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ABSTRACT OF THE DISSERTATION

NEXT GENERATION OF RECOMMENDER SYSTEMS: ALGORITHMS AND

APPLICATIONS

by

Lei Li

Florida International University, 2014

Miami, Florida

Professor Tao Li, Major Professor

Personalized recommender systems aim to assist users in retrieving and accessing in-

teresting items by automatically acquiring user preferences from the historical data

and matching items with the preferences. In the last decade, recommendation services

have gained great attention due to the problem of information overload. However,

despite recent advances of personalization techniques, several critical issues in modern

recommender systems have not been well studied. These issues include: (1) under-

standing the accessing patterns of users (i.e., how to effectively model users’ accessing

behaviors); (2) understanding the relations between users and other objects (i.e., how

to comprehensively assess the complex correlations between users and entities in rec-

ommender systems); and (3) understanding the interest change of users (i.e., how to

adaptively capture users’ preference drift over time). To meet the needs of users in

modern recommender systems, it is imperative to provide solutions to address the

aforementioned issues and apply the solutions to real-world applications.

The major goal of this dissertation is to provide integrated recommendation ap-

proaches to tackle the challenges of the current generation of recommender systems.

In particular, three user-oriented aspects of recommendation techniques were studied,

including understanding accessing patterns, understanding complex relations and un-

derstanding temporal dynamics. To this end, we made three research contributions.

v



First, we presented various personalized user profiling algorithms to capture click

behaviors of users from both coarse- and fine-grained granularities; second, we pro-

posed graph-based recommendation models to describe the complex correlations in

a recommender system; third, we studied temporal recommendation approaches in

order to capture the preference changes of users, by considering both long-term and

short-term user profiles. In addition, a versatile recommendation framework was pro-

posed, in which the proposed recommendation techniques were seamlessly integrated.

Different evaluation criteria were implemented in this framework for evaluating rec-

ommendation techniques in real-world recommendation applications.

In summary, the frequent changes of user interests and item repository lead to a

series of user-centric challenges that are not well addressed in the current generation

of recommender systems. My work proposed reasonable solutions to these challenges

and provided insights on how to address these challenges using a simple yet effective

recommendation framework.
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CHAPTER 1

INTRODUCTION

With the extensive development of web technologies, an increasing number of online

services are becoming popular, aiming to provide different types of information based

on online users’ information need. Representative examples of such services include

Netflix and Youtube for watching movies and videos, Google News and Yahoo! News

for reading news articles, Amazon and Ebay for online shopping, Last.fm and Spotify

for listening music, etc. These services provide a huge amount of interesting informa-

tion and generates a myriad of user behavior data as online users access the available

resources. Under the constraint of low latency for users, it is extremely difficult for

these services to promptly present the right information as the volume of data goes

exponentially. Then, the question of intelligent information management turns on its

head, and has led to an unprecedented acceleration of automatic techniques, e.g., web

search, to assist users in finding interesting data.

In general, search-based online services harness millions or even billions of data

(or say, items). Given a user’s text query on some information, the search can be

achieved by indexing items according to their content or the linkage with each other,

which often refers to as information retrieval [MRS08]. A lot of elaborate search

algorithms have been proposed to handle the large-scale retrieval problems, e.g.,

PageRank [PBMW99]. Search-based information retrieval requires users’ efforts of

inputting the search query; however in most scenarios, it is difficult for users to come

up with queries as they may not know what information they are interested in. For

example, what web pages offer users the information that they want? Are there some

recent songs that are similar to a user’s favorite playlist played in the morning? How

to assist users in finding some high-quality research papers to enrich their understand-

ing on the state-of-the-art of a particular field? The vast amount of information and
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the diversity of resources render data filtering, exploration and representation more

difficult. To provide better user experience in using online services, more intelligent

algorithms are expected to avoid the intervention or efforts of users. This is where

personalized recommender systems have seen their largest use cases on the web.

Personalized recommender systems aim to assist users in retrieving and accessing

interesting items by automatically acquiring user preferences from the historical data

and matching items with the preferences. In the last decade, personalized recommen-

dation services have gained great attention and are becoming increasingly prevalent,

as the problem of information overload is intensified by the great advance of Internet

technologies. Boosted by the Netflix Prize competition of 20061, there has been much

work done in both academia and the industry on designing and developing new solu-

tions to recommender systems in recent years. Examples of such applications include

recommending news at Google News, products at Amazon.com, movies by Netflix,

jobs and talents by LinkedIn, users and communities on social media, etc. Benefited

from personalization techniques, these successful services provide great convenience

for users enjoying recommendations, and meanwhile, bring the enterprises notable

economic benefits.

In the following, we initially discuss functions of recommender systems from the

perspectives of both service providers and users, and then briefly introduce existing

solutions to the problem of personalized recommendation (including content filtering,

collaborative filtering and hybrid approaches). Next, we present the motivations

of my research work from three distinct yet interleaved user-oriented aspects, and

summarize the major contributions of my dissertation.

1http://www.netflixprize.com.
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1.1 Recap: Functions of A Recommender System

Recommender systems (RSs) are software applications and techniques providing in-

formation suggestions to a myriad of online users [RV97, RRS11]. The suggestions

depend on specific decision-making purposes, e.g., what items to buy, what music

to listen to, etc. It is necessary to distinguish the functions that a RS can provide

with respect to the roles on behalf of the service provider and online users of the RS.

For instance, an online shopping system often offers promotions on particular com-

modities in order to gain more economic interest and increase the number of visitors,

whereas a user’s motivation for accessing the shopping website is to find a suitable

product for daily use rather than promotion items.

From the perspective of a service provider, there are various reasons to exploit the

recommendation technology, listed as follows:

• Increase the conversion rate. The conversion rate is defined as the number

of users that accept the recommendation and consume an item, compared to

the number of visitors that just browse through the information [RRS11]. As a

commercial RS, the key function is to sell items as many as possible to maximize

the economic benefits. Non-commercial applications have similar goals, as they

are expecting to maximize the daily visits of the websites.

• Show more diverse items. A RS enables the user to select unpopular items from

the item repository by providing a precise recommendation. Such a strategy

allows the system to collect interactions of the items in the long tail [BHS06].

For example, a movie recommender aims to recommend all the movies in the

catalogue, but not just the most popular ones.

• Improve user satisfaction. A well-designed RS can improve the usage experience

of users. The user will find the recommendation relevant to his/her preference

3



and enjoy using the system. The combination of back-end recommendation

strategies and front-end usable interfaces will definitely increase the user’s sat-

isfaction, and in turn will help improve the system usage.

• Increase user fidelity. A loyal user to a RS enables the system to gain more

information about the user, as it keeps collecting the user’s interactions, e.g.,

ratings or clicks of items. Consequently, the user model can be gradually im-

proved in a long run based on user feedbacks, and provide more customized

recommendation to match the user’s preference.

Comparatively, when a user is using a RS, he/she may have different expectations,

depending on the user’s individual preference, such as:

• Find some good items. The standard format of recommendation is to provide

a list of items to users, along with predictions of how much the user would like

them, e.g., 1 to 5 star ratings. The item list is often associated with a particular

ranking of items in accordance with the user’s preference on different types of

items. This is the primary function of most recommender systems.

• Recommend a sequence. Sometimes a user may expect a sequence of items

from a RS, as he/she may click them one by one. Typical applications involve

recommending a TV series, i.e., a series of TV programs; or a music track

that contains a sequence of songs. The user’s satisfaction can be extended by

accepting a sequence of items, rather than a single recommendation.

• Improve user profile. The preference of an individual user is likely to evolve over

time as he/she interacts with the system. Such an evolution might be triggered

by different types of events, e.g., promotional activities of online shopping web-

sites, or major sporting events reported by news media, etc. A RS should have

the capability of capturing the evolution of user interest.
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The aforementioned functions of a RS are quite diverse, and also the role of a RS

differs in the perspectives of service providers and users. As a matter of fact, a RS

must balance the needs of both service providers and users and provide a service that

is beneficial to both. To this end, an extensive exploration of a range of different

techniques has been conducted in the last decade. In the following section, these

techniques will be introduced for better understanding the problem of personalized

recommendation.

1.2 Existing Solutions to Personalization

A typical personalization algorithm often involves modeling user preferences by ana-

lyzing the historical consumption data and then retrieving interesting items based on

user profiles. However, for many reasons, user preferences towards items are difficult

to guess, and therefore there is a considerable variance of personalization techniques

in assessing users’ personal tastes. Typical approaches to personalized recommenda-

tion services can be divided into two categories: content filtering and collaborative

filtering. Meanwhile, there are some hybrid solutions that integrate the advantages

of these two filtering techniques in order to obtain more reasonable recommendation

results.

1.2.1 Content Filtering

The principle of a content-based RS is to suggest the items that are similar to the

items that the user liked in the past in terms of the item content. In general, a RS

acquires users’ consumption history and constructs appropriate user models based on

the content of items, to indicate which (type of) items the user likes. The content,

such as descriptions, keywords, categories, etc., provides useful information about the
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item, and evidences of users’ preferences. The major operation of a content-based RS

is to match the user’s model (profile) with the content of unknown items with respect

to a target user [DGM08, LdGS11, PB07].

In the past decades, various techniques have been proposed to tackle the prob-

lem of content-based recommendation. These techniques include probabilistic mod-

els [LDP10, PB97], nearest neighbor based methods [BPC00], classification-based

models [Joa98, WQF07], etc. One advantage of content-based recommendation tech-

niques is that the modeling process is purely based on the content of items, and

hence does not require a large number of users to be involved. This is because the

matching between a user’s profile and an item is often achieved by comparing the

similarity/relevance of these two, without the intervention of other users. Further,

new items can be recommended to users as long as they have enough content. Hence,

content-based RSs do not suffer from the item cold-start problem [SPUP02].

Recommender systems based on content filtering are easy to implement; however,

in some scenarios, simply representing the user’s profile information by item con-

tent is insufficient to capture the exact preference/interest of the user. Firstly, the

item content, i.e., the metadata, might not be specified completely, especially in the

systems where the recommendation functionality is not the major service. Such an

incompleteness renders user profiling inaccurate. In addition, the representation of

user profiles, e.g., vector space model [MRS08], cannot effectively capture the corre-

lations among items that a user has accessed before. Further, a content-based RS

cannot easily adapt to the changes of user interest, as the strategy is to suggest items

extremely similar to the ones that a user consumed. Finally, content filtering suf-

fers from the new user problem, i.e., if a user has only a few consumption activities,

the recommendation model cannot accurately express his/her preference until enough

consumptions are collected.
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1.2.2 Collaborative Filtering

Collaborative filtering (CF) analyzes accessing behaviors of users similar to the tar-

get user and then recommends items based on collaborative activities [DDGR07,

HKTR04, Hof04, KBV09, Kor10, RIS+94, SKKR01]. The basic idea of a CF sys-

tem is that if users have similar accessing behaviors in the past, they will also prefer

similar items in the future. Based on this assumption, given a target user A, the

recommendation for A can be obtained by selecting items that have been consumed

by the neighbors of A but not accessed by A. Collaborative filtering can be further

categorized to memory-based filtering and model-based filtering.

Memory-based algorithms provide predictions for users based on their past ratings.

In general, the prediction is computed as a weighted average of the ratings given

by other neighbors where the weight is proportional to the similarity between the

target user and the neighbor [DDGR07]. Typical similarity metrics involve the cosine

similarity [BHK98] and the Pearson correlation coefficient [RIS+94]. Memory-based

methods are easy to understand and require little efforts for training; however, it is

quite challenging to make this type of algorithms more scalable as the process needs

to calculate all pairwise similarities of users or items.

Comparatively, model-based algorithms try to create user models based on their

past ratings, and predict the ratings on unknown items using these models. In prac-

tice, model-based algorithms capture various user interests by utilizing latent factors

or explicitly classifying users to multiple clusters, such as latent semantic index-

ing [SKKR00], probabilistic latent semantic indexing [Hof04], multiplicative factor

model [MZ04], latent Dirichlet allocation [WB11], etc.

Collaborative filtering systems can efficiently capture users’ behaviors in case

where overlap in historical consumption across users is relatively high and the con-

tent universe is almost static [SKR99]; however, in many web-based applications, the
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content universe undergoes frequent changes, with content popularity changing over

time as well [LCLS10]. Moreover, many online users do not have enough historical

consumption records, which is known as the so-called cold-start problem [SPUP02].

These issues render collaborative filtering ineffective.

1.2.3 Hybrid Solutions

As mentioned previously, both content filtering and collaborative filtering have their

advantages as well as drawbacks and problems. A common practice for obtaining

more robust solutions is to combine the two types of methods to eliminate the draw-

backs, which often refers to as hybrid approach. For instance, a latent factor model

(a CF model) can be enriched by absorbing more content features of both users

and items, and feature-based matrix factorization [CZL+11] can be applied to ob-

tain the latent factors. Such an integration enables the CF-based RSs to tackle the

problem of item cold-start, as it takes into account the rich content of items. Many

hybrid methods that integrate the above two categories of algorithms have been de-

veloped [BS97, DLS07, MMN02, PPL01], in which the defects of one type of methods

can be commonly alleviated by the other type of methods [Bur02].

1.3 Motivation: User-Oriented Aspects

In essence, a recommender system is a user-oriented service that aims to attract more

users by providing high-quality recommendation results. Thus, the design of recom-

mendation strategies should follow a user-centric paradigm, that is, to consider various

potential user requirements when constructing user profiles. The major component

of traditional recommendation approaches is to compare user profiles with available

items using specific similarity measures. Nonetheless, as the scale of item reposi-
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tory increases and the interest of users changes promptly, it is insufficient to provide

reasonable recommendation by purely calculating the similarity. To accommodate

the algorithm itself to user requirements, several other criteria have been studied,

such as item diversity [ZH08], item coverage [MSDR04], serendipity [MMO08], nov-

elty [WXLN07], etc., and a lot of recommendation approaches have been proposed

by utilizing these criteria. However, despite extensive recent advances of personaliza-

tion techniques, several critical issues in modern recommender systems have not been

well explored in previous studies, including multi-granularity user behaviors, complex

user relations and temporal dynamics of user preferences. In the following, detailed

discussions of these issues are provided.

Multi-granularity user behaviors: User behaviors (e.g., click behavior) are

generally considered as a set of events or modeled as a binary variable [HKV08,

LPP07, SPUP02], which refers to as the analysis of coarse-grained behavior. The pro-

files of users and the recommendation are achieved by analyzing the set of activities

of users. However, the detailed behavioral activities (e.g., the click sequence of items)

are often being ignored, which refers to as fine-grained behavior. Taking a news rec-

ommender as an example, a user may always click the first news article recommended

to him/her for detailed reading, and then go through the titles of news in the remain-

ing list. Such an accessing pattern, if well captured, would be very helpful for the

system to construct high-quality user profiles, and consequently provide meaningful

recommendation results.

Complex user relations: A user’s decision on choosing an item may be in-

fluenced by the underlying correlations between users and other objects within the

recommender system. The objects, in general in recommender systems, involve users,

items, and even aspects within items or item hierarchies [BTC+10, SZF07]. As in the

previous example, a news reader may read news articles describing a specific topic
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(e.g., sports or politics) or containing a specific named entity (e.g., a celebrity or an

organization) [GDH04, LCGF10]. Objects in recommender systems are correlated

with each other, and in turn affect the user’s preference. It would be beneficial to the

recommendation if these relations are comprehensively understood.

Temporal dynamics of user preferences: Personal user preference might

evolve over time [CCYX09, KS00, MLDO07], i.e., the user’s interest may be domi-

nated by the recent events (e.g., promotion of sales) or life experiences (e.g., giving

birth to a baby). Again in a news recommender, a user interested in sports-related

news topics may read articles about “Cycling World Championships”, and after sev-

eral days, he/she may prefer to read news of “Baseball World Cup”. Such an interest

drift might happen very frequently, or is incidental in terms of the user’s consumption

history, depending on the characteristics of different users. Previous research often

formalizes interest drift as a temporal factor; however, such a dynamics scheme may

only reflect the current status of user preference, and hence lose an overview of a

user’s interest.

To summarize, the issues of the current generation of recommender systems in-

clude: (1) understanding the accessing patterns of users (i.e., how to effectively and

efficiently model users’ clicking behaviors into user profiles); (2) understanding the

relations between users and other objects (i.e., how to comprehensively assess the com-

plex correlations between users and entities involved in recommender systems); and

(3) understanding the interest change of users (i.e., how to adaptively capture users’

preference drift over time). Previous research and industrial efforts towards these

aspects are not satisfactory. Therefore, the current generation of recommender sys-

tems still requires further improvements to make recommendation approaches more

effective [AT05] in capturing users’ personal preferences and suggesting interesting

information to them.
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1.4 Contribution of this Dissertation

My dissertation follows the stream of research that covers the aforementioned issues of

existing recommender systems. In this work, three interleaved aspects of recommen-

dation techniques were carefully explored, including understanding accessing patterns

of users, understanding complex relations within recommender systems and under-

standing temporal dynamics of user interests. In particular, the contributions of this

dissertation are as follows.

• Modeling: In this research, various approaches related to the aforementioned

three aspects were explored. In modern recommender systems, these aspects

being studied play vital roles in capturing the exact preference of users and

performing reasonable and meaningful recommendation. Specifically, I have

designed and developed:

– Personalized user profiling algorithms to capture accessing patterns of

users, e.g., the clicking sequence that a user may behave in his/her con-

sumption history. Such patterns are valuable for building high-quality

user profiles; however, existing approaches treat a user’s history as a set

of click events, and ignore the relative sequence of clicks, and hence lose

the detailed information. Along this direction, several work has been pub-

lished [LWL+11, LPK+13] to capture both coarse-grained and fine-grained

user behaviors.

– Graph-based recommendation models to catch the complex relations within

a recommender system. It is intuitive to model the complex relations linked

to users using graphs, by which the weighted linkage among different ele-

ments can be naturally represented. However, the high-order relations in

a recommender system have not been well explored in existing literatures.
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Along this direction, a series of ideas have been implemented and pub-

lished [LL12, LL13, ZLHL13] to utilize graph-based methods in handling

the relationships within a recommender system.

– Temporal approaches to integrate both long-term and short-term user pro-

files for recommendation. User preferences often evolve over time, and

therefore it is imperative to capture such changes when performing user

profiling and recommendation. Nevertheless, the interest drift is generally

modeled as a temporal variable, which may cause the loss of an overview on

user preferences. In this research direction, there are a list of publications

during my Ph.D. study [HLL12, LZL11, LHL12] to model the temporal

change of user preferences.

• Framework: A versatile recommendation framework that seamlessly integrates

the proposed recommendation techniques was designed. The framework in-

cludes:

– User profiling that effectively models both coarse- and fine-grained user be-

haviors, complex element relations linked to users and temporal dynamics

of user interests;

– Recommendation that fully exploits user profiles and provides elegant se-

lecting and ranking solutions to user personalization;

– Evaluation by taking into account various recommendation evaluation cri-

teria, including prediction accuracy, ranking measures, item space cover-

age, item diversity, user reciprocity, algorithm consistency, etc.

• Applications: The proposed framework was applied to different real-world rec-

ommendation applications, including personalized news recommender systems

and personalized online recruiting systems. Specifically, for news recommenda-
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tion, the framework operates on the input of abundant news content, i.e., sub-

stantial content features are utilized to construct user profiles; comparatively in

online recruiting systems, the framework exploits multiple information sources

that characterize user preferences, including users’ demographics, crawled in-

formation and accessing histories. Along this direction, one paper has been

published in SIGKDD Industrial Track [HLLP13], which utilizes the proposed

framework to build a real-world application.

1.5 Organization of this Dissertation

To facilitate the understanding and reading of this dissertation, an overview of the

material presented in this dissertation is given as follows.

We start by introducing the preliminaries of the topic of personalized recom-

mendation in Chapter 2, including the general notations, formal definitions of basic

recommendation techniques and various evaluation criteria used in this dissertation.

We then highlight the state-of-the-art that are relevant to the aforementioned three

research issues.

Next, in Chapter 3, we study the problem of understanding user behaviors within

recommender systems. In this direction, two approaches are proposed to harness

user behaviors in the perspective of coarse- and fine-grained granularities. Specifi-

cally, we consider the collective user behaviors towards a user’s personal interest and

a community’s topic in the environment of social media, and propose a generative

recommendation model to capture such behaviors in a coarse-grained fashion. In ad-

dition, we analyze the decreasing reading interest of users in a news recommender, and

propose a fine-grained recommendation model that integrates various characteristics

when recommending items to users.
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We then proceed to consider the problem of modeling the complex relations linked

to users in a recommender system. Chapter 4 begins this focus with general discussion

of how graphs can be used to formalize such a problem. Then we propose two graph-

based approaches to the problem of personalized recommendation. Particularly, a

bipartite graph based method is presented to capture the complex reciprocity of two

different sets of users in the applications of user recommendation, and a hypergraph

based method is proposed to model the complex relations among different types of

elements in a news recommender system.

The last technical contribution is Chapter 5, which studies the problem of tempo-

ral dynamics of user interest, i.e., a user’s preference may change over time. Along this

stream of research, we propose an integrated approach that considers both long-term

and short-term user profiles simultaneously when modeling user interest changes. We

also explore the possibility of utilizing domain taxonomies to improve the accuracy

of capturing the evolution of user preferences.

In Chapter 6 we propose a comprehensive recommendation framework that inte-

grates the profiling and recommendation techniques proposed in the previous three

chapters, and then apply this framework to a representative recommendation appli-

cation – online recruiting.

Finally in Chapter 7 we conclude the dissertation by discussing possible extensions

of the proposed approaches in addressing the three research challenges.
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CHAPTER 2

PRELIMINARIES AND RELATED WORK

This chapter is organized as follows. We first introduce the notations used in this

dissertation, and then formally discuss the basic filtering techniques: content filtering

and collaborative filtering in Section 2.1. Afterwards, we describe the evaluation

metrics for recommender systems based on different quality criteria in Section 2.2.

Finally, we highlight existing literatures that are related to the topics studied in this

dissertation in Section 2.3.

2.1 Notations and Basic Techniques

We formally define the recommendation problem by following the definition of [AT05].

In a recommender system, let U = {u1, . . . , un} be the set of users, and I = {i1, . . . , im}

be the set of items in the item repository. Assume there is a utility function r̂ : U×I →

S measuring the utility r̂u,i of item i to user u, hence this function returns a totally

ordered ranked list S consisting of nonnegative integers of utility scores. In most

recommender systems, e.g., movie recommenders or music recommenders, the utility

of an item i to a user u is typically represented by a rating value, indicating how much

u likes i, e.g., 1 to 5 stars. Then, the recommendation problem can be formulated

as selecting an unknown item i′u ∈ I for each user u ∈ U that maximizes the utility

function r̂, i.e.,

∀u ∈ U, i′u = argmaxi∈I r̂u,i. (2.1)

For the scenario of recommending a list of items to a user, we can iteratively

select the item that maximizes the utility function in Eq.(2.1) until the number of

selected items reaches to the budget. The utility function can serve to predicting a

user’s rating towards a particular item, and hence r̂ can be regarded as the prediction
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function, i.e., r̂u,i denotes the predicted rating value of user u to item i. In terms of

prediction, we call user u as the target user and item i as the target item. In some

scenarios, the prediction function produces binary rating values, e.g., 0 (like) and 1

(dislike). The typical goal of recommender systems is to build a predictive model

that can estimate the prediction function r̂.

2.1.1 Content Filtering: Revisit

Given a target user u, content filtering approaches first build the profile pu of u using

the historical content information accessed by u, and then calculate the similarity

between pu with the content of items. In this sense, content filtering is similar to

information retrieval, as the task involves identifying items that match the user’s

preference and filtering out unrelated items [HSS01].

The first question of content filtering is how to represent the content of both

user profiles and items. This, in general, depends on the specific domain of recom-

mendation and the type of content information available. For example, in a movie

recommender, the content of a movie often consists of actors, directors, genre, etc.,

which can be regarded as structured content; comparatively, in a news recommender,

the content of a news article is unstructured text, and the representation cannot be

simply derived. In the following, we assume that the item content is unstructured

text including a set of words/terms.

A simplest format of representing a text document is to use a binary vector, each

entry of which indicates whether the corresponding word or phrase appears in the text

document or not. However, this approach ignores the number of times that a word

appears in the document, and hence cannot capture the importance of the word.

To this end, term frequency based methods have gained popularity in information

retrieval community [MRS08], e.g., the TF-IDF (term frequency-inverse document
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frequency) encoding format. Given a word w from a document d, the TF-IDF value

of w in d is calculated as

TFIDF (w) = TF (w)× IDF (w) =
d(w)

|d|
× log

N

n(w)
, (2.2)

where d(w) is the number of occurrences of w in d, and |d| is the total number of words

in d. N is the total number of documents, and n(w) is the number of documents that

contain the word w. The first component TF (w) defines the importance of w with

respect to d, and the second component IDF (w) denotes the discriminating evidence

of w with respect to all the documents.

Once the representation of items is fixed, we can utilize nearest neighbor based

methods to identify content recommendations. Given a predictive function r̂, a target

user u and a target item i, the prediction of r̂u,i can be achieved by first identifying

the k most similar items to i that u have assigned a rating, and then aggregating the

ratings of these items as the prediction value. In general, the similarity between the

TF-IDF vectors can be calculated using the cosine similarity metric [MRS08].

2.1.2 Collaborative Filtering: Revisit

In the scheme of collaborative filtering, the prediction value r̂u,i is calculated by

aggregating the preferences/ratings of a large set of users, or say, the wisdom of

the crowd. Let us take a user-based collaborative filtering as an example. Given a

target user u and a target item i, to obtain the prediction value r̂u,i, the collaborative

filtering engine works as follows:

1. Compute user relevance: The user relevance denotes the taste similarity of two

users in terms of the accessed items. By adopting standard relevance metrics,

the relevances between the target user u and all other users can be calculated,

and can then serve as the basis for selecting neighbors of u. Examples of rele-
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vance metrics include Pearson correlation coefficient and adjusted cosine simi-

larity [MRS08]. Pearson correlation coefficient (Pearson) is defined as the linear

dependence between two users’ accessing histories, a and b, i.e.,

sim(a, b) =

∑

i∈I(ra,i − r̄a)(rb,i − r̄b)
√
∑

i∈I(ra,i − r̄a)2
√
∑

i∈I(rb,i − r̄b)2
, (2.3)

where ra,i is the rating of item i given by user a, and r̄a is the average rating

over all the items rated by user a. Pearson ranges in [−1, 1], where negative

values indicate low similarities and positive values represent high similarities.

Adjusted cosine similarity (AdjCosine) factors out the average rating behavior

when computing the similarity between two items i and j, i.e.,

sim(i, j) =

∑

u∈U(ru,i − r̄u)(ru,j − r̄u)
√
∑

u∈U(ru,i − r̄u)2
√
∑

u∈U(ru,j − r̄u)2
. (2.4)

AdjCosine is similar to Pearson in terms of the returned values.

2. Identify user neighbors: The next step is to select k neighbors of u based on the

relevance score, and these neighbors have provided a rating for the target item

i. In practice, it is crucial to decide an appropriate k for a nearest neighbor

collaborative filtering algorithm [HKBR99]. If k is chosen too large, then it is

possible to involve a lot of noise data due to the uncertainty of neighborhood

users’ interests; otherwise, if k is chosen too small, then the predicted rating

value might be biased on small number of neighbors.

3. Aggregate neighbor ratings: Once the k neighbors of u are identified, the pre-

dicted rating value can be obtained by aggregating the nearest neighbors’ ratings

for the target item i. The aggregation often follows a weighted combination of

the ratings scores by the neighbors [RIS+94], i.e.,

r̂u,i = r̄u +

∑

u′∈U sim(u, u′) ∗ (ru′,i − r̄u′)
∑

u′∈U sim(u, u′)
, (2.5)
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where sim(u, u′) aims to measure the similarity between the target user and

one of the neighbors u′ ∈ U , and can be regarded as a weight of deciding the

final prediction value.

The above procedures are used to predict the rating of an item, and they can

be repeated for all items that have not been rated by the target user. A top-n

recommendation list can be obtained by selecting the top n ranked items in terms of

the predicted rating score. This is the typical process of a memory-based collaborative

filtering method.

2.2 Evaluation Metrics

It is a challenging task to evaluate the performance of a recommender system, and

it often consists of three different levels of experiments, i.e., offline experiments, user

studies and online evaluation. Offline experiments are purely based on the static

data without requiring interaction with real users, and hence are easy to conduct.

User studies are often held in a controlled environment by asking a small group

of subjects to use the system and report their experience. Online evaluation is often

performed among a large pool of real users who are unaware of the experiment, which

is the closest to reality [SG11]. In this dissertation, most of the work employs offline

experiments as the evaluation scheme, and hence we mainly introduce the common

metrics used in offline experiments.

An offline experiment is often conducted on a pre-collected data set that includes

user behaviors on a set of items. The data set serves as the basis of simulating the

behaviors of users that interact with a real system. Thus, a common assumption here

is that the user behavior observed in the data set should be similar to the one of the

deployed recommender system. The goal of offline experiments is to filter out inap-
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propriate methods. To this end, the parameter tuning process is generally involved

in the experiments. To evaluate the performance of a recommendation algorithm, a

range of properties need to be considered. In the following, the set of metrics used in

this dissertation are introduced from 4 different perspectives.

2.2.1 Measuring Usage Prediction

Some recommendation applications do not require users to provide ratings on items.

For example, in a news recommender, the feedback of users is simply a click/non-click

of the recommended news article. Hence, the major function of such systems is to

predict whether the user will click an item or not.

In an offline environment, the data used in the experiments is often split into two

different sets: training data and testing data. The training data is utilized to learn

the recommendation model or optimize the model parameters, whereas the testing

data is adopted to evaluate the learned recommendation model. A recommendation

algorithm will generate a prediction for a target user. Compared with the ground

truth within the testing data, we may have four possible outcomes, as shown in

Table 2.1.

Table 2.1: Possible results of a recommendation of an item to a user.

Recommended Not recommended
Clicked True-Positive (TP) False-Negative (FN)

Not clicked False-Positive (FP) True-Negative (TN)

A reasonable recommendation algorithm should have more true positives, and

less false positives and false negatives. We can count the number of instances in

the experiments that fall into each category in the table and compute the following

quantities:

Precision =
#tp

#tp + #fp
, Recall =

#tp

#tp + #fn
. (2.6)
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These two metrics have a trade-off with each other: while increasing the number of

recommendation list typically improves recall, it is also likely to reduce precision.

Hence in the offline experiments, we often consider both metrics simultaneously by

calculating the metric of F1-score, i.e.,

F1-Score =
2 ∗Precision ∗Recall

Precision+Recall
. (2.7)

In addition, in some recommendation applications, the number of recommendations

that can be presented to the user is predefined. For instance, in a newsfeed recom-

mender system, the recommended feed has a budget of 5 or 10 recent news articles.

Another example is the online advertising system, e.g., ads presented by Google search

engine, where the number of the available ad positions is restricted. In these systems,

a useful measure of evaluating the accuracy of recommendation is Precision at N,

meaning how accurate a recommendation list of size N is.

2.2.2 Measuring Ranking Prediction

In most scenarios, the recommendation result will be represented as a list of items,

imposing a certain browsing order. For example, in a news recommender system, the

application will show a list of popular news articles to the user once the user logins.

The system puts more focus on predicting the ranking of items, rather than the rating

scores.

A typical scheme of evaluating the ranking quality is to assume that the utility

of a list of recommendations is additive [SG11], calculated as the sum of utilities of

all the recommended items in the list. The utility of each recommendation is the

utility of the item discounted by a factor related to its position in the list. Typically,

the utility is defined as the likelihood that a user will observe a recommendation at
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position j in the list. As the user goes through the recommendation list, the utility

will decrease while the position j increases.

To account for the positional discount of the utility, a metric, called Normalized

Cumulative Discounted Gain (NDCG) [JK02] is widely used in the filed of informa-

tion retrieval, in which the positions are discounted logarithmically. In general, we

can assume that each user u will have a utility gui from being recommended an item i,

then the averaged Discounted Cumulative Gain (DCG) for a list of J items is defined

as

DCG =
1

|U |

∑

u∈U

J
∑

j=1

guij
max(1, logb j)

, (2.8)

where the logarithm base is typically set to 2 to ensure all positions are discounted.

Then NDCG is the normalized version of DCG, defined as

NDCG =
DCG

DCG∗ , (2.9)

where DCG∗ is the ideal DCG. In such a setting, a recommendation list that places

interesting items with high utility close to the beginning of the list, will therefore be

preferred to the list that place these interesting items down the list. The reason is

straightforward: these interesting items down the list might not be observed by the

user, and hence may not generate any utility for the system [SG11].

2.2.3 Measuring Item Diversity

In content-based recommender systems, the matching function of user profiles and

item content is a heuristic to capture the user’s subjective opinion on how well an item

agrees with the information need. In some cases, the best matched items obtained

from the matching function may not correspond to the most desirable items from the

user’s point of view. This may lead to an unsatisfactory system due to the limited

variety of items. For this reason, many practical systems incorporate diversity when
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recommending items, to allow the recommended list to contain more variance in terms

of the item content.

Assume the item content is available, a typical diversity metric is defined as the ag-

gregate or average dissimilarity of all pairs of items in the recommendation list [ZH08].

Specifically, for a given distance function d(·, ·), the diversity of the recommended list

S is defined as

fd(S) =
2

p(p− 1)

∑

i∈S

∑

j∈S,j 6=i

(d(i, j)) (2.10)

where |S| = p, and the dissimilarity of an item pair is represented as d(i, j), which

is symmetric, i.e., d(i, j) = d(j, i). The dissimilarity, or say, distance, of two items is

application-dependent, which may correspond to a distance between feature vectors

under a mapping of items into a feature space. For example, in a news recommender

system, the feature vector could be term/word-based vector, each entry of which

represents the importance of the corresponding term/word, e.g., the TF-IDF score.

The distance measure on such a vector could be the cosine similarity.

2.2.4 Measuring User Vitality

In the applications of people-to-people recommendation, the success of a recommen-

dation is not purely based on the satisfaction of a single user, but the preferences

of both parties being involved, which is different from traditional user-item recom-

mender systems. We refer this type of recommendation as reciprocal recommendation.

In a reciprocal recommender system, the vitality of a user is an important feature. It

defines how active the user is, e.g., how often the user sends messages to other users.

By explicitly considering the vitality for recommendation, a vital user can improve the

engagement of other passive users, which renders the reciprocal network more healthy

and energetic. To measure how active that the users within the recommended list

are, we define the set vitality measurement as the average activeness of all the users
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in the list. Specifically, given a recommended user set S, associated with each user’s

interactive activities ui↔, the set vitality of S is calculated as

f(S) =
1

|S|

∑

ui∈S

1

|Vui
|

∑

vj

|ui→j |

|ui↔j |
, (2.11)

where Vui
is the set of users that have been clicked or contacted by ui, |ui→j | denotes

the number of clicks on vj by ui and messages that ui has sent to vj and |ui↔j|

represents the total number of interactions between ui and vj . This measure is able

to evaluate the vitality of users in the recommended user list.

2.3 Related Work

In the following, we highlight the research efforts that are related to the three ques-

tions being addressed in this dissertation. In particular, Section 2.3.1 describes the

existing solutions of modeling user accessing behaviors in recommender systems; Sec-

tion 2.3.2 presents graph-based approaches that have been developed to capture the

complex relations for recommendation; and Section 2.3.3 reviews the temporal meth-

ods devised to model the preference dynamics of users along with time.

2.3.1 User Behaviors

In general, user behavior data, i.e., the consumption history of users (including the

clicks that a user has made), is recorded as in the log. A lot of research work focuses

on analyzing user click logs, associated with user information and item content, to

infer user preferences. Broadly speaking, there are two strategies to achieve this,

including content filtering and collaborative filtering.

The content filtering approach creates a profile for each user or item to characterize

its property [KBV09]. A user’s profile may involve the user’s demographic information
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or pre-obtained user preferences. According to users’ behavioral data, the profiling

techniques are able to find a mapping between users and items. For instance, [LDP10]

develops a Bayesian framework for predicting users’ current interests from the activ-

ities of that particular user and the trending topics demonstrated in the activity of

all the users (obtained from user logs). Related work also includes [ISY06, ISY07],

contributing to the behavior modeling by different types of probabilistic approaches.

An alternative to content filtering analyzes users’ behavioral data to find similar

users without requiring the creation of an explicit profile, which is known as col-

laborative filtering. This type of methods captures the relationship between users

and interdependencies among items, and in turn identifies new matchings among

users and items. In general, collaborative filtering can be divided into two categories:

neighborhood methods and latent factor models.

Neighborhood methods focus on calculating the similarities between users (known

as user-based), or alternatively, between items (known as item-based). The neighbor-

hood strategy has been significantly explored in the past decade. A lot of research

work has been published along this direction [DI99, DK04, LSY03, NA98, SKKR01],

including user-based and item-based recommendation. User-based recommender sys-

tems [KMM+97] evaluate the interest of a user over an item by analyzing the behaviors

of other users over this item, i.e., they have similar rating patterns, or say, their rat-

ing patterns over items correlate with each other. Comparatively, in item-oriented

filtering approaches [DK04, SKKR01], a user’s preference over an item is calculated

based on ratings of similar items by the same user. Here “similar” means that the

items have similar ratings with respect to the target item.

In contrast to neighborhood-based recommender systems, which utilize the his-

torical data directly in the prediction process, latent factor models use the ratings

or click behaviors to learn a predictive model. The basic idea is to model the user-
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item relationships using latent factors, which can represent latent characteristics of

users and items in the recommender systems, e.g., groups that users or items be-

long to. By trained using the available historical data, the predictive model can be

used to infer the ratings of users over new items. In recent years, various latent

factor models have been presented to provide solutions for recommendation, includ-

ing Latent Semantic Analysis [Hof03], Latent Dirichlet Allocation [AC10], Maximum

Entropy [ZK12], Support Vector Machines [GFMG06] and Singular Value Decompo-

sition [BKV07, Kor08, TPNT09], etc.

The aforementioned approaches focus on analyzing users’ historical clicks or rat-

ings and treating them as a set. Recommenders using these approaches are able to

capture users’ general preference over items, but may fail to obtain the detailed ac-

cessing patterns, e.g., what is the accessing sequence/pattern of users, how long does

a user may read through a news article he/she prefers, etc. Without such information,

a recommender system cannot be well tailed for a user’s personalization. Recently,

researchers in recommendation domain start to put focus on recommending an access-

ing sequence of items for users. For example, in a news recommender system, a piece

of news will be presented right after the news content that a user is reading, which

enables the user to read through the related articles. Hence, besides tracking user

click behaviors, other information is also valuable to build high-quality user profiles.

As pointed out in [ACW12], the quality of recommendations can be improved by ex-

ploiting different types of “post-read” engagement signals like sharing, commenting,

printing and e-mailing article links.

2.3.2 Complex Relations

Recommender systems often involve complex relations among different elements, e.g.,

users, items, metadata of items, etc. Such complex relations are the key factor that
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dominates the decision of users. Therefore, it is imperative to consider these relations

when modeling users’ behaviors and formalizing user profiles. To this end, a lot

of research work has been proposed, following the stream that models the complex

relations linked to users. For example, a method of constructing context-aware and

multi-applicable preference models is proposed in [OKMA07], which utilizes Bayesian

networks to capture the relationships between users and other related elements.

The most common approach to analyzing complex element relations in recom-

mender systems is graph-based method. Naturally in a graph (e.g., a bipartite graph),

users and items can be represented as nodes, and their relations can be modeled as

edges. Additional elements can also be put into the graph as new types of nodes

or edges. Graph-related features in a recommender system highlight the interactions

between users and items. The topological properties of nodes can be considered as an

indication of users preferring items, and hence be used in recommendation [GP07]. In

addition, the graph structure can be used to formalize affinity measures between users

and items for cross recommendation. The bipartite graph can also be transformed to

a unipartite user/item graph to simplify the graph structure [ZRMZ07].

Graph-related features can also be used in the learning-based paradigm [LC12]. As

an example, [MKR03] emphasizes reachability via a graph-based algorithm within the

implicit graph structure underlying a recommender system. [Yaj06] uses a Laplacian

kernel to capture the positional relations among nodes on the graph and builds one-

class SVM models for each user to recommend items that are closer to their previously

accessed items. Similar work includes [KSKÇ13, WMYL06, WTZ10], in which graphs

are utilized to model the relations of users accessing items.

For more complex relations rather than user × item, hypergraphs are typically

employed to provide comprehensive modeling. Hypergraph can help resolve gen-

eral learning problems, e.g., clustering [GV00], classification [SJY08, WK07] and
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embedding [ZHS07]. Hypergraph learning has been explored in various machine

learning areas, such as gene expression classification [HTKK08, THK09], image re-

trieval [DY08, HLZM, WHZ10], document analysis [LL11], etc. In the domain of

recommendation, hypergraph modeling is also utilized to capture the complex re-

lations within a recommender system. For example, [BTC+10] uses hypergraph to

model various music-related objects (e.g., users, songs, artists, albums, tracks, tags,

etc.) and relations within the domain of music recommendation and considers music

recommendation as a ranking problem on this hypergraph.

2.3.3 Temporal Dynamics

In most recommender systems, the information needs of users over items are tem-

porally dependent [BDN11], i.e., they oscillate and evolve over time. The temporal

changes of user preferences often result from different factors. For example, in an on-

line shopping recommender, a user’s interest changes when new products or services

emerge on the website. Additional reasons related to this include specific holidays,

seasonal changes or even a change in the family structure (e.g., giving birth to a

baby). To capture such an interest drift in recommender systems, a couple of re-

search work has been proposed. The most representative one is [Kor10], in which the

time changing behavior is tracked throughout the life span of the data. They argue

that the temporal dynamics is able to exploit the relevant components of all data

instances, while discarding only what is modeled as being irrelevant.

In existing research efforts, the temporal dynamics of user interest is handled in

two different ways. One way is to model the temporal information into a temporal

variable, as part of the predictive model. When the consumption data of users are

feed into the system, the temporal variable will change accordingly. As pointed out

in [Kor10], the temporal change of user interests may depend on multiple factors,
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some are fundamental while others are more circumstantial. For example, in a movie

recommender system, a user may change his/her preferred genre or become interested

in a director. In addition, the user’s rating pattern might change, e.g., he/she assigns

a “3” star to a movie to indicate neutral preference, but later he/she may indicate

dissatisfaction by the same “3” star. Such factors can be modeled into a predictor

bi(t), which represents the estimation for the user’s rating to the item i at time t.

Along this direction, several researchers investigate how the model of collaborative

filtering will change as items are rated over time. For example, [LHCA10] explores

the time diversity of the top-N recommendations in a recommender system, and

shows that how different characteristics of user rating patterns affect the diversity of

results. Similarly, in [LPP08], a recommendation approach that constructs pseudo

rating data from the implicit feedback is proposed, and the temporal information

is incorporated into the pseudo rating for dynamics modeling. Additional related

work include [AT11, KM03, LHC09], most of which adopt the strategy of modeling

temporal information as a temporal factor/variable.

Another line following the stream of this research introduces the concepts of long-

term and short-term profiles [DL05], and proposes different weighting schemes to

integrate both types of profiles for temporal profile modeling. Time is an important

aspect in capturing temporal dynamics of user interest. Several time-evolving mod-

els [STF06, SFPY07] introduce time as a universal dimension shared by all users.

However in recommender systems, the time dimension should be a local effect and

should not be compared cross all users arbitrarily [XYZ+10]. According to this intu-

ition, Xiang et al. [XYZ+10] proposes a session-based temporal graph that simulta-

neously captures users’ long-term and short-term preferences over time, and recom-

mends items via random walking on the temporal graph. Another example is [RN07],

in which a critique-based mobile recommendation method is proposed, where the
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long-term preferences are collected by mining past interactions and by letting users

explicitly define a set of stable preferences. A type of critique is also introduced to

let users express additional session-specific preferences.

2.4 Concluding Remarks

This chapter first introduces the notations and formal procedures of content filtering

and collaborative filtering. Then, the evaluation metrics used in this dissertation is

presented, in accordance with different quality criteria. Finally, the state-of-the-art

related to the topics studied in this dissertation is discussed.
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CHAPTER 3

UNDERSTANDING BEHAVIORS

In this chapter, we focus on the problem of understanding user behaviors in recom-

mender systems from both coarse-grained and fine-grained perspectives. To begin

with, we describe the research objective along this direction. We then propose two

representative approaches published during my Ph.D. study, one exploring coarse-

grained user behaviors, and the other focusing on fine-grained accessing patterns.

The chapter concludes with the discussion of potential application scenarios of the

proposed approaches.

3.1 Research Objective and Contributions

User behavior data is the primary input of user profiling and recommendation al-

gorithms, and hence it plays the key role to model users’ personalized interest in

recommender systems. In order to effectively analyze user behaviors and obtain im-

portant user-oriented preference, users’ historical behaviors in a recommender system

are often modeled from both coarse-grained and fine-grained perspectives. Specifi-

cally, the goal of understanding user behaviors includes:

• From a coarse-grained perspective, user behaviors will be treated as a set of

user clicks or user ratings, and user preferences will be learned based on such

input associated with the detailed content of items. Most research efforts of

modeling user preferences fall into this direction. The essence of the approaches

is to obtain the binary preference or numeric scores of users towards items.

• From a fine-grained perspective, detailed user accessing history will be analyzed

in a session-based granularity, e.g., in a user session, what specific items are

accessed by the user, how many clicks a user performs, what is the customized
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click sequence of users, etc. Such information is valuable for capturing the fine-

grained preference of users, and in turn can provide guidance to personalized

recommendation.

In this dissertation, I explored the ways of modeling user behaviors from these

two perspectives, and proposed the corresponding solutions to each perspective. In

particular, a method, named FRec [LPK+13], is presented to model the coarse-grained

granularity of user behaviors, in which a user’s behavior is decomposed into two

parts, one reflecting the user’s personal preference whereas the other contributing to

the enrichment of community-based topics. The major contribution of this work is

two-fold:

• A topic modeling approach to distinguishing community interests from personal

interests by using a Bernoulli variable to control the distribution from which a

word is drawn;

• A principled recommendation framework that is capable of recommending topic-

related influential users and topic-cohesive interactive communities given a user

profile.

This work is studied under the environment of social media, and it can be easily ex-

tended to other application scenarios. For example, a community could be a research

community that focuses on a specific research area, e.g., context-aware recommen-

dation; and a user can be a researcher who is active in different research areas and

develops innovative ideas. Users may have their own research interests, as well as

collaborating with other researchers. The coarse-grained behaviors of users involve

publishing research papers at different research communities. Hence, our proposed

method can be applied to such a scenario.

To reason on fine-grained user behaviors, a method, named SCENE [LWL+11], is

presented to capture the changing pattern of a user’s accessing behavior, where the
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decreasing property of the user’s interest is formulated using a principled click model.

The major contribution of this work is two-fold:

• A novel two-level representation for recommendation results, where the first

level contains general topics summarized from item clusters similar to the user’s

profile, and the second level includes representative items within each item

cluster;

• A principled framework for item selection. We observe that the interestingness

of items with respect to a user could be regressive, e.g., user interests towards

items in a news recommender system, and based on this “submodularity” prop-

erty, we model the item selection problem as a budgeted maximum coverage

problem [KMN99], which is more realistic than independently selecting items.

This work explores the detailed click behaviors of users, and the derived recommenda-

tion model is suitable to the scenario that a user goes through a list of recommended

results. Hence, it can be applied to a lot of recommendation applications, e.g., rec-

ommending a list of news articles, movies, music tracks, etc. In the following, these

two approaches are introduced in details and are discussed in depth.

3.2 Modeling User- and Community-Oriented Behaviors

In a recommender system, users behave diversely in terms of their personal interests;

however, sometimes users interact with each other and exhibit similar user behav-

ioral patterns, and consequently show a collective group/community behavior. The

collective user behaviors (coarse-grained) contribute to both personal interests and

community topics in an implicit way.

To illustrate this, we take the application of social media as an example. In social

media, a community is often formed by a collection of users with social connections
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as well as similar topic preferences. Taking online marketing campaign as an exam-

ple, marketers not only target individuals with certain interest, but also hope the

marketing messages could be cascaded to large audience sharing similar interests. In

such a scenario, one critical issue of utilizing social media data is how to precisely

identify users’ personal interest and the interest of communities which these users are

connected to or frequently interact with. Thus it is very important to capture both

user-oriented and community-oriented topics.

Automated discovery of topics and communities has received widespread atten-

tion in academia and has been addressed differently in previous works. A common

approach is to use generative Bayesian models to capture the correlations among

users, communities and topics. However, prior approaches cannot make a distinction

between user-oriented and community-oriented topics. Taking a query “campaign

+ economy” as an example, the task is to identify users and communities that are

interested in US presidential campaign and also often discuss the topic of economy

related to the campaign. “campaign” is discussed by a lot of people as it is relevant

to the presidential selection, whereas “economy” often appears in users’ general posts

and may not be related to “campaign”. In this case,

• if we only consider user-oriented topics, the recommended users identified to

be interested in the query are not necessarily connected to the communities

focusing on the query-related topics. Targeting these users will not guarantee

the marketing messages to further cascade in the social network. In addition,

the extreme versatility of users interest, informal writing, and spam in the

social network make it difficult to infer communities interests with reasonable

perplexity.

• if we only consider community-oriented topics based on posts by all the users

in the communities, the fine-grained topic interest of each individual user is
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difficult to model due to the coarse community-oriented topic structure. Also,

detecting topics in an indiscriminate way will result in a lot of noise since all

the user-generated content will contribute to the community topics. Therefore,

we cannot identify the source from which “economy” is originated.

The advantage of modeling user-oriented and community-oriented topics simultane-

ously is that it could identify high-quality community topics by sampling the topic for

each word from either the community topic-word distribution or the user topic-word

distribution. Thus the noises induced by a wide variety of user interests that could

contaminate the community topics can be naturally mitigated.

In this work, we identify the latent relationships among social objects, i.e. users

and communities, by distinguishing a user’s interest from interests of communities.

We propose a generative topic model to capture both types of interests as topics in

a parameter universe with a mechanism that identifies the association of interests

to either a given user or a given community. Our proposed model makes use of the

communities derived from the social links of users to avoid the expensive computation

of combining the community discovering process with the topic modeling process. We

further provide a novel Framework of Recommendation, named FRec, based upon the

derived relationships, which is able to recommend topic-related influential users and

topic-cohesive interactive communities for a given user’s profile.

3.2.1 Background and Prior Approaches

User recommendation, often referred to as friendship recommendation or link predic-

tion, focuses on recommending users to a target user based on diverse criteria. From

a network perspective, user recommendation refers to finding missing edges in a user

network. Typical approaches to solving this problem often utilize the network struc-

ture and node connections, e.g., proximity measures that are based on network topo-
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logical features [LNK07], supervised learning methods [AHCSZ06], relational learning

methods [PU03], etc.

In social media, the content generated by users, e.g., user relationships or posts, is

a valuable information source to model users’ preference. Recently, several methods

have been proposed to resolve user recommendation in social media by employing

latent Dirichlet allocation (LDA) alike topic models [PG11]. These efforts, however,

only consider interest similarity, and ignore the interaction of users, which is essential

for expanding social network. In our work, we try to recommend users with influ-

ence abilities, given the fact that these users can help enrich the interactions among

users. In addition, our model can distinguish users’ personal interests from the topics

discussed within communities.

Automated community discovery has been well studied by researchers. One direc-

tion in community discovery involves using the social linking structure among users

to identify communities, e.g., min-cut based partitioning, centrality-based and Clique

percolation methods [For10, POM09]. However, they did not take into account the

content generated by users in social network, which might result in the irrationality

of the identified communities.

Another direction in community discovery is to incorporate content analysis into

the discovery process. Probabilistic models are often employed to capture the top-

ics being discussed by users and within communities [SCFS12, XZWY12, YJCZ09,

ZML+06], which assume all the content generated by a user will contribute to the

community detection. In reality, however, an online user often posts his/her personal

information, e.g., moods and activities, which might not be related to any commu-

nity. Comparatively, our model distinguishes community-oriented topics from users’

personal topics within the content, which is more reasonable in modeling the topic

interests of users.
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Given the detected communities, a further step for online community management

is community recommendation. [CZC08] proposes a collaborative filtering method

for personalized community recommendation, by considering multiple types of co-

occurrences in social data, e.g., semantic and user information. [CCL+09] uses as-

sociation rule mining to discover associations between sets of communities that are

shared across many users, and LDA [BNJ03] to model user-community co-occurrences

via latent aspects. Both works performed experimental evaluation on Orkut data set.

However, they cannot distinguish community topics from users’ interest.

3.2.2 User-Community-Topic Model

In this section, we first discuss two basic topic models used for tracking topic interests

of online users or online communities. Based on the discussion, we propose User-

Community-Topic model to resolve the issues in the two basic models. We then

describe how to learn the hyper-parameters using Gibbs sampling.

Discussion on Topic Models

Fig. 3.1(a) shows the graphical model for what we refer to as the “user-topic model”

(UT). UT aims to capture the correlation between users and topics. The generation

of a document (containing all the posts of a user) is considered as a mixture of

topics. Each topic corresponds to a multinomial distribution over the vocabulary.

Based on the learned posterior probability, each user’s preference of using words and

involvement in topics can be discovered. However, in most cases, users might have

diverse interests over topics. By using UT model, the obtained posterior probability

of a user over a specific topic might be affected by the general topic interests of this

user. In addition, users in social media often share common interests over topics,

which cannot be captured in UT model.
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Figure 3.1: Plate diagram for three topic models.

Another model is called “community-topic model” (CT) (as shown in Fig. 3.1(b)),

where the generation of a document is affected by both the topic factors and the

community factors in a hierarchical manner. In CT model, we treat all the posts

within a community as a document. The difference from UT is the community factor

c, by which topics within a document would be affected. One major problem of the CT

model is that user posts in a community could include various topics, rendering the

community document highly inconsistent. Sampling for all the words in a community

document would result in uncontrolled generalization error for inference due to the

noisy feature of social media data. In addition, there is no way to capture a specific

user’s interests using CT model, since no user factor is involved.

The Proposed Model

Our goal is to model the relations among users, topics and communities on social

media. Taking Twitter as an example, we have the tweets posted by users and the

follower-followee relations of users; however, we do not have the explicit community

membership of users. We perform community discovery on the users’ friendship

network, and allow a user to belong to multiple communities.
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To achieve this, we employ the algorithm introduced in [YYT06] to obtain the

community memberships of users. We therefore assume there is a community factor c

that captures the user-community memberships with respect to user u. Also, within

each community, users might discuss different topics, and hence we have a topic

factor z that characterizes the topic-community relations. For topic mixture and

term mixture, we give them Dirichlet priors; for community mixture, we use the

distribution derived by analyzing the follower-followee relations. In this way, we are

not concerned with the relations between the community and the user, but focus more

on the relations between the community and the topic (i.e., p(z|c)), and the relations

between the user and the topic (i.e., p(z|u)). Table 3.1 lists the notations used in our

model.

Table 3.1: Notations for quantities in the model.

Descriptions

U the user set in the community data.
V the dictionary of texts in the community data.
L the number of communities predefined.
Nu the term set of texts posted by user u.
~α Dirichlet prior hyperparameter (known) on the term distribution.
~β Dirichlet prior hyperparameter (known) on the mixture topic distribution.
~γ Prior hyperparameter (known) on the mixture community distribution.
~ǫ Prior hyperparameter on the binary mixture.
~φk p(t|z = k), the mixture component of topic k.
~θm p(z|u = m), the topic mixture proportion for user m.
~δl p(u|c = l), the user proportion for community l. (observed)
~λ binary mixture for word generation.
c the community mixture.
u mixture indicator that chooses a user from a community.
z mixture indicator that chooses the topic for the term from a user.
w term indicator for the word from a user.
s binary factor for word generation.

We denote our proposed topic model as “user-community-topic model” (UCT in

Fig. 3.1(c)). We add a latent Bernoulli variable s (a binary factor) to indicate whether
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a word is related to a user itself or to a community. In particular, s takes value 0 if

the word w is generated via the user-topic route, value 1 if the word is generated from

the community-topic route. The variable s in our model acts as a switch: if s = 0,

words are sampled from a user-specific multinomial ~θu, whereas if s = 1, words are

sampled from a community-specific multinomial ~θc (with different symmetric Dirichlet

priors parameterized by βu and βc). s is sampled from a document-specific Bernoulli

distribution ~λ, which in turn has a prior ǫ. The joint probability of the UCT model

can be written as:

p(w, z, u, c, s, φk, θu, θc, δl, λ|~α, ~βc, ~βu,~ǫ)

= p(w|z, φk)p(z|u, c, s, θu, θc)p(c|u, δl)

·p(s|λ)p(λ|~ǫ)p(φk|~α)p(θu|~βu)p(θc|~βc),

where p(z|u, c, s, θu, θc) = p(z|u, s = 0, θu) (where s = 0), and p(z|u, c, s, θu, θc) =

p(z|c, s = 1, θc) (where s = 0). Here p(z|u, s = 0, θu) is the probability of a user-

specific topic, whereas p(z|c, s = 1, θc) is the probability of a community-specific

topic. Given the graphical model described in Fig. 3.1(c), the generative scheme is

shown in Alg. 3.1.

Gibbs Updates

To estimate the model, we use the collapsed Gibbs sampling [GS04]. For our UCT

model, we are interested in the latent user-topic portions ~θu, the latent community-

topic portions ~θc, the topic-word distributions ~φk and the topic index assignments for

each word zi. Also in the learning process, the value of s will be generated based on

a Bernoulli distribution and be updated through the Gibbs sampling for each word.

~θu, ~θc and ~φk can be calculated using just the topic index assignments zi, i.e., z is

a sufficient statistic for the three distributions. Therefore, we can integrate out the

multinomial parameters and simply sample zi and si.
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Algorithm 3.1 Generative scheme of UCT model.

for each topic z ∈ (1, · · · , K) do
Sample φk ∼ Dir(·|~α)

end for

for each user u ∈ (1, · · · , U), do
Sample λu ∼ Beta(·|~ǫ)
for each word w ∈ (1, · · · , Nu), do

Sample s ∼ Bern(·|~λu)

Choose a community assignment cu ∼ Mult(·|~δl)
if(s==0): then

Choose a topic assignment z ∼ Mult(·|~θu)
else

Choose a topic assignment z ∼ Mult(·|~θc)
end if

Choose a term w ∼ Mult(·|~φk, z)
end for

end for

The collapsed Gibbs sampler needs to compute the probability of a topic z be-

ing assigned to a word wi, given all other topic assignments to all other words, with

respect to a specific value of s (0 or 1). Similarly, it needs to calculate the proba-

bility of s being assigned to a word wi, given all other s assignments to all other

words. Let z−i denote all topic allocation except for zi and s−i represent all s

assignments except for si. The probabilities that we need to update include: (1)

p(si = 0|s−i, wi, zi, ui, ci), (2) p(si = 1|s−i, wi, zi, ui, ci), (3) p(zi|z−i, wi, si = 0, ui, ci),

and (4) p(zi|z−i, wi, si = 1, ui, ci). The derivations of the updates for these probabili-

ties are described in Table 3.2.

We analyze the computational complexity of Gibbs sampling in the proposed UCT

model. As discussed above, in Gibbs sampling, we need to compute the posterior

probability p(zi|z−i, wi, si, ui, ci) for user-word pairs (U × V ) and community-word

pairs (C × V ), where V is the total number of words. Each p(zi|z−i, wi, si, ui, ci)

consists of K topics, and requires a constant number of operations, resulting in O(V ·

K · U), assuming U >> C, for a single sampling.
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Table 3.2: Gibbs updates for UCT model.

p(si = 1|s−i, w, z, u, c) ∝
p(si = 1, s−i, w, z, u, c)

p(s−i, w, z, u, c)
∝ p(si = 1|zi, ci) = p(zi|si = 1, ci) · p(si = 1|ui)

∝
nzi,ci,si=1 + βc(zi)

∑

zi
nzi,ci,si=1 +

∑

zi
βc(zi)− 1

·
nsi=1,ui=u + ǫs=1

∑

si
nsi=1,ui=u + ǫs=0 + ǫs=1 − 1

.

p(si = 0|s−i, w, z, u, c) ∝
p(si = 0, s−i, w, z, u, c)

p(s−i, w, z, u, c)
∝ p(si = 0|zi, ui) = p(zi|si = 0, ui) · p(si = 0|ui)

∝
nzi,ui,si=0 + βu(zi)

∑

zi
nzi,ui,si=0 +

∑

zi
βu(zi)− 1

·
nsi=0,ui=u + ǫs=0

∑

si
nsi=0,ui=u + ǫs=0 + ǫs=1 − 1

.

p(zi|z−i, w, si = 0, u, c) ∝
p(zi, w, si = 0, u, c)

p(z−i, w, si = 0, u, c)
∝ p(zi, si = 0, wi, ui, ci) = p(wi|zi) · p(zi|si = 0, ui)

∝
nwi,zi + α(wi)

∑

V nwi,zi +
∑

V α(wi)− 1
·

nzi,ui,si=0 + βu(zi)
∑

zi
nzi,ui,si=0 +

∑

zi
βu(zi)− 1

.

p(zi|z−i, w, si = 1, u, c) ∝
p(zi, w, si = 1, u, c)

p(z−i, w, si = 1, u, c)
∝ p(zi, si = 1, wi, ui, ci) = p(wi|zi) · p(zi|si = 1, ci)

∝
nwi,zi + α(wi)

∑

V nwi,zi +
∑

V α(wi)− 1
·

nzi,ci,si=1 + βc(zi)
∑

zi
nzi,ci,si=1 +

∑

zi
βc(zi)− 1

.

3.2.3 Recommendation Strategies

In our work, we try to recommend a list of users with relevant topic interests and

cohesive discussions. The target user can select some of the recommended users as

friends, and then start to involve the discussion among these users. Our recommen-

dation framework, FRec, provides various recommendation mechanisms based on our

user-community-topic model. We also consider the user influence with respect to a

topic. For each topic in the topic list, we can use the derived probabilities p(u|z)

as the initialization of the PageRank algorithm [LSMW98], and run PageRank on

the friendship network to obtain the influence scores of users towards a specific topic

z. Then the topic-relevant user influence can be denoted as R(u|z). We setup a

threshold (0.01) for p(u|z) to filter out low probabilities.
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User-to-User Recommendation

Given a target user û, we can rank other users based on p(ui|û), and then select top

ranked ones as û’s recommendation. p(ui|û) can be calculated using Eq.(3.2).

p(ui|û) =

∑

z

∑

c p(uiûcz)

p(û)

∝ p(ui)
∑

z

∑

c

p(z|û)p(z|ui, s = 0)p(z|c, s = 1)p(c|ui)p(c|û)p(c)

∝ p(ui)
∑

z

(

p(z|û)p(z|ui, s = 0)
∑

c

p(z|c, s = 1)p(c|ui)p(c|û)p(c)

)

. (3.2)

Here p(z|û) is the probability of topics given a test user û, which can be obtained

by extending Gibbs iterations over the test users after the hyper-parameters are

learned. Note that in Eq.(3.2), we consider both user-based topics (p(z|ui, s = 0))

and community-based topics (p(z|c, s = 1)). The user-based topics often include a

user’s personal interest. To make the recommendation more community-oriented, we

can focus on community-based topics by removing the user-based component. The

recommendation can be refined as

p(ui|û) ∝ p(ui)
∑

z

(

p(z|û)
p(z)

∑

c p(z|c, s = 1)p(c|ui)p(c|û)p(c)
)

. (3.3)

By integrating the user influence into p(ui|û), we can have

p(ui|û) ∝ p(ui)×
∑

z

(

p(z|û)R(ui|z)
p(z)

∑

c p(z|c, s = 1)p(c|ui)p(c|û)p(c)
)

. (3.4)

In this strategy, the user-to-user relations residing in the friendship network are not

considered. In order to make the recommendation more reasonable, we incorporate

the neighborhood similarity between ui and the target user û into the recommenda-

tion. The neighborhood similarity can be calculated as

sim(ui, û) =
|neighborhood(ui) ∩ neighborhood(û)|

|neighborhood(ui) ∪ neighborhood(û)|
,
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where neighborhood(·) denotes all the neighbors of the user. By integrating sim(ui, û)

into Eq.(3.4), we have

p̃(ui|û) ∝ p(ui) · sim(ui, û) (3.5)

×
∑

z

(

p(z|û)R(ui|z)

p(z)

∑

c

p(z|c, s = 1)p(c|ui)p(c|û)p(c)

)

.

User-to-Community Recommendation

Given a target user û, we can also recommend communities to û based on the derived

correlations among users, topics and communities. Given a community c, we can

measure the relevance between û and c by

p(c|û) =

∑

z p(c, û, z)

p(û)
∝
∑

z

p(z|û, s = 0)p(z|c, s = 1)p(c)

p(z)

∝ p(c)
∑

z

p(z|û, s = 0)p(z|c, s = 1)

p(z)
. (3.6)

A community with more influential users is likely to be more interactive, i.e., it

may involve more activities of sharing information and discussing topics. Therefore,

we consider the user influence for community recommendation. By integrating the

user influence into p(c|û), we have

p̃(c|û) ∝ p(c)
∑

z

p(z|û, s = 0)p(z|c, s = 1) ·
(

∑

uj∈c
R(uj|z)

)

p(z)
. (3.7)

3.2.4 Empirical Evaluation

Real-World Data

The data set used in the experiment is a collection of tweets related to “presidential

campaigns” between Barack Obama and Mitt Romney, ranging from March 1st, 2012

to May 31st, 2012. We crawled the tweets through Twitter Streaming API by feeding

a list of keywords related to the campaign (e.g., campaign, Obama, Romney, econ-

omy, etc.) into the API request. We then crawled the follower relationships of each
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user within the tweets data set. Due to the property of microblogging services, the

crawled tweets might contain a lot of noise, which would hinder the topic modeling.

Therefore, we did a series of preprocessing to alleviate the negative impact of noise

data, including: (1) removing short tweets (with the word count less than 10); (2)

removing tweets with hashtags more than 3; (3) removing tweets whose author has no

more than 5 tweets; and (4) removing usernames (starting with “@”) and URLs. Af-

ter preprocessing, the tweets data contain 133,465 users, 5,558,763 mutual-following

relationships and 5,079,994 tweets.

Comparison of Topic Models

For topic modeling, we concatenate the tweets of each user in the data set as a

document. We process the tweets data by removing stopwords, tokenizing and stem-

ming using MALLET. We also calculate the TF-IDF score of each word and then

select the top ranked 10,000 words as features. After processing, the total num-

ber of word tokens in the tweets data is 6,643,278. We compare UCT model with

two baselines: (1) CCF (Combinational Collaborative Filtering) [CZC08], which com-

bines the bag-of-users and bag-of-words models to capture the relations among topics,

communities and users within the network; and (2) TUCM (Topic User Community

Model) [SCFS12], which assumes that a user’s membership in a community is condi-

tioned on its social relationship, the type of interaction and the shared information

with other members. We also include the models shown in Fig. 3.1(a) (UT) and

Fig. 3.1(b) (CT) in the comparison.

For all the models, we empirically set the number of communities as 500. We set

the hyper-parameters to the following values [RZGSS04]: α = 0.01, β = βu = βc =

0.01 and ǫ = 0.3. We run 200 iterations of Gibbs sampling for training and extend

the chain with 100 iterations over the test set.
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Perplexity Comparison: We compare the predictive performance of our pro-

posed UCT model with other baselines by computing the perplexity of unseen words

in test documents. We calculate the averaged perplexity for 10-fold cross validation

on the tweets data set. The lower the perplexity, the better the performance of the

model [RZCG+10]. As is depicted in Fig. 3.2, the predictive performance of two basic
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Figure 3.2: Perplexity evaluation.

models (UT and CT) are not comparable with the other three topic models. The

reason is straightforward: in both models, only one aspect (either u or c) is con-

sidered, which violates the characteristics of the data, since in social media, people

post information not only for their own purpose, but also expecting to interact with

each other. CCF combines the word factor and the user factor to capture the cor-

relation between users and communities, and TUCM takes into account the type of

interactions between users. These two models achieves better predictive performance

compared with UT and CT. Our model distinguishes community-oriented topics and

user-oriented topics. Such a distinction indeed exists in most real-world scenarios,

i.e., a user has his/her personal topic interests, and is also often involved in the dis-

cussion within a specific community. In the recommendation experiments, we set the

number of topics as 500 for all the models.
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User Profile based Recommendation

To evaluate the user-profile based recommendation, we employ the leave-one-out or

leave-n-out strategy as described in [CCL+09]. precision and recall are used to mea-

sure the recommendation effectiveness. Precision is calculated at a given cut-off rank,

considering only the topmost results recommended by the approach, e.g., top@10,

top@20 or top@30. We limit the size of our recommendation list to at most 30, and

calculate the corresponding precision and recall values.
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Figure 3.3: Comparison for user recommendation.
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Recommending Users: We compare the user recommendation strategy intro-

duced in §3.2.3 with several topic model based recommendation approaches: (1)

UT: The recommendation can be achieved using the strategy similar to Eq.(3.2), by

removing the components related to c; (2) CT: By considering the identified commu-

nity membership, we can select a list of top ranked users, based on p(u|c), from the

community that the target user belongs to; (3) CCF: This method provides user rec-

ommendation by calculating the user similarity introduced in [CZC08]; (4) TUCM:

The recommendation can be achieved using the strategy similar to Eq.(3.2).

Our goal is to select a list of users whose topic interests are close to the target

user. By removing the user-oriented components from Eq.(3.2), we can make the

recommendation results more community oriented, as defined in Eq.(3.3). Note that

in Eq.(3.3), we consider the community information of both the target user and

the recommended user. To this end, we randomly select 2,000 users from the user

repository as the test set and randomly delete a set of links of each test user: (1) S1:

removing 20% links; and (2) S2: removing 2% links. We conduct experiments based

on these two setups. Fig. 3.3 shows the results for these users. For comparisons with

topic models and link prediction methods, the experiments use setup S1; To evaluate

the effect of different components in Eq.(3.5), we use setup S1 and S2.

From Fig. 3.3(a), we observe that our proposed framework FRec achieves the

best recommendation performance in terms of precision and recall. Simply using

topics (UT in Fig. 3.3(a)) cannot guarantee high-quality recommendation results. For

example, two users might share similar interests but they do not have connections in

the social graph.

In Fig. 3.3(b), we evaluate how user influence (UI) and users’ local similarity (LS)

affect the recommendation performance. We compare the basic model of FRec, the

model with UI, the model with LS and the model with UI and LS for two different
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settings S1 and S2. Based on the comparison, we observer that: (1) User influence

component and local similarity component slightly improved the performance of user

recommendation. Intuitively, a user will prefer to make friends with influential people,

since through these people he/she can reach more friends. Also, a user will be likely

to interact with friends-of-friends. (2) The user recommendation has more accurate

results if more social links of users are reserved. This is primarily because social links

can help identify the underlying communities and then enrich the recommendation

model through the user-community relations.

Recommending Communities: For community recommendation, we treat the

communities identified from the module of community detection as the ground truth.

We randomly sample 2,000 users from the user repository and recommend commu-

nities for these users. The comparison includes: (1) FRec: The basic strategy de-

scribed in Eq.(3.6); (2) FRec-s1: removing the factor of p(z|u, s = 0) from Eq.(3.6),

i.e., only considering the community-oriented topics for recommendation; (3) FRec-

IN: the strategy described in Eq.(3.7); and (4) FRec-IN-s1: removing the factor

of p(z|u, s = 0) from Eq.(3.7), i.e., considering user influence and the community-

oriented topic factor. We also compare FRec with several recommendation ap-

proaches, including CCF and TUCM as introduced previously. These two approaches

use the inferred probabilities of p(z|u) and p(z|c) for community recommendation. We

report the comparison in Fig. 3.4.

As observed in Fig. 3.4, the model of FRec-IN-s1 has the best performance against

other baselines, which explains that users in social media would like to interact with

influential users, and prefer to share information that is often discussed within a

community, i.e., by a group of people. The community-oriented topic factor p(z|c, s =

1) has superior power over user-oriented topic factor p(z|u, s = 0) in dominating the

results of community recommendation.

49



1 5 10 20 30
top@x

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

p
re
ci
si
o
n

FRec-precision
FRec-s1-precision
FRec-IN-precision

FRec-IN-s1-precision
CCF-precision
TUCM-precision

1 5 10 20 30
top@x

0.10

0.12

0.14

0.16

0.18

0.20

re
ca
ll

FRec-recall
FRec-s1-recall
FRec-IN-recall

FRec-IN-s1-recall
CCF-recall
TUCM-recall

Figure 3.4: Community recommendation result.

3.2.5 Summary of FRec

We have introduced a generative graphical model, User-Community-Topic model

(UCT), for capturing user-oriented topics and community-oriented topics simultane-

ously in social media data. Based on the model inference, we further proposed a novel

recommendation framework, FRec. Given a user’s profile, FRec is able to recommend

a list of topic-related influential users or a list of topic-cohesive interactive commu-

nities. Extensive evaluation on a dataset obtained from Twitter has demonstrated

the effectiveness of FRec compared with other probabilistic model based recommen-

dation methods. The proposed framework can be easily extended to the case that

recommends users and communities based on a set of keywords. In addition, it can

be seamlessly integrated into real-life networks.

3.3 Modeling Decreasing Property of User Interest

Personalized recommendation is oriented from exploring the relations between items

in item repository and the user’s profile. In my previous work [LWL+11], I focus
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on news personalization and try to model user behaviors in news recommender sys-

tems. What is proposed in [LWL+11] is essentially a hybrid recommendation method;

however, different from prior approaches, we provide a two-level recommendation hi-

erarchy, where the first level shows a brief summary for each topic category the user

might prefer, and the second level gives a specific list of news articles similar to the

user’s reading interest.

Another significant contribution of this work is that the submodularity hidden in

different dimensions of items motivates us to incorporate this property into our solu-

tion to the second level of the representation. The primary goal of this motivation is

to explore the fine-grained user behavior in a more principled way. By considering the

decreasing property of user interests towards items, such behaviors can be explicitly

modeled using a submodularity function [NWF78].

3.3.1 Background

Web-based news reading services, like Google News and Yahoo! News, have become

increasingly prevalent as the Internet provides fast access to news articles from vari-

ous information sources around the world. With the gigantic amount of news articles,

a key issue of online news services is how to help users find interesting articles that

match the users’ preference as much as possible, by making use of both news content

and user information. This refers to the problem of personalized news recommenda-

tion.

Despite a few recent advances, personalized news recommendation remains chal-

lenging for at least three reasons. First, the scalability of most news recommendation

services calls for fast speed of computation; Second, news item candidates are not in-

dependent in most scenarios, i.e., browsing one news item may affect the subsequent

news reading; Third, the popularity and recency of news articles change dramatically
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over time, which differentiates news items from other web objects, such as products

and movies, rendering traditional recommendation methods inefficient.

In our work, to address the issues mentioned above, we propose SCENE, a SCalable

two-stage pErsonalized News rEcommendation system with a two-level representa-

tion, where the first level contains various topics relevant to users’ preference, and

the second level includes specific news articles. In our system, we explore the intrin-

sic relation between users and news articles, along with the special properties (e.g.,

popularity and recency) of news items when recommending to individual users. Also,

the system is capable of efficiently dealing with large scale news corpus.

Specifically, SCENE consists of three major components – Newly-Published News

Articles Clustering, User Profile Construction and Personalized News Items Recom-

mendation. For news articles clustering, we initially partition newly-published news

articles into small groups by making use of Locality Sensitive Hashing [GIM99], and

then hierarchically separate these groups into intermediate clusters, each of which is

summarized using probabilistic language models (e.g., Probabilistic Latent Semantic

Indexing (PLSI) [Hof99] and Latent Dirichlet Allocation (LDA) [BNJ03]). For per-

sonalization, the user’s profile is constructed in three different yet related dimensions

– news topic distribution, similar access patterns and news entity preference. Based

on the generated topic distribution, we sequentially select news clusters similar to the

profile of a given user as the first level of the result representation. In each news clus-

ter, the submodularity hidden in different dimensions of news articles motivates us to

incorporate this property into our solution to the second level of the representation.

Extensive empirical experiments on a collection of news articles obtained from various

news websites demonstrate the efficacy of our approach, in terms of the accuracy of

selected top ranking news items and the diversity of the recommended news list.
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3.3.2 Introduction to Submodularity

Let E be a finite set and f be a real valued nondecreasing function defined on the

subsets of E that satisfies

f(T ∪ {ς})− f(T ) 6 f(S ∪ {ς})− f(S), (3.8)

where S ⊆ T , S and T are two subsets of E, and ς ∈ E\T . Such a function f is called

a submodular function [NWF78]. Intuitively, by adding one element to a larger set

T , the value increment of f can never be larger than that by adding one element

to a smaller set S. This intuitive diminishing property exists in different areas, i.e.,

in social network, adding one new friend cannot increase more social influence for a

more social group than for a less social group.

The budgeted maximum coverage problem is then described as: given a set of

elements E where each element is associated with an influence and a cost defined over

a domain of these elements and a budget B, the goal is to find out a subset of E which

has the largest possible influence while the total cost does not exceed B. This problem

is NP-hard [KMN99]. However, [KMN99] proposed a greedy algorithm which picks

up the element that increases the largest possible influence within the cost limit each

time and it guarantees the influence of the result subset is (1− 1/e)-approximation.

Submodularity resides in each “pick up” step. A key observation is that submodular

functions are closed under nonnegative linear combinations [LKG+07].

3.3.3 Submodularity Model for Recommendation

In a particular news group, most of news articles concentrate on similar or even the

same topic, with minor difference on major aspects of the corresponding topic. For

example, given a news group talking about a popular movie “Inception”, one piece

of news may focus on the actor cast of this movie, while another may describe the
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high-end techniques used in this movie. Typically, a news reader is interested in some

specific aspects of the given topic, but not all of them. Based on this intuition, our

news selection strategy can be described as follows (note that N denotes the original

news group, S represents the selected news set, and ς is the news item being selected).

After selecting ς,

• S should be similar to the general topic in N \ S;

• The topic diversity should not deviate much in S;

• S should provide more satisfaction to the given user’s reading preference.

Per the above strategy, we define a quality function f to evaluate the current

selected news set S over the whole news group N as

f(S) =
1

|N \ S| · |S|

∑

n1∈N\S

∑

n2∈S

sim(n1, n2)

+
1
(

|S|
2

)

∑

n1, n2 ∈ S

n1 6= n2

−sim(n1, n2) +
1

|S|

∑

n1∈S

sim(u, n1), (3.9)

where n1 and n2 denote news items, u represents the given user, and sim(·, ·) repre-

sents the similarity between two profiles, either the user profile or the news profile.

In Eq.(3.9), three components are involved, corresponding to the news selection

strategy we list above. The first one aims to evaluate the quality of how representative

that the selected news set S is over the original news set; the second one provides a

perspective on how diverse that the topics underlying the selected news articles are;

and the last component gives us the evidence that how much the user’s preference

is satisfied by the selected news set S. f(S) balances the contributions of different

components. Note that all these three components are naturally submodular func-

tions. Based on the linear invariability of the submodular function, f(S) is also a
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submodular function. Suppose ς is the candidate news article, the quality increase is

therefore represented as follows:

I(ς) = f(S ∪ {ς})− f(S). (3.10)

The goal is to select a list of news articles which provide the largest possible qual-

ity increase within the budget, where the budget can be regarded as the maximum

number of recommended items in each news group. Hence, personalized news recom-

mendation is transformed to the budgeted maximum coverage problem.

In each news group, a greedy algorithm is employed to solve the budgeted maxi-

mum coverage problem, by sequentially selecting the news article providing the largest

quality increase based on the selected news set until the budget is reached. To in-

tegrate recommended news items from different news groups into the final recom-

mendation list, we select top ranking items within each group, where the number of

items selected in one group is proportional to the interest weight of the user on the

corresponding topic category.

The proposed method models personalized news recommendation as a budgeted

maximum coverage problem, i.e., the selection of one news item will influence the

selection of the following news items. From this perspective, our work is similar

to [LCLS10], in which personalized recommendation of news articles is modeled as a

contextual bandit problem, where a learning algorithm sequentially selects articles to

serve users based on contextual information about users and articles, while simultane-

ously adapting its article-selection strategy based on user-click feedback to maximize

total user clicks. Our work is orthogonal to theirs in terms of news articles selection,

since they focus on the long-term effect of recommendation, whereas our concern is

located on single-session recommendation.

The submodularity-based news selection strategy provides us a diverse news rec-

ommendation list within each topic category. In addition, multiple topic categories
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are recommended to individual users, by which the diversity of the final recommen-

dation result is explicitly enriched to a great extent.

3.3.4 Empirical Evaluation

To evaluate the proposed method, we gather news articles along with users’ access

history from two popular news websites – Bloomberg and Thewrap. Both websites

contain multiple news topic categories, such as sports, movies and politics. We gather

the news data for 9 categories on purpose, where the data collection ranges from Aug

15th, 2010 to Nov 16th, 2010. In order to embody the role of similar access patterns

in users’ profiles, we preprocess the data by removing news articles that are rarely

accessed (i.e., the accessed frequency is less than 10 times per day) and by storing

users with frequent online reading behaviors (i.e., users who read news articles every

day and read more than 10 pieces of news each day). After preprocessing, 112,380

news items are stored, with 4,630 users, each day in average with 1,221 news articles.

In order to verify the effectiveness of our proposed news selection strategy, we

provide detailed comparison between ours and the general greedy selection strategy

simply based on pairwise similarities. Also, we implement a recommender system

that models the recommendation as a contextual bandit problem [LCLS10], as the

comparison base. For each approach, we randomly select 100 users to provide rec-

ommendations for them. We plot the precision and recall pair for each user on top

@10, @20, and @30 news items recommended to these users. Figure 3.5 shows the

comparison results. From Figure 3.5, we observe that besides the higher precision

and recall, the performance distribution of SCENE is more compact than the other

methods, which demonstrates the stability of our proposed news selection strategy.

In the above experiments, all the users are equally treated as the experimental

subject. In reality, users with different news access patterns, such as different read-
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Figure 3.5: Precision-recall plot for different news selection strategies. Remark: ©
represents users using the general greedy-based recommender system; � denotes users
using the bandit-based recommender system; and + represents users using SCENE.

ing frequency every day, may have distinct patterns of news topic preference, and

therefore the dynamic interest on news articles may vary a lot. In addition, many

news recommendation systems cannot address the so-called “cold-start” problem. In

order to verify the performance of our proposed algorithm on different user groups,

we separate the selected users into three groups based on their reading habits. Sup-

pose a user reads N news articles per day, then the three groups are: (i) N ≤ 10;

(ii) 10 < N ≤ 50; (iii) N > 50. We apply different algorithms on these three users

groups with top @10, top @20 and top @30 recommended news, and record the

F1-score respectively. Here, the comparison base includes two existing approaches:

[DDGR07] (Goo) and [LDP10] (ClickB). The former is a collaborative filtering based

method, whereas the latter is a content-based method. Figure 3.6 shows the compar-

ison results. From the comparison, we observe that our system SCENE can achieve

a reasonable recommendation result when it is subject to the “cold-start” problem.

The reason is that besides considering similar access patterns when recommending

news articles to individual users, we also measure the importance of news content

and named entities preferred by news readers.
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Figure 3.6: Comparison on F-score of different algorithms for three distinct user
groups.

To evaluate how diverse our recommendation result is, we compare the set diversity

described in [ZH08] between the results of SCENE and other recommender systems.

The news set diversity is defined as the average dissimilarity of all pairs of news items

in the recommendation list, as introduced in Section 2.2. For diversity evaluation, we

choose [DDGR07] (Goo), [LDP10] (ClickB), [CP09] (Bilinear) and [LCLS10] (Bandit)

as the comparison baselines. We employ the same experiment setup, to compare the

diversities of recommendation lists with different cardinalities. Table 3.3 shows the

averaged diversity result for 10 time ranges.

Table 3.3: Diversity evaluation on the result list.

Methods Top @10 Top @20 Top @30

Goo 0.4101 0.3074 0.1105
ClickB 0.4329 0.3128 0.1562
Bilinear 0.4234 0.2517 0.0933
Bandit 0.5056 0.4126 0.2925
SCENE 0.6930 0.6671 0.6059

From the result, we observe that: (i) The diversity decreases as the recommen-

dation news list enlarges. It is straightforward that when more news articles are

selected, the topic distribution of the news list becomes closer to the user’s reading

interest, and therefore the selected news items are more similar. (ii) The diversity
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of the recommendation list provided by the baseline methods drops dramatically as

the list size increases, since they did not take the diversity into account. (iii) SCENE

outperforms the others very significantly, and since we intentionally consider the re-

quirement of news readers, the diversity decreases very smoothly when we recommend

more news items to individual users.

3.3.5 Summary of SCENE

In summary, the contribution of this work is three-fold:

• A novel two-level representation: Unlike prior approaches simply providing a

list of news items, our system generates a two-level representation, where the

first level contains general topics summarized from news clusters similar to the

user’s profile, and the second level includes representative items within each

cluster. Such a representation can help users easily navigate their preferred

articles.

• A principled framework for news selection: We observe that the interestingness

of news articles with respect to a user could be regressive, and based on this

“submodularity” property, we model the news selection problems as a budgeted

maximum coverage problem [KMN99], which is more realistic than indepen-

dently selecting news items. The proposed framework achieves a good balance

between the novelty and diversity of the recommendation result.

• Multi-factor user profile construction: We explore the feasibility of incorpo-

rating various properties of news articles – news content, access patterns and

named entities – into the construction of user profiles. It is with great benefit

of using such enriched profile to capture the exact interest of users.
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3.4 Concluding Remarks

This chapter focuses on the problem of understanding user behaviors in recommender

systems from both coarse-grained and fine-grained perspectives. In particular, we

propose two novel approaches to catch multi-granularity user behaviors:

• In [LPK+13], we introduce a generative graphical model, User-Community-

Topic model (UCT), for capturing user-oriented topics and community-oriented

topics simultaneously in social media data. Based on the model inference, we

further proposed a novel recommendation framework, FRec. Given a user’s

profile, FRec is able to recommend a list of topic-related influential users or a

list of topic-cohesive interactive communities. The proposed framework can be

easily extended to the case that recommends users and communities based on a

set of keywords. In addition, it can be seamlessly integrated into real-life social

networks.

• In [LWL+11], we propose a two-stage approach to tackle personalized news

recommendation. We explore the intra relations among news articles, along

with different characteristics of news items, including news content, similar

access patterns and named entities preferred by users. Our system supports

efficient clustering on newly-published news articles, as well as high quality of

recommendation results. Extensive evaluation has demonstrated the efficacy

and efficiency of SCENE.

These two approaches are able to capture the coarse-grained and fine-grained

user behaviors, respectively, and they can be easily extended to other application

scenarios. Specifically, FRec is applicable to the scenarios that involve both users and

communities, e.g., in social media or research communities. A user’s post contributes

to both his/her personal preference and the community topic simultaneously, and
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hence serves as the basis for inferring the User-Community-Topic model. In this case,

the content generated by users is considered as a set of activities without specific order

information. Comparatively, SCENE presents a generalized version of modeling user

interests, and can be applied to the applications that provide a list of recommended

items.
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CHAPTER 4

UNDERSTANDING RELATIONS

In this chapter, we start by introducing the research objective of understanding com-

plex relations within recommender systems. To understand complex relations, we

focus on using graph-based paradigms to model the relations between users and other

objects in a recommender system. Two representative approaches along this direc-

tion have been published during my Ph.D. study. In the following, the details of

these approaches will be presented, associated with the applicable scenarios for each

algorithm.

4.1 Research Objective and Contributions

In most recommender systems, the relation of user × item is not the unique relation.

A myriad of relations might be contained in users’ behavioral data. For example, in

a news recommender, a user may have some correlations with other users, in a sense

that they share similar accessing patterns. The user may also prefer specific topics

and named entities rather than accepting all of them. In other domains, such as music

recommendation, such a situation also holds. For instance, the songs, associated with

artists, tracks, genres, etc., may form a natural taxonomy. These complex relations

are valuable for building high-quality user profiles.

In this direction, we comprehensively explore the complex relations within a rec-

ommender system using different graph-based methods, based on the types of relations

hidden in the recommender system. Specifically,

• In general recommender systems, the relations often involve the binary link

between users and items. Such systems could be modeled using bipartite graph,

where one set of nodes represent users, and the other set of nodes denote items.
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The linkage between user nodes and item nodes typically represents the clicks

by users on items. Hence, in [LL12], we model user relations by virtue of a

bipartite graph, and reason on various special characteristics on such a graph

in a user-to-user recommender system.

• Some recommender systems include more complex relations, where users and

items have various properties. For example, in a music recommender system,

items (songs) may have a natural taxonomy representing the relations among

songs, artists, tracks, albums, etc. Users in such a system may have preference

over songs (the lower level of taxonomy) and artists (the higher level of tax-

onomy). General graphs in which each edge contains only two nodes cannot

handle the modeling over such systems. A more natural solution is to use the

hypergraph. In [LL13], we formulate the implicit relations in a recommender

system using hypergraph models, and conduct graph transductive inference to

obtain the recommendation result.

In the following, we will discuss the details of the proposed algorithms, along with

the application scenarios.

4.2 Bipartite Modeling with Domain Characteristics

In recent years, a special class of recommender systems – reciprocal recommenders –

have emerged, and are tailored for applications that focus on recommending people

to people, in which the preferences of both parties involved in the recommendation

need to be satisfied. For instance, in an online recruiting system, a job seeker would

search jobs that match his/her preference, e.g., the special skills and the salary;

and a recruiter might seek suitable candidates to fulfil the job requirement. Other
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illustrative examples of reciprocal recommenders include online dating services, online

mentoring systems, customer-to-customer marketplaces, etc.

4.2.1 Background and Challenges

Obviously, the major challenge of reciprocal recommender systems is how to satisfy

the needs of both users in a recommended match. This requires modeling the bilateral

relations between users by considering the double-sided preferences. However, simply

considering the bilateral relations is insufficient in the reciprocal community. In

practice, reciprocal recommenders, such as online dating and online recruiting, possess

special characteristics differentiating them from traditional user×item recommender

systems. Figure 4.1 illustrates some challenges in these systems. We summarize the

challenges as follows:
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Figure 4.1: A toy example in an online dating system.

• Reciprocity : The success of a match depends on the double-sided preference, not

solely on the user who receives the recommendation. This is the key feature of

a reciprocal recommender.
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• Limitedness : In traditional recommenders, an item can be preferred by a great

amount of users. However, in reciprocal recommenders, people have limited

availability towards other people, e.g., a boy cannot date with ten girls simul-

taneously.

• Passiveness : In reciprocal recommenders, a lot of users with limited engagement

activities passively receive messages from other users. To maintain a vibrant

community and further attract more users, it is imperative to consider the

passiveness of users.

• Sparsity : Users in reciprocal communities would probably not return to the

system if they find their preference. Therefore, different from traditional rec-

ommenders where users often have a long consumption history, the data sparsity

issue in a reciprocal recommender needs more careful consideration.

The aforementioned challenges are essential to a successful reciprocal recom-

mender system. Previous studies either focus on handling the main reciprocity of the

recommender, or delve into a specific issue that exists in reciprocal recommenders.

Little research work has been proposed to address the challenges in a principled and

unified manner. In my previous work [LL12], we model the bilateral relations of

users as a bipartite graph that maintains both local and global utilities in a recipro-

cal community. The local utility captures users’ mutual preferences by considering

reciprocity, limitedness and passiveness, whereas the global utility manages the over-

all quality of the entire reciprocal network in order to resolve the sparsity problem.

The bipartite graph is constructed based on the users’ self-descriptive and preference

features, and then is refined by users’ interactive activities.

Given a specialized community represented by a bipartite subgraph, our goal is to

recommend for each user an attractive list of users from the other user set. By consid-

ering the characteristics of the reciprocal recommendation, we employ the bipartite
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graph inference to obtain the recommendation result. Besides the relevance between

users, we have the interactive activities, e.g., messages and chatting in online dating,

and adding favorite jobs and sending interviews to applicants in online recruiting. We

also take into account the availability of the users. We refine the bipartite subgraph

based on these information. After refinement, each vertex has its vertex attribute,

i.e., the availability, and also has two sets of edges, including the relevance edges and

the activity edges. The relevance edge is undirected, and the activity edge is directed,

indicating which vertex is the initiator of the activity.

A natural question is why we do not consider the activity information when parti-

tioning the bipartite graph. Within the reciprocal community, not all the users have

sufficient activities; if we incorporate the activities into the partitioning process, the

generated results might isolate users with few activities from more active users, which

may render the recommendation for these inactive users not reasonable.

4.2.2 Bipartite Graph Preliminaries

Formally in our problem setting, a bipartite graphG
∗ = (U ,V, Er, Ea,wr,wa) consists

of two sets of vertices, U and V, and two sets of edges, Er, Ea ⊆ U × V. Each edge

in Er is an undirected pair of nodes weighted by rel(u, v), i.e., wr : U × V → Rr.

Each edge in Ea is an ordered pair of nodes [u, v] representing the activity connection

from u to v, weighted by the ratio of the activities toward the end node and all the

activities of the initial node, i.e., wa : U × V → Ra. Given a vertex v in G∗ (either

v ∈ U or v ∈ V), the in-degree p(v) and out-degree q(v) are defined as

p(v) =
∑

{u|[u,v]∈Ea}

wa(u, v), q(v) =
∑

{u|[v,u]∈Ea}

wa(v, u).

Let H(G∗) denote the space of functions f : U ,V → R, which assigns a real value

f(v) to each vertex v.
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4.2.3 Inference on Bipartite Graph

Given a bipartite graph representing the relevance structure of the reciprocal network,

a simple solution to the recommendation is to select top relevant users that directly

link to a given user as the recommended result. However, the specific properties

(availability and vitality) of users in a reciprocal community would be ignored if we

follow such a simple paradigm. For example, a job seeker u has been recommended to

multiple job recruiters; if we recommend u to a new job recruiter v, then u will have

little chance to respond v, even if they are relevant in some sense. In such a situation,

it would be more reasonable to recommend for v other job seekers who are similar to u,

which is essentially collaborative filtering. Yet, both directional and non-directional

information on the bipartite graph cannot be easily incorporated into traditional

collaborative filtering algorithms. A much more natural solution to this problem is

to perform graph inference on the bipartite graph to obtain the recommendation list.

Our inference paradigm is motivated by [ZSH05], in which the graph inference is

performed on a directed bipartite graph to solve the problem of classification. The

problem setting in their method is similar to ours. However, they only consider the

directional information within the bipartite graph, i.e., the in-degree and out-degree

of nodes, but fail to consider the rationality of the connectivity between nodes, i.e.,

why the two nodes are connected with each other, which is essential in the problem

of reciprocal recommendation. In our work, we explicitly model the rationality of the

connectivity of nodes as the relevance between users, by which the connectivity can

be naturally explained, and the final recommendation result is more reasonable and

explainable.

Formally, if two distinct vertices u1 and u2 in U are co-linked by vertex v in V,

it indicates that the properties of both u1 and u2 are likely to be similar, e.g., both

job seekers are similar in profile-wise since they are all preferred by the same job
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recruiter. The co-linkage strength induced by v between u1 and u2 can be measured

by

cv(u1, u2) = wr(u1, v) · wr(u2, v) ·
wa(v, u1)wa(v, u2)

q(v)
. (4.1)

With such a similarity measure, we not only consider the interactive activities of users

(wa(v, u1) and wa(v, u2)), but also emphasize the relevance between users (wr(u1, v)

and wr(u2, v)). It can be naturally understood in the context of online dating. If

two boys are simultaneously contacted by a girl, then it indicates that both boys

have similar characteristics that are preferred by the girl. Moreover, the more girls

contact both boys, the more significant the similarity. A natural question arising in

this context is why the similarity measure is further normalized by out-degree of v. It

can be easily interpreted if we use the previous example. A girl who sends messages to

a lot of boys may not have clear preference on what boy characteristics, and therefore

the induced similarity of two boys by this girl is not significant.

In Eq.(4.1), we penalize the influence of active users by normalizing the similarity

score using q(v). It should be clarified that the vitality of the community cannot be

reflected by flooded messages without definite purposes. The way we formalize the

similarity considers the importance of dedicated users, e.g., if a girl is interested in

a boy, she will not send too many messages to other boys but focus on building the

relationship with this boy. Such an observation is beneficial to construct a vibrant

reciprocal community.

Let f denote a function defined on one vertex set U . Then the inference cost of

function f can be measured by the following functional:

ΩU(f) =
1

2

∑

u1,u2∈U

∑

v∈V

1

τ(v)
cv(u1, u2)

(

f(u1)
√

p(u1)
−

f(u2)
√

(p(u2))

)2

. (4.2)

In Eq.(4.2), we penalize large differences in function values for vertices in U . Notice

that the function values are normalized by in-degrees of the corresponding vertices.
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In the context of online dating, the explanation is similar to the one given before.

Many girls will prefer a handsome and successful man, which does not mean that

these girls have similar preferences over the characteristics of the man. However, if

two girls are sending messages to a boy without handsome appearance and strong

background, it is likely to express a common interest of both girls. We also consider

the availability of users using the reverse of τ(u). If the user has been recommended

to other users many times within a time range, e.g., one week, then the possibility of

this user being recommended to the target user should be small.

Similarly, the inference cost of function f on the vertex set V can be measured

by:

ΩV(f) =
1

2

∑

v1,v2∈V

∑

u∈U

1

τ(u)
cu(v1, v2)

(

f(v1)
√

p(v1)
−

f(v2)
√

(p(v2))

)2

. (4.3)

Convexly combining together the two cost functionals Eq.(4.2) and Eq.(4.3), we

can obtain an inference cost measure of function f over the bipartite graph G∗:

Ωγ(f) = γ · ΩU(f) + (1− γ) · ΩV(f), s.t. 0 ≤ γ ≤ 1, (4.4)

where the parameter γ indicates the relative importance between ΩU(f) and ΩV(f).

4.2.4 Recommendation by Regularization

Ωγ(f) captures the inference cost of labeling nodes in a bipartite graph. For recom-

mendation, the intuitive idea is to minimize the inference cost, since we want to find

the set of users closely relevant yet not recommended to the target user, by making

use of the co-linkage of nodes. Besides the inference, we have additional information

about users in reciprocal communities, i.e., the interactive activities, which can be

regarded as a user’s engagement profile for recommendation. Formally, given a user

in u ∈ U , we can define a function y in H(G∗) in which y(v ∈ V) = 1 if vertex v has

interaction with u, or 0 if v has never interacted with u. Then the recommendation
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problem can be regarded as the problem of finding a function f , which infers new ver-

tices for u while reproducing the target function y to a sufficient degree of accuracy.

A formalization of this idea leads to the following optimization problem:

f ∗ = argmin
f∈H(G∗)

{Ωγ(f) + µ‖f − y‖2}, (4.5)

where µ > 0 is the regularization parameter. The first component measures the

inference cost of function f , and the second component indicates the closeness of f

with respect to the given function y. The trade-off between these two competitive

terms is captured by µ. The solution of the optimization problem, Eq.(4.5), can be

found in [ZBL+04].

After obtaining the result of f ∗(u) for user u, we can take signf ∗(u) to select

the vertices in V whose labels are 1, and then rank the selected users based on the

mutual relevance of users, i.e., rel(u, v). The final recommendation result is obtained

by selecting the top ranked ones without considering the users who have already

interacted with u and the users whose availabilities exceed the availability budget b.

Further, if the target user is a vital user, then the recommended list will be ranked

via the vitality of users in an ascend order; otherwise, the list will be ranked in a

descend order of the vitality. In this way, the engagement of passive users is possible

to be improved to some extent.

4.2.5 Discussion

The reciprocal recommendation framework we propose is quite general. In this sec-

tion, we show the connections and differences between our framework and various

existing methods for reciprocal recommendation. The methods discussed in this sec-

tion include gradient boosted decision trees (GBDTs) [DMAY10], reciprocal recom-
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mender for online dating (RECON) [PRC+10] and content-collaborative reciprocal

recommender (CCR) [AKY+11].

GBDTs and MEET: GBDTs considers the relevance between the query and the

candidate by integrating the matching attributes and post-presentation (activities)

features into a unified feature vector. Based on this vector, GBDTs calculates the

relevance score between two single users. MEET considers a more general problem –

recommendation, in which a user might have no definite preference on the information

and therefore no explicit query is specified. Also the post-presentation features might

not be available to new users. Moreover, MEET formalizes the reciprocal community

as a dynamic network, whereas in GBDTs, the users are treated individually.

RECON and MEET: RECON calculates the compatibility scores between users

from different sets by considering the self-description attributes and the activities.

However, it fails to consider the other special characteristics of reciprocal recommen-

dation, e.g., the sparsity, the limitedness and the passiveness. In such sense, RECON

can be regarded as a special case of our proposed generalized framework.

CCR and MEET: CCR computes the users’ similarity based on the content of user

profiles, and then performs recommendation from collaborative-wise. It considers the

a single-step diffusion of “like” and “dislike” of users towards other users. Such a

diffusion is also incorporated into MEET by the inference on the refined bipartite

graph. Therefore, CCR can also be treated as a special case of MEET.

4.2.6 Empirical Evaluation

Real-World Data: To evaluate the effectiveness of the proposed method, we use

two different real-world datasets, described as follows.

Online Dating Data: This data set is collected from a dating web site from Oct,

2008 to Mar, 2011. We calculate the user relevance based on the new feature space,
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and set U as the male set and V as the female set. The statistics of this data set is

depicted in Table 4.1(a).

Table 4.1: Statistics of two data sets.
(a) Online Dating

Male (u) 344,552
Female (v) 203,843
# of F s

u 528
# of Fp

u 506
# of F s

v 506
# of Fp

v 528
Activities 8,599,013

(b) Online Recruiting

Job Seekers (u) 199,999
Recruiters (v) 46,629

# of F s
u 860

# of Fp
u 928

# of F s
v 928

# of Fp
v 860

Activities 664,943

Online Recruiting Data: We collected the profiles and activities for users of a job

searching service web site from Jan, 2008 to Oct, 2011. We set U as the job seeker

set and V as the recruiter set. We use the same strategy to process this data set. The

statistics of the data after processing is described in Table 4.1(b).

Effects of Reciprocal Properties

In our generalized framework, we comprehensively consider the special properties of

reciprocal recommendation, i.e., reciprocity, limitedness, passiveness and sparsity.

To examine the influence of different properties on the recommendation results, we

evaluate several alternatives of MEET as follows:

• MEET1: Do not consider reciprocity, passiveness, limitedness and sparsity, i.e.,

to drop the term 1
τ(v)

cv(u1, u2) in Eq.(4.2) and Eq.(4.3) and do not perform

feature weight learning process;

• MEET2: In Eq.(4.2) and Eq.(4.3), only consider the relevance between users,

i.e., to drop the term 1
τ(v)

and the term wa(v,u1)wa(v,u2)
q(v)

in Eq.(4.1);

• MEET3: In Eq.(4.1), do not consider the passiveness of users, i.e., to drop the

term wa(v,u1)wa(v,u2)
q(v)

;
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(a) F1 on online dating.
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(b) NDCG on online dating.
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(c) F1 on recruiting.
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(d) NDCG on recruiting.

Figure 4.2: Performance comparison of different alternatives of MEET.

• MEET4: In Eq.(4.2) and Eq.(4.3), do not consider the availability of users, i.e.,

to drop the term 1
τ(v)

;

• MEET5: Do not perform the feature weight learning process.

We compare these alternatives with the comprehensive MEET in terms of F1-score

and NDCG. Figure 4.2 shows the comparison results on two datasets.

It is evident that the generalized model MEET significantly outperforms the al-

ternatives from both accuracy and ranking perspective. The reason behind this is

quite straightforward: in the generalized model, the special characteristics of recipro-

cal community are well captured, rendering the recommendation results derived from

such unified model more reasonable. Besides this, we observe that: (1) The reciprocity
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is the dominant aspect in the reciprocal network, since only considering the relevance

between users can significantly improve the quality of the recommendation results;

and (2) The limitedness, passiveness and sparsity are also important properties of

the reciprocal community, by which the performance of MEET can achieve slight

improvement.

Comparison with Existing Methods

Our proposed framework is designated to reciprocal recommendation, which cannot

be easily tackled by traditional collaborative filtering approaches. To verify this claim,

we choose two recently published collaborative filtering methods [HKV08, LHZC10]

as our baselines. [HKV08] (CFIF for short) proposed treating the data as indica-

tion of positive and negative preference associated with vastly varying confidence

levels, which is a pure collaborative filtering approach. [LHZC10] (OCCF for short)

exploited the rich user information available in community-based interactive informa-

tion systems, and incorporated user information into modeling the recommendation.

For this method, we use the neighborhood model as the baseline. We also implement

GBDTs [DMAY10], RECON [PRC+10] and CCR [AKY+11] for comparison. We use

F1-score and NDCG to compare these algorithms with MEET for both online dating

and online recruiting datasets. The feature set used in the baselines are identical

to the one in our proposed method, and also the parameters in the baselines are

optimally tuned.

The results are shown in Table 4.2. It is evident that MEET significantly out-

performs the baselines on both F1-score and NDCG. The two collaborative filtering

based methods cannot effectively handle the reciprocal task. We investigated the

recommendation results of both methods and found that users in most recommended

matches are relevant. However, there are two reasons that both users in a match have
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few or even no interactions: (1) The recommended user has been recommended to

multiple users, and therefore he/she has limited availability; and (2) Both users are

not vital, and hence they do not contact with each other. The three reciprocal meth-

ods being compared can slightly improve the recommendation performance; however,

they only focus on different aspects of the reciprocal community. Instead, MEET

provides a comprehensive overview of the reciprocal network, and therefore achieves

the best.

Table 4.2: Comparison with existing methods. (The bold font indicates the best
performance. * indicates the statistical significance at p < 0.01.)

Methods
Online Dating online recruiting

top@10 top@20 top@30 top@10 top@20 top@30
F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG

CFIF 0.2307 0.3069 0.2918 0.3534 0.3206 0.4417 0.2301 0.3174 0.3121 0.3813 0.3481 0.4036
OCCF 0.2415 0.3134 0.3059 0.3670 0.3385 0.4498 0.2485 0.3320 0.3219 0.3929 0.3569 0.4127
GBDTs 0.2607 0.3146 0.3106 0.3881 0.3475 0.4662 0.2567 0.3592 0.3304 0.4131 0.3718 0.4432
RECON 0.2523 0.3221 0.3027 0.3672 0.3503 0.4530 0.2604 0.3608 0.3247 0.4025 0.3839 0.4507
CCR 0.2309 0.3250 0.3389 0.3724 0.3428 0.4621 0.2431 0.3745 0.3573 0.3987 0.3912 0.4729
MEET 0.2823∗ 0.3521∗ 0.3390 0.4118∗ 0.3826∗ 0.4836∗ 0.2890∗ 0.3799 0.3560 0.4405∗ 0.4181∗ 0.4904∗

Vitality Evaluation

The vitality of a user is an important feature within the reciprocal community. It

defines how active the user is, e.g., how often the user sends messages to other users.

By explicitly considering the vitality for recommendation, a vital user improve the

engagement of other passive users, which renders the reciprocal network more healthy

and energetic. To measure how active that users within the recommended list are,

we define the set vitality measurement as the average activeness of all the users in

the list, as introduced in Section 2.2.

The recommended user list provided by MEET exhibits a great vitality . Such

vitality is resulted from the sparkle that we intentionally consider the passiveness of

users in reciprocal community. We assume that the passive user can be spurred by

the active user, and formalize the activeness of users in Eq.(4.1). Such activeness is
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beneficial to construct an energetic reciprocal network, in which users are willing to

proactively contact with other users, and therefore improve the vitality of the entire

network.

To evaluate the vitality of the recommended results, we use the set vitality mea-

surement defined in Eq.(2.11), and compare MEET with GBDTs, RECON and CCR.

These three methods consider the interactive activities of users from different perspec-

tives. We also compare MEET with an alternative MEET3 that does not consider

the passiveness of users. Note that the recommended list are ranked based on the

activeness of users. The ranking quality of the recommended list has been verified in

the previous section, and therefore we put our concern on the overall vitality of the

list. We report the comparison results in Table 4.3.

Table 4.3: Evaluation on the set vitality of the recommended results. (The bold font
indicates the best performance. * indicates the statistical significance at p < 0.01.)

top@10 top@20 top@30
GBDTs 0.3513 0.3306 0.3027
RECON 0.3629 0.3430 0.3085
CCR 0.3731 0.3325 0.2964

MEET3 0.3515 0.3276 0.2909
MEET 0.4639∗ 0.4517∗ 0.4425∗

From the comparison, we observe that the set vitality of results from different

methods varies a lot. Since our framework explicitly formalizes the interaction be-

tween users into Eq.(4.1), it achieves the best performance. An interesting phe-

nomenon is that when the number of recommended results increases, most methods

show a decreasing trend in terms of the set vitality. Take CCR as an example for

further analysis. CCR generates the results by considering the users who have in-

teractions with users that are similar to the target user (based on the profile). The

user ranking is based on the reciprocal interests. When recommending more users

to the target user, the reciprocal interests of users with lower rankings will decrease
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significantly, and therefore the set vitality of the recommended list deceases. Com-

paratively, in our framework, we prefer dedicated users, i.e., the users who have a lot

of interactions with several other users but do not send flooded messages. Based on

this intuition, MEET outperforms other candidates.

4.2.7 Summary of MEET

In this work, we study the problem of reciprocal recommendation. We comprehen-

sively investigate the special properties of a reciprocal community, including reci-

procity, limitedness, passiveness and sparsity. We propose a generalized reciprocal

framework, MEET, in which the aforementioned properties are seamlessly integrated.

Specifically, MEET first constructs a bipartite graph based on the mutual relevance

of users, and then performs graph inference on the resulted subgraphs to obtain the

recommendation list for individuals. The inference model formalizes the properties

of the reciprocal network and elegantly casts the recommendation as an optimization

problem.

4.3 Complex Relations in a Recommender

A key step in news recommender systems is to build the readers’ preference profiles

based on their historical consumption, i.e., the reading history. Traditionally, user

profiling is conducted by extracting representative elements (e.g., words or phrases)

from the reading history or selecting similar access patterns. However, users’ historical

consumption may contain a gigantic amount of element correlations, e.g., a group

of users like the same topic, which cannot be well captured by the aforementioned

profiling paradigms.
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Further, online readers tend to prefer some named entities in news articles, e.g.,

when the event happened, where it happened, who were involved, etc. These types

of entities can attract online readers’ interest since they contain concise information

about the news article itself. Therefore, named entities would be valuable to model

users’ preferences. However, few research efforts have been reported on utilizing

named entities for user profiling. In [GDH04] and [LWL+11], named entities extracted

from news articles are represented as an entity vector, and then the similarity based

on such a vector is calculated for retrieving relevant news items. Such a representation

might cause the information loss of news access data, e.g., what type of entities is

preferred by a group of users, and therefore render user profiling less effective.

In [LL13], to address the aforementioned issues, we propose a novel news person-

alization algorithm by mining the implicit relations among users, news articles, topics

and named entities. Motivated by [BTC+10], we use a unified hypergraph to model

multi-type objects and implicit relations in news reading community. A hypergraph

is a generalization of the ordinary graph, in which the edges, called hyperedges, are

arbitrary non-empty subsets of the vertex set [ABB06]. However, due to the special

properties of news articles (e.g., textual content, implicit relation and short shelf life),

a straightforward extension of hypergraph modeling on music community cannot be

directly applied to news recommendation. Instead, we first partition the hypergraph

into multiple fine-grained ones, and further model personalized news recommendation

as a ranking problem on fine-grained hypergraphs to recommend news articles.

4.3.1 Hypergraph Preliminaries

We follow the definitions in [BTC+10, ZHS07] to describe hypergraph preliminaries.

We denote G(V,E, w) as a hypergraph, where V is a finite set of vertices, E is a family

of hyperedges on V , and w is a weight function, w : E → R. Each hyperedge e ∈ E
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contains a list of vertices that belong to V . The degree of a hyperedge e is defined by

δ(e) = |e|, i.e., the number of vertices in e. The degree d(v) of a vertex v is defined by

d(v) =
∑

v∈e w(e), where w(e) is the weight of the hyperedge e. We say that there is

a hyperpath between vertices v1 and vk if there is an alternative sequence of distinct

vertices and hyperedges v1, e1, v2, e2, · · · , ek−1, vk, such that {vi, vi+1} ⊆ ei for 1 ≤ i ≤

k− 1. We formulate a vertex-hyperedge incidence matrix H ∈ R|V |×|E| in which each

entry h(v, e) is 1 if v ∈ e and 0 otherwise. Then we have d(v) =
∑

e∈E w(e)h(v, e),

and δ(e) =
∑

v∈V h(v, e). Let Dv and De denote the diagonal matrices containing

the vertex and hyperedge degrees respectively, and W the diagonal matrix |E| × |E|

containing the weights of hyperedges.

Data Model

In news reading community, multiple types of resources are often available for anal-

ysis, including users, news articles, representative terms, named entities, etc. Let U

denote the user pool, and N denote the set of news articles, both of which are the

major elements being considered in recommender systems. Further, let Tt denote the

representative terms, or say, topics, and Te be the set of named entities involved in

the entire news corpus. Notice that in reality, the pools of these four types of re-

sources would be enlarged as there are always news events happening everyday with

different topic categories and distinct named entities. In our data model, we name

these resources as Media Objects. To facilitate the reading, we list some notations in

Table 4.4.

Besides, several relations among objects are implicitly embedded among media

objects. For example, two users u1, u2 ∈ U are the fans of NBA star LeBron James

(tei ∈ Te), which is a named entity appearing in news articles of sports event (ttj ∈ Tt).

Then there is an implicit relation among these media objects. In our data model, we
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Table 4.4: Notations in our data model.

U the user set. ui a particular user.
N the article set. ni a particular article.
Tt the topic set. ttk the k-th topic.
Te the entity set. tek the k-th entity.

nk
i the k nearest neighbors of an article i.

α the importance factor of content similarities.

EUNTt

the set of user-article-topic hyperedges.
EUNTe

the set of user-article-entity hyperedges.
EUUN the set of user-user-article hyperedges.

EUUTt

the set of user-user-topic hyperedges.
EUUTe

the set of user-user-entity hyperedges.

ENNTt

the set of article-article-topic hyperedges.
ENNTe

the set of article-article-entity hyperedges.

ENk

the set of k-nearest-articles hyperedges.

formalize a hypergraph G that contains 7 different implicit relations with different

objects and 1 implicit relation that considers the similarity graph of news articles. It

is natural that the edges can be generalized from a pairwise co-occurrence, e.g., an

edge incident on a news item and all of its readers. However, the generated incidence

matrix would become much denser. For simplicity, we only consider the hyperedges

with three vertices. Our algorithm can be extended to hyperedges with arbitrary

number of vertices. Specifically, the edges contain:

• EUNTt

: A user reads a news article that describes an event, or a topic. Typically

we assign the weight of this hyperedge to be 1. Here we assume that a user

would only navigate a news item once.

• EUNTe

: A user reads a news article that embraces a named entity. Similar to

EUNTt

, we assign the hyperedge weight as 1.

• EUUN: Two users might read the same news article. We assign the hyperedge

weight to be 1.
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• EUUTt

: Two users might read news articles with the same topic. The weight

w(euiujt
t
k) for this relation is set to be the frequency that both users, ui and uj,

read articles with the same topic ttk, i.e.,

w(euiujttk) = |{(ui, uj, t
t
k)|ui ∈ U, uj ∈ U, ttk ∈ T

t}|. (4.6)

We normalize the weight as

w(euiujt
t
k) =

w(euiujttk)
√

∑|U|
l=1w(e

ulujttk)

√

∑|U|
m=1 w(e

uiumtt
k)
. (4.7)

The above heuristic normalization aims to penalize the abnormal news readers

with dense reading activities. Moreover, in order to treat different types of

relations equally, we further normalize the weight as follows:

w(euiujt
t
k) =

w(euiujttk)

ave(w(euiujT
t))

, (4.8)

where ave(w(euiujT
t

)) is the average of normalized weights for users ui and uj

on different topics.

• EUUTe

: Two users might read news articles containing the same named entity.

The weight w(euiujtek) for this relation is set to be the frequency that both users,

ui and uj, read articles containing the same entity tek. The weight normalization

is similar to Eq.(4.7) and Eq.(4.8).

• ENNTt

: Two news articles might describe the same or similar topic. We assign

the hyperedge weight as 1.

• ENNTe

: Two news articles might contain the same entity. We assign the hyper-

edge weight to be 1.

• ENk

: In our data model, we also consider the similarity of news articles. We

construct a k nearest neighbor (k-NN) news graph based on content-based item

similarities. In the hypergraph, a hyperedge of this type is composed of the top
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k articles similar to the target news item and the target item itself. The weight

w(en
k
i ) is the averaged similarity between the target news item and the ones

similar to the target, i.e.,

w(en
k
i ) =

1

k

k
∑

j=1

sim(ni, nj), (4.9)

where sim(ni, nj) is the similarity between two news articles. In our work, this

similarity is calculated using the cosine similarity by considering the content

features of news items. We introduce a parameter α to control the relative

importance of content-based similarities in the unified hypergraph model. Then,

the hyperedge weight is given by

w(en
k
i ) = α ∗ w(en

k
i ). (4.10)

Finally, the unified hypergraph of news reading community is composed of 4 types

of media objects as vertices and 8 types of object relations as hyperedges. Figure 4.3

summarizes the aforementioned media objects and relations. By employing the unified

hypergraph model, we can effectively capture the high-order relations among various

types of media objects without loss of any important information.

Based on the data model introduced above, we can derive the vertex-hyperedge

incidence matrix H (as described in Table 4.5) and also the weight matrix W. The

size of both matrices depends on the cardinality of different element sets involved in

the matrices, and they are all sparse matrices.

Table 4.5: The incidence matrix H of the unified hypergraph.
EUNTt

EUNTe

EUUN EUUTt

EUUTe

ENNTt

ENNTe

ENk

U UEUNTt

UEUNTe

UEUUN UEUUTt

UEUUTe

0 0 0

N NEUNTt

NEUNTe

NEUUN 0 0 NENNTt

NENNTe

NENk

Tt TtEUNTt

0 0 TtEUUTt

0 TtENNTt

0 0

Te 0 TeEUNTe

0 0 TeEUUTe

0 TeENNTe

0
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Figure 4.3: An illustrative example of data model in news reading community.

4.3.2 Recommendation via Hypergraph Inference

Hypergraph partitioning provides us a list of disjoint news capsules, in which the

users’ reading preferences are encapsulated, including topics, named entities and sim-

ilar users. In the following, we present our approach in which we model the recom-

mendation as a sub-hypergraph ranking problem.

Formally, given a capsule (or a sub-hypergraph) C, a set of newly-published news

articles S and a target user u within C, we first link articles in S onto C. To do

so, we extract topics and named entities from S and then compare these objects

with the objects in C. In this way, we can not only connect new articles to C, but

also add new objects into C. Next, we reconstruct the unified hypergraph based on

the enriched C and get the vertex-hyperedge incidence matrix HC and the weight

matrix WC. Since the scale of C is supposed to be much smaller than the entire

hypergraph, the reconstruction would be more efficient. Then the vertex degree

matrix DC
v and the hyperedge degree matrix DC

e are computed based on HC and WC.

In the following, we discuss how to perform ranking on a sub-hypergraph by using

similar idea of [BTC+10].
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We define the cost function of f as follows:

Q(f) =
1

2

|V |
∑

i,j=1

∑

e∈E

1

δ(e)

∑

{vi,vj}⊆e

w(e)

∥

∥

∥

∥

∥

fi
√

d(vi)
−

fj
√

d(vj)

∥

∥

∥

∥

∥

2

+ µ

|V |
∑

i=1

||fi − yi||
2,

(4.11)

where µ > 0 is the regularization factor. To achieve the optimal ranking result, we

need to minimize Q(f):

f∗ = argmin
f

Q(f). (4.12)

For inference, we need to smooth the process as much as possible under the con-

straint that vertices that are contained by many common hyperedges should have

similar ranking scores. As an illustrative example, if two news articles have been

accessed by many common users, then both articles will have similar ranking scores.

The smoothness can be achieved by minimizing the first term in Eq.(4.11). We also

need to minimize the difference between the obtained ranking scores and the pre-

given scores to guarantee that the result will not deviate much from the truth, i.e.,

to minimize the second term in Eq.(4.11). After a series of mathematical derivation

by [BTC+10], we can obtain the optimal f∗ as

f∗ = (I− γA)−1y, (4.13)

where A = (DC
v)

−1/2HCWC(DC
e )

−1(HC)T (DC
v)

−1/2. Notice that under the constraint

of C, the matrix I − γA is highly sparse, and therefore the inverse of I − γA can

be efficiently calculated. y corresponds a query vector given a user, each entry of

which can be either 1 or 0, indicating what topics and entities are preferred by the

user. After performing ranking on the sub-hypergraph, we can choose top ranked

news articles as the recommendation list.

Discussion: An interesting setup to approximately satisfy the diversity require-

ment is to predefine query scores over different topics Tt and named entities Te within
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the profile of the target user. Specifically, we can analyze the user’s profile and choose

the topics and named entities that are ranked high in terms of the accumulated score

of the edge weights. For these topics and named entities, the corresponding values in

y can be set to 1 for the query purpose, whereas for other topics and named entities,

the values can be set to 0. For example, given a user q with preference over the

topic “Basketball” and the named entity “LeBron James”, we can specify 1 value for

the corresponding two entries in yq. In addition, we can set 1 value for entries that

are related to the user’s preference, e.g., “NBA” and “Competitive Sports”, which

can be obtained using some simple text mining techniques. In this way, the ranking

result can have more diverse content in terms of topics and named entities that are

distributed over the target user’s profile and related preferences. Therefore the setup

of the query vector y fosters the diversity in the results.

4.3.3 Transductive Inference on Hypergraph

Our proposed framework is capable of handling the so-called cold-start problem, es-

pecially for new users. In this subsection, we introduce the strategy of how we can

tackle the user cold-start problem. Given a new user q without enough reading his-

tory, traditional recommender systems fail to construct a comprehensive user profile

due to the data sparsity. Comparatively in our framework, we initially embrace this

new user q into a specific capsule (by extracting topics and named entities of the

limited consumption history of q and linking them to the capsule). Taking q into

the construction of the query vector y, we perform transductive inference on the

new capsule to derive the vertices related to q’s preference, and finally provide the

recommendation list for q.

Specifically, given a news capsule C = (V C, EC, wC), in which the vertices in a

subset S ⊂ V C have labels in L = {1,−1} predefined by the new user q according
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to q’s reading history, our goal is to predict the labels of the remaining unlabeled

vertices. Note that for news recommendation, the labels {1,−1} indicate whether

the user is interested in the corresponding element or not. On the one hand, the

inference function should be as smooth as possible, i.e., we should assign the same

label to all vertices contained in the same hyperedge; moreover, vertices lying on a

densely linked sub-hypergraph are likely to have the same label. Thus we define a

function

Ω(f) =
1

2

∑

e∈E

∑

{u,v}⊆e

w(e)

δ(e)

∥

∥

∥

∥

∥

f(u)
√

d(u)
−

f(v)
√

d(v)

∥

∥

∥

∥

∥

2

, (4.14)

which sums the weighted variation of a function on each edge of the capsule. On the

other hand, the initial label assignment should be changed as little as possible. Let

y denote the initial label vector, in which the assignments are defined by y(v) = 1

or −1 if vertex v has been labeled as positive or negative respectively, and 0 if it is

unlabeled. Then we consider the following optimization problem [ZHS05]

argmin
f∈R|V |

{Ω(f) + µ||f − y||2}, (4.15)

where µ > 0 is the parameter specifying the tradeoff between the two components.

The optimization problem defined in Eq.(4.15) is similar to the one in Eq.(4.11). The

difference here is that for transudctive inference, our goal is to derive the labels of

the unlabeled vertices, whereas for ranking, we try to derive the complete importance

order of the vertices. Due to the space limit, we omit the detailed procedure for

sovling Eq.(4.15). In this way, even if a user does not have enough reading history,

we can still get enough labeled news items that the user might prefer. Hereby, for

new users, we can recommend a list of unordered news articles.
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4.3.4 Empirical Evaluation

Real-World Data

The data used in our experiment is obtained from multiple news reading portals,

ranging from Aug 15th, 2010 to Nov 16th, 2010 [LWL+11], which includes news

articles and users’ access histories. It contains 10 news topic categories, such as sports,

movies, politics, etc. We preprocess the data by removing news articles that are rarely

accessed (i.e., the accessed frequency is less than 1 per day) and by storing users with

frequent online reading behaviors (i.e., users who read news articles everyday and

read more than 1 piece of news each day). By preprocessing, some unexpected noise

can be removed to ensure the quality of the generated hypergraph. We perform

LDA on news articles to extract representative words from each news category, as

the topics of the data model. Here each “topic” is represented as a bag of words

when constructing the unified hypergraph. For named entities, we use NLP tools,

e.g., GATE [CMBT02], to perform information extraction. The media objects and

relations contained in this data collection are summarized in Table 4.6(a) and 4.6(b),

respectively. Note that the number of nearest neighbors, k, in the news similarity

graph is not fixed, and therefore the number of hyperedges varies for ENk

.

Table 4.6: Statistics of our news collection.
(a) Objects

Elements Count
Users 3,280
Articles 58,873
Topics 10
Entities 121,617

(b) Relations

Relations Count Relations Count

EUNTt

501,239 EUUTe

402,918

EUNTe

672,348 ENNTt

52,136
EUUN 307,652 ENNTe

176,431

EUUTt

43,785 ENk

-
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Construction of Hypergraph

In our proposed data model, we integrate 8 different hyperedges or object relations

into the construction of news hypergraph. Such a hypergraph provides an elegant

representation of the news data, encapsulating multiple correlations among different

media objects. To evaluate the effect of such a representation in personalized news

recommendation, we consider different combinations of hyperedges for hypergraph

construction: (1) ENk

(NK): consider news similarities based on users’ profiles, which

is essentially a content-based method; (2) EUUN (UN): construct the hypergraph using

only users’ co-visit information, which can be regarded as an example of collaborative

filtering; (3) EUNTt

, EUUTt

and ENNTt

(UNT): build hypergraph by considering the

topics in news collection and users’ access patterns in a hybrid way; and (4) EUNTe

,

EUUTe

, ENNTe

(UNE): construct the hypergraph using the entity information, i.e.,

considering users’ preference on specific named entities.

We compare NDCG, and the results are shown in Figure 4.4, in which Figure 4.4(a)

demonstrates the performance difference of multiple hypergraph constructions in

terms of F1-score, whereas Figure 4.4(b) shows the ranking performance in terms

of NDCG.
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(a) F1-score comparison.
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(b) NDCG comparison

Figure 4.4: Performance comparison of different hypergraph constructions.
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It is evident that the unified hypergraph model significantly outperforms other

constructions of hypergraph from both accuracy and ranking perspective. The reason

behind this is straightforward: in our unified model, high-order correlations among

different media objects are well-captured, which extensively enrich a user’s reading

preference and hence make the recommended result more accurate. Besides this, we

observe that: (i) The performance of hybrid constructions (i.e., UNT and UNE) is

better than uni-edge construction (i.e., NK and UN); and (ii) the result of UNE is

comparable with UNT, which means that in real-world news recommender systems,

users pay equal or more attention on named entities they prefer, not just the topics

that news articles are reporting.

Comparison with Other Methods

We also implement several recently published methods: Goo [DDGR07], ClickB [LDP10],

Bilinear [CP09], Bandit [LCLS10], fLDA [AC10], and SCENE [LWL+11] for compar-

ison. The details of these algorithms are described as follows:

• Goo: The method is essentially a collaborative filtering approach, in which

MinHash clustering, PLSI and covisitation counts are taken into account for a

unified recommendation paradigm.

• ClickB: In this approach, the profiles of user’s news interests are built based on

their past click behavior, and then a Bayesian framework for predicting users’

current news interests.

• Bilinear: This method maintains profiles of content of interest based on tem-

poral characteristics of the content, e.g., popularity and freshness, and also

maintains profiles of users including historical activities. The recommendation

is achieved via a feature-based machine learning approach.
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• Bandit: The method models recommendation as a contextual bandit problem,

in which a learning algorithm sequentially selects articles to serve users based on

contextual information about users and articles, while simultaneously adapting

its selection strategy based on user-click feedback.

• fLDA: The method regularizes both user and item factors simultaneously through

user features and the bag of words associated with each item. It is essentially a

hybrid filtering method.

• SCENE: The method assumes the interestingness of news articles with respect

to a user could be regressive, and uses the “submodularity” property to model

the news selection problem.

Note that the parameters of these baseline methods are optimally tuned in our

experiment to ensure the fair comparison. We use F1-score and NDCG to compare

these baselines with Hyper. The results are shown in Figure 4.5(a) and 4.5(b). It is

evident that our proposed method significantly outperforms other candidates on both

metrics.

The results of fLDA and SCENE are comparable to ours. In fLDA, each word

in an item is associated with a discrete latent factor often referred to as the topic of

the word; item topics are obtained by averaging topics across all words in an item.

Therefore, fLDA considers more fine-grained granularity of topics, and consequently

obtains reasonable recommendation results. SCENE explicitly takes into account the

“submodularity” within users’ reading behaviors for recommendation. As we observe,

the performance of Goo and ClickB is relatively poor. This is because the recom-

mended lists of both methods are heavily determined by users’ co-visiting histories;

however, the news data used in the experiments contains a great portion of relatively
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(a) F1-score comparison.
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(b) NDCG comparison
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(c) F1-score comparison.
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(d) NDCG comparison

Figure 4.5: Performance comparison for regular recommendation and cold-start user
recommendation. Remark: (a) and (b) are comparisons of different algorithms on
averaged metrics; (c) and (d) are comparisons of different algorithms for the cold-
start problem of new users.
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new users1, i.e., users who read less than 5 news articles per day. Hence, the cold-start

problem of new users in the dataset causes the poor performance of both methods.

Handling Cold-start

In traditional recommendation methods, the cold-start problem cannot be well han-

dled due to the data sparsity. To resolve it, we perform transductive inference on

the unified news capsule for new users. The intuition is straightforward: we borrow

the concept of inference by utilizing a small set of labeled data to infer the labels of

unlabeled data on the hypergraph. Notice that in such a case, we do not focus on

the ranking of news articles, but pay more attention on the interestedness of items,

i.e., whether the items are preferred by the user or not.

Specifically, we randomly choose 100 users who read news articles less than 5

per day, and then recommend news articles (top@10, top@20 and top@30) for these

users. For evaluation purpose, we compare our method with Goo, ClickB, Bilinear,

Bandit, fLDA and SCENE. Figure 4.5(c) and 4.5(d) shows the comparison results. As

shown in Figure 4.5(c), the cold-start problem can be elegantly alleviated by using our

proposed method, Hyper. The explanation is straightforward: in Hyper, we explicitly

model the recommendation for new users as transductive inference on a specified

news capsule, and meanwhile we consider high-order correlations among different

media objects, which significantly complement the data sparsity of new users when

performing recommendation. In Figure 4.5(d) we also observe that although we do

not intentionally take the ranking into account, our method surprisingly outperforms

the others in terms of NDCG. The reason is that we can provide more news articles

in the recommendation list that match a user’s reading interest, and thus the quality

of ranking is improved consequently. The result of fLDA on cold-start handling is

1In our dataset, the number of new users is around 400, compared with the total number
of users, 3,280.
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comparable to our performance. For cold-start users, fLDA gives more weight to the

prior mean (predicted by user and/or item features) in estimating the factor, and

therefore selects news items that are quite relevant to the prior.

Diversity Evaluation

The recommended news list provided by our algorithm shows a great diversity on

topic aspects. Such diversity is originated from the sparkle of the query vector y,

by which we can not only specify the target user, but also provide topics and named

entities that the user prefers. To evaluate how diverse our recommendation result

is, we compare the set diversity [ZH08] among the results of our method and other

recommender systems. The set diversity is defined as the average dissimilarity of all

pairs of news items in the resulted list. Specifically, given a news set S, the average

dissimilarity of S, fd(S), is defined as

fd(S) =
2

p(p− 1)

∑

si∈S

∑

sj∈S,sj 6=si

(1− sim(si, sj)), (4.16)

where |S| = p, and the dissimilarity of a news pair is 1 − sim(si, sj), in which

sim(si, sj) denotes the content similarity between the news item si and sj, and it

is calculated using the cosine similarity.

For diversity evaluation, we choose the aforementioned methods (Goo, ClickB,

Bilinear, Bandit, fLDA and SCENE) as our comparison baselines. We employ the

experiment setup similar to the previous section, and then compare the diversities

of recommended lists with different cardinalities (top@10, top@20 and top@30). Ta-

ble 4.7 shows the averaged diversity for 100 randomly selected users.

From the result, we observe that (i) The diversity decreases as the recommended

news list enlarges. It is straightforward that when more news articles are selected,

the topic distribution of the news list becomes closer to the user’s reading interest,

and therefore the selected news items are more similar. (ii) The diversity of the
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Table 4.7: Diversity evaluation on the result list. (The bold font indicates the best
performance. * indicates the statistical significance at p < 0.01 w.r.t. the randomness
of selected users.)

Methods top@10 top@20 top@30
Goo 0.4101 0.3074 0.1105

ClickB 0.4329 0.3128 0.1562
Bilinear 0.4234 0.2517 0.0933
Bandit 0.5056 0.4126 0.2925
fLDA 0.4726 0.3981 0.2705
SCENE 0.6537* 0.5771 0.4859
Ours 0.6323 0.5987* 0.5072*

recommendation list provided by the baseline methods drops dramatically as the list

size increases, since they did not take the diversity into account. (iii) Our proposed

method outperforms the others very significantly, except SCENE. SCENE explicitly

selects different news items solely from topic-wise for recommendation, and hence the

diversity of the result from SCENE is higher more or less. In our work, we consider

the interest of news readers by specifying different topics and named entities in the

query vector y. The diversity decreases very smoothly when we recommend more

news items to individual users, compared with other rivals.

4.3.5 Summary of Hypergraph Modeling

In this work, we propose to use hypergraph learning methods to deal with the issues

existed in news recommenders. We first represent news data as a unified hypergraph,

in which various correlations among different media objects (e.g., users, news arti-

cles, topics and named entities) are integrated into an information capsule. We then

decompose the recommendation problem as two subproblems: partitioning and rank-

ing, where the former aims to separate the entire hypergraph into multiple groups,

or subcapsules, and the latter is designed to select a list of news articles from a spe-

cific capsule and recommend them to a target user (the user is regarded as a query).
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The experiments on a news dataset collected from multiple news service websites

demonstrate the efficacy of our proposed method.

4.4 Concluding Remarks

This chapter focuses on the problem of understanding complex relations in recom-

mender systems using graph-based approaches, e.g., bipartite graph and hypergraph.

There are several ways to extend the algorithms presented in this chapter:

• Bilateral reciprocal recommendation discussed in our work might not cover all

possible reciprocal recommendation tasks in a broader perspective. For exam-

ple, friend recommendations on Facebook and colleague recommendations on

LinkedIn exhibit different characteristics, since the recommendation activities

on these two platforms might involve multiple parties instead of two. In the

future, we plan to expand our reciprocal framework to tackle more reciprocal

tasks.

• In the hypergraph model, we simplify the profiling problem by only analyzing

a user’s reading history (as the profile) without accessing any other auxiliary

information. In reality, a news reader might have other information, e.g., demo-

graphics, locations, and other social and behavioral patterns. We believe such

information can be easily incorporated into our proposed framework, e.g., by

encapsuling the user relations within close locations or the same social commu-

nity into the data model. We can delve into extending our framework along this

direction. In addition, although we intentionally partition the hypergraph into

multiple small ones to expedite the procedure, the scalability of our proposed

framework is not quite satisfactory. We plan to use distributed environment,
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e.g. Hadoop, to accelerate the partitioning and recommendation procedure in

our future work.
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CHAPTER 5

UNDERSTANDING DYNAMICS

In this chapter, we start by introducing the problem of interest dynamics in a recom-

mender system, and then discuss two previous work [LZL11, LHL12] published during

my Ph.D. study along this direction. In the following, I will present the details of

these two approaches, and discuss how the algorithms can incorporate temporal in-

formation when modeling user profiles.

5.1 Research Objective and Contributions

In this research, the problem of temporal dynamics of user interest in recommender

systems is studied. In general, a user’s preference over items is not static; it might

change over time, depending on different types of events, e.g., promotions of a product,

holidays, or even the change of a family structure (for example, giving birth to a baby).

Based on this intuition, a user’s behavioral data might be different from his/her

previous consumption history. To capture such changes in recommender systems

and consequently provide more reasonable recommendation results, it is imperative

to design elegant profiling approaches that explicitly consider the dynamics of user

interests. Specifically, the goal of understanding interest dynamics includes:

• Capturing the dynamics of user interest. Due to the properties of different

recommender systems, it is possible that a user’s fine-grained preference would

evolve over time while his/her long-term interest remains stable. If the rec-

ommendation technique cannot capture such pattern, the recommended result

might not be preferred by users, and hence the system might lose the trust of

users.
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• Expanding the interest of users by dynamics modeling. In some cases, a user

might not actively change his/her interests as he/she accesses different items in

a recommender system. Therefore, the user’s interest might be static in a long

run. If the system cannot recommend “somewhat novel” items to users, the

user’s inclination towards the system might decrease.

In my previous work, I study the temporal dynamics of user interests in news rec-

ommendation [LZL11] and product recommendation [LHL12]. Specifically, in news

recommendation, a user’s interest evolves over time, depending on casual events hap-

pening everyday. The interest can be modeled as a weighted combination of user

profiles within consecutive time windows. In contrast in product recommendation, a

user’s shopping behavior might exhibit a fixed pattern, e.g., customers who have a

baby will show similar shopping patterns. We integrate the product taxonomy into

the profiling process, and consequently provide recommendation based on the proper-

ties of different shopping stages. In the following, I will discuss these two algorithms

in more details.

5.2 Dynamics in User Interests

User profiling is an important step for solving the problem of personalized recommen-

dation. Traditional user profiling techniques often construct profiles of users based

on static historical data accessed by users. However, due to the properties of different

recommender systems, it is possible that a user’s fine-grained preference would evolve

over time while his/her long-term interest remains stable. Therefore, it is imperative

to reason on such preference evaluation for user profiling in recommender systems.

Besides, in content-based recommender systems, a user’s preference tends to be sta-

ble due to the mechanism of selecting similar content-wise items with respect to the
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user’s profile. To activate users’ reading motivations, a successful recommender needs

to introduce “somewhat novel” items to users.

5.2.1 Background and Contributions

A key issue of content-based recommender systems is how to construct the user’s

profile based on his/her own consumption history, named as “user profiling”. To

handle this issue, most content-based recommender systems take into account a user’s

accessing history as a whole, and summarize the history to be the user’s profile [BP99,

KC03]. Research efforts have also been paid to consider the context of a user when

recommending items. For example, [JNT10] postulated that a user’s preference for

particular news articles depends not only on the topic and on propositional contents,

but also on the user’s current context. [LDP10] developed a Bayesian framework for

predicting users’ current news interests from the activities of that particular user and

the news trends demonstrated in the activity of all users. However, they failed to

consider the evolution of users’ interest. In reality, the general topics that the user

is interested in would be relatively stable or vary slightly in a long-term perspective,

whereas the content accessed by the user might change along different short-term

perspectives. Taking online news recommendation as an example, Fig. 5.1 illustrates

the scenario that a user’s interest changes over time.

As is shown, the user’s general interest of news articles is sports-related; however,

he/she might prefer news articles related to “Cycling World Championships 2011”

from t3 to t2, and then read newsfeeds that describe “Baseball World Cup 2011”

from t2 to t1, and finally look through news event of ”South Florida All-Star Charity

Game” from t1 to t0. In terms of how to improve the accuracy of recommendations,

it would be more reasonable to explicitly consider news readers’ interest drift, or say,

interest evolution, when modeling the users’ reading profiles.
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Cycling World Championships 2011 Baseball World Cup 2011 South Florida All-Star Charity Game

t3 t2 t1 t0

General Topic: Sports

Figure 5.1: An example of interest drift.

Another problem is the stationary profiling. Recall that in content-based rec-

ommender systems, the recommendation is often achieved by calculating the affinity

between a given user’s profile and items and selecting top ranked ones. This strategy

favors the similar items and gives lower ranking to the items with topics different

from a user’s profile. Therefore, if a user uses such a system for a long time, his/her

profile tends to become too monotonous, without diverse topics. A typical approach

to alleviating this issue involves incorporating diversity into the recommendation re-

sult, i.e., to recommend news articles with diverse topics in a single recommendation

session [ZH08]. In our previous work [LWL+11], we model the news recommendation

problem as a budgeted maximum coverage problem, in which we explicitly consider

the diversity among news items in the recommended list. However, most methods in

this direction only take into account the similarity between items, without considering

the opinions of other users.

In [LZL11], we study the problem of how to model news readers’ temporal reading

interests and meanwhile broaden their preference. We initially provide an experi-

mental study on the evolution of user interests, and show that most users’ reading

preferences indeed change over time, whereas their long-term interests vary slightly.

Then, we extend our solution of LOGO, in which the long-term and short-term read-
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ing preferences of users are seamlessly integrated when recommending news items to

individual online users. We construct the long-term profile of a given user based on a

time sensitive weighting scheme [DL05], and the short-term profile by analyzing the

latest reading history of the user. For recommendation, we build a user-item affinity

graph based on both long-term and short-term profiles [LZYL14], and then perform

absorbing random walk model [ZGVGA07] to select news articles with diverse topics.

In this way, we can not only provide relevant news articles with respect to users’

interests, but also broaden users’ preferences by introducing diverse topics.

5.2.2 Prior Approaches to Temporal Dynamics

In the following, we highlight the existing literatures that are relevant to this work,

mainly on two aspects: temporal dynamics in recommendation and random walk

models in recommendation.

Temporal Dynamics in Recommendation

A lot of research work related to temporal dynamics in recommender systems have

been proposed in recent years. Most of the research efforts along this line focus on

adding temporal aspects into the collaborative filtering model. For example, [Kor09]

studied the problem of multi-characteristics shift in recommender systems. They

proposed to track the time changing behavior throughout the life span of the data

via collaborative filtering approaches. [XYZ+10] proposed a session-based temporal

graph with incorporates temporal information to model long-term and short-term

preferences simultaneously. [LHCA10] investigated the temporal characteristics of

the recommender’s top-N recommendations, in particular, the temporal diversity of

the recommended items. They examined how differently user rating patterns would

affect the temporal diversity. A detailed survey can be referred to [Sot11]. Our work
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is orthogonal to the existing ones in a sense that we consider the temporal interest

drift for a single user.

Another direction related to the temporal dynamics of users involves context-

aware recommendation approaches, which consider different user-oriented contexts

(e.g., time, location, etc.) when modeling a user’s preference over news items [AT11,

CBC08, SKP+13]. For example, [MGÁRLGMM13] presents a context-aware recom-

mendation system for journalists to enable the identification of similar topics across

different sources. News contextual features, e.g., time, current user interests, location

or existing trends, are taken into account for user profiling. Context-aware recom-

mendation approaches can be easily integrated into our proposed framework, i.e.,

they can serve as the alternatives of the identification of short-term user profiles.

Random Walk in Recommendation

The random walk model is generally applied to collaborative filtering in solving per-

sonalized recommendation problems. Examples involve movie recommendations [LY08,

WB08, YK08]. In these systems, the transition probabilities are calculated by nor-

malizing the similarity matrix from the movie ratings, and the top-N movies with

the highest score are recommended to users. Although positive results are shown

in the domain of movie recommendations, it is not clear that directly applying the

random walk model in personalized news recommendation can also achieve promising

performance. The reason lying in behind is that the data characteristics as well the

the problem setting of news recommendation is significantly different from those of

movie recommendation:

• The news data in news reading communities change significantly. A gigantic

amount of newly-published news articles will be added to the repository every-

day, while in movie recommenders, the movie repository is relatively stable.
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• The news preference is often binary, i.e., a user may choose to click (1) or not

click (0) an article, whereas in movie recommenders, the ratings are explicitly

given by users, in a range of [1, 5] or [1, 100]. The approaches based on explicit

ratings might not be suitable to the scenario of news recommendation.

• Some methods in movie recommendation use arbitrary similarity measures to

construct the similarity matrix. However, in news reading community, it is

possible that the similarity between two objects depends on the involvement of

other objects. Therefore, it would be more reasonable to calculate the transition

probabilities using the graph representing the data.

One of the research work that is related to ours is [OTF09], in which a recom-

mendation problem is envisioned as a node selection problem on a graph, giving high

scores to nodes that are well connected to the older choices, and at the same time

well connected to unrelated choices. This work claims that by using the relatedness

between nodes, it is possible to make reasonable yet surprising recommendations.

The idea is similar to ours in a sense that we also consider the relatedness between

nodes; however, our proposed random walk based method utilizes historical data to

construct user profiles, and new data to construct user-item affinity graph. The dis-

tinction between historical data and new data serves to reduce the scale of the targets

being analyzed, i.e., we do not have to incorporate users’ reading histories into the

affinity graph. In addition, we reason on the diversity among the recommended news

list, which can help broaden users’ reading interest to some extent.

5.2.3 An Overview on Temporal Dynamics Model

Figure 5.2 depicts an overview of our proposed framework. We maintain a reading

preference model for each online user. This model is essentially a content-based

filtering model, involving the long-term and short-term interest profiles. The former is
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built based on a time sensitive weighting scheme [DL05], and the latter is represented

by the latest reading interest of the user. Our approach assumes that the user’s

reading preference would evolve over time, and in a long run, the general preference

would be relatively stable.
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Figure 5.2: System overview of LOGO.

Given a collection of newly-published news articles, we first construct a news

hierarchy purely based on the content of news articles using hierarchical agglomerative

clustering algorithm, and then use Dunn’s Validity Index [Dun73] to decide the best

layer of the dendrogram. In this way, we can avoid to decide the number of clusters

in news dataset. Using the long-term user profile weighted by time decay factor, we

can easily filter the news groups that are similar to the long-term user profile. After

that, the short-term user profile is utilized to construct a user-article affinity graph.

By performing absorbing random walk starting from the target user [ZGVGA07], in

which the escape probabilities of nodes will decrease once they are ranked, we can

obtain a list of ranked news articles and recommend them to the target user. The

recommended news list contains relevant news articles with respect to the target

user’s reading interest (i.e., the graph is built upon the user’s short-term profile), and

further the articles within it have great diversities (i.e., based on the elegant property

of the absorbing random walk). Hence, our proposed recommendation framework
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can not only satisfy news readers’ reading preferences, but also broaden their reading

interests in a long run.

To summarize, our proposed recommendation framework consists of three inter-

leaved modules:

1. Long-term and short-term user profiling: In this module, we first segment a

user’s reading history into multiple time frames, and build long-term and short-

term user profile using a time-sensitive weighting scheme. The long-term user

profile serves to model a user’s general topic interests, whereas the short-term

one is able to capture the recent/current user preferences over fine-grained news

topics.

2. News group selection: In this module, the newly-published news articles are

initially organized as a two-level news hierarchy, where the first level contains

news groups with respect to general news topics, and the second level is com-

posed of specific news articles within each news group. When it comes to the

recommendation, our proposed framework initially selects a list of news groups

that are similar to the long-term profile, i.e., these news groups are close to the

general topic preference of users.

3. News article recommendation: Our goal is to select news articles relevant to a

user’s short-term profile, and at the meantime, to introduce more diversity in

order to expand the user’s reading interest. To this end, we first build a user-

news affinity graph based on the similarities between users’ short-term profiles

and news articles within selected news groups, and then perform absorbing

random walking on the graph to finalize the recommendation.

In the following, the detailed algorithmic information for each module will be

introduced.
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5.2.4 Temporal Dynamics in User Profiling

In this section, we introduce the profiling paradigm that employs a time-weighting

scheme to model user profiles. Specifically, we first segment a user’s reading his-

tory into multiple time frames, and build long-term and short-term user profile using

a time-sensitive weighting scheme. The long-term user profile serves to model a

user’s general topic interests, whereas the short-term one is able to capture the re-

cent/current user preferences over fine-grained news topics. Such a profiling paradigm

enables us to capture both long-term and short-term user preferences, which differ-

entiates our work from existing solutions to time-sensitive user profiling.

Long-Term Profile

In our proposed method, we employ Latent Dirichlet Allocation (LDA) [BNJ03] as

the language model to detect latent topics, and represent the topic distribution of

the news collection as a topic vector, each entry of which denotes the weight of the

representative words in each topic. The long-term user profile is constructed using a

time sensitive weighting scheme. Formally, given the reading history H of a specific

user u, H is initially divided into multiple segments based on a uniform time period

T 1, H = {Ht0 ,Ht1 ,Ht2 , · · · ,Htn}, where t0 means the current time period. For each

time period ti, i = 0, 1, 2, · · · , n, we summarize the corresponding reading history Hti

using LDA and generate a short-term profile Pti . Note that we assume the user’s

reading preference evolves over time. We then define a time function f(t) to find

appropriate time weights for each Pti in the order that the recent reading histories

are able to contribute more to the long-term profile. The user’s long-term profile Pu

can be represented as

Pu = f(t0) · Pt0 + f(t1) · Pt1 + · · ·+ f(tn) · Ptn , (5.1)

1In the experiment, T is empirically chosen as 3 days, as shown in Section 5.2.6.
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where Pti and Pu are all topic vectors. Intuitively, we are concerned with a user’s

recent reading preference, as the recent one represents the user’s current reading

interest. More recent reading histories should have higher weights. Therefore, f(t)

is a monotonic decreasing function, which reduces uniformly with time t and the

value of the time weight lies in the range [0, 1]. Motivated by [DL05], we choose an

exponential form for the time function, which is able to describe the gradual decay of

the importance of past reading histories as time goes [AHWY04]. The time function

is as follows:

f(t) = e−λ·t, (5.2)

where λ represents the profile decay rate. In the experiment, we choose λ as the

inverse of the time period T that we are using to divide the entire reading history of

the user.
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Figure 5.3: Comparison of different time functions.

The exponential function can satisfy our need well. However, there are some other

time functions which might also be useful, such as logistic function (f(t) = 2
1+eλ·t

),

and damping function (f(t) = (1 + λ · t)eλ·t). From Figure 5.3, we can observe

the difference between these three time functions, where λ is set to be 1/10. It is

straightforward that for all these three functions, the gradient of the curve at the

data points close to zero is steeper than that of the data points far away from zero,
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which perfectly fits the actual scenario of the user’s reading history – more recent

histories should carry higher weight than the older ones, and also the weight value

should decrease slower as time is far from the current time. However, the exponential

function shows the greatest decay speed, compared with the other two functions. In

the experiment, we provide empirical comparison among the performance using these

three functions respectively, and detailed analysis on how to select λ.

Short-Term Profile

Once we obtain the long-term profile for the given user, we can easily deduce the

short-term profile about a user’s recent preference. For simplicity, we choose the

latest short-term profile Pt0 to achieve this goal. The reason behind this lies in the

fact that Pt0 can represent the user’s current reading preference, and therefore the

most recent reading history would be more beneficial when filtering news items to the

end user.

Group Selection using Long-Term Profile

Algorithm 5.1 describes the algorithmic procedure of news selection. When dealing

with the newly-published news articles, we first divide the article set into distinct

news groups using hierarchical clustering algorithm based on the cosine similarity of

news content, where the inner cluster similarity is evaluated by average-link metric.

To generate groups of news articles, we use Dunn’s Validity Index [Dun73] as the

metric to “cut” the dendrogram at certain level of the news hierarchy. This validity

measure is based on the idea that high-quality clustering produces well-separated

compact clusters. The measure is able to identify sets of compact clusters with a

small variance between members of the cluster, and well separated where the means of

different clusters are sufficiently far apart, as compared to the within cluster variance.
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In general, the larger Dunn’s Index, the better the clustering. In this way, we do not

have to specify the number of clusters when performing clustering on news articles.

Algorithm 5.1 Group and news selection procedure.

Input: A set of newly-published articles N , user u’s profile Pu and Pt0

Output: A set of recommended news articles

GroupSelection :
1. Perform hierarchical clustering on N ;
2. Generate a two-level news hierarchy C = {C1, C2, · · · , Ck}, where each Ci is

linked a list of news articles, and k is optimized by Dunn’ index;
3. Compare Pu with each Ci, and select top ranked news groups.

NewsSelection :
1. Select similar articles from each news group based on Pt0 , as a candidate news

set V ;
2. Construct a user-article affinity graph G based on user set U and news set V ;
3. Start from the target user u, perform absorbing random walk on G;
4. Output a list of selected top ranked articles.

Once the collection of news items is well-separated, we summarize each news

group using LDA, and present each group as a topic vector to facilitate the group

filtering with the long-term user profile. Formally, provided that the summarized news

clustering result C = {C1, C2, · · · , Ck}, where Ci, i = 1, 2, · · · , k is a topic vector and k

is optimized by Dunn’s index, our recommender system automatically calculates the

cosine similarity between the long-term user profile Pu and Ci, and selects the top

ranked news groups for further processing. The system sorts the similarity scores in

descending order and then selects groups with the similarity higher than the median,

which serves as a dynamic threshold to select similar news groups. Up to this point, we

can obtain a list of news groups that the user might prefer in a long-run perspective.

It is straightforward that the selected news groups would probably cover the user’s

general interest based on the topic distribution of the long-term user profile.
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News Selection using Short-Term Profile

When filtering news item in each news group, Pt0 (the latest short-term profile) is

used to compare with news articles within each group. Note that the latest short-

term profile represents the most recent reading preference of the user, and therefore

it is quite reasonable to compare it with news items in each news group. A näıve

way of selecting news articles for recommendation is to first process news articles

using LDA, and then compare them with the topic vector of Pt0 . Given the processed

news articles (often represented as a topic vector), we can adopt a greedy algorithm

to sequentially pick up the news article with the largest similarity. To integrate

recommended news items from different news groups into the final recommendation

list, top ranked items within each group can be selected, and the number of items

selected in each group can be proportional to the interest weight of the user’s long-

term profile on the corresponding news group. However, if we select recommended

articles in this way, the algorithm cannot easily adapt to the change of the user’s

reading preference. For example, a user may be interested in news articles related to

NBA playoff; once NBA playoff ends, he/she may shift reading interest to other sports-

related topics. Nevertheless, the system following the aforementioned strategy may

not be able to detect such an interest shift, and may keep recommending newsfeeds

of NBA playoff. We therefore need to consider how to adapt user interest shifts, or

say, how to broaden users’ reading preference in daily recommendation activities.

5.2.5 Personalized Absorbing Random Walk

In our work, motivated by [ZGVGA07], we propose to use personalized absorbing

random walk (ARW) on user-item affinity graph to support temporal news recom-

mendation. Different from general random walks that provide relevance ranking of

items, absorbing random walk turns articles that are ranked in the previous process

110



into absorbing states, and hence lowers the probability that such articles are chosen

again. The recommended news articles are relevant to a user’s short-term profile, and

also belong to the coarse-grained topic group preferred by the user. In this way, our

recommender system can guarantee that a user could read “somewhat novel” news

articles without sacrificing too much recommendation accuracy.

Intuition: Using Random Walk

A natural solution to the problem discussed in Section 5.2.4 is to use collaborative

filtering for news selection. To avoid the changeless profiles of users, we can consult on

other users’ opinions or interests, and hence “borrow” their preference for the target

user. We therefore propose to first construct a user-article affinity graph based on

the similarities of newly-published news articles and all the users’ short-term profiles,

and then employ a random walk model to select articles for recommendation.

Personalized recommendation via random walk on graphs has been extensively

studied in recent years [GP06, JE09, LDJ+09, LY08]. Typical recommendation ap-

proaches in this direction perform random walk on user×item graphs extracted from

historical accessing data. However, in a news reading community, news repository

suffers from frequent updating, i.e., a huge amount of newly-published news articles

are often added to the repository. In such a case, these new items have very limited,

or even no accessing history that can be used for graph construction. Therefore, it is

infeasible to directly use random walk on these data.

In our work, we initially construct user-news affinity graph based on the similari-

ties between users’ short-term profiles and newly-published news articles by predefin-

ing a similarity threshold for edges. In general, news articles in a specific topic group

describe different fine-grained topics or events, while belonging to a general topic. A

user usually prefers a subset of fine-grained topics, but not all of them. By using per-
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sonalized absorbing random walk model, we can help expand a user’s reading interest

via other users’ opinions over the newly-published articles.

Absorbing Random Walk

A user-news affinity graph has two types of nodes: users and articles. The edges in

the graph represent the similarity between a user’s profile and an article. Formally,

let U = {u1, · · · , u|U |} denote the set of users, V = {v1, · · · , v|V |} denote the article

set, and E be the edge set. Then G = {U, V, E}.

A PageRank [Hav02] model ranks nodes in a graph using

~S = α ·M · ~S + (1− α) · ~d, (5.3)

where ~S is the score vector, α is the damping factor, M is a transition matrix that de-

fines the transition probabilities and ~d is a personalized user-specific vector, indicating

which node the random walker will jump to after a restart:

d(v) =















1, v = vu

0, otherwise

(5.4)

where vu denotes a user node. ~d serves to avoid the reducibility of the transition

matrix.

For the transition matrix M , in our problem setting, it involves three different

transition probabilities, i.e., v → u, u → v and v → v. p(v|u) and p(u|v) can be

easily calculated using the similarities between a user’s profile and an article, and

for simplicity, we restrict them to be equal. The reason we consider p(v|v) is that

in news recommendation, it is typical that a user has a reading sequence over the

recommended articles. However, in our model, we did not consider p(u|u) since the

user-news affinity graph is built based on the similarities but not the actual accessing

histories; therefore, it is not reasonable to calculate p(u|u) based on those similarities.
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In the graph G, the conditional probability of vj given vi can be interpreted as the

transition probability p(vj |vi) for a random surfer to jump once from the news node

vi to news node vj via all the connected user nodes uk, which can be expressed as

p(vj|vi) =

|U |
∑

k=1

p(vj|uk)p(uk|vi), (5.5)

where p(uk|vi) is the probability that a random surfer jumps from news node vi to user

node uk, p(vj |uk) is the probability that this surfer then jumps from uk to news node

vj , and p(vj |vi) is the marginal probability distribution over all the users in U whose

profiles are similar to pi. Inspired by [LDJ+09], p(vj |vi) can be treated as a first-order

similarity between article i and j, since the calculation is made by considering the

news readers whose profiles are similar to both articles.

In absorbing random walk [ZGVGA07], the key step is to turn articles that are

ranked in the previous process into absorbing states. To this end, we first absorb

the node that represents the target user, and perform random walk on the user-item

affinity graph. Intuitively, nodes that are strongly connected to the target user node

will have fewer visits, as the walker tends to become absorbed soon after visiting

them; comparatively, nodes that are far away from the target user node will have

more visits. Therefore, the expected number of visits in an absorbing Markov chain

can be calculated in order to decide whether it reaches the absorbing state or not.

Assume that K is the selected article list. Each node k ∈ K has an absorbing

state, which corresponds to the status that Skk = 1 and Ski = 0, ∀i 6= k. We can

easily arrange entries of S by

S̃ =







IK 0

R Q






, (5.6)

where IK is the identity matrix on S, and R and Q denote the submatrices with

respect to rows of unranked articles. According to [DS84, ZGVGA07], the expected

number of visits in the absorbing random walk can be calculated by N = (I−Q)−1,
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and can then be normalized by v = NT 1
n−|K| , where |K| is the size of K. The absorbing

state can then be decided by selecting the one with the largest expected number of

visits, i.e., k|K|+1 = argmaxn|K|+1 vi. After the absorbing states (corresponding to the

nodes on the graph) are obtained, the recommendation can be made by selecting

these nodes, excluding the ones that represent users.

In each iteration of absorbing random walk, we need to calculate the fundamental

matrix N = (I−Q)−1, which involves inverting an (n− |K|)× (n− |K|) matrix (K

is the size of K matrix). Such computation is quite expensive due to the inversion of

a matrix. However, the Q matrix will be reduced by one row and one column, as one

item is ranked and is turned to absorbed state in each iteration, which enables us to

apply the matrix inversion lemma (Sherman-Morrison-Woodbury formula) [PTVF92].

We then only need to invert the Q matrix once in the first iteration, but not in

subsequent iterations. Such an improvement can significantly reduce the running

time of absorbing random walk.

5.2.6 Empirical Evaluation

Real World Dataset

For experiments, we gather news articles along with users’ access history2 from popu-

lar news websites from Jan 15th, 2011 to Apr 16th, 2011 [LWL+11]. We preprocess the

data by removing news articles that are rarely accessed (i.e., the accessed frequency

is less than 10 times per day) and by storing users with frequent online reading be-

haviors (i.e., users who read news articles every day and read more than 10 pieces of

news each day). After preprocessing, a total of 103,540 news items are stored, along

with 3,430 users, each day in average with 1,125 news articles published. We also

2The data is collected from a commercial party, providing us access to their back-end
logs.
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keep the timestamp data that a user clicks an article in order to model the temporal

changes of user interest.

User Interest Evolution over Time

Recall that our proposed recommendation framework is based on the assumption

that the user’s reading preference would be relatively stable in a long run, while the

content read by the user might change significantly. To validate this assumption, we

empirically segment the user’s reading history into 3-day time slots and 15-day time

slots, respectively, and then examine the profile in 3-day time slot based on word

distribution related to general topics (represented by word frequency), and the profile

in 15-day time slot based on topic distribution (detected by LDA).
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Figure 5.4: KL-Divergence of short-term word distributions (topic-related) and long-
term topic distributions over different user groups.

Specifically, we investigate the possibility of interest evolution on different user

groups, since users with different news access patterns, such as different reading fre-

quency every day, may have distinct news topic preferences, and therefore the dynamic

interest on news articles may vary a lot. To do that, we divide the user pool into

three groups based on their reading habits. Suppose a user reads N news articles

per day, then the three groups are: (i) N ≤ 20 (25%); (ii) 20 < N ≤ 50 (38%); (iii)

N > 50 (37%). To verify whether the user’s interest evolves over time, we calcu-

late the KL-Divergence [KL51] between two profiles of adjacent time slots for each
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user, and then average the value of different time slots over the three user groups.

Figure 5.4 shows the result, where X-axis represents the time slot pair, and Y -axis

denotes KL-Divergence value. As is evident in Figure 5.4, all the three user groups

exhibit the interest evolution: the general topics (topic distribution in the right fig-

ure) are relatively stable in a long run while the specific content (word distribution in

the left figure) of those topics that a user might be interested in changes significantly

in a short run. Particularly, users with higher access frequency on news articles shift

their reading preference more dramatically than the other two groups of users.

Time Function Comparison

In Section 5.2.4, we have analyzed the effects of different time functions. To better

understand how the time function influences the final recommendation result, we

evaluate the performance of different time weighting schemes (logistic, damping and

exponential).
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Figure 5.5: Precision-recall plot for different time weighting schemes. Remark: ©
represents the performance using damping function; � denotes the performance using
logistic function; and + represents the one using exponential function.

For evaluation, we choose 5 time ranges for each user, and use the reading history

before the time range to construct the user’s profile. The reading history within

the time range serves as the ground truth. For each approach, we recommend news
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items (top @10, top @20 and top @30) to 100 randomly selected users, and plot

the averaged precision and recall pair of recommendation results over 5 time ranges,

where each time range contains 3 days. We construct the user’s profile based on

the reading history earlier than each time range. The recommendation is achieved

by applying absorbing random walk model on each approach (i.e., the comparison

is performed in the same environment). Note that the decay factor λ is empirically

set to 1/3. In next section, λ will be tuned based on the recommendation result.

As is depicted in Figure 5.5, besides the higher ratio of precision and recall, the

performance distribution of exponential function is more compact than the others,

which demonstrates the efficacy and stability of our proposed time weighting scheme.

Parameter Tuning

The value of the decay factor λ denotes the decay rate of the user’s reading preference

over time. The higher the value of λ, the faster old reading histories decay and the

lower the importance of the historical information compared to more recent profiles.

To better capture how the recommendation result is influenced by λ, we use different

time periods T to segment the user’s reading history (the corresponding decay factor

λ = 1/T ), and adopt the same experimental setup with the above procedure. Instead

of using precision and recall, we calculate the F1-score for each selected user, and

plot the averaged F1-score for each λ. The tuning result is shown in Figure 5.6.

As is depicted, for top @10, @20, @30 recommended news articles, the performance

achieves the best when λ = 1/3, meaning that the time slot of each history segment

is 3 days. Therefore, we set λ as 1/3 for the following experimentation.
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Figure 5.6: λ tuning curve.

Evaluation on Random Walk Models

In our work, we propose to employ absorbing random walk model for news article se-

lection. To this end, the initial step is to construct the user-item affinity graph, which

involves two types of edges, i.e., user-article and article-article edges. By including the

edges of article-article, we argue that it can be regarded as the transition probability

for a random surfer to jump once between two article nodes via all the connected user

nodes, which can naturally interpreted as the first-order similarity between articles.

Then absorbing random walk is performed on the affinity graph. By introducing the

absorbing state into the model, it is able to obtain a static ranking with diverse items

selected. In the following, we first evaluate how the recommendation performance

can be affected by using different types of edges to construct the affinity graph, and

then investigate how random walk models will influence the results.

Comparison of Different Graph Constructions

In this section, we plan to evaluate different constructions of a user-item affinity graph

in order to understand the importance of different types of edges for recommenda-

tion. The constructions of a user-item affinity graph include: (1) only considering
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user-article edges (UA); (2) considering both user-article and article-article edges

(UA-AA); (3) considering both user-article and user-user edges (UA-UU); and (4)

considering user-article, user-user and article-article edges (UA-UU-AA). The exper-

iment setup is similar to the one introduced in Section 5.2.6, and the threshold of

affinity values for all the methods is empirically set to be 0.1. We perform 10-fold

cross validation, recommend news articles (top @10, top @20 and top @30) to each

set of test users, and calculate the averaged F1-score to compare the performance of

different methods. The result is depicted in Figure 5.7.
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Figure 5.7: Comparison of graph constructions.

As shown in Fig. 5.7, the graph construction based on user-article and article-

article edges (UA-AA) outperforms other construction methods in terms of F1-score,

with smaller deviation. The result is statistically significant at the 1 percent level.

The way of constructing the graph using user-article and user-user edges performs the

worst. The reason behind it is that when we perform absorbing random walk model

on the graph, the absorbing states on user nodes contribute less to news selection,

compared with the ones on article nodes. Therefore, it is not beneficial for news

selection to add user-user edges into the graph, and may result in larger deviation of

F1-scores, as shown in Figure 5.7.
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Comparison of Random Walk Models

The recommended news list provided by our framework shows a great diversity on

topic aspects. Such diversity is oriented from the sparkle of absorbing random walk

model. In this section, we investigate the item diversity introduced by absorbing

random walk model. To this end, we compare the recommendation result using (1)

greedy selection based on the similarities of users’ short-term profiles and news articles

(Greedy); (2) general random walk (GRW); and (3) absorbing random walk (ARW).

The experiment setup is similar to the one introduced in Section 5.2.6. We employ

set diversity described in [ZH08] as the diversity evaluation metric. The article set

diversity is defined as the average dissimilarity of all pairs of news articles in the

recommendation list, as introduced in Section 2.2.
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Figure 5.8: Comparison of news selections.

We user similar experimental setting as introduced in the previous section, and

calculate the averaged set diversity for comparison. The result is shown in Figure 5.8.

The result is statistically significant at the 1 percent level. As depicted, ARW achieves

the best in terms of the set diversity, i.e., the recommended article list contains

diverse news items. The set diversity of the recommended list by ARW is relatively

stable when the recommended list size increases. The reason is straightforward: by
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performing absorbing random walk, the absorbing state of a node may influence the

other nodes that directly connect to it, and therefore the selection strategy will avoid

selecting nodes with close distance. Comparatively, the results by greedy selection

and general random walk model are relatively worse, since in essence, they select and

rank news articles based on the similarity between the profile of the target user and

the articles.

Comparison with Other Methods

Our proposed recommendation framework takes into account the long-term and short-

term interest profiles of the users in an integrated way, where the long-term profile

is designed to filter preferable news groups, and the short-term one is used to build

user-article affinity graph. In order to verify the effectiveness of the two-stage news

selection strategy in LOGO, we use the long-term (LT) and short-term (ST) pro-

files, respectively, to perform the recommendation task, as two baseline methods. In

each baseline, news articles are selected greedily based on a single profile, either the

long-term one (LT-Greedy) or the short-term one (ST-Greedy). We also utilize ab-

sorbing random walk into these two baselines (LT-ARW and ST-ARW). In addition,

we implement two existing approaches, [DDGR07] (Goo) and [LDP10] (ClickB) for

comparison. The former is a collaborative filtering based method, whereas the latter

is a content-based method. The experimental setting is the same as the previous

procedure. We then perform 10-fold cross validation and recommend news items (top

@10, top @20 and top @30) to each set of test users. For comparison, we compute

the averaged precision, recall and F1-score of recommendation results for these users

over the 5 time ranges. Table 5.1 shows the comparison results.

From the result, we observe that: (1) Simply using one single profile (long-term

or short-term) cannot guarantee the double-effect of the general topic interest and
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Method
Top @10 Top @20 Top @30

P R F P R F P R F

LT-Greedy 0.1531 0.2095 0.1773 0.2314 0.3115 0.2517 0.2614 0.3469 0.3012
ST-Greedy 0.1614 0.2184 0.1901 0.2385 0.2936 0.2610 0.2660 0.3366 0.2806
LT-ARW 0.1598 0.2217 0.1826 0.2367 0.3202 0.2648 0.2758 0.3541 0.3069
ST-ARW 0.1767 0.2365 0.1944 0.2479 0.3278 0.2763 0.2800 0.3520 0.3144

Goo 0.1901 0.2374 0.2101 0.2516 0.3306 0.2913 0.2813 0.3606 0.3160
ClickB 0.1873 0.2408 0.2048 0.2502 0.3219 0.2835 0.2856 0.3554 0.2987

LOGO-Greedy 0.2186 0.2496 0.2165 0.2698 0.3542 0.3103 0.3198 0.4011 0.3400

LOGO-ARW 0.2253 0.2586 0.223 0.2788 0.3643 0.3231 0.3285 0.4210 0.3583

Table 5.1: Comparison among different recommenders.

the recent reading preference; (2) Treating the user’s reading interest over different

topic categories independently, like ClickB, cannot effectively capture the exact read-

ing interest of users; (3) The quality of the recommendation result can be improved

using absorbing random walk, compared with the one that greedily selects news ar-

ticles with respect to the target user’s profile; and (4) Our proposed recommender

LOGO outperforms other methods by providing a seamless integration of long-term

and short-term user profiles, and an elegant news selection strategy introduced by

absorbing random walk.

5.2.7 Summary of LOGO

The contribution of this work is three-fold:

• We emphasize the effect of user interest evolution when modeling user profiles,

and represent the user’s reading preference with seamless integration of long-

term and short-term user profiles;

• We construct a two-stage news selection strategy, where the long-term profile is

firstly utilized to differentiate news groups with specified preference, and then

the short-term profile is applied to filter specific news articles to individual

users;

122



• We build a user-item affinity graph based on the filtered news articles and the

user’s short-term profile, and then perform absorbing random walk on such a

graph to select news articles with diverse topics.

Our work presents a novel way to capture users’ reading interest drift and at the

mean time, to broaden users’ preference.

5.3 Dynamics Modeled by Item Taxonomy

In E-commerce recommender systems, there is a special class of recommendation

problems, in which a user’s behavior might evolve over time, i.e., within different

stages the user will prefer distinct items, as shown in Scenario 1.

Scenario 1: A customer with a baby needs to purchase some products of baby care.

Within different growth stages of his/her baby, the desired products are significantly

different.

In this scenario, the customer’s purchasing interest evolves over time. It is not rea-

sonable to utilize item-based method for personalized recommendation, as the items

purchased in different time periods might significantly different. Further, it is a non-

trivial task to effectively capture the evolution of customer’s purchasing interest. In

general, an item taxonomy is often associated with a recommender system, by which

customers can easily navigate different categories of products. In this preliminary

work, we propose to employ such taxonomic knowledge to formalize users’ long-term

preference, and in the meantime, to capture the evolution of users’ interest. However,

only long-term preference cannot provide enough evidence against the user’s current

desire, as illustrated in Scenario 2.

Scenario 2: A customer with a 6-month baby needs to change the type of formula

for his/her baby.
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In this scenario, the customer needs to purchase some new items. In general, long-

term preferences model users’ purchasing interest in a long run, e.g., what brands

that the user prefers. However, for customers who step into a new purchasing stage,

he/she would desire new types of items that have never been purchased before by

this user. Therefore, only considering the customer’s long-term preference will not

capture his/her desire. To handle such issue, we propose to explore the user’s short-

term interest by analyzing similar users’ behaviors. Here “similar” indicates that two

users might have similar purchasing behaviors within the identical purchasing stage.

By this way, we can easily resolve the situation that the customer desires new types

of products within new stages.

5.3.1 Problem Formation

In our work, we employ item taxonomy to facilitate the recommendation procedure.

In general, item taxonomies are often designed or applied in E-commerce websites,

e.g., Amazon. In particular, we have the following elements within an E-commerce

community:

• User Repository: U = {u1, u2, · · · , un}. U contains all users or customers

within the E-commerce community.

• Product Repository: P = {p1, p2, · · · , pm}. P is composed of all the products

provided by the E-commerce website.

• User Rating: R = {R1, R2, · · · , Rn}. R includes all the rating information of

users over products.

• Item Taxonomy: T over item category set C = {c1, c2, · · · , cl}. The taxonomy

T captures the hierarchical structure of C in the E-commerce. For simplicity,
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we require that one product can only fall into one specific category, i.e., {p →

ci|¬cj , cj 6= ci, p → cj}.

Problem (Recommendation with Stage): Within an E-commerce commu-

nity, given U , P, R and T , recommend items to a target user, guaranteeing that the

user’s current purchasing desire is maximally satisfied.

To resolve the above problem, we can decompose it into two different subproblems

based on the characteristics of the problem itself.

Subproblem 1 (Stage Identification): Given an item taxonomy and a target

user’s history, identify the user’s current preference on item categories.

To identify the recommendation stage for the target user, we need to consider

the entire purchasing history of this user. Simply modeling the user’s behavior based

on transactional purchasing data cannot capture the evolution of the user’s exact

interest. Fortunately, the item taxonomy can provide us a meaningful and elegant

explanation of the user’s evolved behavior.

Subproblem 2 (Item Recommendation): Given a target user’s current stage,

recommend a list of items to the user such that his/her preference will be maximally

satisfied.

Once we obtain the recommendation stage of the target user, a natural way to

recommend items is to refer other users’ behaviors within the same stage. In our

problem setup, we have additional resources to use, e.g., the item taxonomy, to enrich

the correlations among users, and therefore we are able to provide more reasonable

recommendation list.

5.3.2 Stage Identification

The item taxonomy semantically encapsules the correlations among items, which is

suitable to capture users’ preferences over different item categories. Specifically in our
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work, we first separate a user’s purchasing history into different stages, and then model

the user’s long-term preference by employing the item taxonomy. Given a target

user, we construct a multi-modal graph based on the users’ purchasing behaviors

similar to the target user, and then perform inference on this graph to finalize the

recommendation.

The long-term user profile consists of multiple stage profiles. Formally, given the

purchasing history H of the target user u, H can be initially divided into multiple

segments based on a specific time scheme. Here the time scheme used to segment

H can be learned according to the detailed content of H using statistical or machine

learning techniques. Taking into account the time complexity, hereby, we simply

define a uniform time frame T as a segment unit, and then separate H based on

T , i.e., H = {Ht0, Ht1 , · · · , Htn}, where t0 means the current stage, i.e., the latest

purchasing period. For each time period ti, i = 0, 1, · · · , n, we model the user’s

behavior Hti using the item taxonomy.

5.3.3 User Profile Generation

As illustrated in Fig 5.9, to model the stage profile Ht0 of user u1, we first extract

the transactional data of u1, R1 = {p41, p51, p21}. For each transaction or item in R1,

e.g., p41, we locate the fine-grained category that the item directly belongs to, e.g.,

c4, and then traverse the taxonomy from bottom to top, to obtain the category path

starting from this category, e.g., c4 → c1. Following this example, we then transfer

the rating score on p41 to the category path, i.e., assigning “1” to each category in

the path. Subsequently, we aggregate the rating score for each category and formalize

the user’s stage profile as a weighted category vector.

Again for the previous example, assume the basic category vector is in the form of

〈c1, c2, c3, c4, c5〉, then the weighted category vector Rt0
u1

= 〈1, 2, 0, 1, 1〉, where each en-
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c2

c3

c1

c4 c5

p11 p31 p32 p41 p51 p21

u1: p11, p31, p32

u2: p11, p32, p41

u3: p31, p41

u1: p31, p41

u2: p32, p41

u3: p11, p32

u1: p41, p51, p21

u2: p41, p32, p21

u3: p32, p21

Taxonomy

Item

User

Rating

u3: p31, p41 u3: p11, p32 u3: p32, p21

Ht2 Ht1 Ht0

Figure 5.9: An example of item taxonomy.

try represents the user’s implicit rating over the corresponding category. In such rep-

resentation, we assign more weight on the categories of the upper level in the item tax-

onomy, by which we can avoid being trapped into specific topics and losing the overall

recognition of the user’s preference. The weighted category vector is l2-normalized.

Finally, we can denote user u1’s long-term profile as Ru1
= {Rt0

u1
, Rt1

u1
, Rt2

u1
, · · · }, and

also we can identify the current recommendation stage of u1 as Ht0 .

The identification of the user’s current recommendation stage can help determine

what information should be used in the item recommendation, i.e., to consider other

users’ stage profiles. For example, there are three users u1, u2 and u3, whose long-

term profiles are {Rt0
u1
, Rt1

u1
, Rt2

u1
}, {Rt0

u2
, Rt1

u2
, Rt2

u2
, Rt3

u2
, Rt4

u2
}, and {Rt0

u3
, Rt1

u3
, Rt2

u3
, Rt3

u3
}.

Given the target user u1 with the recommendation stage Ht0 , we need to analyze the

stage profiles of users u2 and u3, that is, R
t2
u2

and Rt1
u3
, since these stage profiles indicate

that their stages are identical to u1’s current stage. In this sense, the long-term and

short-term profiles of a user are dependent in a way that the short-term profile is

derived from the long-term profile and also the long-term profiles of different users

can contribute to the success of collaborative filtering. The subsequent procedures

are all based on this scheme. Note that the evolution of a user’s purchasing interest
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exists within the user’s long-term profile, whereas the interest would be relatively

stable within the user’s short-term profile.

5.3.4 Model Refinement

As proposed in the previous section, the item taxonomy serves to connect users and

items in a semantic way, in which users’ rating behaviors are amplified via the category

path. In such a model, we can easily capture the correlations between different

elements, i.e., users, items and categories. In the following, we further formalize the

taxonomy-based profiling model by specifying three different similarities.

• User-User Similarity (SU ): The user-user similarity originates from two different

components: user-item similarity SUI and user-category similarity SUC . Given

two users u1 and u2, SUI can be computed by considering the Jaccard similarity

between the item sets purchased by these two users, Iu1
, Iu2

, whereas SUC can

be derived from the Cosine similarity between the identical stage profile vectors

of these two users Ru1
, Ru2

. Specifically,

SUI(u1, u2) =
Iu1

∩ Iu2

Iu1
∪ Iu2

, SUC(u1, u2) =
Ru1

· Ru2

||Ru1
||||Ru2

||
.

Finally, the similarity between two users, SU(u1, u2) can be calculated as:

SU(u1, u2) = λ · SUI(u1, u2) + (1− λ) · SUC(u1, u2). (5.7)

In this way, we can easily capture the correlations between two users from both

the taxonomic level and real purchasing behavior level, simultaneously. This

similarity can help obtain user links.

• Item-Item Similarity (SI): Similarity between items can be computed using

item-to-item collaborative filtering. Given a product p, our goal is to find prod-

ucts similar to p; Here by “similar” we mean that the user sets, Up1, Up2 , pur-
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chasing the two items have substantial overlap. To this end, we use the Jaccard

similarity to capture SI(Up1, Up2), as

SI(Up1, Up2) =
Up1 ∩ Up2

Up1 ∪ Up2

. (5.8)

• Category-Category Similarity (SC): This similarity can help quantify the se-

mantic correlation between two different categories in the item taxonomy. In

our work, we employ Information Content (IC) [Res95] to compute SC , which

measures the amount of information of a given category c from its probability of

occurrence, in our case, the probability that items under c are purchased. The

larger the IC, the more popular the category. IC can be computed as the nega-

tion of the logarithm of the probability of occurrence, i.e., IC(c) = − log p(c).

To derive the similarity between two categories, we use the similarity measure

proposed in [Lin98], which evaluates the correlation between a pair of concepts

as the IC of the Least Common Subsumer (LCS) in a give taxonomy, i.e., an

indication of the amount of information that two categories share in common.

Given two categories c1 and c2, the similarity SC(c1, c2) can be computed as

SC(c1, c2) =
2× IC(LCS(c1, c2))

IC(c1) + IC(c2)
. (5.9)

5.3.5 Item Recommendation

Once we locate the recommendation stage of the customer, a simple solution to the

recommendation is to employ user-to-user collaborative filtering to retrieve items that

the customer might prefer. However, such paradigm might result in the overemphasis

on popular items, and thus make popular items more popular, while the items in the

long tail have little chance to be recommended to the user. To resolve this issue, we

investigate the effect of using the item taxonomy to increase the possibility that items

in the long tail are being recommended. To this end, we first construct a multi-modal
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graph, and then given a target customer u, we perform random walk on this graph

starting from u for recommendation.

In detail, the multi-modal graph consists of multiple resources, e.g., users, prod-

ucts and categories, associated with multiple types of correlations, e.g., user-user,

item-item, category-category relations and etc. These resources are all originated from

the user’s purchasing behaviors within the same stage. We encapsule the graph as an

adjacency matrix. Formally, let U, P, C denote customers, products and categories re-

spectively, and let Up, Uc, Pc denote user-product, user-category and product-category

relations, then we can build a block-wise adjacency matrix W =













Uu Up Uc

Up Pp Pc

Uc Pc Cc













,

where Uu, Pp, Cc denote user-user, product-product and category-category relations.

Here the entries of Uu is calculated by SU defined by Eq.(5.7), Pp by Eq.(5.8) and Cc

by Eq.(5.9). The entries of other blocks in W can be derived by purchasing behaviors

or the item taxonomy. For example, for entries in Up, each one is a binary value

(“1” or “0”), representing whether the corresponding user has been purchasing the

product or not.

Given a target user u, we perform random walk on the multi-modal graph starting

from u. Here we employ random walk with restart (RWR) [PYFD04] to retrieve items

for recommendation, such that the recommended items are not deviated much from

the user’s purchasing interest. Specifically, we construct a matrix A using normalized

graph Laplacian, i.e., A = D−1/2WD−1/2, in which D is a diagonal matrix with

its (i, i)-element equal to the sum of the i-th row of W. The algorithmic detail is

described in Algorithm 5.2.

In Algorithm 5.2, we first build a multi-modal graph whose nodes include users,

products and categories, and the weighted edges between nodes are quantified by the

adjacency matrix W. Here we normalize W using graph Laplacian (line 2) to make
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Algorithm 5.2 Recommendation using RWR

input: An adjacency matrix W, and a target user uq.
output: A recommended item list l.

1. Let −→vq = 0 for all its entries, except a ‘1’ for the q-th entry;
2. Normalize W using A = D−1/2WD−1/2;
3. Initialize −→uq = −→vq;
4. while −→uq not converged do

5. −→uq = (1− δ)A−→uq + δ−→vq;
6. end while

7. Select top ranked subset e from −→uq as the recommendation base;
8. if ei is a user then
9. Select items that ei has purchased recently and put them into l;
10. end if

11. if ei is a product then
12. Put ei into l;
13. end if

14. if ei is a category then

15. Select items that contribute more to IC of ei and put them into l;
16. end if

17. return l;

it suitable for the random walk computation. Next, our method executes RWR (line

3-6) to retrieve elements highly related to a given user q. The procedure will end

once the input vector −→uq converges. Here the parameter δ controls the steps of each

random walk; in our case, we expect that the random walk be not so deep on the

graph so that the selected items will conform to the user’s purchasing interest.

After −→uq is finalized, our method choose a subset of elements that are top ranked

in −→uq, which might include users, products or categories. Therefore, to retrieve the

recommended items, we need to consider three distinct cases (Line 8-16). In this way,

the resulted recommendation list is composed of products that are originated from

different recommendation disciplines.
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5.3.6 Empirical Evaluation

Real-World Data

The dataset used in our experiment is collected from Amazon.com. It consists of

customers’ order information related to Baby Care, ranging from Jan 21st, 2005 to

Mar 5th, 2009. This dataset contains 133,039 orders of 1,000 anonymous customers

on 2,187 products. The ratings in this dataset are implicit rating, i.e., the binary

rating originated from the purchasing behavior of customers. The time span of the

customer’s order history varies significantly, ranging from several months to 4 years.

The average number of orders for customers is 133. The item taxonomy covered by

the dataset consists of 37 classes and it is a three-layer hierarchy: the root class,

“Baby Care” and subclasses, e.g., “Baby Diaper”, “Baby Formula”, “Feeding Acces-

sories”, and etc. For each category, the number of products contained varies from

tens to hundreds. Hereby, the taxonomy is simple and items ratings in the dataset are

relatively dense. Due to the space limit, we are unable to list all the classes contained

in the taxonomy.

Profile Generation and Taxonomy

Long-term and short-term profiles both contribute to the success of recommendation.

To verify this, we use the long-term and short-term profiles, respectively, to perform

the recommendation task. Also in our framework, we employ the item taxonomy to

enrich the representation of users’ profiles. Therefore, we setup four baseline meth-

ods as follows: (1) Long-term without taxonomy (LT): use each customer’s entire

purchasing history to construct profiles and perform collaborative filtering; (2) Short-

term without taxonomy (ST): use each customer’s recent purchasing history3 to build

3Here we empirically set the “recent” history as the last 90 days behavior, and when
performing collaborative filtering, we only consider all customers’ recent histories.

132



profiles and perform collaborative filtering; (3) Long-term with taxonomy (LTT): use

item taxonomy to enrich each customer’s long-term profile and perform collabora-

tive filtering; (4) Short-term with taxonomy (STT): use item taxonomy to enrich

each customer’s short-term profile and perform collaborative filtering. In addition,

we implement two existing approaches, [ZLST04] (TDC) and [NFT+10] (EUI) for

comparison, where the former considers both user proximity and item proximity, and

the latter uses taxonomy to recommend novel items to users.

For evaluation of our method (RwS for short), we empirically set the time frame

T to be 90 days, and use the purchasing history within the latest stage as the testing

data, whereas the purchasing history before the latest stage is regarded as the source

of profiling. Note that in our method, user similarities are calculated based on the

stage closest to the target user’s current stage. The parameters λ and δ will be tuned

in the following subsection. For each approach, we recommend products (top@10,

top@20 and top@30) to all the users in the dataset, and then compute the averaged

precision, recall and F1-score of the recommended list. Fig 5.10 shows the comparison

results.
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(c) F1-score comparison.

Figure 5.10: Performance comparison for different recommendation algorithms.

From the results, we observe that (i) The performance of algorithms with item

taxonomy involved is superior to the ones without taxonomy. It is evident that by

using item taxonomy, users’ preference can be better captured, since the categories

or classes have more distinguishable power than simple items on identifying a user’s
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purchasing interest. (ii) By considering the short-term profiles, the accuracy of the

recommended item list can be slightly improved, which is straightforward because we

are more concerned with users’ recent activities. (iii) Our proposed method signifi-

cantly outperforms other candidates, which demonstrates the efficacy of our algorithm

in handling the problem of RwS.

Model Validation

In Section 5.3.2 we introduced three distinct similarity measurements, i.e., user-user,

item-item and concept-concept. The encapsulation of these three measures enables

the method to capture the correlations among different resources (users, items and

categories), and therefore renders the recommendation more reasonable. Also, the

item taxonomy can help better interpret the customers’ exact purchasing interest.

To verify this claim, we evaluate the performance of using different measurements.

In the experiment, we choose to use user-user and item-item similarities respectively,

as two baselines, and then recommend items (top@10, top@20 and top@30) to a set

of randomly selected users (100 users). Note that the parameters λ and δ are set to

be 0.2 and 0.7, respectively. Detailed parameter tuning process can be found in next

section. We plot the average precision and recall pair of recommendation results. As

depicted in Fig 5.11, besides the higher ratio of precision and recall, the performance

distribution of the unified multi-modal graph is more compact than the others, which

demonstrates the stability of the strategy for multi-modal graph construction.

5.3.7 Summary of RwS

In summary, the contribution of our paper is three-fold:

• We define a new class of recommendation problem, named Recommendation

with Stage (RwS), in which a user’s preference evolves over time.
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Figure 5.11: Precision-recall plot for different model constructions. Remark: � rep-
resents the performance using user-user similarity; + denotes the performance using
item-item similarity; and x represents the one using the integration of user-user, item-
item and category-category similarities.

• We introduce a taxonomy-oriented approach to model a user’s preference. We

propose to model a user’s preference not only on item level, but also on the

semantic correlations among the categories that the items belong to.

• We propose a novel graph-based model for recommendation, in which a multi-

modal weighted graph, including users, items and concepts, is constructed, and

then random walk is performed on this graph for inference.

5.4 Concluding Remarks

This chapter studies the problem of interest dynamics in a recommender system, and

introduces two previous work [LZL11, LHL12] along this direction.

For the work of LOGO, we initially provide an experimental study on the evolution

of user interests in real-world news recommender systems. To better capture the in-

terest evolution issue, our proposed recommender seamlessly integrates the long-term

and short-term reading preferences of users when recommending news items. The

time sensitive weighting scheme on the long-term profile, along with the two-stage

news recommendation framework, shows promising performance compared with other
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existing methods. In addition, we employ personalized absorbing random walk on

user-article affinity graph (constructed based on the similarities of newly-published

articles and users’ short-term profiles) to adaptively select recommended news arti-

cles. When averaged with a relatively static ranking, one can balance relevance and

diversity in the recommended list. In this way, we can not only satisfy users’ reading

interest, but also broaden their preferences according to the temporal dynamics.

As future work, one possible extension is to allow users to given feedbacks about

the recommendation results, and then transform these feedbacks to constraints when

performing absorbing random walk. In practice, the feedbacks could be the ratings

of users, or the recommended rankings of items. By considering such feedbacks for

recommendation, the user’s reading preference can be well captured, and consequently

the recommended result can be more reasonable and meaningful. Another direction

along this research could be integrating users’ long-term and short-term profiles when

performing absorbing random walk. In this way, we do not have to decouple the

process of selecting news groups and select news articles, and therefore can have a

unified solution to personalized news recommendation with temporal dynamics.

For the work of RwS, we introduced a problem – Recommendation with Stage

in E-commerce, and then proposed a novel method that utilizes item taxonomy to

resolve this problem. Our approach is capable to effectively capture a customer’s

purchasing interest via a seamless integration of the customer’s long-term profile and

short-term profile, where the long-term profile is derived from the entire purchasing

history, and the short-term profile is originated from the identification of the current

recommendation stage of the customer. For recommendation purpose, we focus on the

current recommendation stage and proposed a multi-modal graph ranking method to

obtain the recommended item list. Evaluation on a real-world dataset demonstrates

the effectiveness of our proposed method.
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Notice that the performance of our proposed method depends on the quality of the

item taxonomy. In our future work, we plan to investigate how the taxonomy would

influence the performance of the proposed method. In addition, the segmentation of

a user’s purchasing history is based on a uniform time frame in our method, which is

not quite sufficient since the durations of purchasing stages of different users might

vary a lot. Therefore, we will also take into account different segmentation methods

in our future work.
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CHAPTER 6

APPLICATIONS

The previous introduced issues of recommender systems, i.e., understanding behav-

iors, relations and dynamics, reflect a user’s profile from different perspectives. User

behaviors represent the usage pattern of a user in a long run, interest dynamics show

the temporal change of a user’s preference in a session-based interval, and user re-

lations denote the correlation between the target user and other elements within a

recommender system. By integrating these three research objectives, we are able

to comprehensively understand the exact preferences of users, and construct high-

quality user profiles. Built on top of it, in this research we propose a recommenda-

tion framework that is capable of capturing diverse information needs of users, and

consequently providing reasonable and meaningful recommendations according to the

well-constructed user profiles. Further, the proposed framework for personalized rec-

ommendation is a generalized solution to various recommendation domains. Despite

of different characteristics of recommender systems, users who are using these sys-

tems exhibit similar behaviors (e.g., click patterns, complex relations and dynamical

interest drifts). Hence, the framework can handle recommendation cases of different

systems.

6.1 Objective

Based on the solutions to the aforementioned three issues, a systematic framework

is presented to give the guidance on building an effective recommender system. An

overview of the recommendation framework is depicted in Figure 6.1. As shown in

the figure, the framework includes three interleaved modules:
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1. Profiling : The profile of a user in the system is constructed based on multiple as-

pects, including the sharing interests with other users, the long-term preference

and the short-term taste. The profiling is able to handle the changing patterns

of coarse-grained and fine-grained perspectives in different time granularities.

2. Recommendation: The recommendation result can be obtained by carefully

analyzing the relations of user profiles and the item repository. In particular,

the items are initially organized into a two-level item hierarchy. The long-term

profile of users is adopted to select general item categories from the top level,

whereas the short-term profile is employed to filter and rank items in the bottom

level.

3. Evaluation The evaluation module takes into account various recommendation

evaluation criteria, including accuracy, diversity, reciprocity, vitality, etc. These

criteria provide helpful guidance in refining the profiling and recommendation

models from different perspectives.

�����

����	
	��


����������	�����
���	��

�

�������	


���������	

����������	





���	����	

��������

�	����

���������
��	������	���	���

����	����

����	����

����	�����


����	������

��

 ��
����������

��!�
��"���

Figure 6.1: The recommendation framework.
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The three interleaved modules operate in an iterative way in real-world appli-

cations. The Profiling module constructs user profiles based on different types of

information; the Recommendation module takes user profiles as input, and generates

recommended results to users; and the Evaluation module analyzes the recommenda-

tion logs and performs experimental evaluation on the running algorithms to provide

more robust and workable parameters for the models.

6.2 A Representative Application

In my previous work [HLLP13], an online recruiting system is presented, called iHR.

iHR is a collaborative solution designed for job markets, on which job seekers and re-

cruiters are able to cooperatively build an effective job matching platform. It provides

users functionalities to organize their career development, to improve their corpora-

tion culture, and to construct extensive relation network.��������	
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Figure 6.2: The system overview of iHR.

In iHR, registered users are categorized into two groups: job seekers and recruiters.

For job seekers, iHR enables them to input their basic information, to upload and

update their resumes, and to receive instant recommendation for job positions; For
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recruiters, similar functionalities are provided, except for the recommendation of job

applicants. Figure 6.2 shows the system overview of iHR.

The information processing and representation functionalities are integrated into

three critical modules: User Profiling, Advanced Search and Recommendation. The

seamless integration of these modules makes the system more user-friendly and customer-

centric. In the following, we describe functional details of these modules.

User Profiling: To construct user profiles for job seekers and recruiters, iHR con-

siders multiple information resources, including users’ basic information, extracted

text from uploaded files or links and uses behaviors. The fusion of these types of

information enables us to comprehensively understand a user’s exact interest.

Advanced Search: In iHR, advanced search functionality for users is provided in

order to quickly obtain the information they are interested in. Although search is

commonly used in most job matching systems, iHR uses some query expansion tech-

niques [MRS08] to expand the query keywords for more comprehensive results. In

this preliminary work, we do not focus on introducing the search service as it has

been extensively studied by many existing systems[AP02, SBR02].

Recommendation: iHR provides flexible interfaces for users to obtain recommen-

dation results related to their preferences. We implement three distinct recommen-

dation strategies, including content filtering, collaborative filtering, and reciprocal

recommendation, and also provide integrated recommendation results to users. For

reciprocal recommendation, we extensively investigate the bilateral correlation be-

tween job seekers and recruiters, i.e., the reciprocity, and therefore help achieve the

win-win situation among them.

Besides the major modules mentioned above, in iHR we also provide an interactive

channel for job seekers and recruiters. Figure 6.3 shows an example of a job seeker’s

comment management.
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Figure 6.3: The comment management of job seekers.

6.2.1 User Profiling

A natural way to enhance the search and recommendation experience is to maintain

and utilize a user’s profile. Users’ profiles provide us extensive evidence to understand

the major preference of both job seekers and recruiters, and great facilities to adjust

the search and recommendation output for individuals. In iHR, a user’s profile is

composed of three components, i.e., the basic information, the extracted information

and the behavioral information. In the following, we describe the detailed profiling

for each component.

Basic Information

A user’s basic information includes demographic data and explicit preference specified

by the user. Such information is common in most job matching systems. Table 6.1

shows sample features of the basic information we collect from users.
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Table 6.1: Bilateral features in a job matching system. Features with the prefix need
are all the preference features, whereas the others are the self-description features.

Job Seekers Recruiters

scalar categorical free text scalar categorical free text

age language marriage education salary job type need degree company desc
work length sex degree self desc need amount trade type need sex job desc
need salary work status need job type ability need work length property type need language need ability

In general, the user-specified features can be scalar, categorical or free text, as

shown in Table 6.1. For scalar features, we first transform them into different ranges,

e.g., we can transform the length of working experience as 0-3 years, 3-5 years, 5-

10 years and 10+years. We then encode these ranges as binary features, e.g., if

a user’s working experience falls into the range of 0-3 years, then this feature (0-3

years) would be set to true (1), and all other ranges would be set to false (0). With

categorical attributes, we use the same strategy of dealing with working experiences

ranges. For free text features, we transform the text into an l2-normalized tf.idf-based

term vector, and then combine this vector with the vector obtained based on other

types of attributes. Note that the demographic information and the preference are

separately processed. We denote the demographic vector as ps and the preference

vector as pp.

Extracted Information

Another way to collect a user’s information is to analyze his/her external information,

e.g., resumes and home pages. In general, such information might be represented as

.doc, .pdf, or .html files, and the text information can be extracted from these files.

Take the resumes as an example. The text in resumes contains multiple types of in-

formation, e.g., personal information (demographics), educational details (graduation

school, degree, major), experiences (activities, research, skills), etc. Automatically

extracting structured information from resumes of different styles and formats would
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be challenging. [YGZ05] analyzes the hierarchy of resume information, and then

proposes a cascaded two-pass information extraction framework to automatically ex-

tract useful features. However, such a paradigm requires substantial effort to estimate

parameters in the model, and therefore cannot handle large-scale resume extraction.

In our system, we simplify the extraction procedure by treating each resume as

a text document, and then extracting important features from the text. Specifically,

we sample 20% of resumes from the resume repository and transform them to plain

text. To ensure the coverage of sampling, we sample resumes from different domains,

e.g., Internet Technology, Chemical Engineering and Business Management, etc. We

then select a pool of features (words) from each domain, according to the weight

information of each feature. Here the weight is represented as the tf.idf value of the

word. For each domain, we empirically choose 1,000 features and then finalize the

extracted profile as a feature vector. We concatenate such vector to ps. Note that

each user’s ps has an additional label, i.e., the domain name, for further comparison.

Behavioral Information

Besides the static information provided by users, the system has various ways to in-

teract with users, and consequently collects users’ behavioral activities. For instance,

we provide functionalities such as searching and recommendation: users can feed

some input, e.g., keywords, into the system, and then click on some preferred profiles

from the search result; users can also receive recommendations from the system, and

then choose some of them to view. Such behavioral information would be helpful to

construct the preference of users and improve the quality of user profiles.

In our system, a user’s activities, including searching and clicking, are automati-

cally recorded and maintained in the format of log files. Table 6.2 shows an interpreted

log file example of recruiters searching job applicants. Note that in Search Criteria,
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Table 6.2: Sample log file.

User Identification Search Time Search Criteria Duration Clicks
ce20180c04c41580 09/Jan/2012 13:53:50 Project Manager, IT, 10 217 John, Michael
38f04d74e6511375 09/Jan/2012 13:54:32 Programmer, IT, 3 501 Chris, Ben, Shanny,· · ·
acef953fe42596a0 09/Jan/2012 13:55:02 Programmer & Java, IT, 2 432 Chris, Shanny, Murphy,· · ·
3110dbe2758556bf 09/Jan/2012 13:55:28 Data Analyst, Business, 8 283 Mary, Denver, Sam
72bf2bde4b64e457 09/Jan/2012 13:56:31 Consultant, Finance, 4 621 Jack, Dory, Devon,· · ·
437e052155f01a80 09/Jan/2012 13:57:09 Data Analyst, Business, 2 421 Mary, Sam, Denver, Nara,· · ·
21947eb595423a15 09/Jan/2012 13:58:50 Sales, Automobile, 3 142 Claydon, Chark, Edda, · · ·
3d5f469d3d7097d3 09/Jan/2012 13:59:29 Sales, Automobile, 5 239 Edda, Jamie

the three values correspond to Keywords, Domain and Working years, and the Du-

ration means that the time that the user spends on reading candidates profiles. The

log file in our system is parsed into two components: the search interest and the

click interest. Search interest is obtained from the Search Criteria, presented by an

interest vector, where each entry denotes a keyword associated with the domain, and

the weight of the entry is the normalized duration. This vector is concatenated to

the user’s preference vector. Click interest is obtained from the Clicks. Such infor-

mation is useful when we perform collaborative filtering based recommendation to

individuals.

6.2.2 Recommendation

The recommendation module is designed for users who do not have definite prefer-

ences on either job positions or job applicants. For example, for job seekers who

only have some general career interest with a broad range of preferences, the results

generated purely based on the job search module might not be able to satisfy such

users’ appetite, i.e., the results need to be further refined to help the job seeker figure

out his/her preferred jobs.

The recommendation module includes three different submodules, categorized by

the recommendation techniques, i.e., content-filtering module, collaborative filtering
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module, and reciprocal recommendation module. In the following, we will discuss the

algorithmic details within each submodule.

Content Filtering

The principle of content filtering methods is to sequentially find items from the search

result similar to the target user’s preference in terms of “content”. In iHR, the “con-

tent” refers to user profiles that are generated, including job seekers’ and recruiters’

profiles. Specific similarity measurements can be adopted to evaluate the relatedness

between the target user and items in the search result, e.g., the relatedness between

a job seeker and a series of job posts.

In this module, we focus on evaluating how relevant the users in the search result

are to the target user. Formally, given a target user u’s profile pu and a set of search

result Qu, our goal is to select a subset Q̂u ⊂ Qu such that ∀v ∈ Q̂u, v’s profile pv is

relevant to pu in terms of a predefined relevance measurement. Under the scenario of

job matching, we only consider the features that indicate the preference of the target

user when calculating the relevance. For example, assume a job seeker u has his/her

preference profile ppu, e.g., what types of jobs and which salary range that u prefers.

After u feeds some keywords into the system, the system returns a set of job posts

Qu. Within Qu, we rank all the candidates v based on the similarity

sim(ppu, p
s
v) =

ppu · p
s
v

‖ppu‖ × ‖psv‖
, (6.1)

and then choose the top ranked ones as the final recommendation result. Note that

in our system ppu and psv are processed to have the same cardinality.

Collaborative Filtering

Collaborative filtering methods are designed based on user’s historical accessing be-

haviors, e.g., what kinds of job posts have been clicked by a job seeker before. It
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considers “similar” users’ accessing history, and then recommends to the target user

a list of items that have been accessed by these “similar” users. Therefore, the key

step is to find “similar” users in terms of the accessing history.

In our system, we expand the concept of collaborative filtering to a broader case,

i.e., to consider some content information when calculating the similarity between

users. Specifically, we take into account a user u’s preference profile ppu and the

search history profile phu. The similarity between two users u and v (both are job

seekers or recruiters), sim(u, v), can be calculated as

sim(u, v) =
ppu · p

p
v

‖ppu‖ · ‖p
p
v‖

+
phu · p

h
v

‖phu‖ · ‖p
h
v‖

(6.2)

After obtaining a list of users similar to the target user u, we sequentially check

the search result to see if users in the list have accessed them or not. We then rank

the search result based on the access count and recommend top ranked ones to the

target user.

Reciprocal Recommendation

The aforementioned two modules do not take into account the properties of job match-

ing systems. In this module, we analyze the special characteristics within the job

matching domain, and then propose a reciprocal strategy. Recently, a special class

of recommender systems, called reciprocal recommender, has emerged. Reciprocal

recommender systems refer to systems from which users can obtain recommendations

of other individuals by satisfying preferences of both users being involved. Examples

of reciprocal recommenders include online dating services, mentor-mentee matching,

consumer-to-consumer marketplaces, and etc. The job matching system is also a type

of reciprocal recommender systems.
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Properties in Reciprocal Recommenders

Reciprocity: In traditional user×item recommender systems, only unilateral pref-

erences are considered, i.e., the users’ preferences on items. However, in the domain

of job matching, both users being involved in the recommendation have their prefer-

ences against with each other; in such a situation, only considering unilateral pref-

erence might not be reasonable. In other words, the success of a match depends on

the bilateral preference, but not solely on the user who receives the recommendation.

This is the key feature of a reciprocal recommender that differentiates it from the

traditional user×item recommendation paradigm.

In our system, job seekers and recruiters have their self-descriptive information,

and also the preferences on either job positions or applicants. Given a target user

u and a search result list Qu, we are interested in finding a relevant user v ∈ Qu,

such that (u,v) is a successful match. By relevance, we mean that the self-description

of user v, psv, matches the preference profile of user u, ppu, and at the meantime, the

self-description of user u, psu, matches the preference of user v, ppv. Therefore, the

relevance includes two components, rel(u ∼ v) and rel(v ∼ u). Here the relevance

is calculated using the cosine similarity between the vectors. We then formalize the

relevance between u and v as rel(u, v) = rel(u ∼ v) · rel(v ∼ u).

Availability: In traditional recommenders, an item can be preferred by a great

amount of users, e.g., a music album by the musician Michael Jackson. However, in

a job matching system, people have limited availability towards other people, e.g.,

a job seeker cannot have 100 interviews with different companies simultaneously.

Therefore, when designing the recommendation strategy for job matching systems,

we need to consider the availability of users so that all the users can obtain reasonable

recommendation results. In iHR, we intentionally record the number of times that

a user has been recommended to other users. If a user has been recommended to
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other users so many times in a time range, e.g. a week, we regard the availability of

this user as low; similarly, if a user is a new registered user, then this user has higher

availability. Particularly, for job seekers and recruiters, we set different thresholds to

indicate the extent of their availability. For example, the threshold for job seekers is

set to be 20, i.e., if the number of times that a job seeker is recommended to other

users exceeds 20 in a time range, we will not recommend this job seeker any more.

Similarly, the threshold for recruiters is set to be 50.

Diversity: In general, the search result contains a lot of records, some of which

might be similar in terms of specific features. For example, two job candidates may

have the same GPA and similar education background. If we recommend both of

them to a recruiter, the recruiter may spend time and other resources to distinguish

which candidate is better. In our system, we try to go beyond such established

paradigm. Instead, we provide users diverse recommendation results to help them

efficiently classify the candidates. Here “diverse” means that the candidates in the

recommended result might exhibit different personal strengths.

Recommendation Methodology

In job matching system, when a user, e.g., a job seeker, searches job positions, he/she

might have more preference on the top ranked results. When the user scrolls down the

browser and clicks on the job posts, he/she might lose patience to view the details of

the result. In other words, the interestingness of job posts with respect to a job seeker

could be regressive (the situation also holds when a recruiter searches job candidates),

which is known as the “submodularity”. Hence in this recommendation module,

based on the “submodularity”, we model the recommendation problem as a budgeted

maximum coverage problem [KMN99], and incorporate the special properties into the

solution.
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Introduction to Submodularity: Let E be a finite set and f be a real valued

nondecreasing function defined on the subsets of E that satisfies

f(T ∪ {ς})− f(T ) 6 f(S ∪ {ς})− f(S), (6.3)

where S ⊆ T , S and T are two subsets of E, and ς ∈ E \ T . Then f is called a

submodular function [NWF78]. By adding one element to a larger set T , the value

increment of f can never be larger than that by adding one element to a smaller

set S. Submodularity modeling has been employed into multiple research areas, e.g.,

document summarization [LLL11, LB10], news recommendation [LWL+11], graph

mining [THW+11], etc.

The budgeted maximum coverage problem is then described as: given a set of

elements E where each element is associated with an influence and a cost defined

over a domain of these elements and a budget B, the goal is to find out a subset

of E which has the largest possible influence while the total cost does not exceed

B. This problem is NP-hard as indicated in [KMN99]. However, [KMN99] proposed

a greedy algorithm which picks up the element that increases the largest possible

influence within the cost limit each time and guarantees the influence of the result

subset is (1 − 1/e)-approximation. Submodularity resides in each “pick up” step.

A key property is that submodular functions are closed under nonnegative linear

combinations [LKG+07], which is useful to define a submodular function over several

strategies.

Submodularity Model: In our recommendation model, we consider the properties

including Reciprocity, Availability and Diversity. Given a target user u and a search

result Q, we try to sequentially select items from Q and then put them into a new set

S. The selection strategy can be described as follows (note that ς is the item being

selected). After selection ς, we expect that (1) S should provide more relevance to

the target user u; and (2) The diversity in S should not deviate too much. Based
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on the above strategies, we define a function f to measure the quality of the current

selected set S against Q. The function f is defined as a linear combination of two

submodular functions, described as

f(S) =
1

|S|

∑

v1∈S

1

τ
· rel(u, v1) +

1
(

|S|
2

)

∑

v1, v2 ∈ S

v1 6= v2

−sim(v1, v2), (6.4)

where v1 and v2 denote users in Q, τ indicates the availability of the user v1, rel(·, ·)

represents the relevance between two users (e.g., a job seeker and recruiter), and

sim(·, ·) denotes the similarity between two users (e.g., two job seekers).

In Eq.(6.4), two components are involved corresponding to the user selection strat-

egy listed above. The former aims to evaluate how relevant that the selected user set

S is to the target user u, whereas the latter gives us the evidence that how diverse

the selected set S is. Note that we use τ to indicate the availability of a user, i.e.,

the number of times that the user has been recommended to other users. We take

the reverse of τ to reduce the possibility of the user being selected into S. f(S)

balances the contribution of different components, and clearly the two components

are naturally submodular functions. Based on the non-negative linear invariability of

the submodularity function [LKG+07], f(S) is also a submodular function.

Suppose ς is the candidate user, the quality increase is therefore represented as

I(ς) = f(S ∪ {ς})− f(S). (6.5)

The goal is to select a list of users from Q with the largest possible quality increase

under the budget. A greedy algorithm is employed to solve this problem. Note that

in iHR, the budget is set to 100, i.e., to provide users at most 100 candidates by

refining the search result.
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Recommendation Fusion

The aforementioned recommendation methods capture different aspects of the rele-

vant results. In our system, we provide a recommendation fusion strategy to integrate

the recommended results. Specifically, different weights are assigned to the ranking

scores of results obtained from the three methods. Formally, let rcot, rcof and rrep

denote the ranking scores from content filtering, collaborative filtering and recipro-

cal filtering, our recommendation fusion model towards selecting an item i can be

described as

ri = α× rcoti + β × rcofi + γ × rrepi , (6.6)

where α, β and γ represent the weights of the corresponding scores, s.t. α+β+γ = 1.

Different weighting schemes of α, β and γ characterize different information needs of

users:

• If α dominates, it indicates that a user has relatively clear preference on the

result, and therefore the recommendation will be primarily based on this user’s

preference profile pp;

• If β dominates, it indicates that a user does not have definite requirement on

what information should be provided, and therefore the recommendation can

be performed based on similar users’ preferences;

• If γ dominates, it indicates that a user is concerned with the status of the recom-

mended result, e.g., a job seeker will consider the availability of a position. The

recommendation is achieved by considering the “reciprocal” property within a

job matching community.

In our current system, the three scores are treated equally. Figure 6.4 shows some

recommended results to a job seeker who is looking for “Manager” positions. The left
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Figure 6.4: An illustrative example of the recommendation fusion model.

part of the figure describes the scores of the recommended job positions in a scale of

1-5.

6.2.3 Evaluation

Up to now, iHR has been deployed online for practical use, with over 699,600 visits per

day. In our system, we propose a reciprocal recommendation method that emphasizes

the bilateral correlations between job seekers and recruiters.

Empirical Evaluation

We perform quantitative evaluation on our proposed reciprocal recommendation strat-

egy. The data used for experiments is a sampled data set collected from iHR, including

the profiles and activities for users from Jan, 2008 to Oct, 2011. We calculate the

user relevance based on the transformed feature space. The data statistics is depicted

in Table 6.3.
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Table 6.3: Statistics of the dataset.

Basic Statistics training testing
Job Seekers 199,999 176,423 23,576
Recruiters 46,629 29,850 6,779
# of psu 860 – –
# of ppu 928 – –
# of psv 928 – –
# of ppv 860 – –
Activities 664,943 493,128 171,815

Experiment Setup

For experiments, we split the data set into training and testing sets. Each set includes

two sets of users, associated with their interactive activities, as shown in Table 6.3.

For each user in the testing set, we recommend top ranked users (top@10, top@20

and top@30) at each week of the testing range using different strategies. Within the

testing set, each user has a series of activities, e.g., adding job positions as favorite.

Based on these activities, we use different metrics to evaluate the quality of the

recommended list, as introduced in Section 2.2.

Set Evaluation: For comparison, we compute the averaged precision and recall

based on users’ activities. Specifically, the ground truth of a user u’s activities,

including who have been clicked or contacted by u, is denoted by M , and the recom-

mended user list by algorithms is denoted by N . Then the precision (P ) and recall

(R) can be computed as

P =
M ∩N

N
, R =

M ∩N

M
. (6.7)

We then compute the F1-score of the recommendation results, i.e., F1 =
2PR
P+R

.

Ranking Evaluation: We employ Normalized Discount Cumulative Gain (NDCG)

to evaluate the ranking quality of the recommended list based on a user’s actual

activity sequence. NDCG at position n is defined as

NDCG@n = N(n)×
n
∑

i=1

2ri − 1

log2(i+ 1)
, (6.8)
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where N(n) is the NDCG at n of the ideal ranking list, and ri is the relevance rating

of item at rank i. In our scenario, ri = 1 if the user has clicked on or contacted with

the recommended users and 0 otherwise.

Comparison with Other Methods

Here we only compare the reciprocal strategy in iHR with other existing methods.

We choose two recently published collaborative filtering methods [HKV08, LHZC10]

as our baselines. [HKV08] (CFIF for short) proposed treating the data as indica-

tion of positive and negative preference associated with vastly varying confidence

levels, which is a pure collaborative filtering approach. [LHZC10] (OCCF for short)

exploited the rich user information available in community-based interactive informa-

tion systems, and incorporated user information into modeling the recommendation.

For this method, we use the neighborhood model as the baseline. We also implement

GBDTs [DMAY10], RECON [PRC+10] and CCR [AKY+11] for comparison. We use

F1-score and NDCG to compare these algorithms with iHR. The feature set used

in all the methods are identical to the one in our proposed method, and also the

parameters are optimally tuned.

Table 6.4: Comparison with existing methods. (The bold font indicates the best
performance. * indicates the statistical significance at p < 0.01.)

Methods
top@10 top@20 top@30

F1 NDCG F1 NDCG F1 NDCG
CFIF 0.2301 0.3174 0.3121 0.3813 0.3481 0.4036
OCCF 0.2485 0.3320 0.3219 0.3929 0.3569 0.4127
GBDTs 0.2567 0.3592 0.3304 0.4131 0.3718 0.4432
RECON 0.2604 0.3608 0.3247 0.4025 0.3839 0.4507
CCR 0.2431 0.3745 0.3573 0.3987 0.3912 0.4729
iHR 0.2718∗ 0.3720 0.3501 0.4316∗ 0.4098∗ 0.4875∗

The results are shown in Table 6.4. It is evident that iHR significantly outper-

forms the baselines on both F1-score and NDCG. The two collaborative filtering based
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methods cannot effectively handle the reciprocal task. We investigated the recommen-

dation results of both methods and found that users in most recommended matches

are relevant. However, a significant reason that both users in a match have few or

even no interactions is that the recommended user has been recommended to multiple

users, and therefore he/she has limited availability. The three reciprocal methods be-

ing compared can slightly improve the recommendation performance; however, they

only focus on different aspects of the reciprocal community. Instead, iHR with recip-

rocal recommendation provides a comprehensive overview of the reciprocal network,

and therefore achieves the best.

A User Study

In order to evaluate the efficacy of iHR, we present a survey to each valid user to

collect user experiences. The purpose of the survey is to evaluate how users feel

about the results generated by different algorithms. These three methods are par-

allel in the system, i.e., users have the choice to check different recommendation

results from different algorithms. The survey covers several aspects for evaluation,

including relevance, interpretability, diversity and ordering. Sample questionnaire

statements [PCH11] are listed in Table 6.5.

Based on these aspects, we define the corresponding indices to measure the sat-

isfaction of online users (i.e., job seekers and recruiters). Each experience index is

rated by users in a range of 1 to 5, where 1 – “Execrable”, 2 – “Below Average”, 3

– “Average”, 4 – “Above Average”, and 5 – “Exceptional”. We collect users’ feed-

backs on these experience indices from October 2011 to January 2012. At the end

of the evaluation period, we have obtained over 500,000 valid feedbacks from users.

To analyze the experience result, we calculate the percentages of users with different

ratings on the indices, and then plot them in Figure 6.5.
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Table 6.5: Sample questionnaire statements used in our survey. (Remark: The scale
is 1-5. 1 – worst, 5 – best. Reverse scale: 1 – best, 5 – worst.)

Aspects Statements

Relevance

• The items in the list matched my interests.
• The recommender gave me good suggestions.
• I am not interested in the items recommended
to me (reverse scale).

Interpret-
ability

• The recommender explains why the candidates
(recruiters) are recommended to me.

• The recommender shows me details to help me
digest the recommended results.

Diversity
• The items recommended to me are diverse.
• The items recommended to me are similar to
each other (reverse scale).

Ordering

• The recommended results maintain a relatively
reasonable ordering.

• The candidates (recruiters) that perfectly match
my preference are listed at the top of the result.

From the result, we observe that the reciprocal recommendation method out-

performs the other two methods in terms of user experience. Particularly, for the

“Relevance” index, over 50% of users vote the reciprocal method as above average,

thanks to the paradigm that considers the mutual relevance between job seekers and

recruiters. For the “Interpretability” index, over 65% of users regard the recommen-

dation result more interpretable, since we explicitly present the bilateral relations

between job seekers and recruiters, which renders the result more explainable. For

the “Diversity” and “Ordering” indices, over 51% and 54% of users vote the reciprocal

method as above average. The underlying reason is that we elaborately design the

selection strategy by considering the properties of job matching systems.

6.3 Concluding Remarks

This chapter presents an integrated recommendation framework for related applica-

tions. The framework contains three interleaved modules: Profiling, Recommendation
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Figure 6.5: User experience results on different experience indices. For each index,
Bar1 represents the results of content filtering, Bar2 shows the results of collaborative
filtering, and Bar3 indicates the results of reciprocal recommendation.

and Evaluation, which operated in an iterative way. An representative application is

described under the setting of this recommendation framework, which illustrates the

efficacy of the framework.
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CHAPTER 7

SUMMARY AND FUTURE WORK

Recommender systems aim to provide personalized recommendation of products or

services to users and alleviate the problem of information overload on the web [AT05].

Based on customers’ preferences or information needs, personalization can be achieved

in these systems by comparing user profiles with items in a large item repository. The

recommendation technologies enable customers to obtain interesting information, as

well as service providers to acquire remarkable economic benefit. Hence, recommender

systems play different roles in satisfying the requirements of both customers and

service providers.

In this dissertation, we explored multiple user-oriented issues in the current gener-

ation of personalized recommender systems, including understanding user behaviors,

complex user relations and users’ changing preferences. By delving into these three

related yet representative issues, we designed and developed corresponding solutions

to these issues, and presented an integrated framework that synthesizes the solu-

tions together. The recommendation framework is able to assist service providers in

building an effective recommendation application.

The ultimate goal of this research, by tapping into three different yet interleaved

issues that have not been well studied in personalized recommender systems, is to

comprehensively understand user preferences for high-quality user profiling and rea-

sonable recommendation. Different from the existing work that only tackles issues of

single aspects of recommendation, the proposed work has the following merits with

respect to personalized recommender systems:

1. Previous research efforts focus on modeling user clicks on a set of items [LDP10],

whereas the click sequence is often being ignored. In this research, users’ habits

of using recommender systems can be effectively captured by understanding
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accessing patterns of users. Based on the learned habits, system designers can

have a clear sense of how to personalize each user’s accessing experience. The

understanding of user habits is essential for building user-friendly interactive

systems [AW98].

2. Collaborative filtering in prior art mainly models the relations between users

and items, e.g., using neighborhood-based methods [BK07a, DK11] or latent

factors [BK07b, KBV09, Pat07]. However, modern recommender systems of-

ten involve complex correlations among high-dimensional user profiles and item

characteristics. In this research, complex relations within recommender systems

can be comprehensively understood in a user-oriented manner, and important

relations with users involved can be distinguished for high-quality profile gen-

eration.

3. Prior recommendation approaches often formalize the temporal variability of

user interests into a temporal factor [Kor10, XCH+10]. However in general, a

user’s preference over items would be relatively stable or vary slightly in a long-

term period, whereas the content accessed by the user may change frequently

in short terms. Simply using temporal factors to model interest dynamics may

lose an overview of user preference. In this research, user inclination over items

can be captured by integrating both long-term and short-term profiles.

By integrating these three research objectives, we are able to comprehensively

understand the exact preferences of users, and construct high-quality user profiles.

Built on top of it, the proposed recommendation framework is capable of capturing

diverse information needs of users, and consequently providing reasonable and mean-

ingful recommendations according to the well-constructed user profiles. Further, the

proposed framework for personalized recommendation is a generalized solution to var-

ious recommendation domains. Despite of different characteristics of recommender
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systems, users who are using these systems exhibit similar behaviors (e.g., click pat-

terns, complex relations and dynamical interest drifts). Hence, the framework can

handle recommendation cases of different systems.

The issues studied in this dissertation are all user-oriented issues. One interesting

direction is to consider the contextual information of users when recommending items

to them. Here the contextual information involves the contexts that the target user

may have. For example, in a movie recommender system, a user may prefer to watch

drama in the evening with his girlfriend, and action movies in the weekend. Hence,

the preference of users may change with different contexts; modeling the contextual

information into user profiles enable the recommendation engine to provide more

reasonable recommendation results for users.

Another interesting direction to extend my work is to scale up the processes in-

volved in the recommendation framework. Currently, the proposed solutions dis-

cussed in this dissertation operate on medium scale data sets. It is possible that

when the scale of the data goes tens of millions or even billions, the performance of

algorithms will be deteriorated. In [LWL+11], we have explored a scalable mechanism

that utilizes the technique of Locality Sensitive Hashing to roughly partition the data

into different clusters. This may work in applications that have the requirement to

group items or users. However, in general scenarios, the recommendation framework

depends heavily on machine learning algorithms, and therefore the key factor to im-

prove the efficiency is originated from the infrastructure perspective, e.g., by virtue of

advanced computing frameworks (such as Map-Reduce and Bulk Synchronous Paral-

lel) combined with powerful computing clusters.
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