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ABSTRACT OF THE DISSERTATION

TOOL CUTTING FORCE MODELING AND WEAR ESTIMATION

OF MICRO END-MILLING OPERATIONS

by

Wei-Yu Bao

Florida International University, 1999

Miami, Florida

Professor Ibrahim N. Tansel, Major Professor

The applications of micro-end-milling operations have increased recently. A

Micro-End-Milling Operation Guide and Research Tool (MOGART) package has been

developed for the study and monitoring of micro-end-milling operations. It includes an

analytical cutting force model, neural network based data mapping and forecasting

processes, and genetic algorithms based optimization routines. MOGART uses neural

networks to estimate tool machinability and forecast tool wear from the experimental

cutting force data, and genetic algorithms with the analytical model to monitor tool wear,

breakage, run-out, cutting conditions from the cutting force profiles.

The performance of MOGART has been tested on the experimental data of over

800 experimental cases and very good agreement has been observed between the

theoretical and experimental results. The MOGART package has been applied to the

micro-end-milling operation study of Engineering Prototype Center of Radio Technology

Division of Motorola Inc.
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Chapter I

Introduction

Micro-end-milling operations were first used for manufacturing of special purpose

equipment in biomedical and aerospace applications. However, miniaturization of many

consumer products and esthetic goals drastically increased micro-end-milling operations in

the conventional shop floor. Currently, many state-of-the-art consumer product

manufacturers widely use micro-tools with less than 2 mm diameter to prepare the plastic

injection molds of their parts.

At the first glance, micro-end-milling operations look like conventional end-milling

operations with only dimensional difference. However, it was found that cutting force

characteristics of micro-end-milling operations were different from those of conventional

end milling operations after their machinability tests had been done. Micro-tools have very

short tool life compare to the conventional tools. If the cutting conditions are not selected

properly, micro-tools will be broken in a few seconds. Depending on the hardness of

work-pieces, even in the identical cutting conditions micro-tools may have less than 10" of

tool life. Operators have to carefully select the cutting conditions with the small margin of

errors and monitor the machining operations since those tools will create unnoticeable

sound and vibration. Because of their tiny size, it is very different to detect their breakage.

Many hours of machining time could be wasted if the tool failure is not detected on time.

In addition, the ratio of the tool run-out to tool diameter becomes very big compare to
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conventional tools. In many cases, micro-tools are subjected to larger cutting forces since

only half of the cutting edges remove the material from the work-piece.

Even though the need for a concentrated study on micro-machining is known, very

limited studies had been completed. In this dissertation, a new analytical model was

developed for micro-end-milling operations, and a series of techniques were developed to

use this model for machinability study, cutting condition monitoring, run-out estimation,

tool wear modeling and breakage detection.

All the developed tools were integrated in a single software package. The package

effectively uses neural networks and genetic algorithms together with the analytical model.

In this work, the following studies are integrated:

- A new analytical cutting force model for micro-end-milling with or without tool

run-out.

- Tool cutting force variation estimators based on the analytical model and neural

networks mapping.

- Tool wear estimation by using the genetic algorithms and neural networks.

- Tool breakage detection method.

- Tool cutting condition monitoring method by using the analytical model and

genetic algorithms.

- Run-out estimation by detecting the cutting force profiles.

- The analytical model based surface finish calculation.

The developed package is capable to help engineers to select the optimal cutting

conditions with minimal experiments, to evaluate the performance of their operations and
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to monitor the tool condition. The cost of micro-machining operations, setup time and

number of inspections could be reduced by using the package effectively.

To verify the analytical cutting force model and get the necessary data, more than

800 experiments have been performed for the cooperation of Mechatronics Lab of

Mechanical Engineering Department of Florida International University and Engineering

Prototype Center of Radio Technology Division of Motorola Inc.

The theoretical background of the studies is introduced in Chapter II, which

includes the tool cutting force modeling of conventional end milling operations, neural

networks and genetic algorithms. The derivation of the developed analytical cutting force

model of the micro-end-milling operations is presented in Chapter III. The analytical

model based cutting force characteristics of the micro-end-milling operations are discussed

in Chapter IV. The analytical model based the monitoring methods of the micro-end-

milling operations are proposed in Chapter V, which include tool breakage, wear, run-out

and cutting conditions. The Chapter VI presents the experiment setup and coverage. The

results of the studies are discussed in Chapter VII. Chapter VIII is a user guide of the

Micro-End-Milling Operation Guide and Research Tools (MOGART) program. The

conclusion of the researches and recommended future work are presented in Chapter IX.
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Chapter II

Theoretical Background

In this chapter, the theoretical background of the existed modeling and processing

techniques that were used in the dissertation are outlined. First the modeling of end milling

operations is discussed. This model will be modified for micro-end-milling operations in

the next chapter. For data processing, neural networks and genetic algorithms are

presented. The neural networks are used for mapping, classification and forecasting. The

genetic algorithms are used for optimization, modeling and monitoring.

2.1 Modeling of End Milling Operations

1. Tlusty's Cutting Force Model of End Milling Operations

In 1975, J. Tlusty developed an analytical cutting force model of the end milling

operations to calculate the cutting force variations.1] Tlusty's cutting force model was

developed based on the following three assumptions:

Assumption 1: The tangential cutting force is proportional to the cutting areas:

Ft = Km b h (2.1.1)

Assumption 2: The radial cutting force is proportional to the tangential cutting force:

Fr = p Ft (2.1.2)

Assumption 3: The chip thickness can be expressed with the following expression:

h = ft sine (2.1.3)
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In the first assumption, the cutting chip thickness h is not a constant, but a function

of z because of tool helix angle. The formula 2.1.1 can be rewritten as:

dFt = Km h(z) dz

Because of z = z(8) and dz r dO, it becomes:
tan P

dFt = 2 ( Fu / ft) h(0) d9 (2.1.4)

dFr = p dFt= 2 ( Fu / ft ) p h() d0 (2.1.5)

where: F =2tan/
" 2tanp)

The tool cutting forces of the feed direction x and the thrust direction y are

calculated.

dFx = -dFt cos 0 - dFr sin 0 = -2 ( F / ft ) h(0) ( cos 0 d0 + p sin 0 d0) (2.1.6)

dFy = dFt sin 0 - dFr cos 0 = 2 ( F / ft ) h(0) ( sin 0 d0 - p cos 0 d0) (2.1.7)

Considering the third assumption, the formulas 2.1.6 and 2.1.7 become:

dF. = -2 Fu (sin 0 cos 0 dO + p sin2 0 d0) (2.1.8)

dFy = 2 F~ ( sin2 0 dO - p sin e cos O d0) (2.1.9)

After integration, the analytical cutting force model has been derived.

F, = -Ff u 6e - 0, )+ in0 ( -s -in0 2 ) - 0.5 p ( sin 2e - sin 20) (2.1.10)

Fy=F (e- s)- p(sin Oe-sin ) -0.5 (sin2O -sin 20, (2.1.11)

The resultant cutting force on the x-y plant is:

Fr2 = FY+ Fy (2.1.12)
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To calculate the tool cutting force using the formulas 2.1.10 and 2.1.11, three

parameters have to be considered.

The first parameter is the tool cutter angle per tooth y.

2r
y/ = (2.1.13)

Z

The second parameter is the cutting angle of the work-piece p.

rp = arccos (r - a) (2.1.14)
r

The third parameter is the engagement angle a.

a =tan (2.1.15)
r

Three different machining operations have been discussed in Tlusty's model.

Case 1: a(p and a + py

For conventional milling operations:

section 1: [ 0, a ] Os = 0 Oe= 0

section 2: [ a, p ] 6,= 0 - a Oe= 0

section 3: [ , ( + a ] Os = 0 - a Oe= Q

For climbing milling operations:

section 1: [7E -(p,7x-9p+ a] 03 =71 - cp Oe=

section 2: [71 -(p+a,7t] 0 3=0-a Oe=O

section 3: [7, 7 + a ] 03 = 0 - a Oe= n

Case 2: a>9 and a + (p< y

For conventional milling operations:
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section 1: [ 0, p ] Os = 0 Oee=

section 2: [ (, a ] O = 0 Oe= (p

section 3: [a,(p+cL ] 0,=0-a Oe=qp

For climbing milling operations:

section 1: [7r -(p, 7t] 03=i - p Oe=0

section 2: [ n, a] Os = e - ep 8= n

section 3: [a, + a ] es = e - a ee= n

Case 3: a + (p >

Because of overlapping, the tool cutting force of the overlapped part is equal to

the sum of the cutting forces of both cutting edges.

Tlusty's cutting force model has been widely used. It has reasonable assumptions,

straightforward derivation and can be easily applied to most of conventional end milling

operations without tool run-out.

In micro-end-milling operations, the tool diameter is very small. The micro-tools

are easily worn and suddenly broken. The influence of the tool run-out becomes significant

to the cutting force variation because of their tiny sizes. Tlusty's model didn't consider the

tool run-out and wear. It also didn't explain the difference between the conventional and

climbing milling operations. In micro-end-milling operations the ratio of the feed per tooth

to the tool radius (ft/r) usually can not be neglected. In this case the third assumption of

Tlusty's model is not valid. A new analytical cutting force model of micro-end-milling has

been looked for since the micro-end-mills were applied to the manufacturing.



2. Improvements of the Analytical Cutting Force Model.

To include tool run-out into the model, researchers used two approaches. The first

approach was development of a new analytical model. Gygas. improved Trusty's cutting

force modal by considering different total cutting angle, climbing and conventional milling,

symmetric and asymmetric cut in 1979.21 Based on Tlusty's three assumptions and

experimental data, another empirical cutting force modal was developed by Yucesan et al.,

in 1990.E33 The different cutting conditions were investigated and analyzed by statistical

methods and plasticity theory. The empirical model considered the cutting force

coefficients of Tlusty's first assumption as a function of the chip thickness and also gave

the limitations of integration angles. Investigating the tool vibration in three-dimension

cutting, Jemielniak derived a formula from steady state cutting to determine the dynamic

cutting coefficients in 1992.41 To improve Tlusty's cutting force model with tools run-out

and keep the analysis simplicity, Wang et al. developed a cutting force model in frequency

domain in 1994.51 The model was derived as the convolution of three component

functions, and the effect of cutter run-out was taken into consideration in forming revised

chip thickness and average chip thickness expressions. Another milling operation with run-

out model was developed by Gu et al. in 1991.E63 The run-out were considered as two new

items into Tlusty's third assumption and estimated by cutting force signal.

The second approach was to develop a computational cutting force model.

Sutherland and DeVor developed a computational model in which the chip load and run-

out were considered in 1986.''3 Armarego and Deshpande focused on the eccentricity and
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deflection of the cutter, developed three-component based cutting models for end-milling

force, torque and power predictions. These model can be used to predict the average and

fluctuating force components and torque in 1991.E'l The deflection of the end-mill and the

work-piece, and surface error were predicted by using the model rather than the rigid end-

milling system. Kim and Ehmann described a procedure for the three-dimensional static

and dynamic cutting force simulation in face milling in 1993.91 The cutting forces created

by machine tool vibrations was simulated in the model.

Tlusty's model has been improved in many different ways. Most developed models

depended on the tlusty's three assumptions. None of the previous studies discussed or

proved the tlusty's third assumption in theory and derived a model with tool run-out by

directly considering the cutting chip thickness. In this dissertation, a new analytical cutting

force model is derived from the tool cutting edges and their tip profiles equations. The

model represents micro-end-milling and conventional end milling operations without or

with tool run-out. It also considers tool wear. The model proves the existence of the

Tlusty's third assumptions in theory and explains the difference between micro-end-milling

and conventional end milling operations. The derivation and discussion of the new model

will be presented in the next chapter.
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2.2 Neural Networks

1. Basic Theory of Neural Networks

Neural networks are a class of dynamic computational models that mimic the

constructions and operations of a biological brain to react the real world problems. The

first successful neural network was developed during 1957 and 1958 by Frank Rosenblatt,

Charles Wightman and others 1O]. The basic idea was to construct a network by using

some nodes (neurons) connected together by some connection channels (nerves), which

was able to carry and process the information through its input and output interfaces (see

Figure 2.1). For different problems, only the connection weights between the nodes of the

network had to be adjusted by a training procedure.

Brain

Sensor

Neuron

Nerve

Reaction

Figure 2.1 Construction of neural networks
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A basic theory of neural networks was contributed by mathematician Andrei

Kolmogorov in 1957.111 He not only proved the existence of the neural networks, but also

commented that they could be trained.

Theorem 1: (Kolmogorov's Neural Network Existence Theorem) Given any continuous

function f : [0,1]" -> R", f(x) = y, f can be implemented exactly by a three-layer feed-

forward neural network having n fan-out processing elements in the first (x - input) layer,

(2n+1) processing elements in the middle layer, and m processing elements in the top (y -

output) layer.

Theorem 2: Given any F > 0 and any L 2 function f : [0,1]" -> R", there exists a three-

layer back-propagation neural network that can approximate f to within c mean squared

error accuracy.

The Kolmogorov's existence theorem proved that neural networks with three

layers were able to implement an arbitrary function. The Kolmogorov's second theorem

proved that neural networks were able to implement the function in any accuracy by

adjusting the connection weights.

2. Architecture of the Back-propagation Neural Network

The back-propagation neural network is one of the most important historical

developments in the neural networks. It is a powerful tool to solve mapping, classification

and forecasting problems, which has been proved in many applications. In the designs of

the back-propagation neural network, three layers (input layer, hidden layer and output

layer) are constructed according to Kolmogorov's existence theorem. The information of
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distances and directions between the actual and estimating output data is used to update

the connection weights among the connected nodes layer by layer through a back-

propagation. A construction of the back-propagation neural network is presented in

Figure 2.2.

Output

Output layer:

Node

Hidden layer:

Connection
Weight

Input layer:

Input

Figure 2.2 Construction of the three-layer neural networks

The back-propagation neural network could be trained by following three steps.

Step 1: Estimate output data by using forward-propagation calculations.

h = w (x)

Ye = W2 5(h)

where: x, h and ye are the data of the input, hidden and output layers.

6(x) and S(h) are the unitizing transfers of the input and hidden layer data.

w1 and w2 are the connection weights between input and hidden nodes,

hidden and output nodes. In the beginning, they are set randomly.

12



Step 2: Calculate the error (distance) between the actual and estimated data (points).

£= IY - Yel

where: y and ye are the actual and estimated data.

Step 3: Find the direction of the actual point, and update the weights by using the back-

propagation calculations.

new = ~old
W2 W2 - a fl(g, Ye)

new= W old -ol fd , h

where: a is learning rate.

Repeat the three steps until the error s is less than the requested error level.

3. Applications of the Back-propagation Neural Network

The back-propagation neural network can be applied to solve the time independent

problems called mapping and time series problems called forecasting. A Neural Network

Tool program (NNTool) developed in 1995 and modified in 1996.2[3 is an application

of back-propagation neural networks. It has been successfully applied to determine the

underground contamination of New York area [14 and Miami International Airport area. [ 5]

The three-dimensional underground contamination distribution graphics of both areas

were generated by using 131 and 49 sample data sets respectively. In the research of

micro-end-milling operations, it has been used to estimate the maximum cutting force of

the micro-end-milling operations with different selected working conditions and tool

parameters by using a few experimental data [16] (see Chapter V).
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Mapping: The problem addressed by mapping is the approximate implementation of a

function f : A C R" -> R'", from a bounded subset A of n-dimensional Euclidean space to

a bounded subset fA] of m-dimensional Euclidean space, by training on the example cases

(x1, yi), (x 2 , y2), ... , (xk, yk), where y = f(x).

Example case 1: [141[151

The research of Miami International Airport area ground-water contamination with

three-dimensional coordinates and one contamination parameter has been completed. A

back-propagation model with three layers has been constructed in the study, in which the

three-dimensional coordinates were considered as the input nodes, one contamination

parameter as the output node, and ten hidden nodes were designed. The 49 sample data

sets were used to the neural network training with 0.15 learning rate and 0.075

momentum factor. The average error of the contamination estimations was less than 3%.

The map of the research area and estimation of the contamination distributions are

presented in Figure 2.3 and 2.4.

Example case 2: 171

A function with two input and one output (f = sin x + sin y in [0, 2t; 0, 27t]) has

been studied. A back-propagation neural network model with four layers (one input layer

with 2 nodes, two hidden layers with 15 nodes each and one output layer with 1 node) has

been constructed. In this study, The 169 data sets were used for the neural network

training with 0.6 learning rate and 0.9 momentum factor, and 144 data sets for its test. The

average error of the estimation was less than 2.2%. The actual (computational) and

estimated results are presented in Figure 2.5 and 2.6.
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Figure 2.4 Estimation of the ground-water contamination distributions
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f = sin x + sin y

1

*1.5-2

~ 1-1.5

0 ~5.4978 .-

-0.5 -4.4506 -.
-0.5-0

1 3.4034 Y -1--0.5
-1.5 2.3562 p -1.5--1

-2 A4 . 1.3090 Q0-2-1.5

N~ 0.2618

x

Figure 2.5 Computational results of a mapping study

Function Estimation
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Figure 2.6 Estimated results of a mapping study
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Forecasting: The problem addressed by forecasting is the approximate implementation

of a function f : A c R" -+ Rm, from a bounded subset A of (n-1)-dimensional Euclidean

space and a time series dimension to a bounded subset fIA] of (m-1)-dimensional

Euclidean space and a time series dimension, by training on the time series example cases

(Xi, yi), (x 2 , Y2), ... , (xk, Yk), where y = f(x).

Example case 1:[151

A square wave function has been studied. A three-layer model with 5 input nodes,

16 hidden nodes and 1 output node was used in the study. The 216 data sets of the three-

periodic time were used for the neural network training with 0.15 learning rate and 0.075

momentum factor, and 72 data sets of the following period for its test. The average error

of the estimation was less than 0.5%. The results are presented in Figure 2.7.

Square Wave Forecasting

2

1.5

1

0.5 --

25 45 65 85 10 125 1 5 165 85 205 225 245 265 285

-0.5

-1

-1.5 - Actual
- Predict

-2

t

Figure 2.7 Results of square wave forecasting
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Example case 2:[151

A exponential function with a exponential faded sine wave oscillation (f = (1 - ell)

+ 0.5 e~" sin (27itt) ) has been studied. A three-layer model with 3 input nodes, 10 hidden

nodes and 1 output node was used in the study. The 72 data sets of the one-periodic time

were used for the neural network training with 0.15 learning rate and 0.075 momentum

factor, and 72 data sets of the following period for its test. The average error of the

estimation was less than 2%. The results are presented in Figure 2.8.

Function Forecasting
y = (1- e-20) + 0.5 e-120 sin (t)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 - Actual
60 120 180 24 300 360 420 480 540 600 660 -- Forecast

-0.1

t

Figure 2.8 Results of function forecasting
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2.3 Genetic Algorithms

1. Basic Theory of Genetic Algorithms

Genetic algorithms are a class of dynamic computational models that mimic the

natural selection and biological evolution to solve the real world problems. Based on

biological theories, the deoxyribonucleic acid (DNA) molecule, a tiny corkscrew built

from simple chemicals and included a large numbers of genes that define individual parts

of the organism's blueprint, is the most fundamental piece carried life's mystery. The

offspring inherit the characteristics from their parents through the genes. The survivals

depended on natural selection (survival of the fittest) determine the characteristics of the

next generation (the evolution of the species).E"I

The first application to solve problems by using the biological evolution was

proposed in 1975 by John Holland. Based on the biomedical DNA theory, a binary number

was designed as a individual chromosome to carry information of the data set, in which

each bit presents a gene (see Figure 2.9). The individuals followed the biomedical DNA

hereditary processes to mate each other and inherit a new generation through gene

crossover and mutation. The natural selection as a rule determined the survivals of the

next generation. The evolution would continue until one individual of the generation fitted

the requested fitness level (see Figure 2.10).

DNA 1 [DNA 2 DNA 3

Figure 2.9 A data chromosome with 16 genes presented three DNA
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Better Fitters Gene

7 N
Grow Up Natural Inheritance

Selection

New Chromosome Children Reproduction

Figure 2.10 Biological evolution cycle of species

2. Architecture of Genetic Algorithms

In the view of the optimization, the genetic algorithms is a powerful tool to find

the optimal solution of the problems with large data sets by using random search

techniques. The natural selection rule is the key to search the optimal solution through the

genetic evolution. The crossover operation keeps the better information from the last

generation and the mutation operation helps to search the domain completely to avoid its

being tripped in local maximum or minimum. The population size, mating pool size and

the numbers of the children from each couple are decided by the problem study. The first

generation can be randomly created and each following generation will be evolved by the

following six steps:
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Step 1: Selection of the mating couples (parents).

The mating pools can be selected randomly or following some rules from the

population pool. The mating couples can be picked randomly or following some rules

from the mating pool. The procedure is presented in Figure 2.11.

Mating Pool

Natural

Sp 2eSelection o

Female Male

Group Group
Mating 
Couple

Figure 2.11 A mating procedure of genetic algorithms

Step 2: Selection of the hereditary chromosome of the next generation.

Three different methods are suggested to select the hereditary chromosomes.

1. The hereditary chromosome is always duplicated from the stronger one of the

mating couple.

2. The hereditary chromosome is duplicated from the one of the mating couple by

the turn.

3. The hereditary chromosome is randomly duplicated from the mating couple.

Step 3: Gene crossover.

Crossover is one of the genetic processes, in which the both parents' genes are
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combined to a new chromosome. There are two different processing theories to be applied

to the operations, which are the fixed-point and uniform crossover.

Fixed-point crossover: Randomly pick a point in the chromosome, inherit all the genes

from the one parent before that point and randomly inherit the genes from the both parents

after the point (see Figure 2.12).

Crossover Point

Parent 1 1 0 1 0 11 10 0 1010 1 1010

Parent 2 10 1 0 0 1 0 00 1 1 1 0 1 10

Child 1O 10 1 1 1 001 0 1O 1 0 0

L From Parent 1 Randomly From Parent 1 or 2

Figure 2.12 Fixed-point crossover genetic procedure

Uniform crossover: Randomly inherit the genes from the both parents in the whole

chromosome (see Figure 2.13).

Parent 1 1o 1 0 1 1 11 1 10 10 1 0

Parent 2 010 110 0111010 011i11101 0 1 0

Child 010 1 o 1 1 olo 0 110 1 o 1 0 0

Randomly From Parent 1 or 2

Figure 2.13 Uniform crossover genetic procedure
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Step 4: Gene mutation.

Mutation is one of the genetic processes, in which the genes of the new

chromosome are changed randomly according to the rapid evolution theories. There are

two different processing theories to be applied to the operations, which are the jumping

and creeping mutation.

Jumping mutation: Randomly change the genes of the chromosome in the certain

jumping mutation probability lever (see Figure 2.14).

Before Jumping Mutation:

Child 0 0 1 O 1 1 oj0 0 1 0 1 0 1 0 O

After Jumping Mutation: Randomly Mutated Genes

Child 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0

Figure 2.14 Jumping mutation genetic procedure

Creeping mutation: Randomly change a certain value of the chromosome data in the

certain creeping mutation probability lever through a coding and decoding procedure.

Step 5: Creation of next generation (children).

There are two different theories to create new generations. One is that fittest

individual of the one generation is always inherited to the next generations according to

the elitism theory and the other is that fittest one is not necessary to be duplicated from

one generation to the next one.
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Step 6: Evolution.

The children of this generation grow up and become the parents of the next one.

Repeat the six steps until the fitness is in the requested fitness level.

3. Applications of Genetic Algorithms

The Genetic algorithms can be applied to search a global optimal objective in high

dimensional Euclidean space with a given function. A genetic algorithm program

(GATool) was developed in 1998. It was successfully applied to monitor the cutting tool

entry and exit angles of the micro-end-milling operations."91 In the research of micro-end-

milling operations, it also has been used to estimate the tool breakage, wear, run-out and

optimal working conditions (see Chapter V).

Example case 1: [191

An identification program of the cutting tool entry and exit angles was developed

by using genetic algorithms with an analytical cutting force model of micro-end-milling

operations (see Chapter III). In all of the studied cases, the tool entry and exit cutting

angles were estimated by the GATool program in less than 20 generations with less than

3% error. In 120 generations the error was reduced to less than 1%. In the study, the

population size was designed as five, mating pool size as two versus two and one child

was created from each couple. 30 bit binary data was used for the individual coding. The

uniform crossover with 0.5 probability, jumping mutation with 0.04 probability, creeping

mutation with 0.02 probability and elitism were used in the genetic procedures. The results

are presented in the Figure 2.15.
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Figure 2.15 Genetic evolution procedure of the tool cutting angle monitoring

Example case 2:

A function with two parameters (f = e("+Yv(2n) (sin x + sin y) in [0, 4n; 0, 47c]) has

been studied. It has one global minimum, seven local minimum, eight local maximum and

four stay points. The global minimum (-69.615) of the function was found in less than 20

generations with less than 2.6% error and in 100 generation with less than 0.035% error.

In the case, the population size was designed as five, mating pool size as two versus two

and one child from each couple. 30 bit binary data was used for the individual coding. The

uniform crossover with 0.5 probability, jumping mutation with 0.1 probability, creeping

mutation with 0.05 probability and elitism were considered in the genetic procedures. The

function and results are presented in Figure 2.16 and Figure 2.17.
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Figure 2.16 Function of an optimization case
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Figure 2.17 Genetic evolution procedure of the function optimization
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2.4 Machinability and Monitoring of End Milling Operations

Several researches studied machinability and monitoring of end milling operations.

Machinability studies concerned the characteristics of tool cutting force, torsion,

deflection, vibration, run-out, wear, breakage and work-piece surface quality. To evaluate

machinability, researchers measured tool cutting force, spindle torque, acoustic emission,

tool vibration, tool temperature, optical scanning of tool tip, electrical measurements of

the contact resistance between the tool and work-piece, radio active concentration at the

chip. [8][20-25]

To monitor tool wear and detect tool breakage, various methods were developed.

It was specially interested in the tool wear and breakage monitoring, detection and

control. Principle and Yoon detected the tool breakage by using displacement signals in

1991.[261 Tansel et al. developed an on-line tool breakage detection system for end milling

operations from acoustic emission and cutting force signals, and extend the tool life by

reducing the feed rate in 1997.27311 Liang and Dornfeld estimated tool wear from acoustic

emission signals by using an on line time series model in 1989.[321 Elbestawi et al. developed

an on-line flank wear monitor system by monitoring cutting force signals. The harmonics

of the cutting force spectrum were used for classification. [33 Glass and Colbaugh

estimated tool wear in metal cutting operations by directly using cutting force signals with

neural networks in 1996.[341

To process experimental data, there are many different ways included geometry

analyses, analysis methods, statistics, fuzzy mathematics, wavelet transform, neural

networks and genetic algorithms. Statistical methods mainly used the average and
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deviation characteristics to avoid irregular information that was usually caused by noises in

machining operations. The simple algorithms were applied to online tool breakage

detection.[ 27-3 1]t 35 ](361 Fuzzy mathematics was used to classify signals. It isolated the most

important components of the objects and avoid unimportant details. It is a good way to

analyze end milling operations because of the different characteristics of cutting force

signals at different operating conditions.371 Wavelet transform, which is more efficient

than Fourier transform when the signal is not a sine type, was used to compress any kinds

of cyclical data to several simple characteristics[ 33 [3 8][391. Neural networks, a mimic human

brain method, can be used for the data mapping, classification and forecasting. They was

used to estimate tool cutting force and tool wear.3 1 ][34](4042 Genetic algorithms, a mimic

the natural selection and biological evolution method, were used for the functional

optimization. [191
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Chapter III

Analytical Cutting Force Model of Micro-End-Milling Operations

The derivation of a new analytical cutting force model of end milling operations is

presented in this chapter. The analytical model is developed for micro-end-milling

operations. It also can be applied to conventional end milling operation. Ten parameters

and two coefficients are considered in the model, which includes tool run-out and wear.

They are three working condition variables (spindle speed, feed rate and depth of cut),

two tool run-out variables (run-out and its angle), two cutting condition variables (tool

cutting entry and exit angle) and three tool geometry variables (tool diameter, helix angle

and the numbers of tool flutes). The material coefficient is related to the tool and work-

piece materials. The tool wear coefficient is related to the tool life.

The developed analytical cutting force model has very good agreement with the

experimental data of the micro-end-milling operations. The results are presented in

Chapter VII.

3.1 Cutting Force Model without Tool Run-out

1. Tool Cutting Edge and Its Tip Profile of End Milling Operations

In end milling operations, the tip profile of the cutting edge of the tool (see Figure

3.1) is different from the one used by the third assumption of Tlusty's model (see

Figure3.2). They are close only if the f,/r is small enough to be neglected.

29



Tool Cutting Edge Profiles of End Mill machining Operations

2 flutes 0.010" dia. tool, 15,000 ipm spindle speed, 100 ipm feed rate

- 1st cutting
Cutting surface - 2nd cuting

Figure 3.1 Tool cutting edge profiles of micro-end-milling operations

Tool Cutting Edge Profiles of End Mill machining Operations

2 flutes 0.010" dia. tool. 15,000 rpm spindle speed, 100 ipm feed rate

- ai cutting
Cutting siuface - 2nd cIttiog

Figure 3.2 Tool cutting edge profiles of Tlusty's cutting force model
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The equations of the tool cutting edge tip profiles are:

x -  +rsin(cot- ) (31.1)
60 Z

2;rz
y = r cos(o t - Z) (3.1.2)

2; z
where: co =

60

Z = 2 and z = 0, 1 for two-flute tools.

Z = 4 and z = 0, 1, 2, 3 for four-flute tools.

The equation of the tool cutting edge is:

x y
t-ft =1 (3.1.3)

60 60 27rtan(cot - )
Z

or:

ft 2ir z 2zzz:
(x -- ) cos(o t - - y sin(o t- ) = 0 (3.1.4)

60 Z Z

2. Cutting Chip Thickness

The cutting chip thickness can be derived from the equations of the tool cutting

edge and its tip profile instead of the third assumption of Tlusty's model.

It is considered that the first cutting edge tip at time to with angle 0 reaches a

point on the work-piece, and the second cutting edge at time t1 with angle 01 crosses that

point. The following equations can be used:
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0 z= (1+ ) -(4z3

Z 2 ~

(5=0 Z+- 0, (3.1.6)

2 z
Cot 1 -cot, = - (3.1.7)Z

where: z = 0, 1 for two-flute tools.

z = 0, 1, 2, 3 for four-flute tools.

The equations3.1.1, 3.1.2 and 3.1.4 can also be rewritten as:

fta 27r z
x = + r sin(cot0 - ) (3.1.8)60 Z

27z
y = r cos(O to - ) (3.1.9)

ft1  2rz 2z
(x- ) cos(c t, 1 ) - y sin(o t, - ) = 0 (3.1.10)

60 Z Z

To solve the cross point, substitute x, y from the equations3.1.8 and 3.1.9 to the

equation 3.1.10.

ft ft, 2r(z+1) 27rz 2<r(z+1)
( - ) cos( t, - ) +r sin(w to - Z) cos(w t, - )60 60 ZZZ

2rz 2r(z+1)
- r cos(w to - ) sin(w t, - ) = 0

f 2n(z+1) 2__
S(co to -co t,) cos(co t, - )+ r sin(co to - co t + -) = 0

60co Z Z

Considering the equations3.1.5 to 3.1.7, the above equations can be simplified.

f 2r
(- 8)cos(-0 ,)=rsin8 (3.1.11)

27rn Z 2
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Because O0 and 01 are very close, S is a small angle. Let:

sin 6 = S

and also let:

From the equation 3.1.11, the computing angle 6 can be solved.

.fcosO8
S~ r (3.1.12)

Z cos 0

27rr

.fwhere: f, =
nZ

The computing feed is:

f = f-(ti -to) (3.1.13)
60

Considering the equations3.1.5 to 3.1.7, the equation 3.1.13 can be rewritten as:

_f (27*8
f = f(27 -S)

2ir n Z

The computing feed f, can be solved by substituting equation 3.1.12 to it.

ff ' (3.1.14)
IC Z cosO

27cr

Z cosO
Because of f, <<1, fE can be approximated as below:

2cr

Z cosO
f, ~ f,(1-f, ) (3.1.15)

2r
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In geometry view, computing feed can be obtained.

sin _ sin(r-0 r )
f, r

sinS sinS r( _ f,

sin(r - 0) rcos O cosO 1 + fZ cos o
27rr

Also from geometry,

r2 = H2 +f, 2 - 2Hf, cos(r -O) (3.1.16)

H can be solved from the above equation,

H = -f, sin O + r2 -(f, cos) 2  (3.1.17)

The cutting chip thickness is:

h=r - H = r +f, sin' - r2 -(f, cos) 2  (3.1.18)

Bec 0 fcosO
Because of <<1, the cutting chip thickness can be approximated.

r

1
h ~f sin O +-(f, cosO) 2  (3.1.19)

2r

Substituting the equation 3.1.15 to 3.1.19, and also considering f, ( )' <<f and
r

fr (.f )3 <«lft the cutting chip thickness becomes:

h~ f, sinO - f' sin6 cos+ f,1 cos, 0 (3.1.20)
2rrr 2r

34



If ft/r << 1, the formula becomes h = ft sin 0, this is the third assumption of

Tlusty's model. It is proved that Tlusty's third assumption is satisfactory when f/r is small,

which is encountered in most conventional end milling cases.

In the micro-end milling operations, ft/r is not small enough to be ignored. For

example, if n = 15,000 rpm, f = 100 ipm, r = 0.01 inch and Z = 2, f,/r = 1/3, so that the

second and third item of the formula 3.1.20 can't be neglected.

Let's look at the physical meaning of the formula 2.2.20.

The first term is major cutting chip thickness. It is considered in Tlusty's model for

the cutting force calculation of conventional end milling operations.

The second term presents the difference between conventional milling and climbing

milling. It is a negative valuable when 0 is changed from 0 to 90 degree and a positive

valuable from 90 to 180 degree. It is said that cutting chip thickness of climbing milling is

thicker than that of conventional milling.

The third term is an additional cutting chip thickness. When 0 = 0, the cutting chip

thickness, which is equal to zero in Tlusty's model, is not equal to zero. It can be clearly

known from Figure 3.1. There is a leading angle when f/r value can't be neglected. It will

be solved in following discussions.

The formula 2.2.20, which is derived from the general tool cutting profiles, do not

have z parameter. It is said that any cutting edge has the same cutting chip thickness in the

same cutting angle. This is satisfactory in the case of conventional end milling operations

without tool run-out.
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3. Leading Angle

In the formula 3.1.20, let h = 0. It becomes:

1
f cos2 A

sin A =_2r

1- f, COSH
2rr

or:

sin a ~ ' cos2 A (1+fZ cos).) (3.1.21)
2r 2r r

Because 0 closes to 0 or 180 degree, assume cos 0 = 1,

I Z
A -- arcsin[f (1+ f, )] (3.1.22)

2r 2Tr r

=| I for conventional milling

= t + I X for climbing milling

For example, if n = 15,000 rpm, f = 100 ipm, r = 0.01 inch and Z = 2, k = -8.6 0 in

conventional milling or k = 188.6 in climbing milling.

If ft/r is very small, this is ft/r ~0, k ~0 in conventional milling or ~ 180 in

climbing milling. That is the results of Tlusty's model.

4. Cutting Force

The cutting forces can be derived by using the formulas 2.1.6 and 2.1.7, and

cutting chip thickness formula 3.1.20 instead of the formula 2.1.3 (The third assumption of

Tlusty's model).
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dF = -2F,(sin0 - f, sin~cosO+ -f, cos2 O)(cos0dO+ psin dO) (3.1.23)
2rr 2r

F F(sin f, sinOcosO +- f, cos2 O)(sin 0d-- p cos0dO) (3.1.24)
2rrr 2r

where: F = KwKmrf (3.1.25)
2 tan 3

Take the integration, the cutting force formulas can be derived.

F = F [ ' (1+ p-)(sin' 6, -sin' O,)+ 1 ft (p - -)(cos' Be -cos 3 0,)-(sin2 Be - sin O,)
3r 1r 3r J

+-p(sin 2Oe -sin 261)- - (sin e - sin 8S) - p( 0 - 0,)] (3.1.26)
2 r

if Z if Z
F = F~[ ' (p - -)(sin 3 e - sin 3 o,) - --' (1 + p-)(cos3 0, - cos3 9,)- p(sin2 0, -sin 2 9,)

3r 3r I

-1 (sin20, -sin 20j)- p . (sin B,-sinB,) + (e,- B,)] (3.1.27)
2 r

or:

F =iF[C sin +C2 cos' -sin +1 psin28- sine- p]|e (3.1.28)
r r 2 r,

F = F[C, sin3 9-Cf cos' e-psin2 9-1sin2e-pf sine+e]|| 3..9F -FC2 (3.1.29)r r 2 r

1 Z
where : C = -(1+p -)

3

C2 = -(p--)
3 n3
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Compared the cutting force model (formulas 3.1.28 and 3.1.29) to Tlusty's cutting

force model (formulas 2.1.10 and 2.1.11), it is known that Tlusty's model is a special case

of the model derived above when f,/r is small enough to be neglected.

Three different machining operation cases as same as ones mentioned in Tlusty's

model are discussed.

Case 1: axp + X and a + +(

For conventional milling:

section 1: [ -?, a - x ] O, = -_ Oe= 0

section 2: [ a - k, ( ] 0,= -( OeL= 0

section 3: [ p, (p + a ] , = 0 - a Oe= (

For climbing milling:

section i: [C -p,n-p+a] 6,=n-(p Oe=0

section 2: [t - p + a,7+X] 0,=0-a Oe=

section 3: [,t+, +X, +ca ] 0$=0-a Oe=it+X

Case 2: aC p +Xand +(+k y

For conventional milling:

section 1: [ , p] 0 = -k Oe= 6

section 2: [ p, a - k ] 6,= - Oe= X

section 3: [a-,±+a] 0,=0-a Oe=(p
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For climbing milling:

section i: [7n-(P,l+X ] 0s=7 -(p 0e=0

section 2: [CX +X,i-p+ a] 0s=ic-9 0 e=i +X

section 3: [1 -p+a,++ a ]0,=0.- a 0e=7 +

Case 3: a +<p +%,!>

Because of overlapping, the tool cutting force of the overlapped part is equal to

the sum of the cutting forces of both cutting edges.

3.2 Cutting Force Model with Tool Run-out

1. Tool Cutting Edge and Its Tip Profile of End Milling Operations

The equations of the tool cutting edge tip profiles are:

x = +rsin(wt -2z Z)+r sin(wt +y) (3.2.1)
60 Z

y = r cos(co t ) + r cos(co t + y) (3.2.2)
Z

where: co =2cn

60

Z = 2 and z = 0, 1 for two-flutes tool.

Z = 4 and z = 0, 1, 2, 3 for four-flute tool.

From geometry,

of r

sinl ysin(- +w t)
2
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Af = r sin?' (3.2.3)
cos CO t

Af 2 = ro2 + Ar 2 - 2roAr cosy

Ar = r(cosy - sin y tan co t) (3.2.4)

The equation of the tool cutting edge is:

x y
= 1 (3.2.5)

ft + sin(y ft sin7y 1
60 cos CO t 60 cos CO t tan( t-

Z

or:

ft sin y 27c z 2ir z
[x - ( + ro )]cos(w t- ) - y sin(co t ) = 0 (3.2.6)

60 coscot Z Z

2. Cutting Chip Thickness

In the end milling with run-out case, each cutting edge has a different chip

thickness. The two-flute tool is chosen in the following discussions.

(1) The chip thickness of the first cutter

The cutting chip thickness can be derived from the equations of the tool cutting

edge and its tip profiles.

The equations3.2.1, 3.2.2 and 3.2.5 can be rewritten as:

x = +r sin(co- 2 7rz)+ro sin(c to + y) (3.2.7)
60 Z

y = r cos(w to - )+r cos(w to + y) (3.2.8)
Z
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[x - (-t +ro siny )]cos(co t - -ysin(wt, - ) = 0 (3.2.9)
60 coscot, Z Z

As same as the discussion of the end milling without run-out case, to solve the

cross point, substitute x, y from the equations3.2.7 and 3.2.8 to the equation 3.2.9.

[(A- siny )]cos(w t, - 2(z+ 1))
60 60 coswt, Z

2 2f(z1) 2_:_.___:+_+r sin(wto -y )cos(wt - )-r cos(co -y )sin(t - )Z Z Z Z

+ro sin(a to + y ) cos(ca t, - 27 z+1) - ro cos(cw to + y ) sin(c) t, - 2T z+1) = 0
Z Z

[f (t t) -r siny ](t - 2n (z+1))
60w coscot, Z

2x. 2xz+±1)
+rsin(wto- wt,+ -)+rosin(oto -wt,+y + ) =0

Z Z

Considering the equations3.1.5 to 3.1.7, the above equation can be simplified.

f 27c sin_____

{ ( - siny } cos( - 0)
2rn Z c 27c(z+1) 2

cos[ Z-0 , + Z ]
2Z

2rz
= r sin S+ ro sin(5 + y + ) (3.2.10)

Z

Because 0o and 01 are very close, 6 is a small angle. Let:

sin6=6

and also let:

0 = _ 1

2

41



From the equation 3.2.10, the computing angle 6 can be solved.

cosO r° sinycosO r° . 27cz

r r 27r(z+1) r Z
cos[O+ ]

+ ~ Zcos+ r o (3.2.11)
1+f, +--cosy+ )

27rr r Z

fwhere:f,=
nZ

Let's consider the two-flute end mill case. The equation 3.2.11 can be simplified.

ft coso - (-1) 2 sin y
os Br r (3.2.12)

cos69 r
1 + f, + (-1) " °o COY

r r r

where: z = 0, 1

Considering f << 'f , ( ) << ,' f-<< 1 and <<1, the equation 3.2.12
r r r r r rr r

can be rewritten as:

cos r 1 cosO
) ft - (-1)2-°-sin y -- (f, ) (3.2.13)

r r 7 r

The computing feed is:

1 1 1
f = (t, - to)+r° sin y ( - ) (3.2.14)

60 cos co t, cos w to

Considering the equations 3.1.5 to 3.1.7 and 00 ~, because of 6 small, the

equation 3.2.14 can be rewritten as:

f f siny

27rn cos0
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Substituting the equation 3.2.12 to it, the computing feed f, can be solved.

f ~ f,[1+(-1)Z 2r siny]-f,2 cos0 -(-1)Z2ro siny (3.2.15)
zr zrr cos0

Because of 0- 0 1, assumed Aro Ar, = Ar . From geometry,

[r + (-1)Z Ar] 2 = H 2 + f - 2Hf, cos(zr - 0 ) (3.2.16)

H can be solved from above equation:

H =-fsin 0 + [r +(-1)Z Ar]2 -(f cos) 2  (3.2.17)

The cutting chip thickness is:

h =[r -(-1)" Ar]- H

= [r - (-1)Z r]+ f, sin 9 - [r +(-1)Z Or]2 - cos )2 (3.2.18)

Because of cs «1, the cutting chip thickness can be approximated.
r

h ~ f, sin0 + (fY cos0)2 - (-1) 2Ar (3.2.19)
2[r +(-1)Z Ar]

Substituting the equation 2.3.15 to 2.3.19, and also considering f,( )2 << f, and
r

f,( )3 << f,, the cutting chip thickness becomes:
r

h f,[1 + (-1)Z 2r ° sin y)]sin 9 -1 f2 sin Ocos9 + - f,2 cos2 0 - (_1)Z2r cosy
zzr .rr 2r

(3.2.20)

43



If f/r << 1 and ro = 0, the formula becomes h = f, sin 0, this is the third assumption

of Tlusty's model. It is said that Tlusty's model is a special case of end milling without

run-out.

Comparing the formula 3.2.20 to the formula 3.1.20, The tool run-out is expressed

in the first and forth items of the formula 3.2.20.

The forth term of the formula 3.2.20 is a major run-out factor. It reaches a

maximum value when the tool run-out is parallel to the tool cutting edge (y = 0 degree),

and turns to a minimum value when the tool run-out is perpendicular to the tool cutting

edge (y = 90 degree).

The second part of the first term the formula 3.2.20 is an additional run-out factor.

When y = 90 degree, the tool run-out turns into a minimum level and almost disappear. It

can be neglected in most conventional end milling operations because of ro/r << 1,.

For two-flute end-mills, if 2ro cos y is larger than f,, only one cutting edge works in

the machining operations.

The formula 3.2.20, which is derived from the general tool cutting profiles, do

have z parameter. It is said that different cutting edges have the deferent cutting chip

thickness. This is a true in the case of end milling with run-out.

Let z = 0, the chip thickness of the first cutter is:

h ~ ,[1 + 2r" sin y)]sin - 1 f 2 sin B cos 6+ 1 f 2 cos B - 2ro cosy (3.2.21)
r rr 2r
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(2) The chip thickness of the second cutter

The second cutter chip thickness calculation can be considered into two sections.

In the first section, the second cutting path of the second cutter cuts on its first cutting

path. In the second section, the second cutting path of the second cutter cuts on the first

cutting path of the first cutter path.

A. In the first section of the cutting operations

The equations3.2.1, 3.2.2 and 3.2.5 can be rewritten as:

x = +r sin(co to - 2fz ) +r sin(ca to + y) (3.2.22)
60 Z

2ff z
y = r cos(w to - )+ r, cos(c to + y) (3.2.23)

Z

ft1  sin y 2ff z 2ff z
[x-( f + rs )]cos(co t, - )y sin( t, - ) = 0 (3.2.24)

60 cosCOt 2  Z Z

As same as the above discussion, to solve the cross point, substitute x, y from the

equations3.2.22 and 3.2.23 to the equation 3.2.24.

[(fto ftl) siny - 2;f(z +2))

60 60 cos co t 2  Z

27cz 2c(z+2) 2rz 2 (z+2)
+r sin(w to y ) cos( t, - ) - r cos(( to - ) sin( t, - )

+r sin( to + y )cos( t, n 2r- ) 2; z + ) = 0
Z Z

[ (w to-2) - ]cos(ct t2 - 2 Z+2)
60w cos w t, Z

+r sin(co to - co t2 +-) + r, sin(c to - co t +7 + (z+2) = 0
Z Z
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Considering the equations 3.1.5 to 3.1.7, the above equation can be simplified.

I 4x sin________

{ f( ) }cos( if-0 , )
2;n Z o cos[ -,+ 2r(+2) 2

2 ~ Z

= r sin S+r sin(S +y + ) (3.2.25)
Z

Because e0 and 6 1 are very close, 6 is a small angle. Let:

sin b = 6

and also let:

2 -

From the equation 2.3.25, the computing angle 6 can be solved.

2f, cos)
Zc~s r (3.2.26)

1+ f, + -"- cos(y+ )
2rr r Z

.fwhere: f, =
nZ

Let's consider the two-flute end-mill case. The equation 3.2.26 can be simplified.

2f, cosO
-~ r (3.2.27)

cosO r
1+f, + "cosy

rr r

Considering <<f, ( ) << , <<1 and << 1, the equation 3.2.27
r r r r r rcr r

can be rewritten as:
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( 2ftcos0 2 cf os0) 322-~-(,cIs , coa(3.2.28)
r r r

The computing feed is:

f 1 1
f = f(t, -t o ) +r0 sin y ( - ) (3.2.29)

60 cosCt 2  cosCto

Considering the equations 3.1.5 to 3.1.7; and ~o 02 because of S small, the

equation 3.1.14 can be rewritten as:

f = f (2r -8)
2irn

Substituting equation 3.2.27 to it, the computing feed f, can be solved.

f, ~2f, - 2f,2 cos0 (3.2.30)
rrr

Substituting the equation 2.3.30 to 2.2.19, and also considering f,(t )2 <<ft and
r

f,( )3 <<f,, the cutting chip thickness becomes:
r

h _ 2f, sin0 f,2 sin0cos0+-ft2 cos2 9 (3.2.31)
rr 2r

B. In the second section of the cutting operations

In the formula 3.2.20, let z = 1. The chip thickness of the second cutter becomes:

2r0  1 1
h ~ f,[1- 2 sin y)]sin 9 f,2 sin cos0- + f,2 cos2 + 2ra cosy (3.2.32)

icr nr 2r
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3. Integrating Angle

(1) The integrating angle of the first cutter

In the formula 3.2.21, let h = 0.

1
2ro cosy ,- -f cos2 .

sin2 1 = 2r 2r (3.2.33)
f,(1+ " sin y)- f2 cosA ,7rr rr

If f/r << 1 and ro/r << 1, it becomes:

A = arcsin(-" cosy) (3.2.34)
f,

(2) The integrating angle of the second cutter

A. The first section

In the formula 2.3.31, let h = 0,

1
-f, cosA 2

sin A 21 r
1

1- f, cosA.,,
7rr

or:

sink A 2 -~ - cos21 A (1+ f, 1 - (3.2.35)
r urr

If 0 close to 0 or 180 degree, assume cos 0 = 1. It becomes:

A 21 ~ -arcsin[ (1+ f 1 )] (3.2.36)
r /7 r

B. The second section

When the formulas 3.2.31 and 3.2.32 have the same h, that is the boundary of the

two sections.
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2f, sin0 - f sin cos6+ 4f 2 cos2 0
r r 2r

2r 1 .,

= f,[1- 2 sin y)]sin - f--1 sin Ocos 0 +--f cos2 0+ 2r° cos y
r r 2r

Solve the equation,

3
2r3 cosy f cos 2 A 22

sin1 22 = 2r 2r (3.2.37)

f,(1+ " siny)- ft cos 22ecr icr

If f,/r << 1 and ro/r << 1, it becomes:

2r
A 2= 1 = arcsin( " cosy) (3.2.38)

4. Cutting Force

The cutting force can be derived by using the formulas 2.1.6 and 2.1.7, and cutting

chip thickness formula 3.2.20 instead of the formula 2.1.3 (the third assumption of

Tlusty's model).

dFx = -2F [(1+(-1) -"-sin y)sin - 1f, sin cos +--ft cos 2 0 -(-1) 2-"-cosy]
Xrcr rcr 2r f,

x(cosOdO+ psinOdO) (3.2.39)

2r 1 1r
dF, = 2F [(1+(-1) -- sin y ) sin a -- f, sin 0 cos0 +- f, cos2 0 -(-1) 2 cosy ]

icr )cr 2r ft

x(sin d0- pcos d0) (3.2.40)

Take the integration,
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Fx = F{ 't (1 + p2)(sin3 - sin 3 ,) + !Lt(p - 2)(cos' Oe - cos3 0,)
3 r r 3 r )

-[1+(-1)Z 2r° sin y](sin 2 O, -sin 2 0,)+ p[1+-1) 2r siny](sin20, - sin20,)
ir f2 r

+[(-1)z4 r°cosy ' ](sinO, -sin O,) - (-1)24p cosy (cos0e - cos0,)
fr ft

2r
- p[1 + (-1)' 2r sin y](O, - OS)} (3.2.41)

7r

if 2 , 2
F, =Fu{ ' (p -)(sin 3 e -sin 3 ,) -) (1 +p-)(cos3 9e-cos3 s)

3 r T 3 r

2r0  1 2r
-p[1 + (-1) 2 siny](sin2 O, - sin 0e) -[1 + (-1) 2 sin y](sin2, - sin20e)

err 2 ir

+[(-1)Z4p r° cosy L](si ne - sin,) + (-1) 4 cosy (cos0e -cos0,)
fr ft

+[r+(-1)r sin y](0, - O,)} (3.2.42)
i r

(1) The cutting force of first cutter

In the formulas 3.2.41 and 3.2.42, let z = 0. The first cutter cutting force is:

FX = F {1 ' (1 + p-)(sin 3 O, - sin' O,) + 1 ' (p - -)(cos3 O, - cos 3 O,)
3r z 3r i

2r 1 2r
-[1+ 2r" sin y](sin 2 0S - sin 2 0 e)+-p[1+ " sin y ](sin 20S - sin 20e)

icr 2 ir

+[4 r° cosy ' ](sin Oe - sin 0s) - 4p cosy (cos0, - cosO,)

2r
- p[1 + 2r sin y](0, - 0,)} (3.2.43)

r r
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F = F- {^ f' (p ~)(sin' 0, - sin' 3 ,) -0 ' (1+ p ~-)(cos' B, - cos' 0,)
3r r 3r n

2r , , 1 2
-p[+ "r° siny](sin- 2 , - sin2 0e) -[1+ " sin y](sin2s - sin2,)

7cr 2 7r

+[4p r°cosy - t ](sin 0 - sin 6S)+ 4 cosy (cos 6e - cos 6,)
fr ft

2r
+[I+ 2r sin y](e, - B,)} (3.2.44)

;T r

or:

F =JF[C3 f sin 3 0±+C f cos'0-(1+C,)sin0+ 1p(1+C)sin28
r r 2

+(C - )sin 9-pC6 c osO-p(1+C)]": (3.2.45)
r

F, = F[C4 sin' 6-C cos' B- p(1+C 5 )sin2 9- (1+C 5 )sin 26
r r 2

+ - )sin0+ C6 cos0 + (1 + C)011| (3.2.46)
r

1 2
where: C3 = -(1+p-)

3 7c

C4 =-(p- 2 )
3 ir

C5 =2sin y
7c r

4r
C6 = cos7y

ft
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(2) The cutting force of second cutter

A. The first section

The cutting force can be derided by using formulas 2.1.6 and 2.1.7, and cutting

chip thickness formula 3.2.31.

dFx = -2F (2 sin0 f, sin 0cos +-f, cos' 6 )(cos d6+ p sin edO ) (3.2.47)
7c r 2r

dF, = 2F (2 sin6 -- f, sin dcos+-f, cos' 0)(sin Od- p cos~dO) (3.2.48)
ir r 2r

Take the integration, the cutter cutting force is:

Fx = F[ 4-f-(1+ )(sin' Oe - sin3 O,)+ 4 (p - )(cos' Oe - cos' O,) -2(sin 2 O, - sin2 B )3 r .ir 3 r

+p(sin26e -sin20)-4 (sin e -sin6S) - 2 p(0 e -6,)] (3.2.49)
r

F, = Fu[ (p - )(sin3 Oe - sin3 0,) - (1+ )(cos' O, -cos' O,) - 2p(sin2 0, - sin2 OS)

-(sin 26e - sin 20,) - p 4' (sin e - sin 9S) + 2(e - 0,)] (3.2.50)
r

or:

13 1 4f,Fx = F[C,- fsin3 0+ C ' cos3 6-2 sin 2  + psin2O-f sin 0- n 2p6]|- (3.2.51)
r r r

f 3  f 4_F = F[Cg ' sin3 0-C , ' cos 3 0- 2psin 2 0-sin20-p 4f' sin0+20]10 (3.2.52)
r r r

where : C, = -(1+ -)
3 r

Cs = 4 (P- 1)
3 i5
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B. The second section

The formulas 3.2.45 and 3.2.46 can be used to calculate the cutting force of the

second section by using - C5 and - C6 instead of C5 and C6.

3.3 Cutting Force Model of Conventional End Milling Operations

That cutting force model has been derived above can be applied to all the cases of

end milling operations. The conventional end milling operations is only a special case of

the model, which can be simply obtained from the model. The cutting force expressions of

the conventional end milling operations are much simpler than then the micro-end-milling

operations.

1. Cutting Force Model of Conventional End Milling Operations without Tool Run-

out

The conventional tools cutting force model can be simply obtained from the

cutting force model by considering f,/r = 0 and ro/r = 0.

From the formulas 3.1.28 and 3.1.29, the cutting force model becomes:

., 1
Fx = F[ -sin' + 1+-p sin 29- p8]|e' (3.3.1)

2

*~ 1 (3.3.2)F, =T F[(-psin 9--1sin 28 +9]| 3..22

This is exact Tlusty's cutting force model.
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2. Cutting Force Model of Conventional End Milling Operations with Tool Run-out

In the two-flute tool case, the cutting force model can be derived from formulas

3.2.45, 3.2.46, 3.2.51 and 3.2.52 by considering f/r = 0.

For the first cutter,

F, = F[-sin2 9+-psin29+ " cosy(sin-pcos9)- p4]r' (3.3.3)
2 ft

F, = Fu[-p sin0 -- sin 2+ 4rcosy(p sinO+cosO)+ ]|e (3.3.4)

For the first section of the second cutter,

F, = F-2sin +psin2 -2p9] (3.3.5)

F, = F -[- 2p sing 9- sin 2+2]|0, (3.3.6)

For the second section of the second cutter,

1 4r
F = F[-sin2 O+-p sin2O- "' cosy(sinO- pcos9) - p]~e (3.3.7)

2 f

F, = Fu[-p sin -1 sin20 4r2 cosy(psinO+cosO)+]|' (3.3.8)
2 .f,

The integrating angle can be got from the formula 3.2.34.

2r
= arcsin( cosy) (3.3.9)

f,
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Chapter IV

Model Based Cutting Force Characteristics and Surface Finish

Model based cutting force characteristics of micro-end-milling operations are

discussed in this chapter. The cutting force performances of ten different variables (spindle

speed, feed rate, depth of cut, tool run-out and its angle, tool diameter, helix angle and the

numbers of flutes) are presented. The calculation formulas of work-piece surface

roughness and precision have been derived from the tool cutting edge tip profile equations

of the analytical model.

4.1 Cutting Force Profiles

The developed analytical cutting force model conventional milling (see Chapter

III) can be used to estimate the cutting force of end milling operations. Six sample cases,

which include two-flute and four-flute tool climbing and conventional milling with and

without tool run-out cases are presented in Figure 4.1 to 4.6. In the sample cases, 0.020"

diameter tool with 45 degree helix angle, 15,000 rpm spindle speed, 70 ipm feed rate,

0.010 inch depth of cut, 50% overlapping and 130,000 N/inch 2 material coefficient are

selected. If the case is a tool run-out case, 0.001" tool run-out with 60-degree run-out

angle are chosen. They are listed as below:

Case 1: Two-flute tool, climbing milling without run-out (Figure 4.1).

Case 2: Two-flute tool, conventional milling without run-out (Figure 4.2).
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Case 3: Two-flute tool, climbing milling with run-out (Figure 4.3).

Case 4: Two-flute tool, conventional milling with run-out (Figure 4.4).

Case 5: Four-flute tool, climbing milling without run-out (Figure 4.5).

Case 6: Four-flute tool, conventional milling without run-out (Figure 4.6).

In all these sample cases the tool wear is not considered, which will be discussed in

the following chapter.

From the sample cases 1 and 2 (see Figure 4.1 and 4.2), it is known that the

maximum resultant cutting force of climbing milling and conventional milling are almost in

the same level. If the effect of feed rate is not considered, the cutting force of the thrust

direction is larger than the feed direction in the climbing milling, and the cutting force of

the feed and thrust direction are almost the same in the conventional milling.

In the conventional milling, the angle of the maximum resultant cutting force is

always the exit cutting angle, which is independent of the spindle speed, feed rate and

depth of cut. It is 90 degree in the 50% overlapping case. In climbing milling, the angle of

the maximum resultant cutting force only depends on the depth of cut, which is b / (r tan

y) in the case of 50% overlapping. It is 147 (90 + 57) degree in the sample case.

A very little change in run-out would produce a 25% change in the maximum

resultant cutting force (compare Figure 4.3 and 4.4 run-out cases with Figures 4.1 and 4.2

without run-out cases). If the tool run-out is larger than the complete run-out that can be

calculated by the formula 4.2.2 (see next section of the chapter), the maximum resultant

cutting force is no more increased even when the tool run-out is increased. In this case it

becomes a one-flute cutting.
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Cutting Force of Climbing Milling
without Tool Run-out

3.0
Operation Condition:
0.020 " diameter tool

2.5 with two flutes and
450 helix angle.

2.0 15,000 rpm spindle
z speed.

70 ipm feed rate.
1.5 0.010" depth of cut.

L. 50% overlapping.

S1.0- 130,000 Nin. 2 material
coefficent.

0.5

0.0 -Feed Direction

- 0 -60 -30 0 30 60 90 120 150 180 210 240 270 -Thrust Direction
-Resultant

Tool Turning Angle (degree)

Figure 4.1 Cutting force of two-flute tool, climbing milling without tool run-out

Cutting Force of Conventional Milling
without Tool Run-out

3.0
Operation Condition:

2.5 0.020 " diameter tool
with two flutes and

2.0 450 helix angle.

1.5 15,000 rpm spindle
z 1speed.

1.0 70 ipm feed rate.
0.010" depth of cut.

LL 0.5 50% overlapping.
130,000 Nin.2 material

0.0 coefficent.
U 0 60 90 120 150 180 10 240 270 300 330 30

-0.5--

-Feed Direction

-1.5 -Thrust Direction
- Resultant

-2.0

Tool Turning Angle (degree)

Figure 4.2 Cutting force of two-flute tool, conventional milling without tool run-out
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Cutting Force of Climbing Milling

with Tool Run-out

4.0
Operation Condition:

3.5 0.020 " diameter tool
with two flutes and

3.0 450 helix angle.
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Figure 4.3 Cutting force of two-flute tool, climbing milling with tool run-out

Cutting Force of Conventional Milling
with Tool Run-out
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Figure 4.4 Cutting force of two-flute tool, conventional milling with tool run-out
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Cutting Force of Climbing Milling
without Tool Run-out
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Figure 4.5 Cutting force of four-flute tool, climbing milling without tool run-out

Cutting Force of Conventional Milling
without Tool Run-out
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Figure 4.6 Cutting force of four-flute tool, conventional milling without tool run-out
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The feed and thrust direction cutting force can be used to decide the tool run-out

and its angle, which will be discussed in Chapter V.

The maximum resultant cutting force of the four-flute tools (see Figure 4.5 and

4.6) is only half of the two-flute tools (see Figure 4.1 and 4.2). The cutting force

oscillation of the four-flute tools becomes only one forth of the two-flute tools.

4.2 Cutting Force Characteristics

The maximum cutting force of tools is the most important factor in the micro-end-

milling operations. It can be used to indicate tool wear because it gradually increases when

the tool is worn, which is the most important reason of the tool breakage. It has been

proved in many experimental cases of the micro-end-milling operations (see Chapter V).

The only cutting force in the thrust direction of the micro-end-milling operations is chosen

for the studies because the cutting force in the feed direction has very similar

characteristics in most cases.

A special case is selected for the studied. All other cases discussed in the chapter is

around this special case with different parameter changes. In the studied case, two-flute

20" diameter tool with a 45 degree helix angle are considered working in 50% overlapped

climbing end milling operations without tool run-out and wear. The working conditions

are selected as 15,000 rpm spindle speed, 70 ipm feed rate and 0.030" depth of cut. The

material coefficient is considered as 130,000 N/inch 2. The conditions will be used in all the

discussed case without other explanations.
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1. Cutting Force Characteristics with Working Conditions

Three most interesting working conditions, spindle speed, feed rate and depth of

cut, are studied. The spindle speeds are selected between 5,000 and 45,000 rpm, feed rates

between 20 and 120 ipm, depth of cut between 0.010 and 0.030 inch. The tools used in

the studies are two-flute 0.010", 0.020" and 0.030" micro-end-mills.

" Cutting force characteristics with spindle speed:

The spindle speeds from 5,000 to 45,000 rpm have been studied. Three different

feed rates (20, 70 and 120 ipm) and tool diameters (0.010", 0.020" and 0.030") are

selected in the study. The cutting force is decreased when spindle speed is increased. It

can be divided into two sections, in which the cutting force is decreased sharply from

5,000 rpm to a certain spindle speed and gently after this speed. This speed called critical

spindle speed depends on the feed rate and tool diameter. In the study case, it can be

approximated that critical spindle speed is around 1,000 rpm in the 20 ipm feed rate case,

2,000 rpm in the 70 ipm case and 3,000 rpm in the 120 ipm case from Figure 4.7. It does

not have much help for micro-end-milling operations to increase the spindle speed after

the critical point. For different tool diameters, the same conclusion can be obtained from

Figure 4.8. The larger tool diameter becomes, the smaller critical spindle speed is got and

the littler cutting force is decreased.

The critical spindle speed obtained from the cutting force model can be used to

select the spindle speed of micro-end-milling operations.
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Maximum Cutting Force in Thrust Direction
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Figure 4.7 Cutting force characteristics with spindle speed
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Figure 4.8 Cutting force characteristics with spindle speed
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" Cutting force characteristics with feed rate:

The feed rates from 20 to 120 ipm have been studied. Three different spindle

speeds (15,000, 30,000 and 45,000 rpm) are selected in the study. The cutting force is

increased linearly when feed rate is increased. The increasing slope of the cutting force

depends on the selected spindle speed. When spindle speed is turned to faster, it becomes

smaller and the cutting force increase becomes gentler (see Figure 4.9).

Increasing spindle speed and decreasing feed rate can reduce the cutting force. It is

efficient to reduce the cutting force by increasing spindle speed when it is lower than the

critical spindle speed. Otherwise, it becomes better by reducing feed rate.

The cutting force will be unchanged if the ratio of feed rate to the spindle speed is

a constant (see Figure 4.11 and 4.12).
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Figure 4.9 Cutting force characteristics with feed rate
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* Cutting force characteristics with depth of cut:

The depths of cut from 0 to 0.050" have been studied. Three different spindle

speeds (15,000, 30,000 and 45,000 rpm) are selected in the study. When depth of cut is

increased, the cutting force is increased up to a certain level then kept there independent

of the depth of cut (see Figure 4.10, 4.13 to 4.16).

The critical depth of cut depends on the cutting angle of the work-piece and tool

helix angle. It can be obtained from the analytical model. If the depth of cut is less then ntr,

which happens in most micro-end-milling, it can be calculated by following formula.

b = re (4.2.1)
tan y

Maximum Cutting Force in Thrust Direction
of End Milling Operations
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0.5 --o0.02

0 -- -0.03
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Figure 4.10 Cutting force characteristics with depth of cut

The three dimensional cutting force graphics are presented in Figure 4.11 to 4.16.
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Maximum Cutting Force in Thrust Direction
of End Milling Operations
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Figure 4.11 2-D cutting force characteristics with spindle speed and feed rate
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Figure 4.12 3-D cutting force characteristics with spindle speed and feed rate
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Maximum Cutting Force in Thrust Direction
of End Milling Operations
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Figure 4.13 2-D cutting force characteristics with spindle speed and depth of cut
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Figure 4.14 3-D cutting force characteristics with spindle speed and depth of cut
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Maximum Cutting Force in Thrust Direction
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Figure 4.15 2-D cutting force characteristics with feed rate and depth of cut
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Figure 4.16 3-D cutting force characteristics with feed rate and depth of cut
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2. Cutting Force Characteristics with Tool Run-out

* Cutting force characteristics with tool run-out:

The tool run-out from 0 to 0.020" has been studied. Three different tool run-out

angles (0, 45 and 90 degree) are selected in the study. The cutting force is increased when

tool run-out is increased. Usually, except the case of 90 degree run-out angle, it can be

divided into two sections, in which the cutting force is increased linearly to a maximum

tool run-out called complete run-out then kept there. When tool with 90-degree run-out

angle, the cutting force is increased very little (see Figure 4.17).
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Figure 4.17 Cutting force characteristics with tool run-out
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The physical meaning of the complete tool run-out is that only one of the tool

flutes works when the tool run-out is larger than it. For two-flute tool, the complete run-

out depends on the tool run-out angle and feed per tooth. It can be derived from the

analytical model.

Roc = f(4.2.2)
2cosy

In the study cases, the complete tool run-out have be calculated, which is 0.0012

inch in the 0 degree run-out angle case and 0.00165 inch in the 45 degree case.

* Cutting force characteristics with tool run-out angle:

The tool run-out angles from 0 to 90 degree have been studied. The cutting force

is decreased when the tool run-out angle is changed from parallel to the tool cutting edges

(0 degree) to perpendicular to them (90 degree). When the tool run-out angle is closely

perpendicular to the tool cutting edges, the cutting force has a minimum value. When the

tool run-out angle is parallel to the tool cutting edges, the cutting force has a maximum

value that almost double of the minimum value (see Figure 4.18).

From cutting force model, it has been proved that cutting force caused by the tool

run-out can be minimized by setting the tool run-out perpendicular to the tool cutting

edges. For normal tool holders, screwing the tool perpendicularly to the tool cutting edges

can easily do it. In the view of the work-piece precision, the same conclusion can be

obtained from exactly computed results, which will be discussed in the following section

of this chapter.
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of End Milling Operations
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Figure 4.18 Cutting force characteristics with tool run-out angle

The three-dimensional graphics of the cutting force with tool run-out and run-out

angle are presented in Figure 4.19 and 4.20. It can be known that tool run-out and angle

can not be recognized by only one maximum cutting force value because the maximum

cutting force is a multiple value function of the tool run-out and its angle. If it is tried to

estimate the tool run-out and its angle, the maximum cutting force of both feed and thrust

directions have to be considered. The tool run-out and its angle are a single value function

of the maximum cutting force of both feed and thrust directions. The detail will be

discussed in Chapter V.
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Figure 4.19 2-D cutting force characteristics with tool run-out and its angle
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Figure 4.20 3-D cutting force characteristics with tool run-out and its angle
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3. Cutting Force Characteristics with Tool Cutting Angles

" Cutting force characteristics with tool entry cutting angle:

The case of climbing micro-end-milling with different percentage overlapping has

been studied, in which the exit cutting angle is fixed on 180 degree and entry cutting

angles are changed from 0 to 180 degree. The cutting force almost has a linear decrease

with the increasing overlapping percentage except the section between 0 and 15 degree, in

which it almost is kept in the same level (see Figure 4.21).

The cutting force can be reduced linearly by increasing the overlapping percentage

of micro-end-milling.
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Figure 4.21 Cutting force characteristics with entry cutting angle
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" Cutting force characteristics with tool exit cutting angle:

The case of conventional micro-end-milling with different percentage overlapping

has been studied, in which the entry cutting angle is fixed on 0 degree and exit cutting

angles are changed from 0 to 180 degree. The cutting force almost has a linear increase

with the decreasing overlapping percentage except the section between 0 and 15 degree,

in which it almost is 0 (see Figure 4.22).

The same conclusion can be obtained as above that cutting force can be reduced

linearly by increasing the overlapping percentage of micro-end-milling.
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Figure 4.22 Cutting force characteristics with tool exit cutting angle
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4. Cutting Force Characteristics with Tool Geometry

Cutting force characteristics with tool diameter:

The tool diameters from 0.010" to 0.125" have been studied. Three different

spindle speeds (15,000, 30,000 and 45,000 rpm), feed rates (20, 70 and 120 ipm) and

depths of cut (0.010", 0.030" and 0.050") are selected in the study.

In all the studied cases, when tool diameter becomes smaller, the cutting force is

decreased more rapidly (see Figure 4.23 to 4.25). For all the tool diameters, the decrease

of the cutting force is almost proportional to the increase of the spindle speed when it is

over the critical spindle speed (see Figure 4.23, 4.26 and 4.27).
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Figure 4.23 Cutting force characteristics with tool diameter and spindle speed
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With different feed rates, the same results can be obtained from the cutting force

model. When tool diameter becomes smaller, the cutting force is decreased more rapidly.

For all the tool diameters, the decrease of the cutting force becomes almost proportional

to the increase of the feed rate (see Figure 4.24, 4.28 and 4.29).

The decreasing slope of the cutting force depends on the tool diameters. The small

tool diameter is, the gentler slope of the cutting force becomes.
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Figure 4.24 Cutting force characteristics with tool diameter and feed rate

For different depths of cut, the same results can be obtained from the analytical

cutting force model. When tool diameter becomes smaller, the cutting force is decreased
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more rapidly. For all the tool diameters, the cutting force becomes a constant when the

tool diameter is over the critical tool diameter (see Figure 4.25, 4.30 and 4.31).

The critical tool diameter depends on the engagement angle. It can be obtained

from the analytical model. In the study case, it can be calculated by following formula.

b tan ;v
_ =tan(4.2.3)
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Figure 4.25 Cutting force characteristics with tool diameter and depth of cut

The three dimensional graphics of the cutting force with tool diameter, spindle

speed, feed rate and depth of cut are presented in Figure 4.26 to 4.31.
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Figure 4.26 2-D cutting force characteristics with tool diameter and spindle speed
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Figure 4.27 3-D cutting force characteristics with tool diameter and spindle speed
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Figure 4.28 2-D cutting force characteristics with tool diameter and feed rate
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Figure 4.29 3-D cutting force characteristics with tool diameter and feed rate

78



Maximum Cutting Force in Thrust Direction
of End Milling Operations

- 0.05

- 0.042
Cutting
Force (N)

0. 034 Z 12.25-13.5

U 11-12.25
S09.75-11

-. * 8.5-9.75

. 7.25-8.5

- 136-7.25
0.018.75-

0 3.5-4.75

0.01
0.02 0.041 0.062 0.083 0.104 0.125

Tool Diameter (inch)

Figure 4.30 2-D cutting force characteristics with tool diameter and depth of cut
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Figure 4.31 3-D cutting force characteristics with tool diameter and depth of cut
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* Cutting force characteristics with tool flute numbers:

Two-flute and four-flute 0.020" diameter tools have been studied. They are

operated in 50% overlapped climbing operations without tool run-out. 15,000 rpm spindle

speed, 70 ipm feed rate and 0.030" depth of cut are selected in the operations.

The profiles of the cutting force of the thrust direction are presented in Figure

4.32. The maximum cutting force of the four-flute tool is almost the half of one of the

two-flute tool. In the study case, the cutting force of the four-flute tool is 1.30 N and the

two-flute tool is 2.63 N. The four-flute tool has much smaller cutting force oscillation than

the two-flute tool, which is 0.65 N difference and 2.63 N difference, or 1:4.
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Figure 4.32 Cutting force characteristics with toot flute numbers
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" Cutting force characteristics with tool helix angle:

The tool helix angles from 25 to 75 degrees are studied. The cutting force almost

has a linear decrease when tool helix angle is increased (see Figure 4.33).
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Figure 4.33 Cutting force characteristics with toot helix angle
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4.3 Work-piece Surface Roughness and Precision

1. Work-piece Surface Roughness

It is important for the machining operations to obtain the request surface quality of

the work-piece. Work-piece surface roughness is one of the surface quality indicant. It can

be derived from the developed analytical cutting force model by considering the tool

cutting edge tip profiles (see Figure 4.34).

edge P of End Ie come:ing OptvWns
{x uI rlmner hw 002 (p e Spmad rros )00 +0]n-y-Afr (4. 3.1)

Figure 4.34 W orec surface rughnss y conieigteto utn detppoie

Substituting t from the equations 3.1.1 to 3.1.2, the equations of the tool cutting

edge tip profiles become:

fx - f[arccos(-) + 2z] } +Y,=r (4.3.1)
2nT r Z

where: z = 0, 1 for two-flute tools.
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z = 0, 1, 2, 3 for four-flute tools.

Two equations can be derived from equation 4.3.1 by considering the 1 " path of

the first flute (z = 0) and the p" path of any flutes (included the first flute itself).

{x - [Arc cos(y)]}2 +y 2 = r2  (4.3.2)
2nnr r

{x - [2(p + 7)r - Arccos( )]}2 + y 2 =r2 (4.3.3)
2nf 7r Z r

where: p = 0, 1, 2, 3, ...

All the roots of the cutting edge profile can be solved from the equations 4.3.2 and

4.3.3.

y = r 1 -{4n[2(p +-) -(]}z
4nr Z

or:

y = r 1-[ (m - 9)]2 (4.3.4)
2r

where: S = 2 Arc cos(-)
7C r

m = 1, 2, 3, ... until m < 4nr/f.

Because only working surface profiles are interested, y value is very close to r

value. That 6 = 0 is assumed. The formula becomes:

Y = r 1 (mf )2
2r

The work-piece surface roughness is:
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S, = r-yI= r[1- 1 - (rf)2] (4.3.5)

Considering that f,/(2r) is small, the formula can be approximated as:

(mf )2
Sr ~ ') (4.3.6)

4d

When m = 1, the formula 4.3.6 gives an approximate value for both conventional

and climbing milling. Actually, the work-piece surface roughness is a little smaller than

that approximate value in conventional milling and a little larger in climbing milling.

Conservatively, m = 1 can be used for conventional milling and m =4 for climbing

milling.

For conventional milling, the work-piece surface roughness is:

S ~ t (4.3.7)
'4d

For climbing milling, the work-piece surface roughness is:

j2

S ~ ' (4.3.8)
'2d

The results have a similar form to the formula derived by Martellotti, mentioned in

Milton C. Shaw's "Metal Cutting principles" [431

If request surface roughness is Sr, the working conditions have to be selected as

following formulas.

For conventional milling:

f, 2Sr (4.3.9)

For climbing milling:
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f,< 2Sd (4.3.10)

The work-piece surface roughness is proportional to the square of the feed per

tooth and inverse proportional to the diameter of the tool. The faster spindle speed and the

slower feed rate, the better quality work-piece surfaces would be obtained. In theory, the

work-piece surfaces could be manufactured to an absolutely smooth plane when a tiny

feed rate and fast enough spindle speed were given.

2. Work-piece Surface Precision

Work-piece surface precision is anther important surface quality indicant. It can be

derived from the analytical cutting force model by considering the tool run-out which is

the most important factor of the work-piece geometrical accuracy (see Figure 4.35)

Thol Cutter Profiles of End Mill Ma'ining Operations

TDoi e f diuftc} 2 C d fa 'un C>W A: [00

Figure 4.35 Work-piece surface precision by considering the tool run-out
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Considering the tool run-out cutting edge tip profile equations 3.2.1 and 3.2.2, and

the geometry of the tool run-out, the work-piece surface precision can be derived.

For two-flute tools, the work-piece surface precision is:

S, = Ir2 +r2 -2rro cos(rc -y) -r (4.3.11)

For four-flute tools, the work-piece surface precision is:

S, = r2 +ro - 2rrM -r (4.3.12)

where: M = Max{ Abs[ cos( n - y)], Abs[ cos( 7r/2 + y)]}

When the tool run-out angle is parallel to the tool cutting edges (y = 0), the work-

piece surface has the lowest precision. When the tool run-out angle is perpendicular to the

tool cutting edges (y = 7/2) for two-flute tools or 45 degree to the two adjacent tool

cutting edges (y = 7/4) for four-flute tools, the work-piece surface has the highest

precision.

If the request surface roughness is Sp, the tool run-out has to be considered as the

following formulas.

For two-flute tools:

r r cos(r - y)+ J[r cos(r - y)]2 +(r + S,) 2 -r 2  (4.3.13)

For four-flute:

ro -rM + (rM)2 + (r + S,) 2 - r 2  (4.3.14)

Usually, the run-out angle can be considered as 7/2 for two-flute tools or 7/4 for

four-flute tools. Conservatively, the run-out angle can be considered as 0.
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Chapter V

Model Based Monitoring of Micro-End-Milling Operations

Genetic algorithm based optimization method is proposed for the monitoring of

micro-end-milling operations. It is possible to monitor tool wear, breakage, run-out,

cutting angles and cutting conditions by using this approach. The sum of the difference of

cutting forces obtained from the monitoring signals and the analytical cutting force model

is considered as the objective function. It is optimized by a genetic algorithm program

(GATooI) to search the fittest variables of the analytical cutting force model. It has been

proved that information included in the cutting force signals can be identified by the

proposed method. The tool wear, run-out, cutting angles and cutting conditions of micro-

end-milling operations can be estimated in a few evolution generations with an acceptable

error. The GATool program has a fast reaction and accurate results that can be applied to

the on-line monitoring of micro-end-milling operations. The performance of the genetic

algorithm based monitoring method is presented in this chapter.

5.1 Tool Breakage Detection

In micro-end-milling operations, it is hard to see or heard when the tool is broken

because of its tiny size. Tool breakage monitoring methods can avoid wasting machining

time, tools and work-pieces. It can stop the machining operation immediately and warn the

operator to change the tool or to adjust the tool working conditions to extend the tool life

until the task is completed.
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The tool breakage could be caused by many different reasons that included

unsuitable working conditions, dulled and damaged tool cutting edges, tool cutting edges

stuck with the milted chips and so forth. To detect the tool breakage and to understand its

reason, two most commonly used signals are acoustic emission (AE) and cutting force. In

this study, acoustic emission (AE) is used to monitor the tool breakage, and the cutting

forces are used to explain the reason of the tool breakage.

1. Detecting tool breakage by monitoring machining acoustic emission [27.30]

Acoustic emission signal characteristics change with the tool conditions. The signal

characteristics are different when the operation and tool (wear, breakage) conditions are

changed. In this section, a new method is proposed to detect tool breakage without giving

false alarm when the tool leave the work-piece.

In the experiments, the AE sensor was attached on the work-piece directly. For

analog signal processing, the DME Corporation's SWAN 3000 system was used. The AE

signal was filtered at 40 KHz modulated and sampled by a Nicolet 310 digital oscilloscope.

Two-flute high speed steel end mill with 0.015" diameter was used to machine

mild steel work-piece. The cutting conditions were 30,000 rpm spindle speed, 0.24 ipm

feed rate and 0.016" depth of cut in the experiment I, and 3,000 rpm spindle speed, 0.9

ipm feed rate and 0.005" depth of cut in the experiment II. The AE signals at the both

experiments are presented in Figure 5.1 to 5.4.

To distinguish the tool breakage from leaving the work-piece, two algorithms are

developed.
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ACOUSTIC EMISSION TESTING IN END-MILL
MACHINING OPERATIONS

(experiment I: tool broken case)
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Figure 5.1 AE activity of micro-end-milling experiment I, case 1

ACOUSTIC EMISSION TESTING IN END-MILL
MACHINING OPERATIONS

(experiment I: tool left from workpiece case)
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Figure 5.2 AE activity of micro-end-milling experiment I, case 2
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ACOUSTIC EMISSION TESTING IN END-MILL
MACHINING OPERATIONS

(tool broken case 1)
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Figure 5.3 AE activity of micro-end-milling experiment II, case 1

ACOUSTIC EMISSION TESTING IN END-MILL
MACHINING OPERATIONS

(tool left from workpiece case 1)
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Figure 5.4 AE activity of micro-end-milling experiment II, case 2
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Method 1: Tool broken with a very sharp spike signal

Step 1. Calculate the average Xa and variation X~ of the first 150 data.

Step 2. Take the following data X; and compare it with the average Xa. If X; > Xa + X g, the

tool was broken, otherwise update the average Xa and variation X~ by considering X;.

Step 3. If Xv> X 0 17,, the tool is cutting normally, otherwise it is leaving from the work-piece.

If the tool was cutting normally, go back to step 2.

Xf 1.,i and Xih can be decided by studying the AE data pattern.

Method 2: Tool broken with a non-significant spike signal

Step 1. Calculate the average Xa of the first 150 data.

Step 2. Take the following data X; and compare it with the average Xa. If X; < Xa - Xi0o, go to

step 3, otherwise update the average Xa by considering X; and then repeat step 2.

Step 3. Take the following 150 data. Create 15 sections with 10 data each. For each section j

obtain the linear interpolation between the most-left and most-right points:

Xj*10. = X *10 + i * (X 6 .1)* 10 - X * 10) / 10

where: i = 0 ~ 9

j=0- 14

Step 4. Estimate the total error of the 150 data

14 9

E=~ ~ 2 X.0; '.0;2

j=0 1=0

Step 5. Compare the error with two reference values EnOrma1 and Eba ge, which can be decided

by studying the AE data patterns. Make the decision by the following rules:
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E < Enmni The tool is cutting normally.

Enosai E ? Eacge The tool is leaving the work-piece.

Ex, < E The tool was broken.

If the tool was cutting normally, go back to step 2. In case the tool is broken or

leaving the work-piece, stop the process.

Both the algorithms detected tool breakage in all the tests without any error. The

results will be discussed in Chapter VII (Figure 7.3.1 and 7.3.2).

The AE based tool breakage detection methods can be easily implemented and

require relatively simple instrumentation. They are most of the time reliable, however, if

unexpected noises are created in the system because of friction they may fail.

2. Detecting tool breakage by monitoring cutting force [31]

The characteristics of the cutting force change with tool wear. When the cutting

force increase beyond a critical value, miniature tools break. The objective of the method

in this section is to identify the tool breakage.

In the experiments, the work-piece was installed on a Kistler 9257B dynamometer

that was attached to the table. Two-dimensional cutting force signals were collected by a

Nicolet 310 digital oscilloscope through a Kistler three channel charge amplifier. The

experiment setup is presented in Chapter VI.

Two-flute high speed steel end mill with 0.015" diameter was used to machine

mild steel and aluminum work-pieces. The working conditions were 30,000 rpm spindle
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Tool Cutting Force of End-mill Machining Operations
(complete tool life cycle, mild steel workpiece case)
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Figure 5.5 Tool cutting force of micro-end-milling experiment I

Tool Cutting Force of End-mill Machining Operations
(complete tool life cycle, aluminum workpiece case)
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Figure 5.6 Tool cutting force of micro-end-milling experiment II
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speed, 0.004" depth of cut, 1 ipm feed rate for the mild steel work-piece and 2 ipm feed

rate for the aluminum work-piece. The results are presented in Figure 5.5 and 5.6, in

which the tool life is segmented in 5 and 9 different segments.

A high frequency cutting force signal with a lower frequency vibration can be

observed in the figures. The high frequency signal represents the tool cutting force, whose

frequency depended on the machining spindle speed. The lower frequency variation is

created by the tool vibration. The vibrations are created due to the inconsistency in the

feed rate and the non-homogeneous characteristics of the work-piece.

To detect the tool breakage and estimate its reason, the following five statistical

methods were used to process the cutting force data.

1. Cutting force average

1 100
Xa'0 = X the first 100 data

100 i

X, = [(i -1)Xa'' + X,)]/i after first 100 data (5.1.1)

where: X; is the if' cutting force data.

2. Cutting force moving average

X,' 00 = X, 00  the first 100 data

X, = [(I - 1)Xa -' 1X 00 + X)] /100 after first 100 data (5.1.2)

3. Cutting force variation

1 100

X 100 1 (X - X 00 )2  the first 100 data

X,' [-1)Xvi +(X - X )2 ]/ after first 100 data (5.1.3)
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4. Cutting force moving variation

X,, 1 = X, 00  the first 100 data

X1 = [(i -1)X,,' +(X - X,') 2 ]/i after first 100 data (5.1.4)

5. Variation of cutting force moving averages

X, * = 0 the first 100 data

X, [( -100)Xa.,7 1 + (X,,' - X,') 2]/(i -100+1) after first 100 data (5.1.5)

The cutting force variation is the main indictor of the tool breakage. When it

becomes larger than a tool breakage critical value, the tool would create a poor machined

surface and break very soon. The cutting force moving variation is related to the tool wear

level. If it is larger than a tool wear critical value, the tool is really worn and shouldn't be

used any more. The cutting force moving average and its variation provides the tool

vibration information. The vibrations could cause rough surface, short tool life or tool

breakage. If the variation of the cutting force moving average is larger than a tool

vibration critical value and the cutting force moving variation is still less than the tool wear

critical value, the tool life could be extended by reducing the feed rate or cleaning it

immediately.

The test results of two experimental cases are presented in Figure 5.7 to 5.14. The

0.015" diameter tool used with the mild steel work-piece had almost 3.5" tool life. The

0.015" diameter tool cutting the aluminum work-piece had almost 20" tool life.

During the machining of mild steel work-piece, the cutting force average was

remained around 0.2 N (see Figure 5.7 and 5.8) and moving average was remained around

+0.2 N. The tool worked in a good condition with a very little vibration. The cutting force
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was gradually increased while it was worn. The tool cutting force variation was gradually

increased from 0.2 to 1.0 (see Figure 5.10) until reached the tool breakage critical value.

The reason of the tool breakage was the tool wear.

Compared to the mild steel work-piece, the experiment data of the aluminum

work-pork-piece had very different characteristics. The cutting force average was

remained around 2.2 N (see Figure 5.11 and 5.12). The cutting force variation remained in

the same level 0.15 N (see Figure 5.13 and 5.14). The tool cutting force changed very

little, but its vibration continuously increased. The moving average changed from a small

vibration ±0.1 N for the new tool (see Figure 5.11) to a large vibration +1.0 N for the

worn tool just before its breakage (see Figure 5.14). The significant change was observed

around 2300 data point (see Figure 5.14). The variation of the cutting force moving

average rapidly increased. This increase caused the cutting force variation to increase over

the tool breakage critical value.

The main reason of the tool breakage during the machining the aluminum work-

piece is the vibration, not the tool wear. Since aluminum has a lower milting point, some

melted chips might have stuck on the tool. The cutting edges lost their sharpness and

vibrations were created. Finally tool life could be extended if the cutting edges were

allowed to be cleaned down by reducing the feed rate.

Tool breakage and vibration critical values of the proposed algorithms should be

determined from the experimental study.
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New Micro-tool Cutting Force Average
(mild steel work-piece)
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Figure 5.7 New tool cutting force average of experiment I
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Figure 5.8 Tool cutting force average before breakage of experiment I

97



New Micro-tool Cutting Force Variation
(mild steel work-piece)
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Figure 5.9 New tool cutting force variation of experiment I
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Figure 5.10 Tool cutting force variation before breakage of experiment I
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New Micro-tool Cutting Force Average
(aluminum work-piece)
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Figure 5.11 New tool cutting force average of experiment II
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Figure 5.12 Tool cutting force average before breakage of experiment II
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New Micro-tool Cutting Force Variation
(aluminum work-piece)
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Figure 5.13 New tool cutting force variation of experiment II
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Figure 5.14 Tool cutting force variation before breakage of experiment II
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5.2 Tool Wear Estimation

Many researchers have studied the characteristics of cutting force to relate them to

tool wear. To simplify the estimation algorithm, to reduce the cost of the instrumentation,

and to increase the reliability of the system, the following assumptions can be made:

Assumption 1: The tool works in an identical cutting condition.

Assumption 2: The tool cutting force depends on the tool wear only.

In this section, the relationship of cutting force and tool wear will be studied and a

tool wear estimation method will be proposed.

1. Relationship of tool wear and cutting force [421

It has been known that cutting forces of micro-end-milling operations increase

with tool wear. For most of metals, the cutting forces can be measured with conventional

dynamometers. For some non-metal material work-pieces, like POCO-3 and POCO-C3,

the small cutting force is almost at the same level with the noises created by the inertia

force of the dynamometer. To evaluate tool condition, the cutting forces were collected

while an aluminum work-piece was cut periodically.

The experiments were performed on a 3-axis 15,000 rpm Fadal CNC Machine in

Engineering Prototype Center of Radio Technology Division of Motorola Inc. A POCO-

C3 work-piece was attached onto a Kistler 9257B dynamometer that was installed on the

table of the machine tool. On the top of the work-piece, a small aluminum test work-piece

was attached. The tool cutting force signals were monitored and collected by a Nicolet

310 two-channel digital oscilloscope through a Kistler three channel charge amplifier. To
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control the experimental machining operation, the CNC machine was programmed by

using Smart CAM Version 10 Production Milling software. The experimental setup will be

presented in Chapter VI.

Two different work-pieces, steel and POCO-C3, were tested. In the machining of

steel work-pieces, cutting force was collected during the machining operations. Two-flute

carbide end mills with 0.030" diameter were used in the experiments. The working

conditions were 30,000 rpm spindle speed, 2.5 ipm feed rate and 0.015" depth of cut for

the experiment I; and 20,000 rpm spindle speed, 1.25 ipm feed rate and 0.0225" depth of

cut for the experiment II. The experimental results are presented in Figure 5.15 and 5.16,

which includes 14 and 10 data points starting from new tools and ending until they were

broken. The tools had around 42" and 33" tool life in the experiment I and II respectively.

To evaluate the cutting force characteristics and tool wear relationship of non-

metal POCO-C3 work-piece, periodic test cuttings were done on the aluminum test work-

piece during the machining of POCO-C3. Two-flute carbide end mills with 0.030"

diameter were used. The working conditions of the POCO-C3 machining operations were

15,000 rpm spindle speed, 20 ipm feed rate and 0.030" depth of cut. The working

conditions of the machining of the aluminum test work-piece were 5,000 rpm spindle

speed, 5 ipm feed rate and 0.015" depth of cut. The experimental results are presented in

Figure 5.17, which includes 9 data points starting from a new tool and ending until it was

broken. The tool had around 1350" tool life. That non-metal material work-piece had an

excellent machinability.
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Monitoring Tool Wear by Cutting Force(thrust direction)
two flute 0.030" diameter carbide end mill, steel work-piece
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Figure 5.15 Monitoring of tool wear by the thrust direction cutting force

Monitoring Tool Wear by Cutting Force (feed direction)
two flute 0.030" diameter carbide end mill, steel work-piece
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Figure 5.16 Monitoring of tool wear by the feed direction cutting force
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Monitoring Tool Wear by Cutting Force
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Figure 5.17 Indirect monitoring of tool wear by the cutting forces
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2. Estimation of tool wear by using genetic algorithms

Based on the tool wear and cutting force relationship study, the empirical tool

wear model is proposed in the following format.

Fmax = C1 + (C 2 * L )c3 (5.2.1)

where: Fmax is tool maximum cutting force (N)

L is tool life (inch)

C1, C2 and C3 are coefficients.

In the empirical tool wear model, three coefficients have their physical meaning. C 1

is the basic cutting force level, which depends on the working conditions of micro-end-

milling operation. C2 is the tool wear gradient, which depends on the cutting conditions,

the tool and work-piece materials. A small C2 indicates slow progress of the wear. C3

presents how fast the tool is broken when the cutting force is above a critical level. The

harder the work-piece material is or the more uncomfortable cutting conditions the tool

has, the larger C3 is.

From the experimental data of the tool wear, the coefficients of the proposed tool

wear model can be found by using the genetic algorithms (see Chapter II). The program

GATool (Genetic Algorithm Research Tool) used in the research was developed in 1998

and successfully applied to the tool cutting condition monitoring.P[1 GATool is used to

search the optimal fitting coefficients of the tool wear model. The sum of the difference

between the experimental cutting force data and the cutting force obtained from the

developed analytical model is used as the optimal objective function.
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Objective function:

Min(E) = F '" (i)- F " "" (i)I 5.2.2

where: E is the average absolute error.

N is the number of the experimental data.

F""' (i) and Fenmat'ed (i) are the experimental and estimated maximum

cutting forces in the i" tool life.

In the genetic evolution procedures, the 30-bit binary coding is used for three

coefficients by assigning 10 bits for each one. The population size was selected as five.

Mating pool size was two versus two and one child from each couple. The uniform

crossover (with 0.5 probability), jumping mutation (with 0.1 probability), creeping

mutation (with 0.05 probability) and elitism are chosen. The 14 data sets of the tool wear

experiment I (see Figure 5.15, experiment I) were used in the study.

The optimal coefficients of the tool wear model were found in the 5001 generation

with ±1.1 N or 3.3% error.

C1 = 30.968

C2 = 0.0423

C3 = 4.352

The genetic evolution procedure of the tool wear model is presented in Figure

5.18. The empirical tool wear model is presented in Figure 5.19.
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Genetic Evolution Procedure
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Figure 5.18 Genetic evolution procedure of the tool wear model

Tool Wear Empirical Model
2 flute 0.030" diameter carbide end mill, steel work-piece
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Figure 5.19 An empirical tool wear model
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3. Tool wear estimation by using neural network forecasting model [39][44][451

Back-propagation neural network with time series type input (see Chapter II) is

proposed to estimate the tool wear. The program NNTool (Neural Network Research

Tool) used in the studies was developed in 1995 and modified in 1996. Its forecasting

capability has been proved in many cases.[15'

In this study, the two input and one output back-propagation neural network was

used. The inputs were the present and one-step prior cutting force data and output was the

one-step ahead cutting force data. A three-layer neural network with seven hidden nodes

was designed. The learning rate and momentum factor were selected as 0.15 and 0.9

respectively. Out of the 14 data sets of the tool wear experiment I (see Figure 5.15,

experiment I), The 12 data sets were used for the training of the neural network.

The tool wear estimation neural network model had been generated in 10,000

iterations. Compared to the empirical tool wear model and the experimental data, the tool

wear estimation model had 0.4% and 3.3% error respectively. The results are presented in

Table 5.1 and Figure 5.20. The future cutting force could be forecast by the tool wear

estimation neural network model. By comparing the estimated cutting force to the

maximum allowable cutting force, the tool life could be estimated.

The tool wear coefficient KW of the analytical cutting force model can be obtained

by using the following equation:

KW = Fmax / C 1  (5.2.3)
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Cutting Force (N)
Tool Life Experimental Empirical Estimation Empirical Estimation Error between

(inch) Data Model Model Model Error Model Error Both Models
3 32.200 30.968 1.232
6 30.240 30.971 -0.731
9 32.040 30.983 31.204 1.057 0.836 -0.221

12 31.640 31.020 31.215 0.620 0.425 -0.195
15 30.220 31.106 31.252 -0.886 -1.032 -0.146
18 30.120 31.273 31.346 -1.153 -1.226 -0.072
21 31.520 31.565 31.542 -0.045 -0.022 0.023
24 32.280 32.036 31.907 0.244 0.373 0.129
27 31.640 32.751 32.530 -1.111 -0.890 0.221
30 34.400 33.788 33.534 0.612 0.867 0.255
33 33.000 35.238 35.061 -2.238 -2.061 0.176
36 41.120 37.203 37.238 3.917 3.882 -0.034
39 38.320 39.802 40.036 -1.482 -1.716 -0.234
42 43.200 43.164 43.107 0.036 0.093 0.057

Average 33.710 33.705 29.284 1.097 1.119 0.147
Percentage ____________ _____ 3.26% 3.32% 0.44%

Table 5.1 Results of the tool wear estimation model

Tool Wear Estimation Model
2 flute 0.030" diameter carbide end mill, steel work-piece

45

40 -

v35 * Experimental Data

LI.- Empirical Model

-Estimation Model
~30O

U

25

20
0 5 10 15 20 25 30 35 40 45

Tool Life (inch)

Figure 5.20 Comparison of the tool wear model
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5.3 Tool Run-out Estimation

The maximum cutting force of micro-end-milling operations is very different

depending on whether the tool has run-out or not. A small tool run-out could significantly

increase cutting forces and not favor the surface finish.

From the characteristics of the cutting force, existence of run-out can be easily

understood. The maximum cutting forces created by each cutting edge are the main

indicators. If they are the same, there is no run-out. If they are different, the tool is

working with run-out. The run-out of two-flute end-mill can be easily estimated from the

maximum cutting forces of each cutting edge.

Let's consider x-coordinate for the feed direction and y-coordinate for the thrust

direction. The tool run-out ro is the distance between the tool center and tool turning

center, and tool run-out angle y is the angle between the tool run-out and y-axis. In other

words, the tool run-out in the x direction and in the y direction can be calculated by ro sin y

and r0 con y. The maximum cutting force is a function of tool run-out and its angle if the

other machining operation conditions are remained unchanged. It can be expressed as:

Fmax = f(ro, y)

According to the discussion of the cutting force characteristics with tool run-out

and angle (see Chapter IV), the tool run-out and angle can not be recognized by only one

maximum cutting force value because the maximum cutting force is a multiple value

function of the tool run-out and its angle. The maximum cutting forces of both feed and

thrust direction are needed for the estimations of tool run-out and its angle by an optimal

objective function.
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Min (E1) = e (tFi'""' -FFsd'ate''"+ Fa'""' -F'"+mated +|Factual -Fes'mated +|Factual - Fes'mated )4 Xmax m axax X max2 X max 2 Ymax1 Ymax Y max2 Ymax 2

(5.3.1)

where: E is an absolute error.

Fmxl, Fma"l FX"" and F"""2 are the monitoring maximum cutting

forces in feed and thrust directions of both cutting edges. It is assumed that

cutting force value of the first cutting edge is larger than the value of the

second cutting one.

Fe"""ted , Fe"daed, Fes'a ted and Fe'"ted are the estimating maximum

cutting forces calculated by the analytic cutting force model in feed and

thrust directions of both cutting edges.

The genetic algorithm (see Chapter II) was used to minimize the absolute error of

the optimal objective function. 30-bit binary coding was used for individuals that include

two factors: tool run-out and its angle (15 bits for each ). The population size was selected

as five. Mating pool size was two versus two and one child from each couple. The uniform

crossover (with 0.5 probability), jumping mutation (with 0.1 probability), creeping

mutation (with 0.05 probability) and elitism are chosen.

Tool run-out estimation program is included in the MOGART program (see

Chapter VIII). The tool run-out and its angle are estimated according to the given tool

geometry, cutting conditions, measured feed and thrust direction maximum cutting forces.

The estimated maximum cutting forces can be easily obtained from the analytical cutting

force model (see Chapter III). The program estimates the tool run-out and its angle, and
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improves their accuracy generation by generation until they reach the optimal one. The

procedure of the tool run-out estimation is presented in Figure 5.21. The program user

interface is presented in Figure 8.21 of Chapter VIII.

Tool Run-out Estimation
Program

Tool Geometry And Analytical Cutting
Cutting Conditions Force Model

Simulating Or Experimental Genetic Tool Run-out
Cutting Force Data Algorithm And Angle

Figure 5.21 Tool run-out estimation procedure

The performance of the tool run-out estimation program was evaluated on a test

case. Simulation data was generated by using a two-flute end-mill with 0.020 inch

diameter and 45 degree helix angle. The working conditions were 15,000 rpm spindle

speed, 120 imp feed rate, 0.010 inch depth of cut, 50% overlapped climbing milling

operations. The material coefficient was considered 80,000 N/inch2. The tool had a 0.001

inch tool run-out with 30 degree run-out angle. The cutting force variation is presented in

Figure 5.22.
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The maximum cutting forces in the feed and thrust directions of both cutting edges

are easily obtained from the cutting force profiles. They are:

F"""'1 = 2.75 N F,," = 4.22 N

F,"""2 = 0.45 N F""' = 1.69 N

Cutting Force of Climbing Milling
with Tool Run-Out

5

4 --

3

2

U

L°0

0 0 0D 0 0 0 0 0 0 0 0 0 D 0 0
r ~ CI C 1- W~ 10 Cn N 0 O~ W I-. CD W

r- N. m ) W r0 CO Q1 O~ O r N

-2-

--3

-4 -Feed Direction
- Thrust Direction

Tool Turning Angle (degree)

Figure 5.22 Cutting force of climbing milling with tool run-out

In the genetic evolution procedures, the absolute error level of the objective

function was selected as 0.005 or 0.5%. The desired error level was reached in the 210"'

generation with less than 0.32% error. The estimated tool run-out and its angle were

0.00099 inch and 29.26 degree. Their errors were less than 1% and 2.5%. The variation of

the tool run-out estimation during the optimization process of the genetic algorithm is

presented in Figure 5.23.
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Genetic Evolution Procedure

2

a) 1.5
C,

0 1-
0
0

*C 0.5

9
= 0

30 60 90 120 150 180 2 0
0

W -0.5 - Run-out

-Run-out angle

-- Absolute Error
-1

Generation

Figure 5.23 Genetic evolution procedure of tool run-out estimation

The accuracy and efficiency of the genetic algorithms were found satisfactory for

this application. Accuracy and the computational time were related in reverse. It is found

that 0.5% to 1% absolute error level is enough to obtain the required accuracy in very

short time for most of the cases.
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5.4 Cutting Angle Monitoring [19]

The tool cutting angle of micro-end-milling is one of the interesting cutting

conditions to be monitored. It is difficult to evaluate the sensory data to estimate the tool

cutting angle because of the small tool diameter and continuous changed cutting angle in

complicated machining profiles. Considering cutting force characteristics, it is proposed to

compare the profile of the on-line recorded cutting force signals with one of the analytical

estimated cutting force to identify the tool cutting angles. If the tool working conditions

are unchanged in the end milling operations, the cutting force profile is only depended on

the cutting angles.

The tool cutting angles are considered as entry and exit angles, which include all

the cases of the climbing and conventional end milling operations. Two cases, 50%

overlapping conventional and climbing milling, are presented in Figure 5.24.

Work-piece 
Feed

Tool

Tool

Feed
Work-piece

Case 1: Entry angle: 0 degree Case 2: Entry angle: 90 degree

Exit angle: 90 degree Exit angle: 180 degree

Figure 5.24 Tool cutting angles of end milling operations
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The profile of tool cutting force in the either feed or thrust direction can be used to

identify the tool cutting angle. In the research, the resultant cutting force profile was

chosen. An optimal objective function was introduced into the identification of tool cutting

force profile. It is:

N

Mn(E) )= (F," ""(a)- Fesmated(0 12 5.4.1)

where: E is the square error.

N is the number of computing points in a tool turning cycle (360 degree).

F """'(i) and F''naed (i) are the monitoring and estimated resultant

cutting forces in the i' time or tool turning angle.

The genetic algorithm (see Chapter II) was applied to minimize the error of the

optimal objective function. In the genetic evolution procedures, the 30 bits binary coding

was used for individuals that include two factors, tool cutting entry and exit angle, with 15

bits each. The population size was selected as five, mating pool size as two versus two and

one child from each couple. The uniform crossover (with 0.5 probability), jumping

mutation (with 0.02 probability), creeping mutation (with 0.04 probability) and elitism

were chosen.

The procedure of the tool cutting angle identification is presented in Figure 5.25.

The tool cutting angles were estimated automatically according to the given tool

geometry, cutting conditions, actual and estimating cutting force profiles. The actual and

estimated maximum cutting forces were able to be easily obtained from the on-line

recorded data and the analytical cutting force model (see Chapter III). The estimated tool
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cutting angles were improved generation by generation during the genetic evolution

procedure until reach the optimal one.

Tool Cutting Angle
Identification Program

Tool Geometry And Analytical Cutting
Cutting Conditions Force Model

Simulating Or Experimental Genetic Tool Cutting
Cutting Force Data Algorithm Angle

Figure 5.25 Tool cutting angle identification procedure

Four simulation cases were selected to test the performance of the tool cutting

angle identification program. Two-flutes 0.020" diameter tool with 45 degree helix angle,

15,000 rpm spindle speed, 120 imp feed rate, 0.010 inch depth of cut and 80,000 N/inch 2

material coefficient were selected in the micro-end-milling operations.

Case 1: 0° entry angle and 900 exit angle (50% overlapping conventional milling).

Case 2: 900 entry angle and 1800 exit angle (50% overlapping climbing milling).

Case 3: 1350 entry angle and 180° exit angle (85% overlapping climbing milling).

Case 4: 450 entry angle and 1350 exit angle.

The results of four testing cases are presented in Table 5.2.
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Actual Estimating Error Estimating Error
Value Value in 20th in 20th Value in 120th in 120th

Generation Generation Generation Generation

Entry Angle 0 0.170 0.027 0.001 0.000

Case 1 Exit Angle 1.571 1.592 0.003 1.571 0.000

Fitness 0 -0.036 0.036 0.000 0.000

Entry Angle 1.571 1.404 0.027 1.545 0.004

Case 2 Exit Angle 3.142 3.129 0.002 3.142 0.000

Fitness 0 -4.732 4.732 0.000 0.000

Entry Angle 2.356 2.377 0.003 2.400 0.007

Case 3 Exit Angle 3.142 3.129 0.002 3.142 0.000

Fitness 0 0.000 0.000 0.000 0.000

Entry Angle 0.785 0.847 0.010 0.835 0.008

Case 4 Exit Angle 2.356 2.254 0.016 2.353 0.000

Fitness 0 -0.663 0.663 -0.021 0.021

Table 5.2 Results of the tool cutting angle identification

In all of the studied cases, the tool entry and exit cutting angles were estimated in

less than 20 generations with less than 3% error and in 120 generations with less than 1%

error.

The identification program has a good performance by using genetic algorithm. It

has fast reactions and accurate results for the on-line monitoring. The more high sampling

resolution is selected, the more accuracy results will be obtained. It will take a little more

running time to find a qualified generation. It is found that 72 points per tool turning cycle

are enough to obtain the required accuracy with the fast reaction in many testing cases.
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5.5 Cutting Condition Monitoring

The most interesting cutting conditions are spindle speed, feed rate and depth of

cut. They can be obtained by monitoring the cutting force signals in micro-end-mill

operations.

The spindle speed of micro-end-mill operations can be directly obtained from the

cutting force signals. The method to monitor the spindle speed is to take a cutting force

value from the cutting force signal and find the same cutting force value after one cutting

cycle (see Figure 5.26). The interval time T between these two points can be used to

calculate the spindle speed by formula 5.5.1.

n = 60 5.5.1
T

Thrust Direction Cutting Force of Climbing End-
Milling with Tool Run-out

4
Operation Condition:

3.5 0.020 " diameter tool
T with two flutes and

3 450 helix angle.
15,000 rpm spindle

2.5 -- speed.
70 ipm feed rate.

0 0.010" depth of cut.U. 2 50% overlapping.

130,000 Nuin. 2 material
1.5 coefficent.

O 0.001" tool run-out
1 with 600 angle.

0.5

0
0 1 2 3 4 5 6 7 8

Time (ms)

Figure 5.26 Spindle speed identification

119



The feed rate and depth of cut can be obtained by using the same method as

monitoring cutting angle, which is to compare the profile of the on-line recorded cutting

force with one of the analytical estimated cutting force. The only difference is to use feed

rate and depth of cut instead of entry and exit cutting angles. The genetic algorithm also

can be applied to find the fittest feed rate and depth of cut. The optimal objective function

has the same form as the formula 5.3.1. The procedure of the method is presented in

Figure 5.27. The feed rate and depth of cut can be estimated automatically according to

the given tool geometry, cutting angles, actual and estimating cutting force profiles. The

actual and estimated cutting force profiles can be easily obtained from the on-line cutting

force recording and the analytical cutting force model (see Chapter III).

Tool Cutting Condition
Identification Program

Tool Geometry And Analytical Cutting
Cutting Angles Force Model

Simulating Or Experimental Genetic Parameters of
Cutting Force Data Algorithm Cutting

Condition

Figure 5.27 Tool cutting condition identification procedure
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5.6 Optimal Working Condition Selection

In micro-end-milling operations, it is important to select the tool optimal working

conditions. Because the tiny tools are very easily broken, the conservative selections of the

tool working conditions would cost longer machining time, otherwise the unsuitable

selections of the tool working conditions would make change the tools frequently that

wastes the machining time too. It is very difficult for operators to select the optimal

working conditions in so many different types of tools, work-pieces and different

machining tasks.

In the research, the tool working conditions were optimized based on the minimum

machining time, that is to find the maximum feed rate that is able to meet the tool life

requirement in the specific machining task. It is known how many cutting inches are

required in the specific machining task. Approximated tool life can be estimated depended

on how many tools will be used in the task. Referred to tool life estimation (5.2), the

maximum feed rate can be determined with the other possible working conditions (for

example, maximum spindle speed of the machine tool) by the analytical cutting force

model.

The genetic algorithms were used to optimize the tool working conditions with the

analytical cutting force model. The maximum cutting forces of the cutting force profiles,

which were got from the analytical model and estimation, were used for the optimal

objective function and conditions as the following.

Objective function:

Min(E ) = (IFy"" - F""oabl _ F+Ies"'mated - Fl"owabl) 5.6.1
2 FXmax X max Y max Y max
2

Conditions:

F7'm'ed < F"" o"le 5.6.2

Fest'm"''d < Fal" wa'" 5.6.3

where: E is the absolute error.
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F"''all and Fm""'ble are the allowable maximum cutting forces in feed

and thrust directions, which can be determined by the tool life estimation.

F '"Vfed and F/m""""d are the estimated maximum cutting forces in feed

and thrust directions, which can be calculated by the analytical cutting

force model.

The tool working condition optimization program is included in the MOGART

program (see Chapter VIII). In the program, the tool working conditions can be selected

automatically according to the required tool life. The procedure of the tool working

condition optimization is presented in Figure 5.28. The program user interface is presented

in Figure 8.24 of Chapter VIII.

Tool Working Condition
Optimal Program

Tool Geometry And Analytical Cutting
Working Conditions Force Model

Simulating Or Experimental Genetic Parameters of
Cutting Force Data Algorithm Working

Condition

Figure 5.28 Tool optimal working condition estimation procedure
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CHAPTER VI

Experiment Setup

All the experiments were performed at Mechatronics Lab, Mechanical Engineering

Department, Florida International University and Engineering Prototype Center, Radio

Technology Division, Motorola Inc. More than 800 cutting experiments were performed

and more than 160 megabytes of cutting force data were recorded. The experimental

contents are listed in Table 6.1.

A typical experimental setup is presented in Figure 6.1. Three different milling

machines were used in the experiments. The work-piece to be tested was installed on a

dynamometer, which was clamped on the table of the machine tool. Two components of

the cutting forces were recorded by using a digital oscilloscope through a charge amplifier.

All the experimental equipment is listed in Table 6.2 and shown in Figures 6.2 to 6.7.

Spindle

Tool

Work-piece

Dynamometer

Workbench

Amplifier Oscilloscope

Figure 6.1 Experimental setup
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Tool type: Two-flute and four-flute micro-end-mill

Tool diameter (inch): 15/1000, 20/1000, 30/1000, 1/32, 1/16 and 1/8

Tool material: High speed steel (HSS) and carbide

Work-piece material: Aluminum, copper and mild steel

Steel: NAK-55, P-20, 420, Moly, Aged Moly and 3DP

Non-metal: POCO-3 and POCO-C3 graphite.

Cutting conditions: Slot and 50% overlapped climbing end milling with

different spindle speed, feed rate and depth of cut.

Table 6.1 Experimental contents

Machine tool: Bridgeport series I 3,000 rpm milling machine

Fadal 3-axis 15,000 rpm CNC machine

Fadal 5-axis 50,000 rpm CNC machine

Data acquisition: Nicolet 310 digital oscilloscope

Nicolet integra model 10 digital oscilloscope

Cutting force measurement: Kistler 9257B 3-component piezoelectric dynamometer

Kistler 3-channel charge amplifier

Displacement measurement: Kaman KD2310-2S measuring systems

Hardness measurement: Wilson TU220

Image processing system: Olympus SZH10 microscope and SONY DXC-107A

digital color video camera

Table 6.2 Experimental equipment
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Figure 6.2 Machine tool

Majority of the experiments was performed on Fadal 5-axis 50,000 rpm CNC

machine. Fadal 3-axis 15,000-rpm CNC machine. Bridgeport series I 3,000 rpm milling

machine was also used in some experiments.
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Figure 6.4 Data acquisition

Two digital oscilloscopes (Nicolet 310 digital oscilloscope and Nicolet integra

model 10 digital oscilloscope) were used to record the cutting force and acoustic emission

signals, which were amplified by using a Kistler 3-channel charge amplifier.
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Figure 6.5 Hardness measurement

The Wilson TU220 hardness measurement machine was used to test the hardness

of the work-pieces.
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Figure 6.6 Image processing system

The Image processing system used Olympus SZH1O microscope and SONY DXC-

107A digital color video camera to investigate tool wear.
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Figure 6.7 The computer screen showing the software used for Image processing

Figure 6.8 and 6.9 shows the cutting edges of a new tool and a worn-out tool

respectively and the figure 6.10 and 6.11 shows the work-piece surfaces cut by a new tool

and by a worn-out tool respectively.
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Chapter VII

Results and Discussion

In this chapter, the validity of the proposed analytical model is discussed. The

accuracy of the cutting force estimation of the two approaches (neural networks and

analytical models) has been evaluated on the experimental data. The analytical models of

both micro and conventional end milling have been compared. Also the genetic algorithms

based monitoring techniques has been tested on the simulated and experimental data.

The data from more than 800 experimental cases was used to investigate the

cutting force characteristics and some of the data was used to verify the validity of the

developed techniques.

7.1 Validity of the Analytical Cutting Force Model [19]

The analytical cutting force model of the micro-end-mill machining operations was

derived in Chapter III, which included the micro and conventional end milling with or

without tool run-out and wear cases. Ten parameters and two coefficients are used in this

model. They are three working condition variables (spindle speed, feed rate and depth of

cut), two tool run-out variables (run-out and its angle), two cutting condition variables

(tool cutting entry and exit angle), three tool geometry variables (tool diameter, helix

angle and the numbers of tool flutes), material and wear coefficients.

The analytical cutting force model of end milling operations can been expressed in

the following formulas:
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* The developed cutting force mode of end milling operations

13 1 1F =F [C3 -- sin3 9+ C4 ' cos 3 6 - (1+ CS)sin +-1p(1+ CS)sin2O (7.1.1)
r r 2

+(C6 - 1 )sin-- pC cos- p(1+C)]I'
r

f,. f 1
F, = Fu[C4 - sin 3 9- C3 -' cos3 O- p(1+ C5 ) sin 2 O- -(1+ CS) sin 2 (7.1.2)

r r 2

+ p(C6 )sinO+C 6 cos9+(1+C 5 )]I0r

" Micro-end milling operations without tool run-out

F = F[C sin3 9+C cos3 9-sin2 9+ psin20- sing- p9] (7.1.3)
r r 2 r J

F = F,[C sin3 _-C cos3 9- psin2 9- sin29- p sin+6l]|e (7.1.4)
r r 2 r

" Conventional end milling operations with tool run-out

2 1 4r
F= F[- sin2 O+- psin 2O± cosy(sinO-.p cosO) - p9]j' (7.1.5)

2 f(

1 4r
F = F[-psin2 0- -- sin2± "ro cosy(psin + cosO) +0]1e (7.1.6)

2 f,

" Conventional end milling operations without tool run-out

FX = Fu[-sin0 +-p sin20- p9] ' (7.1.7)
2

F=F,[ - psin2 0- -sin 20+0]|~ (7.1.8)

K.Krf,
where : F =K

32tan4
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C, =-(1+P-) C, =-(P--)
3 7r 3 n

1 2 1 2
C 3 =-(l+ p-) C - a

3 .ir 3 7

2r 4r
CS= -2-sin y C=± ocosy

irr ft

The formulas 7.1.1 and 7.1.2 are the basic formulas of the developed cutting force

model of the end milling operations. The others can be simply derived from them. For

example, formulas 7.1.3 and 7.1.4 can be derived from the formulas 7.1.1 and 7.1.2 by

considering tool run-out ro = 0. In the conventional end milling operation case, formulas

7.1.5, 7.1.6 and 7.1.7, 7.1.8 can be derived from the formulas 7.1.1 and 7.1.2 by

considering f/r = 0, and both ro = 0 and f/r = 0 respectively. In the conventional end

milling without tool run-out, the formulas 7.1.7 and 7.1.8 exactly match Tlusty's model.

The develop analytical cutting force model has been tested on many experimental

cases of the micro-end-milling operations with different tool, work-piece and cutting

condition. Very good agreement has been observed between the theoretical and

experimental results.

The cutting forces of one experimental case of micro-end-mill operation without

tool run-out are presented in Figure 7.1. Two-flute 1/8" diameter carbide end-mill and

steel work-piece were tested in the experiment. The working conditions were 2,000 rpm

spindle speed, 1 ipm feed rate, 0.0625" depth of cut and 50% overlapped climbing end

milling. At the same cutting conditions, the cutting forces calculated by using the

analytical cutting force model are presented in Figure 7.2. The maximum cutting force

error of both the cutting forces was less than 1%, which is presented in Table 7.1.
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The cutting forces of one experimental case of micro-end-mill operations with tool

run-out are presented in Figure 7.3. Two-flute 1/16" diameter high speed steel end mill

and POCO-3 graphite work-piece were tested in the experiment. The working conditions

were 15,000 rpm spindle speed, 100 ipm feed rate, 0.0625" depth of cut and 50%

overlapped climbing end milling. The tool run-out was 0.001" with 50 degree angle. At

the same cutting conditions, the cutting forces calculated by using the analytical cutting

force model are presented in Figure 7.4. The maximum cutting force error of both the

cutting forces was with less than 3%, which is presented in Table 7.1.

Flute Direction Maximum cutting force Error
Experiment Model Based

Without tool Both Thrust 87.3 87.82 0.60%
run-out case Feed 54.6 54.73 0.15%

1st Thrust 9.07 7.99 2.51%
With tool Feed 43.07 43.13 0.14%

run-out case 2nd Thrust 6.25 6.14 0.26%
Feed 17.62 17.54 0.19%

Table 7.1 Maximum cutting force error of the analytical cutting force model

In the above two presented cases, the material coefficients are 68,000,000 and

115,000 N/inch 2 with 1.78 and 5.85 feed rate correction respectively. New tools were

considered in both the cases so that tool wear coefficient is 1.

Since the analytical cutting force model was developed based on two general

assumptions, it could be considered as a theoretical foundation for end milling operations

including both micro and conventional end milling operations.
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Cutting Forces of Micro-End-Milling Operations
2 flute 1/8" diameter carbide end mill, steel work-piece

100

80

z
tJ 60
0

0.- Feed direction
Thrust direction

C
40

0

20

0
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

Time (ms)

Figure 7.1 Experimental cutting forces of micro-end-milling without run-out

Cutting Forces of Micro-End-Milling Operations
2 flute 1/8" diameter carbide end mill, steel work-piece
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Figure 7.2 Analytical model based cutting forces of micro-end-milling without run-out
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Cutting Forces of Micro-End-Milling Operations
2 flute 1/16" diameter HSS end mill, POCO-3 work-piece
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Figure 7.3 Experimental cutting forces of micro-end-milling with run-out

Cutting Force of Micro-End-Milling Operations
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Figure 7.4 Analytical model based cutting forces of micro-end-milling with run-out
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7.2 Representation of the Cutting Force Characteristics

1. Representation of the Cutting Force Characteristics by Using Neural Networks 1161

The machinability study requires large number of tests. In this research, neural

networks have been proposed to represent the characteristics of cutting forces. The

objective is to be able to interpolate the maximum cutting force within the considerable

tool parameter range by performing the minimum number of the experiments.

The back-propagation neural network is a well known powerful tool for the

experimental data mapping. The program NNTool (Neural Network Research Tool)

program was developed in 1995 and modified in 1996. The program was successfully used

to determine the underground contamination distributions of New York area [14] and

Miami International Airport area.' 511"46, In this study, the NNTool was used to estimate the

maximum cutting force of micro-end-milling operations at different selected working

conditions and tool diameters.1161 The NNTool can automatically develop a good model of

the research problems by using a few experimental data sets and create a maximum cutting

force chart in the research area.

The experimental cases presented below are the examples of the neural network

based experimental data mapping. In the experimental cases, two-flute 0.020", 0.0625"

diameter end mills and POCO-3 graphite were tested. In the case of 0.020" diameter end

mill, the working conditions were 20, 70, 120 ipm feed rates and 0.010", 0.030", 0.050"

depths of cut. In the case of 0.0625" diameter end mill, the working conditions were 30,

65, 100 ipm feed rates and 0.0625", 0.100", 0.150" depths of cut. 15,000 rpm spindle

speed and 50% overlapped climbing end milling operations were used in the both cases.
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The cutting forces were found at 16 different working conditions. The experimental

cutting forces of the selected working conditions are presented in Table 7.2 and 7.3.

X (thrust) direction cuffing force (N) Feed rate (rpm)
Depth of cut (inch) 20 70 120

0.05 3.750 6.750 non
0.03 4.850 6.500 non
0.01 4.500 5.425 5.150

Y (feed) direction cutting force (N) Feed rate (rpm)
Depth of cut (inch) 20 70 120

0.05 8.250 16.500 non
0.03 7.500 13.250 non
0.01 5.000 8.750 10.000

Table 7.2 Experimental data of 0.020" diameter end mill machinability testing

X (thrust) direction cutting force (N) Feed rate m
Depth of cut (inch) 30 65 100

0.15 6.800 14.900 28.600
0.1 6.800 12.700 19.900

0.062 6.200 7.900 20.100

Y (feed) direction cutting force Feed rate (rpm)
Depth of cut (inch) 30 65 100

0.15 23.500 30.000 70.000
0.1 16.250 24.500 42.500

0.062 14.500 20.000 37.500

Table 7.3 Experimental data of 0.0625" diameter end mill machinability testing

The NNTool was used to develop an empirical model to evaluate the machinability

of the whole selected test range by using the experimental data from very few test cases.

The experimental data were collected at 7 and 9 different working conditions with 0.020"

and 0.0625" end mills respectively. The feed rate and depth of cut were considered as two

inputs of the neural network, and the tool cutting force was the output. A three-layer
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neural network with 10 hidden nodes was trained. The learning rate and momentum factor

were 0.15 and 0.075 respectively. In the case of 0.020" diameter tools, 13 data sets (6

experimental data and 7 boundary conditions) were used to train the neural network and 1

experimental data was reserved for its testing. In the case of 0.0625" diameter tools, 9

experimental data sets were used to train the neural network. Two-dimensional neural

network based empirical cutting force models of 0.020" and 0.0625" diameter end mills

were developed with 8.4 % and 4.8% average errors respectively when they were tested

on the training cases. The model showed 15.7 % error on the test case that was not used

in the training. The results of 0.020" diameter tools are presented in Figure 7.5 and 7.6

and the results of 0.0625" diameter tool are presented in Figure 7.7 and 7.8.

Considering the tool diameter, another three-dimensional neural network was

developed by using the data of all the 16 experiments. In the study, the three inputs to the

neural network were the feed rate, depth of cut and tool diameter. The output was the tool

cutting force. A ten-hidden-node three-layer neural network was designed. During the

training of the neural network, a learning rate of 0.15 and a momentum factor of 0.075

were selected. Based on the experimental data, 30 data sets (16 experimental data and 14

boundary data) were used for the training of the neural network. The average error was

less than 8.8%. The results are presented in Figures 7.9 through 7.12.

The results confirmed the accuracy of the neural network based experimental data

mapping. The NNTool can be used to estimate the tool cutting forces with acceptable

error in a selected range of parameters.

141



Micro-tool Cutting Force in X Direction
(15,000 rpm spindle speed, 0.020 Inch HS steel tool, graphite workpiece)
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Figure 7.5 Thrust direction maximum cutting force of 0.020" diameter end mills
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Figure 7.6 Feed direction maximum cutting force of 0.020" diameter end mills
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Micro-tool Cutting Force in X Direction
(15,000 rpm spindle speed, 0.0625 inch HS steel tool, graphite workpiece)
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Figure 7.7 Thrust direction maximum cutting force of 0.0625" diameter end mills
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Figure 7.8 Feed direction maximum cutting force of 0.0625" diameter end mills
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Micro-tool Cutting Force In Feed Direction
POCO 3 workpiece, 0.020 inch diameter high speed steel end mill
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Figure 7.9 Feed direction maximum cutting force of 0.020" diameter end mill

Micro-tool Cutting Force In Feed Direction
POCO 3 workpiece, 0.030 inch diameter high speed steel end mill
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Figure 7.10 Feed direction maximum cutting force of 0.030" diameter end mill
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Micro-tool Cutting Force In Feed Direction
POCO 3 workpiece, 0.050 inch diameter high speed steel end mill
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Figure 7.11 Feed direction maximum cutting force of 0.050" diameter end mill

Micro-tool Cutting Force In Feed Direction
POCO 3 workpiece, 0.0625 inch diameter high speed steel end mill

0.15625

- - 0.125
Cutting
Force (N)

0.09375 c 07
50460
40.60

o ®30-0
0.0625 t 20-0

0 010-20

010-10|
- -0.03125

0
0 20 40 60 80 100 120

Feed rate (ipm)

Figure 7.12 Feed direction maximum cutting force of 0.0625" diameter end mill
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2. Representation of the Cutting Force Characteristics by Using Analytical Model

The calculation of the cutting forces by using the analytical model has been

presented in Chapter IV (Figure 4.7 to 4.27). The parameters discussed in the model

includes the spindle speed, feed rate, depth of cut, run-out and it's angle, tool cutting entry

and exit angle, tool diameter, tool helix angle and the numbers of tool flutes.

During the machining of POCO-3 graphite work-piece with high speed tool, the

experimental data of maximum cutting force is listed in Table 7.2 and 7.3. Based on the

empirical neural network cutting force model, the characteristics of the tool maximum

cutting forces are presented in Figure 7.5 to 7.12.

Considering the case of 0.020" diameter end mill and POCO-3 graphite work-

piece, the characteristics of the tool maximum cutting forces can be calculated from the

analytical model. The working conditions are 15,000 rpm spindle speed, 20 to 120 ipm

feed rate, 0.01" to 0.05" depth of cut and 50% overlapped climbing milling. The thrust

and feed direction maximum cutting forces are presented in Figures 7.13 and 7.14.

Compared to the experimental cutting forces (see Table 7.2) and estimated cutting

forces by using the neural network based model (Figure 7.5 and 7.6), the cutting forces

calculated by using the analytical cutting force model (Figure 7.13 and 7.14) have a good

agreement with them. The average error of the maximum cutting forces of the analytical

model is less than 38.2%.
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Thrust Direction Maximum Cutting Force
of Micro-End-milling Operations
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Figure 7.13 Model based thrust direction maximum cutting force of micro-end-milling
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Figure 7.14 Model based feed direction maximum cutting force of micro-end-milling
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3. Difference Between Micro and Conventional End Milling Operations

From formulas 7.1.1 to 7.1.8, it can be easily understood that micro-end-milling

operations has the same cutting force values as conventional end milling operations if the

ratio of the feed per tooth to the tool's radius (f/r) is equal to zero. It is suggested that

database of conventional end milling operations could be used for micro-end-milling

operations when ft/r were small enough to be neglected.

Two cases of the simulated cutting force ratio of the both models are presented in

Figure 7.15. In the cases, tool had 0.020" diameter. The cutting conditions were 15,000

rpm spindle speed, 0 to 150 ipm feed rate and 0.010" and 0.020" depth of cut.

Difference Between Micro and Conventional End
Milling Operations
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Ratio of feed per tooth to tool radius (Ft / r)

Figure 7.15 Difference between micro and conventional end milling operations
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The cutting force calculated by using conventional end milling model (ft/r = 0) is

always smaller than the one calculated by micro-end-milling model (considering ft/r). If ft/r

< 0.1, the difference of maximum cutting force between the both models is less than 10 %.

In other word, the both models have very similar performance when ft/r < 0.1. The

database of conventional end milling operations could be used for micro-end-milling

operations with a 10% difference of the maximum cutting force. If the conclusion could

proved experimentally, it would save a lot of experimental time and money for the

investigation of micro-end-mill machinability.
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7.3 Performance of Monitoring in Micro-End-Milling Operations

1. Tool Breakage Detection [27-301

Tool breakage detection methods that use acoustic emission (AE) signal have been

discussed in Chapter V. The procedures of the AE based tool breakage detection are

simple and efficient. Two statistics algorithms of the tool breakage detection have been

developed for two different working conditions. They accurately detected the tool

breakage in all the studied cases with a very fast response capability. Two experimental

cases were presented in Chapter V. Two-flute 0.015" diameter high speed steel end mill

cut on mild steel work-piece were tested. The working conditions were 30,000 rpm

spindle speed, 0.24 ipm feed rate and 0.016" depth of cut in the experiment I, 3,000 rpm

spindle speed, 0.9 ipm feed rate and 0.005" depth of cut in the experiment II.

The data pattern of the experiment I was simple and tool breakage was detected by

the detecting method I (see Chapter V). The data pattern of the experiment II was more

complicated and difficult to distinguish the difference between tool broken and leaving the

work-piece. The method II successfully detected the tool breakage in all of the cases of

the experiment II. The test results are presented in Figure 7.16 (tool broken case) and

Figure 7.17 (tool left from work-piece case), where the test procedures are shown under

the AE signals. The down points of the line were testing points. The line was down to the

level 1 when the tool left the work-piece and the level 2 when it was broken.

The results of monitoring tool breakage by the tool cutting force have been

discussed in Chapter V. It has been proved that tool cutting force can be used not only to

detect but also predict the tool breakage.
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ACOUSTIC EMISSION TESTING IN END-MILL
MACHINING OPERATIONS

(experiment II: tool broken case)
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Figure 7.16 Tool breakage monitoring by AE activity of experiment II, case 1
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Figure 7.17 Tool breakage monitoring by AE activity of experiment II, case 2
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2. Tool Wear Monitoring and Estimation [39][42]

A tool wear estimation model has been developed in Chapter V by using the back-

propagation neural network and empirical tool wear model that was based on the data of

the tool wear experiment I (see Chapter V, Figure 5.15). In the tool wear experiment I,

two-flute 0.030" carbide end mill and steel work-piece were tested. The working

conditions were 30,000 rpm spindle speed, 2.5 ipm feed rate and 0.045" depth of cut. The

results of the tool wear estimation by tool cutting force have been presented in Chapter V

(Table 5.1 and Figure 5.20).

To validate the tool wear estimation model, another case, tool wear experiment II

(see Chapter V, Figure 5.15), was tested. The data of the experiment II never be used

when the tool wear estimation model was generated. In the experiment II, two-flute

0.030" carbide end mill and steel work-piece were tested. The working conditions were

20,000 rpm spindle speed, 1.25 ipm feed rate, 0.0225" depth of cut and 50% overlapped

climbing end milling. The experimental results have been presented in Figure 5.15 and

5.16, which included 10 cutting force data begun from a new tool and ended until it was

broken. The tool had around 33" tool life.

Based on the 10 experimental data, 10 data sets were used for the test of the

neural network based tool wear estimation model. In the 10 data sets, the first 7 data sets

were from the first 8 experimental data. The following 3 data sets were estimated by the

tool wear estimation model that was developed in Chapter V. The last 2 experimental data

were reserved for the test purpose. In other word, in the study the tool life was estimated

after the tool had cut a 27"-long work-piece.
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Cutting Force (N)
Tool Life Experimental Empirical Estimation Empirical Estimation

(inch) Data Model Data Model Error Error
3
6 28.080 27.807 0.273

9 25.360 27.839 -2.479
12 25.920 27.935 25.234 -2.015 0.687
15 29.320 28.150 26.577 1.170 2.743
18 29.560 28.566 28.911 0.994 0.649
21 28.840 29.283 28.699 -0.443 0.141
24 31.240 30.428 29.491 0.812 1.749
27 31.320 32.154 31.703 -0.834 -0.383
30 33.160 34.640 33.051 -1.480 0.109
33 38.200 38.093 34.871 0.107 3.329
36 36.195

39 39.012

Average 27.976 1.980 2.255
Persentage 7.08% 8.06%

Table 7.4 Results of the tool wear forecasting model testing

Tool Wear Estimation Testing
2 flute 0.030" diameter carbide end mill, steel work-piece
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Tool Life (inch)

Figure 7.18 Performance of the tool wear forecast model
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The test results of the tool wear estimation model are presented in Table 7.4 and

Figure 7.18. The cutting force was estimated with 1.8 N or 6.45% average error. The

empirical tool wear model shown in Figure 7.18 was developed from the 10 experimental

data after the experiment had been completed. It was very similar to the model developed

in Chapter V. Only the basic cutting force level C1 was different because of the different

working conditions. The coefficients of empirical tool wear model were:

C 1 = 27.800

C2 = 0.0522

C3 = 4.287

If the tool breakage critical cutting force was selected as 38 N, the tool life would

be estimated as around 37.5 inch. Compared to the actual tool life, 33 inch, the tool life

estimated by the tool wear estimation model had an acceptable error, 13.6%.

The tool breakage critical cutting force can be determined by the experimental

data. To improve the accuracy of tool wear estimation, the tool wear empirical and

estimation model should be improved further based on experimental observations.

Considering the tool wear coefficient K, in formula 5.2.3, the analytical cutting

force model has been modified to include the tool wear. The cutting forces of two cases,

the new tool case and pre-failure case of the tool wear experiment I (see Chapter V,

Figure 5.15), were presented in Figure 7.19 and 7.20, in which they were compared with

the cutting forces of the analytical model.
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Cutting Force of Micro-End-Milling Operations
in Tool Wear Experiments
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Figure 7.19 Thrust direction cutting force of the new tool

Cutting Force of Micro-End-Milling Operations
in Tool Wear Experiments
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Figure 7.20 Thrust direction cutting force of the tool before breakage
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3. Tool Run-out Estimation and Cutting Condition Monitoring [19]

Tool run-out exists in most of micro-end-milling operations. Because of tiny tool

diameter, the cutting force would be changed significantly if there was only a small tool

run-out. It is important to estimate tool run-out and reduce it to a minimum level.

In the experiments, two different end mill holders, conventional and collet end mill

holder, have been studied. The results are presented in Table 7.5 and 7.6.

X (thrust) direction runout (%) Spinle speed (rpm)
Feed rate (ipt) 15,000 32,000 50,000

0.00100 9 9 34
0.00075 8 9 49
0.00050 0 0 35

Y (feed) direction runout (%) Spindle speed (rpm)
Feed rate (ipt) 15,000 32,000 50,000

0.00100 48 10 20
0.00075 50 65 47
0.00050 63 55 23

Table 7.5 Run-out experimental results of collet end mill holder

X (thrust) direction runout (%) Feed rate ip)
Depth of cut (inch) 30 65 100

0.150 72 85 71
0.100 57 54 64
0.062 56 83 60

Y (feed) direction runout (%) Feed rate (ipm
Depth of cut (inch) 30 65 100

0.150 87 87 46
0.100 40 48 63
0.062 78 86 79

Table 7.6 Run-out experimental results of conventional end mill holder

In the experimental cases of the end mill holder with a collet, two-flute carbide end

mill with 0.0625" diameter is used to cut aluminum work-piece. The working conditions

were following: 15,000, 32,000 and 50,000 rpm spindle speed, 0.0005, 0.00075 and 0.001

ipm feed rate, 0.020" depth of cut and 50% overlapped climbing milling. In the cases of
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the conventional end mill holder (holding the tool with set-screw), POCO-3 graphite

work-piece was cut by a high speed end mill with two-flute 0.0625" tool diameter. The

working conditions were 15,000 rpm spindle speed, 30, 65 and 100 ipm feed rate,

0.0625", 0.100" and 0.150" depth of cut, and 50% overlapped climbing milling.

Based on the experimental results, it is known that run-out of micro-tools effect

cutting performance more serious than conventional tools. The tested end mill holder with

a collet had 0% to 65% run-out and the average was around 30% average. The tested end

mill holder with set-screw had 40% to 87% run-out and the average was around 68%. The

collet end mill holder is much better than the conventional one.

Based on the analytical cutting force model, estimated the tool run-out was studied

in Chapter IV. When the tool run-out angle is parallel to the tool cutting edges (y = 0), the

cutting force has a maximum value that almost double of the minimum value (see Chapter

IV, Figure 4.18) and the work-piece surface has the lowest precision. When the tool run-

out angle is perpendicular to the tool cutting edges (y = 7t/2), the cutting force has a

minimum value and the work-piece surface has the highest precision.

If end mill holder with a set screw is going to be used, the tool should be screwed

on the holder perpendicular to the cutting edges of the two-flute tool. The same angle

should be 45 degree in the case of the four-flute tool. These adjustments would reduce the

run-out to the minimum level.

It is important to estimate the tool run-out and monitor the tool cutting conditions

of micro-end-milling operations. The method of estimating tool run-out and monitoring

tool cutting conditions by using the genetic algorithm with the analytical cutting force
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model has been discussed in Chapter V. The main idea is to compare the experimental

cutting forces to the cutting forces calculated by the analytical model, and use the genetic

algorithm to search the optimal fitting variables of the parameters (tool run-out or cutting

conditions) of the analytical model. The method can be used to estimate the tool run-out,

spindle speed, feed rate, depth of cut, entry and exit cutting angles. The details were

discussed in Chapter V.

The genetic evolution procedure of tool run-out estimation had been presented in

Figure 5.23 of Chapter V. The results are presented in Table 7.7. The error is less than

2.5% after 210 generations.

Acutal Value Estimating Value Error
Tool Run-out (inch) 0.001 0.00099 1.00%
Tool Run-out Angle (degree) 30 29.26 2.47%
Optimal Function Fitness 0 0.0031 0.0031

Table 7.7 Results of the tool run-out estimation

The results of the tool cutting condition monitoring have been presented in Table

5.2 of Chapter V. The error is reduced to less than 3% in 20 generations and less than 1%

in 120 generations. The average errors of all the studied cases are 1.13% at the 20t

generation and 0.19% at 120t generation, which are presented in Table 7.8.

Error in 20th Generation Error in 120th Generation
Tool Cutting Angle 1.13% 0.19%
Optimal Function Fitness 1.3578 0.0525

Table 7.8 Results of the tool cutting condition monitoring
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Chapter VIII

Introduction of MOGART Package

Based on the analytical cutting force model and experimental data of micro-end-

milling operations, a Micro-End-Milling Operation Guide and Research Tool (MOGART)

package has been developed for the machinability studies, modeling and monitoring of

micro-end-milling operations (see Figure 8.1).

MicrG-End-Milling Operation Guide
And Researh TooL

Figure 8.1 MOGART package

The package is capable to perform the following tasks by using a user friendly

interface:
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" The model and neural network based cutting force estimation

" Cutting force characteristics analysis

" Investigation of machability

" Estimation of wear

" Detection of breakage

" Estimation of run-out

" Selection of optimal working conditions

" Estimation of surface roughness and precision

" Neural network based data mapping, forecasting and classification

" Genetic algorithm based modeling, monitoring and optimization

As a convenient and efficient research tool, the MOGART has being applied to the

micro-end-milling studies of the Engineering Prototype Center of Radio Technology

Division of Motorola Inc., which include machinability, wear, breakage, run-out and

optimal working conditions. The performance of the MOGART has been tested on the

experimental data of over 800 experimental cases and satisfactory results have been

obtained. This chapter is a basic user guide for introduction of the MOGART program.

8.1 Structure of MOGART Package

The structure diagram of the MOGART program is presented in Figure 8.2
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Research Tool Force Model Research Tool

Neural Network Based Analytical Model Based Cutting Force Tool Run-out
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Calculation of Calculation of Tool Wear

Work-piece Work-piece Estimation

Surface Roughness Surface Precision

Estimation of Estimation of Selection of

Working Condition Tool Run-out Optimal

Limitation Limitation Working Condition

Figure 8.2 Diagram of MOGART program
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The MOGART includes three main research tools: the analytical cutting force

model, neural networks and genetic algorithms. Also, it included many research

applications: neural networks-based experimental data processing, analytical cutting force

model-based machinability studies, cutting force estimation, work-piece surface precision

and roughness calculation, genetic algorithms-based tool life, run-out and optimal working

condition estimation.

The MOGART has four sections: the analytical cutting force model, neural

network research tool, genetic algorithm research tool and operation guide applications of

milling operations (see Figure 8.3). In the analytical cutting force model section, a tool to

study the cutting force model of end milling operations is provided. The results of the

studies are stored in the operation guide applications section. The neural network research

tool can be used to generate empirical cutting force estimation models and wear

forecasting models. The genetic algorithm research tool can be used to search the optimal

parameters and coefficients of the analytical cutting force model. The neural network

research tool (NNTool) and genetic algorithm research tool (GATool) are designed for

general research purposes so that they can be used to solve data mapping, forecasting and

optimization problems of other engineering systems.

The MOGART program is developed by using Visual Basic 4.0 version compiler.

It has a friendly user interface that includes the data file import and Microsoft Excel

Worksheet-based data input options, and visualized results that include the graphics of the

tool cutting edge profiles, cutting force profiles and characteristics, and so forth.

162



* For a new research project

1. From the File menu, choose Project.

2. From the Project sub-menu, select New Project.

3. In the New Project screen (see Figure 8.3), type the project directory and name, click

Ok button.

........... (<~~c'~.. .

Figure 8.3 Menu of MOGART program

* For a matured project

1. From the File menu, choose Project.

2. From the Project sub-menu, select Tool Material.

3. From the Tool Material sub-menu, select tool material.

4. From the Project sub-menu, select Work-piece Material.

5. From the Work-piece Material sub-menu, select work-piece material.
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8.2 Analytical Cutting Force Model

Based on the analytical cutting force model, the MOGART can be used to

calculate the tool cutting forces of milling operations by the formulas derived in the model.

There are four features, Cutting Force Estimation, Cutting Force Report, Cutting

Force Graphic and Tool Cutter Profile, which are included in the main menu Research

section.

" To estimate the tool maximum and minimum cutting forces in the feed and thrust

directions

1. From the Research menu, choose Cutting Force Estimation.

2. In the Cutting Force Estimation screen (see Figure 8.4), there are three tool geometry

parameters, seven tool working condition parameters and two material coefficients.

Select the parameters and coefficients one by one by pointing the cursor at the text

box and click the right mouse button, and type the data depending on the tool

operation conditions. For example, if there is a 50% overlapped climbing milling case,

type 90 in the Cutting Start Angle text box and 180 in the Cutting End Angle text box.

3. One option is the calculation precision angle. 5 degrees is chosen as the default

calculation angle, which means the tool cutting force data are calculated at every 5

degrees of the cutting period. The maximum calculation precision can be selected to 1

degree.

4. Click Ok button.
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Cutting Force Calculacmon In End-Hilling

Angle Feed Direction Thrust Direction Resultant

-90 0.0000 0.0000 0.00
-89 -0.0154* 0.0531 0.26
-88 -0.0299 0.1065 0.11
-87 -0.0435 0.1603 0.17
-86 -0.0562 0.2142 0.22
-85 -0.0679 0.2684 0.28
-84 -0.0787 0.3229 0.33
-83 -0.0885 0.3774 0.39
-82 -0.0974 0.4322 0.44
-81 -0.1053 0.4870 0.50
-80 -0.1122 0.5419 0.55
-79 -0.1182 0.5969 0.61
-78 -0.1232 0.6519 0.66
-77 -0.1272 0.7069 0.72
-76 -0.1303 0.7618 0.77
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Figure 8.5 Cutting force report
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" Tool feed direction, thrust direction and resultant cutting force profile estimation data

1. Follow the steps of Cutting Force Estimation to estimate the cutting force.

2. From the Research menu, choose Cutting Force Report.

3. In the Report screen, point the cursor to the icon with the project name you worked

on, and double-click the icon (see Figure 8.5).

" Tool feed direction, thrust direction and resultant cutting force graphics

1. Follow the steps of Cutting Force Estimation to estimate the cutting force.

2. From the Research menu, choose Cutting Force Graphic.

3. In the Cutting Force Graphic screen (see Figure 8.6), point the cursor to the check box

and click the right mouse button to check the force graphic you would like to see.

4. To change the tool turning angle display option to time, point the cursor to the option

button and click the right mouse button.

5. To change the graphic scale, select the Scale text box, type the scale, which decides

how many periods of data will be displayed on the graphic, and click Ok button.

* Tool cutter profiles

1. From the Research menu, choose Tool Cutter Profile.

2. In the Tool Cutter Profile screen (see Figure 8.7), select the parameters one by one by

pointing the cursor at the text box and click the right mouse button, and type the data

depending on the tool operation conditions.

3. Click Ok button.
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8.3 Neural Network Research Tool

The back-propagation neural network as a data processing tool is included in the

main menu NNTool section of the MOGART program. The theory of neural networks has

been discussed in Chapter II. The mapping feature of neural networks can be used to

estimate the maximum cutting force in the selected working condition ranges by only a

few experimental data. The forecasting feature of neural networks can be used to estimate

the worn tool cutting force by a tool wear empirical model that has been generated by the

experimental data. The back-propagation neural network program was developed for

general data processing purposes so that it can be used for studies of micro-end-milling

operation and other engineering systems.

The NNTool includes three sections, Training, Testing and Results.

* To train the neural network

1. From the NNTool menu, choose NN Project.

2. From the NN Project sub-menu, select New NN Project.

3. In the New NN Project screen (see Figure 8.8), type the project directory and name,

type the number of the input and output nodes, click Ok button.

4. From the NNTool menu, choose Setup.

5. In the Neural Network Setup screen (see Figure 8.9), select parameters one by one

and type data in the text box, click Ok button.

6. From the NNTool menu, choose Training.
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7. Import a pre-prepared training data file by selecting Import Training File from the

Training sub-menu, or input training data on the Excel Worksheet by selecting Input

Training Data from the Training sub-menu and follow the steps below:

(1) In the Input Data screen, point the cursor at the upper-right corner and double

click it.

(2) In the Excel Worksheet (see Figure 8.10), type the number of the training data

cases; type the input data then output data one case by one case; type the support

service phone number 3053483304 as a data checking number.

- ---- ------

L 5 ~~i.

1 2
2 4
3 6
4 8

.. 5 10
3483304

Figure 8.10 Training data input

(3) In the Excel Worksheet, choose Save As from the File menu.

(4) In the Save As screen, select Text (OS/2 or MS-DOS) (*.txt) from Save As type

section. Find the project directory, and click Save button to save the training data

file with name "project name + Trn.txt."
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(5) Close the Excel Worksheet.

8. From the Training sub-menu, select Setup Start Point.

9. From the Setup Start Point sub-menu, select Random, Index Random or Constant.

If selecting Random, it will set a random start point. If selecting Index Random, type

a random index number in the Random Start Point screen and click Ok button. It will

set a random start point depending on the given index number so that the running

procedure can be repeated. If selecting Constant, type a constant number in the

Constant Start Point screen and click Ok button. It will set all connection weights as a

given constant at the beginning.

10. From the Training sub-menu, select Start. The neural network will start to be trained

until it reaches the given Error Level or maximum Iteration times. A "project name +

.pj" file will be created after the training, which includes all the neural network data

processing information.

11. If the training procedure is interrupted, it can be continued by selecting Continue

from the Training sub-menu.

12. One option is Show Running Error in the Training sub-menu. If it is checked, the

Data Train Report screen (see Figure 8.11) will be displayed during the training

procedure.

" To test the neural network

1. After training, choose NN Project from the NNTool menu.

2. From the NN Project sub-menu, select Import NN Project (see Figure 8.12).

3. In the Import Project screen, find the project directory and name, double click it.
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4. From the NNTool menu, choose Testing.

5. From the Testing sub-menu, select Import Testing File from the Testing sub-menu,

or input testing data on the Excel Worksheet by selecting Input Testing Data from

the Testing sub-menu and follow step 7 of the training section.

6. From the Testing sub-menu, select Start. A "project name + Rpt.txt" file will be

created after the testing.

7T 

25R p txt

o. Data value Estimate data Error Relatiue error I

1 0.0000 0.4916 0.4916 0.0070
2 0.0000 0.9274 0.9274 0.0132
3 0.0000 4.0812 4.0812 0.0583
4 0.0000 12.0850 12.0850 0.1726
5 0.0000 0.9399 0.9399 0.0134
6 0.0000 1.9366 1.9366 0.0277
7 0.0000 3.0841 3.0841 0.0441
8 5.0000 1.4850 -3.5150 -0.0502
9 8.7500 5.0708 -3.6792 -0.0526
10 10.0000 13.8603 3.8603 0.0551
11 7.5000 2.7276 -4.7724 -0.0682
12 13.2500 7.2815 -5.9685 -0.0853
13 8.2500 4.1619 -4.0881 -0.0584
14 16.5000 9.8381 -6.6619 -0.0952
15 0.0000 -4.7844 -4.7844 -0.0683
16 0.0000 -2.1928 -2.1928 -0.0313
17 0.0000 3.1258 3.1258 0.0447

Figure 8.13 Neural network testing report

* The data of neural network testing results

1. After testing, choose Results from the NNTool menu.

2. From the Results sub-menu, select Show Report.

3. In the Report screen (see Figure 8.13), point the cursor to the icon that has a project

name you worked on, and double click the icon.
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* The graphics of neural network testing results

1. After testing, choose Results from the NNTool menu.

2. From the Results sub-menu, select Show Graphic.

3. In the 3 Dimension Cutting Force Distribution screen (see Figure 8.14), click the

option button, type the working condition data in the gray area, and click the Redraw

button. It will redraw a given case's graphics.
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Figure 8.14 Graphics of neural network testing results

4. One option is to click the option button, and click Auto-draw button. It will draw the

graphic layer by layer automatically.

5. Click Stop button to stop the Auto-draw function.
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8.4 Genetic Algorithm Research Tool

The genetic algorithm as a data analysis tool is included in the main menu GATool

section of the MOGART program. The theory of the genetic algorithms has been

discussed in Chapter II. The optimization feature of genetic algorithms can be used to

monitor the tool wear, run-out, cutting angles and working conditions with the analytical

cutting force model. The genetic algorithm was developed for general optimization

purposes so that it can be used for monitoring micro-end-milling operations and solving

optimization problems of other engineering systems.

The GATool includes two sections, Generator and Results.

" Genetic evolution

1. From the GATool menu, choose GA Project.

2. In the New GA Project screen, type the project directory and name, click Ok button.

3. From the GATool menu, choose Setup.

4. In the Genetic Algorithm Setup screen (see Figure 8.15), select parameter and type the

data in the text box one by one, also check the option check box, click Ok button.

5. In another Genetic Algorithm Setup screen (see Figure 8.16), select parameter and

type the data range and the number of chromosomes in the text box one by one, click

Ok button.

6. From the GATool menu, choose Generator.

7. From the Generator sub-menu, select Setup Start Point.
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8. From the Setup Start Point sub-menu, select Random or Index Random. If you

select Random, it will set a random start point. If selecting Index Random, type a

random index number in the Random Start Point screen and click Ok button. It will

set a random start point depending on the given index number so that the running

procedure can be repeated.

9. From the Generator sub-menu, select Start. The Generator will start to create one

generation by one generation until it reaches the given Error Level or maximum

Generation Steps. A "project name + Report.txt" file will be created after running,

which includes all the generation data information.

10. If the running process is interrupted, it can be continued by selecting Continue from

the Generator sub-menu.

11. One option is Show Running Fitness in the Generator sub-menu. If it is checked,

the Generation Report screen will be displayed during the running process.

12. Another option is Show End Results in the Generator sub-menu. If it is checked, the

Results screen (see Figure 8.17) will be displayed after the running process. It tells the

best fitness and factor data in the last generation.

" Genetic evolution results

1. After testing, choose Results from the GATool menu.

2. In the Report screen, point the cursor to the icon that has a project name you worked

on, and double click the icon.
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8.5 Applications of Operation Guide in Micro-End-Milling Operations

Based on the analytical cutting force model, six tool operation guide applications

have been done, Cutting Force Estimate, Work-piece Surface Precision Estimation,

Work-piece Surface Roughness Estimation, Tool Run-out Estimation, Tool Life

Estimation and Working Condition Selection, which are included in the main menu

Application section.

* To estimate the tool feed direction and thrust direction maximum cutting force

characteristics with different parameters

1. From the Application menu, choose Cutting Force Estimate.
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Figure 8.18 Characteristics of maximum cutting forces

2. In the Cutting Force Estimation screen (see Figure 8.18), select one or two parameters

by pointing the cursor at the check box and click the right mouse button, type the data

range in the Maximum and Minimum Data text box, and the data number in the Data

Number text box.

3. Click Ok button.

4. To know the cutting force data, point the cursor to the Fx (Feed Direction) or Fy

(Thrust Direction) and click the right mouse button.

5. To have a nice hard copy of the graphics, follow steps as below:

(1) In the Cutting Force Estimation screen, double click the graphic.

(2) In the Report screen, point the cursor at the upper-right corner and double click it.
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(3) In the Excel sample sheet, choose Open from the File menu.

(4) In the Open screen, select All files (*.*) from Files of the type section. Under the

project directory, find the project name + CFx.txt or CFy.txt file, and double click

it to open the file.

(5) In Text Import Wizard - Step 1 screen, click Next button.

(6) In Text Import Wizard - Step 2 screen, check Space check box, and click Finish

button.

(7) In the Excel sample sheet, select the data area, and choose Copy from the Edit

menu.

(8) In the Excel sample sheet, choose ToolCF.xls from the Window menu.

(9) In the Excel sample sheet, if it is one parameter, select the CF2Ddata sheet; or if it

is two parameters, select the CF3Ddata sheet.

(10) In the CF2Ddata sheet or CF3Ddata sheet, select the same data area, and choose

Paste from the Edit menu.

(11) Click CF2Dchart to see maximum cutting force with one parameter graphic or

click CF3Dchart1 and CF3Dchart2 to see the maximum cutting force with two

parameter graphics (see Figure 8.19).

(12) To get a hard copy, choose Print from the File menu.

180



Legend y

5.6
4.31 Force

z 3. .* 4.3-. 

j 2.1 - - .2
2 1 0 242.1-2.8

Parameter 2
(unit) 00.-. O*

0 f . 0.006 Oa _

00 0

der CF Dha+7 '.

Figure 8.19 Three-dimensional cutting force graphic

" To estimate the work-piece surface precision depending on the tool run-out

1. From the Application menu, choose Work-piece Surface Precision Estimation.

2. In the Work-piece Surface Precision Estimation screen (see Figure 8.20), select the

tool geometry parameters by pointing the cursor at the text box and click the right

mouse button, and type the data depended on the tool operation case.

3. In the right section of the screen, check the Working Condition check box, and select

the run-out parameters by pointing the cursor at the text box and click the right mouse

button, and type the data depending on the tool operation case.

4. Click Ok button.
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* To estimate the tool run-out depending on the work-piece surface precision

1. From the Application menu, choose Work-piece Surface Precision Estimation.

2. In the Work-piece Surface Precision Estimation screen (see Figure 8.20), select the

tool geometry parameters, and type the data depending on the tool operation case.

3. In the left section of the screen, check the Requirement check box, and type the

required work-piece precision.

4. To calculate one of the tool run-out parameters, point the cursor to the Maximum

Run-out or Minimum Run-out Angle option button, and click the right mouse button.

5. Type the data in the other tool run-out parameter text box.

6. Click Ok button.

4unAu of Fk e 2

". .n (it nch) i-L - .'rkpc , ik a c rcsion Dinthi

02 ,

Figure 8.20 Work-piece surface precision estimation
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* To estimate the work-piece surface roughness depending on the tool cutting edge tip

profiles

1. From the Application menu, choose Work-piece Surface Roughness Estimation.

2. In the Work-piece Surface Roughness Estimation screen (see Figure 8.21), select the

tool geometry parameters, and type the data depending on the tool operation case.

3. Under the Milling Type section, check the Conventional Milling or Climbing Milling

check box.

4. In the right section of the screen, check the Working Condition check box, and select

working condition parameters, and type the data depending on the tool operation case.

5. Click Ok button.
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Figure 8.21 Work-piece surface roughness estimation
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* To estimate the tool working condition depending on the work-piece surface

roughness

1. From the Application menu, choose Work-piece Surface Roughness Estimation.

2. In the Work-piece Surface Roughness Estimation screen (see Figure 8.21), select the

tool geometry parameters, and type the data depending on the tool operation case.

3. Under the Milling Type section, check the Conventional Milling or Climbing Milling

check box.

4. In the left section of the screen, check the Requirement check box, and type the

required work-piece surface roughness.

5. To calculate one of the working condition parameters, point the cursor to the

Minimum Spindle Speed or Maximum Feed Rate option button, and click the right

mouse button.

6. Type the data in the text box of the other working condition parameters.

7. Click Ok button.

* To estimate the tool run-out

1. From the Application menu, choose Tool Run-out Estimation.

2. In the Tool Run-out Estimation screen (see Figure 8.22), select the parameters one by

one, and type the data depending on the tool operation case.
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3. In the left section of the screen, type the experimental data of the maximum cutting

force in feed direction and thrust direction. The largest one of the two flutes is defined

as the 1 cutting edge.

4. Click Ok button.
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Figure 8.22 Tool run-out estimation

" To estimate the tool life

1. From the Application menu, choose Tool Life Estimation.

2. In the Tool Life Estimation screen (see Figure 8.23), select the parameters one by one,

and type the data depending on the tool operation case.

3. Click Ok button.
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Figure 8.23 Tool life estimation

* To select the optimal working condition

1. From the Application menu, choose Working Condition Selection.

2. In the Working Condition Selection screen (see Figure 8.24), select the parameters

one by one, and type the data depending on the tool operation case.

3. In the left section of the screen, point the cursor at the working condition check box

that you would like to select, and click the right mouse button.

4. Type the data in the text box of the other working condition parameters.

5. Click Ok button.
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Chapter IX

Conclusion and Recommendations

A new analytical model was developed for micro-end-milling operations, and

computational tools were customized for analysis of experimental data. All the developed

tools were integrated with the Micro-End-Milling Operation Guide and Research Tools

(MOGART) package.

Studying tool tip trajectory and experimental data developed the analytical cutting

force model of micro-end-milling operations. The analytical model estimates the cutting

force variation of micro and conventional end milling operation with or without tool run-

out and wear. Ten parameters and two coefficients are considered in the model. They are

three working condition variables (spindle speed, feed rate and depth of cut), two tool

run-out variables (run-out and its angle), two cutting condition variables (tool cutting

entry and exit angle) and three tool geometry variables (tool diameter, helix angle and the

numbers of tool flutes). The material coefficient is related to the tool and work-piece

materials. The wear coefficient is related to the tool life. The estimated cutting forces of

the analytical model were well matched with the experimental cutting force data.

Compared to the numerical procedures, computational time is extremely short. The model

is very convenient to study the characteristics of the cutting forces at various different

conditions and model based monitoring method is introduced for the first time in this

study.
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The MOGART package developed in this study mainly includes three researches:

a) analytical cutting force model, b) neural network based experimental data processing

module and c) genetic algorithm based optimization routines. Experimental data can be

easily passed to the package through Excel worksheet or through import data file option.

Similarly, the results of any analysis can be transferred to a text document and an Excel

worksheet based chart .

For machinability study, back-propagation neural network was proposed for two-

dimension and three-dimension interpolation. The empirical maximum cutting force

estimation models and wear forecasting models of the micro-end-milling operations were

generated with acceptable errors by using a back-propagation neural network program

(NNTool). This program is a part of the MOGART package and has been tested on the

experimental data. The tool maximum cutting force and wear characteristics of micro-end-

milling operations can be estimated at any cutting condition after the neural network was

trained. The program saved a lot of time in machinability studies. The back-propagation

neural network was found as an excellent interpolation tool for micro-end-milling and

other three-dimension cases.

In the first time, genetic algorithm was used to estimate the parameters of the

analytical model to monitor micro-end-milling operations. Wear, breakage, run-out,

cutting angles and optimal working conditions were estimated instantaneously without

requiring any prior experimental data analysis or training. The proposed approach was

found fast and accurate when it was tested on the simulated and experimental data. A

genetic algorithm program (GATool) is included in the MOGART package. The
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MOGART was used for the estimation of optimal cutting condition, run-out, wear and

breakage. It minimized the cost of data processing and allowed analysis of identical data

by using different methods to compare the results.

For different micro-end-mills, work-pieces and working conditions of the micro-

end-milling operations, over 800 milling operation experiments were performed and more

than 160 megabytes of cutting force data was collected for this study. The most

representative and reliable data were separated and used in this study.

The NNTool and GATool modules were designed for general purpose data

processing applications. A modified version of NNTool was used for environmental

engineering studies.

The following research work could be done to improve the presented work:

1. Improvement of the analytical model

- Identifying the difference between conventional and micro end milling machining

based on the experimental data.

- Investigation of tool wear at different operating conditions to improve the

empirical tool wear model.

- Addition of dynamic characteristics of the tools to the model.

2. On line monitoring

- Development of a monitoring system, which would estimate the tool wear and

evaluate the cutting conditions to keep the quality of the production at the

desired standards.
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