when HA was incorporated, there 

was no gene expression of Type 1 collagen at the distal region and minimal expression of 

this gene at the interface (Fig. 5.7). 

 

Figure 5.7: q(RT-PCR) of HBMSCs derived engineered cartilage integrated to HCOA-secreted 
cartilage matrix at a region of 1 cm (proximal) and 4cm (distal) from the interface within the  
HBMSC portion. In samples without HA, the results indicated a high expression of Type 1 
collagen at both the proximal and distal positions, indicating a loss of the articular cartilage 

phenotype in the presence of osteoarthritic environments. On the other hand, Type 1 collagen 
expression was found to be minimal in the samples with HA; in addition high gene expression of 
MMP13, Runx2 and collagen X at the proximal interface location was observed, indicating the 
presence of a calcified cartilage matrix at the interface.  Meanwhile these genes were minimally 

expressed at locations deep within the BMSC-derived engineered tissues and yet, strong 
expression of Aggrecan, SOX9, and Collagen II was maintained, indicative of a robust articular 

cartilage phenotype, when HA was incorporated. 
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5.5 Discussion 

Over the past decade, extensive research has been conducted in the area of tissue 

engineered cartilage integration with native tissues [33-35].  However most if not all of the 

previous studies focused on integration between engineered cartilage to bone [35, 36]; yet 

of equal importance is the need for effective integration of the engineered cartilage with 

surrounding native articular cartilage, especially in the case of focal chondral defects. We 

thus sought to build on our previous work [19] on enhanced integration between cartilage 

and bone matrix using HA in a similar manner in this study, except to examine the utility 

of HA nanoparticles to promote the anchorage and integration of engineered cartilage to 

healthy as well as osteoarthritic cartilage extracellular matrix.  

We found a significantly higher shear strength (p<0.05; Fig. 5.2) after 28 days of 

tissue culture in HCs encapsulated in Agar-HBMSCs encapsulated in PEGDA without HA 

constructs in comparison to equivalent constructs with HA. From this observation, we 

interpret that matrix produced by HCs, that incorporates HA does not promote chondral-

chondral integration but rather, that the HA particles aggregate as non-heterogonous 

components along the interface of the two materials which ultimately results in reduction 

of shear strength.  In contrast however, after 28 days of culture, we found a significantly 

higher shear strength (p<0.05; Fig. 5.3) in HCOAs encapsulated in Agar-HBMSCs 

encapsulated in PEGDA with HA in comparison to its without HA counterpart.  

Interestingly thus, an opposing effect was observed (compared to HC-derived matrix) in 

the presence of osteoarthritis wherein the HA did support significant improvement in 

interfacial strength, and hence more effective integration between the two tissue matrices. 
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These findings under a diseased state were consistent with our earlier work on HA-interface 

promotion at the engineered cartilage to engineered bone interface [19].  

Following Von Kossa staining of the samples with and without HA in healthy and 

osteoarthritic-chondrogenic environments, a narrowing of the gap for both HCs 

encapsulated in Agar-HBMSCs encapsulated in PEGDA with and without HA was 

observed after 28 days of tissue culture (Fig. 5.4). In both cases, an intermediate transition 

zone between the HBMSC and chondrocyte-derived engineered cartilage matrices was 

absent. This corroborated with the decrease in the interfacial strength of the tissue 

engineered cartilage with the healthy cartilage when HA was present and in-line with the 

observation that a sharper or more abrupt transition between the two matrices, i.e., a smaller 

spatial transition zone is indicative of less effective integration [21].   

On the other hand, after 28 days of culture in HCOAs encapsulated in Agar-

HBMSCs encapsulated in PEGDA with HA, we observed the formation of a thin transition 

zone (Fig. 5.5).  This transition zone was largely occupied by calcium phosphate deposits. 

Notably similar presence of calcium phosphate but in larger quantities was observed in our 

previous studies, examining tissue engineered cartilage with HA integrated with an 

osteoblast-derived bone matrix [19]. Subsequent EDS analysis in the transition zone 

between these tissues confirmed a quantity of elemental Calcium in the order of  6.41 % 

(Fig. 5.8).  This finding provided conclusive evidence that the transition zone that was 

created was due to the presence of calcium phosphate deposits, which was likely 

attributable to the presence of the HA nanoparticles that had settled solely along the 

interface location. 
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Figure 5.8: Elementary composition of the transition zone using Energy-Dispersive X-ray 
Spectroscopy.  A large transition region between engineered cartilage and engineered bone 

treated with HA was analyzed after 28 days of culture.  Elemental Calcium in the order of  6.41 
% was found to be present in the transition zone. 

Further, we observed that in samples without HA, the BMSC-portion of HCs 

encapsulated in Agar-HBMSCs encapsulated in PEGDA exhibited a healthy cartilage 

phenotype after 28 days of culture (Fig. 5.6). However, when HA was incorporated there 

was a high expression of the genes, MMP13, Runx2 and Type 2 Collagen at the proximal 

region. This confirmed the presence of a calcified articular cartilage matrix at the interface, 

even though a larger spatial transition zone was absent.  We note that this calcified matrix 

is likely to be similar in biochemical composition to the calcified matrix found in the deep 

zone of normal healthy articular cartilage [37].  Corresponding HBMSC regions integrated 

with HCOA-derived cartilage matrix without HA, revealed a high expression of Type 1 

Collagen in both proximal and distal regions to the interface, i.e., indicative of a loss of 

articular cartilage phenotype in osteoarthritic environments. On the other hand, Type 1 

Collagen expression was found to be minimal at proximal locations to the interface when 

HA was incorporated (Fig. 5.7). Finally, distal locations deep within the HBMSC-derived 

engineered tissue did not express MMP13, runx2 and Type X Collagen; instead, a high 

level of expression of the healthy articular cartilage genes, Sox9, aggrecan and Type II 
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Collagen was observed demonstrating that the HBMSC-derived engineered tissues 

preserved a healthy cartilage phenotype despite its integration with extracellular matrix 

secreted by HCOAs.  As previously stated, Type 1 collagen is a phenotypic indicator of 

the arthritic-state in articular cartilage [38]. We speculate that the presence of HA at the 

interface and the subsequent creation of a calcium phosphate-rich transition zone served to 

reduce the spread of osteoarthritic conditions to the de novo cartilage formed by the 

HBMSCs.  Ironically however, the osteoarthritic state of adjacent cartilage matrix is a 

necessary precursor to initiate calcium phosphate generation at the interface location 

because calcium phosphate was found to be absent when the adjacent environment 

comprised of engineered cartilage derived from healthy chondrocytes.  From a clinical 

perspective, we note that following cartilage injury, osteoarthritis rapidly develops [39-41] 

and is usually a co-morbidity when small to medium size cartilage defects [42] are present.  

Even though our results appear promising and our HA-based protocol could 

potentially be transferred directly to clinical photopolymerizable tissue engineered 

cartilage strategies currently being investigated [16, 43], we note that all our findings were 

obtained from in vitro experiments.  Specifically, we observed an increase in integration 

shear strength of engineered cartilage with the osteoarthritic cartilage when HA particles 

were incorporated. However, the critical strength that would be needed clinically for 

effective engineered cartilage retention in order to permit an adequate amount of time for 

subsequent tissue regeneration within the defect space has not been identified to date.  

In summary, we were able to demonstrate substantial improvement in the 

integration of engineered cartilage to an underlying layer of osteoarthritic cartilage matrix 

in the presence of HA nanoparticles. The interfacial strength and histology results 
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suggested that the utility of HA particles is only beneficial to the chondral-chondral 

integration when the chondrocyte-derived cartilage matrix is osteoarthritic. In such as state, 

a calcified cartilage matrix manifests itself between HBMSC and HCOA derived 

engineered cartilage tissues in the form of a larger, spatial transition zone region, thereby 

forming a stronger and a more stable interface. The calcium-phosphate deposits formed via 

incorporation of HA in the photopolymerizable gel also served to act as a physical barrier 

that reduced or at least delayed the onset of osteoarthritis progression from the surrounding 

environment to the HBMSC-derived de novo cartilage matrix. 

 

 

 

 

 

 

 

 

5.6 References 

1. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage 
injuries: a review of 31,516 knee arthroscopies. Arthroscopy : the journal of 
arthroscopic & related surgery : official publication of the Arthroscopy Association 
of North America and the International Arthroscopy Association 1997;13:456-60. 

 



112 

2. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 
1,000 knee arthroscopies. Arthroscopy : the journal of arthroscopic & related 
surgery : official publication of the Arthroscopy Association of North America and 
the International Arthroscopy Association 2002;18:730-4. 

 
3. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, 

repair, regeneration, and transplantation. Instructional course lectures 1998;47:487-
504. 

 
4. Gilbert JE. Current treatment options for the restoration of articular cartilage. The 

American journal of knee surgery 1998;11:42-6. 
 

5. Messner K, Gillquist J. Cartilage repair. A critical review. Acta orthopaedica 
Scandinavica 1996;67:523-9. 

 
6. Aroen A, Loken S, Heir S, Alvik E, Ekeland A, Granlund OG, et al. Articular 

cartilage lesions in 993 consecutive knee arthroscopies. The American journal of 
sports medicine 2004;32:211-5. 

 
7. Shelbourne KD, Jari S, Gray T. Outcome of untreated traumatic articular cartilage 

defects of the knee: a natural history study. The Journal of bone and joint surgery 
American volume 2003;85-A Suppl 2:8-16. 

 
8. Ramaswamy S, Uluer MC, Leen S, Bajaj P, Fishbein KW, Spencer RG. 

Noninvasive assessment of glycosaminoglycan production in injectable tissue-
engineered cartilage constructs using magnetic resonance imaging. Tissue 
engineering Part C, Methods 2008;14:243-9. 

 
9. Robertson DB, Daniel DM, Biden E. Soft tissue fixation to bone. The American 

journal of sports medicine 1986;14:398-403. 
 

10. Stengel D, Casper D, Bauwens K, Ekkernkamp A, Wich M. Bioresorbable pins and 
interference screws for fixation of hamstring tendon grafts in anterior cruciate 
ligament reconstruction surgery: a randomized controlled trial. The American 
journal of sports medicine 2009;37:1692-8. 

 
11. Herrmann Jb KRJHGA. Polyglycolic acid sutures: Laboratory and clinical 

evaluation of a new absorbable suture material. Archives of Surgery 1970;100:486-
90. 

 
12. Zantop T, Welbers B, Weimann A, Rummler M, Hedderich J, Musahl V, et al. 

Biomechanical evaluation of a new cross-pin technique for the fixation of different 
sized bone-patellar tendon-bone grafts. Knee surgery, sports traumatology, 
arthroscopy : official journal of the ESSKA 2004;12:520-7. 

 



113 

13. Bruns TB, Worthington JM. Using tissue adhesive for wound repair: a practical 
guide to dermabond. American family physician 2000;61:1383-8. 

 
14. Hunziker EB, Kapfinger E. Removal of proteoglycans from the surface of defects 

in articular cartilage transiently enhances coverage by repair cells. The Journal of 
bone and joint surgery British volume 1998;80:144-50. 

 
15. Djouad F, Rackwitz L, Song Y, Janjanin S, Tuan RS. ERK1/2 activation induced 

by inflammatory cytokines compromises effective host tissue integration of 
engineered cartilage. Tissue engineering Part A 2009;15:2825-35. 

 
16. Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, et al. 

Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. 
Nat Mater 2007;6:385-92. 

 
17. Hoemann CD, Sun J, McKee MD, Chevrier A, Rossomacha E, Rivard GE, et al. 

Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair 
integrated with porous subchondral bone in microdrilled rabbit defects. 
Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 2007;15:78-
89. 

 
18. Khanarian NT, Jiang J, Wan LQ, Mow VC, Lu HH. A hydrogel-mineral composite 

scaffold for osteochondral interface tissue engineering. Tissue engineering Part A 
2012;18:533-45. 

 
19. Dua R, Centeno J, Ramaswamy S. Augmentation of engineered cartilage to bone 

integration using hydroxyapatite. Journal of biomedical materials research Part B, 
Applied biomaterials 2013. 

 
20. Kim YS, Park EH, Lee HJ, Koh YG, Lee JW. Clinical comparison of the 

osteochondral autograft transfer system and subchondral drilling in osteochondral 
defects of the first metatarsal head. The American journal of sports medicine 
2012;40:1824-33. 

 
21. Ramaswamy S, Gurkan I, Sharma B, Cascio B, Fishbein KW, Spencer RG. 

Assessment of tissue repair in full thickness chondral defects in the rabbit using 
magnetic resonance imaging transverse relaxation measurements. Journal of 
biomedical materials research Part B, Applied biomaterials 2008;86:375-80. 

 
22. Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. 

Instructional course lectures 2005;54:465-80. 
 

23. Huang CY, Reuben PM, D'Ippolito G, Schiller PC, Cheung HS. Chondrogenesis of 
human bone marrow-derived mesenchymal stem cells in agarose culture. The 



114 

anatomical record Part A, Discoveries in molecular, cellular, and evolutionary 
biology 2004;278:428-36. 

 
24. Dua R, Ramaswamy S. Relative survivability of human osteoblasts is enhanced by 

39° C and ascorbic acid after exposure to photopolymerization ingredients. 
Cytotechnology 2012:1-10. 

 
25. Betz MW, Modi PC, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP. Cyclic acetal 

hydrogel system for bone marrow stromal cell encapsulation and 
osteodifferentiation. Journal of biomedical materials research Part A 2008;86:662-
70. 

 
26. Myers TW, Gelfand DH. Reverse transcription and DNA amplification by a 

Thermus thermophilus DNA polymerase. Biochemistry 1991;30:7661-6. 
 

27. Munirah S, Samsudin OC, Aminuddin BS, Ruszymah BH. Expansion of human 
articular chondrocytes and formation of tissue-engineered cartilage: a step towards 
exploring a potential use of matrix-induced cell therapy. Tissue & cell 
2010;42:282-92. 

 
28. Perkins GL, Derfoul A, Ast A, Hall DJ. An inhibitor of the stretch-activated cation 

receptor exerts a potent effect on chondrocyte phenotype. Differentiation; research 
in biological diversity 2005;73:199-211. 

 
29. Goldring MB. Chondrogenesis, chondrocyte differentiation, and articular cartilage 

metabolism in health and osteoarthritis. Therapeutic advances in musculoskeletal 
disease 2012;4:269-85. 

 
30. Martinez-Sanchez A, Dudek KA, Murphy CL. Regulation of human chondrocyte 

function through direct inhibition of cartilage master regulator SOX9 by 
microRNA-145 (miRNA-145). The Journal of biological chemistry 2012;287:916-
24. 

 
31. Gebhard PM, Gehrsitz A, Bau B, Soder S, Eger W, Aigner T. Quantification of 

expression levels of cellular differentiation markers does not support a general shift 
in the cellular phenotype of osteoarthritic chondrocytes. Journal of orthopaedic 
research : official publication of the Orthopaedic Research Society 2003;21:96-101. 

 
32. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. 

Accurate normalization of real-time quantitative RT-PCR data by geometric 
averaging of multiple internal control genes. Genome biology 
2002;3:RESEARCH0034. 

 
33. Tognana E, Chen F, Padera RF, Leddy HA, Christensen SE, Guilak F, et al. 

Adjacent tissues (cartilage, bone) affect the functional integration of engineered 



115 

calf cartilage in vitro. Osteoarthritis and cartilage / OARS, Osteoarthritis Research 
Society 2005;13:129-38. 

 
34. Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, et al. Tissue-

engineered composites for the repair of large osteochondral defects. Arthritis & 
Rheumatism 2002;46:2524-34. 

 
35. Lopa S, Madry H. Bioinspired Scaffolds for Osteochondral Regeneration. Tissue 

engineering Part A 2014. 
 

36. Smyth NA, Haleem AM, Murawski CD, Do HT, Deland JT, Kennedy JG. The 
effect of platelet-rich plasma on autologous osteochondral transplantation: an in 
vivo rabbit model. The Journal of bone and joint surgery American volume 
2013;95:2185-93. 

 
37. Davies DV, Barnett CH, Cochrane W, Palfrey AJ. Electron microscopy of articular 

cartilage in the young adult rabbit. Annals of the rheumatic diseases 1962;21:11-
22. 

 
38. Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: 

cell biology of osteoarthritis. Arthritis research 2001;3:107-13. 
 

39. Vijayan S, Bentley G, Briggs T, Skinner J, Carrington R, Pollock R, et al. Cartilage 
repair: A review of Stanmore experience in the treatment of osteochondral defects 
in the knee with various surgical techniques. Indian journal of orthopaedics 
2010;44:238-45. 

 
40. Furman BD, Olson SA, Guilak F. The development of posttraumatic arthritis after 

articular fracture. Journal of orthopaedic trauma 2006;20:719-25. 
 

41. Fleming BC, Hulstyn MJ, Oksendahl HL, Fadale PD. Ligament Injury, 
Reconstruction and Osteoarthritis. Current opinion in orthopaedics 2005;16:354-
62. 

 
42. Khashan M, Chechik O, Arbel R, Morag G. [The treatment of focal chondral lesions 

of the knee]. Harefuah 2010;149:542-6, 9. 
 

43. Nettles DL, Kitaoka K, Hanson NA, Flahiff CM, Mata BA, Hsu EW, et al. In situ 
crosslinking elastin-like polypeptide gels for application to articular cartilage repair 
in a goat osteochondral defect model. Tissue engineering Part A 2008;14:1133-40. 

 

 



116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



117 

 

 

 

 

Chapter 6 

Conclusions and Future work 

 

 

 

 

 

 

 

 

 

 

6.1 Conclusions, limitations and future work  

This study presented an overall approach to integration of tissue engineered 

cartilage with bone, healthy and diseased cartilage matrices in an in-vitro environment. We 

anticipate this protocol can be utilized for treatment of small to modest sized osteochondral 

defects so as to prevent or at minimum, delay the onset of Osteoarthritis. The novelty of 

this project was the use of HA nanoparticulate usage in HBMSC-seeded, 
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photopolymerizable injectable hydrogels, to promote biological integration of engineered 

cartilage to adjacent bone and cartilage matrices.  

HA is a bioactive form of calcium phosphate Ca10(PO4)6(OH)2, has a Ca/P molar 

ratio of 1.67 [2], and is considered osteoinductive [1]. For example, HA coatings in 

implants have shown to promote bone in growth [3, 4, 5].  With a similar approach, here, 

we proposed the use of HA nanoparticles for enhancing the anchorage and hence retention 

of tissue engineered cartilage with surrounding native tissues (subchondral bone and 

articular cartilage).  For the studies conducted, in theory, we could have used any form of 

calcium phosphate in nanoparticulate form with a molar ratio of Ca/P as 1.67. We selected 

HA because it is the most predominant material in bone [6]. 

In this dissertation: Chapter 1 explained the area of tissue engineered cartilage and 

the need to augment retention and integration properties of engineered cartilage within a 

osteochondral or chondral defect space. Chapter 2 provided a critical review of previous 

research that was done in this field and helped us to determine and frame our objectives 

which were to: (i) promote the integration between engineered cartilage to subchondral 

bone using HA nanoparticles in an optimized photopolymerizable hydrogel environment. 

(ii) To enhance the integration between tissue engineered cartilage and surrounding native 

cartilage, again with HA nanoparticle incorporation in photopolymerizable hydrogel 

environments. (iii) To identify the impact of osteoarthritic diseased states, in 

photopolymerizable hydrogel environments in conjunction with HA particles.   

In chapter 3, we presented a toxicity study of different cell sources to different 

levels of UV exposure and photoinitiator concentrations. This chapter formed the 
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foundation for subsequent protocols that were designed in conjunction with in vitro 

engineered tissue model systems for evaluating integration of engineered cartilage to bone, 

healthy cartilage and diseased cartilage. From this investigation, we were able to select the 

ideal UV exposure time and establish cellular response to UV exposure for subsequent 

PEGDA-based experiments.  Chapter 4 focused on the utility of HA nanoparticles for 

integration of engineered cartilage to bone matrix. We were able to show a significant 

improvement in the interfacial strength between engineered cartilage and subchondral bone 

matrix when HA was used, via the formation of a calcium phosphate-rich transition zone 

between the two materials.  

We then subsequently tested the incorporation of HA particles for improving the 

integration strength of engineered cartilage with underlying healthy and diseased cartilage, 

the focus of Chapter 5. Surprisingly, Osteoarthritic cartilage yielded more effective 

integration with HBMSC-originating engineered cartilage, in comparison to healthy 

cartilage matrix derived from chondrocytes. We interpret the similarities in gene 

expression between bone and Osteoarthritic cartilage to have enhanced HA activity, 

thereby resulting in the greater integration observed. 

Even though our results appear promising, we were limited in our scope and restricted to 

in-vitro environments. Our model while exhibiting enhanced integration properties would 

need to be able to withstand in vivo physiological loading conditions. Tissue remodeling 

and growth would likely be very different from the observations of this study, which 

therefore needs to be evaluated in our future work.  In our laboratories, in conjunction with 

our collaborators at Mississippi State University, we have already undertaken the first steps 
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in this direction by utilizing the rabbit model.  The specific protocol follows a similar 

paradigm to the studies reported by Ramaswamy et al [7], and is likely to also at some 

point involve noninvasive longitudinal assessment of engineered cartilage tissue 

integration and repair using magnetic resonance imaging.  At the time of submission of this 

dissertation, surgically created chondral defects in osteoarthritic rabbit knees were treated 

following a similar protocol developed from the current work on HBMSC-PEGDA-HA 

constructs. Over the next calendar year, following animal sacrifice and knee explant, we 

anticipate that a greater understanding and identification of in vivo integration processes 

will be uncovered.  Pending completion of the in vivo phase with a successful outcome, we 

anticipate that our HA-based protocol can be directly assimilated into existing clinical 

studies that are utilizing injectable hydrogel approaches for cartilage repair and 

regeneration [8, 9] .  
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