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ABSTRACT OF THE THESIS

Characterization and modeling of

Multi-Conductor Transmission Line using

Finite-Difference Time-Domain method

by

Sanjay Bajracharya

Florida International University, 1996

Miami, Florida

Tadeusz M. Babij, Major Professor

A two-dimensional, 2D, finite-difference time-domain (FDTD) method is

used to analyze two different models of multi-conductor transmission lines

(MTL). The first model is a two-conductor MTL and the second is a three-

conductor MTL. Apart from the MTL's, a three-dimensional, 3D, FDTD method

is used to analyze a three-patch microstrip parasitic array. While the MTL

analysis is entirely in time-domain, the microstrip parasitic array is a study of

scattering parameter Sn in the frequency-domain. The results clearly indicate

that FDTD is an efficient and accurate tool to model and analyze multiconductor

transmission line as well as microstrip antennas and arrays.
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Chapter 1

Introduction

1. INTRODUCTION

Of the four forces in nature - strong, weak, electromagnetic, and

gravitational - the electromagnetic force is the most technologically pervasive. Of

the three methods of predicting electromagnetic effects - experiment, analysis

and computation, computation is the newest and fastest growing approach. Of

all the methods used for electromagnetic computation (discussed in Chapter 2.3),

the finite-difference time-domain, FDTD, method is applicable to the widest

range of problems [3].

1.1 SCOPE OF THIS THESIS

The goal of this thesis is to develop an efficient technique by using FDTD

method to help analyze and design multi-conductor transmission line (MTL) and

microstrip parasitic array. Many works have been done since the introduction of

FDTD method. Discrete modeling of space and time, improved first-order and

second-order absorbing boundary conditions, increase in speed of computation



by better computer, faster algorithm and parallel computing are a few examples

of improvement for better and accurate electromagnetic computation.

Zhang et al (1987), used the FDTD method to investigate microstrip

discontinuity problems [17]. Zhang et al (1987) [17], Sheen et al (1990) [12] and

Lee et al (1994) [15] further applied FDTD method to analyze microstrip patch

antennas and other microstrip circuits. In this thesis, three different models are

analyzed. The first two models are a two-conductor and a three-conductor multi-

conductor transmission lines. Both the cases are analysis in the time-domain,

using two-dimensional FDTD algorithm. Case I (Chapter 4.1), a two-conductor

MTL, is based on Kraus [8]. The result is compared with analytical results based

on BASIC program [8] and SPICE simulation. This is a simple two-conductor

MTL with a source resistance and a load resistance. Computed results are very

much in agreement with each other. Case II (Chapter 4.2) is a three-conductor

MTL based on Marx et al [5]. Of the three conductors in the MTL, one conductor

has a source resistance, an excitation pulse and a load resistance. The second

conductor has a near-end resistance and a far-end resistance. The third and final

conductor is taken as the reference conductor for return path. Marx et al used the

model with simulation in SPICE program. Anyhow, in this thesis, FDTD

algorithm is applied and the results are compared with the SPICE result of Marx

et al [5]. Here also, there is good agreement between the FDTD and the SPICE

result. Case III (Chapter 5.1) is a three-patch coplanar parasitic array, where
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three-dimensional FDTD analysis is conducted and the results are studied in

frequency-domain. The scattering parameter Sn is compared with experimental

results [15] and the results of Lee et al [15].

1.2 RESOURCE REQUIREMENTS

Both the FDTD codes, two-dimensional and three-dimensional, are

written in FORTRAN. Computer simulation for the MTL models, two-

dimensional FDTD code are done in SOLIX, the university's computing system.

Anyhow, for the three-dimensional FDTD code, as a bigger and better

computing environment is needed, a SUN SPARC Station 10 is used. Some of the

computations are also done in the SGI-Indy work stations in the Center for

Advanced Technology and Education (CATE) Lab. All of the graphical analysis

are done using MATLAB, either on a PC or the SERVMS system.

1.3 EXCITATION PULSE USED

The excitation pulse or the incident field for the simulations are different

based on the models used. Basically, two types of excitation pulses are used. For

case I and II, both MTL models, a trapezoidal pulse is used, while for case III, a

Gaussian pulse is used. For a trapezoidal pulse, the width of the pulse is kept

3



small in comparison to the final solution time. A typical trapezoidal pulse [6] is

shown in Fig. 1.1.

1.0

0

0 12.5 20 32.5 200

t (ns)

Fig. 1.1 Trapezoidal pulse used as incident source in MTL models

Here the rise and fall time is 12.5 ns and the pulse width is 7.5 ns (20 ns at

an average). The final solution time is 200 ns. To define this trapezoidal pulse in

SPICE simulation, following command is used [11].

PULSE (0 1 0 12.5N 12.5N 7.5N 200N) (1.1)

A Gaussian pulse is given by the expression

(t - t0)2 -(1.2)
g = exp[- (.2

where to is the time shift and T is the width of the pulse. In general, to is taken as

3 x T. A Gaussian pulse has a smooth waveform in time, as shown in Fig. 1.2 for

a pulse width T of 50 ps and to of 150 ps ( 3 x T ). It's Fourier transform

(spectrum) is also a Gaussian pulse centered at zero frequency. These unique

properties make it a perfect choice for investigating the frequency-dependent

characteristics of the microstrip array via the Fourier transform of the pulse
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response [17]. The Fourier transform, FFT, of the Gaussian source is shown in

Fig. 1.3. The Gaussian pulse is then truncated at around 300 ps, after the pulse

has been fully launched [3].

Gaussian Pulse : Pulse width 50 ps and Time Shift 150 ps

1-

0.8

D0.6

a

0.4-

0.2-

0
0 100 200 300 400 500 600

Time (ps)

Fig. 1.2 Gaussian pulse based on (1.2) with a pulse width of 50 ps [3].
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Fourier transform of Gaussian Pulse : Pulse width 50 ps and Time Shift 150 ps

I I I

0

-20-

-40-

- -60

E

-80

-100

-120

0 5 10 15 20 25 30 35 40
Frequency (GHz)

Fig. 1.3 Fourier transform of the Gaussian pulse of Fig. 1.2.
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Chapter 2

Finite-Difference Time-Domain Method

2. FDTD METHOD

The Finite-Difference Time-Domain, FDTD, algorithm was first

introduced by Kang S. Yee in 1966 [1]. Although the FDTD method has existed

for 30 years, it has received more attention in the recent years. Furthermore,

extensions and enhancements to the method are continually being published,

which further broaden it's appeal. Earlier applications of FDTD were mainly in

the electromagnetic scattering, but recently a number of researchers have applied

the FDTD method to analyze antenna problems also. This algorithm can be used

to analyze antenna of any shape, including thick substrates with fringing field

effects. In addition , feed networks and arrays of elements may also be modeled.

Antennas that have been analyzed by the FDTD method include planar and

stacked microstrip antennas with probe or aperture-coupled feeds. Results from

these analysis, such as input impedance and reflection coefficients, and specially

the scattering parameter Sn, have shown good agreement with experiments [15].
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Yee Cell Cube

(i,j,k+1 ) (i,j+1,k+1 )

EZ H 
(7jk

(i+1, j, k+1) (i+l ,j+ k+,)

H

Ey

(i,j, k)

Ex Hz

(i+1,j, k) (i+1,j+1, k)

Fig 2.1. The Yee cell (i, j, k) with the six (i, j, k) field components shown. The

remaining edges and faces also have fields that are labeled as belonging to

neighboring cells [3].
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The FDTD method for solving electromagnetic scattering problems is

based on the finite-difference discretization of Maxwell's equations in both space

and time-domain.

The FDTD cube, as originally described by Yee, is shown in Fig. 2.1. This

method is second-order accurate on account of the central differencing scheme

used in approximating the differentials. Second-order accurate means that the

first-order error terms of the equations vanish leaving only second and higher

order error terms in time and space [14].

2.1 PRINCIPALS OF FDTD METHOD

In a linear medium, the differential time-domain Maxwell's equations are

_dB

VxE-d (2.1)

VxH=-+J (2.2)
dt

V.D = p (2.3)

V.B= O (2.4)

This is all the information needed for linear isotropic materials to completely

specify the field behavior over time, so long as the initial field distribution is

specified and satisfies the Maxwell equations. Conveniently, the field and source

are set to zero at the initial time, often taken as time zero.
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The starting point for the FDTD formulation is the curl equations. They

can be reset to the form used for FDTD

dH 1 G
-- (VxE)---H (2.5)

at p p

dE -- E +-(VxH) (2.6)
dt e e

where j = oE to allow for lossy dielectric material and have included the

possibility of magnetic loss by adding a magnetic conductivity term o* [3].

In the FDTD method, the workspace is divided into cells. Each cell has a

corresponding material type, which is specified in terms of cell's permittivity, E,

and permeability, g, for dielectric materials. A material may also be defined as a

perfect electrical conductor (PEC), in which case, the total fields in that cell are

set equal to zero. In each cell, the six electromagnetic fields, Ex, Ey, Ez, Hx, Hy,

and Hz are defined at specific locations. Equations (2.5) and (2.6) are discretized

in both time and space using the central finite difference method (2.7) and solved

at all points inside the workspace. With the central finite difference method, the

equations are linear and no matrix needs to be solved or inverted. At time t = 0,

all fields are set equal to zero. As the time is incremented, a source is inserted

into the workspace. For scattering problems, the source is usually a plane wave

that is allowed to propagate into the workspace. For radiation problems, the

10



source usually occupies a fixed location in the workspace and is gradually

ramped up in amplitude.

.f '(x) f (xo + Ax) - f (xo - Ax) (2.7)

2Ax

The direct output of FDTD is information regarding the time-domain

response of the model. This includes, determining the electromagnetic fields over

space at a specific time, as well as the fields at a specific location as a function of

time. Two types of sources are of primary interest in transmission line design. If

a finite pulse (such as Gaussian pulse) is excited, then time is advanced until the

pulse propagates through the workspace and the fields in the workspace have

died down to zero. Then Fourier transform is used to transform to the frequency-

domain for computing input transmission line parameters. If a single frequency

sinusoid is used as the source, then time is advanced until the fields reach steady

state. At this time, the near-fields can be sampled. Two types of far fields

information may be obtained. If a pulse is used, then a far field transformation

can be used to determine the far field at a given observation point for a wide

range of frequencies. If a single frequency sinusoid is used, then the far field

pattern for many observation angles can be calculated at a single frequency [15].

The first step in designing a model with FDTD code is to grid up the

object. A number of parameters must be considered in order for the code to work

successfully. The grid spacing must be small enough so that the fields are

11



sampled sufficiently to ensure accuracy [15]. In the conventional algorithm, a

uniform spatial grid is employed. To obtain good accuracy using this method,

the smallest discretization Az is chosen to be on the order of hf to Af , where
10 20

Xhf is the minimum wavelength in the structure at the highest frequency of

interest [14]. This is roughly the same grid density needed for Method of

Moment (MoM), but FDTD scales upwards in frequency better than MoM [15].

Once the spatial discretization Az is chosen, the time step At is chosen such

that numerical instabilities are avoided, according to the Courant stability

condition [15], given by

1 1
At < + ( (2.8)

C 1 1 1

(Ax)2 + (Av)2 + (Az)2

where c is the maximum velocity of propagation in any medium, Ax, Ay and Az

are the grid size chosen in the x, y and z directions respectively. This condition

prevents a signal from crossing a cell in less than about a time step, ensuring that

information does not skip across a cell [15]. To speed up computation, it is

advantageous to use large temporal discretization. Given the grid size, the size of

the workspace (in cells) can be determined. The workspace must be large enough

not only to include the object, but also a buffer zone around it. Since most

absorbing boundary conditions (ABC) are only approximate, there will be

reflections from the walls of the workspace, particularly when the boundary wall

12



is inhomogeneous (e.g., the dielectric substrate goes up to the side wall of the

workspace) [15].

2.2 ABSORBING BOUNDARY CONDITION

Another important issue of FDTD algorithm is the formulation of

absorbing boundary condition, ABC, or outer radiation boundary condition. This

condition is needed only when the object is in the infinite free space. Formulating

a problem space large enough that the waves never reach the boundary requires

tremendous memory leading to computational cost and thus almost impossible.

The goal of the ABC is to mathematically simulate the infinite free space so that

the waves continuously propagate without reflection. If an ABC on the

boundaries of the problem space is not formulated appropriately, FDTD fields

calculating formulas are not able to use the correct values to update the fields.

That is, the fields are reflected on the boundaries instead of propagating

outward continuously. This is due to the nature of the FDTD formulas, they use

the field values of the adjacent cells to interpolate the fields values of the current

cell.

The perfect ABC is usually global in nature, which makes it quite

expensive to implement and require excessive large computer memories. The

local ABC, which make use of only the neighboring space and time nodes, are

13



relatively inexpensive to implement. There are quite a few local ABC's available.

The Fourier transform of the time-domain results are very sensitive to the

reflection errors. A small amount of reflection may not visibly influence the time-

domain fields, but the transformed results could be far off [17]. Zhang et al. [17]

employed a super-position of two subproblems with magnetic and electric walls

to cancel the boundary reflection.

Scattered - field domain

Total - field domain

Scattering
Object

Boundary of total - field domain

Absorbing boundary of the path

Fig. 2.2 The domain occupied by the mesh with the obstacle, the domain where

the total field is computed, and the domain where the scattered field is computed

(two-dimensional configuration) [2].

ABC scheme has been developed from as early as 1975 by Taflove to the

present days. But the most popular and widely used among all of them is the one

14



put forward by Mur in 1981 [2]. In this thesis work, only the first-order Mur

absorbing formulas, which use the previous time-step and space grid to simulate

the infinite space, is utilized because they provide acceptable accuracy. Higher

order absorbing formulas will further improve the accuracy but require much

adaptation to be applied in microstrip structures [12] [18].

Recently more accurate ABC's have been proposed, such as super

absorption and perfectly matched layer (PML). Although these advancements in

ABC significantly decrease the residual in the time-domain, they are more

complicated in implementation than the simple ABC's such as Mur's [2]. Second,

the FDTD method is quiet memory intensive since the core memory is directly

proportional to the number of cells used in the discretization of the

computational volume. The computational volume can be reduced by using a

low reflection ABC such as Berenger's PML, which allows close proximity

between the boundary wall and the circuit away from discontinuities. It is

possible to reduce the computational domain even for the simple Mur's ABC, if

the boundary reflection can be accurately estimated and applied to correct the computed

parameters [19]. The concept of Mur's ABC is illustrated in Fig. 2.2 [2].

The first order ABC formulas require the physical problem space

boundary to be set to 10 cells or more away from the object so that the fields can

be absorbed normally. Higher order ABC formulas need less cells to get the same

level of accuracy.

15



In Mur's ABC, the first order three-dimensional scalar wave equation is

(d 2  +2 d 2 -c O2d,2 )E =0 (2.9)

where E is any field component, co is the speed of light in free space. The FDTD

theory can be used to discretize Ez from the above equation which yields

1 1
E,"+I (, k +-1)= E," (1, j, k +-1)

2 2

c0 t -3 1
+ +(E,"+(1, j,k+-)cot+6 2

-En (0, j, k + )). (2.10)
2

The other two ABC formulas for Ex and Ey can be easily derived by the

same procedure as given below

Ex"+'(i+-,0,k)=E,"(i+-,1,k)
2 2

+coSt (Ef+I( 1 k)
cot+3 2''

-Ex "(i +- ,0, k)). (2.11)
2

and

1 =

Er"+1(i, j+--,0)= E,"(i, j+-1)
2 2

coot+6 2

-E"(l, j +--, 0)). (2.12)
2
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2.3 OTHER METHODS FOR ELECTROMAGNETIC COMPUTATION

Various methods used for electromagnetic computation are method of

moments (MoM), finite-difference time-domain method (FDTD), finite element,

geometric theory of diffraction, physical optics [15] and Bergeron's Method [17].

This thesis work focuses entirely on FDTD method.

The advantage of FDTD method over other method is that any antenna

model, MTL model or microstrip antenna can be simulated easily. The only

disadvantage is, as the model object increases, bigger work space is needed,

which is computer costly. FDTD method can accurately simulate in high

frequency range, which cannot be achieved from MoM method.

17



Chapter 3

The Multi-Conductor Transmission Line

3. THE MULTI-CONDUCTOR TRANSMISSION LINE

The term multi-conductor transmission line (MTL) equation typically

refers to a set of (n+1) parallel conductors that serve to transmit electrical signals

between sources and loads. The dominant mode of propagation in an MTL is the

transverse electromagnetic or TEM mode, where, the electric and magnetic fields

surrounding the conductors lie solely in the transverse plane, orthogonal to the

line axis. The TEM field structure and associated mode of propagation is the

fundamental, underlying assumption in the representation of a transmission line

structure with the transmission line equations. The signal propagation is

restricted to situations in which the propagation velocity on the line is unique.

The conductors of the transmission lines are either lossy or lossless. Lossless

conductors are perfect conductors, while lossless media have zero conductivity

(- = 0). The surrounding medium may be homogeneous or inhomogeneous. The

FDTD model used in the examples are, by implication, immersed in a

homogeneous medium (logically free space) [6].

18



3.1 DERIVATION FROM THE INTEGRAL FORM OF MAXWELL'S

EQUATIONS

Figure 3.1 shows the general (n+1)-conductor line to be considered. It

consists of n conductors and a reference conductor (denoted by zeroth conductor)

to which the n line voltages will be referenced. This choice of reference conductor

is not unique. From Faraday's law in integral form we have

d- s (3.1)

Applying this to the contour ci which encloses surface si shown between

the reference conductor and the i-th conductor and encircles it in the clockwise

direction gives

t , d +dI ,.dI+E " .dI = p J - ,H d ds (3.2)lB .d+f dt (32

where B, denotes the transverse electric field (in the x-y cross-sectional plane)

and B, denotes the longitudinal or z-directed electric field (along the surface of the

conductor). Because of the choice of the direction of the contour, the direction ,,

and the right-hand rule, the minus sign on the right hand side of the Faraday's

law is absent (3.2). Because of the assumption of a TEM field structure, one can

uniquely define voltage between the i-th conductor and the reference conductor

(positive on the i-th conductor) as

V, (z, t) = , (x, y, z, t) -dI (3.3a)

19



The integrals along the surface of the conductors are zero if the conductors

are considered to be perfect conductors. The TEM mode cannot exist if the

conductors are not perfect conductors. This is because a component of electric

field will be directed in the z direction due to the voltage drop along the

conductors. The current is uniquely defined because of the assumption of a TEM

field structure, as

Id(lz,t) , HdI (3.4)

and contour ci is a contour just off the surface of and encircling the i-th conductor

in the transverse plane. The sum of the currents on all (n +1) conductors in the z

direction at any cross section is zero. This is the basis for saying that the currents

of the n conductors return through the reference conductor. Substituting (3.3) to

(3.4) into (3.2) yields

-V d(z,t)+rzI(z,t)+V(z+Az,t)+rOAzIIz(z,t) - H, ds(3.5)

Dividing both sides by Az, and rearranging gives

8(z+ Az, t) - (z, t) -j-r1 .
z= -rOII - roI ......- (r + r)I;-....rOIn

d f(3.6)
+1 Adt -H .d

The total magnetic flux penetrating the surface si can be written as
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Vi = - m 1 f H, - andsz o dz si (3.7)

l; I, + 1i2 +....+ l I +.....+ ljjI

Taking the limit of (3.6) as Az -+ 0, and substituting (3.7) yields

SV = z,t) -rIl(z,t) - rI 2(z, t)-.....-(r + r)I(z, t)-....-rI (z, t)

d I,(z,t) d12(z,t) dI(z,t) dI,(z,t) (3.8)
-la l i2 a - " -

This first MTL equation can be written in compact form using matrix notation as

V(z, t) = -RI(z, t) - L-I(z, t) (3.9)

where the voltage and current vectors are defined as

[V, (z, t)

LVl (z,t)j
V (z, t) = (3.10a)

FVn (z, t)

I ,(z,t)]

SI; (Z,t)
I(z, t) = (3.10b)

L I, (z, t)]

The per-unit-length inductance matrix is defined from (3.7) as

'P= LI (3.11)

where V is an n x 1 vector containing the total magnetic flux per unit length, yi,

penetrating the i-th conductor and the reference conductor. The per-unit-length

inductance matrix, L, contains the individual per-unit-length self-inductance's, lit,

of the circuit and the per-unit-length mutual inductance between the circuits, lij,
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Ii(z,t)i

aE

E A ana' baE b

Reference 0

x z z+Az

z

Fig 3.1 Definition of the contour for derivation of the MTL equation [6].
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as

Fil '' in1
1121 122 .l (312

L = (3.12)

Similarly, from (3.8) we define the per-unit-length resistance matrix as

L(r +ro) ro .. ro 1

R=I ro (r2 + ro) .. r(3.13)

L ro r .. rn+ro)_

Consider placing a closed surface s around the i-th conductor as shown in

Fig. 3.2. The portion of the surface over the end caps is denoted as se while the

portion over the sides is denoted as so. From the continuity equation or equation

of conservation of charge,

& =d d - Q. (3.14)
Sdt

Over the end caps we have

.S ds = I;(z+ AZ't)- I,(z,t) (3.15)

Over the sides of the surface, there are two currents : conduction current,

and displacement current, where the surrounding homogeneous medium is

characterized by conductivity, 6, and permittivity, E.
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n

Se

a

Vi(zt) Et V (z+Az, t)

Reference conductor 0

x z z+Az

z

Fig 3.2 Definition of the surface for derivation of the MTL equation [6].
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Let us define per-unit-length conductance, gij S/m, between each pair of

conductors as ratio of conduction current flowing between the two conductors in

the transverse plane to the voltage between the two conductors. Therefore,

a lim 1 5, -ds = g 1(V -V)+....+giiVV+....+gin (V -Vn)
Az-+0O AZ

= -g 1V (z, t) - gi2V2 (z, t)-..... (3.16)

+ gikV (z, 0-....-giV (z, t)

Similarly, the charge per unit of line length can be defined in terms of the

per-unit-length capacitance's, cij, between each pair of conductors as

clim E, -d= ce (Vi -V1 )+..+CiiV. +...n (Vi -Vn)

= -c V (z, t) - ci2V2 (z, t)-..... (3.17)

+ 1ckVk (z, t)-....-CinVn (z, t)
k=1

Substituting (3.15), (3.16) and (3.17) into (3.14), and dividing both sides by Az

gives

Ii(z-+-Az,t) + Ii(z,t) 1 f d- 1 E- -(
+ -E, .ds = -E f; E, -ds (3.18)

Az Az So izio
Taking the limit as Az -+ 0 and substituting (3.16) and (3.17) yields

a Ii(z,t)

z gi1V 1(z,t) + gi2V2 (,t)+....-XgikVk(z,t)+....+ginV(z,t)
a n = (3.19)

+ ct CiIVI(z,t)+.... -cikVk (z, t)+.....+Ci(z,t)}(3.1

Equation (3.19) can be placed in a compact form with matrix notation giving
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-- I(z,t) = -GV(z,t) - Cd-V(zt) (3.20)
dz at

where V and I are given by (3.10). The per-unit-length conductance matrix, G,

represents the conductance current flowing between the conductors in the transverse

plane and is defined from (3.19) as

[ n 1
Ig~~k 9 12 91

G =I -9#21 192k -9-2n I(3.21)k=1

-gn -gn 2 I. 9,nk
k=1

The per-unit-length capacitance matrix, C, represents the displacement current

flowing between the conductors in the transverse plane and is defined from (3.19) as

[ n 1
ICU -C2 *. C1Cm

C = I-C21 c2k ..- c2n I(3.22)

-Cn 1  -cn 2  .. XCnk
- k=1-

If we denote the total charge on the i-th conductor per-unit of line length

as qi, then the fundamental definition of C is

Q = CV (3.23a)

where
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Fq,

Q (3.23b)

1q:1

The above per-unit-length parameter matrices once again contain all the

cross-sectional dimension information that distinguishes one MTL structure from

another. Although these were shown as not being symmetric, it is logical to

expect that they are [6].

3.2 DERIVATION FROM THE PER-UNIT-LENGTH EQUIVALENT

CIRCUIT

The MTL equation is derived from the per-unit-length equivalent circuit

shown in Fig 3.3. Writing the Kirchoff's voltage law around the i-th circuit

consisting of the i-th conductor and the reference conductor yields

-(z,t)+rzI(z,t)+V(z+Az,t)+rOAzXIk(z,t) (3.24a)
k=1

-1A I' (z, t) 1 I20zd2(z't) -..- ;O I, (z' t) _..- B~ In (z, t)

Dividing both sides by Az and taking the limit as Az -+ 0 once again yields

the transmission-line equation with the collection for all I given matrix form in

(3.9). Similarly the second MTL equation can be obtained by applying Kirchoff's
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current law to the i-th conductor in the per-unit-length equivalent circuit in Fig.

3.3 to yield

I,(z+Az,t)-I,(z,t) =-gi Az(V -V)-....-giAz(. -Vj)-.... (3.24b)

d
-gi,Az(V -V,)-....-ci Az-a(V -V)-....

dt

d d
-cia dz-V -....- cinAz-d(V -K,)

at at

Dividing both sides by Az, taking the limit Az -> 0, and collecting the

terms once again yields the second MTL equation given in (3.20) with the

collection for all i given in matrix form. Strictly speaking, the voltages in (3.24b)

are at z + Az so that (3.24a) should be substituted before taking the limit.

However, this yields the same result as when we take the limit Az -+ 0 in (3.24b)

directly [6].

I,(Zt) r Az .Az h( Z + 0 Z, t)

I(z( t) >( z + A z, t)

+ +
V(z,t) g 0Az V( z + A z, t)

I;(z,t) rAz \ A ci.Az I( z + A z, t)

g Az g. Az

V (z,t) V i(z + A z, t)
cNAz c Az

r0Az

X lk(z, t) E Ik(z + A Z, t)
k=1

Fig. 3.3 The per-unit-length MTL model for derivation of the MTL equations [6].
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3.3 Summary of the MTL Equations

The TEM-mode model of an (n + 1)-conductor, uniform MTL is embodied

in the MTL equations as

a a
-V(z,t)+ RI(z,t)+ L - I(z,t) =0 (3.25a)
dz dt

_ a
- I(z, t) + GV(z, t) + C V(z, t) = 0 (3.25b)
dz at

where V and I are the (n x 1) vectors of the line voltages (with respect to the

reference conductor) and line currents, respectively. The line cross-section

dimensions are contained in the (n x n) per-unit-length parameter matrices of R

(resistance), L (inductance), G (conductance), and C (capacitance).The position

along the line is denoted as z and time is denoted as t [16]. The MTL equations in

(3.25) are a set of 2n, coupled, first-order, partial differential equations. They may be

put in a more compact form as [6]

d FV(z, t)1 [0 Ri [V(z, t)1 [0 Lid [V(z, t)i

-I(zt) G oj I(z,t)B-C o]0 I(z,t)] (3.26)

This first order form is especially helpful when we set out to solve them. If

the conductors are perfect conductors, PEC, R=0, whereas if the surrounding

medium is lossless (6 = 0), G=0. The line is said to be lossless, in which case the

MTL equations simplify to

d [V(z,t) FO Li d [V(z, t)I

dz[I(Z,t) C 0 1I(z,t)2 (3.27)
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The frequency-domain analysis of uniform MTL is a straight forward

computational task whether the line is considered lossless or lossy. The time-

domain analysis of lossy MTL's is considered more difficult for several reasons.

A primary reason is that the resistive losses of the conductors are due to skin

effect and vary with frequency as 4. The representation of this frequency

dependence in the time domain is a convolution which presents computational

problems in a direct, time-domain solution of the MTL equations. These

problems have led to the use of other solution methods for the time-domain

analysis of lossy MTL's. One of the important approximation solution techniques

is the FDTD method. For MTL, a two dimensional, 2D, FDTD algorithm is

applied. The line axis z is discretized in Az increments or spatial cells, the time

variable t is discretized in At increments or temporal cells, and the derivative in

the MTL equations are approximated by finite difference. The solution voltages

and currents are obtained at these discrete points and represent an approximate

solution of the MTL equations. In general, the accuracy of the solution depends

on having sufficiently small spatial and temporal cells. Anyhow, very small

spatial and temporal cells lead to high computational cost. The FDTD method

has been used successfully to solve more general electromagnetic problems,

wherein lossy, nonlinear, and/or inhomogeneous media may be considered. The

spatial and temporal independent variables of the time-domain Maxwell's
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equations are similarly discretized, and the boundary conditions are readily

incorporated.

MTL's are simply one-dimensional versions of wave propagation

embodied in the three-dimensional Maxwell's equations for the special case of

the TEM or quasi-TEM mode of propagation. An important difference in the

boundary condition. For the full-wave electromagnetic problem, zero tangential

electric field on the surface of perfect conductors is a primary boundary

condition. Scattering problems can be handled with the ABC. In the case of

MTL's, the boundary conditions are lumped loads at the two ends of the line, z =

0 and z =1 where 1 is the length of the MTL. Linear, resistive termination's can be

characterized by generalized Thevenin Equivalents as [16]

V(O,t) = Vs - RsI(O,t) (3.28a)

V(l,t) = VL - RLI(lt) (3.28b)

or a similar generalized Norton Equivalent or a combination of the two. In order

to insure stability in the FDTD solution, the discrete voltage and current solution

points are not physically located at the same point but are staggered one-half cell

apart. However, the lumped terminal constraints such as in (3.28) require that the

current and voltage solution points be collocated [6].
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Chapter 4

Time-Domain Analysis

4. TIME - DOMAIN ANALYSIS

In this chapter, two cases of MTL models are analyzed. First case is a two-

conductor MTL and the second a three-conductor MTL. In both cases, the models

are lossless. The total solution of the MTL equations for general time variation of

the sources is presented. This solution include both the transient and the steady

state components of the solution.

4.1 CASE I, TWO - CONDUCTOR MTL

The transmission line is a two-conductor lossless MTL. The length of the

line is 100 meters and the characteristic inpedance Zo = 100 Q. The DC generator

at the near-end of the transmission line has a resistance RG = 20 Q and generates

a pulse of magnitude 10V. The excitation source has a rise and fall time of 15 ns

and a pulse width of 100 ns. The final solution time is 1600 ns. The load

resistance RL = 200 Q (see Fig 4.1). As a pulse is sent along the line,

discontinuities on the line reflect waves back (echoes). The voltage reflection

coefficients are given by
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Pc =(RL -R 0 )

(RG-R) (4.b)
Gc (RG +Ro)

where PL is the voltage reflection coefficient of load and PG is the voltage

reflection coefficient of generator. The electrical schematic of the transmission

line is shown in Fig. 4.1. [8].

R =200

V '() i Z0 = 100 QRL200

z = 0 m z = 100 m

Fig. 4.1 Electrical schematic of two-conductor MTL, 100 m long with a pulse

generator of internal resistance 20 Q and 20052 load resistance. The characteristic

impedance of the line is 10052 [8].

4.1.1 COMPUTED RESULTS

In this model, a trapezoidal pulse of rise and fall time 15 ns and a pulse

width of 100 ns is used as the excitation pulse. The first step is to find f, which is

given by

1
f= K z (4.2)
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where r is the rise time of the pulse. For a rise time of 15 ns, we get f = 21.2

MHz. Let A be the wavelength of the wave, which is represented by

A = (4.3a)
f

C = - (4.3b)

where c is the velocity of propagation, f is the frequency, M is the permeability of

the surrounding medium and E is the permittivity of the surrounding medium.

For free space, po = 4n x 10- H/m and c0 ~ (1/361r) X 10-9 F/m . In general co is

taken as 3 x 108 ms-1, the speed of light. Upon calculation, the wavelength is

3 x10 8
X = 14.137m

21.2 x 106

For simulation, we should make A electrically short. This is done by dividing A

by 10, which gives /short = =1.4137 m. Az, the spatial cell, should be less than

or equal to Ashort. Let Az = 1 m.

After calculating the size of the spatial cell, one has to calculate the

number of spatial cells Az needed and the number of time steps At needed to run

the simulation. The number of spatial cells needed, NDZ, is given by

length of line
NDZ = (4.4)
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By calculation, NDZ = 100. After finding NDZ, the number of time step NDT is

found, which is given by

final solution time
NDT = (4.5)

At

where At, is the time step, given by

At < - (4.6)
C

Calculating, we get At = 3.3 ns.

In this model, the final solution time is 1600 ns, which makes NDT = 480.

One of the conditions for calculating NDZ and NDT is that, it should satisfy the

Courant stability condition [6], given by

c x final solution time
NDT > NDZ 1 (4.7)

where 1 is the length of the transmission line and c is the velocity of propagation.

In this model, a ribbon cable is considered as the transmission line. The

radius of the ribbon cable is chosen to be 7.5 mils. Another important task is to

find the distance between the two conductors (center to center). It should be

noted that the characteristic impedance of the transmission line depends on the

radius of the wires and the distance between them (center to center). The

characteristic impedance Zo is given by

Zo = cosh - (4.8)
nf a
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where 71 is the intrinsic impedance of the dielectric medium = 7o =-

376.731 Q ~ 120 x n [3], a is the radius of the conductors and 2d is the distance

between the conductors, center to center (see Fig. 4.2). Upon calculation, we get

the distance between the wires equal to 20.5168 m. Shengyao Hu [24] has used

FDTD method for the analysis of ribbon cable.

From the values of a and D, the per-unit-length parameters for this ribbon

cable model are computed using the program RIBBON.FOR [6].

L = 0.33333 pH

C = 33.3795 pF

Radius of wire
a = 7.5 mils

a a

2d = D = 20.5 m

Fig. 4.2 End-on view of structure of two-conductor MTL.

The characteristic impedance Zo of the MTL (for lossless condition) is given by

L
Zo = = R6 (4.9)
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Cross checking, the computed values of L and C satisfies equation (4.9). Also for

lossless lines in a homogeneous media, there is an important identity

LC = pE (4.10a)

If we have a ( n + 1 ) conductor transmission line, then the per-unit-length

parameters will be a ( n x n ) matrix. Equation (4.10a), can be represented as

C = E L-1  (4.10b)

With these per-unit-length values of L and C, the FDTD code, FINDIF.FOR [6] is

executed.

The results of the FDTD simulation are shown in Fig. 4.3 and Fig. 4.4. The

model is analyzed at two locations in the transmission line. The near-end (Fig.

4.3) is the side of the MTL near the source (generator). The far-end (Fig. 4.4) is at

the end of the MTL, near the load resistance.

4.1.2 VALIDATION

The computed results from FDTD method was validated with 2 different

results. The first is an analytical simulation, based on BASIC program presented

by Kraus [8]. The second is a SPICE simulation. The SPICE code used for this

simulation is given in Appendix A, Table 1.1.
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4.1.2.1 ANALYTICAL SIMULATION

A simple BASIC program [8] was used for this simulation. The near-end

voltage is plotted as shown in Fig. 4.5. Similarly, the far-end voltage is plotted as

shown in Fig. 4.6. As can be seen, the FDTD plots, for both near-end and far-end

voltages, are very much in agreement with the analytical plots shown in Fig. 4.5

& Fig. 4.6.

4.1.2.2 SPICE SIMULATION

In this simulation, the two-conductor MTL is represented in a SPICE

model. The values of L and C are taken from above. The command to represent a

transmission line in SPICE simulation is

T1 5 0 6 0 ZO=9.993076E+01 TD=3.335639E-07 (4.11)

where z 0 is the characteristic impedance of the line and TD is the time delay. The

starting point of the MTL is node 5 and the end point is node 6. Node 0 is,

naturally, the ground point. The near-end voltage is plotted and given in Fig. 4.7

while the far-end is given in Fig. 4.8.

As can be seen from Fig 4.3 to Fig. 4.8, the results agree very much among

each other. For a single plot comparison, all the three sets of near-end voltages

are plotted in Fig. 4.9. Likely, all the far-end voltages are plotted in Fig. 4.10.
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From these two figures, it can be concluded that the results are very very close to

each other.

FDTD Method : MTL line 100 m long (case I)

9-

8

7

a,

5
0

C4-W

2-

1- 

-

0-

0 200 400 600 800 1000 1200 1400 1600
Time (ns)

Fig. 4.3 Near-End voltage for two-conductor MTL using FDTD method. The

length of the line is 100 m and NDZ=100 and NDT=480 [Author].
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FDTD Method : MTL line 100 m long (case I)

14

12-

10-

8-

6- --

2-0c4

4-2

Cz

-2

0 200 400 600 800 1000 1200 1400 1600
Time (ns)

Fig. 4.4 Far-End voltage for two-conductor MTL using FDTD method. The

length of the line is 100 m and NDZ=100 and NDT=480 [Author].
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Analytical Method : MTL line 100 m long (case I)

I I I

9

8

7

c6-

c,)
-5

0

C4

ci

2

0

-1
o 200 400 600 800 1000 1200 1400 1600

Time (ns)

Fig. 4.5 Near-End voltage for two-conductor MTL using analytical method. The

length of the line is 100 m [8].
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Analytical Method : MTL line 100 m long (case I)

14

12-

10-

8-

a)

c6-6-

0

v 4
w

U

2-

0

-2

-4 ' '

0 200 400 600 800 1000 1200 1400 1600
Time (ns)

Fig. 4.6 Far-End voltage for two-conductor MTL using analytical method. The

length of the line is 100 m [8].
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SPICE Method : MTL line 100 m long (case I)

I TI I

9-

8-

7-

6--

0) 5-

2-

1-

0

-1 '

0 200 400 600 800 1000 1200 1400 1600
Time (ns)

Fig. 4.7 Near-End voltage for two-conductor MTL using SPICE method. The

length of the line is 100 m and the time delay for the line is 33.3 ps [Author].
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SPICE Method : MTL line 100 m long (case I)

14

12-

10-

8-

a)

6 -c -
0
C
C 4w

2-

0

-2

-4
0 200 400 600 800 1000 1200 1400 1600

Time (ns)

Fig. 4.8 Far-End voltage for two-conductor MTL using SPICE method. The

length of the line is 100 m and the time delay for the line is 33.3 ps [Author].
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FDTD Method [Author], Analytical Method [8] & SPICE Method [Author]

(case I)

I I I I

9-

8-

7-

6
4)

2-

0

o 200 400 600 800 1000 1200 1400 1600
Time (ns)

Fig. 4.9 Near-End voltages for two-conductor MTL using FDTD, analytical and

SPICE method. The length of the line is 100 m.
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FDTD Method [Author], Analytical Method [8] & SPICE Method [Author]

(case I)

14

12-

10-

8-

cu6--
0

04--W
Lu

LL
2-

0

-2

-4 '
0 200 400 600 800 1000 1200 1400 1600

Time (ns)

Fig. 4.10 Far-End voltages for two-conductor MTL using FDTD, analytical and

SPICE method. The length of the line is 100 m.
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Two-conductor MTL (Near-End), length=100 m (case I)

10

FDTD Method [Author]
5-

0

0 200 400 600 800 1000 1200 1400 1600

X10

05

0-

z 0 200 400 600 800 1000 1200 1400 1600

10

Analytical Method-Kraus [8]
5-

0-

0 200 400 600 800 1000 1200 1400 1600

Time (ns)

Fig. 4.11 Near-End voltages for two-conductor MTL using FDTD, analytical and

SPICE method in subplot setup. The length of the line is 100 m.
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Two-conductor MTL (Far-End), length=100 m (case I)

10 - 0FDTD Method [Author]

5--

0

0 200 400 600 800 1000 1200 1400 1600

010 -SPICE Method [Author]

5- -

0 200 400 600 800 1000 1200 1400 1600

10 -Analytical Method-Kraus [8]

5--

0

-0 200 400 600 800 1000 1200 1400 1600
Time (ns)

Fig. 4.12 Far-End voltages for two-conductor MTL using FDTD, analytical and

SPICE method in subplot setup. The length of the line is 100 m.
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In fact they are so close that, over most of the time period, they are over lapping

each other. A second approach of evaluation is to plot all the three sets of data in

rows, below each other (sub plots), and to make sure under the same scale. Fig

4.11 and Fig. 4.12 are presented for comparison study of near-end and far-end

voltages, respectively.

4.2 CASE II, THREE - CONDUCTOR MTL

Here a three-conductor MTL is analyzed. In this MTL, the only

propagation modes are TEM or quassi-TEM. For validation of the FDTD method,

a SPICE model with a network of two-wire delay lines are used which represents

an MTL with homogeneous dielectric [5].

4.2.1 COMPUTED RESULTS

The three-conductor MTL model is represented as two conductors above a

perfectly conducting ground plane. The conductors are standard 20 Gauge wires

with a radius of 0.41 mm. The distance between the conductors is 20 mm (center

to center) and both the conductors are 20 mm above the ground plane. The

transmission line is 4.67 meters long. The excitation pulse is a trapezoidal pulse

with rise and fall time of 12.5 ns and a pulse width of 7.5 ns. The final time is 200
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ns and the magnitude is 1V. Conductor One has a source resistance Rs = 50 Q

and a load resistance RL = 50 Q. The excitation pulse is given in this conductor.

The second conductor has a near-end resistance RNE = 50 Q and a far-end

resistance RFE = 50 Q. An end-on view of the structure is given in Fig. 4.13.

20 mm 20 mm

Radius of conductor
1 2 a = 0.41 mm

Infinite, perfectly conducting ground plane X

Fig. 4.13 End-on view of structure of three-conductor MTL above an infinite,

perfectly conducting ground plane [5].

The second conductor is used to collect the near-end and far-end voltage

for analysis. An electrical schematic diagram of the MTL is given in Fig. 4.14.
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2

RNE=50 Q R =50 Q I RL=50OQ RFE=502

Vs(t) ±
0

z=0m z=4.67m

Fig. 4.14 Electrical schematic of three-conductor MTL, 4.67 m long with a pulse

generator of internal resistance 50 Q at the source and a 50Q load resistance. The

near-end resistance is 5052 and the far-end resistance is 50 52 [5].

Upon calculation for the per-unit-length parameters, the values of L and C

are computed as

F0.9129 0.16091

L =L0.1609  0.91291 H

F12.5787 -2.21761

C= -L2.2 176  12.5787] pF

These values of L and C are computed using the program WIDESEP.FOR [6]

which are used as input data for the FDTD program, FINDIF.FOR [6]. In this

model, we are interested in the near-end voltage on conductor number two.

For the simulation, we have to find out the values of Az, At, NDZ and

NDT. The procedure is the same as previously done for case I model (two-

conductor MTL).
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Using (4.2) and (4.3), A = 11.78 m. Hence )short = 1.178 m. Az is chosen at

0.778 m which gives NDZ = 6, according to (4.4). Using (4.6) At = 2.59 ns. We

choose At as 2 ns, which gives NDT = 100 (4.5). So the simulation is run for Az =

0.778, At = 2 ns, NDZ = 6 and NDT = 100. The results of this simulation is given

in Fig. 4.16c. This result is very much in agreement with the SPICE results [5].

In order to investigate the possibility of better result, different NDZ and

NDT combinations are evaluated. Table 4.1 gives a comparative study of

different combinations of NDZ and NDT simulated.

Az NDZ At (ns) NDT Result

1.167 4 3.33 60 Good

1.167 4 2 100 Satisfactory

.778 6 2 100 Good

Table 4.1 Comparative table for FDTD simulations for different values of NDZ

and NDT for two-conductor MTL.

As can be seen from Table 4.1 and Fig. 4.16, any change in NDZ or NDT,

there are slight changes in the near-end voltage on conductor two. Anyhow, the

best result is observed for NDZ = 6 and NDT = 100. The near-end voltages for
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various NDZ and NDT are given in Fig 4.16 with respect to the validation model,

in this case, a SPICE simulation.

4.2.2 VALIDATION

The validation is based on the simulation presented by Marx et al [5].

Marx has successfully represented an MTL with a network of two-wire delay

lines. In the proceeding chapter, two-wire delay-lines, as equivalent to MTL, is

presented.

4.2.2.1 SPICE SIMULATION

Signals on the line consists of waves which propagate in forward and

backward directions on the line with velocity of propagation c (4.3b). For these

waves, the currents and voltages are related by

If = YoVf (4.12)

Ib = -YoVb (4.13)

where subscripts f and b refer to forward and backward traveling waves,

respectively, and Yo is the characteristic admittance matrix, and Zo is the

characteristic impedance matrix [2], given by:

Yo = cC (4.14)
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Zo = Yo- 1  (4.15)

Presented below is a system of two-wire lines that is an exact synthesis of

the MTL shown in Fig. 4.14.

It is assumed that there is an infinitely long MTL. Then any n-port source

connected to it sees a purely resistive n-port network with admittance matrix Yo.

This suggests that one can simulate the MTL with a system of two-wire lines, one

for each pair of ports with characteristic impedance chosen so that the

admittance matrix is just Yo. This arrangement is shown schematically in Fig 4.15.

Zo1

zo10 zo2 0

Ground Ground

Fig. 4.15 Representation of the synthesis of a three-conductor transmission line

with three two-wire lines. An end-on view of two wires over a ground plane is

shown. The resistance zoap represents the characteristic impedance of the two-wire

line connected between conductor a and conductor # [5].

In general, the number m of two-wire lines required is
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n = ntn -1) (4.16)
2

where n is the number of conductors in the MTL, in our case, three. The line

connecting conductor a to conductor P will be designated Taa with characteristic

impedance z,,, (ground is conductor 0).

It is easy to select the z0a so that the admittance matrix is Yo. The matrix

has the following properties. It is real, symmetric, dominant, and has positive

diagonal elements and negative off-diagonal elements. Let the elements be Yog.

By definition, Yoa is the current flowing into the conductor a per unit voltage

applied to conductor # with all the conductors other than # shorted to ground.

The network of zoa will satisfy these requirements if one chooses

1
zap -y , aw # , P# 0 (4.17)

1
Z oaO = n-_ (4.18)

where the sum is over all conductors including the ath conductor. Recall that Yo,

is real and negative if a # P. Then as evaluated in (4.17), z0a is real and positive

and can be realized with an ideal time delay. Furthermore, Yo, is positive and Yo

is dominant. Hence the sum in (4.18) is positive, and zoao is similarly realizable.

This result for an MTL of infinite length suggests that finite-length MTL

with homogeneous dielectric can be simulated with m two-wire lines of the same
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length and propagation of velocity, where m is given by (4.16) and the

characteristic impedances are given by (4.17) and (4.18).

From the values of L and C, we find the characteristic admittance Yo and

characteristic impedance Zo of the MTL, which are

[3.747 -0.6571

Y [-0.657 3.747 m mho

F275.3454 48.2791
ZO [ 48.2791 275.3454]

1_ -1

Z°2- _ - -0.657 x 10- = 1522 Q

1 1 1
Z1 Y Y~ + Y= 3.747 x 10-' +(-0.657 x 10-3 )

P=1

Zoo = Zo20= 323.6 Q

The SPICE code used for the simulation is given in Appendix A Table 1.2.

The time delay for the SPICE model is given by

d
td = d (4.19)

for d = 4.67 m and co = 3 x 108, we get td = 15.56 ns. The resulting SPICE output is

used for validation of FDTD method and is given in Fig. 4.16.
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Three-conductor MTL : FDTD and SPICE Method (case II)

25

20 ____ FDTD: NDZ=4 NDT=60 [Author]

15 -.-.-. SPICE-Marx et al [5]

E

0) 
-

c01
0

w/ \
Ca)z 0

-5-

-10 '
0 20 40 60 80 100 120 140 160 180 200

Time (ns)

Fig. 4.16a Near-End voltages for three-conductor MTL using FDTD and SPICE

method. The length of the line is 4.67 m. NDZ=4 and NDT=60. Data is recorded

on the second conductor.
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Three-conductor MTL : FDTD and SPICE Method (case II)

25

20 ____ FDTD: NDZ=4 NDT=100 [Author]

15 .-.-. SPICE-Marx et al [5]

c>10 I

0

-/ I

wi~ 5 , *

cii
zI

0

-5

-10'
0 20 40 60 80 100 120 140 160 180 200

Time (ns)

Fig. 4.16b Near-End voltages for three-conductor MTL using FDTD and SPICE

method. The length of the line is 4.67 m. NDZ=4 and NDT=100. Data is recorded

on the second conductor.
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Three-conductor MTL : FDTD and SPICE Method (case II)

25 I I I I I

20 -__ FDTD: NDZ=6 NDT=100 [Author]

15 -.-.-. SPICE-Marx et al [5]

E

8> 10--
0

z
0

-5-

-10 '
0 20 40 60 80 100 120 140 160 180 200

Time (ns)

Fig. 4.16c Near-End voltages for three-conductor MTL using FDTD and SPICE

method. The length of the line is 4.67 m. NDZ=6 and NDT=100. Data is recorded

on the second conductor.
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Chapter 5

Frequency-Domain Analysis

5 FREQUENCY - DOMAIN ANALYSIS

Here the frequency-domain analysis of a three-patch microstrip coplanar

parasitic antenna array is presented. A three-dimensional, 3D, FDTD code [3] is

used for the simulation. As can be seen from case I and case II models, the data

computed are initially in the time-domain. Then Fourier transformation is

implemented to obtain the frequency components of the signal in time-domain.

5.1 FOURIER TRANSFORM

In order to compute the Fourier spectrum of a signal by means of a digital

computer, the time-domain signal must be represented by sample values, and

the spectrum must be computed at a discrete number of frequencies. It can be

shown that the following sum gives an approximation to the Fourier spectrum of

k
a signal at frequencies N--NT.

N-1 2x

Xk = xe Nk (5.1)
n=0
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where k = 0, 1, 2 .... , N-1 and xo, xi, x2 ....... XN-1 are N sample values of the signal

taken at Ts-second intervals for which the Fourier spectrum is desired. The sum

(5.1) is called the discrete Fourier transform (DFT) of the sequence {xn}. According

to the sampling theorem, if the samples are spaced by Ts seconds, the spectrum

repeats every fs = TS-1 Hz. Since there are N frequency samples in this interval, it

f1 1
follows that the frequency resolution of (5.1) is - -

N NT. T

A little thought will indicate that to compute the complete DFT spectrum

of a signal, approximately N 2 complex multiplication's are required in addition

to a number of complex additions. It is possible to find algorithms that allow the

computation of the DFT spectrum of a signal using only approximately N Log2 N

complex multiplications. Such algorithms are referred to as fast Fourier transform

(FFT) algorithms [20].

MATLAB, a commercial software, is used for this transformation. f f t (x)

is the discrete Fourier transform of vector x, computed with a fast Fourier

transform (FFT) algorithm. If x is a matrix, f f t (x) is the FFT of each column of

the matrix. If the length of x is a power of two, a fast radix-2 fast Fourier

transform algorithm is used. If the length of x is not a power of two, a slower

non-power-of-two algorithm is employed. f f t (x, n) is the n-point f f t, padded

with zeros if x has less than n points and truncated if it has more [21].
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5.2 CASE III - MICROSTRIP PARASITIC ARRAY

Under frequency-domain analysis, a microstrip antenna is analyzed. The

model is a three-patch microstrip coplanar parasitic antenna array (Fig. 5.1 and

Fig. 5.2). The elements are rectangular in shape with the center element fed by an

offset microstrip line and outer elements parasitically coupled to the center

element [15].

The code used for the simulation is based on Kunz [3]. Kunz put forward

a three-dimensional, 3D, FDTD code based on the formulation of Yee cell cube

(Fig 2.1). This code can build simple shapes such as rectangular blocks, planes,

wires, spheres and cylinders. The first-order Mur's ABC is used in the code. The

source excitation is a Gaussian pulse.

The microstrip line is intended to have an impedance of 50 Q (59 mils

width). Modeling the microstrip with a half-cell correction (i.e., the line was

modeled as being 1 cell narrower than the actual physical dimension) led to the
2

calculation of Zo = 50.98 - j7.2 Q and Eeff = 1.91 at 3.35 GHz. This compares well

to the figure of 8eff = 1.904 at 4.0 GHz listed for a 50 Q line on this substrate in

the RT/Duroid product information manual [15].
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79.5

24.5 25.5 24.5

2.5 2.5
Ax=1 mm
Ay=1 mm

Az=0.51 mm

37.5

20

all dimensions in mm
4.5 unless otherwise noted

20

E=2.2, a= 0

62 mil

Fig. 5.1 The three-patch microstrip coplanar parasitic antenna array structure

[15].
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68 cells

10 cell 10 cells

Gaussian
Pulse

100 cells

y x

Fig. 5.2 3D diagram of the three-patch coplanar parasitic antenna

5.3 COMPUTED RESULTS

The structure of the model is given in Fig. 5.1 and Fig. 5.2. There are two

sets of simulations. The first set is based on the structure put forward by

Zimmerman and Lee [15]. For this computation, Ax = 1 mm, Ay = 1 mm and Az

= 0.51 mm. The workspace is 100 x 68 x 20 for a total of 136,000 cells. 10 cells are

kept on the left, right and back side of the model for stability of the simulation.

The run to determine the total voltage for the return loss used 4000 time steps. In
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the region of the patches, the largest grid size is 1 mm. This grid spacing

corresponds to 20 cells/wavelength in the dielectric substrate at 10 GHz. The

calculated frequency response agreed well with the measurements at this

frequency. The primary region of interest is around 4 GHz.

Here a Gaussian pulse of pulse width T = 50 ps and to = 3 x T is used (see

equation 1.2 and Fig. 1.2 and Fig. 1.3). The Gaussian pulse is truncated at 300 ps

when the pulse has fully launched. Keeping in mind the Courant stability

condition (2.8), the magical time step At is equal to 1.3797 ps. Magical time step, is

the value of At which is exactly equal to the courant stability value from (2.8). For

a practical approach, At taken for this simulation is 75 % of the calculated value,

which is equal to 1.0348 ps.

During the modeling of the structure, dimensions in decimal points are

observed. This is impossible to represent in a structure as one cannot have a half

cell. The actual dimensions of the three patches are 24.5 mm, 25.5 mm and 24.5

mm respectively from left to right. Due to the decimal points in the modeling,

numbers are rounded off to the nearest integer. This leads to approximation of

patch model, rather than actual representation.

To eliminate this inaccuracy, a finer cell dimension is chosen. In the

second set, the dimensions are Ax = .5 mm, Ay = .5 mm and Az = 0.51 mm. As

the cell size decreases, the total number of cells increases. Here the workspace is
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180 x 126 x 20 for a total of 453,600 cells, nearly three and a half times more cells

than for set I. Like for set I, 10 cells are kept on the left, right and back side of the

model for stability of the simulation. The run to determine the total voltage for

the return loss used 3000 time steps. In the region of the patches, the largest grid

size is .51 mm. Here, the time step At is 0.8 ps.

The frequency dependent scattering matrix coefficient is given by

[V]ref = [S] [V]inc (5.2)

where [V]ref and [V]ine are the reflected and incident voltage vectors, respectively,

and [S] is the scattering matrix. To accomplish this, the vertical electric field

underneath the center of each microstrip port is recorded at every time step. The

field value is assumed to be proportional to the voltage (which could be easily

obtained by numerically integrating the vertical electrical field) when

considering the propagation of the fundamental mode. To obtain the scattering

parameter Su(o), the incident and reflected waveforms must be known. The

FDTD simulation calculates the sum of incident and reflected waveforms. To

obtain the incident waveform, the calculation is performed using only the feed

line, which will now be of infinite extent (i.e., from source to far absorbing wall).

This incident waveform may now be subtracted from the incident plus reflected

waveform to yield the reflected waveform for the parasitic array. The scattering
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parameters, S11 , may then be obtained by simple Fourier transform of these

transient waveforms as

FFT {V ref(t)} (53)

S" (w) FFT {Vf"'(t)}

Note that the reference plane are chosen with enough distance from the

circuit discontinuities to eliminate evanescent waves [12].

5.4 VALIDATION

The main goal is to analyze the scattering parameter Sn given by equation

(5.3). The measured center frequency, according to Zimmerman and Lee [15], is

3.84 GHz. From the two sets of simulated and the simulation result of

Zimmerman and Lee [15],a comparative table is given below.

Measured Center Frequency [15] = 3.84 GHz

Center Frequency Error %

Set I [Author] 3.66 GHz 4.7 %

Set II [Author] 3.8 GHz 1.05 %

Zimmerman & Lee [15] 3.91 GHz 1.8 %

Fig. 5.3 Comparison study of center frequency for the three-patch

microstrip coplanar parasitic antenna array.
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Zimmerman and Lee [15] computed the minimum Si1 of -26 dB against the

experimental value of -41 dB. In this simulation, for set I, the drop is -37 dB while

for set II, it is -48 dB.

Drop in Sn

Experimental [15] -41 dB

e I. [Au.t..h.... e . .o r]. e = == e ................... . . ................... -3 dB. ...............

Set II [Author] -48 dB

Zimmerman & Lee [15] -26 dB

Fig. 5.4 Comparison study of drop in S11 at the center

frequency for the three-patch microstrip coplanar parasitic

antenna array.

From the graphs, it can be seen that, in my simulation for set I, the drop

around 3.6 GHz, is deep but appears before 3.84 GHz, as observed from the

experimental results [15]. The first drop around 2.6 GHz is very deep compared

to the experimental result. Also it can be seen that the plot is not smooth. It looks

quiet curvy. This is due to the Absorbing Boundary Condition used, which is the
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first order Mur's ABC. This could also have been caused by the approximation of

the model with decimal points in the picture.

In the second set, a much smoother curve is observed. The drop in Si is

very very close to the experimental drop. But the first small drop, around 2.6

GHz is not observed here at all. And Su at 2.5 GHz is higher than the

experimental result [15]. In this set, a much finer cell size is used, which could

have contributed to a smother curve. In fact the cell sizes in the x-axis and the y-

axis are half the size used for set I. This leads to nearly twice as much cells in the

x and the y direction. As the building block size gets bigger, more time is needed

to analyze the complete structure.

It is seen that as the cell size becomes smaller, it increases the number of

cells required in the structure. This results in increase of computational cost. For

both sets of simulation, the results are close to the experimental result of [15]. For

both the simulations, the first order Mur's Absorbing Boundary Condition is

used. Better result could have been observed, if a better ABC had been used, for

example the second order Mur's ABC.
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Sn parameter for three-patch microstrip coplanar antenna array (case III-set I)

5

0-

-10

c-20-

-25 - -

-30-

-35--40-

3 3.5 4 4.5
Frequency (GHz)

__ FDTD [Author] ----- Experimental [15] ._._. Lee et al [15]

Fig. 5.5 S11 parameter for a three-patch microstrip coplanar parasitic antenna

array with, Ax = 1 mm, Ay = 1 mm and Az = 0.51 mm. The center frequency,

based on experimental results [15] is around 3.84 GHz.
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Sn parameter for three-patch microstrip coplanar antenna array (case III- set II)

!/0 -. -

-10

-20 -

-30 -.-.-.-

-40

-50 - - -

-60
2.5 3 3.5 4 4.5

Frequency (GHz)

__ FDTD [Author] ----- Experimental [15] ___. Lee et al [15]

Fig. 5.6 Si1 parameter for a three-patch microstrip coplanar parasitic antenna array with , Ax =

0.5 mm, Ay = 0.5 mm and Az = 0.51 mm. The center frequency, based on experimental results

[15] is around 3.84 GHz.
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Chapter 6

Conclusion and Future Works

CONCLUSION

In this thesis research work, FDTD method is used to analyze multi-

conductor transmission line (MTL) and three-patch microstrip coplanar parasitic

antenna array. Under MTL, two different models are analyzed. The first model

(case I) is a simple two-conductor MTL based on Kraus [8]. Kraus put forward an

analytical method (using BASIC program) for the analysis of transmissin line.

Here, the FDTD method is used to analyze the structure and the results are

compared to Kraus [8]. Furthermore the same model is simulated using the

SPICE software. Good results are observed for all the three methods of

simulations. As can be seen in Fig. 4.9 and Fig. 4.10, the simulations are very

much in agreement with each other. As a pre-requirement for FDTD analysis, the

per-unit-length inductance L and capacitance C is determined first. These values

depend on the radius of the conductors and the distance between them (center to

center). Here, the MTL models are simulated as ribbon cables. Simulation of

uniform parallel lines such as ribbon cable has been studied by Shengyao Hu

[24]. He has applied FDTD algorithm for analysis of different ribbon cable

models.

72



The second model (case II) is a three-conductor MTL. The FDTD method is

used to analyze the Near-End voltage of the transmission line. For validation of

this simulation, the three-conductor MTL model is represented with two-wires

lines as put forward by Marx et al [5]. A proof of this equivalency is also

presented in chapter 4.2.2.1. It is then simulated using SPICE software. For the

three-wire model, different cell sizes and time steps combinations are presented.

There are a total of three different combinations for case II. The first one has

NDZ=4 and NDT=60. Likely, the second one has NDZ=6 and NDT=60 and the

last one has NDZ=6 and NDT=100. From Fig. 4.16, it can be seen that the

combination of NDZ=6 and NDT= 100 has the best result with respect to the

SPICE simulation.

For the two-conductor and three-conductor MTL models, a two-

dimensional, 2D, FDTD code written in FORTRAN is used. Apart from the main

code, two other FORTRAN programs are also used to calculate the per-unit-

length parameters of the models which are used as a part of the input data for

the main FDTD code. For these MTL models, the two-dimensional FDTD code

does not require any ABC, as the models have a source and load resistance.

The third model is a three-patch microstrip coplanar parasitic antenna

array. While the first two models are based on Paul [6], the three-dimensional

FDTD code is based on Kunz [3]. The numerical results of scattering parameter

are validated with the experimental result obtained from [15] and the results of
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Zimmerman and Lee [15]. For this model, there are two different simulations.

The first simulation uses the cell size described by Lee et al [15]. The only

drawback with these cell sizes is, the patch size results in fraction of a cell, which

is not possible in the FDTD algorithm. For example, the 24.5 mm wide patch

needs exactly twenty four and a half cells. There cannot be a half cell. Due to this,

the number is rounded off to the nearest integer. This results in inaccurate model

representation which leads to inaccurate simulation. In the second simulation, a

smaller cell size is chosen in such a way that fractional cells are not encountered.

Though this leads to larger number of cells, the model representation is better

leading to more accurate simulation. From Fig. 5.5 and 5.6, it can be seen that the

second set of simulation is more closer to the experimental result. The first set of

simulation has very unstable curves. In both the cases, the Mur's first order ABC

is used. The second order ABC is more accurate, but is computer costly. There

are different types of ABC that can be used, but in this thesis research work, only

the Mur's first order ABC is used.

One of the most important and difficult task in FDTD simulation is to

choose the correct size of grid cell and then the time step. The Courant stabiltiy

condition is given by the equation (2.8) for a three dimenasional FDTD algorithm

and equation (4.7) for a two-dimensional FDTD algorithm. The time step is

usually chosen less than the calculated time step [6], given by equation (2.8) and
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equation (4.6). In general, it is about 70-80% of the calculatd At. In this thesis

work, the time step At is around 80% of the calculated time step.

For all the three models, the FDTD simulation were very close to the

experimental result or results using some other method, like SPICE and BASIC

program. It is clearly seen that FDTD is an efficient and accurate tool to model

and analyze multi-conductor transmission line as well as different microstrip

antennas and arrays. The popularity of FDTD method in the recent years also

indicate that this method has been accepted in the industry.

FUTURE WORKS

For future works, different microstrip patch antenna or array can be

considered. Provided a better and larger computing environment, smaller grid

cells can be considered and larger models can be simulated. For the stability of

the system, a higher order absorbing boundary condition can be considered.

These high order ABC's are usually complex and need more memory for

computation.
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Appendix

SPICE CODE for Analysis of two-conductor MTL

SPICE MTL MODEL RIBBON two-conductor, risetime = 15 ns
VS 7 0 PULSE(0 10 0 15N 15N 10ON 1600N)
RS 7 1 20
RL 2 0 200
Vi 1 3
V2 2 4
EC1 3 0 POLY( 1)(5,0) 0 1
FC1 0 5 POLY( 1) V1 0 1
EC2 4 0 POLY( 1)(6,0) 0 1
FC2 0 6 POLY( 1) V2 0 1
T1 5 0 6 0 Z0=9.993076E+01 TD=3.335639E-07
.TRAN 1N 160ON 0 1N
.PRINT TRAN V(5) V(6)

.PLOT TRAN V(5) V(6)

. PROBE

.END
*SUBCIRCUIT MODEL OF A MULTI-CONDUCTOR TRANSMISSION LINE*

* NUMBER OF CONDUCTORS= 1
* TOTAL LINE LENGTH (METERS)= 1.00000E+02
* L( 1, 1)= 3.33333E-07

* C( 1, 1)= 3.33795E-11

.SUBCKT MTL
+1

+2

V1 1 3
V2 2 4

EC1 3 0 POLY( 1)(5,0) 0 1

FC1 0 5 POLY( 1) V1 0 1
EC2 4 0 POLY( 1)(6,0) 0 1

FC2 0 6 POLY( 1) V2 0 1
T1 5 0 6 0 Z0=9.993076E+01 TD=3.335639E-07

.ENDS MTL

Table 1.1 SPICE program to simulate two-conductor transmission line with rise

and fall time of 15 ns and pulse width of 100 ns. The final solution time is 1600

ns. Rs = 20 Q, RL = 200 Q and Ro = 100 Q. The magnitude of the pulse is 10 V.
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SPICE CODE for Analysis of three-conductor MTL

* MTL Model Using Two-Wire Delay Lines

.OP
VS 1 0 PULSE(0 1 0 12.5N 12.5N 7.5N 200N) ;Source
RS 1 2 50 ;Source
RL 9 0 50 ;Load
RNE 10 0 50 ;Near End
RFE 17 0 50 ;Far End

T10 2 0 9 0 Z0=323.6 TD=15.56N ;Transmission Line
T12 2 17 9 10 Z0=1522 TD=15.56N ;Coupled & Transmission
T20 17 0 10 0 Z0=323.6 TD=15.56N ;Transmission Line

.TRAN 0.5N 20ON ;Time Domain Analysis

.OPTIONS LIMPTS=801 PIVTOL=1.0E-16

.PRINT TRAN V(1) V(2) V(9) V(17) V(10)

.lib nom.lib

.probe

.END

Table 1.2 SPICE program to simulate three-conductor transmission line with

rise and fall time of 12.5 ns and pulse width of 7.5 ns. The final solution time is

200 ns. Rs = 50 S, RL = 50 £2, RNE=50 £2 and RFE=50 Q. The magnitude of the pulse

is 1V. The characteristic impedance of the two-wire line are zolo = zo2o = 323.6 Q

and zo12=1522 £2. The time delay for the model is 15.56 ns.
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