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ABSTRACT OF THE DISSERTATION

RELATIVE BASICITIES OF FREE BASE PORPHYRINS; UNDERSTANDING THE

ROLE OF MACROCYCLIC DISTORTION

by

Maria Ballester

Florida International University, 2005

Miami, Florida

Professor Ramon Lopez de la Vega, Major Professor

Porphyrins have been the center of numerous investigations in different areas of

chemistry, geochemistry, and the life sciences. In nature the conformation of the

porphyrin macrocycle varies, depending on the function of its apoenzyme. It is believed

that the conformation of the porphyrin ring is necessary for the enzyme to achieve its

function and modify its reactivity. It is important to understand how the conformation of

the porphyrin ring will influence its properties.

In synthetic porphyrins particular conformations and ring deformations can be

achieved by peripheral substitution, metallation, core substitution, and core protonation

among other alterations of the macrocycle. The macrocyclic distortions will affect the

ring current, the ability of pyrroles to intramolecularly hydrogen bond and the relative

basicity of each of the porphyrins. To understand these effects different theoretical

models are used. The ground state structure of each of 19 free base porphyrins is

determined using molecular mechanics (MM+) and semiempirical methods (PM3). The

energetics of deformation of the macrocyclic core is calculated by carrying out single

point energy calculations for the conformation achieved by each synthetic compound.
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Enthalpies of solution and enthalpies of protonation of 10 porphyrins with varying

degrees of macrocyclic deformation and varying electron withdrawing groups in the

periphery are determined using solution calorimetry. Using Hess's Law, the relative

basicity of each of the different free base porphyrins is calculated. NMR results are

described, including the determination of free energies of activation of ring

tautomerization and hydrogen bonding for several compounds. It was found that in the

absence of electronic effects, the greater macrocyclic deformation, the greater the basicity

of the porphyrins. This basicity is attenuated by the presence of electron withdrawing

groups and ability to of the macrocycle to intramolecularly hydrogen bond.
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1. Introduction

1.1 The porphyrin structure.

The porphyrin macrocycle is composed of 4 pyrrolic subunits linked via 4 carbon

bridges in a cyclic configuration (Figure 1). It is a 22 Tc- electron system which is fully

conjugated. The 7r- system is composed of 2 overlapping 18 7r- electron ring paths and is

therefore defined as a 18 n- electron aromatic system as shown in Figure Ia. [1] In

addition to their highly delocalized aromatic nature, porphyrins also undergo

tautomerization in the core (Figure 1 a). During tautomerization the NH hydrogens are

transferred intra-molecularly from the protonated pyrroles to the formerly unprotonated

pyrroles.[1]

1.2 Basic formats for porphyrin nomenclature

1.2.1 Fischer

In the Fischer format, only carbons atoms that can bear substituents are numbered.

The format is as follows:

1. Bridge carbons also called meso carbons (see Table 1) are labeled a, [3, y, 6 as shown

in Figure 2a.

2. Carbons that can bear substituents on the pyrrolic rings (0- positions or p3- pyrrolic

positions) are numbered 1, 2, 3, 4, 5, 6, 7 and 8 as shown in Figure 2a

1.2.2 IUPAC Nomenclature.

The carbons are numbered in sequence from 1 to 20 with the meso positions being 5,

10, 15, 20, and the (3- positions being 2, 3, 7, 8, 12, 13, 17 and 18. The pyrrolic nitrogens

are numbered 21, 22, 23 and 24 (see Figure 2b).



Standard porphyrin chemistry has a variety of technical terms that are unique to the

discipline. For this reason a glossary of such terms is listed in Table 1.

NH N

meso

N HN

(a)

N HNH HN

NH N -- NH N.

(b)

Figure 1. (a) Porphyrin skeleton and (b) 18 7r electron system and tautomerization.
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2 3

1 B 4

AB

NH N

N HN

D 1C

8 5
7 Y

6

(a) Fischer system

5
3 4 6 7

2 28

1 N H N

21 22 9

20

1816 14 12
17 15

13

(b) IUPAC system

Figure 2. Numbering system (a) Fischer system, and (b) IUPAC system.
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Table I. Terms and abbreviations.

Terms or Formula
Structure

Elucidation or Name

\ /
NH HN

Cyclic tetrapyrrole (1)

A macrocycle bearing 4 pyrrolic subunits, typically (but N HN
not always) formed by 4 carbon bridges.

Example: Corrole

NH N-

Chlorin or Dihydroporphyrin (2)

A porphyrin in which one 7 bond is reduced. N HN

NH N-
Bacteriochlorin or Tetrahydroporphyrin (3)

A porphyrin in which two 7L bonds are reduced, on each /
diagonally opposite pyrrolic rings HN

\ NH N--
Isobacteriochlorin also a Tetrahydroporphyrin (4)

A porphyrin in which 2 1L bonds are reduced on adjacent
pyrrolic rings. N HN

4



\ NH N-

Meso carbon

N HN
A carbon bridge

NH N-

Meso substituents

A substituent on the carbon bridge. N HN

R

\ NH N_
(3-carbon

A carbon on the 3 pyrrolic position. N HN

NNHN
a-carbon

T h e a -c a rb o n s a dja c e n t to th e n itro g e n s o f th e p y rro lic H N
rings.

5



R-

P-substituent

The substituents on the j3-pyrrolic carbons.

H2OEP (5)

Octaethylporphyrin

H2ETIOI (6)

Etioporphyrin I

H2OIP (7)

Octaisopropylporphyrin

6



H2TPP (8)

Tetraphenylporphyrin

H2T(nPe)P (9)

Tetra-[2]-pentylporphyrin

\NH N

H2T(iPr)P (10)
N HN

Tetraisopropylporphyrin

\NH N-

H2T(tBu)P (11)
N HN~

Tetratertbutylporphyrin

7



F F

F F

F F NH F F

H2T(C 6 F5)P (12) F-

-N HN' \F F F

Tetrapentafluorophenylporphyrin F F

II
F F

H N

H2OETPP (13)

Octaethyltetraphenylporphyrin

\NH N-

H25-NO2OEP (14)

N HN

5-nitrooctaethylporphyrin

OWN

\NH N

H2 5,15-diNO2OEP (15) N

NHN

5,1 0-dinitrooctaethylporphyrin \

8



O

NH N

1425,10-diNO20EP (16)

5,15-di nitrooctaethyl porphyri n \ i HN

/

O11 NO

O1 N%

NH N

H,5,10,15-tr1NO20EP (17) 0

N HN

5, 10, 15-trinitrooctaethylporphyrin V 1 /

O N'_O

OWN/O

\ NH N _ O

H,5,10,15,20-tetraNOOEP (18) N
-- \ / N

/ \O

5,10,15,20-tetranitrooctaethylporphyrin 
N HN

O N _O

O 1 NO

NH N-

Hz5-NO2ETIOI (19)

N HN

5-nitro etioporphyrin-I

9



NH N

H25,10-diNO
2ETIOI (20)

N HN

5,1 0-dinitroetioporphyrin-I

0 NNH 
NH25, 15-diNO 2ETIOI (21)

N 
HN

5,15-dinitroetioporphyrin-I

o N

N

NH N

H25,10,15-triNO O2ETIOI (22) 
N ///

N HN

5,10,15-trinitroetioporphyrin-I

ol N'-

NH N

H-25,10,15,20-tetraNO2ETIOI (23) "\ i

5,10,15,20- tetranitroetioporphyrin-I N HN

O" N'-

1 0



\ NH N

H2P (24)

Porphine N HN

\NH N

H2OMP (25)

N H
Octamethylporphyrin

\ NH HNC

H4P+ (26)

Porphyrin dication NH HN

1.3 Importance of porphyrins and related compounds

Porphyrins and their related compounds have played a crucial role in many areas of

chemistry and other sciences as discussed below.[3] In fact 6 of the Nobel Laureates have

been awarded their prizes directly or indirectly for work in porphyrin chemistry: Richard

Martin Willstatter won the Nobel Prize in chemistry in 1915 for his work on the

11



purification and structural determination of plant pigments, specially the chlorophylls[3].

Hans Fischer in 1930 for his work on the structures of hemin, an iron (III) porphyrin

pigment derived from hemoglobin[4-6]. John Kendrew and Max Perutz shared the Nobel

Prize in 1962 for their work in X-ray crystallographic determination of oxygen-binding

proteins hemoglobin and myoglobin[3]. Dorothy Hodgkin won the 1964 Nobel Prize for

her work on X-ray crystallographic determination of vitamin B 12 and penicillin and

Robert Woodward won the Nobel Prize in 1965 for the synthesis of vitamin B 12. In 1988

Robert Huber, Johan Deisenhofer, and Hartmut Michel were awarded the Nobel Prize in

chemistry for their crystallization and structural elucidation of a porphyrin-containing

membrane protein complex from the purple photosynthetic bacterium

Rhodopseudomonas viridis[7].

1.4 Importance of porphyrins in biological chemistry and biology.

Although there are only a few types of naturally occurring porphyrins their impact

has been massive. Chlorophyll, a dihydroporphyrin, is critical for harvesting light for

photosynthesis. Some photosynthetic bacteria used bacteriochlorophyll for the same

purpose. [2]

Heme, the iron pigment of protoporphyrin-IX, is incorporated into many protein

systems. For example, in hemoglobin and myoglobin, the heme acts as a transporter of

oxygen. In cytochromes the Fe heme participates in electron transfer by cycling between

Fe 2 & Fe . In the cytochromes P450, the Fe heme is central to their role in activating

oxygen or hydrogen peroxide in order to insert an oxygen atom into an organic

substrate. [8] One of the most important roles of cytochromes P450 is to convert

12



insecticides, carcinogens, additives and pollutants into water - soluble metabolites which

can be easily excreted.

1.5 Porphyrins and related compounds in medicine.

Errors in the metabolism of porphyrins give rise to severe health problems. In

premature babies, neonatal jaundice is the result of hyperactive heme oxygenase which

sequentially decomposes heme to form the bile pigments biliverdin and bilirubin, the

cause of the characteristic yellow coloration associated with jaundice. In porphyria, there

is again a breakdown in the metabolism resulting in the excretion of uroporphyrin-III,

which is a precursor to protoporphyrin-IX. This causes the urine to turn red[9, 10].

Recently, porphyrins and others cyclic tetrapyrroles have been used as

photosensitizers in photodynamic therapy (PDT). This therapy is of great promise for

treatment of cancer it is site specific such as hair loss. PDT involves the photochemical

generation of singlet oxygen from triplet oxygen via irradiation of a photosensitizer that

is adsorbed on the malignant cells. The singlet oxygen destroys the cells with minimal

side effects.

1.6 Porphyrins and Inorganic Chemistry.

The four nitrogens in the core of the macrocycle are capable of chelating virtually any

metallic element in the periodic table. Once chelated, the metal markedly modifies the

properties of porphyrin macrocycle. Among the most intriguing facets of

metalloporphyrin chemistry is their potential to act as catalysts. For example: a system

containing of of porphyrins has been prepared as a model for the origin of

photosynthesis on the primordial earth[1 1]. Chiral ruthenium porphyrins have been used

as catalysts in the highly enantioselective synthesis of cyclopropylphosphonates[12].
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Porphyrin systems are also proving of great interest in nanotechnology. For example,

Shelnutt and coworkers created nanotubes that are micrometers in length and 50-70 nm in

diameter by ionic self assembly of two oppositely charged porphyrin units. [13, 14] The

porphyrinic nanotubes photo- catalytically grow metal structures onto the tube structures

to create a functional nanodevice. The hope is that these nanotube devices could be

suspended in solution and used for photocatalytic solar hydrogen production.

1.7 Porphyrins and Geology.

Geoporphyrins (geologically occurring porphyrins) played important roles in

founding of molecular organic geochemistry. The discovery of pophyrins in crude oil

established both the biological origin of petroleum, and the upper limit for the

temperature of formation of petroleum.[15, 16]

The discovery of porphyrins in a wide range of geological sources including

petroleum's, coals, and oil shakes, was a landmark in petroleum geology. Alfred Treibs

proposed that the geoporphyrins were the degradation products of biologically occurring

cyclic tetrapyrroles-notably heme and chlorophyll. The concept that biological molecules

undergo modification of their functional groups to form similar compounds with a

alkyl/aryl units in place of functionalities lies at the heart of molecular organic

geochemistry. Geoporphyrins are too complex to be made by random chemical processes.

This indicates that petroleum is formed by decomposition of biological matter containing

the porphyrins. Geoporphyrins are not thermally stable at 300°C for extended time. Thus,

the petroleum must be made below this temperature[15, 16].
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1.8 Porphyrin synthesis and synthetic porphyrins.

Porphyrin synthesis is a unique area of synthetic organic chemistry.[1, 17] The

synthetic routes to unsymmetrical porphyrins often involve as many as 20 steps. The

reason for this is that each pyrrole subunit must be prepared separately, which may take

several steps, then the units linked and finally they are cyclized to the porphyrin. Often

these cyclizations occur in poor yield, 10-30%. The syntheses of symmetrical porphyrins,

which are the main focus of this thesis, are significantly less challenging. A single pyrrole

must be prepared and this can either by cyclized into the porphyrin directly, or it can be

cyclized along with a one - carbon unit, which forms the meso- carbon. Symmetrical

porphyrins can be subdivided into three categories, symmetrical octaalkylporphyrins

without meso-substituents, meso tetrasubstituted porphyrins without f3-pyrrole

substituents, and dodecasubstituted porphyrins each of which will be discussed.[1, 17,

18]

1.8.1 Syntheses of symmetrical octaalkylporphyrins without meso substituents.

For the synthesis of octaalkyl porphyrins, such as H2OEP, there are two different

strategic approaches, the first involves the tetramerization of 2, 5-diunsubstituted pyrroles

in the presence of a one carbon reaction such as formic acid or formaldehyde, which

supplies the meso- carbons of the product. The second approach is the tetramerization of

pyrroles bearing 2-CH 2-R substituents, the methylene carbon of which will be the 5, 10,

15, and 20- carbons of the desired porphyrin. For example the dimethylamino porphyrin

(Figure 3) forms H 2OEP on heating in acetic acid. These methods have been recently

reviewed by Kevin Smith.[17]
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1.8.2 Syntheses of meso tetrasubstituted porphyrins without 0-pyrrole substituents.

5, 10, 15, 20-tetraphenylporphyrin (H 2TPP) was first synthesized by Rothemund in

1936 by condensation of pyrrole with arylaldehydes in methanol at various temperatures

in sealed vessels.[19] The conditions were harsh and only some very stable aromatic

aldehydes successfully result in porphyrin formationby this procedure. In 1967 Alder

and Longo improved the method by refluxing in propionic acid in the open atmosphere

for 20 minutes.[20, 21]

Et Et HCO2H

/ \ 
NH N

H N H

H N HN

Figure 3. H2OEP synthesis from 2,5-diunsubstituted pyrroles in the presence of formic
acid.
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A greater variety of substituted tetraphenylporphyrins were created and this is still the

method of choice when large amounts of porphyrins are needed and the aldehydes are

able to withstand the acidic conditions (Figure 4). Development of these synthetic

methods resulted in the synthesis of a large variety of porphyrins, however, it is difficult

to make porphyrins other than those which are tetra- substituted at the meso positions. A

modified method was developed by Lindsey.[22] This method replaced the refluxing

propanoic acid with trifluoroacetic acid (TFA) and methylene chloride (CH 2Cl 2) followed

by oxidation with DDQ, dichlorodicyanoquinone (Figure 4). It must be carried out

under dilute conditions in order to limit the formation of open chain compounds thereby

limiting the yield of the desired porphyrin.

R H

TFA or BF 3 -etherate H R

4R- CHO + 4H + 4 20
CH2 CL 2 , 25 C R H

N /
H

H R
R H R

H R CH 2CL 2 , 25 C NHNI N-

R H R\ R

/ \/
0 OH

H R CI N Cl CN R

CI 'N CI CN
0

DDQ OH
DDQH2

Figure 4. Two-step one-flask room-temperature synthesis of neso-substituted
porphyrins. Note that four structural isomers of the porphyrinogen are expected (not
shown). R = phenyl group.
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1.8.3 Syntheses of dodecasubstituted porphyrins.

1.8.3.1 Syntheses of dodecaalkylporphyrins.

The first porphyrin bearing twelve alkyl residues was prepared by the Rothemund

reaction of 3, 4 - dimethylpyrrole with benzaldehyde in refluxing acetic acid. Presently

or today such compounds are made using Lindsey conditions. Other dodecasubstituted

porphyrins can be made by modification of octaalkylporphyrins by electrophilic

substitution reaction such as nitration, and halogenation. Dodecaalkylporphyrins or

dodecaalkyl/arylporphyrins can be prepared by introduction of alkyl/aryl units on 0-

bromo or meso - bromo porphyrin precursors using coupling reactions such as Suzuki

cross coupling. In more recent attempts to prepare dodecaalkylporphyrins Medforth et al.

reported a synthesis of 5, 10, 15, 20-tetraalkylporphyrins with different sized 0-

cycloalkenyl rings[23]. These studies showed that highly distorted non- planar

dodecaalkylporphyrins are not acessible via classic pyrrole condensation methods and a

different approach was described by Kalisch and Senge using organolithium compounds.

During this process the mono meso substituted compound is formed and subsequent

nucleophilic attack, hydrolysis with water and oxidation with DDW produces the

respective porphyrin.

1.8.3.2 Syntheses of dodeca(alkyl/aryl)porphyrins

The syntheses of several symmetric dodeca(alkyl/aryl)porphyrins is easily available

form the respective pyrrole bearing the (-substituents and the appropriate aldehydes

bearing the meso substituents.
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1.9 Spectroscopic properties of porphyrins.

Discussion is centered on UV-Vis and 'H NMR spectra of porphyrins because these

are the methods described in this dissertation.

1.9.1 UV-Vis Spectroscopy.

The brightly colored porphyrins have very characteristic visible spectra. They are

most useful for diagnosing whether a porphyrin is neutral, a dication or a metal complex,

as discussed below. All the bands in the visible spectra of porphyrins originate from

n - 7* transitions.[1] However, the precise nature of the transitions is exceedingly

complex and lies outside the scope of this thesis.

Metal - free porphyrins display 5-banded spectra. There is a very intense band at

about 400 nm, the Soret, or P band. Typically, this has an extinction coefficient of more

than 100,000. In addition, there are 4 other less intense bands, usually ranging from

about 500 nm to about 650 nm. The ratio of these 4 bands (Q bands) and their peak

positions depend on the nature of the substituents. In this work most of the metal - free

porphyrin spectra are of the etio- type spectra in which the intensity of the peaks steadily

decreases from the approximately 500 nm peak (band IV) to the 620 nm peak (band I).

The spectrum of H2OEP (Figure 6) is typical of such compounds.[1, 23]

In porphyrin dications, the Soret band is maintained, but the 4 Q bands are sharply

modified. The spectrum of the dication of H2 OEP (Figure 7) is used as an example of a

dication. Dications spectra are more variable than the neutral porphyrins.[1, 23]
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The zinc porphyrins like most other metalloporphyrins are characterized by 3 bands,

the Soret at about 400 nm and two Q bands at about 500 - 600 nm. These bands, also

called Xc and J3, bands have varying relative intensities dependent upon the porphyrin

structure.

1.9.2 'H NMR Spectroscopy.

The 'H NMR spectra of porphyrins are dominated by the ring current owing to the

highly conjugated it-electron system. The first 1H NMR spectrum was reported by Becker

& Bradley, who studied 6 porphyrins including protoporphyrin IX in benzene. There

have been several major reviews on the 'H NMR spectra of porphyrins, most notably

those of Scheer & Katz, 1975, Jason & Katz, 1978 and Medforth.[24-26] The chemical

shifts of unsubstituted 3 - pyrrolic hydrogens, meso- hydrogens, and pyrrolic NH protons

are all strongly dependent on the anisotropic effect of the porphyrin n-electron system.

Meso protons and R - pyrrolic hydrogens have chemical shifts of about 10 5 and 8-9 6,

respectively. These protons are shifted downfield because the hydrogens lie on the

periphery of the porphyrin rings. Thus, the ring current deshields the molecule and causes

the downfield shifts to higher 6 values.

The pyrrolic N-H peaks are heavily shielded and absorb at about -2 to -4 6. The

reason for this strong upfield shift is that the hydrogens in the core of the porphyrins are

shielded by the ring current this is a classical example of the anisotropic effect.

It must be pointed out the issue of ring current effects can be quite complex. The

chemical shifts of meso- and pyrrolic N- hydrogens of even highly distorted porphyrins

are usually not changed very substantially. [26]
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A further complication in the 'H NMR spectra of porphyrins is the fact that the

molecules undergo tautomerization (Figure 7). For symmetrical porphyrins, it is not

possible to distinguish between the pyrrolic NH's on either tautomer since they are

magnetically equivalent. For asymmetrical porphyrins it is possible to do so, but only if

the rate of tautomerization is slower than the NMR time scale. Thus low temperature 'H

NMR studies can be used to resolve these hydrogens[27-30]. Additionally, by carrying

out variable temperature 'H NMR studies it is possible to identify the coalescence

temperature at which the NH signals become a singlet. This temperature plays a key role

in measuring the free energy of tautomerization, which will be discussed in a subsequent

chapter.

In symmetrical porphyrins the f3 - pyrrolic, and the hydrogens on f - substituents may

also be magnetically distinguishable, depending on the state of protonation of the

corresponding pyrrole groups. These signals may also be studied by variable temperature

'H NMR as will be discussed for H25,10,15-triNO 20EP. The AG* may yield valuable

information concerning the extent of intramolecular hydrogen bonding which exists in

the porphyrin core.[26, 27, 31]

1.10 NH Tautomerism in porphyrin systems

NH Tautomerism in porphyrin systems was first described by Storm[32] in 1972.

It consists of an intramolecular two proton transfer and is shown in Figure 7. It has been

the subject of numerous investigations using nuclear magnetic resonance and theoretical

studies.
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Figure 7. Tautomerization.

The focus of these studies has been to determine if the mechanism is a synchronous

(simultaneous, concerted) two proton transfer, or asynchronous (two step mechanism)

involving transfer of one proton followed by transfer of the second proton.[33, 34]

Evidence has been presented for both mechanisms and indeed in different porphyrin

systems one mechanism may prevail over another. Recent studies have favored an

asynchronous mechanism rather than a synchronous one for most porphyrin systems.

The activation energy towards tautomerization is a constant 50 kJ/mole for most of

the systems studied. It is not influenced by the presence of electron withdrawing groups

in the periphery. [26, 31] These will affect both the ground and activated states to the

same extent and will not cause a change in the activation energy. The conformation of

the porphyrin ring however does influence the activation energy. [35] Systems such as
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the dodecasubstituted porphyrins show greater activation energy towards tautomerization

and those which are severely ruffled show a much reduced energy of activation. [26, 31]

This is presumably due to the increased hydrogen bonding interaction in these systems

versus the dodecasubstituted systems. Regardless of the mechanism of tautomerization,

extent of intramolecular hydrogen bonding should affect the energy of activation towards

tautomerization.

1.11 Calorimetry studies.

The word calorimetry literally means measurement of heat. A calorimeter measures

the heat generated or absorbed in a chemical process. By measuring these heats we can

investigate the relative thermodynamic stability of many chemical compounds.

There are various types of calorimeters used in chemistry: the isoperibol or constant

pressure calorimeter, the bomb or constant volume calorimeter and the heat flux

calorimeter are just three of the most useful ones. [36] With the bomb and isoperibol

calorimeters the temperature changes are measured. Then with knowledge of the heat

capacity of the heat absorbing medium, the AE and AH of the processes are measured.

In 1923 Tian built the first heat flux calorimeter with a single calorimeter vessel, the

surroundings serving as a reference. In heat flux calorimetry the flow of heat from the

calorimeter cell is determined by using thermocouples placed in such a way as to

surround the calorimeter cell. Since the current is related to the difference in

temperature on both sides of the thermocouple, the current will flow until both sides are

at the same temperature. The current is measured and can be related to the heat flowing

from the cell to the isothermal block. The isothermal block is of high heat capacity so the

temperature of the block does not change significantly. Calvet (1948) extended this

24



design by placing two equal systems in an isothermal block (thermostat). One system was

the reference cell and the other is the sample cell.[37] Both systems are identical in every

way possible except for the absence of the components necessary for the process being

studied to take place. By subtracting the heat from the reference cell from that of the

sample cell and integrating over the duration of the process the AH is measured.

Thermodynamic studies in porphyrin chemistry are not ubiquitous. Enthalpies of

solution in various solvents of H2 TPP and several natural porphyrins have been obtained

by Berezin's group. They used mixed solvents so their data is not directly applicable to

our study. [38-40] Standard enthalpies of combustion of several porphyrins have been

determined but these are solid forms of porphyrins and not directly relevant to our

work. [41]

2. Conformations in porphyrins.

2.1 Relevance to biological systems

There are numerous enzymes that have a porphyrin at the active site. It has long been

recognized that these are significantly distorted from planarity and it is speculated that

these nonplanar distortions play a role in their biological functions. [42-46] In fact, it is

found that for proteins with the same function across many different species, the types of

distortions are essentially conserved[43]. Of 70, different peroxidases, from different

species and different enzyme types, it is found that the conformation of the porphyrin

macrocycle is conserved[47]. Since it takes energy to distort a porphyrin, this suggests

that such distortions modulate the biological function.[48] For example across species the

heme of the deoxy form of myoglobin is found with the Fe slightly above the heme group
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and the pyrrole nitrogens pointing upward towards the Fe. The heme of cytochromes C

peroxidase is observed to have opposing pairs of pyrrolic nitrogens pointing in opposite

directions. Myoglobin's function is carrying oxygen intact to the cell for respiration; the

function of cytochrome c peroxidase is the reduction of hydrogen peroxide to water. The

function of several cytochromes c is electron transfer, the heme group is found in yet

another conformation. In all these processes similar iron porphyrins are encapsulated in

different polypeptide environments and are able to perform different functions. The

conformation of the porphyrin varies depending on the function of the particular protein

or enzyme in question. [44]

Enzymes are most efficient catalysts. The porphyrin groups in most of these enzymes

do not have the "ideal" or lowest energy planar structure. This structure is too stable for

the catalyst to be efficient. Enzymes are believed to maintain their active site in a "close

to activated state" so that minimal effort is all that is needed for the wanted reaction to

take place and for it to occur in either direction.[49] It is believed that the combination

of secondary, tertiary and quaternary structures of the protein maintain their active sites

in an activated state, presumably taxing the greater stability elsewhere in the protein

molecule. This has been designated in the past as the entatic (or energetic) state.[49, 50]

2.2 Variations in porphyrin conformation

There are several ways by which nonplanarity can be induced in porphyrins. These

include metal and axial ligand effects, core substitution, overloading the periphery with

sterically demanding substituents, exchanging macrocycle atoms for larger heteroatoms,

interruption of the aromatic system, reduction and strapping the macrocycle[51]. In this
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dissertation the emphasis will be on porphyrins in which nonplanarity is induced via

steric effects at the periphery.

Scheidt[52] originally proposed the description of porphyrin conformations outlined

in Figure 8. In order to emphasize their differences, a "3-dimensional" picture of what the

molecule looks like is included below each diagram. Porphyrins with no substituents

tend to be planar. The term deformation refers to deviation from planarity. When the

molecule is not planar, then we draw a "mean" plane with parts of the porphyrin ring

situated above or below this plane. In the idealized diagrams shown in Figure 8, any atom

designated by an open circle is situated below the mean plane of the ring, any atom

designated by a closed circle is situated above the mean plane and any atom which is

designated by the intersection of two bonds (no circle) is in the mean plane.

For example in the saddled conformation, the meso carbons define the mean plane

and the pyrrole rings alternate above and below this mean plane. Porphine,

2,3,7,8,12,13,17,18-octamethylpophyrin (H2OMP) and 2,3,7,8,12,13,17,18-

octaethylpophyrin (H 2OEP) are examples of planar porphyrins. In the domed

conformation (dom) configuration the meso carbons are in the mean plane of the

macrocycle, all the pyrrolic nitrogens are above the mean plane and the fi carbons are

below the mean plane.

27



open circle = above mean plane
closed circle = below mean plane

no circle = in mean plane

Figure 8. Non- planar distortions in porphyrins.

The doming distortion is found mainly in five coordinate metalloporphyrin

complexes, where the axial ligand causes an out of plane displacement of the central

metal ion or when an atom is too large to fit in the macrocycle.[53]

In the ruffled (ruj) conformation, the pyrrolic nitrogens are in the mean plane of the

macrocycle, while each pyrrole ring tilts in such a way as to minimize the nitrogen-

nitrogen distance. The nitrogen distances are reduced for opposite and adjacent nitrogens.

Each pyrrole ring will have one a and one fl carbon above and the other a and fl carbons

below the mean plane. This is most famously adopted by NiOEP. The metal nitrogen

bond distances are presumably shortened to accommodate the radius of the Ni-N bond.

[54]
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In the saddled (sad) conformation each pyrrole ring is either above or below the mean

plane as shown in Figure 8. One example is the dodecasubstituted porphyrin, 5,10,15,20-

tetraphenyl-2,3,7,8,12,13,17,18-octaethylporphyrin (H2OETPP). The meso carbons are

approximately in the mean plane of the macrocycle. In the wave (wav) conformation

half of a conjugative path is above the mean plane and the other half below the mean

plane where an imaginary line divides the opposite pyrroles in half. Each pyrrole ring

will have one a and one fl carbon above and the other pair below the mean plane. The

pyrroles outside the conjugative path will have one fl carbon above the mean plane and

the opposite pyrrole has the fl carbon below the mean plane. The nitrogens are in the

mean plane of the ring.

In symmetrically substituted free base porphyrins, only the planar, ruffled and

saddled conformations are observed. Asymmetrically substituted free base porphyrins

may also show the wave conformation. The domed conformation is observed mainly in

metalloporphyrin complexes.

2.3 X-ray crystal studies.

A large number of X-Ray structures have been determined and examined according to

substitution patterns at the periphery of the porphyrin and metalloporphyrin

macrocycle.[52] The first X-ray crystal structure of a free-base porphyrin was of H2TPP.

Two crystal forms were determined, a triclinic form which is essentially planar and a

tetragonal form which was not planar. [55-57]. The tetragonal form is believed to be the

result of crystal packing and metalloporphyrin impurities setting the environment for

further deposits of free-base porphyrins in that crystal form. The crystal structure of pure

free-base H 2TPP is believed to be essentially planar where the phenyl groups are rotated
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more than 600 out of the plane of the macrocycle. The phenyl groups rotate to avoid

interference with the pyrrole hydrogen atoms,[57]; they may be held in that conformation

by crystal packing forces. The X-ray crystallographic structure of octaalkyl substituted

porphyrins was first explored with H 2OEP indicating that the structures are similar to

meso- substituted porphyrins but that the substituent groups on the macrocycle cause

changes in the geometry where substitution occurred. [58] The X-Ray crystal structure of

H2OEP shows that it also is a planar molecule. The vast majority porphyrin X-Ray

crystal structures available in the literature are for metalloporphyrin complexes. The

chelated metal ion makes it easier to generate the crystal necessary for X-Ray studies. It

is sometimes unclear what the structure of the macrocycle would be in the absence of the

metal and crystal packing forces. Many of these structures have been recently compiled

by Senge. [59]

3. Molecular modeling in porphyrin systems

Molecular modeling uses graphical, mathematical, or physical representations of

molecules to predict their structure and properties. Computational chemistry, inherently

linked to progress in the computer industry, not only includes quantum mechanics but

also molecular mechanics, different methods of minimization and conformational

analysis. All of these methods are used in molecular modeling. All of them have also

been used in the modeling of porphyrin compounds. Because of their size and

complexity, ab initio methods using any additional substituents are very difficult to carry

out. Only recently has it become possible to study the electronic effects of peripheral

substituents on the porphyrin macrocycle using these methods. For this reason simpler
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methods are used. Only the most generally recognized approaches: molecular mechanics

MM+, density functional, and the semiempirical method will be described here. [23, 60-

62]

3. 1 Molecular mechanics or force field method is an empirical method based on the

ball and spring model of molecular structures. [62] The sizes of the balls and stiffness of

springs is determined empirically and are chosen to represent experimental data. This

interaction between the ball and spring causes bond strain energy. Another more

important source of energy is the steric strain energy. It has been, in the last fifty years,

extensively used to quantitate the role it plays in determining the conformational

structure, and energy differences between conformations of a molecule. It is able to

reproduce rotational barriers about single bonds as accurately as ab initio methods in a

fraction of the time. Electrons are not included in this model so it is not suitable for

studies in electronic spectroscopy and photochemistry. Molecular mechanics cannot

predict electronic structure and transitions; however these calculations can be carried out

in large systems and with many initial structures, which is important for the shallow

potential surfaces in porphyrins.

3.2 The semiempirical molecular orbital method uses equations to approximate

molecular orbitals. These approximations account for electron correlation energies.

Semiempirical methods consider only the valence electrons of the system, treating the

core electrons as part of the nuclear core. These approximations are chosen to best fit

experimental data and make possible their use in larger systems as the calculation time is

considerably reduced.
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3.3 Density functional theory is based on Hohenberg and Kohn theory (1964) which

states all the ground state properties of a system are functions of the charge density. The

total electronic energy is, in this model, a function of the electron density p therefore

given a known electron density; one could form the Hamiltonian operator, solve the

Schrodinger equation, and determine the wave functions and energy eigenvalues.

Hohenberg and Kohn theory has certain advantages over Hartree - Fock theory; it

includes electron correlation indirectly, and scales better to system size. If N stands for

the number of electrons in the system, then the time needed is proportional to N3 instead

of N4 as in Hartree - Fock theory.[61] This leads to a considerable reduction in time

necessary and an increase in the complexity of the molecule that may be studied.
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4. Statement of the problem

The purpose of this dissertation is to understand the influence of different

macrocyclic conformations adopted by porphyrin compounds on the enthalpies of

solution, relative basicities, ability to intramolecularly hydrogen bond and nmr spectral

behavior of free-base porphyrins.

The enthalpies of solution and protonation of H2OEP(planar), H2 TPP(planar),

H2OETPP(saddled), H2OIP(planar, slight ruffling), H2ETIOI(planar), H2T(nPe)P(planar),

H2 T(iPr)P(ruffled), H2T(tBu)P(ruffled) were obtained. All of these porphyrin free-bases

have peripheral groups with similar Hammet sigma parameters. The main differences

among them are the macrocyclic conformations they adopt.

To determine the role played by electron withdrawing groups placed along the

periphery and the relative basicity of individual free-base porphyrins. For this purpose,

H25,10,15,20-tetraNO 2OEP(saddled), H25-NO2OEP and H2T(nCsFs)P(planar) will be

studied.

To understand the effects of porphyrin conformation and electron withdrawing groups

on other properties of porphyrin macrocycles, such as AG* for tautomerization and nmr

spectral properties.

The macrocyclic conformation of around 20 different free base porphyrins will be

determined using two methods: molecular mechanics and semi-empirical methods. The

energy of this deformation will be determined by a single point energy calculation of the

most stable conformation adopted by each different porphyrin compound. This

information will be used to better understand the effects of macrocyclic conformation on

the different properties of free base porphyrins.
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5. Experimental

H2OEP (5), H2TPP (8), H2ETIOI(6) and H2T(C6F5)P (12) were purchased from

Aldrich. Meso nitro substituted H2ETIOI (6), H2OEP (5) compounds were synthesized

via nitration of the zinc metallated porphyrins followed by chromatographic separations.

Purity was determined via NMR, UV-Vis UV-Visible spectra and TLC (thin layer

chromatography). [63, 64] [65] H2OIP (7) was obtained from Dr. J. Martin E. Quirke in

Florida International University in Miami, FL. Meso substituted porphyrins such as

H2T(iPr)P (10), H2T(tBu)P (11), H2T(nPe)P (9) and H2OETPP (13) [66] were obtained

from Dr. Craig Medforth, Sandia Laboratories in New Mexico.

5.1 Free-base porphyrin synthesis.

H25-NO 2OEP (14), H25, 15-diNO 2 0EP (15), H25, 10, 15-triNO 2 0EP (17), and H25,

10, 15, 20-tetraNO 2OEP (18) and the analogs of H2ETIOI were prepared by the method

of Gong and Dolphin[65]. H25, 10-diNO 2OEP (16) and H25, 10-diNO 2ETIOI was

prepared by the method of Bonnett and Stephenson. [63]

ZnOEP solution:H 2OEP (500 mg) was dissolved in CH 2Cl 2 (500 mL) and Zinc acetate

(490 mg) was dissolved in CH 30H (4 ml). The zinc acetate solution was added to the

H 2 OEP solution. The mixture was stirred for at least two hours at which time it changed

colors from brown to red as metallation occurred. Completion of the metallation reaction

was verified using UV-Visible spectroscopy and monitoring the disappearance of the four

Q bands and appearance of the two bands associated with the metallated porphyrin.

H25-NO 2OEP (14) NO2 (7 mL) stock solution (0.32 M) was added to the H2OEP

solution and allowed to stir overnight. At that point an additional 8 mL of NO2 stock

solution was added. After two hours most of the ZnOEP had been consumed producing
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Zinc 5-nitrooctaethylporphyrin. Another lml of NO2 solution was added and the solution

was demetallated using trifluoroacetic acid (TFA) and washed three times with the

addition of a saturated solution of NaHCO 3 . The organic phase was separated, washed

with water (3 x 400 mL), and taken to dryness on a rotary evaporator. The H25-NO 2OEP

was then dissolved in toluene (15 mL ) and eluted with 4:lhexane:toluene solution

through a ten inch bed of alumina (200-400 mesh). The first elute was a yellow band

containing decomposition products from the reaction. The solution was subsequently

eluted with 3:1 hexane/toluene followed by 2:1 hexane toluene. The H2 5-NO 2OEP eluted

with 2:1 hexane/toluene. The remaining porphyrin band, eluted with 1:1 hexane/toluene

or toluene, contained the unreacted OEP. The column was finally eluted with

dichloromethane. The H 25-NO 2OEP (50% yield) was evaporated under vacuum and

recrystallized from 1:1 dichloromethane/hexane and purity checked using UV-Visible

spectroscopy and NMR spectroscopy. X(CH 2CI2) soret: 396; q-bands: 502, 537, 571,

624; 1HNMR 6 had: 10.2737, 10.121(meso-3H); 4.11(m,12H, -CH 2-); 3.75 (q, 4H,-CH2-

); 1.93 (m, -CH 3 18H); 1.69 (t, 6H, -CH 3), -3.81(s, 2H, -NH). Anal. Calculated for

C36H4 5N20 2 : C, 74.58; H, 7.82; N, 12.08.; found: C, 74.20; H, 7.84; N, 11.94.

H25, 15-diNO 2OEP (15). The process is an extension of the preparation of H25-

NO2 OEP synthesis. After adding about 15-16 ml of NO2 solution to obtain the Zn 5-

NO 2 OEP product as described above additional NO 2 solution in increments of about 1- 2

ml were added monitoring the reaction by TLC. It is important to add the extra NO 2

aliquots slowly because the reaction products seemed to revert to starting material during

work. The final product is demetallated with TFA and washed several times with

NaHCO 3 and water before taken to dryness in the rotary evaporator. The product was
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subjected to column chromatography, following the method described above. The

compounds were dissolved in toluene (about 10- 15 ml). The first compounds eluted were

the decomposition products, then the H25, 10, 15, 20-tetraNO 2OEP elutes as a green-

yellow band. This is followed by the H25, 10, 15-triNO 2OEP and then the diNO2OEP

isomers. This band is recrystallize which yields mainly the H25, 15-diNO 2OEP. A final

separation of the isomers is carried out using TLC eluting with 2:1 hexane/toluene. The

first (top) band is the H25, 15-diNO 2OEP, the second band is H25, 10, 15-triNO 20EP

byproduct and the third band is the H2 5, 10-diNO 2 0EP. The H2 5, 15-diNO 20EP is dried

recrystallyzed from 1:1 methylene chloride/hexane and its purity was checked using UV-

Visible spectroscopy and NMR spectroscopy. Compound (15) X(CH 2Cl 2) soret: 381, 394;

q-bands: 507, 537, 578, 629; 1HNMR 6 had: 10.36 (meso-2H); 4.10 (6, 8H, -CH 2-); 4.71

(6, 8H,-CH 2 -); 1.94 (T,12H, -CH 3); 1.70 (i, 12H, -CH 3); -3.36 (6, 2H, -NH).

H 2 5, 10, 15-triNO2 OEP (17) The H2 5, 10, 15-triNO 2OEP was made by the Gong and

Dolphin method[65]. In an extension of the synthesis of the previous two isomers. After

adding around 20 ml of the 0.32N NO 2 solution, it is left overnight. The reaction mixture

is checked via TLC and additional NO 2 stock solution is added in increments of 1-2 ml,

checking 15 - 30 min intervals by TLC until the Zn H25, 10, 15-NO 2OEP is the major

product. After separation the product was demetallated using TFA and then washed

three times with a saturated solution of NaHCO 3. The organic phase was separated,

washed with water (3 x 400 mL), and taken to dryness on a rotary evaporator and purified

by column chromatography as described previously. A ten inch bed of alumina (200-400

mesh) was slurry packed in 2:1 hexane/toluene. The compounds were dissolved in

toluene (about 10-15 ml). Decomposition products elute first from the reaction as a
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yellow band. If there were no other compounds formed isomer products were eluted with

1:1 hexane/toluene. H 25, 10, 15-triNO 2OEP can metallate on the column during

separation, thus after elution of the H2 5, 10, 15-triNO 2 OEP any compounds at the top of

column which do not elute even with pure toluene may be the Zn5, 10, 15-tetraNO 20EP.

The Zn5, 10, 15-triNO 2OEP will only elute with pure acetone. After the H25, 10, 15-

triNO 2OEP (50% yield) was evaporated under vacuum it is recrystallized from 1:1

dichloromethane/hexane and purity checked using UV-Visible spectroscopy and NMR

spectroscopy. Compound (17) X(CH 2Cl 2) soret: 385, 405; q-bands: 512, 540, 589, 637 ;

'HNMR 6 had: 10.08 (meso-1H); 3.96 (m, 4H, -CH 2-); 3.59 (d, 4H,-CH2-); 3.56 (q, 8H,-

CH 2-); 1.81 (t, 6H, -CH 3); 1.55 (t, 6H, -CH 3); 1.49 (t, 6H, -CH 3); 1.43 (t, 6H, -CH 3); -

3.4664 (s, 2H, -NH). Anal. Calculated for C36H43N70: C, 64.56; H, 6.47; N, 14.64.

Found: C, 64.37; H, 6.52; N, 14.51.

H25, 10, 15, 20-tetraNO2 OEP (18) The H2 5, 10, 15, 20-tetraNO 2OEP was made by the

Gong and Dolphin method. Approximately 30 ml stock solution of 0.32 N NO 2 in

dichloromethane was added to the ZnOEP solution and left stirring overnight. The next

morning the solution was checked using UV-Visible spectroscopy and TLC to ensure the

Zn5, 10, 15, 20-tetraNO 2OEP was formed. When the compound was fully nitrated the

solution was dark green. The product was demetallated using TFA. The product was

washed afterward two to three times with a saturated solution of NaHCO 3 . The organic

phase was separated, washed with water (3 x 400 mL), and taken to dryness on a rotary

evaporator and purified by column chromatography. A ten inch bed of alumina (200-400

mesh) was slurry packed in toluene. The nitrated products were dissolved in toluene

(about 10- 15 ml). The decomposition products from the reaction eluted first with the
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toluene and right after it the H 25, 10, 15, 20-tetraNO2OEP elutes. This is evaporated

under vacuum and recrystallized from 1:1 dichloromethane/hexane. The purity was

checked using UV-Visible spectroscopy and NMR spectroscopy. Since the Zn 5, 10,

15, 20-tetraNO 2OEP will remetallate on the column some metallated product will remain

on the column. This will elute with acetone. The eluent is evaporated and the product is

dissolved in methylene chloride. Demetallation is done with TFA and the mixture is

washed several times with sodium bicarbonate and right after this several times with

deionized water. The product is evaporated under vacuum and it is recrystallized from 1:1

dichloromethane/hexane. The purity is checked using UV-Visible spectroscopy and NMR

spectroscopy. Compound (17) ),(CH 2Cl 2) soret: 426; q-bands: 529, 572, 611, 666;

'HNMR 6 had: 3.36 (s,16H, -CH 2-); 1.27 (t, 24H, -CH 3); -3.0352(s, 2H, -NH).

H25, 10-diNO 2 OEP (16) The H25, 10-diNO 2OEP was made by the Bonnett and

Stephenson method. Octaethylporphyrin (50 mg) was shaken with fuming nitric acid (12

mL) at room temperature for 6 min. the solution was poured into iced water (200 ml).

The suspension was extracted with methylene chloride, and washed with water several

times and then with aqueous sodium bicarbonate and finally with water. The nitrated

products (diNO 2OEP and traces of H2 5-NO20EP) were taken to dryness in the rotary

evaporator and purified by column chromatography. Using the slurry method, a ten inch

bed of alumina (200-400 mesh) was packed in 3:1 hexane/toluene. The compounds were

dissolved in toluene (about 3-5 ml). The first eluent contains the decomposition products

from the reaction as a yellow band. If there are no other compounds formed the isomer

products are eluted with 3:1 hexane/toluene. By this method the major product of the

isomers is the H25, 10-diNO 2OEP (60 % yield ) and separation through TLC is the same
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as above for the H25, 15-diNO 2OEP. The H25, 10-diNO 2OEP is recrystallyzed from 1:1

methylene chloride/hexane and purity checked using UV-Visible spectroscopy and NMR

spectroscopy. Compound (16) X(CH 2Cl 2) soret: 380, 396; q-bands: 504, 538, 575, 629;

1HNMR 6 had: 10.10(meso-2H); 4.01(m,18H, -CH 2-); 3.70 (q, 4H,-CH2-); 3.64 (q, 4H,-

CH 2-)1.87 (d,6H, -CH 3), 1.85 (d, 6H, -CH 3); 1.61 (q, 6H, -CH 3), -3.9507(s, 2H, -NH).

The analogs to the above compounds for H2ETIOI were prepared similarly. These

compounds were characterized by UV-Visible spectroscopy and NMR and compared to

literature values.

All porphyrins were recrystallized using methylene chloride/methanol solutions or

from methylene chloride/hexane first and subsequent recrystallization with methylene

chloride/methanol prior to calorimetric or NMR measurements. Purity was ascertained

using UV-Vis spectroscopy and NMR spectroscopy. All manipulations prior to

calorimetry measurements were carried out in an inert atmosphere glove box (Vacuum

Atmospheres) in order to reduce exposure to atmospheric moisture.

5.2 Thermodynamic studies:

Thermodynamic studies were carried out using a Setaram C80D isothermal

calorimeter with a reversing mechanism. A sample procedure for the determination of a

heat of solution follows:

Both the reference cell and sample were cleaned with methylene chloride followed by

drying in an oven for at least 60 minutes at 100 0 C. After cooling in air, the reference cell

was loaded with 3.0 ml of 1, 1, 2, 2-tetrachloroethane and 1.0 ml of liquid mercury inside

the glove box. The cell was sealed and inverted 10 times to ensure complete mixing. The

sample (between 3 and 5 mg) of porphyrin was placed in the sample cell in the small
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bucket. The small bucket was capped and 1 ml liquid mercury was carefully added to.

The top of the cell was loaded with 3.0 ml of 1, 1, 2, 2-tetrachloroethane. The cells were

placed in the calorimeter and the system was allowed to equilibrate for 90 minutes. At

this point, the dissolution was initiated using the reversing mechanism at which time an

endothermic peak appeared. The dissolution was allowed to proceed to completion. The

UV-Vis spectrum was obtained. The measurements were repeated out three times and the

value averaged. The enthalpies of protonation were obtained using the same procedure as

above, except that the solvent used was 2% trifluoroacetic acid/ 1,1,2,2-tetrachloroethane.

The calorimetric peak was exothermic. The UV-Vis spectrum of the resulting solution

was obtained to monitor the completion of the reaction.

5.3 Competition studies:

To a 10 ml flask stoichiometric amount of H2 TPP, a second free-base porphyrin and 2

equivalents of trifluoroacetic acid were added. The flask was diluted to mark with the

methylene chloride. Spectra of the mixture were taken. By spectral comparison, the

relative basicity of each porphyrin was qualitatively determined and compared to the

results from the calorimetric studies.

5.4 NMR studies

5.4.1 'H NMR of free-base porphyrins

Proton NMR spectra were recorded on a 400 MHz. The spectra of free-bases were

measured in CDC 3 solution, and the protonated species were obtained by addition of ca

200 equivalents of TFA to these solutions. In all cases the solvent peak (7.26 ppm) was

used as an internal standard
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Variable-temperature proton NMR spectroscopy was used to study the NH

tautomerization in solution of H25-NO 2OEP (14), H25-NO 2ETIOI (19), H25, 10, 15-

triNO 2OEP (17), and H25, 10, 15, 20-tetraNO 20EP (18). The rate of interconversion of

the two porphyrin tautomers (A and B) is determined by the free energy of activation

(AGt). If the rate of interconversion is slow (on the NMR time scale), then will observe

the NMR spectra of the two separate signals of the two separate species. The position

where the two separate peaks just merge into one is called the coalescence point. At this

point the lifetime of any of the tautomers is given by:

= 2ht6s, where 6v= VA - vB (5-1)

The free energy of activation from the coalescence temperature (Ta) is:

AG*_= 22.96 + loge (Tc/ 6v) (5-2)
R TC
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5.5 Theoretical calculations All molecular modeling studies were carried out using the

Hyperchem® program module. Each structure was optimized using molecular mechanics

using the MM+ force field. This minimized structure was then submitted to

minimization using the semiempirical methods using the PM3 basis set.

Structure of the porphyrin

MM+ optimization

PM3 optimization

Replaced peripheral substituents with
hydrogens .allowing C-H bonds to

optimize while freezing macrocyclic conformation

PM3 single point energy determinaton

Replaced pernpheral substituents with

hydrogens, allow bonds to optimize, while freezing macrocyclic conformation

MM+ single point energy determination

PM3//MM+I
PM3 single point energy determination

B3LYP/6-31 G'//MM+
B3LYP/6-31G* single point energy

determination

Figure 9. Theoretical calculations flowchart.

In both the PM3 minimized structures and the MM+ minimized structures, the

peripheral substituents of each of the porphyrins were removed and substituted by

hydrogen atoms. The macrocyclic conformation was not allowed to change but the C-H
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bonds just created were allowed to relax. Single point energy calculations of the

macrocycle frozen in that conformation were carried out. The single point energy

determinations were carried out using MM+, PM3 and a hybrid method using density

functional theory (B3LYP/6-31G*).

Calculation times for molecular mechanics and semiempirical

minimizations ranged from 10 minutes to 2 hours depending on the number of atoms in

the porphyrin. The longest calculations involved the single point energy determinations

using density functional B3LYP/6-31G* method. Calculation times ranged from 24 hours

to 5 days. Calculations were done using a Dell Inspiron 18200 with Intel@ Pentium® 4,

1.70 GHz and 256 MB of RAM.
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6. Results and Discussion

6.1 Calorimetric Studies

The enthalpies of solution (equation 6-1) in TCE and the enthalpies of protonation

using TFA/TCE (equation 6-2) of nine solid free-base porphyrins were determined

and are reported in Table 2. These values were used in order to determine the

enthalpies of protonation in solution for each of the free-base porphyrins as is shown

for octaethylporphyrin (H 2OEP) (equation 6-3 and 6-4).

H2 OEP(sold) + TCE 4 H 2OEP(SO,) AHsoin (H2OEP) (6-1)

H 2OEPsoid) + 2 H0 2C2F3/TCE 4 H40EP2 
(sin) + 20 2C2F3(soI'n) AHprot (solid) (H2OEP) (6-2)

H 2OEPsoln) + 2 H0 2 C2 F3/TCE - H40EP+2 (soin) + 2 O 2C2F3- AH (prot in soin) (H2OEP) (63)

AH prot. in soln (OEP) = AHprot solid (C)EP) - AHsoln (OEP) (6-4)

H4P+
2 (soin) + H2OEPsOIn) 4 H40EP (soin) + H2 PsoI)~ AHproton trans. (6-5)

AH proton trans.= AH(prot in soin) (H2OEP) - AH pint in so (2P) (66)

The enthalpy of transfer of two protons from H 40EP+2 to any other free-base porphyrin

is obtained by subtracting the enthalpy of protonation of H 2 OEP from the enthalpy of

protonation of each of the other free-base porphyrins (see Table 2). This is a direct

measure of the basicity of H2OEP versus those of the other free-base porphyrins, the

larger the AHproton trans. the more basic the free-base porphyrin. These results are also

reported in Table 2.
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Table 2. Enthalpiesa of solution and protonation in solution of different synthetic
symmetrical porphyrins in 1, 1, 2, 2-tetrachloroethane (TCE).

free-base o h rin AHsoinb AIprot solidc A tprt in soind A-prot transfer

H2OEP +8.1 ± 0.05 -36.4 ± 1.04 -44.5 ± 1.6 0

H2ETIOI +3.50 ± 0.2 -43.7 ±.95 -47.3 ± 1.0 -2.8

H2OIP +5.68 ±0.18 -37.4 ±0.78 -43.0 ± 0.8 1.5

H2TPP +1.95 ±0.07 -43.3 ±0.18 -45.3 ±0.2 -0.8

H 2T(C6 F5)P 0 -26.82 ± 0.42 -26.82 ± 0.42 17.7

H2 T(nPe)P +6.3 ±0.17 -38.9 ±0.34 -45.1 ±0.4 -0.6

H 2T(iPr)P +1.33 ± 0.34 -43.43 ± 0.46 -45.23 ± 0.6 -0.7

H 2T(tBu)P 0 -52.0 ± 0.6 -52.0 ± 0.6 -7.5

H2tetraNO2OEP +1.36 ± 0.16 -26.22 ± 0.30 -27.6 ± 0.34 16.9

H2OETPP (+1.4) -69.6 ± 1.8 -68.9 -26.4
a in kcal/mole (average of 3 measurements)

bAH of dissolution of the solid free-base porphyrin
H2P(solid) + C2C14H2(liquid) 4 H2P (soln)

'AH of the dissolution and protonation of the solid free-base porphyrin
H2P(solid) + 2HO 2 C2F3(soln) -- H4P+2 (soln) + 2 O2C2F3-1(soln)

dAH of protonation of the dissolved free-base porphyrin
H2P(soln) + 2HO 2 C2F3(soln) -> H4P+2 (soln) + 2 0 2C2F3 '

eAH of two proton transfer from each of the porphyrin dications to H 2 OEP in solution.
H4OEP+2 (soln) + H2P(soln) 4 H4P+2 (soln) + H2 OEP(soln)
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6.1.1 Enthalpies of solution

The enthalpies of solution of several porphyrin free-bases in TCE vary significantly

(see Table 2). Porphine and octamethylporphyrin are essentially insoluble in TCE.

Their 6Rsojution cannot be measured calorimetrically. Having only hydrogens or other

small groups in the periphery allows the macrocycle to remain planar and the rings to

stack upon each other very tightly causing their insolubility. Peripheral substituents do

not allow efficient stacking and lower the barrier towards dissolution. For H2OEP (5)

and H2OIP (7), the enthalpies of solution are 8.1 and 5.7 kcal/mole, respectively. For

symmetrically substituted octaalkylporphyrins the enthalpy of solution decreases with the

increasing bulkiness of the P-substituent. [67, 68]

In tetra meso substituted porphyrins, the substituents serve to keep the porphyrins

apart, resulting in even smaller solution enthalpies. The phenyl groups in H2TPP (8) and

the pentafluorophenyl groups in H2T(C 6F5)P (12) are not coplanar with the porphyrin

ring preventing the macrocycles from properly stacking on top of each other. H 2TPP has

a very low AHsoln of +1.36 kcal/mole, and H2T(C 6F5)P has a AHsoi~ so small that it could

not be measured. The other tetrasubstituted porphyrin which is believed to be planar is

the H2T(nPe)P (9). The n-pentyl group is less bulky and all indications are that this is a

planar molecule. Additionally, it is flexible enough to allow efficient 7-stacking. This

compound has the highest heat of solution of all of the tetrasubstituted porphyrins (AHso

= 6.3 kcal/mole). Once steric interactions are increased by placing bulkier groups at the

meso positions the macrocycle begins to ruffle. Since the macrocycle is no longer planar,

n-stacking is reduced and the heat of solution is small. The AHsoin of H2T(nPe)P (9),

H2T(iPr)P (10) and H2T(tBu)P (11) are 6.3, 1.3 and 0 kcal/mole, respectively. This series
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demonstrates that the greater the ruffling of the molecule, the smaller the AHson and the

greater the solubility of the porphyrin.

H25,10,15,20-tetraNO 2OEP (18), which shows a saddled structure, also displays a

very small heat of solution. This can again be assumed to be taking place due to its non-

planar structure. The heat of solution of H2OETPP (13) could not be measured since it

protonates even with minute traces of moisture. We believe the AHsolution is somewhere

between 0 and 1.4 kcal/mole since we expect it to be similar to the other

dodecasubstituted porphyrins in the study. We have included this value in the reported

enthalpies but have assigned to it a larger uncertainty.

6.1.2 Energetics of two proton transfer

When a free-base porphyrin is protonated the steric congestion due to the presence of

four hydrogens in the core causes the saddled conformation to result.[69, 70] Although

the dications in general have a saddle type conformation, studies have shown that these

are flexible and the degree of saddling will vary among the different dications.[71, 72] In

the diacid, no intramolecular hydrogen bonding will take place. Additionally, since the

structures are distorted, 7c orbital overlap will be compromised although 7t overlap

between the meso substituents and the macrocycle may be enhanced.

H 2T(nC5 F5 )P is much less basic than the other two and is the least basic of the free-

base studied. This must be due to the electron withdrawing effects of the

pentafluorophenyl group (6 = 0.26). Since the pentafluorophenyl group is not coplanar

with the macrocycle in the free-base system, the electron withdrawing effects must due

largely to inductive rather than resonance effects. However upon protonation to form the

dication, less of an energy barrier towards aryl rotation exists,[73] better i orbital overlap
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may exist between the pentafluorophenyl group and the macrocycle. The pyrrole

hydrogen positions now feel more of the effects of the pentafluorophenyl group thereby

destabilizing the diacid relative to the free-base.

Interestingly, one of the least and the most basic of the free-bases are both

dodecasubstituted porphyrins. H2OETPP (13) is the most basic having a AHprot trans of-

26.4 kcal/mole. Hammett 6 parameters indicate that there exist only small differences in

electronic effects. The reason is so basic must be due to the instability of the saddled

conformation. The magnitude of this value is not surprising since H2OETPP (13) is able

to deprotonate water. H25,10,15,20-tetraNO 2OEP (18) is one of the least basic having a

AHprot trans of +16.9 kcal/mole. Clearly this is due mainly to the electronic effects of the

four NO2 groups. Again in the free-base the NO 2 groups are not coplanar with the

macrocycle, and only inductive effects can affect the macrocycle n-system. However, a

greater degree of planarity may be occurring in the diacid, making the resonance effects

more significant and causing the diacid to be more easily deprotonated due to the electron

withdrawing nature of the NO2 group.

Enthalpies of two proton transfer from H 4OEP+2 to another porphyrin are given in

Table 3 (AHprot trans). This is a direct measure of the basicity of the different free-bases:

the more negative the value, the greater the basicity. We find in Table 3 that the

AHprottransfer increases in the following order:

H2 T(C 6F5)P - H25,10,15,20-tetraNO 20EP < < H2OIP < H2OEP ~ H2T(nPe)P

H2T(iPr)P ~ H2TPP < H2ETIOI< H2T(tBu)P << H2 OETPP
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Table 3. Enthalpy of two proton transfer, macrocyclic conformation and Hammett's a
parameter for R 1 and R 2 substituents.

free-base AHproton conformation am (R 1), am (R2)'
a

transfer

H2OEP (5) 0 Planar -0.07, 0

H2ETIOI (6) -2.8 Planar -0.07,0

H2O(iPr)P (7) 1.5 Planar -0.04, 0
H2TPP (8) -0.8 Planar 0, 0.6

H2T(nPe)P (9) -0.6 Planar 0, -0.05

H2 T(iPr)P (10) -0.7 Ruffled 0, -0.04

H2T(tBu)P (11) -7.5 Ruffled 0, -0.10

H2OETPP (13) -26.4 Saddled -0.07, 0.06

H2T(nCsFs)P (12) 17.7 Planar 0, 0.26

H25,10,15,20-NO 2OEP (18) 16.9 Saddled -0.07, 0.71

aAH of two proton transfer from each of the porphyrin dications to H 2OEP in
solution.

H4P+2 (soln) + H2OEP(soln) -> H40EP+2 (soln) + H2P(soln)

b Conformation of the free-base macrocycle as predicted by molecular
mechanics calculations and X-ray crystal structures available.

Hammett's am parameters for R 1 and R 2
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6.1.3 Competition studies

In order to verify this order competition studies were carried out, as described in the

experimental section. In Figure 10 are shown three different spectra, the free-base

H2OEP, the dication H4OEP+2 and the monocation H3OEP+'. The monocation is easily

seen in solution but difficult to isolate since upon crystallization a type of

disproportionation reaction seems to take place, where the dication is formed at the

expense of the monocation. In each experiment an equimolar solution of two free-bases

was made. In order to be able to distinguish more easily, one of the free-bases was

always H2TPP (8), since it has a large absorption for the dication at 650 nm. To this

solution was added approximately 2 equivalents of trifluoroacetic acid. Spectra were

obtained. Some of these are shown in Figures 11-13. In Figure l1 the spectra of the

mixture can be accounted by addition of the spectra of the dication of H 2TPP, a small

amount of H2TPP and the free base H25,10,15,20-tetraNO 2OEP (18). No dication of the

H 25,10,15,20-tetraNO 2OEP (18) was formed, verifying the greater basicity of the H2TPP

(8). In Figure 12 a similar study was carried out between H2OEP (7) and H2TPP (8).

By adjusting the ratios of dications and free-bases we concluded that the H2TPP (8) was

again preferentially protonated and hence more basic than the H2OEP (5) (Figure 12).

This again verified their relative positions in the calorimetric studies. A similar study

was carried out with H2OIP (7) competing with H2TPP (8) and the dication of H2TPP (8)

was formed with the monocation of H 2OIP. Additional studies were carried out by

dissolving the free-bases in pure acetic acid. For H 2OEP the monocation was almost

exclusively obtained. For H2TPP the dication was obtained. For H2T(iPr)P the dication
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was obtained. This showed that the H 2T(iPr)P was more basic than H 2OEP. We were

able, in this manner to verify the relative positions generated by the calorimetric studies.

Free Base dication

/ I

monocation

4561 500 550 600 650 700

Figure 10. UV-Vis spectra of H2OEP (5), H3OEP ", and H4OEP 2+
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Figure 11. Competition studies of H25,10,15,20-NO20EP (18) and HzTPP (8).
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Figure 12. Competition studies of H2OEP (5) and HzTPP (8).
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Figure 13. Competition studies of H2OIP (7) and H2TPP (8).

In order to correlate thermodynamic studies to the energetic of a particular

geometry of the porphyrins, molecular modeling was carried out in symmetrical

porphyrins and meso nitrated series of octaethylporphyrin (5) and ETIOIporphyrin (6).

6.2 Molecular Modeling studies

6.2.1 Free base porphyrins MM+ and PM3 calculations

The free-base geometries obtained using MM+ optimization and PM3

optimization as described are shown on Figures 15 - 33. In the three dimensional

drawings the peripheral groups have been omitted in order to better show the differences

in macrocyclic conformation. Structural parameters determined from the modeling

studies for each porphyrin are also reported in the table next to each of the Figures. In

Tables 4-22 the significance of each of the parameters are shown.
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H2OEP
MM+ OPT

3 4 6 8
2 1\

NH N

22 9 Bond lengths

20 C2-C3  Distances
10 C7-C8 1.34 C3-C2 8.12

321

19 23 C1-C1 C,-C,,

N1 HN 11 C18-C1

8 III /Meso angles
17 1 /14 12 C4-C-C6 Distances

13 C,-C10-C1 127.46 N1-N3 3.97
C14-C15-C16  N2-N24
C19-C20-C1

Tors. angle (rf) Distance

C2r3-C -Ce 1.67 shortest 2.81
_h." m .. C7-Cs-C-C 1.6 N21-N22

_______ 23 24

Tors. angle(sd)
T rs a es )Distance

C -N21-C4-C 5  Dane
C6-N -C,-C10 0.50 N -N 2.81
C -N23 - C Nc2 24

Free base - MM+ OPT C11-N -C -C1 N2-N2

a

Table 4. Bond lengths, angles and distances
obtained from the MM+ optimized structure

of H2OEP.

Free base - PM3 OPT

b

Figure 14. Optimized structures of

H2OEP using MM+(a) and PM3(b)
calculations. Peripheral substituents
have been replaced by hydrogens.
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H2ETIO1
MM+ OPT

2 4 6

2I 
8

NH N Bond lengths
21 C 2-C3 Distances\ 10 C,-C8 1.34 C3-C12  8.11

24 23 7C-C1 C 1-C18

19 N HN 11 17- 18

Meso angles

18 16 14 512 64-C-C Distances
17 15 C,-C1o-Ci1 127.32 N21-N23  3.97

13C-C i N yC 14-C1S-C16N2-N2 4

C19-C20-C1

Tors. angle(rt) Distance

C2-C3-C C 13 1.536 shortest 2.81
. C7-C8-C7-C1 N21-N22w. 8 7N

23 -N24

Tors. angle(sd) Distance
C 1-N 2 1-C4-C
C6 -N22-C9 -C10  0.86 lrgest 2.81
C,-N -C-C N21-N2411 23 14 15 N -

Free base - MM+ OPT C16-N -C1,-C20

a

Table 5. Bond lengths, angles and distances
obtained from the MM+ optimized structure
of H2ETIO 1.

Free base - PM3PT

b

Figure 15. Optimized structures of

H2ETIO1 using MM+(a) and PM3(b)
calculations. Peripheral substituents

have been replaced by hydrogens.

55



H20(i Pr) P
MM+ OPT

3 4 6 7
2 \8

I II

NH N 9Bond lengths
21 22 C2-C3 Distances

2010 C7-C8 1.35 C3-C12 8.16

24 23 C12-C13 C-C 1
C -C'

N9 I N1H17 
18

8 IIMeso angles
6 / 14 12 C4-C5C6 Distances

513 C9-C10-C 130.19 N21-N23 4.01

C14C1C1 N22N24

C19-C20-C,

Tors. angle(rf) Distance

1 (C:r C , 5 .2 6 N2 .83sh o r t e s t
.__..: ;.... ... (C -C3-12 - C1 5.6 .8

s ' ? 7---C17---zNzl z

Tors. angle(sd) Distance
C1-N21-C Clargest
C6-N 22-C9-C10  1.51 lN-Ns 2.84

Free base - MM+ OPT C11 -N23-C14-C1 5  N22-N2
91 -2 - 20

a

Table 6. Bond lengths, angles and distances
obtained from the MM+ optimized structure

..2. of H2OIP

Free base - PM3 OPT

b

Figure 16. Optimized structures of

H2OIP using MM+(a) and PM3(b)
calculations. Peripheral substituents
have been replaced by hydrogens.
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H2TPP
-i MM+ OPT
5

3 4 6 7
2 \*~ \- 8

NH N Bond lengths
0 21 22 9 C2-C Distances

10 C7-C 1.33 C3-C12  8.10
2 24 23 18

IV N HN 11 17- 18

18/ 12 Meso angles
17 16 15 14 1C-C6 Distances

13 C9 C-C 1  123.75 N21-N23  4.0

C -C15C16 N2N
C19 -C20C1

Tors. angle(rf) Distance

C C C -C1 1.99 shortest 2.77

C -C C -C1 N21-N22............ 1718

Tots. angle(sd) Distance
C1-N21-C4-C 5
C6-N22-C9-C1 0  3.04 largest 2.87N21-N2
C1-N2-C-C 15  24

Free base - MM+ OPT 16N24-C19 C20 N22-N23

a

Table 7. Bond lengths, angles and distances
obtained from the MM+ optimized structure

...... of H2TPP.

Free base - PM3 OPT

b

Figure 17. Optimized structures of

H2TPP using MM+(a) and PM3(b)
calculations. Peripheral substituents
have been replaced by hydrogens.
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H2T(nPe)P
MM+ OPT

5
3 4 6 7

28

Bond lengths
NH N C2-C3  Distances

21 C7-C8  1.33 C3-C12  8.07
24C 12-C13  C7 C18

19 23 C17 18
19 V N HN 1

Meso angles
18 1 4 12 C4C5-C6 Distances

13 C,-Cl0-Cl, 123.48 N21-N23 3.98

C14-C16C, N22-N24
C19-C2 0-C 

_

Toys. angle(rf) Distance

C2-Cage-r 0.12 shortest 2.81
C7-C8-C1 7-C 18 N0.-

~~ 7~'i5 N23-N24  _____

Tors. angle(sd) Distance
C -N21-C4C 4

C-N2-C,-Clo 0.92 la2-est 2.81
Cl 1-N23-C14-C15 N21-N24

C16-N2-C1,-C20N2-3
Free base - MM+ OPT

a

Table 8. Bond lengths, angles and distances
obtained from the MM+ optimized structure

of H2T(nPe)P

Free base - PM3 OPT

b

Figure 18. Optimized structures of

H2T(nPe)P using MM+(a) and

PM3(b)calculations. Peripheral

substituents have been replaced by
hydrogens.
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3 4 5 7H 2T(iPr)P
2 6 8 MM+ OPT

NH N-

21 22 9 Bond lengths
C2-C3  Distances

20 24 10 C7-Cs 1.33 CJ-C12  8.0219 23 / C-C
IN H N 11 C12-C'1 C7-1

IV~~ 1817Cl

18 16 14 12 Meso angles

17 15 C ' 6-C 6 Distances
13 C9-C C11 122.18 N2 1-N23  3.96

C -C,1C16 N22-N2 4
C19-C20 C'1

Tors. angle(rf) Distance

:' : - ::, : s: 32- -C 12- 20.93 shortest 2.79

C7-C-C17-C18 N21-N22
N

23 -N
2 4

Tors. angle(sd) Distance
C,-N 21-C4-C5  largest
C6-N2C9-Co 5.63 lar'10 2.80C N C 5.63 N2 1-N24C1-N23-C1

2C1 2 N-
Free base - MM+ OPT C16-N 24-C19-C20 _22_ _ _

a

Table 9. Bond lengths, angles and distances
obtained from the MM+ optimized structure

of H 2T(iPr)P

Free base - PM3 OPT

b

Figure 19. Optimized structures of
H2T(iPr)P using MM+(a) and
PM3(b) calculations. Peripheral
substituents have been replaced by
hydrogens.

59



<6 48 H2T(tBu)P
2 4 6 8 MM+ OPT

NH N-

Bond lengths

20 10 C2-C3 Distances
24 / 7-Cg 1.33 C3 C 2  7.83

2319 1-1 HN 11 C2-C13 C7-C18
IV 1C17-C 1 8

8 II6 Meso angles
17 14 12 C4-C5-C6  Distances

13 C 9-C10-C11  118.11 N21-N 23  3.80

C1-C,5-C"6 N22N24
C1 ,-C

2 0-C

Tors. angle(rf) Distance

C2-C3-C12-C1 3  46.52 sho-est 2.68

C7-C8-C17-C18  N2 1-N22

Tors. angle(sd) Distance
C1 -N 21-C4 C5 aC6-N22 -C9-C 10  8.43 largest 2.68

C~gN~riNC -N24C11 -N23-C 1 -C1N 1- 2

Free base - MM+ OPT C1 -N24-C19 C 0  N22 N23

a

Table 10. Bond lengths, angles and distances

obtained from the MM+ optimized structure

of H2T(tBu)P

Free base - PM3 OPT

b

Figure 20. Optimized structures of

H 2T(tBu)P using MM+(a) and
PM3(b) calculations. Peripheral

substituents have been replaced by
hydrogens.
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FF

F

F H2T(nC5 F5)P
F NH F MM+ OPT

F F NH N

20 21 22 F

19 \ 24 23 Bond lengths

IV N HN 1 F F C2C3 Distances
FC 7-C 1.33 C3-C12  8.08

17 15 14 12 C12-C 13  C7-c 18

F F C 7 C18

Meso angles

C4 -C5 -C 6  
Distances

C9-C~p-C 1 124.02 N2 1-N23 3.99

F C14 -C15-C16  N22N2
C1 9-C20-C

Tom anle~d)DistanceTors. angle(rf) shortest 27
C2-C3-C 12-C1 3  1.61 NNe 2.77
C - C - C - C  

N2 1-N 22

Torm. angle(sd) Distance
C1-N2 1-C4-CS largest
C6-N22 -C9-C10  2.11 N21-N 2.87

C 1 -N23-C 1 4-C15  N 2 -N
Free base - MM+ OPT C_6-N24-C_,-___ _ _ __ __

a

Table 11. Bond lengths, angles and distances
obtained from the MM+ optimized structure

of H2TFP

Free base - PM3 OPT

b

Figure 21. Optimized structures of
H2TFP using MM+(a) and PM3(b)
calculations. Peripheral substituents
have been replaced by hydrogens.
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H2 OETPP
2 3MM+ OPT

NH N

20 2Bond lengths

19 23 C2-C3  Distances

V N HN 11 C7-C 1.35 C3 -C12  7.14
\ I 12C13- C17-C18

17 15 14 12 2C17-C18
13
13 Meso angles

C4-C5C6 Distances
C9 -C10 -C11  122.11 N2 1-N23  3.77

C-C1-C,16 N22-N24
C19-C2 0-Cl

Tors. angle(df) Distance
Trro -C. angle~r 2.20 shortest 2.68

c~c~~q3 N21 -N22C7-C 8-7-C 8  N23 -N24

Tors. angle(sd) Distance
C1 N21-C4-C5  largest
C6 -N22-C9 C10  17.59 Nar -Ns 2.69
C11-N23-C14-C 15  N -N2

Free base - MM+ OPT C16-N24-C19 -C20  22- 3

a

Table 12. Bond lengths, angles and
distances obtained from the MM+
optimized structure of H2OETPP

Free base - PM3 OPT

b

Figure 22. Optimized structures of
H2OETPP using MM+(a) and
PM3(b) calculations. Peripheral
substituents have been replaced by
hydrogens.
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ONj

3 4H 25-NO 2OEP
2 \8 MM+ OPT

] NH N

20 2Bond lengths
10 C 2-C3  Distances

24 23 C7-C8 1.34 C3 -C12  8.13

4N HN Ci1C,3 C7-C 
IV C1 7-C1S

18 6I 2Meso angles
S 14 2C4-C5C6 Distances

13 C9-C1 o-C,11  128.64 N2 1-N23  3.99

C14-C1C16 N22-N24
C1 9-C2 0-C1

Tors. angle(r) Distance

C2-C3-C12 -C1 3  2.06 shortest 2.75

SC,-Cg-C'1 -C'18 N2-N22
C7 C C1 C1 5 N23-N24

Tors. angle(sd) Distance
C1 -N2 1-C4-C5  largest
C6-N22-C9-C10  1.05 N rg-N2  2.90

C11 -N23-C14-C15
Free base - MM+ OPT C16 -N2 4 -C19-C 2 0  N22-N 2 3

a

Table 13. Bond lengths, angles and distances
--------_- obtained from the MM+ optimized structure

e Y of H2 5NO2OEP

Free base - PM3 OPT

b

Figure 23. Optimized structures of
H25-NO20EP MM+(a) and PM3(b)
calculations. Peripheral substituents
have been replaced by hydrogens.
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WNo

H25,10-diNO2OEP
3 46 8 MM+ OPT

1 NH N

20 21 22 9 O Bond lengths

N C-C3 Distances

24 10 C7-C8  1.34 C3-C12  8.14

19 N23 O C12-C1 C7-C18

IV HN 1C17-C1C

8 161 1 Meso angles
7 1 14 12 C4-CS-C 6  Distances

13 C9 -C1 0 -C11  129.183 N2 1-N23 4.02

C1 4-C1 5--C1 6 N22-N24
C 19 -C20-C 

_

Tors. angle(rf) Distance

C2 -C3 -C12-C13  2.88 shortest 2.84
C7-C8-C17-C18  N21-N2 2

-----. Tors. angle(sd) Distance
C1-N2-Cgst
C6-N22 -C9 -C10  3.39 NarN 2.84
C1 1-N~CJ-CJ5  N21 -N24

Free base - MM+ OPT C16 -N24 C192 0  N2 2-N

a

Table 14. Bond lengths, angles and distances
obtained from the MM+ optimized structure
of H25,10-NO 2OEP

Free base - PM3 OPT

b

Figure 24. Optimized structures of

H25,10-NO 20EP using MM+(a)
and PM3(b) calculations. Peripheral

substituents have been replaced by

hydrogens.
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oN /

H25,15-diNO2OEP
3 \4 6 7 MM+ OPT

S NH N

20 2Bond lengths

10 C2-C3 Distances
24 C7-C8 1.34 C3-C12  8.14

19 N 2 / C12-C13  C7-C1s
V H C 17-C18

8 1I 12Meso angles
17 14 12 C4 -C5-C6  Distances

15 13 C,-C1-C1 129.61 N 21-N23  4.04
NO C1-C1C1 N22-N24

C1 9-C
2 0-C1

Tors. angle(rf) Distance

Cr.CrCC3 0.48 shortest 2.7
- C -C -CC-C N2 1-N22

---- c--- .....-.e ..... C7  8  C17 C18  N 3 2  _____

- - --- Tors. angle(sd)
Distance

C1 -N2 1-C-C 5  largest
C6 -N22-C9-C1 0  2.80 N21-N24  3.01

C11-N23-C14C1 s ~
Free base - MM+ OPT C1 -N24 CCN 22-N23

a

Table 15. Bond lengths, angles and distances
obtained from the MIM+ optimized structure

of H25,15-NO2OEP
S2 ' 2

Free base - PM3 OPT

b

Figure 25. Optimized structures of
H25,15-NO 2OEP using MM+(a)
and PM3(b) calculations. Peripheral
substituents have been replaced by
hydrogen s.
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WN/

3 \4 7 H25,10,15-triNO20EP
21 MM+ OPT

S NH N

21 22 9 O
20 N Bond lengths

24 / N C2-C Distances

19 23 / C7-C 1.35 C3-C12  7.97

IN HN 11C -,,C-~1C' 12-C13  C7-C1 8
C7-C18

18 16 X14 12 Meso angles
17 15 13 C4-C5-C6 Distances

N C9-C10-C1 129.20 N21-N23 3.93

1 C 14C15-C6 N22-N24
Cl 9 -C20-C1

Tors. angle(rf) Distance

C2-'3-C 1 2-C 3  1.45 2.74

N23-N24

Tors. angle(sd) Distance
C-N21-CClargest
C6-N22-C9-Clo 8.84 N21-N 2.92

Co-NrC~C'sN22-N2

Free base - MM+ OPT C,16 -N2 4-C 19-C2 0  N2 2 N2

a

Table 16. Bond lengths, angles and distances
obtained from the MM+ optimized structure

of H25,10,15triNO 20EP

Free base - PM3 OPT

b

Figure 26. Optimized structures of

H25,10,15triNO 20EP using MM+(a)

and PM3(b) calculations. Peripheral

substituents have been replaced by

hydrogens.
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WN/

H25,10,15,20-tetraNO2OEP
3 4 6 8 MM+ OPT

1 11
O NH N

20 21 22 9 O Bond lengths
NC2-C3 Distances

24 / 10 N C 7-Cs 1.35 C 3-C 12  7.77

19 23 / C12-1 C7-Cls

IV N HN 11 C17-C8

Meso angles
18 16 /14 12 C4-Cs-C6 Distances

15 13 C9-C1 0-C1  128.48 N21-N23 3.93
N 14- '15~;6N

22-N24
O C1 ,-c 0-q ______ _ __

To rs. angle(rf) Distance

C2-C3-Co-Ce 2.22 shortest 2.8
C -C -C2 -C N21-N22

7 8 17K 18________ N23-N24  ___

- Tors. angle(sd) Distance
C1-N21-C4-Cs largest
C6-N22-C9-Co 12.50 N- 2.8
C1 1-N23-q 4 -q5 N

Free base - MM+ OPT C1 6-N24-q 9C-No

a

Table 17. Bond lengths, angles and distances
obtained from the MM+ optimized structure

~ of H2tetraNO 2OEP

Free base - PM3 OPT

b

Figure 27. Optimized structures of

H2tetraNO2 OEP using MM+(a) and

PM3(b) calculations. Peripheral

substituents have been replaced by
hydrogens.
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O N~ OH 25-NO 2 ETIO1

3 4 6 7 MM+ OPT
2 \8

I\

21H 9 Bond lengths

20 22 C2-C3  Distances

\ 10 C7-C8 1.34 C3-C12  8.15

c24 23 - 1 3  C7-C18
IV N HN 11 C17-C18

\ IMeso angles
18 16 /14 12 C4-C5-C6 Distances

17 15 C9-C10-C1 128.24 N21-N23 4.0

C'14-C5-C6 N22-N24(I -C -C,

Tors. angle(rl) Distance

C2-C3-C-Cg3 1.01 shortest 2.75

. _ -.. -> C 7-C-C17-C1 8  N -N

Tors. angle(sd)

C1 -N21-C4-C5  lagst
C6-N22-C9-Ci 0.66 la-N 2.9

10 N21-N24  2.
C1 1-N23 -C14-C15  N2 -N

Free base - MM+ OPT C16 -N 2 4 -C19 -C 2 0  N22_ _ _

a

Table 18. Bond lengths, angles and distances
obtained from the MM+ optimized structure

... . of H25-N 2Etio1

Free base - PM3 OPT

b

Figure 28. Optimized structures of
H25-NO2ETI01 using MM+(a) and
PM3(b) calculations. Peripheral
substituents have been replaced by

hydrogens.
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O N/

H25,10-diNO2ETIO1
3 4 6MM+ OPT

1 NH N

21 22 O Bond lengths

\N C2-C3 Distances
24 10 C7-C8  1.34 C3-C12  8.09

19 N 23 / O C1-C3 C7-C18
IV HN C 1 7-C__

1 II6 Meso angles
17 1 14 12 C4-C5-C6  Distances

13 C,-C10-C1 128.72 N21 -N23  4.01

C1 4-C15 C16  N22-N24
C19-C20-C1

Tors. angle(rf) Distance

C2 -C3-C12 -C 3  3.33 shortest 2.83
C7-C8 -C 7-C18  N21 3-N24

Tors. angle(sd) Distance

C1 -N21-C4-C5  largest
C6-N22 C9-C 0 3.49 N2-] 2.84C1 1-N23-C14-C 15  N N2

Free base - MM+ OPT C16-N2 4-C19 -C20  N22-N 3

a

Table 19. Bond lengths, angles and distances
obtained from the MM+ optimized structure
of H25,10-NO 2Etiol

Free base - PM3 OPT

b

Figure 29. Optimized structures of
H25,10-NO 2ETIO1 using MM+(a)
and PM3(b) calculations. Peripheral
substituents have been replaced by

hydrogens.
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WNj

H25,15-diNO2ETIO1
2 s 8 MM+ OPT

1 NH N

20 2Bond lengths
\ 10 C2-C3 Distances

24 23 C7-C8 1.34 C3-C12  8.16
19 N HN C12-C13  C7-C18

IV IC 1 7-C1

18 11 1 2 Meso angles
17 114 1CC-C6 Distances

15 13 C9-C1o-C11 129.31 N21-N23  4.04
N C1-C1 C16 N22-N24O O C19-C20-C1

Tors. angle(rd) Distance

SC2-Ca-C12-C3 1.20 shortest 2.71
---- . C -C -CC17C 18 1.2

............... 3 2
Tors. angle(sd) Distance
C1-N21-C4-CS
C6-N22-C9-C10  0.68 largest 2.99

C,1-~r~i~isN21-N2C11 -N23 -x'14 -x'1 5  N 1 N 4  29

Free base - MM+ OPT C16 N24-C19 -C20  N22 -N23

a

Table 20. Bond lengths, angles and distances
obtained from the MM+ optimized structure

. of H 25,15-NO 2Etiol

Free base - PM3 OPT

b

Figure 30. Optimized structures of

H2 5,15-NO2ETIO1 using MM+(a)
and PM3(b) calculations. Peripheral

substituents have been replaced by
hydrogens.
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H25,10,15-triNO2ETIO1
3 4 6 7 MM+ OPT
2 11

S NH N

20 21 22 // Bond lengths

\ N C2-CJ 
Distances

24 10 C7-C8  
1.34 CJ-C12  8.0

1N 23 O C12-C1 C7-C18
IV NNC 7 -CIS

18 I Meso angles

17 14 12 C4-C5-C6  Distances
15 13 C9-C,0-C11  128.90 N2 1-N2, 3.98

NO C14-C15-C1 N22-N24
C1 9-C20-Cl

Tors. angle(rf) Dst 2.77
C2-C3-C12 -CI3  2.51 N s 2.77
C 7-C 8 -C1 7-C18  

N21-N 2 2

..-- N2---N24-

Tors. angle(sd) Distance
C1-N21-C4-C5 largest
C6 -N22-C9-C,0  8.58 lae 2.88
C-No-C-C N21-N2 4

Free base - MM+ OPT CII-N2 -C,-C2 IN 22-N2J
C16-N24-C19-C20 _______ ___ ____

a

Table 21. Bond lengths, angles and distances
obtained from the MM+ optimized structure

of H25,10,15-NO 2Etiol

Free base - PM3 OPT

b

Figure 31. Optimized structures of

H25,10,15-NO 2ETIO1 using MM+(a)
and PM3(b) calculations. Peripheral
substituents have been replaced by
hydrogens.
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N1 H25,10,15,20-tetraNO2ETIO1
5 MM+ OPT

2 6 8

I\

\ NH N Bond lengths
20 21 22 9 O C2-C3 Distances

C7-C8 1.34 C3-C12  7.79

24 10 N Cc-C C7-C18
0 N9 23 1 __C17-_8

IV 1Meso angles
III C4-C5-C6 Distances

18 16 14 12 C9-Cio-Cil 128.40 N21-N2 3.93

175s 13 C 6 N22 -N24

N 
19-C20-'1

o a d Distance
To rs. angle(rt) shortest
C2-C3-C; 2-C3  5.21 N- 2.80

.C7-C8-C 7-C18 N 1-N2c~c~~q 5 2324

-- -.-.. .'s.a Distance
C1 -N21-C:4 -CS ags
C:6-N22-C-Clo 10.45 la2g-N2 2.80
C -NC- C N21-N2411 z3 14-N 2 -5

Free base - MM+ OPT C 16 -N 2 4 -C19 -C 20 _ _ ____

a

Table 22. Bond lengths, angles and distances
obtained from the MM+ optimized structure

of H2tetraNO 2Etio 1

Free base - PM3 OPT

b

Figure 32. Optimized structures of

H2tetraNO 2ETIOl using MM+(a)
and PM3(b) calculations. Peripheral
substituents have been replaced by
hydrogens.
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Table 23. Parameters and distortions associated to non- planar distortions obtained from
molecular mechanics calculations.

Parameter Distortion Structure
3 5 7

Bond lengths 6
Core expansion. Cp-Cp 2
Length of the Cp-Cp bond. Db NH N 9

21 22
C2-C3 1

The greater the length of C7-Cs 20 2 23
the bond, the greater the C12 -C 13  19 N HN

core expansion C17-C 18  18 / 12

16 14
17 15 13

3 5 7Meso angles 4 6
A 8

Aama 2

ZCaCm-Ca NH N 9
The greater the meso C4-C5-C6 21 22

angle the greater the core C-C1-C 20 / 10
expansion. C14-C15-C16 24 23 1

C19-C 20-C 1  N HN 1

18
16 14

17 15 13

3 5 7
4 

6
2 8

Torsion angle (rf) NH N 9Angle formed by opposing A 1 1 22
pyrrole groups. The larger Z Cp-CR,Cp-CR 20 I
the angle, the greater the C2-C 3-C12-C 13  24 23
degree of ruffling. C7-C8-C17-C1s 19 N HN

/1218

16 14
17 15 13

3 5 7
46

Torsion angle (sd) 2 8
Angle formed between the Asd NH N 9
pyrrole ring and the Z C-N-C,-Cm 1 21 22

macrocycle. The greater C1 -N2 1-C 4-C5  20 / 10

the angle the greater C6 -N 22-C 9 -C 10  24 23

degree of saddling. Cii-N23-C 1 4-C 15  N HN

Ruffling also indicated. C16-N24-C 19-C2 0 18 12

17 15 13
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Parameter Distortion Structure
3 5 7

4 6

2 8

Distance between Distance (sd)
opposing Cp-Cp bonds. Dsd 21 22

the smaller the number, Cp---C 20 23 /
the greater the degree of C3-C12 2 23 H

saddling or ruffling C'-C1 12
18

16 14
17 15 13

3 5 7
4 6

8

Distance between D a (z N

opposing pyrrole groups. Distance (yz) N 22
The smaller the number 2 10

the greater the ruffling. 2 24 23

The larger the number the 19 N HN

greater core expansion 18 4 2

16
17 15 13

3 5 7
4 6

2 
8

Distance (y) NH N
Dy 21 22

Distance between adjacent 20 10
pyrrolic nitrogens. N2 1-N 22  24 23

N23-N24  19 N - HN

18 6 12

16 /14
17 15 13

3 5 7
4 6

8
2

Distance (z) 1 NH N 9

Distance between adjacent D 20 2 1

pyrrolic nitrogens N2-N219 N HN

12
18 2

16 /14
17 15 13
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6.2.2 Validity of the optimized structures

Molecular Mechanics methods since 1990 have been used in well over 200 papers on

porphyrins and heme proteins. In most cases these calculations have given accurate

results which have been used in interpreting experimental data. [43, 47] Shellnutt's

group has used such methods, with slightly modified force fields, to model different

metalloporphyrins. These metalloporphyrins were then studied using Resonance Raman

Spectroscopy and their structures were determined using Normal Structural

Decomposition, a method developed by the same group. These predicted structures have

been found to be very accurate. Additionally Medforth et al. evaluated these predictions

for both free-base and constrained metal porphyrins and found that the calculated

structures closely match the crystal structures.[26]

In Table 24 (a) and (b) we show a preliminary analysis comparing several averaged

X-ray parameters reported for H2 OEP and H2TPP and the parameters obtained from the

molecular mechanics optimized structures reported herein. It must be pointed out that the

results from the modeling studies do not take into account crystal packing forces so the

parameters do not necessarily have to be identical. There is great similarity in the

calculated parameters and those generated from the X-Ray crystal structures. We feel

that the MM+ optimized structures are indicative of the actual structure of the free bases

in solution.
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Table 24. Comparison of MM+ and X-ray crystal structure of H2TPP (8) and H2OEP (5).

Bond length MM+ X-Ray %
and angles (Average) (Average) difference

H 2 TPP (8)
N-Ca (A) 1.35 1.37 1.22
Ca-C (A) 1.34 1.44 6.88
Cf3-C (A) 1.34 1.35 1.37
Ca-N-Cal (0) 107.53 107.7 0.16
N-Ca-Cp (0) 107.59 108.8 1.11
Ca-Cp-C (0) 108.4 107.45 0.89
N-Ca-Cm (0) 127.15 126.15 0.79
CP-Ca-Cm (0) 125.09 125.05 0.03

H 2 OEP 5
N-Ca (A) 1.35 1.37 1.41
Ca-C3 (A) 1.35 1.45 7.23
C3-C3 (A) 1.34 1.36 1.37
Ca-N-Cal (0) 105.9 107.65 1.63
N-Ca-Cp (0) 109.67 109.25 0.38
Ca-C3-CD (0) 107.38 106.85 0.5
N-Ca-Cm (0) 124.13 125.05 0.74
C(3-Ca-Cm (0) 126.2 125.65 0.44
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Figure 33. X-ray crystal structure of H 2OEP (a) [58] and final optimized structure of
H2OEP obtained using molecular mechanics calculations (b).

Several different types of core deformations are observed for symmetrically

substituted porphyrin free bases. These are in plane and out-of-plane deformations. Two

of the more important in-plane deformations are core expansion and rhombic distortions.

Three of the measured parameters are sensitive to core expansion, these are the average

length of the Cp-Cp bond, Dbb; the average magnitude of the meso angle ZCa-Cm-Ca, Aama

and the average distance between opposing pyrrole groups, (Dyz). These only validly

measure the core expansion when the molecule is planar. Rhombic distortions occur in

all porphyrins. It is the difference in distance between opposing pyrrolic nitrogens. The

protonated pair is always separated more than the pair which is not protonated. We do

not consider rhombic distortions herein.

Out of plane distortions occur when the macrocycle is no longer planar and these

have already been described. The most sensitive measures for ruffling are the angles

formed between the two opposing pyrrole groups Z Cp-Cp,Cp-Cp Arf; the average

distance between opposing nitrogens (Dyz) and the angle formed between the pyrrole

rings and the plane formed by the macrocycle Z Ca -N-Ca -Cm , Asd. Saddling is best
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indicated by the torsion angle Asd, and by the distance between opposing Dsd bonds.

Asymmetrically substituted porphyrins, such as the NO2 porphyrins will show

asymmetrical distortions. These parameters are the distance between the adjacent

nitrogens. When asymmetrically substituted there are two distances, Dy and Dz. All of

these are described in table 25.

Table 25. Sumary of structural parameters generated using MM+ Optimization.

Structu p meso tors. Cp---C N---N N---N N---N
re bond anlsage tr. opposing opposing adjacent adjacent

Porphyrin free base MM+ lengths agange angle pcarbons y n Dj

opt. Dbb Asd Dd Dya

H2OEP Planar 1.343 127.5 1.68 0.50 8.116 3.971 2.81 2.81

H25-NO 2ETIOI Planar 1.343 128.2 1.01 0.66 8.148 4.000 2.75 2.9

H25,15-diNO 2ETIOI Planar 1.344 129.3 1.2 0.68 8.159 4.039 2.71 2.99

H2ETIOI Planar 1.343 127.3 1.54 0.86 8.113 3.968 2.81 2.81

H2T(nPe)P Planar 1.333 123.5 0.12 0.92 8.073 3.978 2.81 2.81

H25-NO 2OEP Planar 1.344 128.6 2.06 1.05 8.133 4.005 2.75 2.9

H2OIP Planar 1.351 130.2 5.26 1.51 8.156 4.011 2.83 2.84

H2T(C6 F5 )P Planar 1.333 124 1.61 2.11 8.085 3.995 2.77 2.87

H25,15-diNO 2OEP Planar 1.344 129.6 0.48 2.80 8.144 4.044 2.7 3.01

H25,10-diNO 2OEP Planar 1.345 129.2 2.88 3.39 8.141 4.019 2.84 2.84

H2TPP Planar 1.332 123.7 1.99 3.4 8.097 4.001 2.77 2.87

H25,10-diNO 2ETIOI Planar 1.344 128.7 3.33 3.49 8.09 4.009 2.83 2.84

H2T(iPr)P Ruffle 1.332 122.2 20.93 5.63 8.025 3.962 2.79 2.79

H2T(tBu)P Ruffle 1.334 118.1 46.52 8.43 7.831 3.8 2.68 2.68

H25,10,15-triNO 2ETIOI Saddle 1.345 128.9 2.51 8.58 8.005 3.984 2.77 2.88

H2-5,10,15-triNO 2OEP Saddle 1.346 129.2 1.45 8.84 7.974 3.993 2.74 2.92

H25,10,15,20- Saddle 1.345 128.4 5.21 10.45 7.79 3.933 2.8 2.8

H25,10,15,20- Saddle 1.346 128.5 2.22 12.50 7.773 3.929 2.8 2.8
tetraNO2OEP

H2OETPP Saddle 1.347 122.1 2.2 17.59 7.136 3.767 2.68 2.69

all distances are measured in angstroms
all angles are measured in degrees
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Octaalkylsubstituted porphyrins are essentially planar. As the alkyl groups get

larger the core of the porphyrin becomes larger. This is observed in the magnitude of the

Dbb bond lengths which increase from 1.343 A for H 2 OEP and H2ETIOI to 1.351A for

H 2OIP. It is more pronounced when the meso angles Aama, are measured. It increases

form 127.50 for H 2OEP to 130.2 ° for H 2OIP. H 2OIP seems to also undergo an unusual

type of ruffling. The torsion angle Arf increases to 5.20 but it is not accompanied by

smaller DyZ distance. Ruffling is usually observed with both effects taking place, a larger

torsion angle, Arf and a smaller distance of opposing nitrogens, DXY.

The meso-tetra substituted free-bases show more dramatic effects. Although small

differences in structure do seem to exist in H2TPP (8), H2T(C 6F5)P (12), and H2T(nPe)P

(9), they are also essentially planar. Once the meso-hydrogens are replaced by isopropyl

groups then the core becomes smaller due to the ruffling that is taking place. This is

particularly evidenced by the H2-T(tBu)P (11) which has a very pronounced ruffling. It

shows meso angles Aama to be reducing from 123.7 (H2TPP ) to 117° (H 2-T(tBu)P). It

also shows very small distances between opposing nitrogens Dyz. Ruffling is evidenced

by the improper torsion angle Arf made by the opposing pyrroles. This angle increases

from less than 50 for the planar porphyrins to 20.93° for H2T(iPr)P and to 46.52° for

H2T(tBu)P. The Dyz distance decreases from 2.8 A or the planar porphyrins to 2.68 A

for the severely ruffled H2T(tbu)P. This allows the hydrogens to be shared among the

central nitrogens, because not only are the nitrogens closer, they are coplanar with the

hydrogens. Hydrogen has been shown to stabilize these macrocycles.[3 1]

For dodecasubstituted porphyrins there is a pronounced interaction between the

meso-substituents and the j-substituents. This prevents ruffling so saddling is observed.
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This is particularly seen for H25,10,15,20-tetraNO 20EP (18), H2 5,10,15,20-

tetraNO 2ETIOI (23) and H2OETPP (13). This is evidenced by the Dsd distance, between

f-carbons of opposite pyrroles and the torsion angle (Asd). The Dsd distances become

smaller and the torsion angle Asd increases indicating definite saddling is taking place.

The amount of saddling increases in the order H2-5,10,15 triNO2ETIOI, H2-triNO20EP,

H2-5,10,15,20-tetraNO 20EP (18); H2 5,10,15,20-tetraNO 2ETIOI (23); H2OETPP (13).

Interestingly the tetra NO 2 substituted porphyrins show significantly larger Dyz bond

distances and a generally expanded core which may be result in less steric interaction

between peripheral substituents on the periphery of the macrocycle. These macrocycles

have a reduced ability to intramolecularly hydrogen bond since the N-H bonds are now

further away from the non protonated nitrogens and the hydrogens are not coplanar with

the nitrogens.

The partially nitrated octaethylporphyrins and ETIOIporphyrins show increased

deformation and show a greater degree of saddling as the meso positions are increasingly

substituted. In general the H 2 OEP (5) compounds show more pronounced effects than

the ETIOI counterparts. This may be due to the smaller size of the methyl group

compared to the ethyl group reducing the P and meso group interactions with the

substituents in the meso position. The asymmetrically substituted compounds show

differences in the Dz and Dy distances. In the monosubstituted compound Dz is greater

then the Dy. In the 5, 10, 15-triNO 2 compounds it is the D, which is greater.

6.2.3 Dications MM+ and PM3 calculations

The conformations of the dications were also determined using MM+ and PM3

methods (Figures 37-40). It has been well documented that porphyrin dications are
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saddled via X-ray crystal studies [74-77]. Theoretical studies[78, 79] also conclude that

the saddled structure is preferred. In both of these types of calculations a counter ion was

included in the determination of the most stable structure. The octa--substituted

porphyrins exhibit less saddled distortions than the tetra-meso-aryl substituted

porphyrins. The tetra-alkyl-meso substituted dications are less saddled and in one case,

H2T(tBu)P (11) ruffling is observed. The degree of saddling was also found to be

dependent on the counter ion of crystallization[80].

In our study no counter ion was included because we wanted to determine only

the influence of peripheral substituents. Most of the dications did show a saddled

structure but in some cases the saddling was less than expected. The ones that showed the

least saddling were the octa-p-alkyl substituted compounds. These were almost planar as

shown in Figure 35. The tetra-meso-aryl substituted porphyrins show definite saddling;

however the tetra-meso-alkyl substituted porphyrins tend towards a ruffled structure.

This ruffling has been observed using crystal structures, but only preliminary X-ray data

is available. Since it is known that having a charged compound will make the modeling

methods less accurate and also that the counter ion must be included in order to have

meaningful results, we do not believe that these structures are an accurate reflection of

what occurs in solution.

6.2.4 Core energetics

The strain energy (MM+) and the heats of formation, AH (PM3) of the minimized

structures are reported in Table 26-28.
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H 4OEP>
a b

H4ETIO 12+

a b

... __c - . _ .. .

H40IP2+
a b

H4OETPP2 +

a b

Figure 34. Porphyrin dications energy minimized structures obtained from MM+ (a) and

PM3 (b) calculations. H 40EP2+ (5), H4ETIOI 2+(6), H 40(iPr)P2+(7) and H4 0ETPP2+(13).
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H4TPP2+
h

H4 T(nPe)P 2+

a h

H4 T(iPr)P2 h

a h

H4T(tBu)P2+

H4TFP2+
a h

Figure 35. Porphyrin dications energy minimized structures obtained from MM+ (a) and

PM3 (b) calculations. H 4TPP2 +(8), H4 T(nPe)P 2+(9), H4T(iPr)P 2+(10), H4T(tBu)P2+(11)

and H 4T(C 6 F 5)P2 (12).
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H 45-NO 2OEP2+

a b

_- .r ... _, ._. ..

H45, 10-diNO 2 OEP2 +
a h

* .... N

H 45, 15-diNO 2 OEP2+
a b

' ... o""""" 'N... ti

H 45, 10,15-triNO 20EP2+
a b

H45,10,15,20-tetraNO 2OEP2+
a b

Figure 36. Porphyrin dications energy minimized structures obtained from MM+ (a) and

PM3 (b) calculations. H 4 5-NO 2OEP2+ (14), H 45,15-NO 2OEP2+ (15), H 45,10-NO2OEP 2+

(16), H 45,10,15-NO 2OEP2
+ (17) and H 45,10,15,20-NO 2OEP2 (18).
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H45NO 2ETIO12+
a b

H45, 10-diNO 2ETIO12+
a b

H45, 15-diNO 2ETIO12+
a b

H 4 5 10,15-triNO 2ETIO2 +
a b

H4 5,10,15,20-tetraNO 2ETIO12+

a b

Figure 37. Porphyrin dications energy minimized structures obtained from MM+ (a) and
PM3 (b) calculations. H 4 5-NO2ETIOI2+ (19), H4 5,15-NO 2ETIOI 2+ (20), H 45,10-

NO2ETIOI 2+ (21), H 45,10,15-NO 2ETIOI2+ (22) and H 4 5,10,15,20-NO 2ETIOI 2+ (23).
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6.2.5 Free base porphyrins PM3//MM+ and B3LYP/6-31G*//MM+cacu1ations

The strain energy reported from the MM+ studies must be corrected to be meaningful.

In order to compare to experimental data obtained in calorimetry, two single point energy

calculations were carried out, one using PM3 (PM3//MM+) and another using B3LYP

(BLY3P//MM+). These are also reported in Table 26-28.

We wanted to calculate differences in the energies which result from deformation of

the macrocycle from planarity, and not that due to the presence of different substituents

therefore all of the substituents were replaced by hydrogens and the C-H bonds in the

periphery were allowed to relax using MM+. The macrocyclic conformation was frozen

and not allowed to change. Single point energies of the optimized structures obtained

from MM+ were again obtained using PM3 and B3LYP.

These energies correspond to those of porphine free-base adopting the macrocyclic

conformation of the particular porphyrin. The energy calculated for the planar H2OEP

(5) was subtracted from each of the free-bases. This is called the energy of Energy of

deformation from planarity. H 2OEP (5) was taken as a reference because calorimetric

studies were not possible to execute using porphine as a reference as a result of its

insolubility. These data are all reported in Tables 26-28.
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Table 26. Energies calculated using different models for each free-base porphyrin,
macrocyclic portion and relative to the H2 OEP conformation.

Free-base AEmolecule AEcore, AE core defc Core conformation
(kcal/mole) (kcal/mole) (kcal/mole)

H2 OEP Planar
MM+ 50.51 61.5 0

PM3 RHF 70.65 187.57 0
PM3/MM+ 61.68 339.62 0

B3LYP/6-31G* 61.68 -620489.30 0
H2ETIOI Planar

MM+ 48.06 61.43 -0.07
PM3 RHF 90.91 187.56 -0.01

PM3/MM+ 58.63 339.81 0.19
B3LYP/MMIvI+ 58.63 -620488.87 0.43

H20(iPr)P Planar
MM+ 83.17 65.37 3.87

PM3 RHF 29.82 188.0 0.43
PM3/MM+ 65.37 345.73 6.11

B3LYP/MIM+ 65.37 -620491.39 -2.09
H2TPP Planar

MM+ 124.84 63.09 1.59
PM3 RHF 296.52 187.59 0.02

PM3/MM+ 63.09 347.62 8.0
B3LYP/MM+ 63.09 -620484.44 4.86

H2 T(nPe)P Planar
MM+ 76.1 61.59 -0.09

PM3 RI-IF 75.26 188.09 0.52
PM3/MM+ 61.59 348.44 8.82

B3LYP/MM+ 61.59 -620484.69 4.61
H2T(iPr)P Ruffled

MM+ 103.08 68.77 7.27
PM3 RHF 125.16 189.04 1.47

PM3/MM+ 68.77 350.86 11.24
B3LYP/MM+ 68.77 -620478.32 10.98

H2T(tBu)P Ruffled
MMv+ 158.90 94.55 33.05

PM3 RHF 131.90 213.15 25.58
PM3/MM+ 94.55 358.76 19.14

B3LYP/MM+ 94.55 -620449.30 40
H2T(nC5 F5)P

MM+ 123.99 63.08 1.58 Planar
PM3 RHF -533.30 187.72 0.15

PM3/MM+ 63.08 347.64 8.02
B3LYP/MM+ 63.08 -620484.45 4.85

H25,10,15,20-NO 2OEP
MM+ 92.15 81.91 20.41 Saddled

PM3 RHF 94.22 211.52 23.95
PM3/MM+ 80.72 361.28 21.66

B3LYP/MM+ 80.72 -620461.49 27.81
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Table 27. Energies calculated using different models for each free-base porphyrin, the
macrocyclic portion and relative to the H 2OEP conformation

Free-base molecule Mcore A core def

(kcal/mole) (kcal/mole) (kcal/mole)
H2OEP

MM+ 50.51 61.68 0 Planar
PM3 RHF 70.65 187.57 0
PM3/MM+ 61.68 339.62 0
B3LYP/6-31G*//MM+ 61.68 -620489.30 0
H25-NO 2OEP
MM+ 48.43 62.55 0.87 Planar
PM3 RHF 74.98 192.75 5.18
PM3/MM+ 62.55 345.81 13.52
B3LYP/6-31G*//MM+ 62.55 -620489.54 -0.24
H25,10-diNO 20EP
MM+ 59.92 67.19 21.73 Planar
PM3 RHF 81.87 200.19 12.62
PM3/MM+ 67.19 346.31 15.47
B3LYP/6-31G*//MM+ 67.19 -620484.26 5.04
H25,15-diNO 2OEP
MM+ 87.14 67.04 5.54 Planar
PM3 RHF 79.82 196.24 8.67
PM3/MM+ 67.04 343.16 3.54
B3LYP/6-31G*//MM+ 67.04 -620489.56 -0.26
H2 5,10,15-triNO2OEP
MM+ 114.11 80.79 13.3 Saddled
PM3 RHF 84.73 206.63 19.06
PM3/MM+ 80.79 350.3 10.68
B3LYP/6-31G*//MM+ 80.79 -620473.6 15.74
H25,10,15,20-tetraNO 2OEP
MM+ 128.11 81.91 20.41 Saddled
PM3 RHF 94.22 211.52 23.95
PM3/MM+ 81.91 362.09 22.47
B3LYP/6-31G*//MM+ 81.91 -620461.49 27.81
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Table 28. Energies calculated using different models for each free-base porphyrin, the
macrocyclic portion and relative to the H 2 OEP conformation

A molecule core AE core defFree-base (kcal/mole) (kcal/mole) (kcal/mole)
H2ETIOI
MM+ 48.06 61.43 -0.07 Planar
PM3 RHF 90.91 187.56 -0.01
PM3/MM+ 58.63 339.81 0.19
H 25-NO 2ETIOI
MM+ 64.98 63.56 2.06 Planar
PM3 RHF 94.09 190.90 3.34
PM3/MM+ 65.04 346.66 7.04
H25,10-diNO 2ETIOI
MM+ 82.28 66.24 4.74 Planar
PM3 RIIF 97.83 199.11 11.55
PM3/MM+ 64.46 347.1 7.48
H25,15-diNO2ETIOI
MM+ 82.36 65.91 4.41 Planar
PM3 RHF 98.77 195.05 7.48
PM3/MM+ 65.21 343.1 3.48
H25,10,15-triNO2ETIOI
MM+ 102.1 71.77 10.27
PM3 RHF 106.03 203.23 15.67 Saddled
PM3/MM+ 64.80 350.26 10.64
H2 5,10,15,20-tetraNO 2ETIOI
MM+ 114.23 78.48 16.98
PM3 RHF 111.32 209.31 21.75 Saddled
PM3/MM+ 69.35 359.59 19.97
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Energy of macrocyclic deformation versus free-base porphyrins

100 - MM+
PM3

80 - PM3//MM+

80 B3LYP//MM+

60

40

E 20

S 0 - -_

Free- Free- Free- Free- Free- Free- Free- Free- Free- Free- Free-

base base base base base base base base base base base

-20 (5) (6) (9) (12) (8) (7) (10) (18) (23) (11) (13)

Free-base porphyrins

Graph 1 - Energy of deformation calculated using four different methods. Only
symmetrically substituted porphyrins shown.

Energy of macrocyclic deformation versus Nitrated etioporphyrin 1 (6)

25 ' MM-
- PM3

-- --- PM3//MM+

20

o

15

10

S- - - -

Free-base (5) Free-base (19) Free-base (20) Free-base (21) Free-base (22) Free-base (23)

Nitrated series of etioporphyrin 1 (6)

Graph 2 - Energy of deformation calculated using three different methods. Nitrated

products of H2ETIOI (6).
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Energy of macrocyclic deformation versus Nitrated octaethylporphyrin (5)

30 ,

-- -PM3;25
- PM3//MM+

. .- B3LYP//MM+

S 0- -------

Free-base (5) Free-base Free-base Free base Free-base Free-base

5 (14) (16) (15) (17) (18)

Free base Nitrated octaethylporphyrin (5)

Graph 3 - Energy of deformation calculated using four different methods. Nitrated
products of H 2OEP

6.2.6 Energetics of Core Deformation and Relative Basicity

The most stable conformation for the porphyrin macrocycle without any steric

congestion at the periphery is planar. Assuming the porphyrin dications all have a

saddled structure in solution, if not other factors are involved such as electronic effects,

the relative instability (or deformation from planarity) of the macrocycle should correlate

well with the energies of distortion which has been calculated in this work. In the next

four graphs, the enthalpies of the two proton transfer determined using solution

calorimetry are plotted versus the energies of deformation from planarity as calculated.

This is done only for the free-base porphyrins with relatively similar electron

withdrawing groups. In the first graph (Graph 4) AHprot trans is plotted versus the energy
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of macrocyclic distortion calculated from the lowest energy structure using MM+. In

general we see that the prediction of basicity is accurate. The greater the deformation,

the more basic the free base however, that predicted by the H 2T(tBu)P is somewhat lower

than expected. This could be explained in two ways. This model does not take into

account the stability of the product dication. We have assumed that the dications are all

saddled, yet we know that this particular dication tends to decompose, so by definition it

is unstable and may be different. In fact it may even be partially ruffled as discussed

earlier. Instability in the dication would account for a lower than predicted AHprot trans. In

the second plot (Graph 5) a plot is carried out between AHprottrans and AHd1st calculated

using the lowest energy structure generated by PM3 and using the calculated heat of

formation using PM3. Very similar behavior is observed. This was somewhat surprising

considering the structures which were obtained somehow did not seem "correct". A

third method was used in which the MM+ minimized macrocycle was subjected to a

single point energy calculation using PM3 (PM3/MM+). Graph 6 plots the AHprot.trans.

versus the energy of deformation calculated using this method. This shows an

essentially linear plot with two outlying points. The points are those of H2ETIOI and

H2OIP. These are the ones we believe are affected by the stability of the dications. The

H 2 OIP has a greater steric bulk at the p substituents therefore requires more of a saddling

of the dication than other structures. This will make it more unstable and therefore

decrease its basicity. The H2ETIOI should not have this problem and indeed may be able

to choose the most stable dication structure. This would account for it having a greater

basicity than was predicted. A better study of the energetics of the dicationic structures is

planned to resolve this issue.
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In graph 7 a plot is made of AHprot.trans. versus energy of deformation using density

functional methods (BL3LYP//MM+). The correlation only improves. Indeed this model

even predicts the location of the H2OIP. The only point that is outlying is the H2ETIOI.

This may be due to the explanations we gave before that the dication of this molecule is

much freer to adopt the most stable conformation possible. The differences are due to

the stability of the dications rather than the instability of the free base.

Enthalpy of proton transfer versus Energy of macrocyclic distortion (MM+)
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Graph 4 Enthalpy of proton transfer versus energy of macrocyclic distortion(MM+).
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Enthalpy of Proton Transfer versus Energy of Macrocyclic Distortion (PM3)
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Graph 5. Enthalpy of proton transfer versus energy of macrocyclic distortion(PM3).
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Graph 6. Enthalpy of proton transfer versus energy of macrocyclic
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Enthalpy of proton transfer versus energy of macrocyclic distortion (B3,LYP/MM+)
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Graph 7. Enthalpy of proton transfer versus energy of macrocyclic
distortion(B3LYP/MM+).

6.3 Nuclear magnetic resonance studies.

There are three general regions in the NMR which are affected by macrocyclic

conformation. The meso-H region, usually appearing between 10.0 and 10.5 ppm; the

pyrrole H region, which usually appears between 8.9 to 9.5 ppm; and the NH region

which appears way upfield between + 1.6 and - 4.00 ppm. All of the positions should

be affected by ring current effects. The pyrrole and meso positions, since they are

directly outside the macrocycle, are going to be de-shielded by the ring current and hence

appear far downfield. The greater the ring current, the further downfield the position of

the proton signal. The NH protons, will also experience ring current shifts, but in the
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opposite direction. The greater the ring current, the more upfield the NH signals will

appear. The position of the NH protons will also depend on the intramolecular H

bonding ability of the macrocycle. The stronger the H bonding, the further upfield the

signal of the N-H proton will appear.

The factors which affect ring current are macrocyclic conformation, and presence

of electron withdrawing or donating groups. The highest ring currents will be shown by

those macrocycles with a planar or nearly planar conformation. As the macrocycle

becomes ruffled, the a-overlap should decrease and the ring current should be smaller. If

saddling is occurring, the same effect should be observed. In nitrated porphyrins, the ring

current should decrease for two reasons, the presence of the electron withdrawing groups,

and any macrocyclic distortion from planarity. In Figure 39 there are NMR spectra of

three representative porphyrins. Additionally in Figures 40 the NMR spectra of the

nitrated H 2 OEP are presented.
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Figure 38. 'H NNM spectra of H2 OEP.(5), H2TPP (8), and H2T(iPr)P (10).
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Table 29. NMR peak positions in ppm. (results from this work and published data)

NMR peak positions in ppm
Free-base porphyrin Meso-H Pyrrole-H NH

H2ETIOI (6) 10.1 n/a -3.73
H2OEP (5) 10.18 n/a -3.76
H2O(iPr)P (7) 10.48 n/a -3.92
H2T(nPe)P (9) n/a 9.5 -2.62
H2T(iPr)P (10) n/a 9.46 -1.8
H2T(tBu)BP (11) n/a 9.07 1.58
H2TPP (8) n/a 8.76 -2.74
H2T(nC5F5)P (12) n/a 8.92 -2.92
H2OETPP (13) n/a n/a -2
H25-NO 2ETIOI (19) 10.23,

10.21, 10.08 n/a -3.72, -3.91
H25-NO 2OEP (14) 10.25, 10.10 n/a -3.54, -3.77
H25,10-diNO 2ETIOI (21) 10.13, 10.11 n/a -4
H25,10-diNO 2OEP (16) 10.1 n/a -3.95
H25,15-diNO 20EP (15) 10.36 n/a -3.36
H25,10,15-triNO 2ETIOI (22) 10.17 n/a -3.79
H25,10,15-triNO 2OEP (17) 10.09 n/a -3.46
H25,10,15,20-tetraNO 2OEP (18) n/a n/a -3.03
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In the series H 2ETIOI (6)~H 2OEP (5) < H 2O(iPr)P (7), the position of the meso-H

goes further down field with increasing size of the R groups. Assuming all of these are

planar, this effect should be due to an increased electron donating ability of the isopropyl

group. Indeed for the NH group, precisely the same effect is seen but in the opposite

direction. It may also be that since the pyrrole N H-N distances are closer for H 2OEP (5)

and H2ETIOI (6) than for H2O(iPr)P (7), there may be less intramolecular hydrogen

bonding taking place for this molecule. This would also push the N-H signal more

upfield for H2O(iPr)P (7). In the N-H peak positions it is difficult to establish what is due

to ring current effects, and what is due to hydrogen bonding effects, it is clear that both

effects are present.

In the tetra aryl meso substituted porphyrins, the situation is more complicated. There

are significant ring current effects emanating from both the aryl groups at the meso

position and from the porphyrin macrocycle itself. Crystal structures and our own

modeling studies show that there is a dihedral angle between each of the phenyl groups

and the porphyrin macrocycle which is around 600. This will situate the pyrrole protons

directly above the shielding cone of the phenyl group. The porphyrin macrocycle will

deshield the pyrrolic protons, while the phenyl groups at the meso position will shield the

protons. This can be observed in the pyrrolic hydrogen signals for H2TPP (8) appearing

at 8.76 ppm. This value is smaller than that for the tetra alkyl substituted porphyrins (9-

9.5ppm), due to the shielding effects of the meso phenyl groups. When the meso-phenyl

groups are replaced by pentafluorophenyl groups this shielding effect is reduced due to

the electron withdrawing effects of the fluorines. Also, since the pentafluorophenyl

groups are electron withdrawing resulting in a reduced ring current in the macrocycle.

100



These two effects should counter each other but since the pentafluorophenyl groups

are at a 600 angle, to the macrocycle, the effect on the macrocyclic ring current is not as

pronounced since the mechanism is limited to inductive and resonance is not possible

between perpendicular 7r- systems. The pyrrolic hydrogens appear at 8.92 ppm. In the

N-H region, the protons for H2TPP appear at -2.74ppm. When the pentafluorophenyl

groups replace the phenyl groups, the N-H signal shift slightly upfield. We believe this is

due to reduced ring current on the macrocycle due to the electron withdrawing ability of

the pentafluorophenyl group.

In the tetraalkyl substituted porphyrins, NMR shifts have more to do with the

macrocyclic conformation and the capacity for intramolecular hydrogen bonding. In the

series H2T(nPe)P (9); H2T(iPr)P (10) and H2T(tBu)P (11), the degree of ruffling

increases, as shown by the increase in the opposing pyrrole torsion angle from 0.120 to

210 to 470. The pyrrole H signals shift slightly upfield, as the degree of ruffling increases.

Some of this effect may be due to a slightly larger electron donating effect due to the

alkyl groups but also as the molecule becomes more ruffled the ring current is reduced

thereby causing the pyrrole hydrogens to appear more upfield.

For the N-H protons the shift is exactly the opposite, since the N-H protons are in the

shielding region. The larger the degree of ruffling the weaker the ring current. This will

reduce the amount of shielding and this is observed in the N-H protons appearing further

downfield with increasing ruffling H2T(nPe)P (-2.62 ppm) followed by H2T(iPr)P (-1.8)

followed by H2T(tBu)P (+1.58). The influence of geometry on the NH groups seems to

be much greater than that observed for the pyrrole-H signals. Medforth et al have
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postulated that a much greater effect is observed due to the ability of the ruffled

macrocycles to hydrogen bond than the planar or saddled macrocycles. [31]

A number of complexes display fluxional behavior in 'H NMR. One of the reasons for

this fluxional behavior is the ability of the porphyrin to tautomerize as shown in Figure

1(b) and 7. If the tautomerization occurs at a rate that is fast on the 1H NMR time scale,

an average of the peaks is observed. If it occurs at a rate which is slow on the 'H NMR

time scale then separate and distinct peaks may seen. Although this tautomerization

occurs for all porphyrins, it has been observed only when it results in hydrogens

occupying environments which are magnetically distinct enough so they may be observed

at an accessible temperature. When variable temperature 'H NMR studies can be carried

out the free energy of activation (AG*) for tautomerization can be determined using the

equation shown below as described in reference [30].

AG* = RTc{( 12RhtNh) + ln(Tc/b~)} (6-7)

AG* = RTc{ 22.96 + ln(Tc/,)} (6-8)

Such behavior was found for four of the porphyrins studied. In Figures 35 to 38 are

the variable temperature spectra of these four porphyrins. The AG*, along with the AG*

for other free-base porphyrins which have been published are presented. Both the H 25-

NO 2-OEP (14) and H2 5-NO 2ETIOI (19) show fluxional behavior. The AG* for the

tautomerization is 15.22 kcal/mole and 15.04 kcal/mole. These values were surprisingly

high particularly when compared to that of H2OETPP (13) which is 13.6 kcal/mole.

Additionally the fluxional behavior of H 25, 10, 15-NO2OEP (18) was also studied. The
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AG* calculated was + 10.4 kcal/mole. This also seemed unusual since that for H 2TPP (8)

is around 12 and that is a planar molecule.

In the H 2 5, 10, 15-NO 2OEP (17), the peaks which are fluxional is those of the ethyl

group. Depending on whether the pyrrole is protonated, the peaks will appear in different

places. As the temperature is raised from 243K to 278 K the peaks coalesce. The

distance between the two adjacent nitrogens is 2.84 A. This is the distance the H has to

bridge in order to form the transition state for tautomerization. In the H25-NO 2OEP (14)

and H25-NO 2ETIOI (19), the groups which show the fluxional behavior are the N-H

group themselves (in addition to fluxionality in the ethyl groups). In transferring the

proton from N2 1 to N22 simultaneously with N23-N24 no change in the NH proton signal is

observed. As is shown in Figure 35 this is the short NN distance Dy since this molecule

has an in plane distortion which makes Dy and Dz different. The only exchange that will

make the NH signals appear in different places and coalesce is N 24 to N 2 1 and N 23 to N 22 .

These are the long NN distances Dz. This bond distance is 2.9 A, larger than the others.

In the H25, 10, 15-triNO 2OEP (17), the opposite is observed. The only proton transfer

which will cause fluxional behavior is that between the N2 1 to N22 and N23 to N24. This is

the short N-N distance, Dy, which is 2.74 A. For the NO2 substituted compounds, the

AG* to correlates well with the NN bond distances.
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Figure 40. Variable temperature spectra of H25,10,15,20-NO20EP (18), (a) -CH3 region
and (b) -CH2- region.
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Table 30. AG* for the tautomerization of different free-base porphyrins.

free-baseCoalescence*free-base Temperature AG Reference

H2TPP (8) 298 12.2 [81]

H2T(nC6F5)P (12) 298 12.2 [82]

H2OETPP (13) 293 13.6 [83]

H2-5,10,15,20-tetraNO 20EP (18) 263 13.2 this work and

H2-5NO 2OEP (14) 316 15.22 this work

H2-5NO 2ETIOI (19) 309 15.04 this work

H2-5,10,15-triNO 2 0EP (17) 238 10.5 this work

H2T(tBu)P (11) n/a < 9.1 [31]

H2T(iPr)P (10) 183 9.1 [31]

H2 T(nPe)P (9) 238 12.0 [31]
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7. Conclusions

7.1 Calorimetry studies.

Porphyrin macrocycle distortion was found to affect: the enthalpy of solution and the

relative basicity of the porphyrin. The enthalpies of solution of the free-base porphyrins

in 1, 1, 2, 2 tetrachloroethane decrease with increasing macrocyclic distortion. The

relative basicities of porphyrins increases when groups of similar electron withdrawing

abilities on the periphery increase in steric size. When the electron withdrawing groups

are introduced on the periphery of the macrocycle, the relative basicity of the free-base

porphyrins decreases substantially and can overwhelm the effects due to macrocyclic

distortion.

The basicity of octaalkyl substituted porphyrins decreased as the steric size of the

alkyl group increase. This may be due to stability differences in their respective dications

and their final saddle structure. In tetraalkylsubstituted porphyrins, the identity of the

meso group does not seem to influence the basicity until the bulky t-butyl group is

introduced. There are two effects occurring; the bulkier alkyl group leads to greater

ruffling macrocyclic distortion and the larger the alkyl group, the more intramolecular

hydrogen bonding which may be taking place. For H2T(iPr)P these effects seem to be

canceling out. For the H 2T(tBu)P they do not and the basicity increases accordingly.

In dodecasubstituted porphyrins with no electron withdrawing groups, the

macrocyclic distortion is so great that there is an increase in the basicity of the free base

porphyrin by 26 kcal/mole.

When adding electron withdrawing groups the decrease in basicity is dramatic.

Using a combination of electronic effects and macrocyclic distortion the relative basicity
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of a free base porphyrin can be manipulated such that there is an enthalpy of two proton

transfer between two different porphyrins of close to 45 kcal/mole.

H4T(C6 F5 )P+2 + H2OEP -> H2T(C 6 F5 )P + H40EP+2

AHproton trans:= -45 kcal/mole

7.2 Molecular modeling.

The best predictor of the free-base porphyrin structure was molecular mechanics as

was expected. The best predictor of free-base porphyrin basicity were both B3LYP/6-

31 G*//MM+ and PM3RHF//MM+.

7.3 1H NMR.

In the tautomerization of the free-base porphyrin, the closer the nitrogens are, the

lower the AGt of tautomerization. This indicates a greater degree of intramolecular

hydrogen bonding for these porphyrins.
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