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ABSTRACT OF THE DISSERTATION

EVENT MINING FOR SYSTEM AND SERVICE MANAGEMENT

by

Liang Tang

Florida International University, 2014

Miami, Florida

Professor Tao Li, Major Professor

Modern IT infrastructures are constructed by large scale computing systems and adminis-

tered by IT service providers. Manually maintaining such large computing systems is costly

and inefficient. Service providers often seek automatic or semi-automatic methodologies of

detecting and resolving system issues to improve their service quality and efficiency. This

dissertation investigates several data-driven approaches for assisting service providers in

achieving this goal. The detailed problems studied by these approaches can be categorized

into the three aspects in the service workflow: 1) preprocessing raw textual system logs to

structural events; 2) refining monitoring configurations for eliminating false positives and

false negatives; 3) improving the efficiency of system diagnosis on detected alerts. Solving

these problems usually requires a huge amount of domain knowledge about the particular

computing systems. The approaches investigated by this dissertation are developed based

on event mining algorithms, which are able to automatically derive part of that knowledge

from the historical system logs, events and tickets.

In particular, two textual clustering algorithms are developed for converting raw textual

logs into system events. For refining the monitoring configuration, a rule based alert predic-

tion algorithm is proposed for eliminating false alerts (false positives) without losing any

real alert and a textual classification method is applied to identify the missing alerts (false

negatives) from manual incident tickets. For system diagnosis, this dissertation presents an

efficient algorithm for discovering the temporal dependencies between system events with

corresponding time lags, which can help the administrators to determine the redundancies
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of deployed monitoring situations and dependencies of system components. To improve

the efficiency of incident ticket resolving, several KNN-based algorithms that recommend

relevant historical tickets with resolutions for incoming tickets are investigated. Finally,

this dissertation offers a novel algorithm for searching similar textual event segments over

large system logs that assists administrators to locate similar system behaviors in the logs.

Extensive empirical evaluation on system logs, events and tickets from real IT infrastruc-

tures demonstrates the effectiveness and efficiency of the proposed approaches.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Large computing systems are often constructed in distributed IT environments and main-

tained by IT service providers. IT service providers are facing an increasingly intense

competitive landscape and growing industry requirements. In their quest to maximize cus-

tomer satisfaction, service providers seek to employ intelligent solutions, which provide

deep analysis, orchestration of business processes and capabilities for optimizing the level

of service and cost. Today’s competitive business climate, and the complexity of service en-

vironments, dictate efficient and cost-effective service delivery and support. This is largely

achieved through service-providing facilities to collaborate with system management tool-

s, combined with automation of routine maintenance procedures including problem de-

tection, determination and resolution for the service infrastructure [MSGL09] [TLP+12]

[ABD+07] [WE11] [YPZ10]. IT Infrastructure Library (ITIL) addresses monitoring as a

continual cycle of monitoring, reporting and subsequent action that provides measurement

and control of services [urlg].

Modern forms of distributed computing (say, cloud) provide some standardization of

the initial configuration of the hardware and software. However, in order to enable most

enterprise level applications, an individual infrastructure for the given application must be

created and maintained on behalf of each outsourcing customer. This requirement creates

great variability in the services provided by IT support teams. The aforementioned issues

contribute largely to the fact that routine maintenance of the information systems remains

semi-automated, and manually performed. Significant initiatives like autonomic computing

led to awareness of the problem in the scientific and industrial communities and helped to

introduce more sophisticated and automated procedures, which increase the productivity

1



and guarantee the overall quality of the delivered service. Automatic problem detection

is typically realized by system monitoring software, such as IBM Tivoli Monitoring [urlf]

and HP OpenView [urld]. System monitoring is an automated reactive system that provides

an effective and reliable means of ensuring that degradation of the vital signs, defined

by acceptable thresholds or monitoring conditions (situations), is flagged as a problem

candidate (monitoring event) and sent to the service delivery teams as an incident ticket.

There has been a great deal of effort spent on developing monitoring conditions (sit-

uations) that can identify potentially unsafe functioning of the system [HSF06] [RBV03].

However, it is understandably difficult to recognize and quantify influential factors in mal-

functioning of a complex system. Therefore classical monitoring tends to rely on period-

ical probing of a system for conditions which could potentially contribute to the system’s

misbehavior. Upon detection of the predefined conditions, the monitoring systems trigger

events that automatically generate incident tickets. Defining monitoring situations requires

the knowledge of a particular system and its relationships with other hardware and software

systems. It is a known practice to define conservative conditions in nature thus tending to

err on the side of caution. This practice leads to a large number of tickets that require no

action (non-actionable or false positive). Continuous updating of IT infrastructures also

leads to a number of system alerts that are not captured by system monitoring (false nega-

tive). The false negatives eventually cause system faults, such as system crashes and data

loss, which are extremely harmful to enterprise users. In system and networking manage-

ment, many previous studies focus on developing new detection methods for minimizing

the number of false negatives [XHF+09b] [OAS08] [LV02] [SOR+03] [BJR12]. In reality,

it is not easy to change the internal components of existing monitoring software products,

such as IBM Tivoli Monitoring [urlf], which are already deployed in hundreds of thousands

of servers. The performance of problem detection also depends on the configurations for

those methods. To improve the performance of monitoring systems and the problem analy-

2



sis, a straightforward solution is to acquire more domain knowledge and expertise to define

more precise monitoring configurations and problem scope to inspect. However, there are

two limitations of this solution in reality. First, the domain knowledge is usually regarded

as the experiences of experts. Different system administrator has different domain knowl-

edge. For instance, an Oracle DBA may not have the knowledge to identify an issue from

NAS (Network Attached Storage) devices. The task of gathering domain knowledge from

many administrators is time-consuming as well. Second, the domain knowledge about a

particular system is likely to change over time. An appropriate monitoring situation may

not be appropriate after installing new hardware or software. Re-collecting the domain

knowledge takes a long time, so it is difficult to keep the gathered information up-to-date.

When a system alert is detected, performing a detailed analysis for this alert requires

a lot of domain knowledge and experience about the particular system. The system ad-

ministrators usually have to analyze a huge amount of historical system logs and events.

The logs and events describe the status of each component and record system internal op-

erations, such as the starting and stopping of services, detection of network connections,

software configuration modifications, and execution errors. System administrators utilize

the these data to understand the past system behaviors and diagnose the root cause of the

alert. Most system logs are raw textual and unstructured. Usually, there are two chal-

lenges in analyzing system log data. The first challenge is transforming raw textual logs

into system events. The second challenge is to develop efficient algorithms to analyze the

hidden relations or patterns among these system events. A lot of studies investigate the sec-

ond challenge and develop many algorithms to mine system events [PPLW07] [XHF+08]

[HMP02] [LLMP05] [GJCH09] [OAS08] [WWLW10] [KT08]. The traditional solution to

the first challenge is to develop a specialized log parser for a particular system. However,

it requires users to fully understand all kinds of log messages from the system. In prac-
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tice, this task is time-consuming, or impossible given the complexity of current computing

systems. In addition, specialized log parsers may not work well for other systems.

Data mining is a series of techniques for automatically and efficiently extracting valu-

able knowledge from historical data. In system and service management, the historical

data includes the historical system events, monitoring events and incident tickets. The ser-

vice providers usually keep track of the historical system events (generated by the produc-

tion systems), monitoring events (generated by the monitoring system) and incident tickets

(edited by humans) to diagnose incoming system issues. The system events and monitor-

ing events describe system internal operations, alerts and faults. The incident tickets reveal

the human judgements on these events in terms of system incidents. Automatic or semi-

automatic mining the knowledge from those historical events and tickets can efficiently

improve the performance of monitoring systems and problem diagnosis.

1.2 Problem Statement

The research problems of this dissertation can be summarized into the following three

aspects:

• Data Preprocessing: How to convert raw textual logs into system events?

Most system logs are raw textual and unstructured [ABCM09], but existing data min-

ing techniques for system events focus on structured and discrete events [PPLW07]

[XHF+08] [HMP02] [LLMP05] [GJCH09] [OAS08] [WWLW10] [KT08]. To make

use of these existing techniques, a data preprocessing is needed for converting them

to structured events. However, different system generates various formats of logs,

building a log parser for every type of logs is impractical and costly.

• Monitoring Optimization: How to define better monitoring configurations?

The objective is to eliminate the false negatives and false positives of monitoring

4



without changing existing deployed monitoring systems. This task requires domain

knowledge for particular computing systems. Since acquiring the domain knowl-

edge from experts is difficult, it is necessary to come up with an automatic or semi-

automatic approach to extract these knowledge from historical events and tickets to

achieve this goal. Moreover, this methodologies should be able to be applied to vari-

ous IT environments.

• System Diagnosis: How to help administrators perform a detailed diagnosis for de-

tected system issues?

Performing a detailed diagnosis for a system issue mainly includes finding the root

cause and resolutions. It requires a deep understanding about the target system. In

real-world IT infrastructures, many system issues are repeated and the associated res-

olutions can be found in the relevant events and tickets resolved in the past. Hence,

this knowledge can be learnt from the historical data. The approaches utilizing the

historical data can help the administrators to narrow down the scope of the potential

issues and find the root cause with resolutions more efficiently.

Monitoring Configuration 
Optimization:
• Reduce False positive (false alerts)
• Reduce False negative (missed 

alerts)

System Incidents Diagnosis :
• Locate Relevant Logs Efficiently.
• Discover Event Dependencies.
• Automatic Resolution 

Recommendation 

Convert Raw Textual Logs into 
System Events

Figure 1.1: Overview of Research Problems
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Figure 1.1 summarizes the three problems in the workflow of the system management and

IT services. This typical workflow of problem detection, determination and resolution

for the IT service provider is prescribed by the ITIL specification [urlg]. Detection is

usually provided by monitoring software running on the servers of an enterprise customer,

which computes metrics for the hardware and software performance at regular intervals.

The metrics are then compared to acceptable thresholds, known as monitoring situations,

and any violation results in an alert. If the alert persists beyond a certain delay specified

in the situation, the monitor emits an event. Events coming from a customer’s entire IT

environment are consolidated in an enterprise console. The console uses rule-, case- or

knowledge-based engines to analyze the monitoring events and decide whether to open

a service ticket in the Incident, Problem, Change (IPC) system. Additional tickets are

created upon customer request. The information accumulated in the ticket is used by the

System Administrators (SAs) for problem determination and resolution. As part of the

service contracts between the customer and the service provider, the SLA (Service Level

Agreement) specifies the maximum resolution times for various categories of tickets.

1.3 Contributions

This dissertation investigates the three aforementioned problems and proposes data-driven

solutions to improve the quality and efficiency of the current IT service and system man-

agement. The contribution of this dissertation can be summarized into following aspects.

1.3.1 System Logs Preprocessing

This dissertation first illustrates the drawbacks of existing techniques for event generation

from system logs and then presents two novel textual clustering algorithms, LogTree

and LogSig, which automatically preprocess the raw textual system logs into discrete
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system events. Extensive experiments on real system logs show that the two proposed

algorithms outperform other alternative clustering algorithms in terms of the accuracy of

event generation.

LogTree Algorithm

The LogTree algorithm is a novel and algorithm-independent framework for event gen-

eration from raw textual log messages. LogTree first utilizes the format and structural

information of logs to create a tree representation of each log message. Then, it computes

the similarity using this tree representation in the clustering process, which enhances the

clustering accuracy. In addition, an indexing data structure, Message Segment Table is de-

veloped in the LogTree algorithm to significantly improve the efficiency of the clustering

algorithm. This work has been published in the IEEE international conference on Data

Mining (ICDM) 2010 [TL10].

LogSig Algorithm

The LogSig algorithm is a message signature based clustering algorithm. By searching

the most representative message signatures, LogSig categorizes the textual log messages

into several event types. LogSig can handle various types of log data and is able to in-

corporate the domain knowledge provided by experts to achieve a high clustering accuracy.

This work has been published in the ACM Conference on Information and Knowledge

Management (CIKM) 2011 [TLP11].

1.3.2 Monitoring Configuration Optimization

For system monitoring, this dissertation focuses on the problem of eliminating false alerts

(false positives) and missing alerts (false negatives) by refining the configurations of mon-

itoring systems. According to the analysis on large sets of historical monitoring events and
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tickets, we reveal several main reasons of triggering false positives and false negatives and

then propose our solutions. The proposed solutions avoid changing the existing deployed

monitoring systems and are practical for service providers.

Eliminating False Positives

This dissertation describes a novel methodology for minimizing the number of false pos-

itives while preserving all alerts which require corrective action. The proposed method

defines monitoring conditions and the optimal corresponding delay times based on an off-

line analysis of historical monitoring events and corresponding incident tickets. Potential

monitoring situations are built on a set of predictive rules that are automatically generated

by a rule-based learning algorithm with coverage, confidence and rule complexity criteria.

These situations and delay times are propagated as configurations into run-time monitor-

ing systems. The proposed methodology has been assessed by both off-line evaluation with

historical data and on-line evaluation with production servers. The evaluation results depict

the effectiveness of this method in reducing the number of false positives while retaining all

real alerts with the minimal delay. This work has been published in the IEEE/IFIP Network

Operations and Management Symposium (NOMS) 2012 [TLP+12] and implemented in the

event and ticket analysis portal of the IBM IT service management platform. This work is

also filed by IBM Watson Research Center as US patent YOR820110662US1 “Methods

and Apparatus for System Monitoring” published in May 9, 2013.

Eliminating False Negatives

This dissertation presents an automatic approach for discovering the false negatives (miss-

ing alerts) from incidents tickets that are created by humans. The discovered results help

the system administrators correct the misconfigurations and minimize the number of false

negatives in future. This approach applies a text classification model for analyzing the
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descriptions of incident tickets and identifying the corresponding system issues. The do-

main knowledge for describing those issues can be incorporated to assist with this model.

Experiments are conducted on real system incident tickets from a large enterprise IT infras-

tructure. The experimental results demonstrate the effectiveness of the proposed approach.

This work has been published in the International Conference on Network and Service

Management (CNSM) 2013 [TLSG13a].

1.3.3 System Diagnosis

For system diagnosis, this dissertation develops several semi-automatic methods that pro-

vide administrators with assists in analyzing large scale system events, logs and tickets.

The developed methods aim to solve the following practical problems.

Discovering Temporal Dependencies with Time Lag

This dissertation studies the problem of finding temporal dependency of events with the as-

sociated time lags from an event sequence. The temporal dependency among system events

(or monitoring events) reveals the dependency of the system components (or correlations of

monitoring situations). The time lag is a key feature of the hidden temporal dependencies,

which plays an essential role in interpreting the cause of these dependencies. Tradition-

al temporal mining algorithms either use a predefined time window to analyze the event

sequence, or employ statistical techniques to simply derive the time dependencies among

events. Such paradigms cannot effectively handle varied data with special properties, e.g.,

the interleaved temporal dependencies. This dissertation first investigates the correlations

between the temporal dependency with other temporal patterns, and then proposes a gen-

eralized framework to resolve the problem. By utilizing the sorted table in representing

time lags among events, the proposed algorithm achieves an elegant balance between the

time cost and the space cost. Extensive empirical evaluation on both synthetic and real data
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sets demonstrates the efficiency and effectiveness of the proposed algorithm in finding the

temporal dependencies with time lags in sequential data. This work has been published

and included in the proceedings of the 18th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (KDD) 2012 [TLS12].

Recommending Relevant Incident Ticket with Resolutions

This dissertation introduces a recommendation approach to assist system administrators in

resolving the incoming incident tickets that generated by monitoring systems. Those tick-

ets usually are triggered by repeated system issues, therefore, it is practical to employ a

recommendation algorithm to recommend relevant tickets with resolutions from historical

data. We first present an analysis of the historical incident tickets that are collected from

a large service provider, and then propose two recommendation algorithms for this kind

of tickets utilizing historical tickets. The proposed algorithms take into account the po-

tential misleading results caused by the tickets of false positives. An additional penalty is

incorporated into the algorithms to control the number of misleading resolutions in the rec-

ommended results. An extensive empirical evaluation on three ticket data sets demonstrates

that our proposed algorithms achieve a high accuracy with a small percentage of mislead-

ing results. This work has been published in the IFIP/IEEE International Symposium on

Integrated Network Management (IM) 2013 [TLSG13b].

Searching Similar Textual Event Segments

System administrators usually review similar system behaviors to identify the root case

of the incoming alert by investigating system logs. Most system logs are textual event se-

quences, where each event is represented by a log message. Locating similar system behav-

iors in such logs is equivalent to finding similar segments over the textual event sequence.

Similarity search has been widely studied for symbolic and time series data in which each
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data object is a symbolic or numeric value. However, efficiently searching similar segments

over textual sequences is a novel problem and not fully studied. Existing search indexing

for textual data only focuses on unordered data. Substring matching methods are able to

efficiently find matched segments over a sequence, but their sequences are single-valued

rather than text. This dissertation presents a novel indexing method, suffix matrix, for effi-

ciently searching similar segments over textual event sequences. It provides an integration

of two disparate techniques: locality-sensitive hashing and suffix arrays. This method also

supports the k-dissimilar segment search. A k-dissimilar segment is a segment that has at

most k dissimilar events to the query sequence. By using random sequence mask proposed

in this work, this method can have a high probability to reach all k-dissimilar segments

without increasing much search cost. We conduct experiments on real system log data and

the experimental results show that the proposed method outperforms alternative method-

s using existing techniques. This work has been published in the ACM Conference on

Information and Knowledge Management (CIKM) 2013 [TLCZ13].

1.4 Roadmap

The rest of the dissertation is organized as follows: Chapter 2 provides a brief introduc-

tion of the preliminary work for event mining algorithms and the system and IT service

management. Chapter 3 presents the problem statement and proposed algorithms for the

textual log preprocessing problem. Chapter 4 first briefly introduces the background of the

IT service management with the false negative and false positive issues, and then discusses

the proposed data-driven approaches for solving the two issues. Chapter 5 describes three

practical problems in system diagnosis with the proposed solutions: 1) discovering the lags

of temporal dependencies, 2) recommending relevant tickets with solutions for incoming

tickets, 3) efficient similarity searching over textual event sequences. Chapter 6 concludes

this dissertation and discusses the future work.
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CHAPTER 2

PRELIMINARY WORK

This chapter summarizes the preliminary work of the techniques presented in this disserta-

tion. Generally, the preliminary work involves several research areas in computer science,

which includes: system monitoring with alert detection, temporal pattern discovery, rec-

ommendation system and similarity search.

2.1 System Monitoring and Alert Detection

System monitoring, as part of the automated service management, has become a significant

research area of the IT industry in the past few years. Commercial products such as IBM

Tivoli [urle], HP OpenView [urld] and Splunk [urlk] provide system monitoring. Numerous

studies [KRRS08] [ADNR07] [MJ93] [XZB05] [ESV03] [RLS+97] focus on monitoring

that is critical for a distributed network. The monitoring targets include the components or

subsystems of IT infrastructures, such as the hardware of the system (CPU, hard disk) or

the software (a database engine, a web server). Once certain system alarms are captured,

the system monitoring software will generate the event tickets into the ticketing system.

Automated ticket resolution is much harder than automated system monitoring because it

requires vast domain knowledge about the target infrastructure. Some prior studies ap-

ply approaches in text mining to explore the related ticket resolutions from the ticketing

database [SCT+08, WLZG11]. Other works propose methods for refining the work order

of resolving tickets [SCT+08, MMY+10]. A number of studies focused on the analysis

of historical events with the goal of improving the understanding of system behaviors. A

significant amount of work was done on analysis of system log files and monitoring events.

Another area of interest is the identification of actionable patterns of events and misses, or

false negatives, by the monitoring system. False negatives are indications of a problem in
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the monitoring software configuration, wherein a faulty state of the system does not cause

monitoring alerts.

Network monitoring is used to check the “health” of communications by inspecting data

transmission flow, sniffing data packets, analyzing bandwidth, etc. [KRRS08] [ADNR07]

[MJ93] [XZB05] [ESV03] [RLS+97]. It is able to detect node failures, network intrusions,

or other abnormal situations in the distributed system. The main difference between the

network monitoring and framework we consider is the monitored target, which can be any

component or subsystem of the system, hardware (such as CPU, hard disk) or software

(such as a database engine, or web server). Only the system administrators, who are work-

ing the monitored server, can determine whether an alert is real or false. This is why we

incorporate ticket resolutions, which record how system administrators resolve those alerts

using our solution.

A significant amount of work in data mining has been done to identify actionable pat-

terns of events. See example, [HMP02], [PPLW07], [KT08], [TLS12]. Different types of

patterns, such as (partially) periodic patterns, event bursts, and mutually dependent pat-

terns were introduced to describe system management events. Efficient algorithms were

developed to find and interpret such patterns. Our work is based on the part of an even-

t processing workflow that takes into account the human processing of the tickets. This

allowed us to identify non-actionable patterns and misses of the monitoring system config-

uration with significant precision. In the event processing workflow, false positive events

are transformed into false positive tickets. Identification of false positive events makes it

possible to significantly reduce the number of false positive tickets. The translation of the

actionable patterns to enterprise software rules is considered in [GJCH09] and [PTG+03].

Dealing with false negatives, or misses of the system alerts, usually includes the con-

sideration of additional source of data. In our case, this additional source is ticketing data.

As a source of information, it is difficult data to process, because there are no supporting
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standards or structure, and ticketing records are usually byproducts of the system adminis-

trator’s work, which are mainly incomplete and unfinished. An additional difficulty is that

false negatives are rare and unbalanced due to the fact that historically tested and tuned

configurations of the monitoring systems are used. Methods of dealing with unbalanced

data was considered for example in [CBHK02].

2.2 Event Generation From Textual Logs

One challenge of performing automated analysis of system logs is transforming the logs

into a collection of system events. The number of distinct events observed can be very

large and also grow rapidly due to the large vocabulary size as well as various parameters

in log generation [ABCM09]. In addition, variability in log languages creates difficulty

in deciphering events and errors reported by multiple products and components [Ste04].

Once the log data has been transformed into the canonical form, the second challenge is

the design of efficient algorithms for analyzing log patterns from the events. Recently, there

has been lots of research on using data mining and machine learning techniques for ana-

lyzing system logs and most of them address the second challenge [PPLW07] [XHF+08]

[HMP02] [LLMP05] [GJCH09]. They focus on analyzing log patterns from events for

problem determination such as discovering temporal patterns of system events, predicting

and characterizing system behaviors, and performing system performance debugging. Most

of these works generally assume the log data has been converted into events and ignore the

complexities and difficulties in transforming the raw logs into a collection of events.

It has been shown in [Ste04] that log messages are relatively short text messages but

could have a large vocabulary size. This characteristic often leads to a poor performance

when using the bag-of-words model in text mining on log data. The reason is that, each

single log message has only a few terms, but the vocabulary size is very large. Hence, the

vector space established on sets of terms would be very sparse.
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Recent studies [ABCM09] [MZHM09] apply data clustering techniques to automatical-

ly partition log messages into different groups. Each message group represents a particular

type of events. Due to the short length and large vocabulary size of log messages [Ste04],

traditional data clustering methods based on the bag-of-word model cannot perform well

when applied to the log message data. Therefore, new clustering methods have been in-

troduced to utilize both the format and the structure information of log data [ABCM09]

[MZHM09]. However, these methods only work well for strictly formatted/structured logs

and their performances heavily rely on the format/structure features of the log messages.

2.3 Temporal Pattern Discovery

System and monitoring events are stored as temporal sequences. Understanding the tem-

poral dependencies of these events helps to discover the relationships among the system

components and find out the root cause of the system alerts. In temporal data mining, the

input data is typically a sequence of discrete items associated with time stamps [Mör06]

[Mit10]. Let A and B be two types of items, a temporal dependency for A and B, written

as A → B, denotes that the occurrence of B depends on the occurrence of A. The depen-

dency indicates that an item A is often followed by an item B. Let [t1, t2] be the range of

the lag for the dependent A and B. This temporal dependency with [t1, t2] is written as

A→[t1,t2] B [GKK+09].

Previous work of temporal dependency discovery can be categorized by the data set

type. The first category is for market basket data, which is a collection of transactions

[TSK05] where each transaction is a sequence of items. The purpose of this type of tem-

poral dependency discovery is to find frequent subsequences which are contained by a cer-

tain amount of transactions. Typical algorithms are GSP [SA96b], FreeSpan[HPMA+00],

PrefixSpan[PHMA+01], and SPAM[AFGY02]. The second category is for the time series

data. A temporal dependency of this category is seen as a correlation on multiple time
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series variables [ZS06] [Dhu10], which determines whether one time series is useful in

forecasting another. Our work belongs to the third category, which is for temporal sym-

bolic sequences. The input data is an item sequence and each item is associated with a

time stamp. An item may represent an event or a behavior in history [LDH+10] [Mör06]

[Mit10] [MF10][LLMP05]. The purpose is to find various temporal relationships among

these events or behaviors. Many temporal patterns proposed in previous work can be con-

sidered as special cases of temporal dependencies with different lag intervals.

Table 2.1: Relation with Other Temporal Patterns
Temporal Pattern An Example Equivalent Temporal De-

pendency with Lag Inter-
val

Mutually dependent pattern
[MH01a]

{A,B} A→[0,δ] B, B →[0,δ] A

Partially periodic pattern
[MH01b]

A with periodic p and a
given time tolerance δ

A→[p−δ,p+δ] A

Frequent episode pattern
[MTV97]

A → B → C with a
given time window p

A→[0,p] B, B →[0,p] C

Loose temporal pattern
[LM04]

B follows by A before
time t

A→[0,t] B

Stringent temporal pattern
[LM04]

B follows by A about
time t with a given time
tolerance δ

A→[t−δ,t+δ] B

Table 2.1 lists several types of temporal patterns proposed in the literature and their cor-

responding temporal dependencies with lag intervals. A mutually dependent pattern (m-

pattern) {A,B}, can be described as two temporal dependencies A→[0,δ] B and B →[0,δ]

A. Items of A and B in an m-pattern appear almost together so that t1 = 0, t2 ≤ δ, where

δ is the time tolerance. A partially periodic pattern (p-pattern) [MH01b] for a single item

A, can be expressed as a temporal dependency A→[p−δ,p+δ] A, where p is the period. Fre-

quent episodes A → B → C can be separated to A →[0,p] B and B →[0,p] C where p

is the parameter of the time window length [MTV97]. [LM04] proposes loose temporal

pattern and stringent temporal pattern. As shown in Table 2.1, the two types of temporal

patterns can be explained by two temporal dependencies with particular constraints on the
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lag intervals. One common problem of these algorithms is how to set the precise parameter

about the time window [MTV97] [MH01b] [BO07]. For example, for discovering partially

periodic patterns, if δ is too small, the identification of partially periodic patterns would

be too strict and no result can be found; if the δ is too large, many false results would be

found. [LSU07] [LSU05] [MR04] directly find frequent episodes according to the occur-

rences of episodes in the data sequence. The discovered frequent episode may not have

fixed lag intervals for the represented temporal dependency. The method proposed in this

dissertation does not require users to specify the parameters about the time window and is

able to discover interleaved temporal dependencies.

2.4 Recommending Relevant Tickets and Resolutions

One major cost of modern IT service is the manpower. In large service providers, the

service centers are constituted by hundred or thousands of IT experts, who take charge of

various incident tickets every day. Therefore, service providers heavily rely on the human

efficiency for such task as root cause analysis and incident ticket resolving. Automatic

techniques of recommending relevant historical tickets with resolutions can significantly

improve the efficiency of humans in this task. Based on the relevant tickets, the human can

correlate related system problems happening before and perform a deeper system diagnosis.

The solutions described in relevant historical tickets also provide best practices for solving

similar issues.

Recommendation technique has also been widely studied in e-commerce and online ad-

vertising areas. With the development of e-commerce and online advertising, a substantial

amount of research has been devoted to the recommendation system. The existing recom-

mendation algorithms can be categorized into two types. The first type is learning based

recommendation, in which the algorithm aims to maximize the rate of user response, such

as the user click or conversation. The recommendation problem is then naturally formulat-
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ed as a prediction problem. It utilizes a prediction algorithm to compute the probability of

the user response on each item. Then, it recommends the one having the largest probabili-

ty. Most prediction algorithms can be utilized in the recommendation, such as naive bayes

classification, linear regression, logistic regression and matrix factorization [MS99, Bis06].

The second type of recommendation algorithm focuses on the relevance of items or

users, rather than the user response. Lots of algorithms proposed for promoting products to

online users [BK07, DL05, Kor09, LMX11] belong to this type. They can be categorized

as item-based [SKKR00, Kar01, NK11] and user-based algorithms [TH01, Kor09, BK07,

DL05]. Our work in this dissertation is the item-based. Every ticket is regarded as an item

in our scenario. The difference between our work and traditional item-based algorithms is

that, in e-commerce, products are maintained by reliable sellers, or there is another pro-

cedure to assure the quality of selling products. The recommendation algorithms usually

do not need to consider the problem of fake or low-quality products. But in service man-

agement, false tickets are unavoidable. The tickets with ticket resolutions are recorded in

the database of the ticketing system. In some real-world ticketing systems, the false ticket

is the majority of all tickets. Moreover, when a ticket arrives, the recommendation algo-

rithm does not know this alert is real or false in advance. The traditional recommendation

algorithms do not take into account the types of tickets and as a result would recommend

misleading resolutions.

2.5 Similarity Search over Textual and Sequential Data

The similarity search problem in low-dimensional data spaces has been studied extensively.

A number of tree structure based algorithms are devised to support the similarity queries

and nearest neighbors queries, such as R-Tree [Gut84], KD-Tree [Ben90] and SR-Tree

[KS97]. These previous algorithms are known to work well in low-dimensional data s-

paces. But for high-dimensional data spaces, their search time cost or indexing space cost
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grows to an exponential number of the dimensionality. In textual information retrieval and

image processing domains, the descriptor of a data object is usually a high-dimensional

vector. Hence, those tree structured based algorithms are not appropriate in these domains.

Locality-Sensitive Hashing (LSH) is a randomized approximate algorithm for the similar

search in high-dimensional data space [GIM99, AI06]. It is applicable for high dimension-

al data and has been successfully used in image data or textual data. Min-Hash is a widely

used hash function for textual data [BCFM98], which can quickly estimate the sim(x, y)

of x and y. In natural language processing, a w-shingling is a set of unique contiguous

subsequences of words/terms in a document. The similarity function sim(x, y) is usually

chosen as the Jaccard similarity over the w-shinglings of x and y.

Substring search in sequential data has been studied for years. Suffix tree and suffix

array are two typical methods for on-line searching matched substrings over a sequence

[Wei73, MM93]. By using a binary search over the suffix array, the method can find

matched substring in O(log n), where n is the length of the string. Compressed suffix ar-

rays and BWT-based compressed full-text indices make further efforts to reduce the search

time and space cost based on suffix arrays [GV05, BW94]. Time series data is real-valued

sequence data. A lot of efficient similarity search methods are proposed and studied for

time series data [Pop02, LC08]. But their target is a set of data points, rather than a set of

segments of the sequence. Moreover, each data point in time series is a real-valued vector,

not a textual message or document.

In system management, log and system event analysis is a fundamental method to

maintain, diagnose and optimize large production systems [XHF+08, XHF+09a, TLS12,

TLP+12, TLSG13b, TLP+13]. Log event search as a basic functionality is embedded in

many system management, log analysis and system monitoring platforms [urle, urlk, urlh].

Users can input relational query conditions or a set of keywords to query related system

event logs in history. This kind of log search has no difference with a traditional database
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query or a keywords search. Their search target is a single event, not continuous subse-

quence or segements of events.
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CHAPTER 3

TEXTUAL LOG PREPROCESSING

A lot of studies investigate the system event mining and develop many algorithms for dis-

covering the abnormal system behaviors and relationships of events/system components

[PPLW07] [XHF+08] [HMP02] [LLMP05] [GJCH09] [OAS08] [WWLW10] [KT08]. In

those studies, the event data is a collection of discrete items or structured events, rather

than textual log messages. However, most of the computing system only generate the tex-

tual logs for human to view. Since the large volume of the logs in production systems, it

is difficult for human to inspect those large amount of log data. The research objective of

the problem is to develop a method for converting the raw textual system logs into dis-

crete events, such that the existing event mining algorithms can be applied to do automatic

analysis on the log data.

A straightforward solution is to develop a specialized log parser for a particular system.

However, it requires users fully understand all kinds of log messages from the system. In

practice, this is time-consuming or not impossible given the complexity of current comput-

ing systems. In addition, a specialized log parser is not universal and does not work well

for other types of systems.

Table 3.1 shows an example of the SFTP 1 log collected from FileZilla [urlb]. In order

to analyze the behaviors, the raw log messages need to be translated to several types of

events. Figure 3.1 shows the corresponding event timeline created by the log messages.

The event timeline provides a convenient platform for people to understand log behaviors

and to discover log patterns.

Recent studies for converting the raw textual logs into system events are discussed in

Section 2.2. These studies apply data clustering techniques to automatically partition log

messages into different groups, where each message group represents a particular type of

1SFTP: Simple File Transfer Procotol
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Table 3.1: An Example of FileZilla’s log.
No. Message
s1 2010-05-02 00:21:39 Command: put “E:/Tomcat/apps/index.html” “/disk/...
s2 2010-05-02 00:21:40 Status: File transfer successful, transferred 823 bytes...
s3 2010-05-02 00:21:41 Command: cd “/disk/storage006/users/lt...
s4 2010-05-02 00:21:42 Command: cd “/disk/storage006/users/lt...
s5 2010-05-02 00:21:42 Command: cd “/disk/storage006/users/lt...
s6 2010-05-02 00:21:42 Command: put “E:/Tomcat/apps/record1.html” “/disk/...
s7 2010-05-02 00:21:42 Status: Listing directory /disk/storage006/users/lt...
s8 2010-05-02 00:21:42 Status: File transfer successful, transferred 1,232 bytes...
s9 2010-05-02 00:21:42 Command: put “E:/Tomcat/apps/record2.html” “/disk/...
s10 2010-05-02 00:21:42 Response: New directory is: ”/disk/storage006/users/lt...
s11 2010-05-02 00:21:42 Command: mkdir ”libraries”
s12 2010-05-02 00:21:42 Error: Directory /disk/storage006/users/lt...
s13 2010-05-02 00:21:44 Status: Retrieving directory listing...
s14 2010-05-02 00:21:44 Command: ls
s15 2010-05-02 00:21:45 Command: cd “/disk/storage006/users/lt...
· · · · · · · · ·

Figure 3.1: Event timeline for the FileZilla log example.

events. They only work well for strictly formatted/structured logs and their performances

heavily rely on the format/structure features of the log messages. In this chapter, we present

two novel clustering approaches for system event generation.
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3.1 Tree Structure Based Clustering

The first proposed approach is a tree structure based clustering algorithm, LogTree, which

computes the similarity of log messages based on the established tree representation in the

clustering process.

Formally, a series of system log is a set of messages S = {s1, s2, · · · , sn}, where

si is a log message, i = 1, 2, · · · , n, and n is the number of log messages. The length

of S is denoted by |S|, i.e., n = |S|. The objective of the event creation is to find a

representative set of message S∗, to express the information of S as much as possible,

where |S∗| = k ≤ |S|, each message of S∗ represents one type of event, and k is a user-

defined parameter. The intuition is illustrated in the following Example.

Example 1. Table 3.1 shows a set of 15 log messages generated by the FileZilla client. It

mainly consists of 6 types of messages, which include 4 different commands (e.g., “put”,

“cd”, “mkdir”, and “ls”), responses, and errors. Therefore, the representative set S∗ could

be created to be {s1, s2, s3, s7, s11, s14}, where every type of the command, response and

error is covered by S∗, and k = 6.

We hope the created events to cover the original log as much as possible. The quality

of S∗ can be measured by the event coverage.

Definition 3.1.1. Given two sets of log messages S∗ and S, |S∗| ≤ |S|, the event coverage

of S∗ with respect to S is JC(S∗, S), which can be computed as follows:

JC(S
∗, S) =

∑
x∈S

max
x∗∈S∗

FC(x
∗, x),

where FC(x
∗, x) is the similarity function of the log message x∗ and the log message x.
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Given a series of system log S with a user-defined parameter 0 ≤ k ≤ |S|, the goal is

to find a representative set S∗ ⊆ S, which satisfies:

max JC(S
∗, S),

subject to |S∗| = k.

Clearly, the system event generation can be regarded as a text clustering problem [SM84]

where an event is the centroid or medoid of one cluster. However, those traditional text

clustering methods are not appropriate for system logs. We show that those methods, which

only extract the information at the word level, cannot produce an acceptable accuracy of

the clustering of system logs.

It has been shown in [Ste04] that log messages are relatively short text messages but

have large vocabulary size. As a result, two messages of the same event type share very

few common words. It is possible two messages of the same type have two totally different

sets of words. The following is an example of two messages from the PVFS2 log file [urlj].

The two messages are status messages. Both of them belong to the same event type status

which prints out the current status of the PVFS2 internal engine.

bytes read : 0 0 0 0 0 0

metadata keyval ops : 1 1 1 1 1 1

Note that the two messages have no words in common and clustering analysis purely based

on the word level information would not reveal any similarity between the two messages.

The similarity scores between the two messages (the cosine similarity [SM84], the Jaccard

similarity [TSK05] or the words matching similarity [ABCM09]) are 0. Although there is

no common words between the two messages, the structure and format information implic-

itly suggest that the two messages could belong to a same category as shown in Figure 3.2.

The intuition is straightforward: two messages are both split by the ’:’; the left parts are
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both English words, and the right parts are 6 numbers separated by a tab. Actually, people

often guess the types of messages from the structure and format information as well. In

Figure 3.2: Two status messages in PVFS2.

real system applications, the structure of log messages often implies critical information.

The same type of messages are usually assembled by the same template, so the structure of

log messages indicates which internal component generates this log message. Therefore,

we should consider the structure information of each log message instead of just treating it

as a sentence. Furthermore, two additional information should be considered as well:

• symbols The symbols, such as ‘:’, ‘[’, are important to identify the templates of the

log message. They should be utilized in computing the similarity of two log message

segments.

• word/term categories If two log messages are generated by the same template, even

if they have different sets of words/terms, the categories of words should be similar.

In our system, there are six categories T = { word, number, symbol, date, IP, comment

}. Given a term w in a message segment m1, t(w) denotes the category of the w.

t(w) ∈ T .

Based on this intuition, the similarity function of the log messages FC can be defined

as follows:

Definition 3.1.2. Given two log messages s1 and s2, let T1 = {V1, E1, L, r1, P} and

T2 = {V2, E2, L, r2, P} be the corresponding semi-structural log messages of s1 and s2

25



respectively, the coverage function FC(s1, s2) is computed as follows:

FC(s1, s2) =
F ′
C(r1, r2, λ) + F ′

C(r2, r1, λ)

2
,

where

F ′
C(v1, v2, w) = w · d(L(v1), L(v2)) +∑

(v,u)∈M∗
C(v1,v2)

F ′
C(v, u, w · λ),

M∗
C(v1, v2) is the best matching between v1’s children and v2’s children, and λ is a param-

eter, 0 ≤ λ ≤ 1.

Note that the function FC is obtained by another recursive function F ′
C . F ′

C computes

the similarity of two subtrees rooted at two given nodes v1 and v2 respectively. To compare

the two subtrees, besides the root nodes v1 and v2, F ′
C needs to consider the similarity of

their children as well. Then, there is a problem that which child of v1 should be compared

with which child of v2. In other words, we have to find the best matching M∗
C(v1, v2)

in computing F ′
C . Finding the best matching is actually a maximal weighted bipartite

matching problem. In the implementation, we can use a simple greedy strategy to find the

matching. For each child of v1, we assign it to the maximal matched node in unassigned

children of v2. This time complexity of the greedy approach is O(n1n2) where n1 and n2

are the numbers of children of v1 and v2, respectively. F ′
C requires another parameter w,

which is a decay factor. In order to improve the importance of higher level nodes, this decay

factor is used to decrease the contribution of similarities at a lower level. Since λ ≤ 1, the

decay factor w decreases along with the recursion depth.
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3.1.1 Evaluation

This section presents two evaluations for the tree structure based clustering method on

several real data sets.

Experimental Platforms

Our system is developed in Java 1.5 Platform. Table 3.2 shows the summary of two ma-

chines where we run our experiments. All experiments except for scalability test are con-

ducted in Machine1, which is a 32-bits machine. As for the scalability experiment, the

program needs over 2G main memory, so the scalability experiment is conducted in Ma-

chine2, which is a 64-bits machine. All the experimental programs are single-threaded.

Table 3.2: Experimental Machines
Machine OS CPU Memory JVM Heap Size

Machine1 Windows 7 Intel Core i5
@2.53GHz

4G 1.5G

Machine2 Linux 2.6.18 Intel Xeon(R)
X5460@3.16GHz

32G 3G

Data Collection

In order to evaluate our work, we collect the log data from 4 different and popular real

systems. Table 3.3 shows the summary of our collected log data. The log data is collected

from the server machines/systems in the computer lab of a research center. Those systems

are very common system services installed in the many data centers.

• FileZilla client 3.3[urlb] log, which records the client’s operations and responses

from the FTP/SFTP server.

• MySQL 5.1.31[urli] error log. The MySQL database is hosted in a developer ma-

chine, which consists of the error messages from the MySQL database engine.
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• PVFS2 server 2.8.2[urlj] log. It contains errors, internal operations, status informa-

tion of one virtual file sever.

• Apache HTTP Server 2.x[urla] error log. It is obtained from the hosts for the center

website. The error log mainly records various bad HTTP requests with corresponding

client information.

Table 3.3: Log data summary.
System System Type #Messages #Words

per
message

#Types

FileZilla SFTP/FTP Client 22,421 7 to 15 4
MySQL Database Engine 270 8 to 35 4
PVFS2 Parallel File System 95,496 2 to 20 4
Apache Web Server 236,055 10 to 20 5

Comparative Methods

In order to evaluate the effectiveness and efficiency of our work, we use 4 other related

and traditional methods in the experiments. Table 3.4 shows all the comparative meth-

ods used in the experiments. As for “Tree Kernel”, the tree structure is the same as that

used in the our method LogTree. Since the tree node of the log message is not labeled,

we can only choose sparse tree kernel for “Tree Kernel” [CS04]. The experiments of the

event generation are conducted using two clustering algorithms, K-Medoids [HKP05] and

Single-Linkage [TSK05]. The reason that we choose the two algorithms is that K-Medoids

is the basic and classical algorithm for data clustering, and Single-Linkage is a typical hi-

erarchical clustering which is actually used in our system. It should be pointed out that our

comparisons are focus on similarity measurements which are independent from a specific

clustering algorithm. We expect that the insights gained from our experiment comparisons

can be generalized to other clustering algorithms as well.
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Table 3.4: Summary of comparative methods.
Method Description

“TF-IDF” the classical text clustering method us-
ing the vector space model with tf-idf
transformation.

“Tree Kernel” the tree kernel similarity introduced in
[CS04].

‘Matching” the method using words matching sim-
ilarity in [ABCM09].

“LogTree” our method using semi-structural log
and Message Segment Table.

“Jaccard” Jaccard Index similarity of two log
messages.

The Quality of Events Generation

The entire log is split into different time frames. Each time frame is composed of 2000

log messages and labeled with the frame number. For example, Apache2 denotes the 2th

frame of the Apache log. The quality of the results is evaluated by the F-measure (F1-

score) [SM84]. First, the log messages are manually classified into several types. Then,

the cluster label for each log message is obtained by the clustering algorithm. The F-

measure score is then computed from message types and clustered labels. Table 3.5 and

Table 3.6 show the F-measure scores of K-Medoids and Single-Linkage clusterings with

different similarity approaches respectively. Since the result of K-Medoids algorithm varies

by initial choice of seeds, we run 5 times for each K-Medoids clustering and the entries in

Table 3.5 are computed by averaging the 5 runs.

Only “Tree Kernel” and “LogTree” need to set parameters. “Tree Kernel” has only

one parameter, λs, to penalize matching subsequences of nodes [CS04]. We run it under

different parameter settings, and select the best result for comparison. Another parameter k

is the number of clusters for clustering algorithm, which is equal to the number of the types

of log messages. Table 3.7 shows the parameters used for “Tree Kernel” and “LogTree”.

FileZilla log consists of 4 types of log messages. One observation is that, the root

node of the semi-structural log is sufficient to discriminate the type of a message. Mean-

29



Table 3.5: F-Measures of K-Medoids
Logs TF-IDF Tree Kernel Matching LogTree Jaccard

FileZilla1 0.8461 1.0 0.6065 1.0 0.6550
FileZilla2 0.8068 1.0 0.5831 1.0 0.5936
FileZilla3 0.6180 1.0 0.8994 1.0 0.5289
FileZilla4 0.6838 0.9327 0.9545 0.9353 0.7580

PVFS1 0.6304 0.7346 0.7473 0.8628 0.6434
PVFS2 0.5909 0.6753 0.7495 0.6753 0.6667
PVFS3 0.5927 0.5255 0.5938 0.7973 0.5145
PVFS4 0.4527 0.5272 0.5680 0.8508 0.5386
MySQL 0.4927 0.8197 0.8222 0.8222 0.5138
Apache1 0.7305 0.7393 0.9706 0.9956 0.7478
Apache2 0.6435 0.7735 0.9401 0.9743 0.7529
Apache3 0.9042 0.7652 0.7006 0.9980 0.8490
Apache4 0.4564 0.8348 0.7292 0.9950 0.6460
Apache5 0.4451 0.7051 0.5757 0.9828 0.6997

Table 3.6: F-Measures of Single-Linkage
Logs TF-IDF Tree Kernel Matching LogTree Jaccard

FileZilla1 0.6842 0.9994 0.8848 0.9271 0.6707
FileZilla2 0.5059 0.8423 0.7911 0.9951 0.5173
FileZilla3 0.5613 0.9972 0.4720 0.9832 0.5514
FileZilla4 0.8670 0.9966 0.9913 0.9943 0.6996

PVFS1 0.7336 0.9652 0.6764 0.9867 0.4883
PVFS2 0.8180 0.8190 0.7644 0.8184 0.6667
PVFS3 0.7149 0.7891 0.7140 0.9188 0.5157
PVFS4 0.7198 0.7522 0.6827 0.8136 0.6345
MySQL 0.4859 0.6189 0.8705 0.8450 0.5138
Apache1 0.7501 0.9148 0.7628 0.9248 0.7473
Apache2 0.7515 0.9503 0.8178 0.9414 0.7529
Apache3 0.8475 0.8644 0.9294 0.9594 0.8485
Apache4 0.9552 0.9152 0.9501 0.9613 0.6460
Apache5 0.7882 0.9419 0.8534 0.9568 0.6997

Table 3.7: Parameter settings
Log Type k λs λ α
FileZilla 4 0.8 0.7 0.1
MySQL 4 0.8 0.3 0.1
PVFS2 4 0.8 0.7 0.1
Apache 5 0.8 0.01 0.1

while, the root node produces the largest contribution in the similarity in “Tree Kernel” and

“LogTree”. So the two methods benefit from the structural information to achieve a high

clustering performance.

PVFS2 log records various kinds of status messages, errors and internal operations.

None of the methods can perform perfectly. The reason is that, in some cases, two log
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messages composed of distinct sets of words could belong to one type. Thus, it is difficult

to cluster this kind of messages into one cluster.

MySQL error log is small, but some messages are very long. Those messages are all

assembled by fixed templates. The parameter part is very short comparing with the total

length of the template, so the similarity of [ABCM09] based on the templates wouldn’t be

interfered by the parameter parts very much. Therefore, “Matching” always achieves the

highest performance.

Apache error log is very similar to FillZilla log. But it contains more useless com-

ponents to identify the types of the error message, such as the client information. In our

semi-structural log, those useless components are located at low level nodes. Therefore,

when the parameter λ becomes small, their contributions to the similarity are reduced, then

the overall performance becomes better.

To sum up, the “Tree Kernel” and “LogTree” methods outperform other methods. The

main reason is that, the two methods capture both the word level information as well as the

structural and format information of the log messages. In the next subsection, we show that

our “LogTree” is more efficient than “Tree Kernel”.

The Efficiency of Event Generation

We records the running time of each clustering algorithm on the log data. Due to the space

limitation, we only show the running time of K-Medoids algorithm on FileZilla log, PVFS2

log, and Apache error log in Figure 3.3, 3.4 and 3.5. The running time is the average

number of 5 runs. In the implementation, we build the similarity matrix of each pair of

log messages at the beginning, whose time complexity is O(N2) where N is the number

of samples. Thus, the majority of the running time is used for building the similarity

matrix. As for “LogTree”, the threshold of Message Segment Table is fmin = 0.00001.
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The parameter choice depends on the size of the main memory. Note that the running

time of LogTree includes the time for building MST.
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Figure 3.3: The Efficiency of K-Medoids on FileZilla logs
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Figure 3.4: The Efficiency of K-Medoids on PVFS2 logs
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Figure 3.5: The Efficiency of K-Medoids on Apache logs
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Figure 3.6: The Scalability of K-Medoids on FileZilla logs

In Figures 3.3, 3.4 and 3.5, “TF-IDF” is the most efficient approach in the vector space

model based text clustering. The reason is that, the sparse vector is a compact represen-

tation of the log message. The cosine similarity of two sparse vectors can be obtained in

one pass. The vector transformation can be achieved in a linear time complexity by using
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Figure 3.7: The Scalability of K-Medoids on PVFS2 logs
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Figure 3.8: The Scalability of K-Medoids on Apache logs

a hash table. Furthermore, the cosine similarity of vectors do not consider the structural

information of two log messages.

Our proposed approach, “LogTree”, is in the second place in Figures 3.3, 3.4 and 3.5.

With the help of the Message Segment Table, it can save a lot of computation to obtain the
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similarity of two tree nodes. However, in order to consider the structural information of

the log message, the similarity function FC still has to find the most matched node in each

level of the tree. So it cannot be completed in one pass as the cosine similarity.

“Tree Kernel”, “Matching” and “Jaccard” are slower than the previous two methods.

One reason is that, those three methods do not provide a compact representation of the log

message in the main memory. For the similarity of every two messages, they all have to

access the original messages, requiring more CPU and I/O costs. As for “Tree Kernel”, it

compares every pair of nodes in the same level and its time complexity O(mn3) is very

large, where m and n are the number of nodes in the two trees respectively [CS04].

The Scalability of Event Generation

We run all methods on the logs with different sizes to evaluate their time scalability. Figure

3.6, 3.7 and 3.8 show the scalability results of K-Medoids algorithm with different similar-

ity measurements. The running time is obtained by averaging 5 different runs as mentioned

before. This experiment needs more than 2G main memory, so it is conducted in a power-

ful machine. The results shown in Figure 3.6, 3.7 and 3.8 are consistent with the efficiency

tests in previous subsection. “TF-IDF” is the most efficient approach, and our proposed

method,“LogTree”, is in the second place, where the threshold for MST fmin = 0.00001.

The space costs for all methods are identical except for our method “LogTree”. For

“LogTree”, there is an additional message segment table. The message segment table is al-

ways maintained in the main memory. Figure 3.9 shows the space cost of message segment

tables, which is the sum of the entries of each level’s MST, where fmin = 0.00001. In this

figure, FileZilla log has the largest space cost in MSTs. The reason is that, the diversity of

FileZilla log is very low, so MST almost covers all message segments. On the other hand,

the diversity of PVFS2 log is high, which covers various kinds of status messages, error,
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Figure 3.9: Space Cost of LogTree.

internal operations. Thus, only a few message segments’ frequencies are greater than fmin

and are maintained in the MST.

Every entry of MST is a float number, which occupies 4 bytes. The largest actual

memory cost of those MSTs in Figure 3.9 is 3.2×107×4 = 128M bytes. Comparing to the

similarity matrix of log messages built by the clustering algorithm, 20000 × 20000/2 × 4

= 1.6G bytes, the MST’s cost can be ignored.

A Case Study

We have developed a log analysis toolkit using Logtree for events generation from system

log data. Figure 3.10 shows a case study of using our developed toolkit for detecting

configuration errors in Apache Web Server. The configuration error is usually cased by

human, which is quite different from random TCP transmission failures, or disk read errors.

As a result, configuration errors typically lead to certain patterns. However, the Apache

error log file has over 200K log messages. It is difficult to discover those patterns directly

from the raw log messages. Figure 3.10 shows the event timeline window of our toolkit,
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where the user can easily identify the configuration error in the time frame. This error is

related to the permission setting of the HTML file. It causes continuous permission denied

errors in a short time. In addition, by using the hierarchical clustering method, LogTree

provides multi-level views of the events. The user could use the slider to choose a deeper

view of events to check detail information about this error.

Figure 3.10: A case study of the Apache HTTP server log.

3.2 Message Signature Based Clustering

Message signature based clustering is the second proposed algorithm for converting the tex-

tual logs into system events in this dissertation. Since this algorithm is based the captured

message signature of log messages, it is called LogSig.

Each log message consists of a sequence of terms. Some of the terms are variables or

parameters for a system event, such as the host name, the user name, IP address and so
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on. Other terms are plain text words describing semantic information of the event. For

example, three sample log messages of the Hadoop system [urlc] describing one type of

events about the IPC (Inter-Process Communication) subsystem are listed below:

1. 2011-01-26 13:02:28,335 INFO org.apache.hadoop.ipc.

Server: IPC Server Responder: starting;

2. 2011-01-27 09:24:17,057 INFO org.apache.hadoop.ipc.

Server: IPC Server listener on 9000: starting;

3. 2011-01-27 23:46:21,883 INFO org.apache.hadoop.ipc.

Server: IPC Server handler 1 on 9000: starting.

The three messages contain many different words(or terms), such as the date, the hours,

the handler name, and the port number. People can identify them as the same event type

because they share a common subsequence: “INFO: org.apache.hadoop.ipc

.Server: IPC Server:starting”. Let’s consider how the three log messages

are generated by the system. The Java source code for generating them is described below:

logger = Logger.getLogger("org.apache.hadoop.ipc.Server");

logger.info("IPC Server "+handlerName+": starting");

where logger is the log producer for the IPC subsystem. Using different parameters,

such as handlerName, the code can output different log messages. But the subsequence

“INFO: org.apache.hadoop.ipc.Server: IPC Server : starting”

is fixed in the source code. It will never change unless the source code has been modified.
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Therefore, the fixed subsequence can be viewed as a signature for an event type. In

other words, we can check the signatures to identify the event type of a log message. Oth-

er parameter terms in the log message should be ignored, since messages of the same

event type can have different parameter terms. Note that some parameters, such as the

handlerName in this example, consist of different numbers of terms. Consequently, the

position of a message signature may vary in different log messages. Hence, the string

matching similarity proposed in [ABCM09] would mismatch some terms. Another method

IPLoM proposed in [MZHM09] also fails to partition log messages using the term count

since the length of handlerName is not fixed and three log messages have different num-

bers of terms. Given an arbitrary log message, we do not know in advance which item is of

its signature, or which term is its parameter. That is the key challenge to address.

The goal is to identify the event type of each log message according to a set of message

signatures. Given a log message and a set of signatures, we need a metric to determine

which signature best matches this log message. Therefore, we propose the Match Score

metric first.

Let D be a set of log messages, D = {X1, ..., XN}, where Xi is the ith log message,

i = 1, 2, ..., N . Each Xi is a sequence of terms, i.e., Xi = wi1wi2 ....wini
. A message

signature S is also a sequence of terms S = wj1wj2 ....wjn .

Given a sequence X = w1w2...wn and a term wi, wi ∈ X indicates wi is a term

in X . X − {wi} denotes a subsequence w1...wi−1wi+1...wn. |X| denotes the length of

the sequence X . LCS(X,S) denotes the Longest Common Subsequence between two

sequences X and S.
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Definition 3.2.1. (Match Score) Given a log message Xi and a message signature S, the

match score is computed by the function below:

match(Xi, S) = |LCS(Xi, S)| − (|S| − |LCS(Xi, S)|)

= 2|LCS(Xi, S)| − |S|.

Intuitively, |LCS(Xi, S)| is the number of terms in Xi matched with S. |S|−|LCS(Xi, S)|

is the number of terms in Xi not matched with S. match(Xi, S) is the number of matched

terms minus the number of not-matched terms. We illustrate this by a simple example

below:

Example 2. A log messages X = abcdef and a message signature S = axcey. The longest

common subsequence LCS(X,S) = ace. The matched terms are “a”,“c”,“e”, shown by

Table 3.8: Example of Match Score
X a b c d e f
S a x c e y

underline words in Table 3.8. “x” and “y” in S are not matched with any term in X .

Hence, match(X,S) = |ace| − |xy| = 1.

Note that this score can be negative. match(Xi, S) is used to measure the degree of

the log message Xi owning the signature S. If two log messages Xi and Xj have the same

signature S, then we regard Xi and Xj as of the same event type. The longest common sub-

sequence matching is a widely used similarity metric in biological data analysis [BKWZ07]

[NNL06], such as RNA sequences.

If all message signatures S1, S2,...,Sk are known, identifying the event type of each

log message in D is straightforward. But we don’t know any message signature at the

beginning. Therefore, we should partition log messages and find their message signatures
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simultaneously. The optimal result is that, within each partition, every log message matches

its signature as much as possible. This problem is formulated below.

Problem 1. Given a set of log messages D and an integer k, find k message signatures

S = {S1, ..., Sk} and a k-partition C1,...,Ck of D to maximize

J(S,D) =
k∑

i=1

∑
Xj∈Ci

match(Xj, Si).

The objective function J(S,D) is the summation of all match scores. It is similar to the

k-means clustering problem. The choice of k depends on the user’s domain knowledge to

the system logs. If there is no domain knowledge, we can borrow the idea from the method

finding k for k-means [HE03], which plots clustering results with k. We can also display

generated message signatures for k = 2, 3, .. until the results can be approved by experts.

3.2.1 Comparing with k-means clustering problem

Problem 1 is similar to the classic k-means clustering problem, since a message signature

can be regarded as the representative of a cluster. People may ask the following questions:

• Why we propose the match function to find the optimal partition?

• Why not use the LCS as the similarity function to do k-means clustering?

The answer for the two questions is that, our goal is not to find good clusters of log mes-

sages, but to find the message signatures of all types of log messages. K-means can ensure

every two messages in one cluster share a subsequence. However, it cannot guarantee that

there exists a common subsequence shared by all (or most) messages in one cluster. We

illustrate this by the following example.

Example 3. There are three log messages X1: “abcdef, X2: “abghij” and X3: “xyghef”.

Clearly, LCS(X1, X2)=2, LCS(X2, X3)=2, and LCS(X1, X3)=2. However, there is no
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common subsequence that exists among all X1, X2 and X3. In our case, it means there is

no message signature to describe all three log messages. Hence, it is hard to believe that

they are generated by the same log message template.

Problem 1 is an NP-hard problem, even if k = 1. When k = 1, we can reduce the

Multiple Longest Common Subsequence problem to the Problem 1. The Multiple Longest

Common Subsequence problem is a known NP-hard [Mai78].

Lemma 3.2.2. Problem 1 is an NP-hard problem when k = 1.

Proof: Let D = {X1, ..., XN}. When k = 1, S = {S1}. Construct another set

of N sequences Y = {Y1, ..., YN}, in which each term is unique in both D and Y . Let

D′ = D ∪ Y ,

J(S,D′) =
∑

Xj∈D match(Xj, S1) +
∑

Yl∈Y match(Yl, S1)

Let S∗
1 be the optimal message signature for D′, i.e.,

S∗
1 = argmax

S1

J({S1},D′).

Then, the longest common subsequence of X1,...,XN must be an optimal solution S∗
1 . This

can be proved by contradiction as follows. Let Slcs be the longest common subsequence of

X1,...,XN . Note that Slcs may be an empty sequence if there is no common subsequence

among all messages.

Case 1: If there exists a term wi ∈ S∗
1 , but wi /∈ Slcs. Since wi /∈ Slcs, wi is not matched

with at least one message in X1,...,XN . Moreover, Y1,...,YN are composed by unique terms,

so wi cannot be matched with any of them. In D′ , the number of messages not matching
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wi is at least N +1, which is greater than the number of messages matching wi. Therefore,

J({S∗
1 − {wi}},D′) > J({S∗

1},D′),

which contradicts with S∗
1 = argmax

S1

J({S1},D′).

Case 2: If there exists a term wi ∈ Slcs, but wi /∈ S∗
1 . Since wi ∈ Slcs, X1,...,XN all match

wi. The total number of messages that match wi in D′ is N . Then, there are N remaining

messages not matching wi: Y1,...,YN . Therefore,

J({Slcs},D′) = J({S∗
1},D′),

which indicates Slcs is also an optimal solution to maximize objective function J on D′.

To sum up the two cases above, if there is a polynomial time-complexity solution to

find the optimal solution S∗
1 inD′, the Multiple Longest Common Subsequence problem for

X1,...,XN can be solved in polynomial time as well. However, Multiple Longest Common

Subsequence problem is an NP-hard problem [Mai78].

Lemma 3.2.3. If when k = n Problem 1 is NP-hard, then when k = n + 1 Problem 1 is

NP-hard, where n is a positive integer.

Proof-Sketch: This can be proved by contradiction. We can construct a message Y

whose term set has no overlap to the term set of messages in D in a linear time. Suppose

the optimal solution for k = n and D is C = {C1, ..., Ck}, then the optimal solution for

k = n + 1 and D ∪ {Y } should be C ′ = {C1, ..., Ck, {Y }}. If there is a polynomial

time solution for Problem 1 when k = n + 1, we could solve Problem 1 when k = n in

polynomial time.

Since the original problem is NP-hard, we can solve an approximated version of the

Problem 1 that is easier to come up with an efficient algorithm. The first step is to separate
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every log message into several pairs of terms. The second step is to find k groups of log

messages using local search strategy such that each group share common pairs as many as

possible. The last step is to construct message signatures based on identified common pairs

for each message group.

3.2.2 An approximated version of problem

Notations: Let X be a log message, R(X) denotes the set of term pairs converted from X ,

and |R(X)| denotes the number of term pairs in R(X).

Problem 2. Given a set of log messages D and an integer k, find a k-partition C =

{C1, ..., Ck} of D to maximize objective function F (C,D):

F (C,D) =
k∑

i=1

|
∩

Xj∈Ci

R(Xj)|.

Object function F (C,D) is the total number of common pairs over all groups. Intu-

itively, if a group has more common pairs, it is more likely to have a longer common

subsequence. Then, the match score of that group would be higher. Therefore, maximizing

function F is approximately maximizing J in Problem 1. Lemma 3.2.5 shows the average

lower bound for this approximation.

Lemma 3.2.4. Given a message group C, it has n common term pairs, then the length of

the longest common subsequence of messages in C is at least ⌈
√
2n⌉.

Proof-sketch: Let l be the length of a longest common subsequence of messages in C.

Let T (l) be the number of term pairs that generated by that longest common subsequence.

Since each term pair has two terms, this sequence can generate at most
(
l
2

)
pairs. Hence,

T (l) ≤
(
l
2

)
= l(l − 1)/2. Note that each term pair of the longest common subsequence is
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a common term pair in C. Now, we already know T (l) = n, so T (l) = n ≤ l(l − 1)/2.

Then, we have l ≥ ⌈
√
2n⌉.

Lemma 3.2.5. Given a set of log messages D and a k-partition C = {C1, ..., Ck} of D,

if F (C,D) ≥ y, y is a constant, we can find a set of message signatures S such that on

average:

J(S,D) ≥ |D| · ⌈
√

2y

k
⌉

Proof-sketch: Since F (C,D) ≥ y, on average, each group has at least y/k common

pairs. Then for each group, by Lemma 3.2.4, the length of the longest common subse-

quence must be at least ⌈
√

2y
k
⌉. If we choose this longest common subsequence as the

message signature, each log message can match at least ⌈
√

2y
k
⌉ terms of the signature. As

a result, the match score of each log message is at least ⌈
√

2y
k
⌉. D has |D|messages. Then,

we have the total match score J(S,D) ≥ |D| · ⌈
√

2y
k
⌉ on average.

Lemma 3.2.5 shows that, maximizing the F (C,D) is approximately maximizing the o-

riginal objective function J(S,D). But F (C,D) is easier to optimize because it deals with

discrete pairs.

3.2.3 Local search

The LogSig algorithm applies the local search strategy to solve Problem 2. It iteratively

moves one message to another message group to increase the objective function as large as

possible. However, unlike the classic local search optimization method, the movement is

not explicitly determined by objective function F (·). The reason is that, the value of F (·)

may only be updated after a bunch of movements, not just after every single movement.

We illustrate this by the following example.
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Example 4. Message set D is composed of 100 “ab” and 100 “cd”. Now we have 2-

partition C = {C1, C2}. Each message group has 50% of each message type as shown

in Table 3.9. The optimal 2-partition is C1 has 100 “ab” and C2 has 100 “cd”, or in

Table 3.9: Example of two message groups
XXXXXXXXXXterm pair

group
C1 C2

“ab” 50 50
“cd” 50 50

the reverse way. However, beginning with current C1 and C2, F (C,D) is always 0 until

we move 50 “ab” from C2 to C1, or move 50 “cd” from C1 to C2. Hence, for first 50

movements, F (C,D) cannot guide the local search because no matter what movement you

choose, it is always 0.

Therefore, F (·) is not proper to guide the movement in the local search. The decision of

every movement should consider the potential value of the objective function, rather than

the immediate value. So we develop the potential function to guide the local search instead.

Notations: Given a message group C, R(C) denotes the union set of term pairs from

messages of C. For a term pair r ∈ R(C), N(r, C) denotes the number of messages in C

which contains r. p(r, C) = N(r, C)/|C| is the portion of messages in C having r .

Definition 3.2.6. Given a message group C, the potential of C is defined as ϕ(C),

ϕ(C) =
∑

r∈R(C)

N(r, C)[p(r, C)]2.

The potential value indicates the overall “purity” of term pairs in C. ϕ(C) is maximized

when every term pair is contained by every message in the group. In that case, for each r,

N(r, C) = |C|, ϕ(C) = |C| · |R(C)|. It also means all term pairs are common pairs shared
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by every log message. ϕ(C) is minimized when each term pair in R(C) is only contained

by one message in C. In that case, for each r, N(r, C) = 1, |R(C)| = |C|, ϕ(C) = 1/|C|.

Definition 3.2.7. Given a k-partition C = {C1, ..., Ck} of a message set D, the overall

potential of D is defined as Φ(D),

Φ(D) =
k∑

i=1

ϕ(Ci),

where ϕ(Ci) is the potential of Ci, i = 1, ..., k.

3.2.4 Connection between Φ and F :

Objective function F computes the total number of common term pairs in each group.

Both Φ and F are maximized when each term pair is a common term in its corresponding

message group. Let’s consider the average case.

Lemma 3.2.8. Given a set of log messages D and a k-partition C = {C1, ..., Ck} of D, if

F (C,D) ≥ y, y is a constant, then in the average case, Φ(D) ≥ y · |D|/k.

Proof-sketch: Since F (C,D) ≥ y, there are at least y common term pairs distributed

in message groups. For each common term pair ri, let Ci be its corresponding group. On

average, |Ci| = |D|/k. Note that the common pair ri appears in every message of Ci, so

N(ri, Ci) = |Ci| = |D|/k and p(ri, Ci) = 1. There are at least y common term pairs, by

Definition 3.2.6, we have Φ(D) ≥ y · |D|/k.

Lemma 3.2.8 implies, in the average case, if we try to increase the value of F to be at

least y, we have to increase the overall potential Φ to be at least y · |D|/k. As for the local

search algorithm, we mentioned that Φ is easier to optimize than F .
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Let ∆iX−→jΦ(D) denote the increase of Φ(D) by moving X ∈ D from group Ci into

group Cj , i, j = 1, ..., k, i ̸= j. Then, by Definition 3.2.7,

∆iX−→jΦ(D) = [ϕ(Cj ∪ {X})− ϕ(Cj)]

−[ϕ(Ci)− ϕ(Ci − {X})],

where ϕ(Cj ∪ {X}) − ϕ(Cj) is the potential increase brought by inserting X to Cj ,

ϕ(Ci) − ϕ(Ci − {X}) is the potential loss brought by removing X from Ci. Algorithm

1 is the pseudocode of the local search algorithm in LogSig. Basically, it iteratively up-

dates every log message’s group according to ∆iX−→jΦ(D) to increase Φ(D) until no more

update operation can be done.

Algorithm 1 LogSig localsearch (D, k)
Parameter: D : log messages set; k: the number of groups to partition;
Result: C : log message partition;

1: C ← RandomSeeds(k)
2: C ′ ← ∅ // Last iteration’s partition
3: Create a map G to store message’s group index
4: for Ci ∈ C do
5: for Xj ∈ Ci do
6: G[Xj]← i
7: end for
8: end for
9: while C ̸= C ′ do

10: C ′ ← C
11: for Xj ∈ D do
12: i← G[Xj]
13: j∗ = argmax

j=1,..,k
∆iX−→jΦ(D)

14: if i ̸= j∗ then
15: Ci ← Ci − {Xj}
16: Cj∗ ← Cj∗ ∪ {Xj}
17: G[Xj]← j∗

18: end if
19: end for
20: end while
21: return C

48



3.2.5 Why choose this potential function?

Given a message group C, let g(r) = N(r, C)[p(r, C)]2, then ϕ(C) =
∑

r∈R(C) g(r). Since

we have to consider all term pairs in C, we define ϕ(C) as the sum of all g(r). As for g(r),

it should be a convex function. Figure 3.11 shows a curve of g(r) by varying the number

of messages having r, i.e., N(r, C). The reason for why g(r) is convex is that, we hope to
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Figure 3.11: Function g(r), |C| = 100

give larger awards to r when r is about to being a common term pair. That is because, if

N(r, C) is large, then r is more likely to be a common term pair. Only when r becomes a

common term pair, it can increase F (·). In other words, r has more potential to increase

the value of objective function F (·), so the algorithm should pay more attention to r first.
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3.2.6 Evaluation

Experimental Platforms

We implement our algorithm and other comparative algorithms in Java 1.6 platform. Table

3.10 summarizes our experimental environment.

Table 3.10: Experimental Machine
OS CPU bits Memory JVM Heap

Size
Linux 2.6.18 Intel Xeon(R) @

2.5GHz, 8 core
64 16G 12G

Data Collection

We collect log data from 5 different real systems, which are summarized in Table 3.11.

Logs of FileZilla [urlb], PVFS2 [urlj] Apache [urla] and Hadoop [urlc] are collected from

the server machines/systems in the computer lab of a research center. Log data of Thunder-

Bird [urll] is collected from a supercomputer in Sandia National Lab. The true categories

of log messages are obtained by specialized log parsers. For instance, FillZilla’s log mes-

sages are categorized into 4 types: “Command”, “Status”, “Response”, “Error”. Apache

error log messages are categorized by the error type: “Permission denied”, “File not exist”

and so on.

Table 3.11: Summary of Collected System Logs
System Description #Messages #Terms Per Message #Category
FileZilla SFTP/FTP Client 22,421 7 to 15 4
ThunderBird Supercomputer 3,248,239 15 to 30 12
PVFS2 Parallel File System 95,496 2 to 20 11
Apache
Error

Web Server 236,055 10 to 20 6

Hadoop Parallel Computing Platform 2,479 15 to 30 11

The vocabulary size is an important characteristic of log data. Figure 3.12 exhibits the

vocabulary sizes of the 5 different logs along with the data size. It can be seen that some

vocabulary size could become very large if the data size is large.
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Figure 3.12: Vocabulary size

Comparative Algorithms

We compare our algorithm with 7 alternative algorithms in this experiment. Those algo-

rithms are described in Table 3.12. 6 of them are unsupervised algorithms which only look

at the terms of log messages. 3 of them are semi-supervised algorithms which are able to in-

corporate the domain knowledge. IPLoM [MZHM09] and StringMatch [ABCM09] are

two methods proposed in recent related literatures . VectorModel [SM84], Jaccard

[TSK05], StringKernel [LSST+02] are traditional methods for text clustering. VectorModel

and semi-StringKernel are implemented by k-means clustering algorithm [TSK05].

Jaccard and StringMatch are implemented by k-medoid algorithm [HKP05], since

they cannot compute the centroid point of a cluster. As for Jaccard, the Jaccard sim-

ilarity is obtained by a hash table to accelerate the computation. VectorModel and

StringKernel use Sparse Vector [SM84] to reduce the computation and space costs.

semi-LogSig, semi-StringKernel and semi-Jaccard are semi-supervised

versions of LogSig, StringKernel and Jaccard respectively. To make a fair com-
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Table 3.12: Summary of comparative algorithms
Algorithm Description
VectorModel Vector space model proposed in information re-

treival
Jaccard Jaccard similarity based k-medoid algorithm
StringKernel String kernel based k-means algorithm
IPLoM Iterative partition method proposed in [MZHM09]
StringMatch String matching method proposed in [ABCM09]
LogSig Message signature based method proposed in this

paper
semi-LogSig LogSig incorporating domain knowledge
semi-StringKernel Weighted string kernel based k-means
semi-Jaccard Weighted Jaccard similarity based k-medoid

parison, all those semi-supervised algorithms incorporate the same domain knowledge of-

fered by users. Specifically, the 3 algorithms run on the same transformed feature layer, and

the same sensitive phrases PS and trivial phrases PT . Obviously, the choices of features,

PS and PT have a huge impact to the performances of semi-supervised algorithms. But we

only compare a semi-supervised algorithm with other semi-supervised algorithms. Hence,

they are compared under the same choice of features, PS and PT . The approaches for those

3 algorithms to incorporate with features, PS and PT are described as follows:

Feature Layer: Replacing every log message by the transformed sequence of terms with

features.

PS and PT : As for semi-StringKernel, replacing Euclidean distance by Mahalanobis

distance [BBM04]:

DM(x, y) =
√

(x− y)TM(x− y).

where matrix M is constructed according to term pairs PS , PT and λ′. As for

semi-Jaccard, for each term, multiply a weight λ′ (or 1/λ′) if this term appears

in PS ( or PT ).
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Table 3.13: Summary of small log data
Measure #Message #Feature |R(P)S | |R(P)T |
FileZilla 8555 10 4 4
ThunderBird 5000 10 11 9
PVFS2 12570 10 10 1
Apache Error 5000 2 4 2
Hadoop 2479 2 7 3

Table 3.14: Average F-Measure Comparison
hhhhhhhhhhhhhhhAlgorithm

Log Data FileZilla PVFS2 ThunderBird Apache Error Hadoop
Jaccard 0.3794 0.4072 0.6503 0.7866 0.5088
VectorModel 0.4443 0.5243 0.4963 0.7575 0.3506
IPLoM 0.2415 0.2993 0.8881 0.7409 0.2015
StringMatch 0.5639 0.4774 0.6663 0.7932 0.4840
StringKernel0.8 0.4462 0.3894 0.6416 0.8810 0.3103
StringKernel0.5 0.4716 0.4345 0.7361 0.9616 0.3963
StringKernel0.3 0.4139 0.6189 0.8321 0.9291 0.4256
LogSig 0.6949 0.7179 0.7882 0.9521 0.7658
semi-Jaccard 0.8283 0.4017 0.7222 0.7415 0.4997
semi-StringKernel0.8 0.8951 0.6471 0.7657 0.8645 0.7162
semi-StringKernel0.5 0.7920 0.4245 0.7466 0.8991 0.7461
semi-StringKernel0.3 0.8325 0.7925 0.7113 0.8537 0.6259
semi-LogSig 1.0000 0.8009 0.8547 0.7707 0.9531

Jaccard, StringMatch and semi-Jaccard algorithms apply classic k-medoid

algorithm for message clustering. The time complexity of k-medoid algorithm is very high:

O(tn2) [TKK06], where t is the number of iterations, n is the number of log messages. As

a result, those 3 algorithms are not capable of handling large log data. Therefore, for the

accuracy comparison, we split our log files into smaller files by time frame, and conduct

the experiments on the small log data. The amounts of log messages, features, term pairs

in PS and PT are summarized in Table 3.13.

Quality of Generated Events

Table 3.14 shows the accuracy comparison of generated system events by different algo-

rithms. The accuracy is evaluated by F-measure (F1 score) [SM84], which is a tradi-

tional metric combining precision and recall. Since the results of k-medoid, k-means

and LogSig depend on the initial random seeds, we run each algorithm for 10 times,
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and put the average F-measures into Table 3.14. From this table, it can be seen that

StringKernel and LogSig outperform other algorithms in terms of the overall per-

formance.

Jaccard and VectorModel apply the bag-of-word model, which ignores the order

information about terms. Log messages are usually short, so the information from the bag-

of-word model is very limited. In addition, different log messages have many identical

terms, such as date, username. That’s the reason why the two methods cannot achieve high

F-measures. IPLoM performs well in ThunderBird log data, but poorly in other log data.

The reason is that, the first step of IPLoM is to partition log message by the term count.

One type of log message may have different numbers of terms. For instance, in FileZilla

logs, the length of Command messages depends on the type of SFTP/FTP command in the

message. But for ThunderBird, most event types are strictly associated with one message

format. Therefore, IPLoM could easily achieve the highest score.

Due to the Curse of dimensionality [TSK05], k-means based StringKernel is not

easy to converge in a high dimensional space. Figure 3.12 shows that, 50K ThunderBird

log messages contain over 30K distinct terms. As a result, the transformed space has over

(30K)2 = 900M dimensions. It is quite sparse for 50K data points.

It is worthy to note that in Thunderbird and Apache Error logs the vocabulary size in-

creases almost infinitely (see Figure 3.12), then LogSig does not achieve the best perfor-

mance. The main reason is that, when the vocabulary size is large, the number of possible

choices of the signature terms is also large. Then the performance of LogSig may suffer

from the large solution space for the local search algorithm.

Generated message signatures are used as descriptors for system events, so that users

can understand the meanings of those events. Due to the space limit, we cannot list all

message signatures. Table 3.15 shows generated signatures of FileZilla and Apache Error

by semi-LogSig, in which features are indicated by italic words.
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Table 3.15: Message Signatures
System Log Message Signature Associated Category

FileZilla Date Hours Number Number Status: ... Status
Date Hours Number Number Response: Number Response
Date Hours Number Number Command: Command
Date Hours Number Number Error: File transfer
failed

Error

Apache Error Timestamp ( 13 ) Permission denied:
/home/bear-005/users/xxx/public html/ke/.htaccess
pcfg openfile: unable to check htaccess file
ensure it is readable

Permission denied

Timestamp Error [ client ] File does not
exist: /opt/website/sites/users.cs.fiu.edu/
data/favicon.ico

File does not exist

Timestamp Error [ client 66.249.65.4 ] suexec
policy violation: see suexec log for more
details

Policy violation

Timestamp /home/hpdrc-demo/sdbtools/public html/
hpdrc2/.htaccess: AuthName takes one argument
The Authentication realm ( e.g. "Members Only"
)

Authentication

Timestamp Error [ client ] 2010-04-01 using N/A
Timestamp Error [ client ] N/A
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Figure 3.13: Average Running Time for FileZilla logs

As for FileZilla log, each message signature corresponds to a message category, so that

the F-measure of FileZilla could achieve 1.0. But for Apache Error log, Only 4 message

signatures are associated with corresponding categories. The other 2 signatures are gener-

ated by two ill-partitioned message groups. They cannot be associates with any category
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Figure 3.14: Average Running Time for ThunderBird logs
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Figure 3.15: Average Running Time for Apache logs

of Apache Error logs. As a result, their “Associated Category” in Table 3.15 are “N/A”.

Therefore, the overall F-measure on Apache error log in Table 3.14 is only 0.7707.
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All those algorithms have the parameter k, which is the number of events to create. We

let k be the actual number of message categories. String kernel method has an additional pa-

rameter λ, which is the decay factor of a pair of terms. We use StringKernelλ to denote
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Figure 3.18: Scalability of LogSig

the string kernel method using decay factor λ. In our experiments, we set up string kernel

algorithms using three different decay factors: StringKernel0.8, StringKernel0.5

and StringKernel0.3.

As for the parameter λ′ of our algorithm LogSig, we set λ′ = 10 based on the ex-

perimental result shown by Figure 3.16. For each value of λ′, we run the algorithm for 10

times, and plot the average F-measure in this figure. It can be seen that, the performance

becomes stable when λ′ is greater than 4.

Effectiveness of Potential Function

To evaluate the effectiveness of the potential function Φ, we compare our proposed LogSig

algorithm with another LogSig algorithm which uses the objective function F to guide its

local search.

Figure 3.17 shows the average F-measures of the two algorithms on each data set. Clear-

ly, our proposed potential function Φ is more effective than F in all data sets. In addition,
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we find LogSig algorithm using F always converges within 2 or 3 iterations. In other

words, F is more likely to stop at a local optima in the local search.

Scalability

Scalability is an important factor for log analysis algorithms. Many high performance com-

puting systems generate more than 1Mbytes log messages per second [OS07]. Figure 3.13,

Figure 3.14 and Figure 3.15 show the average running time comparison for all algorithms

on the data sets with different sizes. We run each algorithm 3 times and plot the average

running times. IPLoM is the fastest algorithm. The running times of other algorithms

depend on the number of iterations. Clearly, k-medoid based algorithms are not capable

of handling large log data. Moreover, StringKernel is not efficient even though we

use Sparse Vector to implement the computation of its kernel functions. We keep track

of its running process, and find that the low speed convergence is mainly due to the high

dimensionality of the converted vectors.

Figure 3.18 shows the scalability of LogSig algorithm on ThunderBird logs and A-

pache Error logs. Its actual running time is approximated linear with the log data size.

3.3 Summary

This chapter studies the problem of preprocessing raw textual system logs into discrete

system events. The discrete events are more convenient for human to plot and explore. The

existing solution is to implement a full log parser, which is time-consuming and difficult

since many softwares are not open-source and do not have complete documents. Recent

studies apply clustering algorithms on the log messages to generate the events, however,

the accuracy of their work heavily relies on the format/structure of the targeting logs. This

chapter presents two novel clustering based approaches : LogTree and LogSig. The

LogTree algorithm is a novel and algorithm-independent framework for event generation
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from raw textual log messages. LogTree utilizes the format and structural information of

log messages in the clustering process and increases the clustering accuracy. The LogSig

algorithm is a message signature based clustering algorithm. By searching the most rep-

resentative message signatures, LogSig categorizes the textual log messages into several

event types. LogSig can handle various types of log data and is able to incorporate the

domain knowledge provided by experts to achieve a high clustering accuracy. We conduct

experiments on real system logs. The experimental results show that the two algorithms

outperform alternative clustering algorithms in terms of the accuracy of event generation.
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CHAPTER 4

MONITORING OPTIMIZATION

Defining appropriate monitoring situations requires the knowledge of a particular system

and its relationships with other hardware and software systems. It is a known practice to de-

fine conservative conditions in nature, thus erring on the side of caution. This practice leads

to a large number of tickets that require no action (false positives). Continuous updating of

modern IT infrastructures also leads to a number of system faults that are not captured by

system monitoring (false negatives). Our research work for this aspect is to utilize the data

mining techniques to minimize the number of false positives and false negatives in automat-

ic monitoring systems in large and dynamic IT infrastructures. This approach utilizes the

historical monitoring events and incident tickets and is able to help system administrators

improve monitoring configurations.

This chapter first introduces the problem of false positive and false negative in IT ser-

vice management, and then presents the developed methods for eliminating false positives

and false negatives by optimizing configurations of existing monitoring systems. The pre-

liminary work for system monitoring and alert detection has been discussed in Section 2.1.

4.1 False Positive and False Negative in IT Service

Performing a detailed analysis of IT system usage is time-consuming, so SAs often rely on

default monitoring situations. Furthermore, IT system usage is likely to change over time.

This often results in a large number of alerts and tickets (see Table 4.1).

Whether a ticket is real or false is determined by the resolution message entered in the

ticket tracking database by the system administrator it was assigned to. It is not rare to

observe entire categories of alerts, such as CPU or paging utilization alerts, that are almost

exclusively false positives. When reading the resolution messages one by one, it can be

61



Table 4.1: Definitions for Alert, Event and Ticket
False Positive
Alert

An alert for which the system administrator does not need to take
any action.

False Negative
Alert

A missed alert that is not captured due to inappropriate monitor-
ing configuration.

False Alert False positive alert
Real Alert An alert that requires the system administrator to fix the corre-

sponding problem on the server.
Alert Duration The length of time from an alert creation to its clearing.
Transient Alert An alert that is automatically cleared before the technician opens

its corresponding ticket.
Event The notification of an alert to the Enterprise Console.
False Positive
Ticket

A ticket created from a false positive alert.

False Negative
Ticket

A ticket created manually identifying a condition that should
have been capture by automatic monitoring.

False Ticket A ticket created from a false alert.
Real Ticket A ticket created from a real alert.

simple to find an explanation: Anti-virus processes cause prolonged CPU spikes at regular

intervals; databases may reserve large amount of disk space in advance, making the mon-

itors believe the system is running out of storage. With only slightly more effort, one can

also fine-tune the thresholds of certain numerical monitored metrics, such as the metric-

s involved in paging utilization measurement. There are rarely enough human resources,

however, to correct the monitoring situations one system at a time, and we need an algo-

rithm capable of discovering these usage-specific rules. There has been a great deal of

effort spent on developing the monitoring conditions (situations) that can identify poten-

tially unsafe functioning of the system [HSF06] [RBV03]. It is understandably difficult,

however, to recognize and quantify influential factors in the malfunctioning of a complex

system. Therefore classical monitoring tends to rely on periodical probing of a system for

conditions that could potentially contribute to the system’s misbehavior. Upon detection of

the predefined conditions, the monitoring systems trigger events that automatically gener-

ate incident tickets. In this dissertation, we study the problem of improving the quality of

monitoring based on the analysis for historical monitoring events and incident tickets.

62



4.2 Eliminating False Positive

The objective is to eliminate as many false alerts as possible while retaining all real alert-

s. A naive solution is to build a predictive classifier and adjust the monitoring situations

according to the classifier. Unfortunately, no prediction approach can guarantee 100% suc-

cess for real alerts, but a single missed one may cause serious problems, such as system

crashes or data loss.

The vast majority of the false positive alerts are transient, such as temporary spikes

in CPU and paging utilization, service restarts, and server reboots. These transient alerts

automatically disappear after a while, but their tickets are created in the ticketing system.

When system administrators open the tickets and log on the server, they cannot find the

problem described by those tickets. Figure 4.1 shows the duration histogram of false posi-

tive alerts raised by one monitoring situation. This particular situation checks the status of

a service and generates an alert without delay if the service is stopped or shutdown. These

false positive alerts are collected from one server of a customer account for 3 months. As

shown by this figure, more than 75% of the alerts can be cleared automatically by waiting

20 minutes. It is possible for a transient alert to be caused by a real system problem. From

Figure 4.1: False Positive Alert Duration
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the perspective of the system administrators, however, if the problem cannot be found when

logging on the server, there is nothing they can do with the alert, no matter what happened

before. Some transient alerts may be indications of future real alerts and may be useful.

But if those real alerts arise later on, the monitoring system will detect them even if the

transient alerts were ignored. Therefore, all transient alerts are considered false negative.

Eliminating False Positive Alerts Safely

Our solution first predicts whether an alert is real or false. If it is predicted as real, a

ticket will be created. Otherwise, the ticket creation will be postponed. Our solution also

determines how long is it to be postponed. Even if a real alert is incorrectly classified as

false, its ticket will eventually be created before violating the SLA. Figure 4.2 shows a

flowchart of an incoming event. It reveals two key problems for this approach: (1) How to

Gather incident information

and create event

Create ticket

Predict it is 
“False”?

Wait
Is this alert 

cleared?

Yes Yes Remove 

this event

NoNo

Abnormal system 

Incident

Figure 4.2: Flowchart for Ticket Creation

predict whether an alert is false or real? (2) If an alert is identified as false, what waiting

time should be applied before ticket creation?
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In our approach, the predictor is implemented by a rule-based classifier based on the

historical tickets and events. The ground truth of the events is obtained from the associat-

ed tickets. Each historical ticket has one column that suggests this ticket is real or false.

This column is manually filled by the system administrators and stored in the ticketing

system. There are two reasons for choosing a rule-based predictor. First, each monitoring

situation is equivalent to a quantitative rule. The predictor can be directly implemented

in the existing monitoring system. Other sophisticated classification algorithms, such as

support vector machine and neural network, may have a higher precision in predicting.

Their classifiers, however, are very difficult to implement as monitoring situations in real

systems. Second, a rule-based predictor is easily verifiable by the end users. Other compli-

cated classification models represented by linear/non-linear equations or neural networks

are very hard for end users to verify. If the analyzed results could not be verified by the

system administrators, they would not be utilized in real production servers.

Predictive Rule

The alert predictor roughly assigns a label to each alert, “false” or “real.” It is built on a

set of predictive rules that are automatically generated by a rule-based learning algorithm

[SA96a] based on historical events and alert tickets. Example 5 shows a predictive rule,

where “PROC CPU TIME” is the CPU usage of a process. Here “PROC NAME” is the

name of the process.

Example 5. if PROC CPU TIME > 50% and PROC NAME = ‘Rtvscan’, then this alert

is false.

A predictive rule consists of a rule condition and an alert label. A rule condition is a

conjunction of literals, where each literal is composed of an event attribute, a relational op-

erator and a constant value. In Example 5, “PROC CPU TIME > 50%” and “PROC NAME

= ‘Rtvscan’” are two literals, where “PROC CPU TIME” and “PROC NAME” are event
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attributes, “>” and “=” are relational operators, and “50%” and “Rtvscan” are constant

values. If an alert event satisfies a rule condition, we call this alert covered by this rule.

Predictive Rule Generation

The rule-based learning algorithm [SA96a] first creates all literals by scanning historical

events. Then, it applies a breadth-first search for enumerating all literals in finding pre-

dictive rules, i.e., those rules having predictive power. This algorithm has two criteria to

quantify the minimum predictive power: the minimum confidence minconf and the mini-

mum support minsup [SA96a]. In our case, minconf is the minimum ratio of the numbers

of the covered false alerts and all alerts covered by the rule, and minsup is the minimum

ratio of the number of alerts covered by the rule and the total number of alerts. The two

criteria govern the performance of our method, defined as the total number of removed

false alerts. To achieve the best performance, we loop through the values of minconf and

minsup and compute their performances.

Predictive Rule Selection

Although the predictive rule learning algorithm can learn many rules from the historical

events with tickets, we only select those with strong predictive power. In our solution,

Laplace accuracy [YH03] [PMM+94] [Li06] is used for estimating the predictive power

of a rule. According to the SLA, real tickets must be acknowledged and resolved within a

certain time. The maximum allowed delay time is specified by a user-oriented parameter

delaymax for each rule. In the calculation of Laplace accuracy, those false alerts are treated

as real alerts if their durations are greater than delaymax. delaymax is given by the system

administrators according to the severity of system incidents and the SLA.

Another issue is rule redundancy. For example, let us consider the two predictive rules:
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X. PROC CPU TIME > 50% and PROC NAME = ‘Rtvscan’

Y. PROC CPU TIME > 60% and PROC NAME = ‘Rtvscan’

Clearly, if an alert satisfies Rule Y, then it must satisfy Rule X as well. In other words, Rule

Y is more specific than Rule X. If Rule Y has a lower accuracy than Rule X, then Rule Y

is redundant given Rule X (but Rule X is not redundant given Rule Y). In our solution, we

perform redundant rule pruning to discard the more specific rules with lower accuracies.

The detailed algorithm is described in [TLP+12].

Calculating Waiting Time for Each Rule

Waiting time is the duration by which tickets should be postponed if their corresponding

alerts are classified as false. It is not unique for all monitoring situations. Since an alert can

be covered by multiple predictive rules, we set up different waiting times for each of them.

The waiting time can be transformed into two parameters in monitoring systems, the length

of the polling interval with the minimum polling count [urlf]. For example, the situation

described in Example 5 predicts false alerts about CPU utilization of ‘Rtvscan.’ We can

also find another predictive rule as follows:

if PROC CPU TIME > 50% and PROC NAME = ‘perl logqueue.pl’, then this alert is

false.

The job of ‘perl’, however, is different from that of ‘Rtvscan.’ Their durations are not the

same, and the waiting time will differ accordingly. In order to remove as many false alerts

as possible , we set the waiting time of a selected rule as the longest duration of the transient

alerts covered by it. For a selected predictive rule p, its waiting time is

waitp = max
e∈Fp

e.duration,
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where Fp = {e|e ∈ F , isCovered(p, e) =′ true′}, and F is the set of transient events.

Clearly, for any rule p ∈ P , waitp has a upper bound, waitp ≤ delaymax. Therefore, no

ticket can be postponed for more than delaymax.

4.3 Eliminating False Negative

False negative alerts are the missing alerts that are not captured by the monitoring sys-

tem due to some misconfiguration. Real-world IT infrastructures are often over-monitored.

False negative alerts are much fewer than false positive alerts. Since the number of false

negative alerts is quite small, we only focus on the methodologies for discovering them

with their corresponding monitoring situations. The system administrators can easily cor-

rect the misconfiguration by referring the results. The false negative tickets are recorded

by the system administrators in the manual tickets. Each manual ticket consists of several

textual messages that describe the detailed problem. In addition to system fault issues, man-

ual tickets also track many other customer requests such as asking for resetting database

passwords, installing a new web server and so on. The customer request is the majority

of the manual tickets. In our system the work for false negative alerts is to find out those

monitoring related tickets among all manual tickets. This problem is formed as a binary

text classification problem. Given an incident ticket, our method classifies it into “1” or

“0”, where “1” indicates this ticket is a false negative ticket, otherwise it is not. For each

monitoring situation, we build a binary text classifier.

There are two challenges for building the classification model. First, the manual ticket

data is highly imbalanced since most of the manual tickets are customer requests and only

very few are false negative tickets. Figure 4.3 shows various system situation issues in two

manual ticket sets. This manual ticket set is collected from a large customer account in

IBM IT service centers. The first month has 9854 manual tickets and the second month has

10109 manual tickets overall. As shown in this figure, only about 1% manual tickets are
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false negatives. Second, labeled data is very limited. Most system administrators are only
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router/switch

Number of Situation Issues in Manual Tickets

month2

month1

0 20 40 60 80 100 120 140

file system space

database log
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Figure 4.3: Number of Situation Tickets

working on some parts of incident tickets. Only a few experts can label all tickets.

4.3.1 Selective Ticket Labeling

It is time-consuming for human experts to scan all manual tickets and label their classes

for training. In our approach, we only select a small proportion of tickets for labeling.

A naive method is randomly selecting a subset of the manual tickets as the training data.

However, the selection is crucial to the highly imbalanced data. Since the monitoring

related tickets are very rare, the randomly selected training data would probably not contain

any monitoring related ticket. As a result, the classification model cannot be trained well.

On the other hand, we do not know which ticket is related to monitoring or not before we

obtain the tickets’ class labels. To solve this problem, we utilize domain words in system

management for the training ticket selection. The domain words are some proper nouns

or verbs that indicate the scope of the system issues. For example, everyone uses “DB2”

to indicate the concept of IBM DB2 database. If a ticket is about the DB2 issue, it must

contain the word “DB2”. “DB2” is a domain word. There are not many variabilities for

the concepts described by the domain words. Therefore, those domain words is helpful
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to reduce the ticket candidates for labeling. Table 4.2 lists examples of the domain words

with their corresponding situations. The domain words can be obtained from the experts or

related documents.

Table 4.2: Domain Word Examples
Situation Issue Words
DB2 tablespace Utilization DB2, tablespace
File System Space Utilization space,file
Disk Space Capacity space,drive
Service Not Available service,down
Router/Switch Down router

In the training ticket selection, we first compute the relevance score of each manual

ticket and ranks all the tickets based on the score, and then select the top k tickets in the

ranked list, where k is a predefined parameter. Given a ticket T , the relevance score is

computed as follows:

score(T ) = max{|w(T ) ∩M1|, ..., |w(T ) ∩Ml|},

where w(T ) is the word set of ticket T , l is the number of predefined situations, Mi is the

given domain word set for the i-th situation, i = 1, ..., l. Intuitively, the score is the largest

number of the common words between the ticket and the domain words.

In dual supervision learning[SM08], the domain words are seen as the labeled features

, which can also be used in active learning for selecting unlabeled data instances. But in

our application, we have only the positive features but no negative features, and the data is

highly imbalanced. Therefore, the uncertainty-based approach and the density-based ap-

proach in active learning are not appropriate for our system.

Classification Model Building

The situation ticket is identified by applying a SVM classification model [TSK05] on the

ticket texts. For training this model, we have two types of input data: 1) the selectively
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labeled tickets, and 2) the domain words. To utilize the domain words, we treat each

domain word as a pseudo-ticket and put all pseudo-tickets into the training ticket set. To

deal with the imbalanced data, the minority class tickets are over-sampled until the number

of positive tickets is equal to the number of the negative tickets [CBHK02]. Figure 4.4

shows the flow chart for building the SVM classification model.
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Figure 4.4: Flow Chart of Classification Model

4.4 Evaluation

This section presents empirical studies for our system. The system and the analysis results

have been deployed for several customer accounts of IBM IT service. The empirical studies

have two types of evaluation. The first type of evaluation is on the collected historical data

to validate the performance of the algorithms. The second one is on the production severs

of IBM customers to validate the effectiveness on real IT infrastructures.
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4.4.1 Evaluation on Historical Data

Our system is developed by Java 1.6. This testing machine is Windows XP with Intel Core

2 Duo CPU 2.4GHz and 3GB of RAM. Experimental monitoring events and tickets are

Table 4.3: Data Summary
Data Set |D| Nnon # Attributes # Situations # Nodes
Account1 50,377 39,971 1082 320 1212

collected from production servers of the IBM Tivoli Monitoring system [urle], summarized

in Table 4.3. The data set of each account covers a period of 3 months. |D| is the number of

events that generated tickets in the ticketing systems. Nnon is the number of false events in

all ticketed events. # Attributes is the total number of attributes of all events. # Situations

is the number of monitoring situations. # Nodes is the number of monitored servers. In

addition to the auto-generated tickets, we also collect manual tickets from two months.

The first month has 9584 manual tickets. The second month has 10109 manual tickets.

Evaluation for False Positives

There are two performance measures:

• FP : The number of false tickets eliminated.

• FD: The number of real tickets postponed.

To achieve a better performance, a system should have a larger FP with a smaller FD.

We split each data set into the training part and the testing part. “Testing Data Ratio” is

the fraction of the testing part in the data set, and the rest is the training part. For example,

“Testing Data Ratio=0.9” means that 90% of the data is used for testing and 10% is used

for training. All FP and FD are only evaluated for the testing part.

Based on the experience of the system administrators, we set delaymax = 360 minutes

for all monitoring situations. Figures 4.5, 4.6 and 4.7 present the experimental results. Our
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Figure 4.5: Eliminated False Positive Tickets

4000

5000

6000

7000

8000

9000

10000

C
o

u
n

t

Postponed Real Tickets

All Real Tickets

0

1000

2000

3000

0.9 0.7 0.5 0.3 0.1

Testing Data Ratio

Figure 4.6: Postponed Real Tickets

method eliminates more than 75% of the false alerts and only postpones less than 3% of

the real tickets.

Since most alert detection methods cannot guarantee no false negatives, we only com-

pare our method with the idea mentioned in [CMB08], Revalidate, which revalidates the
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Figure 4.7: Comparison with Revalidate Method

status of events and postpones all tickets. Revalidate has only one parameter, the post-

ponement time, which is the maximum allowed delay time delaymax. Figure 4.7 compares

the respective performance of our method and Revalidate, where each point corresponds

to a different test data ratio. While Revalidate is clearly better in terms of elimination

of false alerts, it postpones all real tickets, the postponement volume being 1000 to 10000

times larger than our method.

Tables 4.4 lists several discovered predictive rules for false alerts, where waitp is the

delay time for a rule, FPp is the number of false alerts eliminated by a rule in the testing

data, and FDp is the number of real tickets postponed by a rule in the testing data.

Table 4.4: Sampled Rules for Account2 with Testing Data Ratio = 0.3
Situation Rule Condition waitp FPp FDp

cpu xuxw std N/A 355 min 7093 5
monlog 3ntw std current size 64 >= 0 and record count >= 737161 80 min 23 0
svc 3ntw vsa std binary path = R:\IBMTEMP\VSA\VSASvc Cli.exs 30 min 27 0

fss xuxw std inodes used <= 1616 and mount point u = /logs 285 min 12 2
fss xuxw std inodes used <= 1616 and sub origin = /logs 285 min 12 2
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Evaluation for False Negatives
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Figure 4.8: Accuracy of Situation Discovery for File System Space Alert
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Figure 4.9: Accuracy of Situation Discovery for Disk Space Alert

The effectiveness is evaluated by the accuracy of the situation discovery. The accuracy

is measured by precision, recall and F1score, which are the standard accuracy metrics in

classification problems [SM84]. We use one month’s tickets as the training data, and the
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Figure 4.10: Accuracy of Situation Discovery for Service not available
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other month’s tickets as the testing data. We first test the accuracy of the word-match

method. The words are predefined in Table 4.5.

Figures 4.8 to 4.11 show the tested F1 scores [TSK05] of four monitoring situations

about file system space issue, disk space issue, service availability and router/swith issues.

Our method is denoted as “Selective”, the second baseline method is denoted as “Random”.
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Table 4.5: Accuracy of the word-match method
Situation Words Precision Recall F1Score
File System Space space,file 0.0341 0.8 0.0654
Disk Space space,drive 0.1477 0.9565 0.2558
Service Not Available service,down 0.1941 0.75 0.3084
Router/Switch Down router 0.6581 0.7404 0.6968

The “Random” method randomly selects a subset of manual tickets as the training data for

building the SVM model. The domain words for our “Selective” method are shown in

Table 4.5. As shown by those figures, the “Random” method can only achieve the same

accuracy of our method when the number of training tickets is large (above 5000). This is

because the real situation tickets are in the minority of the training data set. The training

tickets in “Random” cannot capture real situation tickets unless the training data is large.

If the training data is large, however, labeling would be time-consuming for humans.

4.4.2 Evaluation on Production Servers

Figure 4.12: Ticket Volume Changes on Account1

The analytic results have been deployed into several customer accounts of IBM IT

services. The service teams track the changes on those customer accounts after the deploy-

ment. Figure 4.12 shows the deployed results of one account in three months. Account1 is

the account that provides the historical data in the previous evaluation of this paper. This
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Figure 4.13: Event Volume Changes on Account2

customer account is a large financial company in the United States. Its production servers

are used mainly to support financial investments. The deployment of our work is a step-

by-step approach. In the first month, the deployment is only on a small group of testing

and development machines. Then it spreads to a wide area of its IT environment. Hence,

in Figure 4.12, the effect of our work gradually appears in three months. Although this

company’s IT infrastructure changes every day, compared to the changes of real tickets, the

reduction for the false tickets is still obvious. The total number of false positive tickets has

been reduced by 21%.

Figure 4.13 shows the evaluation results for another customer account of IBM IT ser-

vices. They compare the number of false alerts before deployment and after deployment.

Before the deployment, this account has many inappropriate CPU and networking monitor-

ing situations, which produce a large number of false alerts every day. By adjusting those

monitoring situations according to our analysis reports, more than 30% of the false alerts

are eliminated.

Table 4.6 shows a sample list of discovered false negative tickets with their monitoring

situations on Account1. For privacy issues, the administrators’ names and the server names

are replaced by “xxx”. Most of the false negative tickets are caused by some new servers

or new databases that are not added into the configuration of monitoring systems. When
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Table 4.6: False Negative Tickets
Situation Ticket
dsp 3ntc std Please clear space from E drive xxxx-fa-ntfwwfdb Please clear space from E

drive xxxx-fa-ntfwwfdb.it is having 2 MB free...
fss rlzc std /opt file system is is almost full on us97udb010ampsb Hi Team@/opt file sys-

tem is almost full. Please clear some space /home/dbasso¿df -h /optFilesys-
tem...

svc 3ntc std RFS101681 E2 Frontier all RecAdmin services are down Frontier RecAd-
min services are not running on the batch server Kindly logon to the server
: xxx.xxx.155.183/xxx ...

dboffln 3oqc std DB2 is not connectable from xxxxx Hi Team@Can you please look into why
we are unable to connect to Porfolio XRef DB.Server : xxxx12DB Instance :
sec mastId : ipxrbtchWhile...

dboffln 3oqc std Unable to login to DB server Hi Team@We had raised a request 131443 for
access on the E1 and E2 serversE1 - Full access@ to read/write/execute pro-
grams Hostname Server xxxxx xxx.xxx.147.194

the new servers and new databases incur system faults or issues, only the database admin-

istrators or storage administrators discover them and create the manual tickets. The false

negative tickets are quite few in real production servers, so there is no obvious impact on

the volume change after the deployment.

4.5 Summary

This chapter first describes the problem of false positive and false negative in most real-

world monitoring systems. Based on a large collection of historical monitoring events and

tickets from several service providers, we investigate the main reasons of this problem, and

propose two data-driven approaches to optimize the automatic system monitoring in large

IT infrastructures. By combing the system event data and ticket data collected from IT ser-

vice centers, the proposed approaches reduce the number of false positive (non-actionable)

alerts and the number of false negative (missing) alerts for the automatic monitoring sys-

tem. It minimizes the cost of providing effective and reliable means for problem detection.

This work has been implemented as a system in the IBM IT service management platform

and deployed in several IBM service centers. This system is used periodically to refine

and adjust monitoring situations after a system has gone through a change, thus helping to

enhance the overall reliability in IT service management.
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CHAPTER 5

SYSTEM DIAGNOSIS

System diagnosis is performed by humans. The objective of our work in this chapter is

the provide semi-automatic approaches for helping humans accomplish this task. The ef-

fectiveness and efficiency of the system diagnosis can be improved by various aspects of

methodologies, including the system design, system optimization and so on. This disser-

tation only focuses on data-driven techniques for assisting system administrators. This

chapter is divided by three subproblems that we may encounter in traditional system diag-

nosis. We first introduce the problem of discovering temporal dependencies with time lags,

which is often used to find the dependency among system components or the correlations of

monitoring situations. Then, we present several proposed recommendation algorithms for

automatically recommending relevant incident tickets with their resolutions for incoming

tickets. The system administrators can correlate the similar system issues happening be-

fore and find the best practices for resolving same type of issues. Meanwhile, the proposed

algorithms take into account the falsity of the tickets to avoid recommending misleading

information for humans. Finally, a novel indexing technique is developed for facilitating

the similarity search over textual event sequences.

5.1 Discovering Temporal Dependencies with Time Lags

Temporal dependencies are often used for prediction. Let A and B be two types of items,

a temporal dependency for A and B, written as A → B, denotes that the occurrence of

B depends on the occurrence of A. The dependency indicates that an item A is often

followed by an item B. Let [t1, t2] be the lag interval of the lag for two dependent A and

B. For example, in system management, disk capacity alert and database alert are two item

types. When the disk capacity is full, the database engine often raises a database alert in
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the next 5 to 6 minutes as shown in Figure 5.1. Hence, the disk capacity has a temporal

dependency with the database. [5min, 6min] is the lag interval between the two dependent

system alerts. disk capacity alert →[5min,6min] database alert describes the temporal

dependency with the associated lag interval. In this dissertation, we study the problem of

finding appropriate lag intervals for two dependent item types.

Figure 5.1: Lag Interval for Temporal Dependency

In Figure 5.1, [5min, 6min] is the predicted time range, indicating when a database

alert occurs after a disk capacity alert is received. Furthermore, the associated lag interval

characterizes the cause of a temporal dependency. For example, if the database is writ-

ing a huge temporal log file which is larger than the disk free space, the database alert is

immediately raised in [0min, 1min]. But if the disk free capacity is consumed by other ap-

plications, the database engine can only detect this alert when it runs queries. The associate

time lags in such a case would be larger than 1 minute.

Previous work for discovering temporal dependencies does not consider interleaved

dependencies [LM04] [BO07] [MTV97]. For A → B, they assume that an item A can

only have a dependency with its first following B. However, it is possible that an item

A has a dependency with any following B. For example, in Figure 5.1, the time lag for

two dependent A and B is 5 to 6 minutes, but the time lag for two adjacent A’s is only 4

minutes. All A’s have a dependency with the second following B, not the first following

B. Hence, the dependencies among these dependent A and B are interleaved. For two

item types, the numbers of time stamps are both O(n), The number of possible time lags

is O(n2). Thus, the number of lag intervals is O(n4). The challenge of our work is how
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to efficiently find appropriate lag intervals over the O(n4) candidates. Other preliminary

work has been discussed in Section 2.3.

5.1.1 Algorithms

Given an item sequence S = x1x2...xN , xi denotes the type of the i-th item, and t(xi)

denotes the time stamp of xi, i = 1, 2, ..., N . Intuitively, if there is a temporal dependency

A →[t1,t2] B in S, there must be a lot of A’s that are followed by some B with a time lag

in [t1, t2]. Let n[t1,t2] denote the observed number of A’s in this situation. For instance, in

Figure 5.1, every A is followed by a B with a time lag of 5 or 6 minutes, so n[5,6] = 4.

Only the second A is followed by a B with a time lag of 0 or 1 minute, so n[0,1] = 1. Let

r = [t1, t2] be a lag interval. One question is that, what is the minimum required nr that we

can utilize to identify the dependency of A and B with r. In this example, the minimum

required nr cannot be greater than 4 since the sequence has at most 4 A’s. However,

if let r = [0,+∞], we can easily have nr = 4. [MH01b] proposes a chi-square test

approach to determine the minimum required nr, where the chi-square statistic measures

the degree of the independence by comparing the observed nr with the expected nr under

the independent assumption. The null distribution of the statistic is approximated by the

chi-squared distribution with 1 degree of freedom. Let χ2
r denote the chi-square statistic

for nr. A high χ2
r indicates the observed nr in the given sequence cannot be explained by

randomness. The chi-square statistic is defined as follows:

χ2
r =

(nr − nAPr)
2

nAPr(1− Pr)
, (5.1)

where nA is the number of A’s in the data sequence, Pr is the probability of a B appearing in

r from a random sequence. Hence, nAPr is the expected number of A’s that are followed by

some B with a time lag in r. nAPr(1− Pr) is the variance. Note that the random sequence
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should have the same sampling rate for B as the given sequence S. The randomness is

only for the positions of B items. It is known that a random sequence usually follows

the Poisson process, which assumes the probability of an item appearing in an interval is

proportional to the length of the interval [Ros95]. Therefore,

Pr = |r| ·
nB

T
, (5.2)

where |r| is the length of r, |r| = t2− t1+wB, wB is the minimum time lag of two adjacent

B’s, wB > 0, and nB is the number of B’s in S. For lag interval r, the absolute length is

t2 − t1. wB is added to |r| because without wB when t1 = t2, |r| = 0, Pr is always 0 no

matter how large the nB is. As a result, χ2
r would be overestimated. In reality, the time

stamps of items are discrete samples and wB is the observed sampling period for B items.

Hence, the probability of a B appearing in t2 − t1 time units is equal to the probability of

a B appearing in t2 − t1 + wB time units.

The value of χ2
r is defined in terms of a confidence level. For example, 95% confidence

level corresponds to χ2
r = 3.84. Based on Eq.(5.1), the observed nr should be greater than√

3.84nAPr(1− Pr) + nAPr. Note that we only care positive dependencies, so

nr − nAPr > 0. (5.3)

To ensure a discovered temporal dependency fits the entire data sequence, support [AS94]

[SA96b] [MH01b] is used in our work. For A →r B, the support suppA(r) (or suppB(r))

is the number of A’s (or B’s) that satisfy A →r B divided by the total number of items

N . minsup is the minimum threshold for both suppA(r) and suppB(r) specified by the

user [SA96b] [MH01b]. Based on the two minimum thresholds χ2
c and minsup, Definition

5.1.1 defines the qualified lag interval that we try to find.
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Definition 5.1.1. Given an item sequence S with two item types A and B, a lag interval

r = [t1, t2] is qualified if and only if χ2
r > χ2

c , suppA(r) > minsup and suppB(r) >

minsup, where χ2
c and minsup are two minimum thresholds specified by the user.

We first develop a straightforward algorithm, a brute-force algorithm. Then, we propose

two new algorithms, STScan and STScan∗, which are much more efficient than the brute-

force algorithm. A lower bound of the time complexity for finding qualified lag intervals is

also studied in this work. Finally, we discuss how to incorporate the domain knowledge to

speed up the algorithms.

The Brute-Force Algorithm

To find all qualified lag intervals, a straightforward algorithm is to enumerate all possible

lag intervals, compute their χ2
r and supports, and then check whether they are qualified or

not. This algorithm is called brute-force. Clearly, its time cost is very large. Let n be the

number of distinct time stamps of S, r = [t1, t2]. The numbers of possible t1 and t2 are

O(n2), and then the number of possible r is O(n4). For each lag interval, there is at least

O(n) cost to scan the entire sequence S to compute the χ2
r and the supports. Therefore, the

overall time cost of the brute-force algorithm is O(n5), which is not affordable for large

data sequences.

The STScan Algorithm

To avoid re-scanning the data sequence, we develop a sorted table based algorithm. A

sorted table is a sorted linked list with a collection of sorted integer arrays. Each entry

of the linked list is attached to two sorted integer arrays. Figure 5.2 shows an example of

the sorted array. In our algorithm, we store every time lag t(xj) − t(xi) into each entry of

linked list, where xi = A, xj = B, i, j are integers from 1 to N . Two arrays attached to

the entry t(xj)− t(xi) are the collections of i and j. In other words, the two arrays are the
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Figure 5.2: Sorted Table

indices of A’s and B’s. Let Ei denote the i-th entry of the linked list and v(Ei) denote the

time lag stored at Ei. IAi and IBi denote the indices of A’s and B’s that are attached to Ei.

For example in Figure 5.2, x3 = A, x5 = B, t(x5) − t(x3) = 20. Since v(E2) = 20, IA2

contains 3 and IB2 contains 5. Any feasible lag interval can be represented as a subsegment

of the linked list. For example in Figure 5.2, E2E3E4 represents the lag interval [20, 120].

To create the sorted table for a sequence S, each time lag between an A and a B is first

inserted into a red-black tree. The key of the red-black tree node is the time lag, the value

is the pair of indices of A and B. Once the tree is built, we traverse the tree in ascending

order to create the linked list of the sorted table. In the sequence S, the number A and B

are both O(N), so the number of t(xj) − t(xi) is O(N2). The time cost of creating the

red-black tree is O(N2 logN2) = O(N2 logN). Traversing the tree costs O(N2). Hence,
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the overall time cost of creating a sorted table is O(N2 logN), which is the known lower

bound of sorting X + Y where X and Y are two variables [HB96]. The linked list has

O(N2) entries, and each attached integer array has O(N) elements, so it seems that the

space cost of a sorted table is O(N2 ·N) = O(N3). However, Lemma 5.1.2 shows that the

actual space cost of a sorted table is O(N2), which is same as the red-black tree.

Lemma 5.1.2. Given an item sequence S having N items, the space cost of its sorted table

is O(N2).

Proof. Since the numbers of A’s and B’s are both O(N), the number of pairs (xi, xj) is

O(N2), where xi = A, xj = B, xi, xj ∈ S. Every pair associated with three entries

in the sorted table: the time stamp distance, the index of an A and the index of a B.

Therefore, each pair (xi, xj) introduces 3 space cost. The total space cost of the sorted

table is O(3N2) = O(N2).

Once the sorted table is created, finding all qualified lag intervals is scanning the sub-

segments of the linked list. However, the number of entries in the linked list is O(N2), so

there are O(N4) distinct subsegments. Scanning all subsegments is still time-consuming.

Fortunately, based on the minimum thresholds on the chi-square statistic and the support,

the length of a qualified lag interval cannot be large.

Lemma 5.1.3. Given two minimum thresholds χ2
c and minsup, the length of any qualified

lag interval is less than T
N
· 1
minsup

.

Proof. Let r be a qualified lag interval. Based Eq.(5.1) and Inequality.(5.3), χ2
r increases

along with nr. Since nr ≤ nA,

(nA − nAPr)
2

nAPr(1− Pr)
≥ χ2

r > χ2
c =⇒ Pr <

nA

χ2
c + nA

.
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By substituting Eq. 5.2 to the previous inequality,

|r| < nA

χ2
c + nA

· T
nB

.

Since nB > N ·minsup, χ2
c > 0, we have

|r| < T

N
· 1

minsup
= |r|max.

T
N

is exactly the average period of items, which is determined by the sampling rate

of this sequence. For example, in system event sequences, the monitoring system checks

the system status for every 30 seconds and records system events into the sequence. The

average period of items is 30 seconds. Therefore, we consider T
N

as a constant. minsup is

also a constant, so |r|max is a constant.

Algorithm STScan states the pseudocode for finding all qualified lag intervals. len(ST )

denotes the number of entries of the linked list in sorted table ST . This algorithm sequen-

tially scans all subsegments starting with E1, E2, ..., Elen(ST ). Based on Lemma 5.1.3,

it only scans the subsegment with |r| < |r|max. To calculate the χ2
r and the supports,

for each subsegment, it cumulatively stores the aggregate indices of A’s and B’s and the

corresponding lag interval r. For each subsegment, nr = |IAr|, suppA(r) = |IAr|/N ,

suppB(r) = |IBr|/N .

Lemma 5.1.4. The time cost of STScan is O(N2), where N is the number of items in the

data sequence.

Proof. For each entry Ei+j in the linked list, the time cost of merging IAi+j and IBi+j to

IAr and IBr is |IAi+j| + |IBi+j| by using a hash table. Let li be the largest length of the
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Algorithm 2 STScan (S,A,B, ST, χ2
c ,minsup)

Input: S : input sequence; A, B: two item types; ST : sorted table; χ2
c : minimum

chi-square statistic threshold; minsup: minimum support.
Output: a set of qualified lag intervals;

1: R← ∅
2: Scan S to find wB

3: for i = 1 to len(ST ) do
4: IAr ← ∅, IBr ← ∅
5: t1 ← v(Ei)
6: j ← 0
7: while i+ j ≤ len(ST ) do
8: t2 ← v(Ei+j)
9: r ← [t1, t2]

10: |r| ← t2 − t1 + wB

11: if |r| ≥ |r|max then
12: break
13: end if
14: IAr ← IAr ∪ IAi+j

15: IBr ← IBr ∪ IBi+j

16: j ← j + 1
17: if |IAr|/N ≤ minsup or |IBr|/N ≤ minsup then
18: continue
19: end if
20: Calculate χ2

r from |IAr| and |r|
21: if χ2

r > χ2
c then

22: R← R ∪ r
23: end if
24: end while
25: end for
26: return R

scanned subsegments starting at Ei. Let lmax be the maximum li, i = 1, ..., len(ST ). The

total time cost is:

T (N) =

len(ST )∑
i=1

li−1∑
j=0

(|IAi+j|+ |IBi+j|)

≤
len(ST )∑

i=1

lmax−1∑
j=0

(|IAi+j|+ |IBi+j|)

≤ lmax ·
len(ST )∑

i=1

(|IAi|+ |IBi|)
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∑len(ST )
i=1 (|IAi|+ |IBi|) is exactly the total number of integers in all integer arrays. Based

on Lemma 5.1.2,
∑len(ST )

i=1 (|IAi| + |IBi|) = O(N2). Then T (N) = O(lmax · N2). Let

Ek...Ek+l be the subsegment for a qualified lag interval, v(Ek+i) ≥ 0, i = 0, ..., l. The

length of this lag interval is |r| = v(Ek+lmax)−v(Ek) < |r|max, then lmax < |r|max and lmax

is not depending on N . Assume ∆E is the average v(Ek+1)−v(Ek), k = 1, ..., len(ST )−1,

we obtain a tighter bound of lmax, i.e., lmax ≤ |r|max/∆E ≤ T
N ·∆E

· 1
minsup

. Therefore, the

overall time cost is T (N) = O(N2).

STScan* Algorithm

To reduce the space cost of STScan algorithm, we develop an improved algorithm STScan∗

which utilizes the increment sorted table and sequence compression.

Lemma 5.1.2 shows the space cost of a complete sorted table is O(N2). Algorithm

STScan sequentially scans the subsegments starting from E1 to Elen(ST ), so it does not need

to access every entry at every time. Based on this observation, we develop an incremental

sorted table based algorithm with an O(N) space cost. This algorithm incrementally creates

the entries of the sorted table along with the subsegment scanning process.

Figure 5.3: Incremental Sorted Table
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The linked list of a sorted table can be created by merging all time lag lists of A’s (

Figure 5.3), where Ai and Bj denote the i-th A and the j-th B, i, j = 1, 2, .... The j-th

entry in the list of Ai stores t(Bj) − t(Ai). The time lag lists of all A’s are not necessary

to be created in the memory because we only need to know t(Bj) and t(Aj). This can

be done just with an indices arrays of all A’s and all B’s respectively. By using N -way

merging algorithm, each entry of the linked list would be created sequentially. The indices

of A’s and B’s attached to each entry are also recorded during the merging process. Base

on Lemma 5.1.3, the length of a qualified lag interval is at most |r|max, therefore, we only

keep track of the recent lmax entries. The space cost for storing lmax entries is at most

O(lmax · N) = O(N). A heap used by the merging process costs O(N) space. Then, the

overall space cost of the incremental sorted table is O(N). The time cost of merging O(N)

lists with total O(N2) elements is still O(N2 logN).

In many real-world applications, some items may share the same time stamp since

they are sampled within the same sampling cycle. To save the time cost, we compress the

original S to another compact sequence S ′. At each time stamp t in S, if there are k items

of type I , we create a triple (I, t, k) into S ′, where k is the cardinality of this triple. To

handle S ′, the only needed change of our algorithm is that the |IAr| and |IBr| become

the total cardinalities of triples in IAr and IBr respectively. Clearly, S ′ is more compact

than S. S ′ has O(n) triples, where n is the number of distinct time stamps of S, n ≤ N .

Creating S ′ costs an O(N) time complexity. By using S ′, the time cost of STScan∗ becomes

O(N + n2 log n) and the space cost of the incremental sorted table becomes O(n).

For analyzing large sequences, an O(n) or O(n log n) algorithm is needed. However,

we find that the time complexity of any algorithm for our problem is at least O(n2) (Lemma

5.1.5). The proof is to reduce the 3SUM′ problem to our problem, and the 3SUM′ has no

o(n2) solution [GO95]. To answer whether O(n2) is the tightest lower bound or not, a

further study is needed.
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Lemma 5.1.5. Finding a qualified lag interval cannot be solved in o(n2) in the worst case,

where n is the number of distinct time stamps of the given sequence.

Proof. Assume that an algorithm P can find a qualified lag interval in o(n2) in any case,

we can construct an algorithm to solve the 3SUM′ problem in o(n2) as follows. Given three

sets of integers X , Y , and Z such that |X| + |Y | + |Z| = n, we construct a compressed

sequence S ′ of items which only has two item types A and B as follows:

1. For each xi in X , create an A at time stamp xi.

2. For each yi in Y , create a B at time stamp yi.

3. For each zi in Z, create n+ 1 A’s at time stamp β(i+ 1) + zi and n+ 1 B’s at time

stamp β(i + 1), where β is the diameter of set X ∪ Y , which is the largest integer

minus the smallest integer in X ∪ Y .

Only the lag intervals created from zi have nr ≥ n + 1. If there are three integers yj ∈ Y ,

xk ∈ X , zi ∈ Z such that yj−xk = zi, the lag interval of zi must have nr ≥ n+2. Then, we

substitute nr = n + 2 into Eq. 5.1 to find the appropriate threshold χ2
c , and call algorithm

P to find all zi that have nr ≥ n + 2. By filtering out the situations of yj − yk = zi and

xj − xk = zi, we can obtain the desired three integers such that yj − xk = zi if they exist.

S ′ has at most 2n distinct time stamps. The time cost of creating S ′ is O(2n) = O(n). P is

an o(n2) algorithm. Filtering the result of P is O(n) since |Z| ≤ n. Therefore, the overall

solution for the 3SUM′ problem is O(n) + o(n2) +O(n) = o(n2). However, it is believed

that the 3SUM′ problem has no o(n2) solution [GO95]. Therefore, P does not exist.

5.1.2 Evaluation

This section presents our empirical study of discovering lag intervals on both synthetic data

sets and real data sets in terms of the effectiveness and efficiency.
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Experimental Platform and Algorithms

All comparative algorithms are implemented in Java 1.6 platform. Table 5.1 summarizes

our experimental environment. At present, the most dedicated algorithm for finding lag

Table 5.1: Experimental Machine
OS CPU bits Memory JVM Heap

Size
Linux 2.6.18 Intel Xeon(R)

@ 2.5GHz, 8
core

64 16G 12G

intervals is the inter-arrival clustering method [LM04] [MH01b], denoted by inter-arrival.

For A → B, an inter-arrival is the time lag of an A to its first following B. A dense

cluster created from all inter-arrivals indicates its time lag frequently appears in the se-

quence. Thus, a qualified lag interval is probably around this time lag. This algorithm is

very efficient and only has a linear time cost, however, it does not consider the interleaved

dependencies. We also implement the four algorithms, brute-force, brute-force∗, STScan

and STScan∗, to compare with in this experiment. brute-force∗ is the improved version of

brute-force which utilizes the pruning strategy about |r|max mentioned in Lemma 5.1.3. For

each test, we enumerate all pairwise temporal dependencies for discovering the qualified

lag intervals.

Synthetic Data

The synthetic data consists of 7 data sequences. Each sequence is first generated from a

random item sequence with 8 item types, denoted by I1,...,I8. The average sample period

of items is 100. Three predefined temporal dependencies are randomly embedded into each

random sequence and shown in Table 5.2. For each temporal dependency Ii →[t1,t2] Ij , we

first randomly choose an item xi and an integer t ∈ [t1, t2], and then let xi = Ii and the

item at t(xi) + t be Ij . We repeat this process until χ2
[t1,t2]

and the support are greater than

the specified thresholds. Note that the time lags in these lag intervals are larger than the
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Table 5.2: Embedded Temporal Dependencies
Embedded Temporal Dependencies Support

I1 →[400,500] I2 0.1
I2 →[1000,1100] I3 0.12
I4 →[5500,5800] I5 0.15

average sample period of items, so all three temporal dependencies are very likely to be

interleaved dependencies.

The effectiveness of the algorithm result is validated by comparing the discovered re-

sults with the embedded lag intervals and measured by the recall [TSK05]. We do not care

the precision because every algorithm can achieve the 100% precision if this algorithm

is correct. We let χ2
c = 10.83 which represents a 99.9% confidence level, minsup = 0.1.

There is no surprise that all the algorithms proposed in this paper, brute-force, brute-force∗,

STScan and STScan∗, find all the embedded lag intervals since they scan the entire space of

the lag interval. Thus, the recalls of these methods are 1.0. The parameter δ of inter-arrival

is varied from 1 to 2000. However, inter-arrival does not find any qualified lag interval

in the synthetic data and its recall is 0. The reason is that, the qualified lag intervals are

[400,500], [1000,1100] and [5500,5800], but most inter-arrival times in the sequence are

close to 100. Thus, inter-arrival can only probe the lag intervals around 100.

The empirical efficiency is evaluated by the CPU running time (Figure 5.4). inter-

arrival is a linear algorithm, so it runs much faster than other algorithms. The running

time of the brute-force algorithm increases extremely fast so that it can only handle very

tiny data sets. By adding the pruning strategy about |r|max to brute-force, the brute-force∗

algorithm runs a little bit faster than the brute-force algorithm, but it still can only handle

small data sets. STScan∗ compresses the sequence before the lag interval discovering,

therefore, STScan∗ is a little bit more efficient than STScan.

STScan has not finish the tests for larger data sets because it runs out of memory. Table

5.4 lists the approximate peak numbers of allocated objects in Java heap memory (not

including the data sequence). It confirms Lemma 5.1.2 that the sorted table takes an O(N2)
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Figure 5.4: Runtime on Synthetic Data

Table 5.3: Discovered Temporal Dependencies with Lag Intervals
Data set Dependency χ2

r support

Account1 MSG Plat APP →[3600,3600] MSG Plat APP ≥ 1000.0 0.07
Linux Process→[0,96] Process 134.56 0.05
SMP CPU →[0,27] Linux Process 978.87 0.06
AS MSG→[102,102] AS MSG ≥ 1000.0 0.08

Account2 TEC Error →[0,1] Ticket Retry ≥ 1000.0 0.12
Ticket Retry →[0,1] TEC Error ≥ 1000.0 0.12
AIX HW ERROR→[25,25] AIX HW ERROR 282.53 0.15
AIX HW ERROR→[8,9] AIX HW ERROR 144.62 0.24

Table 5.4: Space Cost on Synthetic Data
XXXXXXXXXAlgorithm

Data size
103 10×103 50×103 100× 103

STScan 3 ×
104

3× 106 8× 107 OutOfMemory

STScan∗ 103 104 5× 104 105

brute-force 9 ×
102

104 5× 104 9× 104

brute-force∗ 9 ×
102

104 5× 104 9× 104

inter-arrival < 102 < 102 < 102 < 102

space cost. It also shows that, the space costs of STScan∗, brute-force and brute-force∗ are

all O(N) as mentioned before. Assuming each Java object only occupies an integer(8
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Figure 5.5: Plotting for Account2 Data

bytes), STScan would cost over 10G bytes memory for 50 × 103 items. Hence, it runs out

of memory when the data size becomes larger. However, by using the incremental sorted

table, for the same data set, STScan∗ only costs 10M memory. inter-arrival only stores the

clusters of all inter-arrivals, so its space cost is small.

Real Data

Table 5.5: Real System Events
Data set Time

Frame
#Events #Event Types

Account1 54 days 1,124,834 95
Account2 32 days 2,076,408 104

Two real data sets are collected from IT outsourcing centers by IBM Tivoli monitoring

system [urlf] [TLP+12], denoted as Account1 and Account2. Each data set is a collection

of system events from hundreds of application servers and data server. These system events

are mostly system alerts triggered by some monitoring situations (e.g. the CPU utilization

is above a threshold). Table 5.5 shows the time frames and the sizes of the two real data

sets. To discover the temporal dependencies with qualified lag intervals, we let χ2
c = 6.64

which corresponds to the confidence level 99%, and minsup = 0.05. A constraint that

t2 ≤ 1hour is applied to this testing from the domain experts. δ of inter-arrival is varied

from 1 to 2000.
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Figures 5.6 and 5.7 show the running times of all algorithms on the two real data sets.

As for STScan and STScan∗ , the running times grow slower than in Figure 5.4 because the

constraint t2 ≤ 1hour reduces their time complexities. Table 5.6 lists the peak numbers

of allocated memory objects in JVM on Account2 data. The results on Account1 data is

similar to this table.
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Figure 5.6: Running Time on Account1 Data

Table 5.6: Space Cost on Account2 Data
XXXXXXXXXAlgorithm

Data size
103 10×103 50×103 100× 103

STScan 4 ×
104

3× 106 1× 107 3× 107

STScan∗ 103 6× 103 5× 104 105

brute-force 9 ×
102

3× 103 3× 103 3× 103

brute-force∗ 9 ×
102

3× 103 3× 103 3× 103

inter-arrival < 102 < 102 < 102 < 102

Table 5.3 lists several discovered temporal dependencies with qualified lag intervals.

inter-arrival only finds the first two temporal dependencies on Account2 data. The reason

is that, only the two temporal dependencies have very small lag intervals which are just the
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Figure 5.7: Running Time on Account2 Data

inter-arrivals of the events. However, the lag intervals for other temporal dependencies are

larger than most inter-arrivals, so inter-arrival fails.

In Table 5.3, the first discovered temporal dependency for Account1 shows that MSG

Plat APP is a periodic pattern with a period of 1 hour. This pattern indicates this event

MSG Plat APP is a heartbeat signal from an application. The second and third discov-

ered temporal dependencies can be viewed as a case study for event correlation [KYY+95].

Since most servers are Linux servers, so the alerts from processes must be also from Lin-

ux processes. Therefore, for Account1, process events and Linux process events can be

automatically correlated. High CPU utilization alerts (SMP CPU) can only be triggered

by abnormal processes, so SMP CPU events can also be correlated with Linux Process

events. In Account2, the first two temporal dependencies compose a mutual dependency

pattern between TEC Error and Ticket Retry. It can be explained by a programming log-

ic in IBM Tivoli monitoring system. When the monitoring system fails to generate the

incident ticket to the ticketing system, it will report a TEC error and retry the ticket genera-

tion. Therefore, TEC Error and Ticket Retry events are often raised together. The third and
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fourth discovered temporal dependencies for Account2 are related to a hardware error of an

AIX server but with different lag intervals. This is caused by a polling monitoring situation.

When an AIX server is down, the monitoring system continuously receive AIX HW Error

events when polling that AIX server. Thus, this AIX HW Error event exhibits a periodic

pattern. To validate the discovered results, we plot the temporal events into a graphical

chart. Figure 5.5 is a screen shot of the plotting for Account2 data. The x-axis is the time

stamp, the y-axis is the event type. As shown by this figure, TEC Error and Ticket Retry

exhibit a mutually dependency since they are always generated at the almost same time.

AIX HW Error is a polling event.

Figure 5.8: Number of Results by Varying χ2
c

To test the sensitivity of parameters, we vary χ2
c and minsup and test the numbers of

discovered temporal dependencies (Figures 5.8 and Figure 5.9) and the running time (Fig-

ure 5.10 and Figure 5.11). When varying χ2
c , minsup = 0.05; When varying minsup,

χ2
c = 6.64 (with 99% confidence level). χ2

c is not sensitive to the algorithm result because

the associated confidence level is only from 95% to 99.99% although χ2
c is varied from 3.84

to 100. By varying minsup, the number of discovered temporal dependencies exponential-
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Figure 5.9: Num. of Results by Varying minsup

Figure 5.10: Running time by Varying χ2
c

ly decreases as shown in Figure 5.9. As mentioned in [MH01b], the effective choice of

minsup is 0.001 to 0.1.
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Figure 5.11: Running time by Varying minsup

5.2 Recommending Incident Resolutions

With the development of e-commerce, a substantial amount of research has been devot-

ed to the recommendation systems. These recommendation systems determine items or

products to be recommended based on prior behavior of the user or similar users and on

the item itself. An increasing amount of user interactions has provided these applications

with a large amount of information that can be converted into knowledge. In this disser-

tation we apply this approach to the resolution of incident tickets for maintaining service

infrastructures. In addition, we extend the recommendation methodology to take into ac-

count possible falsity of the tickets. We focus on the event tickets (or automatic tickets),

which are incident tickets generated by monitoring systems. We believe our work can help

service providers to efficiently find appropriate problem resolutions and correlate related

tickets resolved in the past. Most service providers keep track of a large amount of histori-

cal tickets with resolutions. The resolution is usually stored as a plain text which describes

how this ticketed incident has been resolved. We analyzed historical event tickets collected
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from three different accounts managed IBM Global Services. We consider an account as an

aggregate of services using a common infrastructure. One observation is that many event

tickets share the same resolutions. If two events are similar, then their triggered tickets

probably have the same resolution. Therefore, we consider recommending a resolution for

an incoming ticket based on the event information and historical tickets. The preliminary

work for various recommendation algorithms has been discussed in Section 2.4.

We analyzed ticket data from three different accounts managed by IBM Global Ser-

vices. One observation is that many ticket resolutions repeatedly appear in the ticket

database. For example, for a low disk capacity ticket, usual resolutions are deletion of

temporal files, backup data, or addion of a new disk. Unusual resolutions are very rare.

The collected ticket sets from the three accounts are denoted by “account1”, “accoun-

Table 5.7: Data Summary
Data set Num. of Servers Num. of Tickets Time Frame
account1 1,145 50,377 55 days
account2 614 6,121 29 days
account3 391 4,066 48 days
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Figure 5.12: Numbers of Tickets and Distinct Resolutions

t2” and “account3” respectively. Table 5.7 summarizes the three data sets. Figure 5.12

shows the numbers of tickets and distinct resolutions and Figures 5.13 to 5.15 show the top
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Figure 5.13: Top Repeated Resolutions of Account1

Figure 5.14: Top Repeated Resolutions of Account2

repeated resolutions in each data set. It is seen that the number of distinct resolutions is

much smaller than the number of tickets - in other words, multiple tickets share the same

resolutions. For example (Figure 5.13) the first resolution, “No actions were...”, appears

more than 14000 times in “account1”.

5.2.1 A Basic KNN-based Recommendation

Given an incoming event ticket, the objective of the resolution recommendation is to find k

resolutions as close as possible to the the true one for some user-specified parameter k. The
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Figure 5.15: Top Repeated Resolutions of Account3

recommendation problem is often related to that of predicting the top k possible resolutions.

A straightforward approach is to apply the KNN algorithm which searches the K nearest

neighbors of the given ticket (K is a predefined parameter), and recommends the top k ≤

K representative resolutions among them [SKKR00, TSK05]. The nearest neighbors are

indicated by similarities of the associated events of the tickets. In this dissertation, the

representativeness is measured by the number of occurrences in the K neighbors.

Table 5.8: Notations for KNN based Recommendation Algorithms
Notation Description
D Set of historical tickets
| · | Size of set
ti i-th event ticket
r(ti) Resolution description of ti
e(ti) Associate event of ti
c(ti) Type of ticket ti, c(ti) = 1 indicates ti is a real

ticket,c(ti) = 0 indicates ti is a false ticket.
A(e) Set of attributes of event e
sim(e1, e2) Similarity of events e1 and e2
sima(e1, e2) Similarity of a values of event e1 and e2
K Number of nearest neighbors in the KNN algorithm
k Number of recommended resolutions for a ticket, k ≤ K

Table 5.8 lists the notations used in this dissertation. Let D = {t1, ..., tn} be the set

of historical event tickets and ti be the i-th ticket in D, i = 1, ..., n. Let r(ti) denote

the resolution description of ti, e(ti) is the associated event of ti. Given an event ticket
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t, the nearest neighbor of t is the ticket ti which maximizes sim(e(t), e(ti)), ti ∈ D,

where sim(·, ·) is a similarity function for events. Each event consists of event attributes

with values. Let A(e) denote the set of attributes of event e. The similarity for events is

computed as the summation of the similarities for all attributes. There are three types of

event attributes: categorical, numeric and textual (shown by Table 5.9). Given an attribute

Table 5.9: Event Attribute Types
Type Example
Categorical host name, process name, ...
Numeric CPU utilization, disk free space percentage, ...
Textual event message,...

a and two events e1 and e2, a ∈ A(e1) and a ∈ A(e2), the values of a in e1 and e2 are

denoted by a(e1) and a(e2). The similarity of e1 and e2 with respect to a is

sima(e1, e2) =


I[a(e1) = a(e2)], if a is categorical,

|a(e1)−a(e2)|
max|a(ei)−a(ej)| , if a is numeric,

Jaccard(a(e1), a(e2)), if a is textual,

where I(·) is the indicator function returning 1 if the input condition holds, and 0 otherwise.

Let max|a(ei) − a(ej)| be the size of the value range of a. Jaccard(·, ·) is the Jaccard

index for bag of words model [SM84], frequently used to compute the similarity of two

texts. Its value is the proportion of common words in the two texts. Note that for any type

of attribute, inequality 0 ≤ sima(e1, e2) ≤ 1 holds. Then, the similarity for two events e1

and e2 is computed as

sim(e1, e2) =

∑
a∈A(e1)∩A(e2)

sima(e1, e2)

|A(e1) ∪ A(e2)|
. (5.4)

Clearly, 0 ≤ sim(e1, e2) ≤ 1. To identify the type of attribute a, we only need to scan

all appearing values of a. If all values are composed of digits and a dot, a is numeric. If
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some value of a contains a sentence or phrase, then a is textual. Otherwise, a is categorical.

A Division Method

Traditional recommendation algorithms focus on the accuracy of the recommended result-

s. However, in automated service management, false alarms are unavoidable in both the

historical and incoming tickets. The resolutions of false tickets are short comments such

as “this is a false alarm”, “everything is fine” and “no problem found”. If we recommend

a false ticket’s resolution for a real ticket, it would cause the system administrator to over-

look the real system problem. and besides, none of the information in this resolution is

helpful. Note that in a large enterprise IT environment, overlooking a real system problem

may have serious consequences such as system crashes. Therefore, we consider incorpo-

ration of penalties in the recommendation results. There are two cases meriting a penalty:

recommendation of a false ticket’s resolution for a real ticket, and recommendation of a

real ticket’s resolution for a false ticket. The penalty in the first case should be larger since

the real ticket is more important. The two cases are analogous to the false negative and

false positive in prediction problems [TSK05], but note that our recommendation target is

the ticket resolution, not its type. A false ticket’s event may also have a high similarity

with that of a real one. The objective of the recommendation algorithm is now maximized

accuracy under minimized penalty.

A straightforward solution consists in dividing all historical tickets into two sets com-

prising the real and false tickets respectively. Then, it builds a KNN-based recommender

for each set respectively. Another ticket type predictor is created, establishing whether an

incoming ticket is real or false, with the appropriate recommender used accordingly. The

divide method works as follows: it first uses a type predictor to predict whether the incom-

ing ticket is real or false. If it is real, then it recommends the tickets from the real historic

tickets; if it is false, it recommends the tickets from the false historic tickets. The historic
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tickets are already processed by the system admin, so their types are known and we do not

have to predict them.

The division method is simple, but relies heavily on the precision of the ticket type

predictor which cannot be perfect. If the ticket type prediction is correct, there will be no

penalty for any recommendation result. If the ticket type prediction is wrong, every recom-

mended resolution will incur a penalty. For example, if the incoming ticket is real, but the

predictor says it is a false ticket, so this method only recommends false tickets. As a result,

all the recommendations would incur penalties.

A Probabilistic Fusion Method

To overcome the limitation of the division method, we develop a probabilistic fusion method.

The framework of the basic KNN-based recommendation is retained, with difference that,

the penalty and probability distribution of the ticket type are incorporated in the similarity

function.

Let lossreal be the loss for recommending a false ticket’s resolution for a real ticket,

and lossfalse be the loss for recommending a real ticket’s resolution for a false one. For

example, lossreal would be the penalty for missing a real alert specified in the SLA (Service

Level Agreement), e.g., 2700 dollars. lossfalse would be the human resource waste for

handing a false alert, e.g, 300 dollars. In IT service management, lossreal is always a

fixed value in the contract with a particular consumer. lossfalse can be calculated from the

human resource cost with the numbers of false tickets and real tickets in recent months.

Therefore, for one application, lossreal and lossfalse are both constant values. The total

loss lossreal + lossfalse is also a constant value. Then, we let λ = lossreal
lossreal+lossfalse

. In the

previous example, lossreal + lossfalse = 2700 + 300 = 3000 and λ = 2700/3000 = 0.9.

Clearly, 0 ≤ λ ≤ 1. In other words, λ is the proportional loss of recommending a false

ticket’s resolution to a real ticket. 1 − λ is the proportional loss of recommending a real
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ticket’s resolution to a false ticket. The penalty function is

λt(ti) =


λ, t is a real ticket, ti is a false ticket

1− λ, t is a false ticket, ti is a real ticket

0, otherwise,

where t is the incoming ticket and ti is the historical one whose resolution is recommended

for t. Conversely, an award function can be defined as ft(ti) = 1 − λt(ti). Since 0 ≤

λt(ti) ≤ 1, 0 ≤ ft(ti) ≤ 1.

Let c(·) denote the ticket type. c(ti) = 1 indicates ti is a real ticket; c(ti) = 0 indicates

ti is a false ticket. Since t is an incoming ticket, the value of c(t) is not known. Using a

ticket type predictor, we can estimate the distribution of the binary random variable c(t).

The idea of this method is to incorporate the expected award in the similarity function. The

new similarity function sim′(·, ·) is defined as:

sim′(e(t), e(ti)) = E[ft(ti)] · sim(e(t), e(ti)), (5.5)

where sim(·, ·) is the original similarity function defined by Eq. (5.4), and E[ft(ti)] is

the expected award, E[ft(ti)] = 1 − E[λt(ti)]. If ti and t have the same ticket type

then E[ft(ti)] = 1 and sim′(e(t), e(ti)) = sim(e(t), e(ti)), otherwise sim′(e(t), e(ti)) <

sim(e(t), e(ti)). Generally, the expected award is computed as

E[ft(ti)] = E[1− λt(ti)] = 1− E[λt(ti)]
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Based on the definition of λt(ti), the expected penalty is

E[λt(ti)] = P [c(t) = 1, c(ti) = 0] · λ

+ P [c(t) = 0, c(ti) = 1] · (1− λ)

+ P [c(t) = 0, c(ti) = 0] · 0

+ P [c(t) = 1, c(ti) = 1] · 0

Since ti is the historical ticket and c(ti) is observed, if the given ti is a real ticket, then

E[λt(ti)] = P [c(t) = 0] · (1− λ) + P [c(t) = 1] · 0 = P [c(t) = 0] · (1− λ).

If the given ti is a false ticket, then

E[λt(ti)] = P [c(t) = 1] · λ+ P [c(t) = 0] · 0 = P [c(t) = 1] · λ.

Note that all factors in the new similarity function are of the same scale, i.e., [0, 1], thus

0 ≤ sim′(·, ·) ≤ 1.

Example 6 illustrates how the new similarity function combines awards and similarities

to affect the recommendation results.

Example 6. Let D = {t1, t2, t3, t4, t5, t6}, where t1,t2 and t3 are false tickets and others

are real tickets. Let λ = 0.6 since a real ticket is more important than a false ticket. Given

an incoming ticket is t, by using a ticket type predictor, we estimate P [c(t) = 1] = 0.6,

P [c(t) = 0] = 1 − 0.6 = 0.4. Thus, t is more likely to be a real ticket. Table 5.10

lists all related information about all tickets in D. Let K = 3, Table 5.11 shows the

K nearest tickets selected by different methods. The basic KNN-based algorithm selects

the 3 nearest tickets based on sim(e(t), e(ti)). Since the incoming ticket t is more likely
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Table 5.10: Summary of Tickets in D
t1 t2 t3 t4 t5 t6

c(ti) 0 0 0 1 1 1
sim(e(t), e(ti)) 0.1 0.45 0.9 0.5 0.4 0.1
E[ft(ti)] 0.64 0.64 0.64 0.84 0.84 0.84
sim′(e(t), e(ti)) 0.064 0.288 0.576 0.42 0.336 0.084

Table 5.11: Selected K Nearest Tickets
Method K Nearest Tickets
Basic KNN-based t2, t3 and t4
Dividing Method t4, t5 and t6
Probabilistic Fusion Method t3, t4 and t5

to be a real ticket, the dividing method selects all real tickets. However, t6 only has a

very small similarity with t, sim(e(t), e(t6)) = 0.1, but t3 has the highest similarity 0.9

with t even though t3 is a false ticket. To balance all related factors for recommendation,

the probabilistic fusion method first computes the expected award of each ticket E[ft(ti)],

ti ∈ D. If ti is a false ticket, If ti is a real ticket,

E[ft(ti)] = 1− P [c(t) = 0] · (1− λ) = 1− 0.4 · 0.4 = 0.84.

Based on the values of sim′(e(t), e(ti)) = E[ft(ti)] · sim(e(t), e(ti)), t3, t4 and t5 are

selected finally.

Prediction of Ticket Type

Given an incoming ticket t, the probabilistic fusion method needs to estimate the distri-

bution of P [c(t)]. The dividing method also has to predict whether t is a real ticket or a

false ticket. There are many binary classification algorithms for estimating P [c(t)]. In our

implementation, we utilize another KNN classifier. The features are the event attributes

and the classification label is the ticket type. The KNN classifier first finds the K nearest

tickets in D, denoted as DK = {tj1 , ..., tjk}. Then, P [c(t) = 1] is the proportion of real
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tickets in DK and P [c(t) = 0] is the proportion of false tickets in DK . Formally,

P [c(t) = 1] = |{tj|tj ∈ DK , c(tj) = 1}|/K

P [c(t) = 0] = 1− P [c(t) = 1].

5.2.2 Evaluation

Implementation and Testing Environment

We implemented four algorithms: KNN, weighted KNN [Dud76], the division method and

the probabilistic fusion method, which are denoted by “KNN”, “WeightedKNN”, “Divide”

and “Fusion” respectively. Our proposed two algorithms, “Divide” and “Fusion”, are based

on the weighted KNN algorithm framework. We choose the KNN-based algorithm as the

baseline because it is the most widely used Top-N item based recommendation algorithm.

Certainly, we can use SVM to predict the ticket type to be false or real. But our core idea

is not about classification, but to combine the penalty for the misleading resolution into the

recommendation algorithm.

All algorithms are implemented by Java 1.6. This testing machine is Windows XP with

Intel Core 2 Duo CPU 2.4GHz and 3GB of RAM.

Experimental Data

Experimental event tickets are collected from three accounts managed by IBM Global Ser-

vices denoted later “account1”, “account2” and “account3”. The monitoring events are

captured by IBM Tivoli Monitoring [urle]. The ticket sets are summarized in Table 5.7.
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Accuracy

For each ticket set, the first 90% tickets are used as the historic tickets and the remaining

10% tickets are used for testing. Hit rate is a widely used metric for evaluating the accuracy

in item-based recommendation algorithms [DK04, Kar01, NK11].

Accuracy = Hit-Rate = |Hit(C)|/|C|,

where C is the testing set, and Hit(C) is the set for which one of the recommended resolu-

tions is hit by the true resolution. If the recommendation resolution is truly relevant to the

ticket, we say that recommended resolution is hit by the true resolution.

Figure 5.16: Accuracy for K = 10, k = 3

Since real tickets are more important than false ones, we define another accuracy mea-

sure, the weighted accuracy, which assigns weights to real and false tickets. The weighted

accuracy is computed as follows:

Weighted Accuracy =
λ · |Hit(Creal)|+ (1− λ) · |Hit(Cfalse)|

λ · |Creal|+ (1− λ) · |Cfalse|
,

111



Figure 5.17: Accuracy for Real Tickets and K = 10, k = 3

Figure 5.18: Weighted Accuracy for K = 10, k = 3

where Creal is the set of real testing tickets, Cfalse is the set of false testing tickets, Creal ∪

Cfalse = C, λ is the importance weight of the real tickets, 0 ≤ λ ≤ 1, it is also the

penalty mentioned before. In this evaluation, λ = 0.9 since the real tickets are much more

important than the false tickets in reality. We also test other large λ values, such as 0.8 and

0.99. The accuracy comparison results have no significant change.

We vary K and k from 1 to 20 to obtain different parameter settings. Figures 5.16 to

5.21 are the testing results for K = 10, k = 3 and K = 20, k = 5. The comparison results

for other parameter settings are similar to the two figures. It is seen that, the weighted KNN

algorithm always achieves the highest accuracy in the three data sets. But for real tickets,
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Figure 5.19: Accuracy for K = 20, k = 5

Figure 5.20: Accuracy for Real Tickets and K = 20, k = 5

our proposed probabilistic fusion method outperforms other algorithms (Figures 5.17 and

5.20). As for the weighted accuracy in Figures 5.18 and 5.21, the weighted KNN and the

probabilistic fusion are still the two best algorithms, and neither of them outperforms the

other in all data sets. Overall, the performances of all four algorithms are close. For each

comparison, the difference between the highest one and the lowest one is about 10%.

Penalty

Figures 5.22 and 5.23 show the average penalty for each testing ticket. We assigned a

higher importance to the real tickets, λ = 0.9. As shown by these figures, our proposed
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Figure 5.21: Weighted Accuracy for K = 20, k = 5

two algorithms have smaller penalties than the traditional KNN-based recommendation

algorithms. The probabilistic fusion method outperforms the division method, which relies

heavily on the ticket type predictor. Overall, our probabilistic fusion method only has about

1/3 of the penalties of the traditional KNN-based algorithms.

Figure 5.22: Average Penalty for K = 10, k = 3

Overall Performance

An overall quantity metric is used for evaluating the recommendation algorithms, covering

both the accuracy and the average penalty. It is defined as overall score = weighted accuracy

/ average penalty. If the weighted accuracy is higher or the average penalty is lower, then
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Figure 5.23: Average Penalty for K = 20, k = 5

the overall score becomes higher and the overall performance is better. Figures 5.24 and

5.25 show the overall scores of all algorithms for two parameter settings. It is seen that, our

proposed algorithms are always better than the KNN-based algorithms in each data set.

Figure 5.24: Overall Score for K = 10, k = 3

Variation of Parameters

To compare the results of each algorithm, we vary the number of each recommendation

resolutions, k. Figures 5.26 to 5.34 show the weighted accuracies, average penalties and

overall scores by varying k from 1 to 8, with K = 10. For other values of K, the com-

parison results are similar to the three figures. As shown by Figures 5.26 to 5.28, when we
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Figure 5.25: Overall Score for K = 20, k = 5

Figure 5.26: Weighted accuracy for account1 by varying k, K = 10

Figure 5.27: Weighted accuracy for account2 by varying k, K = 10
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Figure 5.28: Weighted accuracy for account3 by varying k, K = 10

Figure 5.29: Average penalty for account1 by varying k, K = 10

Figure 5.30: Average penalty for account2 by varying k, K = 10
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Figure 5.31: Average penalty for account3 by varying k, K = 10

Figure 5.32: Average penalty for account1 by varying k, K = 10

Figure 5.33: Average penalty for account2 by varying k, K = 10
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Figure 5.34: Average penalty for account3 by varying k, K = 10

increase the value of k, the size of the recommendation results becomes larger. Then the

probability of one recommended resolution being hit by the true resolution also increases.

Therefore, the weighted accuracy becomes higher. Except for the division method, all al-

gorithms have similar weighted accuracies for each k. However, as k is increased and there

are more recommended resolutions, there are more potential penalties in the recommend-

ed resolutions. Hence, the average penalty also becomes higher (Figures 5.29 to 5.31).

Finally, Figures 5.32 to 5.34 compare the overall performance by varying k. Clearly, the

probabilistic fusion method outperforms other algorithms for every k.

A Case Study

We select an event ticket in “account1” to illustrate why our proposed algorithms are bet-

ter than the traditional KNN-based algorithms. Table 5.12 shows a list of recommended

resolutions given by each algorithm. The testing ticket is a real event ticket triggered by a

low capacity alert for the file system. Its true resolution of this ticket is: “cleaned up the

FS using RMAN retention policies...” RMAN is a data backup and recovery tool in Oracle

database. The general idea of this resolution is to use this tool to clean up the old data.

As shown by Table 5.12, the first resolution recommended by KNN and WeightedKNN

is a false ticket’s resolution: “No actions were taken by GLDO for this Clearing Event...”
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Table 5.12: A Case Study for K = 10, k = 3
Algorithm Recommended Resolution Is Hit Is A Real Tick-

et’s Resolution
Penalty

KNN
No actions were taken by GLDO for this Clear-
ing Event...

no false 0.9

Clean up the backup filesystem. Filesystem k-
bytes used avail capacity...

no true 0

Duplicated 28106883... no true 0

WeightedKNN
No actions were taken by GLDO for this Clear-
ing Event...

no false 0.9

I cleaned up the FS using RMAN retention
policies...

yes true 0

Duplicated 28106883... no true 0

Divide
Duplicated 28106883... no true 0
Another device failure has been reported for
this node...

no true 0

I cleaned up the FS using RMAN retention
policies...

yes true 0

Fusion
Duplicated 28106883... no true 0
Another device failure has been reported for
this node...

no true 0

I cleaned up the FS using RMAN retention
policies...

yes true 0

It might be caused by a temporal file generated by some application, which would clean

up the temporal file automatically after its job was done. When the system administrator

opened that ticket, the problem was gone, and that ticket is seen as false. However, the

testing ticket is real and would not disappear unless the problem was actually fixed. This

resolution from the false ticket would have misled the system administrator to overlook this

problem. Consequently, a penalty of λ = 0.9 is given to KNN and WeightedKNN.

WeightedKNN, Divide and Fusion all successfully find the true resolution of this testing

ticket, but WeightedKNN has one false resolution, so its penalty is 0.9. Our proposed

methods, Divide and Fusion, have no penalty for this ticket. Therefore, the two methods

are better than WeightedKNN.

5.3 Searching Similar Textual Event Segments

Sequential data is prevalent in many real-world applications such as bioinformatics, system

security and networking. Similarity search is one of the most fundamental techniques in

sequential data management. A lot of efficient approaches are designed for searching over
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symbolic sequences or time series data, such as DNA sequences, stock prices, network

packets and video streams. A textual event sequence is a sequence of events, where each

event is a plain text or message. For example, in system management, most system logs are

textual event sequences which describe the corresponding system behaviors, such as the

starting and stopping of services, detection of network connections, software configuration

modifications, and execution errors [TLP11] [OAS08, MZHM09, TL10, XHF+08]. Sys-

tem administrators utilize the event logs to understand system behaviors. Similar system

events reveal potential similar system behaviors in history which help administrators to di-

agnose system problems. For example, four log messages collected from a supercomputer

[urll] in Sandia National Laboratories are listed below:

- 1131564688 2005.11.09 en257 Nov 9 11:31:28 en257/en257

ntpd[1978]: ntpd exiting on signal 15

- 1131564689 2005.11.09 en257 Nov 9 11:31:29 en257/en257

ntpd: failed

- 1131564689 2005.11.09 en257 Nov 9 11:31:29 en257/en257

ntpd: ntpd shutdown failed

- 1131564689 2005.11.09 en257 Nov 9 11:31:29 en257/en257

ntpd: ntpd startup failed

The four log messages describe a failure in restarting of the ntpd (Network Time Protocol

daemon). The system administrators need to first know the reason why the ntpd could

not restart and then come up with a solution to resolve this problem. A typical approach

is to compare the current four log messages with the historical ntpd restarting logs and

see what is the difference with them. Then the administrators can find out which steps or

parameters might cause this failure. To retrieve the relevant historical log messages, the
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four log messages can be used as a query to search over the historical event logs. However,

the size of the entire historical logs is usually very large, so it is not efficient to go through

all event messages. For example, IBM Tivoli Monitoring 6.x [urle] usually generates over

100G bytes system events for just one month from 600 windows servers. Searching over

such a large scale event sequence is challenging and the searching index is necessary for

speeding up this process. Current system management tools and software can only search

a single event by keywords or relational query conditions [urle, urlk, urlh]. However, a

system behavior is usually described by several continuous event messages not just one

single event, as shown in the above ntpd example. In addition, the number of event

messages for a system behavior is not a fixed number, so it is hard to decide what is the

appropriate segment length for building the index.

Existing search indexing methods for textual data and sequential data can be summa-

rized into two different categories. In our problem, however, each of them has its own

limitation. For the textual data, the locality-sensitive hashing (LSH) [GIM99] with the

Min-Hash [BCFM98] function is a common scheme. But these LSH based methods only

focus on unordered data [GIM99, BCG05, Ste07]. In a textual event sequence, the order

information cannot be ignored since different orders indicate different execution flows of

the system. For sequential data, the segment search problem is a substring matching prob-

lem. Most existing methods are hash index based, suffix tree based, suffix arrays based

or BOWTIE based [GV05, MM93, KA05, AGM+90, LTPS09, BRCR94]. These methods

can keep the order information of elements, but their sequence elements are single values

rather than texts. Their search targets are the matched substrings. In our problem, the sim-

ilar segments are not necessary to be matched substrings. The detailed discussion of the

similarity search over textual data and sequential data is provided in Section 2.5.
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5.3.1 Suffix Matrix with Random Mask

Problem Formulation

Let S = e1e2...en be a sequence of n event messages, where ei denotes the i-th event,

i = 1, 2, ..., n. |S| denotes the length of sequence S, which is the number of events in

S. E denotes the universe of events. sim(ei, ej) is a similarity function which measures

the similarity between event ei and event ej , where ei ∈ E , ej ∈ E . Jaccard coefficient

[TSK05] with 2-shingling [BGMZ97] is utilized as the similarity function sim(·, ·) because

each event is a textual message.

Definition 5.3.1. (Segment) Given a sequence of events S = e1...en, a segment of S is a

sequence L = em+1em+2...em+l, where l is the length of L, l ≤ n, and 0 ≤ m ≤ n− l.

The problem is formally stated as follows.

Problem 3. (Problem Statement) Given an event sequence S and a query event sequence

Q, find all segments with length |Q| in S which are similar to Q.

Similar segments are defined based on the event similarity. Given two segments L1 =

e11e12...e1l, L2 = e21e22...e2l, we consider the number of dissimilar events in L1 and L2. If

the number of dissimilar event pairs is at most k, then L1 and L2 are similar. This definition

is also called k-dissimilar:

Ndissim(L1, L2, δ) =
l∑

i=1

zi ≤ k,

where

zi =

 1, sim(e1i, e2i) < δ

0, otherwise
,
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and δ is a user-defined threshold for the event similarity. The k-dissimilar corresponds to

the well-known k-mismatch or k-error in the subsequence matching problem [LTP11].

Potential Solutions by LSH

The locality-sensitive hashing (LSH) [GIM99] with the Min-Hash [BCFM98] function

is a common scheme for the similarity search over texts and documents. LSH is a s-

traightforward solution for our problem. We can consider each segment as a small “doc-

ument” by concatenating its event messages. Figure 5.35 shows a textual event sequence

S = e1e2...ei+1ei+2..., where ei is a textual event. In this sequence, every 4 adjacent event

messages are seen as a “document”, such as Li+1, Li+2 and so on. The traditional LSH

with the Min-Hash function can be utilized on these small “documents” to speed up the

similar search. This solution is called LSH-DOC as a baseline method. However, this so-

lution ignores the order information of events, because the similarity score obtained by the

Min-Hash does not consider the order of elements in each “document”.

Figure 5.35: An Example of LSH-DOC

To preserve the order information, we can distribute the hash functions to individual

regions of segments. For example, the length of the indexed segment is 4, and we have 40

hash functions. We assign every 10 hash functions to every event in the segment. Then,

each hash function can only be used to index the events from one region of the segment.

Figure 5.36 shows a sequence S with several segments Li+1,..., Li+4, where p1,..., p4 are 4

regions of each segment and each region contains one event. Every pj has 10 hash functions
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to compute the hash values of the contained event, j = 1, ..., 4. If the hash signatures of two

segments are identical, it is probably that every region’s events are similar. Thus, the order

information is preserved. This solution is called LSH-SEP as another baseline method.

Figure 5.36: An Example of LSH-SEP

k-dissimilar segments are two segments which contain at most k dissimilar events insid-

e. To search the k-dissimilar segments, a common approach is to split the query sequence

Q into k+1 non-overlapping segments. If a segment L has at most k dissimilar events to Q,

then there must be one segment of Q which has no dissimilar event with its corresponding

region of L. Then, we can use any search method for exact similar segments to search the k-

dissimilar segments. This idea is applied in many biological sequence matching algorithms

[AGM+90]. But there is a drawback for the two previous potential solutions: they all as-

sume that the length of indexed segments l is equal to the length of query sequence |Q|. The

query sequence Q is given by the user at runtime, so |Q| is not fixed. However, if we do not

know the length of the query sequence Q in advance, we cannot determine the appropriate

segment length l for building the index. If l > |Q|, none of the similar segments could be

retrieved correctly. If l < |Q|, we have to split Q into shorter subsegments of length l, and

then query those shorter subsegments instead of Q. Although all correct similar segments

can be retrieved, the search cost would be large, because the subsegments of Q are shorter

than Q and the number of retrieve candidates is thus larger [LTP11]. Figure 5.37 shows

an example for the case l < |Q|. Since the length of indexed segments is l and less than

|Q|, LSH-DOC and LSH-SEP have to split Q into subsegments L1, L2 and L3, |Li| = l,
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Figure 5.37: An example of l < |Q|

i = 1, .., 3. Then, LSH-DOC and LSH-SEP use the three subsegments to query the seg-

ment candidates. If a segment candidate is similar to Q, its corresponding region must be

similar to a subsegment Li, but not vice versa. Therefore, the acquired candidates for Li

must be more than those for Q. Scanning a large number of candidates is time-consuming.

Therefore, the optimal case is l = |Q|. But |Q| is not fixed at runtime.

Suffix Matrix Indexing

Let h be a hash function from LSH family. h maps an event to an integer, h : E → Zh,

where E is the universe of textual events, and Zh is the universe of hash values. In suffix

matrix, Min-Hash [BCFM98] is the hash function. By taking a Min-Hash function h, a

textual event sequence S = e1...en is mapped into a sequence of hash values h(S) =

h(e1)...h(en). Suppose we have m independent hash functions, we can have m distinct

hash value sequences. Then, we create m suffix arrays from the m hash value sequences

respectively. The suffix matrix of S is constructed by the m suffix arrays, where each row

is a suffix array.

Definition 5.3.2. (Suffix Matrix) Given a sequence of events S = e1...en and a set of

independent hash functions H = {h1, ..., hm}, let hi(S) be the sequence of hash values,

i.e., hi(S) = hi(e1)...hi(en). The suffix matrix of S is MS,m = [AT
1 , ..., A

T
m]

T , where AT
i is

the suffix array of hi(S) and i = 1, ...,m.

We illustrate the suffix matrix by an example as follows:
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Example 7. Let S be a sequence of events, S = e1e2e3e4. H is a set of independent hash

functions for events, H = {h1, h2, h3}. For each event and hash function, the computed

the hash value is shown in Table 5.13.

Table 5.13: An Example of Hash Value Table
Event e1 e2 e3 e4
h1 0 2 1 0
h2 3 0 3 1
h3 1 2 2 0

Let hi(S) denote the i-th row of Table 5.13. By sorting the suffixes in each row of Table

5.13, we could get the suffix matrix MS,m below.

MS,m =


3 0 2 1

1 3 0 2

3 0 2 1

 .

For instance, the first row of MS,m: 3021, is the suffix array of h1(S) = 0210.

There are a lot of efficient algorithms for constructing the suffix arrays [GV05, MM93,

KA05]. The simplest algorithm is sorting all suffixes of the sequence with a time com-

plexity O(n log n). Thus, the time complexity of constructing the suffix matrix MS,m is

O(mn log n), where n is the length of the historical sequence and m is the number of hash

functions.

Searching over Suffix Matrix

Similar to the traditional LSH, the search algorithm based on a suffix matrix consists of two

steps. The first step is to acquire the candidate segments. Those candidates are potential

similar segments to the query sequence. The second step is to filter the candidates by

computing their exact similarity scores. Since the second step is straightforward and is the

same as the traditional LSH, we only present the first step of the search algorithm.
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Given a set of independent hash functions H = {h1, ..., hm} and a query sequence

Q = eq1eq2...eqn, let QH = [hi(eqj)]m×n, MS,m(i) and QH(i) denote the i-th rows of

MS,m and QH respectively, i = 1, ...,m, j = 1, ..., n. Since MS,m(i) is a suffix array, we

obtain these entries that matched with QH(i) by a binary search. MS,m has m rows, we

apply m binary searches to retrieve m entry sets. If one segment appears at least r times in

the m sets, then this segment is considered to be a candidate. Parameters r and m will be

discussed at a later stage of this section.

Algorithm 3 states the candidates search algorithm. h(i) is the i-th hash function in

H . Qhi
is the hash-value sequence of Q mapped by hi. SAi is the i-th row of the suffix

matrix MS,m, and SAi[l] is the suffix at position l in SAi. CompareAt(Qhi
, SAi[l]) is a

subroutine to compare the order of two suffixes Qhi
and SAi[l] for the binary search. If Qhi

is greater than SAi[l], it returns 1; if Qhi
is smaller than SAi[l], it returns −1; otherwise, it

returns 0. Extract(Qhi
, SAi, pos) is a subroutine to extract the segments candidates from

the position pos. Since H has m hash functions, C[L] records the number of times that the

segment L is extracted in the m iterations. The final candidates are only those segments

which are extracted for at least r times. The time cost issue will be discussed later.

If a segment L of S is returned by the Algorithm 3, we call L is reached by this al-

gorithm. We illustrate how the binary search works for one hash function hi ∈ H by the

following example.

Example 8. Given an event sequence S with a hash function hi ∈ H , we compute the hash

value sequence hi(S) shown in Table 5.14. Let the query sequence be Q, and hi(Q) = 31,

where each digit represents a hash value. The sorted suffixes of hi(S) are shown in Table

Table 5.14: Hash Value Sequence hi(S)
hi(S) 5 3 1 4 3 1 0

Position 0 1 2 3 4 5 6

5.15. We use hi(Q) = 31 to search all matched suffixes in Table 5.15. In Algorithm 3,
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Algorithm 3 SearchCandidates (Q, δ)

Parameter: Q : query sequence, δ: threshold of event similarity;
Result: C : segment candidates.

1: Create a counting map C
2: for i = 1 to |H| do
3: Qhi

← hi(Q)
4: SAi ←MS,m(i)
5: left← 0, right← |SAi| − 1
6: if CompareAt(Qhi

, SAi[left]) < 0 then
7: continue
8: end if
9: if CompareAt(Qhi

, SAi[right]) > 0 then
10: continue
11: end if
12: pos← −1
13: // Binary search
14: while right− left > 1 do
15: mid← ⌊(left+ right)/2⌋
16: ret← CompareAt(Qhi

, SAi[mid])
17: if ret < 0 then
18: right← mid
19: else if ret > 0 then
20: left← mid
21: else
22: pos← mid
23: break
24: end if
25: end while
26: if pos = −1 then
27: pos← right
28: end if
29: // Extract segment candidates
30: for L ∈ Extract(Qhi

, SAi, pos) do
31: C[L]← C[L] + 1
32: end for
33: end for
34: for L ∈ C do
35: if C[L] < r then
36: del C[L]
37: end if
38: end for

by using the binary search, we could find the matched suffix : 310. Then, the Extract

subroutine probes the neighborhood of suffix 310, to find all matched suffixes with hi(Q).

Finally, the two segments at position 4 and 1 are extracted. If the two segments are extracted
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Table 5.15: Sorted Suffixes of hi(S)
Index Position Hashed Suffix

0 6 0
1 5 10
2 2 14310
3 4 310
4 1 314310
5 3 4319
6 0 5314310

for at least r independent hash functions, then the two segments are the final candidates

returned by the Algorithm 3.

Lemma 5.3.3. Given an event sequence S and a query event sequence Q, L is a segment

of S, |L| = |Q|, δ1 and δ2 are two thresholds for similar events, 0 ≤ δ2 < δ1 ≤ 1, then:

• if Ndissim(L,Q, δ1) = 0, then the probability that L is reached by Algorithm 3 is at

least F (m− r;m, 1− δ
|Q|
1 );

• if Ndissim(L,Q, δ2) ≥ k, 1 ≤ k ≤ |Q|, then the probability that L is reached by

Algorithm 3 is at most F (m− r;m, 1− δk2),

where F (·;n, p) is the cumulative distribution function of Binomial distribution B(n, p),

and r is a parameter for Algorithm 3.

Proof. Let’s first consider the case Ndissim(L,Q, δ1) = 0, which indicates every corre-

sponding events in L and Q are similar and the similarity is at least δ1. The hash function

hi belongs to the LSH family, so we have Pr(hi(e1) = hi(e2)) = sim(e1, e2) ≥ δ1. L and

Q have |Q| events, so for one hash function, the probability that hash values of all those

events are identical is at least δ|Q|
1 . Once those hash values are identical, L must be found by

a binary search over one suffix array in MS,m. Hence, for one suffix array, the probability

of L being found is δ|Q|
1 . MS,m has m suffix arrays. The number of those suffix arrays that

L is found follows the Binomial distribution B(m, δ
|Q|
1 ). Then, the probability that there

are at least r suffix arrays that L is reached is 1 − F (r;m, δ
|Q|
1 ) = F (m − r;m, 1 − δ

|Q|
1 ).
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The second case that Ndissim(L,Q, δ2) ≥ k indicates there are at least dissimilar k events

and their similarities are less than δ2. The probability that hash values of all those events in

L and Q are identical is at most δk2 . The proof is analogous to that of the first case.

Lemma 5.3.3 is to ensure that if a segment L is similar to the query sequence Q, then

it is very likely to be reached by our algorithm; if L is dissimilar to the query sequence

Q, then it is very unlikely to be reached. The probabilities shown in this lemma are the

false negative probability and the false positive probability. The choice of r controls the

tradeoff between the probabilities. F-measure is a combined measurement for the two

factors [SM84]. The optimal r is the one that maximizes the F-measure score. Since r

can only be an integer, we can enumerate all possible values of r from 1 to m to find the

optimal r.

However, this algorithm cannot handle the case that if there are two dissimilar events

inside L and Q. The algorithm narrows down the search space step by step according to

each element of Q. A dissimilar event between Q and Q’s similar segments in L would

lead the algorithm to incorrect following steps.

Randomly Masked Suffix Matrix

Figure 5.38 shows an example of a query sequence Q and a segment L. There is only one

dissimilar event pair between Q “1133” and L “1933”, which is the second one, ’9’ in L

with ’1’ in Q. Clearly, the traditional binary search cannot find “1933” by using “1133”

as the query. To overcome this problem, a straightforward idea is to skip the dissimilar

event between Q and L. However, the dissimilar event can be any event inside L. We

do not know which event is the dissimilar event to skip before knowing Q. If two similar

segments are allowed to have at most k dissimilar events, the search problem is called the

k-dissimilar search. Our proposed method is summarized as follows:
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Figure 5.38: Dissimilar Events in Segments

Offline Step:

1. Apply f min-hash functions on the given textual sequence to convert it into f hash-

valued sequences.

2. Generate f random sequence masks and apply them to the f hash-valued sequences

(one to one).

3. Sort the f masked sequences to f suffix arrays and store them with the random

sequence masks to disk files.

Online Step:

1. Apply the f min-hash functions on the given query sequence to convert it into f

hash-valued sequences.

2. Load the f random sequence masks and apply them to the f hash-valued query se-

quences.

3. Invoke f binary searches by using the f masked query sequences over the f suffix

arrays and find segment candidates that has been extracted at least r times.

Random Sequence Mask

A sequence mask is a sequence of bits. If these bits are randomly and independently gen-

erated, this sequence mask is a random sequence mask.
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Definition 5.3.4. A random sequence mask is a sequence of random bits in which each bit

follows Bernoulli distribution with parameter θ: P (bit = 1) = θ, P (bit = 0) = 1 − θ,

where 0.5 ≤ θ < 1.

Figure 5.39 shows a hash-value sequence h(S) and two random sequence masks: M1

and M2. Mi(h(S)) is the masked sequence by AND operator: h(S) AND Mi, where i =

1, 2. White cells indicate the events that are kept in Mi(h(S)), and dark cells indicate those

events to skip. The optimal mask is the one such that all dissimilar events are located in the

Figure 5.39: Random Sequence Mask

dark cells. In other words, the optimal mask is able to skip all dissimilar events. We call

this kind of random sequence masks as the perfect sequence masks. In Figure 5.39, there

are 2 dissimilar events in S: the 4th event and the 8th event. M1 skips the 4th event and

the 8th event in their masked sequences, so M1 is a perfect sequence mask. Once we have

a perfect sequence mask, previous search algorithms can be applied on those masked hash

value sequences without considering dissimilar events.

Lemma 5.3.5. Given an event sequence S, a query sequence Q, and f independent random

sequence masks with parameter θ, let L be a segment of S, |Q| = |L|. If the number of

dissimilar event pairs of L and Q is k, then the probability that there are at least m perfect

sequence masks is at least F (f−m; f, 1− (1−θ)k), where F is the cumulative probability

function of Binomial distribution.
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Proof. Since each bit in each mask follows the Bernoulli distribution with parameter θ,

the probability that the corresponding bit of one dissimilar even is 0 is 1 − θ in one mask.

Then, the probability that all corresponding bits of k dissimilar events are 0 is (1 − θ)k in

one mask. Hence, the probability that one random sequence mask is a perfect sequence

mask is (1− θ)k. Then, F (f −m; f, 1− (1− θ)k) is the probability for this case happens

m times in f independent random sequence masks.

Randomly Masked Suffix Matrix

A randomly masked suffix matrix is a suffix matrix, where each suffix array is masked by a

random sequence mask. We use MS,f,θ to denote a randomly masked suffix matrix, where

S is the event sequence to index, f is the number of independent LSH hash functions, and

θ is the parameter for each random sequence mask. Note that, MS,f,θ still consists of f

rows by n = |S| columns.

Lemma 5.3.6. Given an event sequence S, a randomly masked suffix matrix MS,f,θ of S

and a query sequence Q, L is a segment of S, |L| = |Q|. If the number of dissimilar events

between L and Q is at most k, then the probability that L is reached by Algorithm 3 is at

least

Prreach ≥
f∑

m=r

F (f −m; f, 1− (1− θ)k) · F (m− r;m, 1− δ|Q|·θ),

where δ and r are parameters of Algorithm 3.

This probability combines the two previous probabilities in Lemma 5.3.3 and Lemma

5.3.5. m becomes a hidden variable, which is the number of perfect sequence masks. By

considering all possible m, this lemma is proved. Here the expected number of kept events

in every |Q| events by one random sequence mask is |Q| · θ.
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Analytical Search Cost

Given an event sequence S and its randomly masked suffix matrix MS,f,θ, n = |S|, the cost

of acquiring candidates mainly depends on the number of binary search on suffixes. Recall

that MS,f,θ is f by n. Each row of it is a suffix array. f binary searches must be executed.

Each binary search cost is log n. The total cost of acquiring candidates is f log n.

The cost of filtering candidates mainly depends on the number of candidates acquired.

Let Zh denote the universe of hash values. Given an event sequence S and a set of hash

functions H , ZH,S denotes the set of hash values output by each hash function in H with

each event in S. ZH,S ⊆ Zh, because some hash value may not appear in the sequence

S. In average, each event in S has Z = |ZH,S| distinct hash values. Let Q be the query

sequence. For each suffix array in MS,f,θ, the average number of acquired candidates is:

NCandidates =
n

Z |Q|·θ .

The total number of acquired candidates is at most f · NCandidate. A hash table is used to

merge the f sets of candidates into one set. Its cost is f · NCandidate. To sum up the two

parts, given an interleaved suffix matrix MS,f,θ and a query sequence Q, the total search

cost is

Costsearch = f · (log n+
n

Z |Q|·θ ).

Why the potential solutions are not efficient?

For potential solutions (i.e., LSH-DOC and LSH-SEP) and suffix matrix, the second part

of cost is the major cost of the search. Here we only consider the number of acquired can-

didates to compare the analytical search cost. The average number of acquired candidates
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by LSH-DOC and LSH-SEP is at least:

N ′
Candidates =

n

Z |Q|/(k+1)
.

When |Q| · θ ≥ logZ f + |Q|/(k + 1), f · NCandidate ≤ N ′
Candidates. Z depends on the

number of 2-shinglings, which is approximated to the square of the vocabulary size of log

messages. Hence, Z is a huge number, logZ f can be ignored. Since θ ≥ 0.5, k ≥ 1, we

always have |Q| · θ ≥ |Q|/(k + 1). Therefore, the acquired candidates of suffix matrix are

less than or equal to those of LSH-DOC and LSH-SEP.

Offline Parameter Choice

The parameters f and θ balances the search costs and search result accuracy. These two

parameters are decided in the offline step before building the suffix matrix. Let Costmax

be the search cost budget, the parameter choosing problem is to maximize Prreach subject

to Costsearch ≤ Costmax. A practical issue is that the suffix matrix is constructed in the

offline phase, but |Q| and δ can only be known in the online phase. A simple approach

to find out the optimal f and θ is looking at the historical queries to estimate |Q| and δ.

This procedure can be seen as a training procedure. Once the two offline parameters are

obtain, other parameters are found by solving the maximization problem. The objective

function Prreach is not convex, but it can be solved by the enumeration method since all

tuning parameters are small integers.

The next question is how to determine Costmax. We can choose Costmax according

to the average search cost curve. Figure 5.40 shows a curve about the analytical search

cost and the probability Prreach, where m = ⌊Costsearch/(log n + n
|ZH,S ||Q|·θ )⌋. According

to this curve, we suggest users to choose Costmax between 100 and 200, because larger

search costs would not significantly improve the accuracy any more.
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Figure 5.40: Average Search Cost Curve (n = 100K, |ZH,S| = 16, θ = 0.5, |Q| = 10, δ =
0.8, k = 2)

Scalability

The time complexity of the offline suffix matrix construction is O(n log n). The online

search is O(log n). The only problem for scaling suffix matrix when the memory cost

exceeds the limitation. In this case, the suffix matrix can be stored in the external memory

or a distributed system.

5.3.2 Evaluation

In this section, I conduct experiments on real system event logs to evaluate our proposed

method.

Experimental Platform

We implement LSH-DOC, LSH-SEP and our method in Java 1.6. Table 5.16 summarizes

our experimental machine.
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Table 5.16: Experimental Machine
OS CPU JRE JVM Heap

Size
Linux 2.6.18 Intel Xeon(R) @ 2.5GHz, 8

core, 64bits
J2SE 1.6 2G

Data Collection

Our experimental system logs are collected from two different real systems. Apache HTTP

error logs are collected from the server machines in the computer lab of a research center

and have about 236,055 log messages. Logs of ThunderBird [urll] are collected from a su-

percomputer in Sandia National Lab. The first 350,000 log messages from the ThunderBird

system logs are used for this evaluation.

Testing Queries

Each query sequence is a segment randomly picked from the event sequence. Table 5.17

lists detailed information about the 6 groups, where |Q| indicates the length of the query

sequences. The true results for each query are obtained by the brute-force method, which

scans through every segment of the sequence one by one to find all true results.

Table 5.17: Testing Query Groups
Group Num. of Queries |Q| k δ
TG1 100 6 1 0.8
TG2 100 12 3 0.65
TG3 100 18 5 0.6
TG4 100 24 7 0.5
TG5 100 30 9 0.5
TG6 100 36 11 0.5

Baseline Methods

We compare our method with baseline methods LSH-DOC, LSH-SEP stated before. The

two methods are both LSH based methods applying to the sequential data. In order to

handle the k-dissimilar approximation queries, the indexed segment length l for LSH-DOC

and LSH-SEP can be at most |Q|/(k + 1) = 3, so we set l = 3.
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Online Searching

Suffix matrix and LSH based methods all consist of two steps. The first step is to search

segment candidates from its index. The second step is filtering acquired candidates by

computing their exact similarities. Because of the second step, the precision of the search

results is always 1.0. Thus, the quality of results only depends on the recall. By appropri-

ate parameter settings, all the methods can achieve high recalls, but we also consider the

associated time cost. For a certain recall, if the search time is smaller, the performance is

better. An extreme case is the brute-force method that always has the 1.0 recall, but it has

to visit all segments of the sequence, so the time cost is huge. We define the recall ratio as

a normalized metric for evaluating the goodness of the search results:

RecallRatio =


Recall

SearchT ime
, Recall ≥ recallmin

0, otherwise
,

where recallmin is a user-specified threshold for the minimum acceptable recall. If the

recall is less than recallmin, the search result is then not acceptable by the user. In our eval-

uation, recallmin = 0.5, which means any method should capture at least half of the true

results. The unit of the search time is millisecond. RecallRatio is expressed as the portion

of true results obtained per millisecond. Clearly, RecallRatio is higher, the performance

is better.

LSH-DOC, LSH-SEP and suffix matrix have different parameters. We vary the value

of each parameter in each method, and then select the best performance of each method

to compare. LSH-DOC and LSH-SEP have two parameters to set, which are the length of

hash vectors b and the number of hash tables t. b varies from 5 to 35. t varies from 2 to 25.

We also consider the different number of buckets for LSH-DOC and LSH-SEP. Due to the

Java heap size limitation, the number of hash buckets is fixed to be 8000. For suffix matrix,
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r is chosen according to the method mentioned before. f and m vary from 2 to 30. θ varies

from 0.5 to 1.

Figures 5.41 and 5.42 show the RecallRatios for each testing group. Overall, suffix

matrix achieves the best performance on the two data sets. However, LSH based methods

outperform suffix matrix on short queries (TG1). Moreover, in Apache Logs with TG4,

LSH-SEP is als better than suffix matrix.

Figure 5.41: RecallRatio comparison for ThunderBird Logs

To find out the reason why in TG1 suffix matrix performs worse than LSH-DOC or

LSH-SEP, we record the number of acquired candidates for each method and the number

of true results. Figures 5.43 and 5.44 show the actual acquired candidates for each testing

group with each method. Table 5.18 shows the numbers of true results for each testing

group. From the two figures, we can see that suffix matrix acquired much more candidates

than other methods in TG1. In other words, suffix matrix has a higher collision probability

of dissimilar segments in its hashing scheme.

To overcome this problem, a common trick in LSH is to make the hash functions be

“stricter”. For example, there are d+1 independent hash functions in LSH family, h1,...,hd
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Figure 5.42: RecallRatio comparison for Apache Logs

Table 5.18: Number of True Results
Dataset TG1 TG2 TG3 TG4 TG5 TG6
ThunderBird
Logs

4.12 2.81 27.46 53.24 57.35 7.21

Apache Logs 378.82 669.58 435.94 1139.15 1337.23 990.63

and h. We can construct a “stricter” hash function h′ = h(h1(x), h2(x), ..., hd(x)). If two

events e1 and e2 are not similar, i.e., sim(e1, e2) < δ, the collision probability of hi is

Pr[hi(e1) = hi(e2)] = sim(e1, e2) < δ, which can be large if δ is large, i = 1, ..., d. But

the collision probability of h′ is

Pr[h′(e1) = h′(e2)] =
n∏

i=1

Pr[hi(e1) = hi(e2))]

= [sim(e1, e2)]
d < sim(e1, e2).

Figure 5.45 shows the performance of the suffix matrix by using “stricter” hash functions

(denoted as “SuffixMatrix(Strict)”) in TG1. Each “stricter” hash function is constructed

by 20 independent Min-Hash functions. The testing result shows, “SuffixMatrix(Strict)”
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Figure 5.43: Number of Probed Candidates for ThunderBird Logs

outperforms all other methods for both Thunderbird logs and Apache logs in TG1. Table

5.19 are the parameters and other performance measures of “SuffixMatrix(Strict)”. By us-

ing “stricter” hash functions, the suffix matrix reduces 90% to 95% of previous candidates.

As a result, the search time becomes much smaller than before. The choice of the number

of hash functions for a “stricter” hash function, d, is a tuning parameter and determined by

the data distribution. Note that the parameters of LSH-DOC and LSH-SEP in this test are

already tuned by varying the values of b and t.

Table 5.19: “SuffixMatrix(Strict)” for TG1
Dataset Parameters Recall SearchT ime Num. of Probed
ThunderBird
Logs

m = 2, θ = 0.9 0.9776 1.23 ms 5.04

Apache Logs m = 2, θ = 0.8 0.7279 2.24ms 152.75

To verify Lemma 5.3.6, we vary each parameter of suffix matrix and test the recall

of search results. We randomly sample 100,000 log messages from the ThunderBird logs

and randomly pick 100 event segments as the query sequences. The length of each query

sequence is 16. Other querying criteria are k = 5 and δ = 0.5. Figure 5.46 shows that

142



Figure 5.44: Number of Probed Candidates for Apache Logs

Figure 5.45: RecallRatio for TG1

the increase of m will improve the recall. Figure 5.48 verifies that if r becomes larger, the

recall will decrease. Since the random sequence masks are randomly generated, the trends

of the recall are not stable and a few jumps are in the curves. But generally, the recall
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curves drop down when we enlarge the θ for the random sequence mask. To sum up, the

results shown these Figures can partially verify Lemma 5.3.6.

Figure 5.46: Varying m

Figure 5.47: Varying θ
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Figure 5.48: Varying r

Figure 5.49: Peak Memory Cost for ThunderBird Logs

Offline Indexing

Space cost is an important factor for evaluating these methods [BRCR94] [GV05] [GP09]

[LTP11]. If the space cost is too large, the index cannot be loaded into the main memory.
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Figure 5.50: Peak Memory Cost for Apache Logs

Figure 5.51: Indexing Time for ThunderBird Logs

To exclude the disk I/O cost for the online searching, we load all event messages and index

data into the main memory. The total space cost can be directly measured by the allocat-

ed heap memory size in JVM. Note that the allocated memory does not only contain the

index, it also includes the original log event messages, 2-shinglings of each event message
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Figure 5.52: Indexing Time for Apache Logs

and the corresponding Java objects information maintained by JVM. We use Java object se-

rialization to compute the exact size of the allocated memory. Figures 5.49 and 5.50 show

the total used memory size for each testing group. The parameters of each method are the

same as in Figures 5.41 and 5.42. The total space costs for LSH-SEP and suffix matrix are

almost the same because they both build the hash index for each event message only once.

But LSH-DOC builds the hash indices for each event l times since each event is contained

by l continuous segments, where l is the length of the indexed segment and l = 3.

Indexing time is the time cost for building the index. Figures 5.51 and 5.52 show the

indexing time for each method. The time complexities of LSH-DOC and LSH-SEP are

O(nlbt · ch) and O(nbt · ch), where n is the number of event messages, l is the indexed

segment length, b is the length of the hash vector, t is the number of hash tables, and ch

is the cost of Min-Hash function for one event message. Although for each testing group,

the selected LSH-DOC and LSH-SEP may have different b and t, in general LSH-SEP is

more efficient than LSH-DOC. The time complexity of suffix matrix for building the index

is O(mn log n+mn · ch), where m is the number of rows of the suffix matrix. It seems that
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the time complexity of suffix matrix is bigger than LSH based methods if we only consider

n as a variable. However, as shown in Figures 5.51 and 5.52, suffix matrix is actually

the most efficient method in building index. The main reason is m ≪ b · t. In addition,

the time cost of Min-Hash function, ch, is not small since it has to randomly permute the

2-shinglings of an event message.

5.4 Summary

System diagnosis requires a huge amount of domain knowledge and intensive data analysis.

The manpower cost of the ticket resolving is one major cost of all IT service providers. This

chapter studies several data-driven approaches for helping domain experts accomplish this

task. We first present a novel algorithm for discovering temporal dependencies with time

lags, in which the discovered results reveal the dependency among system components and

the correlations of monitoring situations. Then, we present several KNN-based recommen-

dation algorithms for automatically recommending incident tickets with their resolutions

from a large historical ticket set. The recommendation is based on the relevance of the sys-

tem problems described by tickets. It also takes into account the falsity of tickets to avoid

misleading information of the results. Based on the recommended tickets and resolutions,

the system administrators can easily correlate similar system issues happening before and

find best practices for handling those issues without manually looking up historical tickets.

Finally, we target on the efficient search problem of locating similar system behaviours

over large scale textual log sequences. A novel indexing technique is described for facili-

tating the similarity search. Extensive experiments on real system events, logs and tickets

demonstrate the effectiveness and efficiency of the proposed data-driven approaches.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Modern IT infrastructures are constituted by large scale computing systems including var-

ious hardware and softwares and often administered by IT service providers. Supporting

such complex systems requires a huge amount of domain knowledge and experiences. The

manpower cost is one of the major cost for all IT service providers. Service providers

often seek automatic or semi-automatic methodologies of detecting and resolving system

issues to improve their service quality and efficiency. This dissertation investigates several

data-driven approaches for improving the quality and efficiency of IT service and system

management. The improvements focus on three components of the service workflow: data

preprocess, system monitoring and system diagnosis. Data preprocess involves extracting

various raw system logs and converting them into a well formatted data warehouse of the

service provider. System monitoring is usually provided by monitoring software running on

the customer servers, which computes metrics for the hardware and software performance

at regular intervals. The metrics are then compared to acceptable thresholds ( known as

monitoring situations), and any violation results in an alert. If the alert persists beyond a

certain delay specified in the situation, the monitor emits an event. Events coming from a

customer’s entire IT environment are consolidated in an enterprise console. The console

uses rule-, case- or knowledge-based engines to analyze the monitoring events and de-

cide whether to open a service ticket in the Incident, Problem, Change system. Additional

tickets are created upon customer request. System diagnosis is performed on the created

tickets by system administrators. Each ticket is assigned to one or several administrators.

The assigned administrator then checks the reported system, inspects the root cause of the
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described issues, and executes corrective actions to resolve the tickets. The information

accumulated in the ticket records the problem determination and resolution.

In particular, in the aspect of data preprocess, this dissertation presents two novel textu-

al clustering algorithms for preprocessing textual system logs to structured system events.

The structured system events are easier to analyze and explore by system administrators.

For system monitoring, this dissertation focuses on the problem of eliminating false alarm-

s (false positives) and missing alarms (false negatives) by refining the configurations of

monitoring systems. Several reasons of triggering false positives and false negatives are

analyzed based on a large amount of historical monitoring events and tickets collected

from several IT service providers. Based on the revealed seasons, a rule based alert predic-

tion algorithm is proposed for eliminating false alarms (false positives) without losing any

real alarm and a textual classification method is applied to automatically discover the miss-

ing alerts (false negatives) from manual incident tickets. For system diagnosis assistance,

this dissertation presents an efficient algorithm for discovering the temporal dependencies

between system events with time lags, which can help the administrators to determine the

redundancies of deployed monitoring situations and dependencies of system components.

To improve the efficiency of incident ticket resolving, KNN-based recommendation algo-

rithms are investigated to recommend relevant historical tickets with resolutions for the

administrators. Finally, this dissertation offers a novel algorithm for searching similar tex-

tual event segments over large system logs and assisting experts to locate similar system

behaviours in the logs. Extensive empirical evaluation on system logs/events/tickets from

real large IT infrastructures demonstrates the effectiveness and efficiency of the proposed

data-driven approaches by this dissertation.
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6.2 Limitation of Proposed Methods and Future work

6.2.1 System Event Generation

The proposed methods for preprocessing raw textual logs to system events only generate

the discrete events. It would be more helpful if the algorithm extracts the detailed attribute

values from the log messages into the events, such as the IP address, machine name, and

available disk space. This work is related to the information extraction technique, which

is a widely studied area in natural language processing. However, as mentioned previous-

ly, different system logs have different formats and structures. Building an extractor for

various system logs is challenging. Meanwhile, many information extraction approaches

are learning based algorithms. They require the user to provide a set of annotated data to

train the model. Annotating various log messages is time-consuming for humans. As for

the future work, we consider some semi-supervised learning algorithm that only needs a

small amount of annotated data or partially annotated data. The algorithm can infer the

appropriate format and structure from the small amount of training data and automatically

utilize other unannotated data to build the model.

As for the message signature based clustering algorithm LogSig, we consider the three

aspects to investigate in the future. First, we consider using the partial match rather than

the longest common subsequence to compute the match score. Second, the match score can

be also normalized as the match ratio, which is percentage of the matched terms between

two log messages. Finally, in some application cases, not all the matched words have the

same importance to indicate the event type. Therefore, it is natural to add different weights

for different matched terms in the computation of the match score.
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6.2.2 Monitoring Optimization and Resolution Recommendation

In the proposed methods for improving monitoring system and recommending relevant

ticket resolution, the ticket data is seen as the ground truth for solving the described system

issues. In real scenario, service providers have over thousands of system administrators.

Some of them are experienced, but some of them are lack of experience or have different

expertise to determine the real causes of incident tickets. Therefore, the information in

the historical tickets may not be always precise and correct. It is possible that noisy and

inconsistent resolutions are contained by the given ticket data set. Therefore, the results

generated by the proposed methods can be conflict or hazard. In the future work, we

consider the uncertainty of each historical ticket. We hope to build an additional assessment

model to determine the quality of tickets and add the quality score into our methods.

6.2.3 Temporal Dependency and Lag Discovery

The time complexities of the proposed STScan and STScan∗ algorithms are O(N2) and

O(N2 logN) respectively, where N is the number of items. Although we prove that there is

no algorithm that can find all qualified lag intervals in o(N2), this time cost is still too high

for large data sets in practice. In the future work, we will work on deriving an approximate

algorithm for solving this problem. We hope to find a randomized approach that can find

all qualified lag intervals with a high probability but the time complexity can be reduced

to O(N). Moreover, since most event sequences are collected as streaming data, it is also

useful to come up with a streaming algorithm that can incrementally discover the qualified

lag intervals without storing the entire sequence of data.
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6.2.4 Similarity Search over Textual Event Sequence

In many real applications, the textual event sequence is collected in an incremental manner.

New events are appended into the historical data set periodically. The current indexing

method of suffix matrix has to rebuild the entire index for each append. As the data set be-

comes large, rebuilding the entire index would become impractical. Based on the proposed

suffix matrix method, in the next step we will consider to develop a dynamic indexing

algorithm that can incrementally append new data objects into an existing index without

rebuilding all index.
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