
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-20-2014

A Middleware to Support Services Delivery in a
Domain-Specific Virtual Machine
Karl A. Morris
Florida International University, karl.morris@fiu.edu

DOI: 10.25148/etd.FI14071101
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Morris, Karl A., "A Middleware to Support Services Delivery in a Domain-Specific Virtual Machine" (2014). FIU Electronic Theses and
Dissertations. 1437.
https://digitalcommons.fiu.edu/etd/1437

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1437&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1437&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1437&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1437&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1437?utm_source=digitalcommons.fiu.edu%2Fetd%2F1437&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A MIDDLEWARE TO SUPPORT SERVICES DELIVERY IN A

DOMAIN-SPECIFIC VIRTUAL MACHINE

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Karl A. Morris

2014

To: Dean Amir Mirmiran, Ph.D.
College of Engineering and Computing

This dissertation, written by Karl A. Morris, and entitled AMiddleware to Support
Services Delivery in a Domain-Specific Virtual Machine, having been approved in
respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Masoud Milani

Xudong He

Jinpeng Wei

Debra VanderMeer

Peter J. Clarke, Major Professor

Date of Defense: June 20, 2014

The dissertation of Karl A. Morris is approved.

Dean Amir Mirmiran, Ph.D.
College of Engineering and Computing

Dean Lakshmi Reddi, Ph.D.
University Graduate School

Florida International University, 2014

ii

©Copyright 2014 by Karl Morris

All rights reserved.

iii

DEDICATION

To my family and friends who have, and continue to believe in me.

iv

ACKNOWLEDGMENTS

I would like to thank my colleagues, collaborators, teachers, and mentors for

their help and motivation throughout my journey. I would like to give a special

thanks to my committee members, Drs. Milani, He, Wei, and VanderMeer, as well

as my dissertation advisor, Dr. Peter J. Clarke.

v

ABSTRACT OF THE DISSERTATION

AMIDDLEWARE TO SUPPORT SERVICES DELIVERY IN A

DOMAIN-SPECIFIC VIRTUAL MACHINE

by

Karl A. Morris

Florida International University, 2014

Miami, Florida

Professor Peter J. Clarke, Major Professor

The increasing use of model-driven software development has renewed em-

phasis on using domain-specific models during application development. More

specifically, there has been emphasis on using domain-specificmodeling languages

(DSMLs) to capture user-specified requirements when creating applications. The

current approach to realizing these applications is to translate DSML models into

source codeusing severalmodel-to-model andmodel-to-code transformations. This

approach is still dependent on the underlying source code representation and only

raises the level of abstraction during development. Experience has shown that de-

velopers will many times be required to manually modify the generated source

code, which can be error-prone and time consuming.

An alternative to the aforementioned approach involves using an interpreted

domain-specific modeling language (i-DSML) whose models can be directly ex-

ecuted using a Domain Specific Virtual Machine (DSVM). Direct execution of i-

DSML models require a semantically rich platform that reduces the gap between

the application models and the underlying services required to realize the applica-

tion. One layer in this platform is the domain-specific middleware that is respon-

sible for the management and delivery of services in the specific domain.

In this dissertation, we investigated the problemof designing the domain-specific

middleware of the DSVM to facilitate the bifurcation of the semantics of the do-

vi

main and the model of execution (MoE) while supporting runtime adaptation and

validation. We approached our investigation by seeking solutions to the follow-

ing sub-problems: (1) How can the domain-specific knowledge (DSK) semantics

be separated from the MoE for a given domain? (2) How do we define a generic

model of execution (GMoE) of the middleware so that it is adaptable and realizes

DSK operations to support delivery of services? (3) How do we validate the real-

ization of DSK operations at runtime?

Our research into the domain-specific middleware was done using an i-DSML

for the user-centric communication domain, Communication Modeling Language

(CML), and for microgrid energy management domain, Microgrid Modeling Lan-

guage (MGridML). We have successfully developed a methodology to separate the

DSK and GMoE of the middleware of a DSVM that supports specialization for a

given domain, and is able to perform adaptation and validation at runtime.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 4
2.1 Background . 4
2.1.1 Middleware . 4
2.1.2 Models at Runtime . 5
2.1.3 Model Checking . 6
2.1.4 Execution of Domain-Specific Models 6
2.1.5 CML and CVM . 7
2.1.6 Interpreted Domain-Specific Modeling Languages 9
2.1.7 Domain-Specific Virtual Machines . 10
2.2 Related Work . 14
2.2.1 Adaptive Middleware . 14
2.2.2 Middleware Execution Models . 16
2.2.3 Model Validation . 17
2.2.4 User-centric Communication Middleware 19
2.2.5 Summary of Middleware Comparison 21

3 PROBLEM DEFINITION ANDMETHODOLOGY 24
3.1 Motivation . 24
3.2 Problem Statement . 27
3.3 Categorize and Encapsulate Domain-Specific Knowledge (DSK) 28
3.3.1 Encapsulation of Domain-Specific Knowledge 28
3.4 Develop a Generic Model of Execution (GMoE) 30
3.4.1 Generic Model of Execution for a DSVMMiddleware 30
3.5 Define a Mechanism for Efficient Functionality Validation 31
3.5.1 Validation of Intent Models . 32

4 DOMAIN KNOWLEDGE ENCAPSULATION 34
4.1 Overview . 34
4.2 Domain Knowledge Encapsulation . 36
4.2.1 Domain Specific Classifiers . 36
4.2.2 Structural Metamodel . 38
4.3 Chapter Summary . 41

5 GENERIC MODEL OF EXECUTION FOR A DSVMMIDDLEWARE . . . 43
5.1 Model Generation . 43
5.2 Model of Execution . 49
5.2.1 Middleware Execution Model . 49
5.3 DSVMMiddleware Design . 54
5.3.1 Structural Design . 55

viii

5.3.2 Behavioral Design . 58
5.4 Chapter Summary . 63

6 VALIDATION OF INTENT MODELS . 65
6.1 Model Validation . 65
6.2 Chapter Summary . 69

7 EXPERIMENTATION . 70
7.1 Generic Model of Execution . 70
7.2 Model Validation . 78
7.2.1 Middleware Artifacts . 78
7.2.2 Translation . 80
7.2.3 Validation . 80
7.2.4 Comparative Analysis . 82
7.3 MicrogridVM . 83

8 CONCLUSION . 88
8.1 Summary of Research . 88
8.2 Future Work . 89
8.2.1 Improved Efficiency and Robustness 90
8.2.2 Behavioral Adaptation . 90
8.2.3 Cross platform applicability . 91

BIBLIOGRAPHY . 92

APPENDICES . 98

A CVM Control Scripts . 98

B MGRID Control Scripts . 99

C Network Communication Broker API . 100

D Alloy Specifications . 101

ix

LIST OF FIGURES

FIGURE PAGE

2.1 Layered architecture of the Communication Virtual Machine 7

2.2 CML Models for the scenario. (a) Control schema. (b) Data
schema-1. (c) Data Schema-2 . 11

2.3 Layered architecture of the Communication Virtual Machine 12

2.4 Control scripts generated during the synthesis of the CML inst-
naces in Figure 2.2. CIn represents the nth control instance being
synthesized. Similarly for the data instances. 14

2.5 UCM Architecture . 20

3.1 DSVM specialization during instantiation. 26

4.1 Model Generation and Selection Process 34

4.2 Composition of an Intent Model . 38

4.3 Class Diagram for an Intent Model. 41

5.1 Model Generator Class Diagram . 43

5.2 Package diagram showing the main components in the DSVM
middleware. 55

5.3 Class diagram for the m_interpreter package in the DSVMmiddleware. 56

5.4 Class diagram for im_generator package. 57

5.5 Command Received Statechart . 59

5.6 Event Received Statechart . 59

5.7 Model Executor Class Diagram . 61

5.8 Model Execution Statechart Diagram . 62

7.1 Minimum, maximum and average model generation times 74

7.2 Variable File Transfer Operation . 76

x

7.3 Simulated Transfer of 10 files . 78

7.4 Scenario Intent Models: Send command 79

7.5 Middleware Polices using DSCs . 80

7.6 Alloy Counterexample . 82

7.7 Inconsistent Model Validation . 84

7.8 MGrid Policy . 85

7.9 Scenario Intent Models: Send command 86

7.10 Alloy Counterexample . 87

A.1 CVM Control Scripts . 98

B.1 MGridVM Control Scripts . 99

xi

LIST OF ACRONYMS

CML Communication Modeling Language

CVM Communication Virtual Machine

DSC Domain Specific Classifier

DSK Domain Specific Knowledge

DSML Domain Specific Modeling Language

DSVM Domain Specific Virtual Machine

ECA Event Condition Action

FoL First Order Logic

GMoE Generic Model of Execution

i-DSML Interpreted Domain Specific Modeling Language

MDSD Model Driven Software Development

MGridML Microgrid Modeling Language

MGridVM Microgrid Virtual Machine

MoE Model of Execution

NCB Network Communication Broker

SE Synthesis Engine

SPL Software Product Line

UCI User Communication Interface

UCM User-Centric Communication Middleware

xii

CHAPTER 1

INTRODUCTION

Model Driven Software Development (MDSD) has become a very widely used

paradigm in the area of Software Engineering with its growth increasing tremen-

dously in recent years [23]. Conventional approaches to MDSD focus on model

transformationwheremodels in one language are translated into another language

prior to execution, e.g., models created in UML are translated into Java [41, 45]. A

developing trend in this area is to remove the steps involved in conventional model

translation, and to instead execute themodels directly. This requires a semantically

rich environment that is able to interpret models of sufficient abstraction.

One such environment that supports model execution is the execution engine

for Interpreted Domain-Specific Modeling Language (i-DSML) models. An i-DSML ex-

ecution engine facilitates the direct execution of models through a 4-layer architec-

ture, where each layer receives and performs operations on an increasingly granu-

lar view of the model, before passing the transformed version of the model to the

next layer in the stack. We will refer to the i-DSML execution engine as a Domain-

Specific Virtual Machine (DSVM).

The architecture of a DSVM has applications in numerous domains, and there-

fore their efficient instantiation is a desired property. In order to achieve this goal,

we must define methods to separate the domain-specific knowledge (DSK) of a

DSVM from its model of execution (MoE). Having done so, we are then able to in-

stantiate a DSVM by combining the generic model of execution (GMoE) with the

necessary DSK at the various layers of the DSVM. The methods defined for the

instantiation of a DSVMwill vary by layer, as each layer’s view of the model is less-

abstract and its operations more platform specific than the layer in the stack that

precedes it. Additionally, domains may require an instantiation of the DSVM to

1

operate in a stand-alone or a distributed manner and therefore the defined archi-

tectures must support these modes of operation.

We agree with the findings of Schantz et al. [51] that today’s middleware must

move beyond simple connectivity to, but provide support for effective distributed

systems. This includes end-to-end QoS, an open, extensible system, and the abil-

ity to provide sustained, and correctly functioning operations in diverse environ-

ments. As Schantz describes, a distributed middleware must provide a program-

mingmodel that allows clients to programdistributed and stand-alone applications

in the same manner.

The research outlined in this proposal will investigate the following question.

How to design a DSVMmiddleware layer so that the DSK can be separated from the GMoE,

it supports adaptability at runtime and effectively provides the delivery of services in the do-

main. The solution to the research question will be achieved by solving the follow-

ing sub-problems. (1) How can the DSK semantics be separated from theMoE for a

given domain? (2) How do we define a generic model of execution (GMoE) for the

DSVM middleware so that it is adaptable and realizes DSK operations to support

delivery of services? (3) How do we validate the realization of DSK operations at

runtime?

This proposal incorporates previously published work by Morris et al. [43] and

will build on it in the following areas: (1) defining a full execution model for the

DSVM middleware; (2) providing refinements to the described artifacts; (3) a pro-

totype implementation of the DSVM middleware; (4) the demonstration of the ar-

chitecture’s ability to varying domains through the encapsulation of DSK in both

the user-centric communication and microgrid energy management domains; and

(5) the development of an efficient and extensible method of validating the DSK

operations based on system policies.

The major contributions are as follows:

2

1. A mechanism and necessary artifacts for the proper separation of DSK from

the GMoE in a DSVMmiddleware.

2. A method to dynamically realize operational semantics in the execution of

control scripts through the context-aware generation of intent models.

3. A method for the selection of policy-complaint intent models for structural

adaptation using model checking techniques.

In the next chapter we provide background information on i-DSML andDSVMs

as well present some related work in the areas of middleware architectures and

middleware execution platforms. Chapter 3 identifies the research problem, pro-

vides motivation, and outlines the goals of our proposed solution and a methodol-

ogy to achieve them. Chapters 4, 5, and 6 detail our major contributions in achiev-

ing our stated goals. Chapter 7 provides experimentation results based on the eval-

uation methods described in Chapter 3. Finally, Chapter 8 summarizes the contri-

butions of this dissertation and outlines future work towards furthering our re-

search.

3

CHAPTER 2

LITERATURE REVIEW

In this chapter we provide necessary background information and related work

deemed relevant to solving our research problem. In Section 2.1, we detail the con-

cepts and existing approaches germane to our research. In Section 2.2, we present

related work in the field and discuss the various shortcomings with respect to our

research problem that we address in our approach.

2.1 Background

In this section we provide background on the areas that we focus on in our re-

search including adaptive middleware, models at runtime, model checking, and

an i-DSML and DSVM for user-centric communication.

2.1.1 Middleware

There are many definitions and types of middleware described in the literature

[7, 61], we use a generic definition, which states that middleware is any software

that allows other software to interact [11]. Adaptive middleware, as with adaptive

systems in general, allows for the monitoring and reconfiguring of its structure

and/or behavior at runtime [21]. This is achieved through various introspection

mechanisms such as reflection. Adaptability is a desired property in many systems

and one that is inherent toDSVMs. Adaptablemiddleware is a cornerstone ofmany

of today’s complex systems that require interoperability and context awareness.

Sadjadi [50] present a taxonomy of various adaptable middleware approaches,

and provides a detailed comparison of each. Examples of such domains and sys-

tems includemultimedia [29, 62], communication [58, 47, 40] and generally systems

that incorporate distributed architectures or have deadlines and require end-to-end

4

quality of service [27, 56]. The ability to adapt a system based on system context

gives it the ability to change based on the availability of new information and new

resources, a feature that is mandatory for systems to provide guarantees on their

operation. One obvious concern of adaptable systems is the general overhead in-

trinsic to the monitoring and adaptation process when compared to non-adaptable

systems [13]. This concern must continuously be addressed and new research in

adaptable systems must balance the granularity of adaptation with the required

responsiveness of the system.

2.1.2 Models at Runtime

Models at runtime provide us with a mechanism to leverage models and the ab-

straction they provide during the real time operation of a system [6]. Similar to

models used in the software development process, a runtime model allows us to

reason about a system’s environment and its behavior by presenting us with rel-

evant information, while abstracting away superfluous information [35, 53]. This

process opens the door to semantic based reasoning on, and modification of, a sys-

tem’s architecture and operations.

We are able to simulate actions to be performed on a systems using models to

allow us to measure their results and potential side effects prior to effecting those

actions onto the real system. Models that maintain a causal link with its system

and environment can greatly increase the efficiency of analysis and change of that

system [42]; the trade-off being that the mechanism tomaintain that causal link can

add a resource overhead that potentially mitigates the performance boost achieved

by analyzing the model.

5

2.1.3 Model Checking

Model Checking allows us to algorithmically checkwhether a particular model sat-

isfies somepredefined specification [16]. Generally, we expressmodels as a digraph

with a set of nodes and edges, with each node representing a particular state of the

program beingmodeled and possessing a set of atomic propositions, and each edge

representing a state transition within the system. The model is checked for satisfia-

bility using a specification language such a temporal logic [17]. Model checking has

been used to perform reachability tests [9], to determine the time delays of systems

[4], and to perform verification of system properties in various domains [28, 44].

We will be dynamically generating models in our solution and therefore expect

that the concepts of model checking will be used to validate these models.

2.1.4 Execution of Domain-Specific Models

DSMLs allow end-users to easily generate solutions for problems in their respective

domains since the solutions are created using abstractions closer to the problem

space [22, 34, 36]. Conventional approaches to realize DSML models usually re-

quires these models to be converted into source code in a traditional high-level lan-

guage (HLL) using a series of model-to-model and model-to-text transformations.

This source code must then be compiled and executed. An alternative approach is

to execute these domain-specific models directly using an execution engine. We

refer to the languages used to create these models as Interpreted Domain-Specific

Modeling Languages (i-DSMLs) [18] and the execution engine as a Domain-Specific

Virtual Machine (DSVM).

In our opinion, the execution engines used to interpret i-DSML models can be

considered as a virtual machine based on the taxonomy of virtual machines pre-

sented by Smith et al. [54]. DSVMs can be classified as dynamic translators i.e.,

HLL VMs. Note however, we are moving to a higher level of abstraction, from

6

User / Application (local)

User Comm. Interface (UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker (NCB)

Comm. Frameworks

CVM control / data Instances

(CML instances)

manages delivery of

comm. services

manages delivery of media

negotiation of

control instances

Legend

Control and Data Flow Virtual Communication

UI Input

CML Instances Comm. Instances

Control Script SE Events

API Calls UCM Events

API Calls NCB Events

User / Application (remote)

User Comm. Interface (UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker (NCB)

Comm. Frameworks

CVM

UI Updates

Figure 2.1: Layered architecture of the Communication Virtual Machine

HLLs to domain-specific models. In the subsequent subsections we introduce i-

DSMLs and DSVMs. As previously stated our research team has worked on two

DSVMs, the Communication Virtual Machine (CVM) in the user-centric communi-

cation domain [19, 64], and Microgrid Virtual Machine (MGridVM) in the energy

management for smart microgrid domain [2, 3]. In this dissertation we will focus

on the CVM,which is a distributed systemunlike theMGridVM,which is currently

a stand alone system.

2.1.5 CML and CVM

The Communication Virtual Machine (CVM) [19] is the DSVM for the Communica-

tion Modeling Language (CML), an i-DMSL for user-centric communication. CVM

provides a runtime environment for the modeling and realization of user-centric

7

communication services (see Figure 2.3). Models are specified using CML, which

contain representations of concepts relevant in the user-centric communication do-

main [65].

Two categories of communicationmodels can be described usingCML, commu-

nication schemas and communication instances, similar to the relationship between

use cases and scenarios during requirements analysis. CML allows a domain ex-

pert to declaratively specify the requirements of a communication instance. It has

no mechanism to dictate how a particular instance is realized. CML creates high

level models that are interpreted by CVM.

The CVM platform is divided into four major levels of abstraction with each

layer playing a role in the realization of communication services. The layers are:

1. User Communication Interface (UCI) - provides an environment for users to

specify their communication requirements using CML

2. Synthesis Engine (SE) - synthesizes and negotiates CML models with other

participants in a communication and generates control scripts (see Appendix

Figure A.1)

3. User-centric Communication Middleware (UCM) - executes commands found

in a communication control script to manage and coordinate the delivery of

communication services to users

4. Network Communication Broker (NCB) - provides a network-independent API

(see Appendix Table C.1) to UCM and manages underlying frameworks to

deliver communication services.

The CVM is an inherently distributed system where communication is established

between two ormore parties. Our work focuses on the functions of the User-centric

Communication Middleware, which has responsibility for achieving service deliv-

ery.

8

CML models provide us a mechanism for stating intent. It contains the nec-

essary artifacts to stipulate the requirements of a communication instance. How-

ever it lacks the facility to state how a particular communication instance should

be realized, and what, if any, constraints must be adhered to. We therefore uti-

lize policies to express these non-functional requirements. Within the middleware,

we utilize the Event Condition Action (ECA) policy model [49], where events are

control script commands being realized or events from the underlying layer being

responded to, conditions are state information retrievable directly from the mid-

dleware or through an external monitor, and actions are accompanying actions that

must be performed when realizing the initially requested command or the action

association with the event being responded to.

2.1.6 Interpreted Domain-Specific Modeling Languages

An i-DSML can be described as a five-tuple, similar to a DSML [12], consisting of

a concrete syntax, e.g., graphical models; abstract syntax that defines the language

syntax and integrity constraints; semantic domain, containing the domain-specific

knowledge; a mapping that assigns syntactic constructs to elements in the abstract

syntax; and a semantic mapping that relates abstract syntactic concepts to the se-

mantic domain. The main difference between the traditional DSMLs and i-DSMLs

is that the semantics of traditional DSMLs describe how to transform models into

source code for a givenHLL. The semantics for i-DSMLs define how the application

captured by the model is executed to realize the intent of the requirements without

first transforming the mode into an HLL.

An i-DSMLmodel may either be a control schema or a data schema, which is based

on the concepts of the program and data, respectively, as described by Plotkin [46].

The control schema specifies the logical configuration of some set of requirements

(functional and non-functional) for an application in the domain. The data schema

9

contains instances of domain types and user-defined types as specified in the con-

trol schema. We use the terms control instance and data instance to refer to fully

instantiated schemas, similar to objects in the OO paradigm. There are three con-

crete syntax notations used to represent i-DSML schemas, these include a graphical

representation, a user-friendly interface representation, and an XML-based repre-

sentation.

The following scenario from the user-centric communication domain will be

used throughout this article to illustrate various aspects related to i-DSMLs and

DSVMs, specifically related to the middleware.

Scenario: Following Dr. Burke’s surgery on Baby Jane, he returns to his office and

contacts Dr. Monteiro, the attending physician, to let him know the results of the

surgery. During the conversation Dr. Burke shares several aspects of the patient’s

medical records with him, including the post-surgery echocardiogram, images of

the patient’s heart captured during the surgery, and the vital signs.

Figure 2.2 shows the control schema and two data schemas for the medical sce-

nario presented above. The control schema shown in part (a) represents the con-

figuration for the communication and the media types used across the connection.

The data schema shown in part (b) initiates the audio video connection, the data

schema in part (c) initiates the patient record to be sent a a form. For more details

on themetamodel (abstract syntax and static semantics) for CML, seeWu et al. [64].

2.1.7 Domain-Specific Virtual Machines

The DSVM design is based on the architecture used first in the CVM and then in

the MGridVM. The DSVM uses a four-layered architecture described as follows:

• User Interface (UI) - provides the user with an environment to specify their do-

main requirements using either a graphical model or a user friendly interface.

10

ConnectionID: C1

person

Name: Burke

UserID: burke32

Role: DP

DeviceID 001
isAttached isAttached

person

Name: Monteiro

UserID: monte42

Role: SC

DeviceID: 002

medium

Live-AV

form

Discharge_Pack

medium

TextFile

medium

NonStreamFile

Live-AV

TextFileVideoFile TextFileVideoFile

medium

VideoFile

NonStream Live-AV NonStream

(a)

(b)

medium

Live-AV

AV-C1

form

DisPkg_1

send

medium

xRay-Jane.jpg

D:Jane/xRay-Jane.jpg

medium

Echo-Jane.mpg

D:Jane/Echo-Jane.mpg

(c)

medium

Live-AV

AV-C1

ConnectionID: C1 ConnectionID: C1

medium

RecSum-Jane.txt

D:Jane/RecSum-Jane.txt

Figure 2.2: CML Models for the scenario. (a) Control schema. (b) Data schema-1.
(c) Data Schema-2

The UI then transform the i-DSML modle into an XML-based representation

for processing.

• Synthesis Engine (SE) - synthesizes models by comparing the current runtime

model with a new user-defined model. Based on the changes between the

models and the current state of the SE control scripts are generated to be ex-

ecuted by the middleware.

• Middleware (M) - executed the commands in the control scripts in order to

manage and coordinate the delivery of domain services. During the execution

of these scripts user-defined polices may be applied during the delivery of

services.

• Broker (B) - provide an independent API to the middleware that hides the

heterogeneity of the underlying services provided by frameworks and con-

11

User / Application (local)

User Comm. Interface (UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker (NCB)

Comm. Frameworks

CVM control / data Instances

(CML instances)

manages delivery of

comm. services

manages delivery of media

negotiation of

control instances

Legend

Control and Data Flow Virtual Communication

UI Input

CML Instances Comm. Instances

Control Script SE Events

API Calls UCM Events

API Calls NCB Events

User / Application (remote)

User Comm. Interface (UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker (NCB)

Comm. Frameworks

CVM

UI Updates

Figure 2.3: Layered architecture of the Communication Virtual Machine

trollers. The broker also interprets underlying events from the frameworks

and controllers and generates events to be handled by the upper layers in the

DSVM.

Based on the domain, the layers of the DSVM are specialized to service that

specific domain. Figure 2.3 shows the specialized layers of the CVM. The CVM

middleware (User-Centric Communication Middleware (UCM)) is responsible for in-

terpreting controls scripts for the user-centric communication domain resulting

in the delivery and management of communication services. These services may

include sending files to all parties in a connection, encrypting/decryption files,

starting/stopping audio-video streams and applying communication polices. The

UCM realizes the delivery of services by making calls to the Network Communi-

12

cation Broker API. A list of the methods available in the Network Communication

Broker API is shown in Table C.1.

The MGridVM middleware (Microgrid Control Middleware (MCM)) interprets

control scripts in the energy management domain resulting in the delivery and

management of energy management services for microgrids. These services may

includemapping groups of physical devices to logical controllers, executing energy

management algorithms, and applying policies to various device configurations

[18]. Note that we described the functionality of theMCM to show the applicability

of the DSVM middleware in another domain other than user-centric communica-

tion. However, our focus in this paper will be on the middleware in the CVM, the

user-centric communication middleware (UCM).

Figure A.1 (Appendix)shows the structure of the control scripts generated dur-

ing model synthesis using EBNF-like notation. The rules of the control scripts are

shown using an attributed grammar, where the keywords are shown in bold and

the attributes are denoted by a subscript. For example, Rule 1 states that a con-

trol script may contain one or more script commands and Rule 2 shows the vari-

ous commands. Rules 5 states that the addParticipantCmd consists of the keyword

addParticipant and takes two parameters a connection id and a list of one or more

participant ids.

The table in Figure 2.4 shows an example of the the control scripts generated

during the synthesis of the CML instances show in Figure 2.2. CIn and DIn repre-

sent the nth instance of the model used during synthesis. The initial instance with

subscript 0 is referred to as the nullmodel and is the initial runtimemodel. For each

pair of models, the one with the higher subscript is the new user model received

by the synthesis engine to be processed.

The control script generated in the first row second column of the table repre-

sents the scripts to establish a connection with the other participant in the commu-

13

Models Synthesized Control Scripts Generated

createConnection(“C1”)

sendSchema(“C1”, “burke32”, “monte42”, “CI1, DI0”)

sendSchema(“C1”, “burke32”, “monte42”, “CI1, DI0”)

enableInitiator(“C1”, “Live-AV”)

sendSchema(“C1”, “burke32”, “monte42”, “CI1, DI1”)

sendForm(“C1”, “DisPkg_1”, “D:Jane/RecSum-Jane.txt”)

sendForm(“C1”, “DisPkg_1”, “D:Jane/xRay-Jane.jpg”)

sendForm(“C1”, “DisPkg_1”, “D:Jane/Echo-Jane.mpg”)

sendSchema(“C1”, “burke32”, “monte42, “CI1, DI2”)

CI0 - Null Control Instance

CI1 - Control Instance in Figure 1(a)

DI0 - Null Data Instance

DI1 - Data Instance in Figure 1(b)

DI1 - Data Instance in Figure 1(b)

DI2 - Data Instance in Figure 1(c)

Figure 2.4: Control scripts generated during the synthesis of the CML instnaces in
Figure 2.2. CIn represents the nth control instance being synthesized. Similarly for
the data instances.

nication. That is, a request is made to create a connection, then send the control

schema to the other participant to be negotiated on. Note that there are two script

commands that are identical, this is due to the three phrase protocol used during

negotiation between the participants in the communication. In Figure B.1, we see

the set of control scripts for the Microgrid domain. For more details on the synthe-

sis process we refer the reader to the work by Wu et al. [64].

2.2 Related Work

Here we present related work in the areas of Adaptive Middleware Systems, Mid-

dleware ExecutionModels and previouswork on the User-Centric Communication

Middleware.

2.2.1 Adaptive Middleware

In thework of Kramer et al.[37], the authors present an approach to developing self-

managing systems that utilize self-configuring components. Their work focuses

14

at the architectural level, where components are automatically aligned in order to

achieve system goals. This approach does not present amechanism to select among

various components that achieve the same end, but instead rely on the presence of a

specific component that undertakes predefined tasks. This is an expected limitation

in the authors’ work as there is no notion of an operation taxonomy as is present

in our approach. As our work focuses on the service delivery layer of our DSVM,

we are divorced from the physical mechanisms that effect actions within our envi-

ronment. Instead, we focus on determining the best way to realize intent (or goals)

by employing potentially numerous procedures that perform the needed function.

Additionally, Kramer at al. state that planning and verification are performed off-

line, which they state is sufficient if all possible system states can be addressed. Our

architecture must be able to perform all planning operations at runtime as (1) the

combination of relevant state information is determined by policies in place at the

time of command execution, and (2) the set of available procedures can be altered

at runtime.

Zachariadis et al. [67] demonstrate an adaptable mobile middleware that can

augment its functionality based on functional component availability. While inter-

esting, this work does not address having variability in components that meet the

needs of the system, nor does it purport to be agile in its execution as components

aremonolithic in their composition and operation. Additionally, this approach pro-

vides no consideration of policies nor does it provide a single dialect with which

to analyze component capabilities against system policies. Our architecture facili-

tates adaptationwith aminimal resource footprint due to the use of execution units.

Additionally, we provide a mechanism to analyze models when more than one are

able to execute an operation. This can have a direct impact on the middleware’s

operational speed.

15

2.2.2 Middleware Execution Models

Bellur et al. [5] present an approach to dynamically bind middleware components

for execution based on user intent and context. Their work is similar to our own in

that it treats the platform as a base for execution in a programmatic way. Our work

differs in the granularity of operations as their components are analogous to our

procedures. As procedures are further broken down into executable units, we are

able to achieve finer grain execution and adaptation. Additionally, in the authors’

work the variation points at which dependencies are defined do not specify any

direct cost analysis mechanism for deciding on most efficient option for selection.

Our approach is also inherently distributed, as the platform’s event registration

service allows procedures to be distributed across multiple remote instances of the

middleware.

Madl et al. [39] describe a method to perform verification of distributed real-

time properties via model checking. This, in principle, is similar to our proposed

approach of utilizing model checking techniques to validate a proposed system

transformation via the execution of an intent model. Both approaches apply for-

mal methods to ensure the middleware behaves as expected. Their results show

that model checking techniques can effectively verify event-driven behavior of a

component based middleware. Our approach differs fundamentally in that our

validation process takes place at runtime upon receipt of an event, instead of at de-

sign time as in the case of the cited work. Additionally, our validation is performed

against Event Condition Action-type (ECA) policies, which requires the existence

of a common communication dialect, aswell as amechanism for transforming these

policies into logical formulas to check for satisfiability.

Veríssimo et al. [60] describe a middleware, CORTEX, that presents a program-

ming model and architecture for creating ubiquitous, autonomous applications

that address concerns such as safety, responsiveness, and mobility. The architec-

16

ture’s enumerated list of first-class concerns facilitates easy development of appli-

cations that possess these characteristics. While this programming model is de-

sirable in many instances, it may limit the applicability of the architecture in some

domains, or increase the complexity of development as themodel may not be apro-

pos for the task at hand. As a result of the domain independence of our approach,

our architecture does not enumerate any potential concerns and therefore provide

fewer high level abstractions that would aid in addressing them. This helps to limit

the presence of superfluous functionality of our middleware once it has been spe-

cialized for a specific domain as all first-class operations relate solely to the mid-

dleware’s internal operations and are not directly accessible via the programming

model.

2.2.3 Model Validation

While the application of first-order logic in the validation of DSVM middleware

intent model functionality is novel, a large body of research exists that deals with

the use of formal methods to validate system operations. This includes a strong

focus on validating variability in systems, which is where much of our research

lies.

Jiang et al. [32] describe a method of validating modeled variability in Software

Product Lines (SPL) using first order logic. They detail a multi-layered approach to

modeling and validating system variability that separates presentation and logical

concerns. Their work differs from our own in that they address variability across

domains within the SPL product family. While our overall architecture does facil-

itate variability across domains, this work focuses on intra-domain variability and

the analysis and validation of operational constructs previously deemed valid for

a given domain. Additionally our approach is designed to facilitate runtime vali-

dation that allows dynamic augmentation of domain specific functionality.

17

Cho et al. [15] developed a specification language based on temporal logic for

the validation of dynamic systems. It allows for the declarative specification of

properties that can be used to validate behavioral models. We find this approach

to be ill-suited for our architecture as the static analysis of intent models have no

requirement for a formal notion of ordering, which factors into the authors’ work

in developing half-order dynamic temporal logic (HDTL). While it follows that a

procedure pwithin an intent model can only be entered from its parent procedure,

therefore suggesting some level of ordering, the absence of any facilities for static or

dynamic analysis of a procedure’s execution leaves us with no guarantee that pwill

be executed, or howmany times it might be called. This prevents us from reasoning

about an intent model execution in accordance with a time line and we are unable

to provide temporal validation of its behavior. This leaves themajor tenet of HDTL,

the ability to specify dynamic properties of a system utilizing a freeze quantifier,

inapplicable.

Ma et al. [38] incorporate formal model checking for the validation of security

policies. While there is close association with our need to validate intent models

against system policies, there is a difference in the goals of the two approaches.

We assume security policies have been externally verified and are valid, requiring

only that our middleware behaves in accordance with them. Beyond this variance

however, there are other salient differences in their approach that necessitates our

work. Our architecture relies on runtime analysis of models andmust facilitate val-

idation within a dynamic environment. The authors’ use of formal model checking

pertains to offline validation of policies. We also do not view the execution of an

intent model as resulting in potential infinite paths or behavior, as is the traditional

approach taken in model checking and in the authors description of an infinite se-

quence of states. Instead, intent models are analyzed as acyclic graphs with finite

state and full reachability. Essentially, the possibility of infinite execution through

18

loops and other path repetition mechanisms do not form a part of our reasoning

in validating capabilities of an intent model. Additionally, intent models are not

evaluated over time, and have no dependence on temporal systems such as LTL.

We believe the authors’ work merits further study however, as the approach may

have application in other areas of our model generation process. Whereas our def-

inition of a well-formed intent model addresses issues of reachability, we believe

the incorporation of formal model checking in the analysis of these constraints may

prove advantageous.

Finally, Frappier et al. [24] present an approach to verification of the absence

property using Alloy. The authors describe a method of verifying guards that

prohibit reaching a specified state until some future event. They claim that their

methods provides some level of increased robustness over traditional LTL model

checking. This research shares some similarities with our approach as it relates to

state reachability, however we believe that the necessary abstractions required for

temporal considerations increases the complexity of interpreting both our intent

models and Alloy specifications. Static models prove sufficient to describe our sys-

tem as we are unconcerned with change over time. We do believe however, that

similar to [38], this work merits further investigation as we continue to refine our

method of analyzing the behavior of intent models.

2.2.4 User-centric Communication Middleware

TheUser-centric CommunicationMiddleware (UCM) is the layer of theCVMcharged

with ensuring the delivery of services resulting from the synthesis of a communi-

cation model by the Synthesis Engine (SE) [68, 63]. Upon completion of the model

synthesis process, the SE packages and delivers a control script, which is an or-

dered set of commands, to the UCM. The list of control script used in the CVM is

shown in Figure A.1) in the Appendix. It is the job of the UCM to realize the intent

19

UCM-SE Interface

UCM Manager

Loader

UCM Interpreter

Event Handler

UCM-NCB Interface

Local

Respoistory

(macros, logging

facility)

UCM

NCB-specific

commands

Exception

Handler

Figure 2.5: UCM Architecture

of the user by performing the necessary operations described by the commands

found in the control script while adhering to the non-functional requirements of

the system based on available state information. This may require the UCM to de-

termine at runtime what the semantics of a particular command should be based

on the current system context.

The current implementation of the UCM depicted in Figure 2.5 performs its

functions through runtime adaptation of its operations using structural reflection

[14]. Currently however, the UCM is not policy aware, and is therefore unable to

incorporate context into its adaptation requirements. In its current incarnation, the

DSML of the CVM must expose variability of its operations in the language and

places the burden of complying with business rules and policies on the creator of

the CML schema. While the CVM as a whole does incorporate the use of policies

in specific layers [8], the UCM is not party to any policy knowledge. Our imple-

20

mentation of the DSVM middleware layer will address these issues by allowing

variability in operations to be handled internally instead of passing the decision to

the user. This stands to reduce complexity to the user and provide assurance in

functionality by ensuring compliance with system policies.

2.2.5 Summary of Middleware Comparison

We have compared our work to several middleware designs that have been pro-

posed in the literature. In this section we will summarize the comparison of these

designs based on six features that is most important to our work. The works by

Raychoudhury et al. [48] does a comprehensive comparison for common middle-

ware for pervasive computing across three dimensions, including programming

abstractions, system architecture, and system services and runtime support. Tigli

et al. [57] also presents a comparison of several middleware used in ubiquitous

computing, using features such as structural adaptation, behavioral adaptation,

heterogeneity, and extensibility, among others. The criteria we use are different

to those used by Raychoudhury et al. [48] and Tigli et al. [57].

The features we used to compare the middleware previously presented in this

section to the DSVMmiddleware are as follows:

• Variable Operation - Multiple ways of realizing user intent. For example, op-

eration to send a file may be done with or without encryption based on the

user’s intent.

• Formal Validation - A mechanism for the middleware to formally validate that

the operation complies with predefined constraints. We are currently work-

ing on using first order logic to validated intent models to ensure they con-

form to user policies.

21

Features

Middleware Variable
Oper.

Formal
Valid.

Dynamic
Compos.

Funct.
Aug.

Prog.
Model

Granular
Oper.
Units

Kramer et al. [37] X

Zachariadis et al. [67] X

Bellur et al. [5] X

Madl et al. [39] X

Veríssimo et al. [60] X X

UCM Ver. 1 [68, 63] X

DSVM X X X X X X

Table 2.1: Middleware Feature Comparison

• Dynamic Composition - The ability to dynamically build functional constructs

to realize delivery of services, which is part of the structural adaptation pro-

cess [57].

• Functional Augmentation - The ability to dynamically add newdomain-specific

behavior to the middleware at runtime. Our current design allows new pro-

cedures to be added to the DSVMmiddleware at runtime.

• Program Model - Refers to the ability of the middleware to use its own pro-

gramming model during the realization of the middleware services. This

program model focuses on dynamically building call chains of procedures

to be executed, type checking of procedures based on descriptors, managing

state, and so on.

• Granular Operational Units - Ability for the middleware to use small execu-

tion units in the program model. This allows the middleware to reduce its

resource footprint, e.g., memory and CPU time, while performing operations

for the delivery of services.

22

Table 2.1 shows a summary of the middleware features in five middleware de-

signs and the one presented in this paper for the DSVM.

23

CHAPTER 3

PROBLEM DEFINITION ANDMETHODOLOGY

In this chapter we describe our research problem in detail and the sub-problems

that will comprise our research effort. We aim to achieve the efficient specialization

of DSVMs in varying domains. The scope of our work will be restricted to the

middleware layer of a DSVM.

3.1 Motivation

To date in our research group there has been one i-DMSL and DSVM that has been

completely developed, CML [65] and CVM [19], respectively. Currently there is

another i-DSML and DSVM for the microgrid energy management domain un-

der development by Allison et al. [2, 3], Microgrid Modeling Language (MGridML),

and Microgrid Virtual Machine (MGridVM), respectively. The prototypes for both

DSVMs were built without exploiting any of the commonalities that may exist in

themodel of execution for the various layers in their DSVMs. Ideally wewould like

to define a mechanism to encapsulate domain-specific knowledge (DSK) and com-

bine it with a generic model of execution (GMoE) in order to efficiently instantiate

a DSVM for a specific domain (see Figure 3.1 [18]). The method for accomplishing

this task varies by layer as each layers’ view of the executing model is of varying

level of granularity and its operations more platform specific.

Since the middleware of a DSVM is responsible for ensuring the delivery of ser-

vices in a specific domain, the semantics to support such an operation must allow

the implanting of domain knowledge at the time of instantiation of themiddleware.

In addition to this requirement, our middleware design must incorporate multiple

methods of realizing user intent, and define a mechanism of selecting an execution

path that complies with relevant policies. To achieve this, we must define a way

24

to classify operations that will allow the middleware to determine what operations

are applicable for specific intentions, as well as the high level attributes that these

operations are concerned with.

The middleware design we are proposing for DSVMs should provide most of

the services identified by Vinoski [61], and yet have a structurally similar to that

presented by Schmidt et al. [52]. The middleware design presented by Schmidt

et al. shows how services are organized into contextual layers, these layers are as

follows:

• Domain-specific services - services tailored to the requirements of specific do-

mains, e.g., telecom, microgrid, and health care, among others.

• Communication services - provides the applications layers with the code re-

quired to develop distributed applications using the lower-level middleware.

• Distribution services - provides a higher-level distributionprogrammingmodel

to the communication services layer.

• Host infrastructure services - encapsulates and enhance native OSmechanisms,

e.g., interprocess communication, concurrency, and synchronizations of ob-

jects among others.

Since our middleware will be used in a cross-section of domains, the composi-

tion of services provided by the middleware will vary depending on the domain.

For example, in the CVM there is a need for many of the services associated with

a distributed environment, while in the MGridVM this is not the case, since the

current MGridVM design is mainly centralized. Figure 3.1 illustrates the need for

a highly configurable middleware design that can be easily composed during the

instantiation of the DSVM.

In addition to having a highly configurable middleware, there is also a need for

the individual middleware services in a given layer to be adaptable. As an i-DSML

25

Users

Microgrid User Interface
(MUI)

Microgrid Synthesis
Engine (MSE)

Microgrid Control
Middleware (MCM)

Microgrid Hardware
Broker (MHB)

Plant Controllers

MGridVM

Smart
Contoller A

Controller
B

Smart
Device C

User / Application (local)

User Comm. Interface (UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker
(NCB)

Comm. Frameworks

CVM

User / Application (remote)

User Comm. Interface (UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker
(NCB)

Comm. Frameworks

CVM

Communica
tion Specia

liza
tion

Microgrid Specialization

(a) Generic Virtual Machine

(b) Communication Virtual Machines

(c) Microgrid Virtual Machine

User / Application

User Interface (UI)

Synthesis Engine (SE)

Middleware (M)

Broker (B)

Frameworks/Contollers

VM

Input

Instance Models

Control Script SE Events

API Calls CM Events

API Calls B Events

Instance Models

Figure 3.1: DSVM specialization during instantiation.

is a declarative language, it states non-functional requirements without specifying

how these constraints should be applied to the functional requirements at runtime.

Due to this limitation, our middleware design must have the capability of dynam-

ically determining the operational semantics of a command to be executed based

on the system context and policies that are in place.

To incorporate non-functional requirements, we enumerate all possible execu-

tion paths based on available resources, and then select an execution path based

on it’s adherence to the stated constraints at runtime. This presents us with the

challenge of ensuring that one execution path matching a particular command is

operationally equivalent to all others in terms of it’s final outcome. Our middle-

26

ware must ensure that the chosen execution path is representative of the user’s

intent while at the same time ensuring adherence to all system constraints.

One other characteristic mentioned by Schmidt et al. [52] is affordability. As

a DSVM is created for a new domain it is would not be cost-effective to build the

middleware for that DSVM from the ground up using a stove-pipe approach. To

mitigate the cost to develop a DSVM middleware, our middleware design should

separate the Domain-Specific Knowledge (DSK) from the Model of Execution (MoE),

thereby making the MoE reusable. In addition, if the DSK is separated from the

MoE, it may be possible to capture the domain knowledge during feature analysis

[33] of the domain. Assuming the MoE can be successfully applied in multiple

DSVMs then it can be classified as a generic model of execution (GMoE).

Our focus for this research will be to develop a DSVM middleware design that

is configurable during instantiation, provides adaptation at runtime, and separates

the DSK from MoE. We will show how this design will be applied to the CVM

middleware. Our future work will show how the generic model of execution can

be applied in multiple domains.

3.2 Problem Statement

The problem we investigated was how to design a DSVM middleware layer so that the

DSK can be separated from the GMoE, it supports adaptability at runtime and effectively

provides the delivery of services in the domain. As the operational variability should

be constrained by policies present within the system at runtime, the architecture

had to posses the ability to validate a chosen path of execution against policies to

ensure compliance. Our aim was to be able to encapsulate the operations and data

of a domain in which a DSVM can be deployed, and reduce the engineering effort

involved for the middleware’s instantiation. Additionally, we aimed to efficiently

perform runtime validation of the middleware’s operational artifacts.

27

3.3 Categorize and Encapsulate Domain-Specific Knowledge (DSK)

In order to allow our middleware to generate and select varying execution options

in realizing user intent, we required a mechanism to categorize operations, allow-

ing us a facility to generate various options for execution regardless of their seman-

tic makeup. Having various execution paths that fall under the same operational

category gave us the ability to select specific paths based on whether they are apro-

pos in light of any currently active policies.

3.3.1 Encapsulation of Domain-Specific Knowledge

The first sub-problemwe investigated was the development of a set of artifacts that

can fully capture DSK within a DSVMmiddleware.

Goal. Develop a set of operational artifacts that facilitate the dynamic composi-

tion of operational constructs that will serve as an execution plan to realize user

intent. These operational constructs, as well as high level attributes, will be classi-

fied by a system that allows us to categorize and reason about the functionality of

the middleware. We will provide an operational dialect that will allow our execu-

tion model, DSK encapsulating artifacts, policies, and other features of the system

to refer to the operations of the middleware.

Evaluation Criteria. We demonstrated that:

1. Our artifacts are able to fully capture and describe relevant operations and

attributes found within a domain.

2. Our DSK encapsulating operational constructs and attributes have sufficient

flexibility to allow for variability in operations

3. Our artifacts facilitate validation at runtime of operational constructs within

our architecture against ECA policies.

28

4. Our approach, when compared to the middleware in the previous CVM pro-

totype, produced the same output for comparable control scripts.

Criterion 1 focused on capturing state and behavior information in the middleware

through a classification system. Criteria 2 looked at the ability to achieve variability

in realizing user intent. Criterion 3 showed how our operational constructs and a

classification system facilitated the validation of an operation prior to adaptation.

Criterion 4 demonstrated the operational equivalence of our approach to the exist-

ing UCM in terms of deterministic operations.

Methodology. To develop our DSK encapsulating artifacts, we undertook the fol-

lowing activities:

1. Reviewed the research literature on programming and computational mod-

els and identified constructs that were applicable in creating our set of oper-

ational artifacts.

2. Developed a generic mechanism to label operations (behavior) and attributes

(state) of a system

3. Identified a naming mechanism to ensure uniqueness within a domain

4. Extended definitions to capture operational parameters

5. Defined the operational semantics for the above system of operations and at-

tributes that support the delivery of services in a given domain.he current

implementation of CVM.

6. Developed a prototype of the middleware for CVM (UCM) that can be used

to validate the semantics against t

29

3.4 Develop a Generic Model of Execution (GMoE)

Having developed a mechanism to encapsulate domain knowledge, we needed to

have a method to interpret and effect change based on these artifacts. We required

a model of execution that, when combined with the DSK, could be instantiated to

a fully operational middleware. This execution model provided all the facilities

needed to perform the operations found in a given domain. It, in effect, provided a

sufficiently functional environment as would be provided in a static, single domain

middleware architecture.

3.4.1 Generic Model of Execution for a DSVMMiddleware

The second problem we addressed was the development of a domain independent

platform that provides the generic model of execution (GMoE) for a DSVM mid-

dleware.

Goal. Develop a GMoE for a DSVM middleware that will facilitate the generation

and execution of domain-specific intent models. Given a set of domain-specific op-

erational artifacts and theGMoEplatform, aDSVMmiddlewarewill be instantiated

that can interpret control scripts from the Synthesis Engine to ensure the delivery

of services for that domain.

Evaluation Criteria. Demonstrate that our instantiated platform can:

1. Reliably generate intent models that are able to interpret control scripts from

at least two domains.

2. Incorporate cost analysis capabilities for the selection of policy compliantmod-

els for execution

3. Execute generated models for a cross-section of control scripts from at least

two domains.

30

To evaluate our instantiated platform, developed and executed a cross-section of

control scripts representing various scenarios from the user-centric communication

and microgrid energy management domains. We analyzed the model generation,

validation and selection process detailed in Criteria 1 and 2. Criteria 3 focused on

the ability to fully realize user intent through the execution of the selected model.

Methodology. To develop our domain independent platform, we did the follow-

ing:

1. Identified and developed the artifacts required for runtime representation of

DSK form two domains, user-centric communication and microgrid energy

management.

2. Developed an efficient mechanism to generate and select models based on

available operational constructs, active system policies, and operational cost

analysis, respectively.

3. Identified and developed the mechanisms required for the execution of mod-

els both in a stand-alone and distributed environment.

3.5 Define a Mechanism for Efficient Functionality Validation

In order to ensure that our generated execution paths complied with applicable

policies, we defined a mechanism to validate them. As our models are described

using operational classifiers, so too does our mechanism for validating their op-

erations. We ensured that within the generated model space, any model deemed

appropriate for execution fully compliedwith any policies in place for the intended

operation.

31

3.5.1 Validation of Intent Models

The third problem we addressed was the development of an efficient method of

model validation using model checking techniques.

Goal. Develop amechanism usingmodel checking to efficiently validate generated

models to determine their appropriateness for execution in consideration of the

policies currently active within the system.

Evaluation Criteria. Demonstrate that our validation method can:

1. Represent ECA policies in a format that supports model checking at runtime

2. Represent the intent models created by the GMoE andDSK artifacts in aman-

ner that supports model checking at runtime.

3. Performmodel validation by checking for satisfiability of intentmodels against

active policies, using the representations previously stated, for DSVM mid-

dleware in at least two domains.

Criteria 1 and 2 focused on the transformation of policies and intent models into

an appropriate representation given the constraints of a running system. Criterion

3 looked at performing satisfiability checks to verify that a model respects the poli-

cies of the system.

Methodology To develop an efficient model validation process, we undertook the

following:

1. Identified an appropriate technique for formal model checking at runtime.

2. Developed an algorithm to dynamically transform intent models into a rep-

resentation that supports runtime model checking.

32

3. Developed an algorithm to transform ECA policies into a representation that

supports runtime model checking, e.g., logical formulas.

4. Identified and developed tools to perform satisfiability checks on intent mod-

els and policies in the DSVM middleware in two domains, user-centric com-

munication and microgrid energy management.

33

CHAPTER 4

DOMAIN KNOWLEDGE ENCAPSULATION

In this chapter we present our taxonomical labeling mechanism that provides

the framework for domain knowledge encapsulation, and the operational constructs

that capture the behavior of our middleware’s operations.

4.1 Overview

Our middleware architecture achieves service delivery through the execution of a

control script (see Figure A.1 in the Appendix) received from the synthesis engine

of the DSVM. Upon receipt of a control script, the middleware parses and extracts

the script’s individual commands. The middleware then proceeds to generate and

execute intent models to carry out the functions of the control script, see Figure 4.1.

Upon execution, intent models perform the necessary adaptation of our mid-

dleware based on current policies and the environmental context. It generates, val-

idates and executes intent models in response to commands contained in a control

scripts or from events received by the middleware. Our approach, by design, en-

sures that any model that is selected for execution to carry out a user’s intent fully

Control
Script or

Event
1. Parsing

2. Command
Classification

3. Candidate Model
Generation

4. Model Validation
and Selection

Repository 5. Model
Execution

Procedure Descriptors

DSCs Matching
Models

API Calls and Events

Commands Intent Models

Callback Model

Procedures

Figure 4.1: Model Generation and Selection Process

34

conforms to all constraints the system has in place. It achieves this through the

full classification of the middleware’s operations, the generation of runtime mod-

els based on the classifiers, and finally, validating and selecting a model for execu-

tion based on whether or not a model incorporates the features necessary to meet

system constraints. This facility allows our middleware to only perform requested

adaptation if it is able to do so within the current environment and with the avail-

able procedural components. If themiddleware lacks the proper procedure tomeet

stated constraints, it throws an exception to the overlaying layer.

The stages in Figure 4.1 showing themodel generation and selection process are

described as follows:

1. Command Classification matches a command to a Domain Specific Classi-

fier (DSC) in order to begin the model generation process. The relationship

between DSCs and commands is discussed further in Section 4.2.

2. Candidate Model Generation enumerates all possible candidate models that

are able to realize the current intent based on the set of available procedures.

This process is bound by the Maximum Partition Product, which is discussed

in Section 5.1.

3. Candidate Reduction and Selection first derives the subset of availablemodels

that conform to system policies. This process satisfies the assurance problem

by ensuring that all resulting models match the user intent and fit all current

system constraints imposed by policies. The resultingmodels are then passed

to a cost function that selects the best model based on some predefined anal-

ysis.

4. Model Execution utilizes the selected intent model as an execution plan. This

is discussed further in Section 5.3.2.

35

4.2 Domain Knowledge Encapsulation

Below we detail the various constructs that facilitate the encapsulation of domain-

specific knowledge.

4.2.1 Domain Specific Classifiers

Domain Specific Classifiers (DSCs) form a top level taxonomy that categorizes the

actions performed by the middleware (behavior) and the attributes that it is con-

cerned with (state). Through this approach, DSCs catalog the domain specific con-

cerns of the middleware and provide a framework on top of which all operational

facilities will be built. They provide a common point of reasoning for commands,

procedures and policies governing the middleware operation.

Classifiers have a one-to-one relationship with the middleware’s commands,

and a one-to-many relationship with procedures. That is, a classifier may have

more than one procedure that can carry out a specified command. All commands

to which the middleware can respond must form a subset of the set of DSCs. An

intent model for adaptation is therefore derived by building a dependency tree of

procedures with the root being a procedure that matches the classifier of the com-

mand being executed. The set of DSCs are extensible. This allows the capabilities

of the middleware to be expanded or reduced by manipulating classifiers and as-

sociated procedures.

DSCs inherently possess semantics relevant to a domain and should therefore

be composed through a feature analysis of said domain, and understood by the

users of the middleware and containing DSVM. For example, in the Communica-

tion Virtual Machine (CVM), there are DSCs that describe command actions that

the middleware is equipped to realize (e.g. Sending a file to a remote user), while

othersmay reference internalmiddleware operations that are not explicitly exposed

through the DSVM’s modeling language (e.g. Encrypting a file to ensure secure

36

transmission). Additionally, DSCs may describe attributes that are applicable to its

operation, but may not have meaning outside of the middleware (for example, the

keys used to encrypt and decrypt a file).

DSCs that describe operations may, as a part of their definition, state parame-

ters that are required for the completion of those operations. These parameters are

themselves DSCs. For example, the DSC that describes sending a file, Send, would

include a DSC for the name and path of the file to be sent, FileURI. Therefore, any

procedure that conforms to the Send DSC must expect and handle the FileURI pa-

rameter.

A DSC is defined as a 4-tuple (N,NS, P,K)where:

• N - a name is a string that is unique in a given namespace (NS).

• NS - a namespace defines the scope for a given name.

• P - a list of parameters, an ordered set of DSCs. The order of parameters is

used to match the parameters of the commands in the control scripts.

• K - a kind, such that K ∈ {ATTR, OPER}, ATTR represents an attribute and

OPER an operation.

DSCs have a one-to-one mapping to the commands a middleware can respond

to, that is, for each command that may appear in a control script there is one asso-

ciated DSC. On the other hand DSCs have a one-to-many mapping to procedures

used to realize actions in the middleware, where a given DSC may have several

procedural implementations to realize a command in the control script.

Table 4.1 presents a set of DSCs for the communication domain. The first column

lists the name of the DSC alongwith any parameters if the DSC is an operation. The

second column lists the type, which can be either an Operation (oper) or Attribute

(attr).

37

Name Kind
CommunicationModel attr
FileURI attr
Send(FileURI) oper
Receive(FileURI) oper
plainTextFileURI attr
encryptedFileURI attr
Encrypt(plainTextFileURI, encryptedFileURI) oper
Decrypt(encryptedFileURI, plainTextFileURI) oper
localNetwork attr

Table 4.1: A set of DSCs for the user-centric communication domain.

Execution Units
and DSCs

Procedures Intent Models

AutomaticManual

Legend
DSC

Execution Unit
Procedure

Figure 4.2: Composition of an Intent Model

4.2.2 Structural Metamodel

In this subsection we detail the constructs of our intent models and their relation-

ships, as illustrated in Figure 4.2. The three components are intent models, which

are composed of procedures, which are in turn composed of execution units. A pro-

cedure’s execution units are specified at design time by the developer. An intent

model is created at runtime by matching procedures based on the classifier and

dependency DSCs.

A Procedure (P) is defined as a 6-tuple (I,N,C,EU,EU0, D)where:

• I - the unique identifier for P

38

• N - the human readable name of P

• C - a classifier for the procedure’s function, where C ∈ {DSC}, and {DSC}

is the set of all domain specific classifiers for a given domain

• EU - the set of execution units contained in P

• EU0 - is the starting execution unit where EU0 ∈ EU

• D - is a list of dependencies in P expressed as DSCs, where D ⊂ {DSC} and

∀d ∈ D, d 6= P.C; P.C refers to the DSC that classifies procedure P .

From an implementation perspective, we may view a procedure as an ordered

collection of executable units, which may list a set of procedures on which it de-

pends to perform its task. It is comprised of two parts.

• The descriptor, which provides the necessary meta-data for the procedure in-

cluding name, the unique identifier, classification, starting component, and de-

pendencies.

• The set of executable units that undertake the operations of the procedure in-

cluding manipulating state information, making API calls, and calling for the

execution of other units and procedures.

The set of dependencies of a given procedure is a proper subset of the set of DSCs.

This is because a procedure of a given type cannot be dependent on that same type.

To reduce potential complexity, we define a procedure as having only one classifier.

Our architecture describes procedure dependencies through DSCs (typed), as well

as through their IDs (named). By utilizing DSCs, a procedure can simply declare

what type of functionality must exist within the middleware for it to perform its

function. In contrast, when a dependency is expressed via an ID, a specific proce-

dure will be selected.

39

An execution unit is an atomically executable set of instructions that performs

some aspect of the operations of its parent procedure. It may perform any number

of allowed system operations; however it should be limited to making a single API

call to any external interface. This constraint facilitates a high level of adaptability

as the operations of the parent procedure are granulated in terms of their effect

outside the middleware. An execution unit may be triggered as the initial step of a

procedure, or in response to internal or external events, such as a timer or amessage

from a remote middleware instance respectively. It should be noted that we detail

execution units here only for the completeness of the metamodel as they do not

factor into the model generation and selection process.

An intent model is an acyclic directed graphwhere the nodes are procedures and

the root of any subtree is dependent on its child procedures. The root of an intent

model is a procedurewhoseDSCmatches that of the currently executing command.

The composition of an intent model is discussed further is Section 5.1. For safety

and to reduce complexity, we define a well formed intent model as meeting the

following criteria:

• Singly classified - This prevents a node from having multiple parents.

• Unique procedural dependence - A model must have only one dependence of a

given type. As such, we speak of the set of dependencies to infer the nonexistence

of duplicates.

Figure 4.3 is an UML class diagram showing the structural relationships be-

tween intent models, procedures, DSCs and execution units. An intent model is an

aggregate of procedures hence the relationship procedureList. There is a unique

mapping between a DSC and a procedure through which the procedure is classi-

fied, and a procedure has an ordered dependency list of DSCs. Each procedure also

40

+ATTR
+OPER

«enumeration»
Kind

-id : UUID
-name : String

IntentModel

-id : String
-name : String

Procedure

1

0..*

procedureList

-name : String
-kind : Kind
-namespace : String

DSC

-id : String
-body : String

ExecutionUnit

1 0..*

owns

1

*

parameters

1

0..*

dependencyList

1

1 maps_to

1

1

initialProc

1 1
initialEU

Figure 4.3: Class Diagram for an Intent Model.

owns one or more execution units. Recall a DSC may be classified as an attribute

or an operation, which is consistent with the definition of DSCs.

4.3 Chapter Summary

This chapter outlined the artifacts present in our architecture for capturing the

knowledge of a particular domain. This knowledge is captured though the use

of a labeling system, Domain Specific Classifiers (DSCs), that presents a method

to categorize the behavioral constructs and relevant high-level state information of

a domain, as well as providing a description of the interfaces that exist for oper-

ations. Further, the architecture utilizes a construct referred to as a Procedure to

undertake the operations of a domain. Procedures contain a descriptor with meta-

data regarding its type, makeup, and dependencies, and functions through the ex-

ecution of Execution Units, which are written in the language of the implementing

41

platform. In the next chapter we will present the Generic Model of Execution that,

when instantiatedwith a set of domain-knowledge encapsulating artifacts, provide

the domain-specific middleware of the DSVM.

42

CHAPTER 5

GENERIC MODEL OF EXECUTION FOR A DSVMMIDDLEWARE

In this chapter we discuss our work towards a generic model of execution in the

form of a domain independent platform for model execution.

5.1 Model Generation

Intent models are built using the concepts defined in Section 4.2.2. Figure 5.1 is

a class diagram of the model generation component of our architecture. It lists

the salient components such as the Generator, Validator and Selector abstract

classes, as well as the representation of our intent model makeup that includes

procedures and execution units.

Intentmodels are generated by invoking the generateModels() in the Generator

class. The details of the method are shown in Algorithms 1 and 2. The system

Figure 5.1: Model Generator Class Diagram

43

first loads all procedures from the repository that match the DSC of the command

being executed. These procedures become the root of the soon to be generated

intent models. For each loaded procedure, the system looks at the stated depen-

dencies, loads all procedures that match those dependencies, and spawns a new

intent model for each match with the dependent procedure added as a child of the

initial procedure. This action is performed recursively until all dependencies are

met.

The selection of procedures for inclusion in an intent model is akin to a model-

driven approach to the Strategy design pattern [25]. The DSC that classifies a pro-

cedure serves as the interface to be implemented, and the procedure serves as the

concrete implementation. Our approach varies in that all procedures that match

a DSC are enumerated and included in all possible models that call for that func-

tionality. It is only later, during model validation, that a model inclusive of a se-

lected procedure is decided upon based on system context and the overall cost of

the model. The application of design patterns in model driven development is dis-

cussed by Stahl et al. [55].

An intent model is a dependency tree that contains procedures as nodes, with

the initial executing procedure as the root of that tree. A procedure with stated

dependencies form the root of any subtree, and its children are procedures that

match said dependencies. The leaves of the tree are procedures that have no stated

dependencies. An intent model is built by matching the DSC of a command to the

DSC of all available procedures. For a given procedure, we recursively walk its

dependencies until no additional dependencies are required. If any dependency

cannot be met, that model is eliminated from consideration.

Intent models incorporate a model-centric approach to the Facade design pat-

tern [25] where the DSC that matches the command being executed inherits the

44

Algorithm 1 Intent model (IM) generation.
1: function generateIMs(initDSC, procList)
2: /* initDSC - DSC associated with the control script command being executed
3: procList - list of procedures in middleware repository */
4: matchingIMs← null /* Collection of IMs that will be returned */
5: matchingProcs← procList.getMatchingProcs(initDSC) /* Get procedures for
6: current DSC */
7: if matchingProcs.isEmpty() then
8: return null;
9: for all proc ∈matchingProcs do
10: tempMatchingIMs← null /*Temporary collection of IMs for current level */
11: dependDSC_List← proc.getDependency()
12: if dependDSC_List.isEmpty() then
13: /*If no dependencies, return IM with current procedure */
14: matchingIMs.add(new IM(proc))
15: else
16: subIMs← null /*Stores the sub IMs returned from the recursive call*/
17: countDSC← 0
18: for all dependDSC ∈ dependDSC_List do
19: countDSC← countDSC + 1
20: /*Recursive call to generate new IMs for each DSC in the dependency list */
21: subIMs← generateIMs(dependDSC, procList)
22: if subIMs 6= null then
23: if countDSCs = 1 then
24: /*For the first DSC in the list create a new IM */
25: singleIM.add(new IM(proc))
26: /*Merge the new single IM with the sub-IMs */
27: tempMatchingIMs←mergeIMs(singleIM, subIMs)
28: else
29: /*Merge the temporary matching IMs with the sub-IMs */
30: tempMatchingIMs←mergeIMs(tempMatchingIMs, subIMs)
31: else
32: tempMatchingIMs.clear();
33: matchingIMs.addAll(tempMatchingIMs)
34: return matchingIMs

role of the interface to a subsystem. Instead of a subsystem however, the interface

facilitates the execution of a sequence of procedures all of which are unexposed to

the command. They are instead dependent on the context and cost-aware selection

of an executable model.

45

Algorithm 2 Merging parent intent models and children intent models.
1: function mergeIMs(parentIM_List, subIM_List)
2: /* parentIM_List - list of parent IMs
3: subIM_List - list of intent models for the children */
4: newIM_List← null /* Collection of IMs that will be returned */
5: for all parentIM ∈ parentIM_List do
6: /* Loops through subIM list and creates a new IM for each subIM */
7: for all subIM ∈ subIM_List do
8: /* Performs a deep clone of the parent IM to the new IM */
9: newIM← deepClone(parentIM)
10: /* Adds the subIM procedure list to the root of newIM */
11: newIM.addSubtree(subIM)
12: newIM_List.add(newIM)
13: return newIM_List

Maximum Product Over Partition

A consequence of our method of defining and dynamically composing models

based on types is model space explosion. In theory, an idealized set of procedures

may produce an excessively large number of intent models that match a particular

command. While this may not prove to be a limiting factor in practice, as a typical

command may only relate to a small subset of the available procedures, it is still a

motivating factor for addressing optimization strategies. The issue arises due to the

Maximum Product Partition problem [20], where for a given set of procedures P ,

there exists a partitioning based onDSCs that creates amaximal number ofmodels.

The problem can be stated as: For a given number of procedures n, what is the

maximum value of the product of parts over all partitions of n into distinct parts?

Analysis shows that for a given number of procedures n, the product over its par-

titions ϕ are as follows:

46

1 ∗ 1 ∗ 1 ∗ 1 = 1

1 ∗ 1 ∗ 2 = 2

1 ∗ 3 = 3

2 ∗ 2 = 4

4 = 4

We note the following observations:

1. It is obvious that maximizing a product negates having 1 as any of the par-

titions, except in the case where there is only a single partition with element

1.

2. We know from the theorem of unique factorization that every integer greater

than 1 is the product of primes, or is a prime itself.

3. For n ≥ 5, there is some partition of n such that its product is greater than the

single partition n

Our third observation states that a maximal partition exists that is greater than the

single partition n if n ≥ 5. For n < 5, our second observation handles n == 4,

and our first observation handles n == 3 by ensuring that we do not create the sub

partitions 1 ∗ 2.

We therefore refine our analysis by looking at the product over n’s partitions where

no partition is 1, and n cannot be the only partition. We increase n to 8 presentmore

useful partitions.

47

2 ∗ 2 ∗ 2 ∗ 2 = 16

2 ∗ 2 ∗ 4 = 16

2 ∗ 8 = 16

4 ∗ 4 = 16

3 ∗ 3 ∗ 2 = 18

These partition sums show us that, for a given partition n > 5, we can achieve the

maximum product by partitioning our set into as many subsets of 3s as possible

until the remaining procedures number 4 or less. At that point we follow:

n == 4→ 2 ∗ 2

n == 3→ 3

n == 2→ 2

Therefore, the upper bound, ϕ, of our intent model generation process is deter-

mined by the function f(n) such that:

f(n) =



n if n < 3

3n/3 if n%3 == 0

3(n/3)−1 + 2g(n) if n%3 == 1

3n/3 + 2g(n) if n%3 == 2

and

48

g(n) =

 2 if n%3 == 1

1 if n%3 > 1

Where n is the number of available procedures. The proof for this method is pre-

sented in [20].

5.2 Model of Execution

Our model of execution serves as the domain independent aspect of our architec-

ture. It must not inherently posses any domain-specific knowledge, but must be

able to accommodate the domain knowledge that is provided and realize user in-

tent through its operations.

5.2.1 Middleware Execution Model

From our design we present the execution model that allows for the instantiation

of a domain specific middleware. Once we have completed the model generation

process, we must be able to execute the selected intent model.

Stack Machine

The execution of an intent model is achieved through the use of a stack machine

as depicted in Figure 5.8. The stack machine processes the execution units of the

procedure currently on the top of the stack. A new procedure is placed on the

stack when an inter-procedure call is made (whether by name or by type), and a

procedure is popped from the stack whenever a null call is made, indicating that

the particular procedure has completed execution. When an execution unit regis-

ters an event listener via an EventWaitCall, the entire model as well as the current

state of the stack are persisted, and are subsequently reloaded upon receipt of the

aforementioned event.

49

Execution Semantics

As execution units provide the programmatic artifacts in our middleware, they

must be providedwith the facilities for proper execution that allowsprogress through

procedures, models and the ultimate realization of user intent. The facilities of our

execution model are depicted below:

Memory Executing units store information as attributes in the middleware’s State

Manager. Although a unit may or may not utilize the standard variable man-

agement scheme available by the implementing architecture for its internal

storage during execution, the execution model requires utilizing the State

Manager for making information accessible to other units and procedures.

Unlike imperative programming, where variables are scoped locally within a

method, our facility allows any level of scoping to be declared, as themanager

exists external to the procedure’s execution. As a result of this, registered

attributes extend beyond the life of an executing procedure, as the necessary

information may be relevant to future execution units, procedures and intent

models. This is a desirable feature and is therefore the default behavior of the

middleware. As a result of this, a procedure, through the applicable execution

unit, must explicitly de-register attributes from the State Manager when they

are no longer needed.

Calls An execution unit may effectively hand off execution to another unit based

on its own executing parameters. There are three methods of making a call

upon the completion of an execution unit’s run.

• EUCall - Used for intra-procedure calls between execution units. This

serves as the basic mechanism for progressing through a procedure.

• DSCCall - Used to make calls between procedures. An execution unit

makes a call via a DSC instructing the middleware to execute the de-

50

pendent procedure that matched the DSC during the model generation

process. This call is only successful if the called DSC was initially listed

as a dependency of the parent of the calling execution unit. The call is

accompanied by an execution unit that should be executed on return to

the procedure once the called procedure has finished executing. There

are no limitations placed on how often a procedure may call upon a de-

pendent procedure or in what context it may do so.

• EventWaitCall - Used to register an execution unit of the parent procedure

to respond to an event received by the middleware. Upon this call, the

entiremodel is persisted to the statemanager and is re-instantiated upon

receipt of the specified event. The calling procedure is then loaded and

the registered execution unit is executed.

Additionally, an execution unit may return a NULL value indicating that a

procedure has completed execution. If a NULL value is returned from a pre-

viously called procedure (that is, the current executing procedure has a par-

ent procedure in the intent model), the parent procedure is re-entered and

the previously identified re-entry execution unit executed. If there is no par-

ent procedure (that is, this is the root procedure in the intent model), then

this is an indication that the model has completed execution and the Model

Executor discards the intent model.

While intra-procedure calls are supported via EUCalls, an execution unit may

not call another unit located in another procedure by name. Inter-procedure

calls must be named or type calls and the initial execution unit of the called

procedure is the unit that is executed first.

Message Passing Messages are passed from one execution unit to another, and

from one procedure to another, using state information that is managed by

51

the middleware’s State Manager. Messages passed between execution units

of a single procedure would utilize a naming convention and semantics in-

herent to that procedure. Therefore, a unit y that is called by a unit x would

know, by design, what information to expect from x (or any other previously

executed unit) and where to find it. It then reads this information during its

execution and, prior to completion, may itself save information to the State

Manager before calling some unit z.

Information is passed between procedures in the same way, however in this

case, there is a previously agreed upon naming convention that is described

by a DSC and inherent in its semantics as discussed in Section 4.1. This is

to facilitate the binding of various procedures during model generation that

match a stated dependency while ensuring that they able to communicate.

This agreed upon set of attributes between procedures could be likened to

parameters of a publicly scoped method in an object-oriented programming

model. As an example, a procedure that depends on an Encrypt procedure

may have a set of predefined attributes: plainTextFileURI, which is the path

and name of the file to be encrypted, and encryptedFileURI, which is the path

and name of the now encrypted file. The inherent semantics of the Encrypt

DSC requires these attributes, and all procedures of that type, or procedures

that depend on that type, must be aware of them.

Events Our middleware allows an execution unit to respond to predefined events

through registration with the Event Register. This facility maintains a registry

of execution units and the events they are to respond to. In the case of an

event arriving for which there is no registered unit to be executed, the event

system triggers the model generation process in a way similar to the way it is

done upon receipt of a command.

52

Exceptions Exceptions are a special type of event that indicate a deviation from

expected middleware behavior. Exceptions generated by the middleware are

passed to the Synthesis Engine (SE) to be processed or handed off to the user

interface layer, generally to provide notification. For example, if the middle-

ware is unable to generate an intent model to realize the user’s intent because

of a restrictive policy, the middleware’s failure is reported to the SE as an ex-

ception. This exception would include relevant information such the specific

policy on which the middleware failed to find a valid intent model. At this

point the SE may report this exception to the user or, based on its capabilities,

relax the policy and compel the middleware to reattempt the script’s execu-

tion.

Concurrent Operation We view concurrent operations in two varying but simi-

lar contexts. The first is the simultaneous execution of independent models

(similar to execution of multiple processes within a system), and the second,

multiple executing instances of a single model (similar to multi-threaded ex-

ecution of a program).

To address the first issue, we ensure that all generated intent models are as-

signed a universally unique identifier (UUID). This identifier is used to prefix

all state and event information. By doing so, we are able to manage concur-

rent operations of separate intentmodels regardless of themodel’s procedural

composition. That is important to ensure that if a single procedure exists in

multiple executing models, there is no concern of cross manipulation of state

information.

The second issue requires further consideration. Due to the event driven

nature of our middleware, it is possible for multiple execution units to be

triggered within the procedures in an executing intent model. Because this

53

behavior may be advantageous in many applications, it has not been sup-

pressed. This however requires special considerations be taken when writing

execution units. If a synchronous operation within a procedure is required,

then care must be taken in execution unit design. Sanity checks should be

added to ensure that a procedure is not already executing (this could be done

by interrogating the State Manager) and execution unit designers should be

mindful of the units they register for event responses. Registering multiple

execution units for multiple events that may fire with an indeterminate order

can result in multiple threads of execution for a single procedure.

Language Facilities Computational considerations are not addressed explicitly by

themiddleware, and are instead based on the implementation language archi-

tecture. A middleware instance build on top of Java may provide execution

units with the full power of the language, whereas an implementation that

utilizes a template language may provide a minimal set of execution facili-

ties.

5.3 DSVMMiddleware Design

The DSVM middleware design describes the main artifacts of the MoE that are

needed to interpret a control script command, including IM generation and selec-

tion, and the execution of the intent model to realize the management and delivery

of services in a specific domain. We start by presenting the structural design of the

middleware that includes a package diagramof the components of themiddleware,

followed by other class diagrams showing the refinement of the interpreter compo-

nent. We end by describing the behavioral design for the interpreter component,

focusing on intent model generation and selection, and its subsequent execution.

54

m_events

m_exceptionsm_interpreter

m_repository

m_manager

broker::Broker_M_Interface

M_SE_Interface

se::SE_EventHandler

Figure 5.2: Package diagram showing the main components in the DSVM middle-
ware.

5.3.1 Structural Design

The DSVM middleware consists of five main components as shown in Figure 5.2.

These components include: (1) m_manager - coordinates the activities of the mid-

dleware; (2) m_interpreter - responsible for interpreting control scripts from the

DSVM synthesis engine and the events from the broker; (3) m_repository - con-

tains the DSCs, procedures and the execution units; (4) m_events - handles events

from the DSVM broker and generates events to be handled by the synthesis engine;

and (5) m_exceptions - processes local exceptions for the middleware and converts

the exceptions to be handled by the synthesis engine into events. Figure 5.2 shows

the dependencies between the five main components in the middleware.

There are three classes shown in Figure 5.2 including (1) M_SE_Interface - ex-

poses the interface to the synthesis engine that receives control scripts;

(2) Broker::Broker_M_Interface - exposes the API of the broker to the middle-

ware, the operations in this API are invoked by the middleware interpreter; and

(3) SE::SE_EventHandler - is the synthesis engine handler for events raised in the

55

im_executor im_generator

Interpreter_Controller

broker::Broker_M_Interface

m_manager::Mng_Contoller m_events::Evt_Controller

m_repository

m_intentModel

Figure 5.3: Class diagram for the m_interpreter package in the DSVM middle-
ware.

middleware. In this section we will focus mainly on the generation, selection and

execution of intent models, which is done in the m_interpreter.

Figure 5.3 shows the structure of the middleware interpreter. The activities of

the interpreter are coordinated by the Interpreter_Controller, and it processes

calls from the controllers in the middleware manger package,

m_manager::Mng_Controller, and events package, m_events::Evt_Controller, re-

spectively. The two main functions of the interpreter are to (1) generate and se-

lect intent models in the im_generator package, and (2) execute the selected intent

models in the im_executor package. The im_generator package depends on the

m_repositorypackage since the definitions for the procedures, DSCs and execution

units are stored in the repository. The class diagram for the intent model structure

was described in Section 4.2.2.

For each control script command the im_generator package is responsible for

generating a set of applicable intent models and selecting a single intent model,

which is stored in the Interpreter_Controller. The im_executor package exe-

cutes the intent model in order to realize the user’s intent specified in the control

script command being processed.

56

+generateIMs()
+mergeIMs()

Generator
+getBestModel()

Selector

+validateModels()

Validator

1 1

11

m_repository m_intentModel

Figure 5.4: Class diagram for im_generator package.

Figure 5.4 shows the components used in the generation, selection and valida-

tion of intent models. The Generator class is responsible for generating the intent

model to be used by the im_executor in the interpreter. Section 5 describes the

process and algorithms for generating intent models. The Generator class accesses

the list of persistent DSCs, procedures and execution units from the middleware

repository, and uses the package m_intentModel to build the intent models. After

all the intent models have been built the Generator class invokes the Validator

class to ensure that each intent model satisfies the constraints placed on the intent

model by user-defined or system policies. Currently, our approach to intent model

validation involves walking the graph of the intent model to determine the pres-

ence or absence of a procedure classified by a specified DSC. We plan to develop a

more robust method of validation in future work.

After building the set of intent models based on the control script command

received by the middleware, the Selector class identifies the most appropriate in-

tent model for execution through a domain-specific cost analysis mechanism. For

example, in out prototype we define the function f(M) such that

57

f(M) =
n−1∑
i=0

cost(Mi)

where n is the number of procedural nodes in the model and cost() takes a proce-

dureMi and returns a deterministic cost associated with it.

5.3.2 Behavioral Design

In Section 4.1 we gave an overview of first-class operations of our middleware. The

model generation process populates the model space with all possible intent mod-

els that can perform an operation based on a command or event. We detailed this

process in Section 5.1. The selection process ensures that we select a model for ex-

ecution that fully complies with policies currently active within the system. Our

domain independent platform, which provides our generic model of execution, fa-

cilitates these operations. Once an intent model is selected, the execution process

is initialized.

This section details the domain independent platform, which is the part of the

middleware that performs generation, selection and execution of intent models.

Through the use of DSCs, procedures, and their execution units, we are able to

abstract the DSK from our architecture. By removing the DSK, what remains is a

domain independent platform that serves as the execution mechanism for proce-

dures in response to commands (see Figure 5.5) and events (see Figure 5.6). Figure

5.5 shows the behavior of the middleware when a control script is received and

Figure 5.6 the behavior when an event form the lower layer in the DSVM, the bro-

ker, is received. The platform provides a framework in which we specify a set of

classifiers, and provide the procedures that perform the operations these classifiers

describe.

58

CommandReceived

PreconditionExecuted

/ generateModels

[if (passed)]

[if (!passed)]

[if (precondition)] / executePrecondition

[if (!precondition)]

GenrerateModel

ExecuteModel

Figure 5.5: Command Received Statechart

EventReceived

GenrerateModel

ExecuteModel

PreconditionExecuted

/ parseEvent

[if (passed)]

[if (!passed)]

[if (precondition)] / executePrecondition

[if (!precondition)]

EventParsed

EventCallBackQueried

/ queryEventCallBack

[if (callback || remote)] / loadModel

[if (!callback)]

Figure 5.6: Event Received Statechart

59

Candidate Selection

Following the generation of a list of intent models suitable for the control script

command being executed, the middleware must reduce this list to a subset of mod-

els that respect the current set of policies in place. It then further reduces this list

and selects a single model for execution. The process of model validation is dis-

cussed in detail in Section 6.1. Here we discuss the selection process that follows

model validation. There are a multitude of techniques for selecting the most viable

intent model through the implementation of a cost analysis mechanism. We define

the function f(M) such that

f(M) =
n−1∑
i=0

cost(Mi)

where n is the number of procedural nodes in the model and cost() takes a proce-

dure Mi and returns a deterministic cost associated with it. We run this function

on all candidate models and select the model with the minimal total cost. A spe-

cific mechanism for determining the cost of a given procedure is not defined by our

architecture. This ensures that we do not constrain domains that may have varied

analysis requirements. These requirements could vary both in terms of the data

needed to analyze a procedure’s operation, as well as the context or makeup of a

model. For instance, a particular proceduremay have a higher or lower operational

cost based on some other procedure found in the model. We therefore define an

abstract class to perform cost analysis, see the class Selector in Figure 5.1.

Model Execution

Figure 5.7 depicts the classes in our architecture that facilitate the execution of

our models. These classes include: the Executor that manages control flow; the

StateManager and Attribute classes thatmanage state information; the EventRegis-

60

-name : String
-value : Object

ModelExecutor::Attribute

-eUId : String

ModelExecutor::Call

-dsc : DSC

ModelExecutor::DSCCall

ModelExecutor::EUCall

-modelId : String
-callbackProcedureDSC : DSC
-eUId : String

ModelExecutor::EventCallBack

ModelExecutor::EventRegister
*

1

-eventId : String

ModelExecutor::EventWaitCall

+executeModel()
+executeProcedure()

-model : IntentModel
-currentProcedure : Procedure

ModelExecutor::Executor1

*

* *
*

1

-attributes
-manager : StateManager

ModelExecutor::StateManager

1
1

1 *

1

1

iUCM_NCB_Interface

Figure 5.7: Model Executor Class Diagram

ter that handles event management; and the EventCallBack that handles various

calls that allow execution units to progress through a model. The Executor is pro-

vided access to the underlying Broker layer’s interface so as to facilitate API calls

made by execution units.

Our Model Executor initializes execution of a model by loading the initial exe-

cution unit of the root procedure. Each unit has the responsibility of ensuring pro-

gression through a procedure by directly executing, or registering for execution,

the next unit in sequence. Execution units may also call on a dependent procedure

if its capabilities are required. This call to a dependent procedure may be done

indirectly (via a DSC), or directly (via the procedure’s ID). If a call is made via a

DSC, the middleware will execute the starting execution unit of the procedure pre-

61

2.ModelReceived

2.ProcedureLoaded

/ loadInitProc(P)

3.EUExecuted

[!callback] / executeInitEU

[EUCall] / execute(EU)

[DSCCall] / loadProc(P)

[eventWaitCall] / persistCallState()

4.ModelPersisted

[nullCall && !initProc] / reenterCallingProc(P)

[callback] / executeCallbackEU

1.Ready

1.Ready
[nullCall&&initProc]

Figure 5.8: Model Execution Statechart Diagram

viously identified during the model generation process. The dynamic semantics of

this process is shown in Figure 5.8.

Our architecture is able to facilitate distributed execution via special control

messages passed viamiddleware specific events that are supported by the underly-

ing layer. These messages contain information on the executing procedure, and the

current state information on the executing node. Unlike thework ofAl-Jaroodi et al.

[1], our control messages are not predefined, but are instead dependent on a partic-

ular procedure’s implementation. The packing and unpacking of control messages

are handled by our middleware, while marshalling and dispatch are handled by

the underlying broker layer. This relieves the middleware of concerns relating to

guaranteeingmessage delivery as external communicationwith remote DSVMs in-

stances fall to the broker layer.

Upon receipt of these control messages by a remote instance of the middleware,

the provided data is first unpacked and registered in the state manager; subse-

quently, the procedurematching the UUID is loaded into a single-proceduremodel

and executed. A procedure that is written for distributed execution would, upon

initial execution, check whether it is being executed on the initial local host, or on

a remote host by the presence of absence of its predefined control data.

62

State Information and Access Control. The middleware must manage state informa-

tion that is used to coordinate inter and intra-procedural operations. It accom-

plishes this through the use of the State Manager that manages key/value pairs that

can be DSC attribute values as well as data generated by executing procedures.

EU Register. In order to facilitate distributed procedure execution (a procedure exe-

cuting in response to continuous events from a remote instance of the middleware,

e.g. during negotiation), the middleware must allow a procedure, or more specif-

ically its execution units, to respond to events. Our architecture facilitates this by

maintaining an register where execution units are registered to respond to specific

events, including those generated in response to the action of remote middleware

instances.

Repository. The repository of the platform houses the procedures, their execution

units, and the DSCs that describe them. It is possible to populate the repository

offline or at runtime. Runtime population may come as a result of incorporating an

Advertise and Discovery mechanisms that would allow a middleware instance to

obtain new procedures from other instances of the middleware or from an online

repository accessible by the platform [66].

5.4 Chapter Summary

In this chapter we detailed the facilities of our Generic Model of Execution, which

facilitates the realization of user intent in a particular domain via it’s specialization

through the provision of domain-specific artifacts. We showed the various sub-

systems of the platform that undertook the generation, validation, selection and

execution of intent models, as well as the programming model, which allows pro-

cedure writers to exploit the platforms resources. Additionally, we detailed the

interfaces present within the current design that allow for the extensibility of the

63

aforementioned first-class operations based on present design considerations. The

next chapter explores a method of validating generated intent models for compli-

ance with DSVM policies.

64

CHAPTER 6

VALIDATION OF INTENT MODELS

In this chapterwe present ourwork towards runtime validation of intentmodels

to guarantee correctness and policy compliance. Our method utilizes the Alloy

Analyzer and specification language to facilitate formal checking of intent models,

which provides robustness, efficiency, and automation.

6.1 Model Validation

Our approach to intent model validation requires the translation of a model’s rep-

resentation in our middleware architecture to that required by the Alloy Analyzer.

The analyzer uses the Alloy Specification Language [30]. Table 6.1 gives the map-

ping used in translating middleware intent models into Alloy models. The trans-

lation process is outlined in Algorithm 3.

Translation Method

We define our DSCs as abstract signatures in our model specification. This allows

us to express our procedures as extensions of their DSC base classes, as well as

allowing us to describe our policies utilizing type abstractions in Alloy in much the

same way as we do in our middleware architecture.

To express middleware policies, we utilize Alloy assertions, which allow us to

claim that a property or set of properties hold for the specified model. Assertions

in Alloy utilize a representation of first-order logic that facilitates references to arti-

facts in the definedmodel. Each policy can be expressed as its ownAlloy assertion,

or they may be joined together using logical conjunctions into a single assertion.

Once the set of assertions are described, they are verified using Alloy’s check

command. If the assertions hold, Alloy will be unable to generate any configu-

65

Algorithm 3 Model Translation
IN: Intent Model (IM)
OUT: Alloy Model

1: for all Procedure p in IM do
2: new abstract Sig : t = p.DSC
3: new Sig : s extends t = p.Name
4: for all DSC dsc in p.Depencencies do
5: newFact : s.contains←− sig(dsc)
6: /*
7: Alternatively, may utilize properties for simple relationships
8: */

rations that contradict them. If our assertions do not hold, Alloy will generate a

counterexamples that meets the given specifications, but contradict the assertions.

Since the specification is restricted to only generate the singlemodel under analysis,

the existence of a counterexample is indicative of that model being invalid. Such a

model can then be discarded from our candidate list for the current command as

its execution would not respect middleware policies.

It merits stating that this behavior in Alloy is a direct result of the restrictions

placed on our model translation process. In the general case, while the existence of

a single counterexample is evidence of a model’s invalidity, Alloy will generate all

possible counterexamples within scope to demonstrate the various invalid aspects

of the model.

The definition of a well formed intent model states that all DSCs, and their im-

plementing procedures, must be unique within the model. This reduces the com-

plexity involved in ensuring liveness when generating and executing these models.

This restriction also possesses the side effect of rendering the choice of quantifiers

as immaterial in the process of translation policies into assertions. The uniqueness

of DSCs ensures that ∃ ≡ ∀ since the assertion’s validity is unaffected by the choice.

We restrict the generation of multiple and superfluous configurations by uti-

lizing the one keyword when defining signatures. This ensures that only a single

instance of a signature will be present within the alloy model instance. This guar-

66

antees that the signature can only be associated with a single parent, and/or a set

of children in accordance with the definition of the associated intent model proce-

dure.

In Algorithm 3, we accept an intent model and step though its member pro-

cedures. As Alloy’s specification language is declarative, the order in which we

translate an intent model’s procedures is irrelevant. We then follow a set of pre-

defined translation rules for the DSCs, procedures and dependencies, generating a

set of Alloy signatures, properties and facts that describe the various aspects of our

intent model. The result is a semantically equivalent Alloy model specification.

Algorithm 4 augments our specification by generating a set of assertions from

our ECA policies. The event in our ECA policies are the commands being executed

by the middleware. When responding to and event, we are interested in two forms

of conditions - inclusive and exclusive - to determine the presence or absence of

a particular action in response to an event E. Actions are defined by their transi-

tive closure (denoted by ^). Use of the reflexive transitive closure (denoted by ∗)

is unnecessary as our intent models, with each procedure being singly classified

by a unique DSC, have no facility for the procedure denoted by the action to be

equivalent to the root procedure.

For completeness, we ensure that a signature is created for each action specified

in the Action clause of our policy. This results in disjoint objects within our gener-

ated Alloy models. Failing to perform this step however, results in the generation

of errors in Alloy whenever it attempts to evaluate as assertion that references a

non-existent signature. Since a signature that is not present in an associated intent

model, but created to satisfy an assertion definition will, by necessity, be disjoint

from themain structure that possesses the intentmodel’s root procedure as amem-

ber, there are no side effects to their presence in our validation process. Addition-

ally, whether or not these assertion-satisfying signatures are declared as abstract

67

Algorithm 4 Policy Translation
IN: ECA Policy Set (ECA_Set)
OUT: Alloy Assertion

1: new Assertion a
2: for all Policy p in ECA_Set do
3: if ! exists(sig(pol.A.DSC)) then
4: new Sig : t = p.A.DSC
5: /*
6: May be declared as abstract.
7: Alloy creates a single instance
8: if not extended by another sig
9: */
10: if pol.C is InclusiveCondition then
11: a←− ∀s : sig(p.E.DSC)|sig(p.A.DSC) ∈ s.^dependency
12: /* May be repeated for all dependencies */
13: else
14: a←− ∀s : sig(p.E.DSC)|sig(p.A.DSC) /∈ s.^dependency
15: /* May be repeated for all dependencies */

Table 6.1: Artifact Mapping

Middleware Artifact Alloy Artifact
DSCs Abstract Signatures
Procedures Signatures
Dependencies Facts and Properties
Policies Assertions

have no bearing on the resulting model as Alloy will only disallow the instantia-

tion of abstract signatures if there is at least one signature that extends it. The result

of our translation process is a full Alloy model specification that can be checked for

validity and, in the case of an invalid intent model, generate counterexamples that

can be visualized.

Model Validation

Having converted our intent models into an Alloy specification, and translating all

relevant ECA policies into their equivalent assertions, the process of validating an

intent model is reduced to checking a model for satisfiability with respect to the

assertion or set of assertions.

68

This process, of course, takes place at runtime in response to commands and

events received by the middleware, unlike conventional approaches that are gen-

erally undertaken as an offline process due to the properties that are traditionally

checked such as safety and fairness [10]. The runtime validation of intent models is

necessary as the validity of a model M in response to a event or command C, may

change over time. This can be as a result of changing environmental variables that

render a particular policy inapplicable. In [43] we discussed some approaches that

could help address efficiency issues resulting from runtime model validation.

6.2 Chapter Summary

This chapter detailed ourmethod of validating generated intent models for compli-

ance with Event Condition Action (ECA) policies present within the DSVM. Our

method utilized the Alloy Specification language and Alloy analyzer to facilitate

formal model checking of intent models. This was achieved through the trans-

lation of intent models and ECA policies into appropriate Alloy artifacts. Once

completed, the validity of an intent model could be determined by checking for the

satisfiability of the model’s Alloy representation against the requisite policies.

69

CHAPTER 7

EXPERIMENTATION

In this chapter we present a set of experiments and demonstrations that validate

our stated research goals and methodologies. We have segmented the chapter into

sections based on our major contributions, with overlap where necessary to show

the correctness or applicability of a particular contribution.

7.1 Generic Model of Execution

This section presents some comparative results between the current UCM imple-

mentation and a prototype of our new architectural design. Our initial tests were

designed to measure the potential runtime overhead of our model generation pro-

cess in a realistic scenario.

Objective: The objective of the first experiment is to determine the execution time

overhead for the intent model generation process in our middleware for a standard

domain deployment.

Method: We designed this experiment to measure the runtime overhead of our in-

tent model generation process in a realistic scenario. To do this, we curated a test

environment where we initialized a prototype with a set of 100 procedures to sim-

ulate a typical middleware layer implementation based on our analysis of the user-

centric communication domain. This analysis was performed by Wu et al. [64]

and details the operations of the communication domain. Of the provided proce-

dures, 10were designed to eithermatch the operation of the test command, ormeet

a dependency such that they would realize the maximum partition sum bound [20].

Thismeantwewould generate the largest possible set of well-formed intentmodels

from this set of 10 procedures. Based onWu et al. [64], we claim that this workload

70

supersedes the basic requirements of the communication domain, and therefore

provides a valid analysis of the expected overhead generated by our approach.

The entire processwas performedusingprocedure descriptors (meta-data), which

can be loaded independently of the execution units. These descriptors contain in-

formation on the classification of procedures, as well as their dependencies.

Setup: Experiments were performed on a 64-bit Fedora Linux based machine with

4.00 GB ofmemory and a quad core Intel i7 4-core CPU clocked at 1.8 GHz per core.

Our system ran the OpenJDK JRE version 1.7.

Process: As detailed in Listing 7.1, we first created a set of 10 procedures and asso-

ciated DSCs from the communication domain that would result in the desired set

of generated intent models:

Listing 7.1: Scenario Artifacts
/ / S e t up DSCs
DSC sendDSC = new DSC(" Send " , Type .OPER) ;
DSC encryptDSC = new DSC(" Encrypt " , Type .OPER) ;
DSC partDSC = new DSC(" Mult iPart " , Type .OPER) ;
DSC compressDSC = new DSC(" Compression " , Type .OPER) ;

/ / Dependency d e f i n i t i o n s
ArrayList <DSC> dependencies1 = new ArrayList <DSC> () ;
dependencies1 . add (encryptDSC) ;
ArrayList <DSC> dependencies2 = new ArrayList <DSC> () ;
dependencies2 . add (partDSC) ;
ArrayList <DSC> dependencies3 = new ArrayList <DSC> () ;
dependencies3 . add (compressDSC) ;

/ / P r o c e du r e s
Procedure procedure1 = new Procedure (" 0001 "
, " Send1 " , sendDSC , dependencies1) ;

Procedure procedure2 = new Procedure (" 0002 "
, " Send2 " , sendDSC , dependencies1) ;

Procedure procedure3 = new Procedure (" 0003 "
, " Send3 " , sendDSC , dependencies1) ;

Procedure procedure4 = new Procedure (" 0004 "
, " Encrypt1 " , encryptDSC , dependencies2) ;

Procedure procedure5 = new Procedure (" 0005 "
, " Encrypt2 " , encryptDSC , dependencies2) ;

Procedure procedure6 = new Procedure (" 0006 "
, " Encrypt3 " , encryptDSC , dependencies2) ;

Procedure procedure7 = new Procedure (" 0007 "
, " Part1 " , partDSC , dependencies3) ;

71

Procedure procedure8 = new Procedure (" 0008 "
, " Part2 " , partDSC , dependencies3) ;

Procedure procedure9 = new Procedure (" 0009 "
, "Compress1 " , compressDSC) ;

Procedure procedure10 = new Procedure (" 0010 "
, "Compress2 " , compressDSC) ;

Repository repo = Repository . ge t Ins tance () ;
repo . addProcedure (procedure1) ;
[. . .]
repo . addProcedure (procedure10) ;

In Listing 7.2 we generated a set of dummy procedures to simulate the existence of

resources not associated with the current command being executed:

Listing 7.2: Dummy Artifacts
DSC testDSC = new DSC(" Test " , Type .OPER) ;
for (in t i = 0 ; i < 90 ; i ++){

Procedure procedure = new Procedure (S t r ing . valueOf (i)
, " TestProcedure " , testDSC) ;

repo . addProcedure (procedure) ;
}

Finally, in Listing 7.3 we perform the model generation, validation and selection

steps detailed in Section 5.3.2:

Listing 7.3: Scenario Execution
for (in t i = 0 ; i < cyc l e s ; i ++){

/ / Find a l l mode l s t h a t match command
ArrayList <IntentModel > matchingModels =
(new NaiveGenerator ()) . generateModels (in i t i a lDSC) ;
/ / Find v a l i d mode l s b a s e d on us e r p r e f e r e n c e s
ArrayList <IntentModel > validModels = (new NaiveValidator ()) .

val idateModels (matchingModels , encryptDSC) ;
/ / Find t h e b e s t model b a s e d on c o s t
IntentModel bestModel =
(new NaiveSelec tor ()) . getBestModel (validModels) ;

}

Results: Our set of 100 procedures resulted in the generation of 36 intentmodels (3×

3× 2× 2) that are detailed below. We validated our model against a DSC known to

be present in all intent models, therefore ensuring that no models were eliminated

from the candidate list, and passing all 36 models to the model selection phase.

72

Milliseconds
Cycles Min Max Average Total
1 114 144 114 114
10 10 105 36 366
100 3 108 8 817
1000 1 111 2 2205
10000 1 112 1 13632
100000 1 118 1 125899

Table 7.1: Model Generation Timing

Finally our prototype selected a model for execution based on procedure count,

this selection was done using our naive cost analysis implementation that uses the

number of procedures as the cost factor. The evaluation results are presented in

Table 7.1.

Discussion: The values in Table 7.1 provide us some guidance on how the execution

times involved in generating, validating and selecting intent models in response to

commands and events.

Recall we used the procedure descriptors to generate the intent models that can

be loaded independently of the execution units. This reduces the overall memory

footprint of a procedure to the bare minimum required for the generation of an

intent model. Execution units need only be fetched into memory at the time of exe-

cution. As the results of our prototype evaluation show, we are able to perform the

full generation, validation and selection process in the order of micro seconds. We

believe that these results demonstrate the appropriateness of our architecture for

many domains, even those that may have a very high responsiveness requirement

such as smart electrical grid management [2].

As depicted in Table 7.1 and illustrated in Figure 7.1, we are not only able to gen-

erate intent models within the requirements of high-response domains, but we are

also able to generate these intent models with increasing efficiency as we increase

73

Sheet1

Page 1

1 10 100 1000 10000 100000
0

20

40

60

80

100

120

140

Min

Avg

Max

Cycles

M
il
li
s

e
c
o

n
d

s

Figure 7.1: Minimum, maximum and average model generation times

cycles. This is due in part to our implementation that can more efficiently manage

procedures that are already resident in memory.

Threats to Validity: Although the results in Table 7.1 provide us an estimate of the

cost of generating, validating and selecting intent models in a given domain, we ac-

knowledge that the operating times depend heavily on the definition of domain op-

erations and the resulting granularity of procedures and DSCs. The time complex-

ity of model generation is exponential with respect toN , whereN is the number of

available procedures, and model execution time increases proportionally with the

granularity of procedures and execution units. The space complexity of our model

generation process is also exponential, which is salient in our analysis as it may

have a measurable effect on memory access times for a non-trivial amount of pro-

cedures. Additionally, our prototyping environment did not incorporate changing

74

system or environmental contexts, which could result in reduced operational time,

or incur additional memory requirements.

We attempted to normalize the inherent non-determinacy of Java’s JIT as pre-

sented by Georges et al. [26] through large sets of cycles to determine timing, as

well as presenting various statisticalmeasures, howeverwe acknowledge that some

aspects of achieving full analysis of the Java Virtual Machine remain unaddressed.

We then went on to evaluate the execution of the real world scenario of transfer-

ring a single 10 megabyte file in both an encrypted and non-encrypted form. This

operation was performed on the current version of the CVM and our proposed

architecture. Our measurements are broken down into 3 areas:

1. The time to generate a model (if needed) including access to the repository to

load the necessary metadata

2. The time to load the needed components for adaptation

3. The time to perform encryption (if needed) using an external tool called by

our middleware

Experiment 2 Setup: Both systems were executed on Java version 1.6 using Eclipse

Helios Service Release 2. They both incorporated the Janino Java compiler for run-

time class loading on aWindows 7 Enterprise basedmachine with 4.00 GB ofmem-

ory and a dual core Intel CPU clocked at 2.40 GHz per core.

Our experiments were done using an unoptimized approach where compo-

nentswere not preloaded intomemory prior tomodel generation. This was done to

(1) present a less than ideal case to demonstrate that our approach still performed

reasonably well despite the added overhead, and (2) we found that when optimiza-

tion strategies were applied, Java did not provide us with the necessary timing res-

olution to make any conclusive claim about the differences.

75

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Unencrypted Context-aware
unencrypted

Encrypted Context-aware
encrypted

Ti
m

e
(m

s)

Model generation Component loading Encryption (10 MB)

Figure 7.2: Variable File Transfer Operation

For our adaptive system, we curated a set of 10 procedures that would meet

the Maximum Product Over Partition bound. This resulted in the generation of 36

models that were able to perform the requested operation. Additionally, the run-

time procedure list was populated with the meta data of 90 dummy procedures

for a total of 100. This far outnumbers the required procedure set for the aver-

age instance of the two domains we have investigated so far, namely the CVM and

MGridVM.

Experiment 2 Results: The results of the experiments as shown in Figure 7.2. As both

systems incorporate reflection through runtime code compilation and loading, they

both experience degraded performance performance compared to direct execution

of an operation in a non-adaptable system. However, as the current UCM does not

incorporate any context aware adaptation, and because it does not compose its op-

erational facilities from multiple components, it has a slight advantage in arriving

76

at the cusp of execution compared to our proposed solution. Acknowledging this

disparity, we make the following claims:

1. Although slower on arriving at execution plan due to the model generation,

our approach can achievemuch lower execution times by composing its intent

models of more efficient procedures based on system context. For example,

to remove the requirement of including an encryption procedure when per-

forming a file transfer if the current connection or network is already secure.

2. Due to the lack of policy awareness with the UCM, the current CVM must

expose operational variability at the language level. This will invariably (1)

increase the complexity of of designing a communication schema as their are

more elements in the language, (2) increase the complexity of synthesizing

the CML model provided by to the SE by the UI, and (3) decrease the level of

assurance in the execution of an operation as a CML model may incorporate

elements that do not comply with current system policies.

3. To reduce the cases of schemas not meeting needed business policies (such

as HIPAA [59]), and to mitigate the necessity of modifying those schemas by

users that may lack the necessary technical knowledge, schemas designed for

the currentUCMmay choose themost strict operations (such as encrypted file

transfers instead of plan text). This design choice, which addresses the issues

listed, may result in longer execution times than is required as the current

system contextmay not have required that a file be encrypted prior to transfer.

Our claims are demonstrated in Figure 7.3 where we simulate a set of file trans-

fer operations in the cases where encryption may or may not be required. As you

can see, to reduce complexity the current implementation of CVM utilizes encryp-

tion for all transfers, which greatly increases the overall operational time for re-

sponding to the file transfer request. The context aware approach however, which

77

0

5

10

15

20

25

30

35

40

45

50

100% Encrypted 50/50 100% Unencrypted

Ti
m

e
(s

)

Content-unaware transfer

Context-aware transfer

Figure 7.3: Simulated Transfer of 10 files

has the ability to decide on whether or not file encryption is necessary, is able to

achieve greatly reduced operational time even when considering the time taken for

the model generation process.

7.2 Model Validation

Here we present a demonstrative scenario of our validation process. We will show

a set of intent models generated for a specific control script command, the Alloy

model representations resulting from our translation process, as well as the trans-

lation and application of policies to validate the functionality of the intent models

through assertions.

7.2.1 Middleware Artifacts

In this scenario we instantiated the middleware for a DSVM, CVM - Communica-

tion Virtual Machine 1, responsible for managing user-centric communication be-

tween individuals within an organization. It has available a list of appropriate pro-

cedures for the communication domain. Table 7.2 presents the subset of available
1http://cml.cs.fiu.edu/cvm/cvm.html

78

Table 7.2: Subset of Middleware procedures

Name DSC Deps
SendBasic Send
SendSecure Send {Encrypt}
SendCompress Send {Compress}
SendSecComp Send {Encrypt, Compress}
PKIEncrypt Encrypt
GZipCompress Compress
.

Figure 7.4: Scenario Intent Models: Send command

procedures that factor into our example. A communication has been established

between two individuals over an unsecured connection, and the initiator wishes to

send a file to the other connected party. The middleware receives a control script

that includes the command to perform a file transfer from one party to the other.

The model generation process is triggered and a candidate list of intent models is

created that are capable of performing the requested action. Themodels alongwith

their composite procedures and associated type definitions are presented in Figure

7.4.

Governing the operation of the middleware with regards to file transfers over

unsecured networks are two policies derived from business rules. The first stip-

ulates that due to the sensitive nature of data housed in the system, all file trans-

fers must be performed securely. This is interpreted as requiring that all files be

79

encrypted prior to transfer. The second states that all files should be transferred

uncompressed due to the burden involved in managing compression when secu-

rity is required on resource constrained devices. These restrictions are presented

as Event Condition Action policies shown in Figure 7.5

7.2.2 Translation

Following the steps described in algorithms 3 and 4, we are able to translate the

intent models depicted in Figure 7.4.The resulting Alloy model specifications for

the final two intent models in Figure 7.4 are shown in listings 7.4 and 7.5. The two

selected intentmodels and their resultingmodel specifications depict themain con-

ditionswewish to demonstrate; the validity and invalidity of an intentmodel based

on the presence or absence of a procedure per user and system policies. Based on

the policies listed in Figure 7.5, we expect a model to be valid iff it includes a proce-

dure classified by the Send DSC, and excludes any procedure of the type Compress.

7.2.3 Validation

When Alloy checks the send_policy assertion of the Alloy specification in Listing

7.4, it results in the generation of a counterexample (Figure 7.6), which is, of course,

exactly our described model. This is to be expected as the model clearly violates

our second policy (See Figure 7.5), which prohibits file compression in any valid

intent model. As our assertion does not hold for the described model specification,

the associated intent model SendSecComp from Figure 7.4 can be removed from the

candidate list of generated intent models.

(1) if (Send) {Send(FileURI)→ Encrypt(FileURI)}
(2) if (Send) {Send(FileURI)→ Compress(FileURI)}

Figure 7.5: Middleware Polices using DSCs

80

Listing 7.4: SendSecComp translated to Alloy

/*
An Allow specification for
the SendSecComp intent model.
It cointains 3 abstract
signatures used to represent
DSCs , and 3 signatures that
extend the abstract signatures
and represent procedures.
Signature names are inherited
from the associated procedures
and DSCs in the analogous
intent model
*/

abstract sig SEND {}
one sig SendSecComp extends SEND {

d1 : one ENCRYPT ,
d2 : one COMPRESS

}
abstract sig COMPRESS {}
one sig GZipCompress extends COMPRESS {}
abstract sig ENCRYPT {}
one sig PKIEncrypt extends ENCRYPT {}

/*
Assertion for active policies
*/
assert send_policy {
∀ p : SEND • ((ENCRYPT in p.d1)

or (ENCRYPT in p.d2))
and ((COMPRESS not in p.d1)

and (COMPRESS not in p.d2))
}

check send_policy

Checking the equivalent policy against the model specification in Listing 7.5

however, results in the absence of counterexamples, which gives us a high degree

of certainty that our model is valid based on Alloy’s "complete up to scope" prop-

erty [31]. The validity of the model can be trivially observed as a dependency can

be seen between the root procedure and the required functionality while the un-

wanted function is simultaneously excluded. This model therefore remains in our

candidate list and moves on to the selection step in out model generation process

shown in Figure 4.1.

81

Figure 7.6: Alloy Counterexample

Listing 7.5: SendSecure translated to Alloy

/*
An Allow specification for the
SendSecure intent model. It
cointains 2 abstract signatures
used to represent DSCs ,
2 signatures that inherit from
abstract signatures , and another
signture that represents an
action from the active policy.
Signature names are inherited
from the associated procedures
and DSCs in the analogous
intent model
*/

abstract sig SEND {}
one sig SendSecure extends SEND {

d1 : one ENCRYPT
}
abstract sig ENCRYPT {}
one sig PKIEncrypt extends ENCRYPT {}
one sig COMPRESS {}

/*
Assertion for active policies
*/
assert send_policy {
∀ p : SEND • ((ENCRYPT in p.d1)

and (COMPRESS not in p.d1))
}

check send_policy

7.2.4 Comparative Analysis

The aforementioned approach to functionality validation enhances our ability to

constrain intent model execution based on policies. Previously, our abilities to an-

82

alyze the behavior of an intent model was limited to ensuring that a procedure of

a type specified in a relevant policy was present in the intent model (See Policy 1

in Figure 7.5). This limitation not only prevented us from more complex modes of

analysis, such as checking for the absence of a procedure (See Policy 2 in Figure

7.5), but we were also unable to verify that the right dependencies were being met,

relegating the responsibility to the feature analysis phase of the domain-specific

knowledge encapsulation, and subsequent design of procedures and their depen-

dencies. For example, in our previous approach it would be possible for a model

M to contain a procedure of type X with a dependency on type Y.

If a policy dictated that for some event with a matching procedure of type E

there should be a function of type Y present in the resulting intent model, the intu-

itive interpretation is that Y should be a dependency of E, however our validation

process did not take into account that Y was not a direct dependency, but instead

simply verified its presence (Figure 7.7). In this scenario, we are unable to verify

if the resulting execution of Y would result in policy compliance. The described

behavior required that the procedure writer ensure that Y would only be present

in M for an event E iff Y was a dependent of E. This increased the complexity of

domain analysis and procedure development.

7.3 MicrogridVM

We will demonstrate the multi-domain applicability of our approach by outlining

a relevant scenario in the smart microgrid domain, and detailing the set of artifacts

and processes resulting in the realization of the user’s intent.

Scenario

An MGridVM instantiation is responsible for managing the electrical power needs

of a small home. The VM has in place a policy that specifies that if the system is

83

Figure 7.7: Inconsistent Model Validation

in islanding mode (that is, it is not connected to the main utility, but instead receives

power from a series of local power sources), then before any new load can become

operational, the current power consumption must be checked to ensure that there

is enough energy tomeet the requirements of the new device. If sufficient energy is

unavailable, then enough low-priority loads must be shed to allow the new load to

become operational. To restate it simply, we want to ensure that we are generating

enough power to handle any new load, and if we are not generating enough power,

then shed old loads until we have the remaining power is sufficient.

The homeowner attempts to power on a light bulb, listed as a load in theMGridVM

UI, by toggling its state from off to on. This results in a newusermodel being passed

to the synthesis engine, which, after synthesis, results in the generation of a control

script containing the command to power on the light bulb.

84

Name Kind
1 Device attr
2 Controller attr
3 PropertyName attr
4 PropertyValue attr
5 IslandMode attr
6 AddLoad(Controller, Device) oper
7 RemoveLoad(Load) oper
8 AddSource(Controller, Device) oper
9 RemoveSource(Source) oper
10 SetDeviceProperty(Device, PropertyName, PropertyValue) oper
11 ShedLoad oper
12 CheckWattage oper

Table 7.3: A subset of DSCs for the microgrid domain.

MGridVM Instance

Currently, the system is in islandingmode, whichmeans it is disconnected from the

main utility and is instead being powered by local sources. As a result of this, we

have a policy in place determining how to handle new loads becoming operational

as seen in Figure 7.8.

Table 7.3 lists a subset of DSCs currently present in our DSVM. DSCs 1 - 9 share

an association with the Control Script commands shown in Figure B.1, while the

remainder are only related to actions internal to the middleware with no external

relationships. Table 7.4 details a subset of procedures available for use in our sce-

nario.

(1) if (IslandMode) {AddLoad()→ ShedLoad()}

Figure 7.8: MGrid Policy

85

Name DSC Deps
EnableLoad AddLoad
DisableLoad RemoveLoad
PrepareAndEnableLoad AddLoad {ShedLoad}
ReservePower ShedLoad
.

Table 7.4: Subset of MGrid Middleware procedures

PrepareAndEnableLoad:AddLoad

ReservePower:ShedLoad

PrepareAndEnableLoadEnableLoad

EnableLoad:AddLoad

Figure 7.9: Scenario Intent Models: Send command

Model Generation

Upon receipt of the control script containing the AddLoadDeviceCmd command,

our middleware enumerates a set of candidate models using Algorithms 1 and 2.

This results in the set of candidate models seen in Figure 7.9.

Once generated, our candidate list is then validated to cull all intentmodels that are

not in compliance with the policy in Figure 7.8. As detailed in Chapter 6, the val-

idation of intent models is accomplished through a transformation to their repre-

sentative Alloy specifications and subsequent analysis by the Allow Analyzer. The

Alloy specifications, along with the translated policy, for the EnableLoad and Pre-

86

Figure 7.10: Alloy Counterexample

pareAndEnableLoad intent models are shown in Listings D.1 and D.2 respectively.

The subsequent analysis of the aforementioned specifications results in the counter-

example shown in Figure 7.10, whichmatched the EnableLoad intentmodel, as this

model does not comply with the relevant policy.

The remainingmodel, PrepareAndEnableLoad, is then passed to theModel Ex-

ecutor to realize the user intent.

87

CHAPTER 8

CONCLUSION

This chapter presents a summary of the contributions put forward in our disser-

tation in attempting to address the issues detailed in Chapter 1. We also introduce

directions for future research based on our findings and conclusions.

8.1 Summary of Research

In this dissertationwepresented an adaptivemiddleware design for domain-specific

virtual machines (DSVM). This design dynamically integrates decoupled domain-

specific knowledge (DSK) that has been captured in a set of artifacts that describe

the relevant state and behavior, with a model of execution (MoE) to support the de-

livery of domain-specific services. The DSK is captured through the use of proce-

dures that perform operations relevant to the domain, and a set of domain specific

classifiers (DSCs) that categorize them. DSCs perform this categorization by acting

as a labeling system that describes the type of a procedure, as well as by describing

first-class state information. Once a middleware instance has been specialized for

a particular domain, the MoE provides a platform where procedures are dynami-

cally composed into intent models based on their type classification, and executed

based on the context in which a request is made by the layers surrounding the

DSVM middleware. An intent model is selected for execution following the full

enumeration of all possible intent models based on the types and dependencies of

available procedures.

Our architecture performs validation of intentmodels for execution against Event

ConditionAction policies at runtime through the use of first-order logic and theAl-

loy Analyzer. This was accomplished through the development of a methodology

for the translation of middleware artifacts into Alloymodel specifications and ECA

88

policies into Alloy assertions. This reduced the process of intent model validation

to satisfiability checking in Alloy through the attempted generation of counterex-

amples. This approach provides robustness in our validation process, which in turn

extends the capabilities of our DSVMwith respect to the expressiveness of user and

system policies, as well as the overall correctness of dependency validation. We

demonstrated the efficacy of our approach using case studies of conventional use

cases within the communication and microgrid domains. The analysis performed

resulted in the generation of counter examples for invalid models, and provable

correctness for valid models.

Experiments were performed to determine the overhead required by the pro-

posed design and the results show that the increased execution times are accept-

able for the domains under investigation given the functionality of themiddleware.

Our approach to dynamically composing intent models result in quadratic space

and time complexity, which is consideredmanageable overhead in themodel gener-

ation process when compared to the operations of the original middleware design.

Our approach also provides benefits in overall operation execution time due to its

ability to determine at runtime an optimum execution path.

8.2 Future Work

Our work on the DSVM middleware has identified several questions that require

further investigation in order to fully realize the true potential of our architectural

design. Some of these questions focus on optimization of theMoE, such as, the pre-

generation of models representing the procedures and domain-specific classifiers,

and a caching mechanism that provides a smarter approach to generating models.

Other questions will focus on the selection of the most appropriate model when

multiple models apply based on the context of the currently executing command,

and dynamic validation of the models to reduce execution times. Additionally, ex-

89

panding on the current approach to the intent model generation process by inves-

tigating methods of potentially amalgamating model generation, validation, and

selection to provide a more robust mechanism for evaluating the adequacy of ex-

ecuting a model given current system context. Additionally, we acknowledge the

potential applicability of our approach of intent model generation and autonomic

execution path selection to other domains that incorporate intent realization.

We plan to expand on this research in various directions. Our main areas of

focus are 1) improved efficiency and robustness, 2) behavioral adaptation, and 3)

applicability across platforms.

8.2.1 Improved Efficiency and Robustness

The operations of our architecture fall into 4 major categories: generation, valida-

tion, selection, and execution. Ourmajor focus thus far has been to realize sufficient

generation and execution operations that are able to meet the requirements of the

domains under investigation for instantiating a DSVM. We intend to broaden our

focus to achieve more efficient and robust model validation and selection. This will

include investigating additional formal model checking methods, as well the po-

tential amalgamation of the validation and selection steps. This would require a

formalization of a generic cost specification for procedure execution. We hope to

use this mechanism to potentially allow a procedure developer to detail the cost of

execution regardless of themethod or stage at which the cost analysis is performed.

8.2.2 Behavioral Adaptation

Our architecture currently addresses structural runtime adaptation. That is, we

determine the semantics of domain-specific operations at runtime by composing

disparate executable components, allowing for the steps involved in performing a

given task to vary over time based on context. We intend to augment this func-

90

tionality by facilitating the adaptation of our first-class domain-independent oper-

ations - model generation, execution, validation and selection - based on additional

context, such as system resources. These adaptations should be transparent to all

domain-specific concerns.

Offline adaptation

We intent to investigate the use of offline adaptation to allow a middleware to be

instantiated with varying implementations of first-class operations. For instance,

we would allow for a light weight model generation process if the middleware is

being instantiated on a mobile device whereas a more robust implementation may

be provided for a desktop computer.

Runtime adaptation

Additionally, wewill investigate runtime behavioral adaptation, allowing first-class

operations to be automatically hot-swapped as runtime based on environmental con-

text, such as reduced battery or processing power.

8.2.3 Cross platform applicability

Finally, we intend to investigate the applicability of our runtime composition ap-

proach to adaptation for current and emerging paradigms, such asmobile andweb,

as the classification of operations and the use of delegation for performing these

operations gain traction.

91

BIBLIOGRAPHY

[1] J. Al-Jaroodi, N. Mohamed, H. Jiang, and D. Swanson. Middleware infrastruc-
ture for parallel and distributed programming models in heterogeneous sys-
tems. Parallel and Distributed Systems, IEEE Transactions on, 14(11):1100–1111,
2003.

[2] M. Allison, A. A. Allen, Z. Yang, and P. J. Clarke. A software engineering
approach to user-driven control of the microgrid. Software Engineering and
Knowledge Engineering, 2011.

[3] M. Allison, K. Morris, Z. Yang, P. Clarke, and F. Costa. Towards reliable smart
microgrid behavior using runtimemodel synthesis. InHigh-Assurance Systems
Engineering (HASE), 2012 IEEE 14th International Symposium on, pages 185–192,
2012.

[4] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems.
In Logic in Computer Science, 1990. LICS ’90, Proceedings., Fifth Annual IEEE Sym-
posium on e, pages 414–425, 1990.

[5] U. Bellur and N. Narendra. Towards a programming model and middleware
architecture for self-configuring systems. In Communication System Software
and Middleware, 2006. Comsware 2006. First International Conference on, pages 1
–6, 0-0 2006.

[6] N. Bencomo. On the use of software models during software execution. In
Modeling in Software Engineering, 2009. MISE ’09. ICSE Workshop on, pages 62
–67, may 2009.

[7] P. A. Bernstein. Middleware: a model for distributed system services.
Commun. ACM, 39(2):86–98, Feb. 1996. http://doi.acm.org/10.1145/230798.
230809.

[8] P. Boettner, M. Gupta, Y. Wu, and A. A. Allen. Towards policy driven self-
configuration of user-centric communication. In Proceedings of the 47th An-
nual Southeast Regional Conference, ACM-SE 47, pages 35:1–35:6, New York, NY,
USA, 2009. ACM. http://doi.acm.org/10.1145/1566445.1566493.

[9] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of push-
down automata: Application to model-checking. In A. Mazurkiewicz and

92

J. Winkowski, editors, CONCUR ’97: Concurrency Theory, volume 1243 of Lec-
ture Notes in Computer Science, pages 135–150. Springer BerlinHeidelberg, 1997.
http://dx.doi.org/10.1007/3-540-63141-0_10.

[10] J. Burch, E. Clarke, K.McMillan, D.Dill, andL.Hwang. Symbolicmodel check-
ing: 1020 states and beyond. Information and Computation, 98(2):142 – 170, 1992.

[11] M. R. Center". What is middleware?, 2005. http://web.archive.org/web/
20120629211518/http://www.middleware.org/whatis.html.

[12] K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson. Semantic anchor-
ing with model transformations. InModel Driven Architecture–Foundations and
Applications, pages 115–129. Springer, 2005.

[13] B.H. Cheng, R. Lemos, H.Giese, P. Inverardi, J.Magee, J. Andersson, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkel-
stein, C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer,
M. Litoiu, S. Malek, R. Mirandola, H. A. Müller, S. Park, M. Shaw, M. Tichy,
M. Tivoli, D. Weyns, and J. Whittle. Software engineering for self-adaptive
systems: A research roadmap. In B. H. Cheng, R. Lemos, H. Giese, P. Inver-
ardi, and J. Magee, editors, Software Engineering for Self-Adaptive Systems, pages
1–26. Springer-Verlag, Berlin, Heidelberg, 2009. http://dx.doi.org/10.1007/
978-3-642-02161-9_1.

[14] S. Chiba. Load-time structural reflection in java. In ECOOP 2000—Object-
Oriented Programming, pages 313–336. Springer, 2000.

[15] S. Cho, H. Kim, S. Cha, andD.-H. Bae. Specification and validation of dynamic
systems using temporal logic. Software, IEE Proceedings -, 148(4):135–140, Aug
2001.

[16] E. Clarke, O. Grumberg, and D. Peled. Model Cheking. Mit Press, 1999. http:
//books.google.com/books?id=Nmc4wEaLXFEC.

[17] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans. Pro-
gram. Lang. Syst., 8(2):244–263, Apr. 1986. http://doi.acm.org/10.1145/5397.
5399.

[18] P. J. Clarke, Y. Wu, A. A. Allen, F. Hernandez, M. Allison, and R. France.
Towards dynamic semantics for synthesizing domain-specific models. In
M.Mernik, editor, Formal and Practical Aspects of Domain-Specific Languages: Re-
cent Developments., chapter 9, pages 242 – 269. IGI Global, 2012.

[19] Y. Deng, S. M. Sadjadi, P. J. Clarke, V. Hristidis, R. Rangaswami, and Y. Wang.
Cvm – a communication virtual machine. Journal of Systems and Software,
81(10):1640 – 1662, 2008. http://www.sciencedirect.com/science/article/pii/
S016412120800037X.

93

[20] T. Došlić. Maximum product over partitions into distinct parts. Journal of
Integer Sequences, 2005.

[21] F. Eliassen, A. Andersen, G. Blair, F. Costa, G. Coulson, V. Goebel, O. Hansen,
T. Kristensen, T. Plagemann, H. Rafaelsen, K. Saikoski, andW. Yu. Next gener-
ation middleware: requirements, architecture, and prototypes. In Distributed
Computing Systems, 1999. Proceedings. 7th IEEE Workshop on Future Trends of,
pages 60 –65, 1999.

[22] M. Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edi-
tion, 2010.

[23] R. France and B. Rumpe. Model-driven development of complex software: A
research roadmap. In Future of Software Engineering, 2007. FOSE ’07, pages 37
–54, may 2007.

[24] M. Frappier and A. Mammar. An assertions-based approach to verifying the
absence property pattern. In Software Reliability Engineering (ISSRE), 2012 IEEE
23rd International Symposium on, pages 361–370, Nov 2012.

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstraction
and reuse of object-oriented design. InM. Broy and E. Denert, editors, Pioneers
and Their Contributions to Software Engineering, pages 361–388. Springer Berlin
Heidelberg, 2001.

[26] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java perfor-
mance evaluation. SIGPLAN Not., 42(10):57–76, Oct. 2007.

[27] A. Ghosh, S. wei Li, C. Chiang, R. Chadha, K. Moeltner, S. Ali, Y. Kumar, and
R. Bauer. Qos-aware adaptive middleware (qam) for tactical manet applica-
tions. In MILITARY COMMUNICATIONS CONFERENCE, 2010 - MILCOM
2010, pages 178–183, 2010.

[28] P. Gluck and G. Holzmann. Using spin model checking for flight software
verification. In Aerospace Conference Proceedings, 2002. IEEE, volume 1, pages
1–105–1–113 vol.1, 2002.

[29] V. H. Hieu and H. D. Hai. An application-aware adaptive middleware archi-
tecture for distributed multimedia systems. In Communications and Electronics,
2006. ICCE ’06. First International Conference on, pages 141–146, 2006.

[30] D. Jackson. Software abstractions. MIT press Cambridge, 2006.

[31] D. Jackson. Alloy: a language and tool for relational models. http://alloy.mit.
edu/alloy/documentation.html, 2012.

[32] T. Jiang, X. Wang, and Y. Yu. A formal definition of the structural semantics
of domain-specific modeling languages. In Information Science and Engineering
(ICISE), 2010 2nd International Conference on, pages 1696–1699, 2010.

94

[33] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis. Technical Report CMU/SEI-90-TR-21, CMU, Nov
1990.

[34] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Gener-
ation. Wiley-IEEE Computer Society Pr, Mar. 2008.

[35] P. Kelsen. A simple static model for understanding the dynamic behavior of
programs. In Program Comprehension, 2004. Proceedings. 12th IEEE International
Workshop on, pages 46–51, 2004.

[36] A. Kleppe. Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, 1 edition, 2008.

[37] J. Kramer and J. Magee. Self-managed systems: an architectural challenge. In
Future of Software Engineering, 2007. FOSE ’07, pages 259 –268, may 2007.

[38] J. Ma, D. Zhang, G. Xu, and Y. Yang. Model checking based security policy
verification and validation. In Intelligent Systems and Applications (ISA), 2010
2nd International Workshop on, pages 1–4, May 2010.

[39] G. Madl, S. Abdelwahed, and D. Schmidt. Verifying distributed real-time
properties of embedded systems via graph transformations and model check-
ing. Real-Time Systems, 33(1-3):77–100, 2006.

[40] P. McKinley, F. Samimi, J. Shapiro, and C. Tang. Service clouds: A distributed
infrastructure for constructing autonomic communication services. In De-
pendable, Autonomic and Secure Computing, 2nd IEEE International Symposium
on, pages 341–348, 2006.

[41] S. J. Mellor and M. J. Balcer. Executable UML: a foundation for model-driven ar-
chitecture. Addison-Wesley Professional, 2002.

[42] B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel, A. Solberg, V. Dehlen, and
G. Blair. An aspect-oriented and model-driven approach for managing dy-
namic variability. In K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M. Völter,
editors, Model Driven Engineering Languages and Systems, volume 5301 of Lec-
ture Notes in Computer Science, pages 782–796. Springer BerlinHeidelberg, 2008.
http://dx.doi.org/10.1007/978-3-540-87875-9_54.

[43] K. Morris, J. Wei, P. Clarke, and F. Costa. Towards adaptable middleware
to support service delivery validation in i-dsml execution engines. In High-
Assurance Systems Engineering (HASE), 2012 IEEE 14th International Symposium
on, pages 82 –89, Oct. 2012.

[44] S. Nakajima. Verification of web service flows with model-checking tech-
niques. In Cyber Worlds, 2002. Proceedings. First International Symposium on,
pages 378–385, 2002.

95

[45] I. A. Niaz and J. Tanaka. An object-oriented approach to generate java code
from uml statecharts. International Journal of Computer & Information Science,
6(2):315–321, 2005.

[46] G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.
Program., 60-61:17–139, 2004.

[47] S. Ramanathan, I. Rodriguez, and K. Drira. Adaptive middleware architecture
for group communication activities. In New Technologies of Distributed Systems
(NOTERE), 2011 11th Annual International Conference on, pages 1–7, 2011.

[48] V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang. Middleware for pervasive
computing: A survey. Pervasive Mob. Comput., 9(2):177–200, Apr. 2013.

[49] R. Romeikat and B. Bauer. Formal specification of domain-specific ECA policy
models. In Theoretical Aspects of Software Engineering (TASE), 2011 Fifth Inter-
national Symposium on, pages 209 –212, aug. 2011.

[50] S. M. Sadjadi. A survey of adaptive middleware. Technical Report MSU-CSE-
03-35, Michigan State University, 2003.

[51] R. E. Schantz and D. C. Schmidt. Middleware for distributed systems: Evolv-
ing the common structure for network-centric applications. Encyclopedia of
Software Engineering, 1, 2002.

[52] D. C. Schmidt and F. Buschmann. Patterns, frameworks, and middleware:
Their synergistic relationships. InProceedings of the 25th International Conference
on Software Engineering, ICSE ’03, pages 694–704, Washington, DC, USA, 2003.
IEEE Computer Society.

[53] J. Shao, H. Wei, Q. Wang, and H. Mei. A runtime model based monitoring
approach for cloud. In Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 313–320, 2010.

[54] J. Smith and R. Nair. The architecture of virtual machines. Computer, 38(5):32–
38, May 2005.

[55] T. Stahl, M. Voelter, J. Bettin, A. Haase, S. Helsen, and K. Czarnecki. Model-
Driven Software Development: Technology, Engineering, Management. John Wiley
& Sons, first edition, 2006.

[56] S.-W. Suthon, G. M. Ong, and H. Pung. An adaptive end-to-end qos manage-
ment with dynamic protocol configurations. In Networks, 2002. ICON 2002.
10th IEEE International Conference on, pages 106–111, 2002.

[57] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, D. Cheung-Foo-Wo, E. Callegari,
and M. Riveill. Wcomp middleware for ubiquitous computing: Aspects and
composite event-based web services. Annals of Telecommunications - Annales
des Télécommunications, 64(3-4):197–214, 2009.

96

[58] A. Tsutsui, H. Maeomiti, R. Kawamura, and K. Yata. An adaptive communi-
cation middleware for network service coordination. In Consumer Communi-
cations and Networking Conference, 2004. CCNC 2004. First IEEE, pages 406–411,
2004.

[59] United States Congress. Health insurance portability and accountability act.
U.S. Department of Health & Human Services.

[60] P. Veríssimo, V. Cahill, A. Casimiro, K. Cheverst, A. Friday, and J. Kaiser. Cor-
tex: Towards supporting autonomous and cooperating sentient entities. In
Proceedings of European Wireless 2002, pages 595–601, Florence, Italy, Feb. 2002.

[61] S. Vinoski. An overview of middleware. In A. Llamosí and A. Strohmeier,
editors, Reliable Software Technologies - Ada-Europe 2004, volume 3063 of Lecture
Notes in Computer Science, pages 35–51. Springer Berlin Heidelberg, 2004. http:
//dx.doi.org/10.1007/978-3-540-24841-5_3.

[62] X.Wang, M. Chen, H.-M. Huang, V. Subramonian, C. Lu, and C. Gill. Control-
based adaptivemiddleware for real-time image transmission over bandwidth-
constrained networks. Parallel and Distributed Systems, IEEE Transactions on,
19(6):779–793, 2008.

[63] Y. Wu, A. Allan, Y. Wang, F. Hernandez, P. J. Clarke, and Y. Deng. A user-
centric communication middleware for CVM. Software Engineering and Appli-
cations, 2008.

[64] Y.Wu, A. A. Allen, F. Hernandez, R. France, and P. J. Clarke. A domain-specific
modeling approach to realizing user-centric communication. Software: Practice
and Experience, 42(3):357–390, 2012. http://dx.doi.org/10.1002/spe.1081.

[65] Y. Wu, F. Hernandez, P. Clarke, and R. France. A DSML for coordinating user-
centric communication services. In Computer Software and Applications Confer-
ence (COMPSAC), 2011 IEEE 35th Annual, pages 93 –102, july 2011.

[66] L. Yan. An adaptive middleware to overcome service discovery heterogeneity
inmobile ad hoc environments. Distributed Systems Online, IEEE, 8(7):1–1, July.

[67] S. Zachariadis, C. Mascolo, andW. Emmerich. The SATIN component system-
a metamodel for engineering adaptable mobile systems. Software Engineering,
IEEE Transactions on, 32(11):910 –927, nov. 2006.

[68] C. Zhang, S. M. Sadjadi, W. Sun, R. Rangaswami, and Y. Deng. User-centric
communication middleware. Technical Report FIU-SCIS-2005-11-01, Florida
International University, 2005.

97

APPENDIX A

CVM CONTROL SCRIPTS

1. controlScript ::= command {command}

2. command := createConnectionCmd |
closeConnectionCmd | addParticipantCmd |
removeParticipantCmd | sendSchemaCmd |
enableMediaInitiatorCmd |
enableMediaReceiverCmd |
disableMediaInitiatorCmd |
disableMediaReceiverCmd | sendMediaCmd |
sendFormCmd | declineConnectionCmd |
requestFormCmd | requestMediaCmd |
sendNegTokenCmd | requestNegTokenCmd

3. createConnectionCmd ::= createConnection
connectionIDA

4. closeConnectionCmd ::= closeConnection
connectionIDA

5. addParticipantCmd ::= addParticipant
connectionIDA personIDA {personIDA}

6. removeParticipantCmd ::= removeParticipant
connectionIDA personIDA {personIDA }

7. sendSchemaCmd ::= sendSchema
connectionIDA sender-personIDA receiver-
personIDA {receiver-personIDA} schemaA

8. enableMediaInitiatorCmd ::=
enableInitiatorMedia connectionIDA
mediaNameA

9. enableMediaReceiverCmd ::=
enableReceiverMedia connectionIDA
mediaNameA

10. disableMediaInitiatorCmd ::=
disableInitiatorMedia connectionIDA
mediaNameA

11. disableMediaReceiverCmd ::=
disableReceiverMedia connectionIDA
mediaNameA

12. sendMediaCmd ::= sendMedia connectionIDA
mediaNameA mediumURLA

13. sendFormCmd ::= sendForm connectionIDA
formIDA mediumURLA {mediumURLA } actionA

14. declineConnectionCmd ::= declineConnection
sender-personIDA receiver-personIDA
{receiver-personIDA}

15. requestFormCmd ::= requestForm connectionIDA
formIDA mediumURLA {mediumURLA }
requestActionA

16. requestMediaCmd ::= requestMedia
connectionIDA mediaNameA requestActionA

17. sendNegTokenCmd ::= sendNegToken
personIDA

18. requestNegTokenCmd ::= requestNegToken
connectionIDA

Figure A.1: CVM Control Scripts

98

APPENDIX B

MGRID CONTROL SCRIPTS

1. controlScript := command {command}

2. command := initializeMGridCmd | addGroupControllerCmd | removeControllerGroupCmd | addLoadControllerCmd |

addStorageControllerCmd | addSourceControllerCmd | addPCCCmd | removeControllerCmd | addLoadDeviceTypeCmd |

addStorageDeviceTypeCmd | addSourceTypeCmd | addMeterTypeCmd | removeTypeCmd | addLoadDeviceCmd |

addStorageDeviceCmd | addSourceCmd | addSmartMeterCmd | addLegacyMeterCmd | removeEntityCmd |

setPropertyCmd | requestPropertyCmd

3. initializeMGridCmd := initializeMGrid mgridIDA

4. addGroupControllerCmd := addGroupController contGroupIDA controllerIDA {controllerIDA}

5. removeGroupControllerCmd := removeGroupController contGroupIDA

6. addLoadControllerCmd := addLoadController controllerIDA nameA cardinalityA criticalA groupActionA lowerWattageA

upperWattageA {typeIDA }

7. addStorageControllerCmd := addStorageController controllerIDA nameA cardinalityA chargeStatusA {typeIDA }

8. addSourceControllerCmd := addSourceController controllerIDA nameA cardinalityA criticalA groupActionA {typeIDA }

9. addPCCControllerCmd := addPCCController controllerIDA nameA cardinalityA criticalA connectedA typeIDA

10. removeControllerCmd := removeController controllerIDA

11. addLoadDeviceTypeCmd := addLoadDeviceType deviceTypeIDA typenameA criticalA usageA controllerIDA

12. addStorageDeviceTypeCmd := addStorageDeviceType deviceTypeIDA typenameA lowerThresA upperThresA

controllerIDA

13. addSourceTypeCmd := addSourceType sourceTypeIDA typenameA sourceCA priorityA controllerIDA

14. addMeterTypeCmd := addMeterType meterTypeIDA typenameA controllerIDA

15. removeTypeCmd := removeType typeIDA

16. addLoadDeviceCmd := addLoadDevice deviceIDA deviceTypeIDA wattageA controlA criticalA { (attributeA, valueA)}

17. addStorageDeviceCmd := addStorageDevice deviceIDA deviceTypeIDA wattageA capacityA chargingA chargeTA

{(attributeA, valueA)}

18. addSourceCmd := addSource sourceIDA sourceTypeIDA wattageA onDemandA chargingA chargeTA

{(attributeA, valueA)}

19. addSmartMeterCmd := addSmartMeter meterIDA meterTypeIDA tarriffA usageA

20. addLegacyMeterCmd := addLegacyMeter meterIDA meterTypeIDA

21. removeEntityCmd := removeDevice entityIDA

22. setLCPropertyCmd := setLCProperty deviceIDA attributeA valueA

23. setDevicePropertyCmd := setDeviceProperty deviceIDA attributeA valueA

24. requestPropertyCmd := requestProperty deviceIDA attributeA

Figure B.1: MGridVM Control Scripts

99

APPENDIX C

NETWORK COMMUNICATION BROKER API

addParty(java.lang.String sessionID, java.lang.String participantID)
This function adds the participants specified to the specific session
createSession(java.lang.String sessionID)
This function creates a session with the specific session ID
createUserProfile(UserObject usr, java.lang.Object schema)
This method generates a user profile for the given user
disableMedium(java.lang.String connectionID, java.lang.String mediumName)
This command will stop sending the specified medium to all the participants during the
connection
enableMedium(java.lang.String connectionID, java.lang.String mediumName)
Enables the media steam
isCreatedSession(java.lang.String sessionID)
This method returns whether the session was created or not
login(java.lang.String userName, java.lang.String password)
This method will attempt login the given user
logout(java.lang.String userName)
Logs the user out
mapConnToSession(java.lang.String connectionID, java.lang.String sessionID)
This function maps a connection to a session
removeParty(java.lang.String sID, java.lang.String participant)
This method adds the list of participants to the given session
resetNCB()
Resets the ncb instance
retrieveSchemas(java.lang.String userName, java.lang.String password)
This method returns the schemas for the given user
saveSchema(java.lang.Object schema)
Saves the given schema
sendMedia(java.lang.String sID, java.lang.String medium, java.lang.String
mediumURL)
This commandwill send the specifiedmedium to all the participants during the connection
sendSchema(java.lang.String sID, java.lang.String senderID,
java.lang.String listReceiver, java.lang.Object control_xcml)
This method will send the schema to all participants in the specified connection
sendSchema(java.lang.String sID, java.lang.String senderID,
java.lang.String listReceiver, java.lang.String control_xcml,
java.lang.String data_xcml)
This method sends a schema to a given user in a given session

Table C.1: Network Communication Broker API

100

APPENDIX D

ALLOY SPECIFICATIONS

Listing D.1: EnableLoad Alloy Specification

/∗
An Allow sp e c i f i c a t i o n fo r the
PrepareAndEnableLoad in t en t model . I t
c o in t a in s 1 ab s t r a c t s ignature1
used to represent DSCs ,
and 1 s ignature tha t i n h e r i t s from
the ab s t r a c t s ignature .
S ignature names are inhe r i t ed
from the assoc ia t ed procedures
and DSCs in the analogous
in t en t model
∗/

ab s t r a c t s ig ADDLOAD { }

one s ig EnableLoad extends ADDLOAD { }

ab s t r a c t s ig SHEDLOAD { }

/∗
Asser t ion for a c t i v e po l i c i e s
∗/
a s s e r t addload_policy {

a l l p : ADDLOAD | (SHEDLOAD in p . d1)
}

check addload_policy

101

Listing D.2: PrepareAndEnableLoad Alloy Specification

/∗
An Allow sp e c i f i c a t i o n fo r the
PrepareAndEnableLoad in t en t model . I t
c o in t a in s 2 ab s t r a c t s igna tures
used to represent DSCs ,
and 2 s igna tures tha t i nh e r i t from
abs t r a c t s igna tures .
S ignature names are inhe r i t ed
from the assoc ia t ed procedures
and DSCs in the analogous
in t en t model
∗/

ab s t r a c t s ig ADDLOAD { }

one s ig PrepareAndEnableLoad extends ADDLOAD {
d1 : one SHEDLOAD

}

ab s t r a c t s ig SHEDLOAD { }

one s ig ReservePower extends SHEDLOAD { }

/∗
Asser t ion for a c t i v e po l i c i e s
∗/
a s s e r t addload_policy {

a l l p : ADDLOAD | (SHEDLOAD in p . d1)
}

check addload_policy

102

VITA

KARL MORRIS

July 2012 - Present Co-founder & CEO
Colada Studios LLC

April 2012 - Present Member
Upsilon Pi Epsilon

Fall 2009 - Summer 2014 Ph.D., Computer Science
School of Computer and Information Systems
Florida International University

Spring 2011 Instructor
CGS 4854, Website Construction and Management

Fall 2010 Government Assistantship in Areas of National Need
(GAANN)

March 2006 - July 2009 Project Officer - Web & Standards
Central Information Technology Office
Kingston, Jamaica

June 2001 - June 2006 Database Administrator
Office of the Contractor-General
Kingston, Jamaica

Jan 2001 - May 2001 Programmer
Pioneer Software Development
Kingston, Jamaica

PUBLICATIONS AND PRESENTATIONS

Morris, K.A., He, X., Costa, F., Clarke, P.J.AnApproach to Dynamic Validation of Intent
Model Behavior in DSVMs (Under review CASCON 2014)

Morris, K.A., Allison,M.,Wei, J., Costa, F., Clarke, PTowards aMiddleware forDomain-
Specific Virtual Machines Submission to the Journal of Information and Software
Technology – Elsevier . Impact Factor: 1.522 (Under review)

Allison, M., Morris, K.A., Costa, F., Clarke, P. SSynthesizing Interpreted Domain-
Specific Models to Manage Smart Microgrids The Journal of Systems and Software –
Elsevier. Impact Factor: 1.135

103

Morris, K.A., Costa, F.M. , Wei, J., & Clarke, P.J. 2012. Towards Adaptable Middleware
to Support Service Delivery Validation in i-DSML Execution Engines IEEE 14th Inter-
national Symposium on High Assurance Software Engineering (HASE) Nebraska,
USA

Allison, M., Morris, K.A., Yang, Z., Clarke, P.J. & Costa, F.M. 2012. Managing Smart
Microgrid Behavior by Synthesizing Domain-Specific Models. IEEE 14th International
Symposium on High Assurance Software Engineering (HASE) Nebraska, USA

104

	Florida International University
	FIU Digital Commons
	6-20-2014

	A Middleware to Support Services Delivery in a Domain-Specific Virtual Machine
	Karl A. Morris
	Recommended Citation

	A Middleware to Support Servicesw Delivery in a Domain-Specific Virtual Machine

