

-name : String
-value : Object

ModelExecutor::Attribute

-eUId : String
ModelExecutor::Call

-dsc : DSC
ModelExecutor::DSCCall

ModelExecutor::EUCall

-modelId : String
-callbackProcedureDSC : DSC
-eUId : String

ModelExecutor::EventCallBack

ModelExecutor::EventRegister
*
1

-eventId : String
ModelExecutor::EventWaitCall

+executeModel()
+executeProcedure()

-model : IntentModel
-currentProcedure : Procedure

ModelExecutor::Executor1

*

* *
*

1

-attributes
-manager : StateManager

ModelExecutor::StateManager

11

1*
1

1

iUCM_NCB_Interface

Figure 5.7: Model Executor Class Diagram

ter that handles event management; and the EventCallBack that handles various

calls that allow execution units to progress through a model. The Executor is pro-

vided access to the underlying Broker layer’s interface so as to facilitate API calls

made by execution units.

Our Model Executor initializes execution of a model by loading the initial exe-

cution unit of the root procedure. Each unit has the responsibility of ensuring pro-

gression through a procedure by directly executing, or registering for execution,

the next unit in sequence. Execution units may also call on a dependent procedure

if its capabilities are required. This call to a dependent procedure may be done

indirectly (via a DSC), or directly (via the procedure’s ID). If a call is made via a

DSC, the middleware will execute the starting execution unit of the procedure pre-

61

2.ModelReceived

2.ProcedureLoaded

/ loadInitProc(P)

3.EUExecuted

[!callback] / executeInitEU

[EUCall] / execute(EU)

[DSCCall] / loadProc(P)

[eventWaitCall] / persistCallState()

4.ModelPersisted

[nullCall && !initProc] / reenterCallingProc(P)

[callback] / executeCallbackEU

1.Ready

1.Ready
[nullCall&&initProc]

Figure 5.8: Model Execution Statechart Diagram

viously identified during the model generation process. The dynamic semantics of

this process is shown in Figure 5.8.

Our architecture is able to facilitate distributed execution via special control

messages passed viamiddleware specific events that are supported by the underly-

ing layer. These messages contain information on the executing procedure, and the

current state information on the executing node. Unlike thework ofAl-Jaroodi et al.

[1], our control messages are not predefined, but are instead dependent on a partic-

ular procedure’s implementation. The packing and unpacking of control messages

are handled by our middleware, while marshalling and dispatch are handled by

the underlying broker layer. This relieves the middleware of concerns relating to

guaranteeingmessage delivery as external communicationwith remote DSVMs in-

stances fall to the broker layer.

Upon receipt of these control messages by a remote instance of the middleware,

the provided data is first unpacked and registered in the state manager; subse-

quently, the procedurematching the UUID is loaded into a single-proceduremodel

and executed. A procedure that is written for distributed execution would, upon

initial execution, check whether it is being executed on the initial local host, or on

a remote host by the presence of absence of its predefined control data.

62

State Information and Access Control. The middleware must manage state informa-

tion that is used to coordinate inter and intra-procedural operations. It accom-

plishes this through the use of the State Manager that manages key/value pairs that

can be DSC attribute values as well as data generated by executing procedures.

EU Register. In order to facilitate distributed procedure execution (a procedure exe-

cuting in response to continuous events from a remote instance of the middleware,

e.g. during negotiation), the middleware must allow a procedure, or more specif-

ically its execution units, to respond to events. Our architecture facilitates this by

maintaining an register where execution units are registered to respond to specific

events, including those generated in response to the action of remote middleware

instances.

Repository. The repository of the platform houses the procedures, their execution

units, and the DSCs that describe them. It is possible to populate the repository

offline or at runtime. Runtime population may come as a result of incorporating an

Advertise and Discovery mechanisms that would allow a middleware instance to

obtain new procedures from other instances of the middleware or from an online

repository accessible by the platform [66].

5.4 Chapter Summary

In this chapter we detailed the facilities of our Generic Model of Execution, which

facilitates the realization of user intent in a particular domain via it’s specialization

through the provision of domain-specific artifacts. We showed the various sub-

systems of the platform that undertook the generation, validation, selection and

execution of intent models, as well as the programming model, which allows pro-

cedure writers to exploit the platforms resources. Additionally, we detailed the

interfaces present within the current design that allow for the extensibility of the

63

aforementioned first-class operations based on present design considerations. The

next chapter explores a method of validating generated intent models for compli-

ance with DSVM policies.

64

CHAPTER 6

VALIDATION OF INTENT MODELS

In this chapterwe present ourwork towards runtime validation of intentmodels

to guarantee correctness and policy compliance. Our method utilizes the Alloy

Analyzer and specification language to facilitate formal checking of intent models,

which provides robustness, efficiency, and automation.

6.1 Model Validation

Our approach to intent model validation requires the translation of a model’s rep-

resentation in our middleware architecture to that required by the Alloy Analyzer.

The analyzer uses the Alloy Specification Language [30]. Table 6.1 gives the map-

ping used in translating middleware intent models into Alloy models. The trans-

lation process is outlined in Algorithm 3.

Translation Method

We define our DSCs as abstract signatures in our model specification. This allows

us to express our procedures as extensions of their DSC base classes, as well as

allowing us to describe our policies utilizing type abstractions in Alloy in much the

same way as we do in our middleware architecture.

To express middleware policies, we utilize Alloy assertions, which allow us to

claim that a property or set of properties hold for the specified model. Assertions

in Alloy utilize a representation of first-order logic that facilitates references to arti-

facts in the definedmodel. Each policy can be expressed as its ownAlloy assertion,

or they may be joined together using logical conjunctions into a single assertion.

Once the set of assertions are described, they are verified using Alloy’s check

command. If the assertions hold, Alloy will be unable to generate any configu-

65

Algorithm 3 Model Translation
IN: Intent Model (IM)
OUT: Alloy Model

1: for all Procedure p in IM do
2: new abstract Sig : t = p.DSC
3: new Sig : s extends t = p.Name
4: for all DSC dsc in p.Depencencies do
5: newFact : s.contains←− sig(dsc)
6: /*
7: Alternatively, may utilize properties for simple relationships
8: */

rations that contradict them. If our assertions do not hold, Alloy will generate a

counterexamples that meets the given specifications, but contradict the assertions.

Since the specification is restricted to only generate the singlemodel under analysis,

the existence of a counterexample is indicative of that model being invalid. Such a

model can then be discarded from our candidate list for the current command as

its execution would not respect middleware policies.

It merits stating that this behavior in Alloy is a direct result of the restrictions

placed on our model translation process. In the general case, while the existence of

a single counterexample is evidence of a model’s invalidity, Alloy will generate all

possible counterexamples within scope to demonstrate the various invalid aspects

of the model.

The definition of a well formed intent model states that all DSCs, and their im-

plementing procedures, must be unique within the model. This reduces the com-

plexity involved in ensuring liveness when generating and executing these models.

This restriction also possesses the side effect of rendering the choice of quantifiers

as immaterial in the process of translation policies into assertions. The uniqueness

of DSCs ensures that ∃ ≡ ∀ since the assertion’s validity is unaffected by the choice.

We restrict the generation of multiple and superfluous configurations by uti-

lizing the one keyword when defining signatures. This ensures that only a single

instance of a signature will be present within the alloy model instance. This guar-

66

antees that the signature can only be associated with a single parent, and/or a set

of children in accordance with the definition of the associated intent model proce-

dure.

In Algorithm 3, we accept an intent model and step though its member pro-

cedures. As Alloy’s specification language is declarative, the order in which we

translate an intent model’s procedures is irrelevant. We then follow a set of pre-

defined translation rules for the DSCs, procedures and dependencies, generating a

set of Alloy signatures, properties and facts that describe the various aspects of our

intent model. The result is a semantically equivalent Alloy model specification.

Algorithm 4 augments our specification by generating a set of assertions from

our ECA policies. The event in our ECA policies are the commands being executed

by the middleware. When responding to and event, we are interested in two forms

of conditions - inclusive and exclusive - to determine the presence or absence of

a particular action in response to an event E. Actions are defined by their transi-

tive closure (denoted by ^). Use of the reflexive transitive closure (denoted by ∗)

is unnecessary as our intent models, with each procedure being singly classified

by a unique DSC, have no facility for the procedure denoted by the action to be

equivalent to the root procedure.

For completeness, we ensure that a signature is created for each action specified

in the Action clause of our policy. This results in disjoint objects within our gener-

ated Alloy models. Failing to perform this step however, results in the generation

of errors in Alloy whenever it attempts to evaluate as assertion that references a

non-existent signature. Since a signature that is not present in an associated intent

model, but created to satisfy an assertion definition will, by necessity, be disjoint

from themain structure that possesses the intentmodel’s root procedure as amem-

ber, there are no side effects to their presence in our validation process. Addition-

ally, whether or not these assertion-satisfying signatures are declared as abstract

67

Algorithm 4 Policy Translation
IN: ECA Policy Set (ECA_Set)
OUT: Alloy Assertion

1: new Assertion a
2: for all Policy p in ECA_Set do
3: if ! exists(sig(pol.A.DSC)) then
4: new Sig : t = p.A.DSC
5: /*
6: May be declared as abstract.
7: Alloy creates a single instance
8: if not extended by another sig
9: */
10: if pol.C is InclusiveCondition then
11: a←− ∀s : sig(p.E.DSC)|sig(p.A.DSC) ∈ s.^dependency
12: /* May be repeated for all dependencies */
13: else
14: a←− ∀s : sig(p.E.DSC)|sig(p.A.DSC) /∈ s.^dependency
15: /* May be repeated for all dependencies */

Table 6.1: Artifact Mapping

Middleware Artifact Alloy Artifact
DSCs Abstract Signatures
Procedures Signatures
Dependencies Facts and Properties
Policies Assertions

have no bearing on the resulting model as Alloy will only disallow the instantia-

tion of abstract signatures if there is at least one signature that extends it. The result

of our translation process is a full Alloy model specification that can be checked for

validity and, in the case of an invalid intent model, generate counterexamples that

can be visualized.

Model Validation

Having converted our intent models into an Alloy specification, and translating all

relevant ECA policies into their equivalent assertions, the process of validating an

intent model is reduced to checking a model for satisfiability with respect to the

assertion or set of assertions.

68

This process, of course, takes place at runtime in response to commands and

events received by the middleware, unlike conventional approaches that are gen-

erally undertaken as an offline process due to the properties that are traditionally

checked such as safety and fairness [10]. The runtime validation of intent models is

necessary as the validity of a model M in response to a event or command C, may

change over time. This can be as a result of changing environmental variables that

render a particular policy inapplicable. In [43] we discussed some approaches that

could help address efficiency issues resulting from runtime model validation.

6.2 Chapter Summary

This chapter detailed ourmethod of validating generated intent models for compli-

ance with Event Condition Action (ECA) policies present within the DSVM. Our

method utilized the Alloy Specification language and Alloy analyzer to facilitate

formal model checking of intent models. This was achieved through the trans-

lation of intent models and ECA policies into appropriate Alloy artifacts. Once

completed, the validity of an intent model could be determined by checking for the

satisfiability of the model’s Alloy representation against the requisite policies.

69

CHAPTER 7

EXPERIMENTATION

In this chapter we present a set of experiments and demonstrations that validate

our stated research goals and methodologies. We have segmented the chapter into

sections based on our major contributions, with overlap where necessary to show

the correctness or applicability of a particular contribution.

7.1 Generic Model of Execution

This section presents some comparative results between the current UCM imple-

mentation and a prototype of our new architectural design. Our initial tests were

designed to measure the potential runtime overhead of our model generation pro-

cess in a realistic scenario.

Objective: The objective of the first experiment is to determine the execution time

overhead for the intent model generation process in our middleware for a standard

domain deployment.

Method: We designed this experiment to measure the runtime overhead of our in-

tent model generation process in a realistic scenario. To do this, we curated a test

environment where we initialized a prototype with a set of 100 procedures to sim-

ulate a typical middleware layer implementation based on our analysis of the user-

centric communication domain. This analysis was performed by Wu et al. [64]

and details the operations of the communication domain. Of the provided proce-

dures, 10were designed to eithermatch the operation of the test command, ormeet

a dependency such that they would realize the maximum partition sum bound [20].

Thismeantwewould generate the largest possible set of well-formed intentmodels

from this set of 10 procedures. Based onWu et al. [64], we claim that this workload

70

supersedes the basic requirements of the communication domain, and therefore

provides a valid analysis of the expected overhead generated by our approach.

The entire processwas performedusingprocedure descriptors (meta-data), which

can be loaded independently of the execution units. These descriptors contain in-

formation on the classification of procedures, as well as their dependencies.

Setup: Experiments were performed on a 64-bit Fedora Linux based machine with

4.00 GB ofmemory and a quad core Intel i7 4-core CPU clocked at 1.8 GHz per core.

Our system ran the OpenJDK JRE version 1.7.

Process: As detailed in Listing 7.1, we first created a set of 10 procedures and asso-

ciated DSCs from the communication domain that would result in the desired set

of generated intent models:

Listing 7.1: Scenario Artifacts
/ / S e t up DSCs
DSC sendDSC = new DSC(" Send " , Type .OPER) ;
DSC encryptDSC = new DSC(" Encrypt " , Type .OPER) ;
DSC partDSC = new DSC(" Mult iPart " , Type .OPER) ;
DSC compressDSC = new DSC(" Compression " , Type .OPER) ;

/ / Dependency d e f i n i t i o n s
ArrayList <DSC> dependencies1 = new ArrayList <DSC> () ;
dependencies1 . add (encryptDSC) ;
ArrayList <DSC> dependencies2 = new ArrayList <DSC> () ;
dependencies2 . add (partDSC) ;
ArrayList <DSC> dependencies3 = new ArrayList <DSC> () ;
dependencies3 . add (compressDSC) ;

/ / P r o c e du r e s
Procedure procedure1 = new Procedure (" 0001 "
, " Send1 " , sendDSC , dependencies1) ;

Procedure procedure2 = new Procedure (" 0002 "
, " Send2 " , sendDSC , dependencies1) ;

Procedure procedure3 = new Procedure (" 0003 "
, " Send3 " , sendDSC , dependencies1) ;

Procedure procedure4 = new Procedure (" 0004 "
, " Encrypt1 " , encryptDSC , dependencies2) ;

Procedure procedure5 = new Procedure (" 0005 "
, " Encrypt2 " , encryptDSC , dependencies2) ;

Procedure procedure6 = new Procedure (" 0006 "
, " Encrypt3 " , encryptDSC , dependencies2) ;

Procedure procedure7 = new Procedure (" 0007 "
, " Part1 " , partDSC , dependencies3) ;

71

Procedure procedure8 = new Procedure (" 0008 "
, " Part2 " , partDSC , dependencies3) ;

Procedure procedure9 = new Procedure (" 0009 "
, "Compress1 " , compressDSC) ;

Procedure procedure10 = new Procedure (" 0010 "
, "Compress2 " , compressDSC) ;

Repository repo = Repository . ge t Ins tance () ;
repo . addProcedure (procedure1) ;
[. . .]
repo . addProcedure (procedure10) ;

In Listing 7.2 we generated a set of dummy procedures to simulate the existence of

resources not associated with the current command being executed:

Listing 7.2: Dummy Artifacts
DSC testDSC = new DSC(" Test " , Type .OPER) ;
for (in t i = 0 ; i < 90 ; i ++){

Procedure procedure = new Procedure (S t r ing . valueOf (i)
, " TestProcedure " , testDSC) ;

repo . addProcedure (procedure) ;
}

Finally, in Listing 7.3 we perform the model generation, validation and selection

steps detailed in Section 5.3.2:

Listing 7.3: Scenario Execution
for (in t i = 0 ; i < cyc l e s ; i ++){

/ / Find a l l mode l s t h a t match command
ArrayList <IntentModel > matchingModels =
(new NaiveGenerator ()) . generateModels (in i t i a lDSC) ;
/ / Find v a l i d mode l s b a s e d on us e r p r e f e r e n c e s
ArrayList <IntentModel > validModels = (new NaiveValidator ()) .

val idateModels (matchingModels , encryptDSC) ;
/ / Find t h e b e s t model b a s e d on c o s t
IntentModel bestModel =
(new NaiveSelec tor ()) . getBestModel (validModels) ;

}

Results: Our set of 100 procedures resulted in the generation of 36 intentmodels (3×

3× 2× 2) that are detailed below. We validated our model against a DSC known to

be present in all intent models, therefore ensuring that no models were eliminated

from the candidate list, and passing all 36 models to the model selection phase.

72

Milliseconds
Cycles Min Max Average Total
1 114 144 114 114
10 10 105 36 366
100 3 108 8 817
1000 1 111 2 2205
10000 1 112 1 13632
100000 1 118 1 125899

Table 7.1: Model Generation Timing

Finally our prototype selected a model for execution based on procedure count,

this selection was done using our naive cost analysis implementation that uses the

number of procedures as the cost factor. The evaluation results are presented in

Table 7.1.

Discussion: The values in Table 7.1 provide us some guidance on how the execution

times involved in generating, validating and selecting intent models in response to

commands and events.

Recall we used the procedure descriptors to generate the intent models that can

be loaded independently of the execution units. This reduces the overall memory

footprint of a procedure to the bare minimum required for the generation of an

intent model. Execution units need only be fetched into memory at the time of exe-

cution. As the results of our prototype evaluation show, we are able to perform the

full generation, validation and selection process in the order of micro seconds. We

believe that these results demonstrate the appropriateness of our architecture for

many domains, even those that may have a very high responsiveness requirement

such as smart electrical grid management [2].

As depicted in Table 7.1 and illustrated in Figure 7.1, we are not only able to gen-

erate intent models within the requirements of high-response domains, but we are

also able to generate these intent models with increasing efficiency as we increase

73

Sheet1

Page 1

1 10 100 1000 10000 100000
0

20

40

60

80

100

120

140

Min

Avg

Max

Cycles

M
il
li
s

e
c
o

n
d

s

Figure 7.1: Minimum, maximum and average model generation times

cycles. This is due in part to our implementation that can more efficiently manage

procedures that are already resident in memory.

Threats to Validity: Although the results in Table 7.1 provide us an estimate of the

cost of generating, validating and selecting intent models in a given domain, we ac-

knowledge that the operating times depend heavily on the definition of domain op-

erations and the resulting granularity of procedures and DSCs. The time complex-

ity of model generation is exponential with respect toN , whereN is the number of

available procedures, and model execution time increases proportionally with the

granularity of procedures and execution units. The space complexity of our model

generation process is also exponential, which is salient in our analysis as it may

have a measurable effect on memory access times for a non-trivial amount of pro-

cedures. Additionally, our prototyping environment did not incorporate changing

74

system or environmental contexts, which could result in reduced operational time,

or incur additional memory requirements.

We attempted to normalize the inherent non-determinacy of Java’s JIT as pre-

sented by Georges et al. [26] through large sets of cycles to determine timing, as

well as presenting various statisticalmeasures, howeverwe acknowledge that some

aspects of achieving full analysis of the Java Virtual Machine remain unaddressed.

We then went on to evaluate the execution of the real world scenario of transfer-

ring a single 10 megabyte file in both an encrypted and non-encrypted form. This

operation was performed on the current version of the CVM and our proposed

architecture. Our measurements are broken down into 3 areas:

1. The time to generate a model (if needed) including access to the repository to

load the necessary metadata

2. The time to load the needed components for adaptation

3. The time to perform encryption (if needed) using an external tool called by

our middleware

Experiment 2 Setup: Both systems were executed on Java version 1.6 using Eclipse

Helios Service Release 2. They both incorporated the Janino Java compiler for run-

time class loading on aWindows 7 Enterprise basedmachine with 4.00 GB ofmem-

ory and a dual core Intel CPU clocked at 2.40 GHz per core.

Our experiments were done using an unoptimized approach where compo-

nentswere not preloaded intomemory prior tomodel generation. This was done to

(1) present a less than ideal case to demonstrate that our approach still performed

reasonably well despite the added overhead, and (2) we found that when optimiza-

tion strategies were applied, Java did not provide us with the necessary timing res-

olution to make any conclusive claim about the differences.

75

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Unencrypted Context-aware
unencrypted

Encrypted Context-aware
encrypted

Ti
m

e
(m

s)

Model generation Component loading Encryption (10 MB)

Figure 7.2: Variable File Transfer Operation

For our adaptive system, we curated a set of 10 procedures that would meet

the Maximum Product Over Partition bound. This resulted in the generation of 36

models that were able to perform the requested operation. Additionally, the run-

time procedure list was populated with the meta data of 90 dummy procedures

for a total of 100. This far outnumbers the required procedure set for the aver-

age instance of the two domains we have investigated so far, namely the CVM and

MGridVM.

Experiment 2 Results: The results of the experiments as shown in Figure 7.2. As both

systems incorporate reflection through runtime code compilation and loading, they

both experience degraded performance performance compared to direct execution

of an operation in a non-adaptable system. However, as the current UCM does not

incorporate any context aware adaptation, and because it does not compose its op-

erational facilities from multiple components, it has a slight advantage in arriving

76

at the cusp of execution compared to our proposed solution. Acknowledging this

disparity, we make the following claims:

1. Although slower on arriving at execution plan due to the model generation,

our approach can achievemuch lower execution times by composing its intent

models of more efficient procedures based on system context. For example,

to remove the requirement of including an encryption procedure when per-

forming a file transfer if the current connection or network is already secure.

2. Due to the lack of policy awareness with the UCM, the current CVM must

expose operational variability at the language level. This will invariably (1)

increase the complexity of of designing a communication schema as their are

more elements in the language, (2) increase the complexity of synthesizing

the CML model provided by to the SE by the UI, and (3) decrease the level of

assurance in the execution of an operation as a CML model may incorporate

elements that do not comply with current system policies.

3. To reduce the cases of schemas not meeting needed business policies (such

as HIPAA [59]), and to mitigate the necessity of modifying those schemas by

users that may lack the necessary technical knowledge, schemas designed for

the currentUCMmay choose themost strict operations (such as encrypted file

transfers instead of plan text). This design choice, which addresses the issues

listed, may result in longer execution times than is required as the current

system contextmay not have required that a file be encrypted prior to transfer.

Our claims are demonstrated in Figure 7.3 where we simulate a set of file trans-

fer operations in the cases where encryption may or may not be required. As you

can see, to reduce complexity the current implementation of CVM utilizes encryp-

tion for all transfers, which greatly increases the overall operational time for re-

sponding to the file transfer request. The context aware approach however, which

77

0

5

10

15

20

25

30

35

40

45

50

100% Encrypted 50/50 100% Unencrypted

Ti
m

e
(s

)

Content-unaware transfer

Context-aware transfer

Figure 7.3: Simulated Transfer of 10 files

has the ability to decide on whether or not file encryption is necessary, is able to

achieve greatly reduced operational time even when considering the time taken for

the model generation process.

7.2 Model Validation

Here we present a demonstrative scenario of our validation process. We will show

a set of intent models generated for a specific control script command, the Alloy

model representations resulting from our translation process, as well as the trans-

lation and application of policies to validate the functionality of the intent models

through assertions.

7.2.1 Middleware Artifacts

In this scenario we instantiated the middleware for a DSVM, CVM - Communica-

tion Virtual Machine 1, responsible for managing user-centric communication be-

tween individuals within an organization. It has available a list of appropriate pro-

cedures for the communication domain. Table 7.2 presents the subset of available
1http://cml.cs.fiu.edu/cvm/cvm.html

78

Table 7.2: Subset of Middleware procedures

Name DSC Deps
SendBasic Send
SendSecure Send {Encrypt}
SendCompress Send {Compress}
SendSecComp Send {Encrypt, Compress}
PKIEncrypt Encrypt
GZipCompress Compress
.

Figure 7.4: Scenario Intent Models: Send command

procedures that factor into our example. A communication has been established

between two individuals over an unsecured connection, and the initiator wishes to

send a file to the other connected party. The middleware receives a control script

that includes the command to perform a file transfer from one party to the other.

The model generation process is triggered and a candidate list of intent models is

created that are capable of performing the requested action. Themodels alongwith

their composite procedures and associated type definitions are presented in Figure

7.4.

Governing the operation of the middleware with regards to file transfers over

unsecured networks are two policies derived from business rules. The first stip-

ulates that due to the sensitive nature of data housed in the system, all file trans-

fers must be performed securely. This is interpreted as requiring that all files be

79

encrypted prior to transfer. The second states that all files should be transferred

uncompressed due to the burden involved in managing compression when secu-

rity is required on resource constrained devices. These restrictions are presented

as Event Condition Action policies shown in Figure 7.5

7.2.2 Translation

Following the steps described in algorithms 3 and 4, we are able to translate the

intent models depicted in Figure 7.4.The resulting Alloy model specifications for

the final two intent models in Figure 7.4 are shown in listings 7.4 and 7.5. The two

selected intentmodels and their resultingmodel specifications depict themain con-

ditionswewish to demonstrate; the validity and invalidity of an intentmodel based

on the presence or absence of a procedure per user and system policies. Based on

the policies listed in Figure 7.5, we expect a model to be valid iff it includes a proce-

dure classified by the Send DSC, and excludes any procedure of the type Compress.

7.2.3 Validation

When Alloy checks the send_policy assertion of the Alloy specification in Listing

7.4, it results in the generation of a counterexample (Figure 7.6), which is, of course,

exactly our described model. This is to be expected as the model clearly violates

our second policy (See Figure 7.5), which prohibits file compression in any valid

intent model. As our assertion does not hold for the described model specification,

the associated intent model SendSecComp from Figure 7.4 can be removed from the

candidate list of generated intent models.

(1) if (Send) {Send(FileURI)→ Encrypt(FileURI)}
(2) if (Send) {Send(FileURI)→ Compress(FileURI)}

Figure 7.5: Middleware Polices using DSCs

80

Listing 7.4: SendSecComp translated to Alloy

/*
An Allow specification for
the SendSecComp intent model.
It cointains 3 abstract
signatures used to represent
DSCs , and 3 signatures that
extend the abstract signatures
and represent procedures.
Signature names are inherited
from the associated procedures
and DSCs in the analogous
intent model
*/

abstract sig SEND {}
one sig SendSecComp extends SEND {

d1 : one ENCRYPT ,
d2 : one COMPRESS

}
abstract sig COMPRESS {}
one sig GZipCompress extends COMPRESS {}
abstract sig ENCRYPT {}
one sig PKIEncrypt extends ENCRYPT {}

/*
Assertion for active policies
*/
assert send_policy {
∀ p : SEND • ((ENCRYPT in p.d1)

or (ENCRYPT in p.d2))
and ((COMPRESS not in p.d1)

and (COMPRESS not in p.d2))
}

check send_policy

Checking the equivalent policy against the model specification in Listing 7.5

however, results in the absence of counterexamples, which gives us a high degree

of certainty that our model is valid based on Alloy’s "complete up to scope" prop-

erty [31]. The validity of the model can be trivially observed as a dependency can

be seen between the root procedure and the required functionality while the un-

wanted function is simultaneously excluded. This model therefore remains in our

candidate list and moves on to the selection step in out model generation process

shown in Figure 4.1.

81

Figure 7.6: Alloy Counterexample

Listing 7.5: SendSecure translated to Alloy

/*
An Allow specification for the
SendSecure intent model. It
cointains 2 abstract signatures
used to represent DSCs ,
2 signatures that inherit from
abstract signatures , and another
signture that represents an
action from the active policy.
Signature names are inherited
from the associated procedures
and DSCs in the analogous
intent model
*/

abstract sig SEND {}
one sig SendSecure extends SEND {

d1 : one ENCRYPT
}
abstract sig ENCRYPT {}
one sig PKIEncrypt extends ENCRYPT {}
one sig COMPRESS {}

/*
Assertion for active policies
*/
assert send_policy {
∀ p : SEND • ((ENCRYPT in p.d1)

and (COMPRESS not in p.d1))
}

check send_policy

7.2.4 Comparative Analysis

The aforementioned approach to functionality validation enhances our ability to

constrain intent model execution based on policies. Previously, our abilities to an-

82

alyze the behavior of an intent model was limited to ensuring that a procedure of

a type specified in a relevant policy was present in the intent model (See Policy 1

in Figure 7.5). This limitation not only prevented us from more complex modes of

analysis, such as checking for the absence of a procedure (See Policy 2 in Figure

7.5), but we were also unable to verify that the right dependencies were being met,

relegating the responsibility to the feature analysis phase of the domain-specific

knowledge encapsulation, and subsequent design of procedures and their depen-

dencies. For example, in our previous approach it would be possible for a model

M to contain a procedure of type X with a dependency on type Y.

If a policy dictated that for some event with a matching procedure of type E

there should be a function of type Y present in the resulting intent model, the intu-

itive interpretation is that Y should be a dependency of E, however our validation

process did not take into account that Y was not a direct dependency, but instead

simply verified its presence (Figure 7.7). In this scenario, we are unable to verify

if the resulting execution of Y would result in policy compliance. The described

behavior required that the procedure writer ensure that Y would only be present

in M for an event E iff Y was a dependent of E. This increased the complexity of

domain analysis and procedure development.

7.3 MicrogridVM

We will demonstrate the multi-domain applicability of our approach by outlining

a relevant scenario in the smart microgrid domain, and detailing the set of artifacts

and processes resulting in the realization of the user’s intent.

Scenario

An MGridVM instantiation is responsible for managing the electrical power needs

of a small home. The VM has in place a policy that specifies that if the system is

83

Figure 7.7: Inconsistent Model Validation

in islanding mode (that is, it is not connected to the main utility, but instead receives

power from a series of local power sources), then before any new load can become

operational, the current power consumption must be checked to ensure that there

is enough energy tomeet the requirements of the new device. If sufficient energy is

unavailable, then enough low-priority loads must be shed to allow the new load to

become operational. To restate it simply, we want to ensure that we are generating

enough power to handle any new load, and if we are not generating enough power,

then shed old loads until we have the remaining power is sufficient.

The homeowner attempts to power on a light bulb, listed as a load in theMGridVM

UI, by toggling its state from off to on. This results in a newusermodel being passed

to the synthesis engine, which, after synthesis, results in the generation of a control

script containing the command to power on the light bulb.

84

Name Kind
1 Device attr
2 Controller attr
3 PropertyName attr
4 PropertyValue attr
5 IslandMode attr
6 AddLoad(Controller, Device) oper
7 RemoveLoad(Load) oper
8 AddSource(Controller, Device) oper
9 RemoveSource(Source) oper
10 SetDeviceProperty(Device, PropertyName, PropertyValue) oper
11 ShedLoad oper
12 CheckWattage oper

Table 7.3: A subset of DSCs for the microgrid domain.

MGridVM Instance

Currently, the system is in islandingmode, whichmeans it is disconnected from the

main utility and is instead being powered by local sources. As a result of this, we

have a policy in place determining how to handle new loads becoming operational

as seen in Figure 7.8.

Table 7.3 lists a subset of DSCs currently present in our DSVM. DSCs 1 - 9 share

an association with the Control Script commands shown in Figure B.1, while the

remainder are only related to actions internal to the middleware with no external

relationships. Table 7.4 details a subset of procedures available for use in our sce-

nario.

(1) if (IslandMode) {AddLoad()→ ShedLoad()}

Figure 7.8: MGrid Policy

85

Name DSC Deps
EnableLoad AddLoad
DisableLoad RemoveLoad
PrepareAndEnableLoad AddLoad {ShedLoad}
ReservePower ShedLoad
.

Table 7.4: Subset of MGrid Middleware procedures

PrepareAndEnableLoad:AddLoad

ReservePower:ShedLoad

PrepareAndEnableLoadEnableLoad

EnableLoad:AddLoad

Figure 7.9: Scenario Intent Models: Send command

Model Generation

Upon receipt of the control script containing the AddLoadDeviceCmd command,

our middleware enumerates a set of candidate models using Algorithms 1 and 2.

This results in the set of candidate models seen in Figure 7.9.

Once generated, our candidate list is then validated to cull all intentmodels that are

not in compliance with the policy in Figure 7.8. As detailed in Chapter 6, the val-

idation of intent models is accomplished through a transformation to their repre-

sentative Alloy specifications and subsequent analysis by the Allow Analyzer. The

Alloy specifications, along with the translated policy, for the EnableLoad and Pre-

86

Figure 7.10: Alloy Counterexample

pareAndEnableLoad intent models are shown in Listings D.1 and D.2 respectively.

The subsequent analysis of the aforementioned specifications results in the counter-

example shown in Figure 7.10, whichmatched the EnableLoad intentmodel, as this

model does not comply with the relevant policy.

The remainingmodel, PrepareAndEnableLoad, is then passed to theModel Ex-

ecutor to realize the user intent.

87

CHAPTER 8

CONCLUSION

This chapter presents a summary of the contributions put forward in our disser-

tation in attempting to address the issues detailed in Chapter 1. We also introduce

directions for future research based on our findings and conclusions.

8.1 Summary of Research

In this dissertationwepresented an adaptivemiddleware design for domain-specific

virtual machines (DSVM). This design dynamically integrates decoupled domain-

specific knowledge (DSK) that has been captured in a set of artifacts that describe

the relevant state and behavior, with a model of execution (MoE) to support the de-

livery of domain-specific services. The DSK is captured through the use of proce-

dures that perform operations relevant to the domain, and a set of domain specific

classifiers (DSCs) that categorize them. DSCs perform this categorization by acting

as a labeling system that describes the type of a procedure, as well as by describing

first-class state information. Once a middleware instance has been specialized for

a particular domain, the MoE provides a platform where procedures are dynami-

cally composed into intent models based on their type classification, and executed

based on the context in which a request is made by the layers surrounding the

DSVM middleware. An intent model is selected for execution following the full

enumeration of all possible intent models based on the types and dependencies of

available procedures.

Our architecture performs validation of intentmodels for execution against Event

ConditionAction policies at runtime through the use of first-order logic and theAl-

loy Analyzer. This was accomplished through the development of a methodology

for the translation of middleware artifacts into Alloymodel specifications and ECA

88

policies into Alloy assertions. This reduced the process of intent model validation

to satisfiability checking in Alloy through the attempted generation of counterex-

amples. This approach provides robustness in our validation process, which in turn

extends the capabilities of our DSVMwith respect to the expressiveness of user and

system policies, as well as the overall correctness of dependency validation. We

demonstrated the efficacy of our approach using case studies of conventional use

cases within the communication and microgrid domains. The analysis performed

resulted in the generation of counter examples for invalid models, and provable

correctness for valid models.

Experiments were performed to determine the overhead required by the pro-

posed design and the results show that the increased execution times are accept-

able for the domains under investigation given the functionality of themiddleware.

Our approach to dynamically composing intent models result in quadratic space

and time complexity, which is consideredmanageable overhead in themodel gener-

ation process when compared to the operations of the original middleware design.

Our approach also provides benefits in overall operation execution time due to its

ability to determine at runtime an optimum execution path.

8.2 Future Work

Our work on the DSVM middleware has identified several questions that require

further investigation in order to fully realize the true potential of our architectural

design. Some of these questions focus on optimization of theMoE, such as, the pre-

generation of models representing the procedures and domain-specific classifiers,

and a caching mechanism that provides a smarter approach to generating models.

Other questions will focus on the selection of the most appropriate model when

multiple models apply based on the context of the currently executing command,

and dynamic validation of the models to reduce execution times. Additionally, ex-

89

panding on the current approach to the intent model generation process by inves-

tigating methods of potentially amalgamating model generation, validation, and

selection to provide a more robust mechanism for evaluating the adequacy of ex-

ecuting a model given current system context. Additionally, we acknowledge the

potential applicability of our approach of intent model generation and autonomic

execution path selection to other domains that incorporate intent realization.

We plan to expand on this research in various directions. Our main areas of

focus are 1) improved efficiency and robustness, 2) behavioral adaptation, and 3)

applicability across platforms.

8.2.1 Improved Efficiency and Robustness

The operations of our architecture fall into 4 major categories: generation, valida-

tion, selection, and execution. Ourmajor focus thus far has been to realize sufficient

generation and execution operations that are able to meet the requirements of the

domains under investigation for instantiating a DSVM. We intend to broaden our

focus to achieve more efficient and robust model validation and selection. This will

include investigating additional formal model checking methods, as well the po-

tential amalgamation of the validation and selection steps. This would require a

formalization of a generic cost specification for procedure execution. We hope to

use this mechanism to potentially allow a procedure developer to detail the cost of

execution regardless of themethod or stage at which the cost analysis is performed.

8.2.2 Behavioral Adaptation

Our architecture currently addresses structural runtime adaptation. That is, we

determine the semantics of domain-specific operations at runtime by composing

disparate executable components, allowing for the steps involved in performing a

given task to vary over time based on context. We intend to augment this func-

90

tionality by facilitating the adaptation of our first-class domain-independent oper-

ations - model generation, execution, validation and selection - based on additional

context, such as system resources. These adaptations should be transparent to all

domain-specific concerns.

Offline adaptation

We intent to investigate the use of offline adaptation to allow a middleware to be

instantiated with varying implementations of first-class operations. For instance,

we would allow for a light weight model generation process if the middleware is

being instantiated on a mobile device whereas a more robust implementation may

be provided for a desktop computer.

Runtime adaptation

Additionally, wewill investigate runtime behavioral adaptation, allowing first-class

operations to be automatically hot-swapped as runtime based on environmental con-

text, such as reduced battery or processing power.

8.2.3 Cross platform applicability

Finally, we intend to investigate the applicability of our runtime composition ap-

proach to adaptation for current and emerging paradigms, such asmobile andweb,

as the classification of operations and the use of delegation for performing these

operations gain traction.

91

BIBLIOGRAPHY

[1] J. Al-Jaroodi, N. Mohamed, H. Jiang, and D. Swanson. Middleware infrastruc-
ture for parallel and distributed programming models in heterogeneous sys-
tems. Parallel and Distributed Systems, IEEE Transactions on, 14(11):1100–1111,
2003.

[2] M. Allison, A. A. Allen, Z. Yang, and P. J. Clarke. A software engineering
approach to user-driven control of the microgrid. Software Engineering and
Knowledge Engineering, 2011.

[3] M. Allison, K. Morris, Z. Yang, P. Clarke, and F. Costa. Towards reliable smart
microgrid behavior using runtimemodel synthesis. InHigh-Assurance Systems
Engineering (HASE), 2012 IEEE 14th International Symposium on, pages 185–192,
2012.

[4] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems.
In Logic in Computer Science, 1990. LICS ’90, Proceedings., Fifth Annual IEEE Sym-
posium on e, pages 414–425, 1990.

[5] U. Bellur and N. Narendra. Towards a programming model and middleware
architecture for self-configuring systems. In Communication System Software
and Middleware, 2006. Comsware 2006. First International Conference on, pages 1
–6, 0-0 2006.

[6] N. Bencomo. On the use of software models during software execution. In
Modeling in Software Engineering, 2009. MISE ’09. ICSE Workshop on, pages 62
–67, may 2009.

[7] P. A. Bernstein. Middleware: a model for distributed system services.
Commun. ACM, 39(2):86–98, Feb. 1996. http://doi.acm.org/10.1145/230798.
230809.

[8] P. Boettner, M. Gupta, Y. Wu, and A. A. Allen. Towards policy driven self-
configuration of user-centric communication. In Proceedings of the 47th An-
nual Southeast Regional Conference, ACM-SE 47, pages 35:1–35:6, New York, NY,
USA, 2009. ACM. http://doi.acm.org/10.1145/1566445.1566493.

[9] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of push-
down automata: Application to model-checking. In A. Mazurkiewicz and

92

J. Winkowski, editors, CONCUR ’97: Concurrency Theory, volume 1243 of Lec-
ture Notes in Computer Science, pages 135–150. Springer BerlinHeidelberg, 1997.
http://dx.doi.org/10.1007/3-540-63141-0_10.

[10] J. Burch, E. Clarke, K.McMillan, D.Dill, andL.Hwang. Symbolicmodel check-
ing: 1020 states and beyond. Information and Computation, 98(2):142 – 170, 1992.

[11] M. R. Center". What is middleware?, 2005. http://web.archive.org/web/
20120629211518/http://www.middleware.org/whatis.html.

[12] K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson. Semantic anchor-
ing with model transformations. InModel Driven Architecture–Foundations and
Applications, pages 115–129. Springer, 2005.

[13] B.H. Cheng, R. Lemos, H.Giese, P. Inverardi, J.Magee, J. Andersson, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkel-
stein, C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer,
M. Litoiu, S. Malek, R. Mirandola, H. A. Müller, S. Park, M. Shaw, M. Tichy,
M. Tivoli, D. Weyns, and J. Whittle. Software engineering for self-adaptive
systems: A research roadmap. In B. H. Cheng, R. Lemos, H. Giese, P. Inver-
ardi, and J. Magee, editors, Software Engineering for Self-Adaptive Systems, pages
1–26. Springer-Verlag, Berlin, Heidelberg, 2009. http://dx.doi.org/10.1007/
978-3-642-02161-9_1.

[14] S. Chiba. Load-time structural reflection in java. In ECOOP 2000—Object-
Oriented Programming, pages 313–336. Springer, 2000.

[15] S. Cho, H. Kim, S. Cha, andD.-H. Bae. Specification and validation of dynamic
systems using temporal logic. Software, IEE Proceedings -, 148(4):135–140, Aug
2001.

[16] E. Clarke, O. Grumberg, and D. Peled. Model Cheking. Mit Press, 1999. http:
//books.google.com/books?id=Nmc4wEaLXFEC.

[17] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans. Pro-
gram. Lang. Syst., 8(2):244–263, Apr. 1986. http://doi.acm.org/10.1145/5397.
5399.

[18] P. J. Clarke, Y. Wu, A. A. Allen, F. Hernandez, M. Allison, and R. France.
Towards dynamic semantics for synthesizing domain-specific models. In
M.Mernik, editor, Formal and Practical Aspects of Domain-Specific Languages: Re-
cent Developments., chapter 9, pages 242 – 269. IGI Global, 2012.

[19] Y. Deng, S. M. Sadjadi, P. J. Clarke, V. Hristidis, R. Rangaswami, and Y. Wang.
Cvm – a communication virtual machine. Journal of Systems and Software,
81(10):1640 – 1662, 2008. http://www.sciencedirect.com/science/article/pii/
S016412120800037X.

93

[20] T. Došlić. Maximum product over partitions into distinct parts. Journal of
Integer Sequences, 2005.

[21] F. Eliassen, A. Andersen, G. Blair, F. Costa, G. Coulson, V. Goebel, O. Hansen,
T. Kristensen, T. Plagemann, H. Rafaelsen, K. Saikoski, andW. Yu. Next gener-
ation middleware: requirements, architecture, and prototypes. In Distributed
Computing Systems, 1999. Proceedings. 7th IEEE Workshop on Future Trends of,
pages 60 –65, 1999.

[22] M. Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edi-
tion, 2010.

[23] R. France and B. Rumpe. Model-driven development of complex software: A
research roadmap. In Future of Software Engineering, 2007. FOSE ’07, pages 37
–54, may 2007.

[24] M. Frappier and A. Mammar. An assertions-based approach to verifying the
absence property pattern. In Software Reliability Engineering (ISSRE), 2012 IEEE
23rd International Symposium on, pages 361–370, Nov 2012.

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstraction
and reuse of object-oriented design. InM. Broy and E. Denert, editors, Pioneers
and Their Contributions to Software Engineering, pages 361–388. Springer Berlin
Heidelberg, 2001.

[26] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java perfor-
mance evaluation. SIGPLAN Not., 42(10):57–76, Oct. 2007.

[27] A. Ghosh, S. wei Li, C. Chiang, R. Chadha, K. Moeltner, S. Ali, Y. Kumar, and
R. Bauer. Qos-aware adaptive middleware (qam) for tactical manet applica-
tions. In MILITARY COMMUNICATIONS CONFERENCE, 2010 - MILCOM
2010, pages 178–183, 2010.

[28] P. Gluck and G. Holzmann. Using spin model checking for flight software
verification. In Aerospace Conference Proceedings, 2002. IEEE, volume 1, pages
1–105–1–113 vol.1, 2002.

[29] V. H. Hieu and H. D. Hai. An application-aware adaptive middleware archi-
tecture for distributed multimedia systems. In Communications and Electronics,
2006. ICCE ’06. First International Conference on, pages 141–146, 2006.

[30] D. Jackson. Software abstractions. MIT press Cambridge, 2006.

[31] D. Jackson. Alloy: a language and tool for relational models. http://alloy.mit.
edu/alloy/documentation.html, 2012.

[32] T. Jiang, X. Wang, and Y. Yu. A formal definition of the structural semantics
of domain-specific modeling languages. In Information Science and Engineering
(ICISE), 2010 2nd International Conference on, pages 1696–1699, 2010.

94

[33] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis. Technical Report CMU/SEI-90-TR-21, CMU, Nov
1990.

[34] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Gener-
ation. Wiley-IEEE Computer Society Pr, Mar. 2008.

[35] P. Kelsen. A simple static model for understanding the dynamic behavior of
programs. In Program Comprehension, 2004. Proceedings. 12th IEEE International
Workshop on, pages 46–51, 2004.

[36] A. Kleppe. Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, 1 edition, 2008.

[37] J. Kramer and J. Magee. Self-managed systems: an architectural challenge. In
Future of Software Engineering, 2007. FOSE ’07, pages 259 –268, may 2007.

[38] J. Ma, D. Zhang, G. Xu, and Y. Yang. Model checking based security policy
verification and validation. In Intelligent Systems and Applications (ISA), 2010
2nd International Workshop on, pages 1–4, May 2010.

[39] G. Madl, S. Abdelwahed, and D. Schmidt. Verifying distributed real-time
properties of embedded systems via graph transformations and model check-
ing. Real-Time Systems, 33(1-3):77–100, 2006.

[40] P. McKinley, F. Samimi, J. Shapiro, and C. Tang. Service clouds: A distributed
infrastructure for constructing autonomic communication services. In De-
pendable, Autonomic and Secure Computing, 2nd IEEE International Symposium
on, pages 341–348, 2006.

[41] S. J. Mellor and M. J. Balcer. Executable UML: a foundation for model-driven ar-
chitecture. Addison-Wesley Professional, 2002.

[42] B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel, A. Solberg, V. Dehlen, and
G. Blair. An aspect-oriented and model-driven approach for managing dy-
namic variability. In K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M. Völter,
editors, Model Driven Engineering Languages and Systems, volume 5301 of Lec-
ture Notes in Computer Science, pages 782–796. Springer BerlinHeidelberg, 2008.
http://dx.doi.org/10.1007/978-3-540-87875-9_54.

[43] K. Morris, J. Wei, P. Clarke, and F. Costa. Towards adaptable middleware
to support service delivery validation in i-dsml execution engines. In High-
Assurance Systems Engineering (HASE), 2012 IEEE 14th International Symposium
on, pages 82 –89, Oct. 2012.

[44] S. Nakajima. Verification of web service flows with model-checking tech-
niques. In Cyber Worlds, 2002. Proceedings. First International Symposium on,
pages 378–385, 2002.

95

[45] I. A. Niaz and J. Tanaka. An object-oriented approach to generate java code
from uml statecharts. International Journal of Computer & Information Science,
6(2):315–321, 2005.

[46] G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.
Program., 60-61:17–139, 2004.

[47] S. Ramanathan, I. Rodriguez, and K. Drira. Adaptive middleware architecture
for group communication activities. In New Technologies of Distributed Systems
(NOTERE), 2011 11th Annual International Conference on, pages 1–7, 2011.

[48] V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang. Middleware for pervasive
computing: A survey. Pervasive Mob. Comput., 9(2):177–200, Apr. 2013.

[49] R. Romeikat and B. Bauer. Formal specification of domain-specific ECA policy
models. In Theoretical Aspects of Software Engineering (TASE), 2011 Fifth Inter-
national Symposium on, pages 209 –212, aug. 2011.

[50] S. M. Sadjadi. A survey of adaptive middleware. Technical Report MSU-CSE-
03-35, Michigan State University, 2003.

[51] R. E. Schantz and D. C. Schmidt. Middleware for distributed systems: Evolv-
ing the common structure for network-centric applications. Encyclopedia of
Software Engineering, 1, 2002.

[52] D. C. Schmidt and F. Buschmann. Patterns, frameworks, and middleware:
Their synergistic relationships. InProceedings of the 25th International Conference
on Software Engineering, ICSE ’03, pages 694–704, Washington, DC, USA, 2003.
IEEE Computer Society.

[53] J. Shao, H. Wei, Q. Wang, and H. Mei. A runtime model based monitoring
approach for cloud. In Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 313–320, 2010.

[54] J. Smith and R. Nair. The architecture of virtual machines. Computer, 38(5):32–
38, May 2005.

[55] T. Stahl, M. Voelter, J. Bettin, A. Haase, S. Helsen, and K. Czarnecki. Model-
Driven Software Development: Technology, Engineering, Management. John Wiley
& Sons, first edition, 2006.

[56] S.-W. Suthon, G. M. Ong, and H. Pung. An adaptive end-to-end qos manage-
ment with dynamic protocol configurations. In Networks, 2002. ICON 2002.
10th IEEE International Conference on, pages 106–111, 2002.

[57] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, D. Cheung-Foo-Wo, E. Callegari,
and M. Riveill. Wcomp middleware for ubiquitous computing: Aspects and
composite event-based web services. Annals of Telecommunications - Annales
des Télécommunications, 64(3-4):197–214, 2009.

96

[58] A. Tsutsui, H. Maeomiti, R. Kawamura, and K. Yata. An adaptive communi-
cation middleware for network service coordination. In Consumer Communi-
cations and Networking Conference, 2004. CCNC 2004. First IEEE, pages 406–411,
2004.

[59] United States Congress. Health insurance portability and accountability act.
U.S. Department of Health & Human Services.

[60] P. Veríssimo, V. Cahill, A. Casimiro, K. Cheverst, A. Friday, and J. Kaiser. Cor-
tex: Towards supporting autonomous and cooperating sentient entities. In
Proceedings of European Wireless 2002, pages 595–601, Florence, Italy, Feb. 2002.

[61] S. Vinoski. An overview of middleware. In A. Llamosí and A. Strohmeier,
editors, Reliable Software Technologies - Ada-Europe 2004, volume 3063 of Lecture
Notes in Computer Science, pages 35–51. Springer Berlin Heidelberg, 2004. http:
//dx.doi.org/10.1007/978-3-540-24841-5_3.

[62] X.Wang, M. Chen, H.-M. Huang, V. Subramonian, C. Lu, and C. Gill. Control-
based adaptivemiddleware for real-time image transmission over bandwidth-
constrained networks. Parallel and Distributed Systems, IEEE Transactions on,
19(6):779–793, 2008.

[63] Y. Wu, A. Allan, Y. Wang, F. Hernandez, P. J. Clarke, and Y. Deng. A user-
centric communication middleware for CVM. Software Engineering and Appli-
cations, 2008.

[64] Y.Wu, A. A. Allen, F. Hernandez, R. France, and P. J. Clarke. A domain-specific
modeling approach to realizing user-centric communication. Software: Practice
and Experience, 42(3):357–390, 2012. http://dx.doi.org/10.1002/spe.1081.

[65] Y. Wu, F. Hernandez, P. Clarke, and R. France. A DSML for coordinating user-
centric communication services. In Computer Software and Applications Confer-
ence (COMPSAC), 2011 IEEE 35th Annual, pages 93 –102, july 2011.

[66] L. Yan. An adaptive middleware to overcome service discovery heterogeneity
inmobile ad hoc environments. Distributed Systems Online, IEEE, 8(7):1–1, July.

[67] S. Zachariadis, C. Mascolo, andW. Emmerich. The SATIN component system-
a metamodel for engineering adaptable mobile systems. Software Engineering,
IEEE Transactions on, 32(11):910 –927, nov. 2006.

[68] C. Zhang, S. M. Sadjadi, W. Sun, R. Rangaswami, and Y. Deng. User-centric
communication middleware. Technical Report FIU-SCIS-2005-11-01, Florida
International University, 2005.

97

APPENDIX A

CVM CONTROL SCRIPTS

1. controlScript ::= command {command}

2. command := createConnectionCmd |
closeConnectionCmd | addParticipantCmd |
removeParticipantCmd | sendSchemaCmd |
enableMediaInitiatorCmd |
enableMediaReceiverCmd |
disableMediaInitiatorCmd |
disableMediaReceiverCmd | sendMediaCmd |
sendFormCmd | declineConnectionCmd |
requestFormCmd | requestMediaCmd |
sendNegTokenCmd | requestNegTokenCmd

3. createConnectionCmd ::= createConnection
connectionIDA

4. closeConnectionCmd ::= closeConnection
connectionIDA

5. addParticipantCmd ::= addParticipant
connectionIDA personIDA {personIDA}

6. removeParticipantCmd ::= removeParticipant
connectionIDA personIDA {personIDA }

7. sendSchemaCmd ::= sendSchema
connectionIDA sender-personIDA receiver-
personIDA {receiver-personIDA} schemaA

8. enableMediaInitiatorCmd ::=
enableInitiatorMedia connectionIDA
mediaNameA

9. enableMediaReceiverCmd ::=
enableReceiverMedia connectionIDA
mediaNameA

10. disableMediaInitiatorCmd ::=
disableInitiatorMedia connectionIDA
mediaNameA

11. disableMediaReceiverCmd ::=
disableReceiverMedia connectionIDA
mediaNameA

12. sendMediaCmd ::= sendMedia connectionIDA
mediaNameA mediumURLA

13. sendFormCmd ::= sendForm connectionIDA
formIDA mediumURLA {mediumURLA } actionA

14. declineConnectionCmd ::= declineConnection
sender-personIDA receiver-personIDA
{receiver-personIDA}

15. requestFormCmd ::= requestForm connectionIDA
formIDA mediumURLA {mediumURLA }
requestActionA

16. requestMediaCmd ::= requestMedia
connectionIDA mediaNameA requestActionA

17. sendNegTokenCmd ::= sendNegToken
personIDA

18. requestNegTokenCmd ::= requestNegToken
connectionIDA

Figure A.1: CVM Control Scripts

98

APPENDIX B

MGRID CONTROL SCRIPTS

1. controlScript := command {command}

2. command := initializeMGridCmd | addGroupControllerCmd | removeControllerGroupCmd | addLoadControllerCmd |

addStorageControllerCmd | addSourceControllerCmd | addPCCCmd | removeControllerCmd | addLoadDeviceTypeCmd |

addStorageDeviceTypeCmd | addSourceTypeCmd | addMeterTypeCmd | removeTypeCmd | addLoadDeviceCmd |

addStorageDeviceCmd | addSourceCmd | addSmartMeterCmd | addLegacyMeterCmd | removeEntityCmd |

setPropertyCmd | requestPropertyCmd

3. initializeMGridCmd := initializeMGrid mgridIDA

4. addGroupControllerCmd := addGroupController contGroupIDA controllerIDA {controllerIDA}

5. removeGroupControllerCmd := removeGroupController contGroupIDA

6. addLoadControllerCmd := addLoadController controllerIDA nameA cardinalityA criticalA groupActionA lowerWattageA

upperWattageA {typeIDA }

7. addStorageControllerCmd := addStorageController controllerIDA nameA cardinalityA chargeStatusA {typeIDA }

8. addSourceControllerCmd := addSourceController controllerIDA nameA cardinalityA criticalA groupActionA {typeIDA }

9. addPCCControllerCmd := addPCCController controllerIDA nameA cardinalityA criticalA connectedA typeIDA

10. removeControllerCmd := removeController controllerIDA

11. addLoadDeviceTypeCmd := addLoadDeviceType deviceTypeIDA typenameA criticalA usageA controllerIDA

12. addStorageDeviceTypeCmd := addStorageDeviceType deviceTypeIDA typenameA lowerThresA upperThresA

controllerIDA

13. addSourceTypeCmd := addSourceType sourceTypeIDA typenameA sourceCA priorityA controllerIDA

14. addMeterTypeCmd := addMeterType meterTypeIDA typenameA controllerIDA

15. removeTypeCmd := removeType typeIDA

16. addLoadDeviceCmd := addLoadDevice deviceIDA deviceTypeIDA wattageA controlA criticalA { (attributeA, valueA)}

17. addStorageDeviceCmd := addStorageDevice deviceIDA deviceTypeIDA wattageA capacityA chargingA chargeTA

{(attributeA, valueA)}

18. addSourceCmd := addSource sourceIDA sourceTypeIDA wattageA onDemandA chargingA chargeTA

{(attributeA, valueA)}

19. addSmartMeterCmd := addSmartMeter meterIDA meterTypeIDA tarriffA usageA

20. addLegacyMeterCmd := addLegacyMeter meterIDA meterTypeIDA

21. removeEntityCmd := removeDevice entityIDA

22. setLCPropertyCmd := setLCProperty deviceIDA attributeA valueA

23. setDevicePropertyCmd := setDeviceProperty deviceIDA attributeA valueA

24. requestPropertyCmd := requestProperty deviceIDA attributeA

Figure B.1: MGridVM Control Scripts

99

APPENDIX C

NETWORK COMMUNICATION BROKER API

addParty(java.lang.String sessionID, java.lang.String participantID)
This function adds the participants specified to the specific session
createSession(java.lang.String sessionID)
This function creates a session with the specific session ID
createUserProfile(UserObject usr, java.lang.Object schema)
This method generates a user profile for the given user
disableMedium(java.lang.String connectionID, java.lang.String mediumName)
This command will stop sending the specified medium to all the participants during the
connection
enableMedium(java.lang.String connectionID, java.lang.String mediumName)
Enables the media steam
isCreatedSession(java.lang.String sessionID)
This method returns whether the session was created or not
login(java.lang.String userName, java.lang.String password)
This method will attempt login the given user
logout(java.lang.String userName)
Logs the user out
mapConnToSession(java.lang.String connectionID, java.lang.String sessionID)
This function maps a connection to a session
removeParty(java.lang.String sID, java.lang.String participant)
This method adds the list of participants to the given session
resetNCB()
Resets the ncb instance
retrieveSchemas(java.lang.String userName, java.lang.String password)
This method returns the schemas for the given user
saveSchema(java.lang.Object schema)
Saves the given schema
sendMedia(java.lang.String sID, java.lang.String medium, java.lang.String
mediumURL)
This commandwill send the specifiedmedium to all the participants during the connection
sendSchema(java.lang.String sID, java.lang.String senderID,
java.lang.String listReceiver, java.lang.Object control_xcml)
This method will send the schema to all participants in the specified connection
sendSchema(java.lang.String sID, java.lang.String senderID,
java.lang.String listReceiver, java.lang.String control_xcml,
java.lang.String data_xcml)
This method sends a schema to a given user in a given session

Table C.1: Network Communication Broker API

100

APPENDIX D

ALLOY SPECIFICATIONS

Listing D.1: EnableLoad Alloy Specification

/∗
An Allow sp e c i f i c a t i o n fo r the
PrepareAndEnableLoad in t en t model . I t
c o in t a in s 1 ab s t r a c t s ignature1
used to represent DSCs ,
and 1 s ignature tha t i n h e r i t s from
the ab s t r a c t s ignature .
S ignature names are inhe r i t ed
from the assoc ia t ed procedures
and DSCs in the analogous
in t en t model
∗/

ab s t r a c t s ig ADDLOAD { }

one s ig EnableLoad extends ADDLOAD { }

ab s t r a c t s ig SHEDLOAD { }

/∗
Asser t ion for a c t i v e po l i c i e s
∗/
a s s e r t addload_policy {

a l l p : ADDLOAD | (SHEDLOAD in p . d1)
}

check addload_policy

101

Listing D.2: PrepareAndEnableLoad Alloy Specification

/∗
An Allow sp e c i f i c a t i o n fo r the
PrepareAndEnableLoad in t en t model . I t
c o in t a in s 2 ab s t r a c t s igna tures
used to represent DSCs ,
and 2 s igna tures tha t i nh e r i t from
abs t r a c t s igna tures .
S ignature names are inhe r i t ed
from the assoc ia t ed procedures
and DSCs in the analogous
in t en t model
∗/

ab s t r a c t s ig ADDLOAD { }

one s ig PrepareAndEnableLoad extends ADDLOAD {
d1 : one SHEDLOAD

}

ab s t r a c t s ig SHEDLOAD { }

one s ig ReservePower extends SHEDLOAD { }

/∗
Asser t ion for a c t i v e po l i c i e s
∗/
a s s e r t addload_policy {

a l l p : ADDLOAD | (SHEDLOAD in p . d1)
}

check addload_policy

102

VITA

KARL MORRIS

July 2012 - Present Co-founder & CEO
Colada Studios LLC

April 2012 - Present Member
Upsilon Pi Epsilon

Fall 2009 - Summer 2014 Ph.D., Computer Science
School of Computer and Information Systems
Florida International University

Spring 2011 Instructor
CGS 4854, Website Construction and Management

Fall 2010 Government Assistantship in Areas of National Need
(GAANN)

March 2006 - July 2009 Project Officer - Web & Standards
Central Information Technology Office
Kingston, Jamaica

June 2001 - June 2006 Database Administrator
Office of the Contractor-General
Kingston, Jamaica

Jan 2001 - May 2001 Programmer
Pioneer Software Development
Kingston, Jamaica

PUBLICATIONS AND PRESENTATIONS

Morris, K.A., He, X., Costa, F., Clarke, P.J.AnApproach to Dynamic Validation of Intent
Model Behavior in DSVMs (Under review CASCON 2014)

Morris, K.A., Allison,M.,Wei, J., Costa, F., Clarke, PTowards aMiddleware forDomain-
Specific Virtual Machines Submission to the Journal of Information and Software
Technology – Elsevier . Impact Factor: 1.522 (Under review)

Allison, M., Morris, K.A., Costa, F., Clarke, P. SSynthesizing Interpreted Domain-
Specific Models to Manage Smart Microgrids The Journal of Systems and Software –
Elsevier. Impact Factor: 1.135

103

Morris, K.A., Costa, F.M. , Wei, J., & Clarke, P.J. 2012. Towards Adaptable Middleware
to Support Service Delivery Validation in i-DSML Execution Engines IEEE 14th Inter-
national Symposium on High Assurance Software Engineering (HASE) Nebraska,
USA

Allison, M., Morris, K.A., Yang, Z., Clarke, P.J. & Costa, F.M. 2012. Managing Smart
Microgrid Behavior by Synthesizing Domain-Specific Models. IEEE 14th International
Symposium on High Assurance Software Engineering (HASE) Nebraska, USA

104

