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ABSTRACT OF THE THESIS

THEORETICAL ANALYSIS OF CROSS JOINT GEOMETRIES

AND THEIR CLASSIFICATION

by

Taixu Bai

Florida International University, 1996

Miami, Florida

Professor Michael R. Gross, Major Professor

Joints as opening-mode fractures play important roles as indicators

of tectonic stress fields and as pathways for underground fluid flow. This

thesis analytically investigates the relationships among cross joint

geometry, orientations and ratios of remote principal stresses, and fluid

pressure. Results show that main trends of cross joints are perpendicular

to the least far field stresses during cross joint formation, and cross joint

paths can be used to determine relative magnitudes of remote principal

stresses. Based on the theoretical derivation, cross joint geometries are

grouped into five main categories: curving-parallel, curving-perpendicular,

quasi-curving-parallel, quasi-curving-perpendicular and non-curving

geometries. By introducing the concepts of effective stress and effective

remote principal stress ratio, it is demonstrated that connectivity between

cross joints and the pre-existing joint is improved for joints that form

under relatively high pore pressures.
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INTRODUCTION

The general term 'fracture" refers to any planar to curvi-planar

discontinuity found in rock, and includes a wide variety of features such as

joints, faults, shear fractures, and veins. Although fracture type depends

upon applied forces, mechanical properties, sense of displacement, and fluid

chemistry, all fractures are manifestations of brittle deformation. Brittle

deformation mechanisms operate under relatively low temperatures and

differential stresses (e.g., Twiss and Moores, 1992), and thus fractures most

commonly develop in the earth's upper crust (upper 10-15 km).

"Joints" are unmineralized fractures that display no appreciable shear

displacement. Because displacement is normal to the fracture plane, joints

are referred to as "opening-mode", or "mode-I" fractures in the fracture

mechanics literature (Engelder, 1987; Pollard and Aydin, 1988). Joints

always propagate normal to the local least principal stress (a-) and in the

plane containing maximum (o) and intermediate (6 2 ) principal stresses



G3 
62

Fig. 1-1. Principal stress configuration during joint growth. Joints as

mode-I fractures always propagate perpendicular to the least

principal stress (63) and in the plane containing the maximum ((1)

and intermediate principal stress (62). The sign convention of

positive for compressive stresses is used in this figure and

throughout the thesis.
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(Fig. 1-1). Consequently, systematic changes in joint orientation may

reflect changes in the local stress field near the tip of a propagating joint.

Therefore, joints can be used as sensitive indicators of both local and

regional stress fields at the time of brittle failure.

Two examples of how mode-I fractures describe past tectonic stress

fields are shown in Figs. 1-2 and 1-3. The arcuate pattern of regional joint

orientations on the Appalachian Plateau of southern New York and western

Pennsylvania may be used to construct trajectories of maximum horizontal

stress (SH) during the Alleghenian orogeny (Engelder and Geiser, 1980).

As expected, the stress trajectories trend toward the hinterland of the

orogen (Fig. 1-2). A second example of mode-I fractures serving as

indicators of stress orientation is found in dike patterns at Spanish Peaks,

Colorado (Od6 1957; Johnson, 1968; Muller and Pollard, 1977). Dike

trends reflect a combination of local stresses resulting from igneous

intrusion in addition to a regional ENE tectonic compressive stress. As

shown in Fig. 1-3, theoretical stress trajectories computed by superimposing

stresses around a pressurized hole (simulating an igneous intrusion) onto a

rectilinear stress field (simulating regional tectonic stress) compare

favorably with the observed dike pattern.

Mode-I fractures have also been used to estimate stress magnitude

during brittle deformation. For example, Segall and Pollard (1983)

calculated the minimum principal stress and fluid pressure required to drive

a set of opening-mode fractures in granitic rock based on vein apertures and

fracture mechanics theory. By analyzing the fluid inclusion geochemistry

of opening-mode veins, Srivastava and Engelder (1990) were able to

constrain fluid pressures and local states of stress during progressive

3



Strike of Joints

0
0 100 km

Lake Erie Ne Yr

Fold Axes

i New York

City

//
/ Philadelphia

/ //

Fig. 1-2. Regional joint pattern on the Appalachian Plateau. Data from

Nickelsen and Hough (1967), Rodgers (1970), and Engelder and

Geiser (1980). The figure shows strikes of Joint Set Lb as described

by Engelder and Geiser (1980). The joint set is perpendicular to the

regional fold axes, which formed during the Alleghenian orogeny.

The maximum horizontal stress trajectories drawn parallel to joint

trends converge southeast toward the hinterland. Redrawn from

Suppe (1985).
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(a) N

Spanish Peaks 7 -
intrusive centers

- - - Sil

0 10 km

(b)

Calculated a,

stress trajectorieci

0 10 km

Fig. 1-3. (a) Dike patterns at Spanish Peaks, Colorado (Johnson, 1968). (b)

Theoretical regional stress field at Spanish Peaks (Muller and Pollard,

1977). Note dike trends reflect a combination of local stresses

resulting from igneous intrusion in addition to a regional ENE

tectonic compressive stress. Redrawn from Suppe (1985).
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development of a fault-bend fold. In yet another example, Olson and

Pollard (1989) developed a method to predict relative magnitude of

differential stress during joint propagation based on the "hooking

geometries" of interacting crack tips.

This thesis focuses on the relationship between state of stress and

cross joint geometry. Cross joints are a specific type of fracture that grow

in between pairs of pre-existing systematic joints. Their growth is affected

by the perturbed stress field adjacent to the pre-existing joints, where local

principal stresses often deviate dramatically from the remote stress

configuration. As a result, cross joints often exhibit a curving geometry

because they are mode-I fractures that propagate normal to local 6,.

CROSS JOINTS

According to Hodgson (1961), joints may be classified as systematic

or non-systematic, with cross joints representing an important variety of

non-systematic joints. Cross joints were originally defined by Hodgson as

joints that are subnormal to systematic joints, without cutting across the

systematic joints (Fig. 1-4a, Hodgson, 1961). Compared to systematic

joints, cross joints often exhibit non-planar surfaces and irregular, curved

traces on bedding plane surfaces (Figs. 1-4b & c, Gross, 1993a).

Consequently, they are often less consistent in orientation than systematic

joints (Fig. 1-4c). In some locations, however, cross joints also display

properties belonging to systematic joints, such as a regular spacing (Gross,

1993a), and planar or curvi-planar surfaces aligned in an en echelon pattern

6



(b) east-west
,1.5 m , systematic

cross joints systematic joints 5se N

Belmont, New York
Canadavay Group

cross joints

strike-perpendcular
systematic 3200

Stony Brook, New York
West Fall Group

bedn uraeeast-west systematic joi nts 840
bedding surface

(a)
1 m7 ° 9 2 0

east-west systematic joints

( pre-existing
systematic
joints

cross
jo' t

curving-
perpendicula crack tip
geometry interactio

Fig. 1-4. Some cross joint examples from the literature. (a) Schematic

block diagram showing cross joints defined by Hodgson (1961) and their

relations to systematic pre-existing joints. (b) Curving cross joints observed

by Engelder and Gross (1993). (c) Systematic joints and cross joints at

Alegria, California (Gross, 1993).
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(Dyer 1988). In most cases, cross joints are initially oriented at high angles

to systematic joints (Hodgson 1961; Hancock, 1985; Engelder and Geiser,

1980; Gross, 1993a; Engelder and Gross, 1993), however, low angles (i.e.,

<45°) between cross joints and systematic joints are also observed in the

field (Fig. 1-5).

In order to establish consistent nomenclature, I herein define cross

joints as joints that extend across intervals between pre-existing joints,

without cutting across the pre-existing joints. Arrays of cross joints

typically resemble a "ladder-like" pattern on outcrop, as described by

Rawnsley et al (1992). The usage of the term cross joint in this thesis

should not be confused with "cross-strike" and "cross fold" coined by

Engelder and Geiser (1980) and Srivastava and Engelder (1990) to describe

vertical joints trending at high angles to fold axes, nor to the "cross joints"

defined by Cloos (1922) to describe lineation-perpendicular joints in

granitic plutons. Several important characteristics of cross joints are

noteworthy. First, cross joints can be either non-systematic or systematic.

Compare, for example, the irregular cross joints in Fig. 1-4c to the regular

en echelon patterns observed by Dyer (1988) in Fig. 1-5. Second, cross

joints develop in between two pre-existing systematic joints. They may abut

against the pre-existing systematic joints, but they do not cut across them.

Thus, cross joint lengths are limited by intervals between pre-existing

systematic joints. In fact, the distance between adjacent systematic joints

often serves as a mechanical layer thickness, which is proportional to cross

joint spacing (Gross, 1993a). Third, from their cross-cutting relationship

with systematic joints, cross joints clearly formed later in time than the

systematic joints. Fourth, the angles between the main segment of the cross

8



curving-parallel

systematic
pre-existing
joints

cross joints

N
Domain A

(b) systematic
(b) i pre-existing

curving-perpendicular joints

cross joints

N
Domain B

Fig. 1-5. Schematic diagram showing systematic pre-existing joints and

cross joints observed by Dyer (1988). (a) Curving-parallel

geometry. (b) Curving-perpendicular geometry. Patterns are based

on the information provided in Dyer's Fig. 2. Not drawn to scale.
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joints and pre-existing systematic joints can vary from acute to subnormal,

depending upon the orientation of the remote stress field in which they

formed (see, e.g., Dyer, 1988; Rawnsley et al, 1992; Gross, 1993a).

Because cross joints are oriented differently from, and consistently

abut against, pre-existing joints, it is reasonable to assume they neither

formed at the same time nor under the same stress conditions. This is

because (1) younger joints abut against older joints, and, (2) as mentioned in

the introduction, joints are mode-I fractures that always propagate in the

direction perpendicular to the least principal stress. Therefore, cross joints

in many cases develop in a stress field different from that which prevailed

during propagation of the pre-existing systematic set (e.g., Dyer, 1988).

Using these principles, Engelder and Gross (1993) proposed that a set of

late-formed cross joints can serve as potential indicators of a neotectonic

stress field.

Joint abutments (i.e., the intersection points among different joints)

have been used to describe a component of the "architectural style" of

fractured outcrops. Hancock (1985) noted that shapes often resemble

capital letters of the Roman alphabet, as shown schematically in Fig. 1-6. In

some cases, joints pass through each other, whereas in other instances one

joint terminates against another (e.g., "T", "H", "Y", "A" intersections in

Fig. 1-6). In the latter case, cross cutting relationships can be used to

determine the relative timing of joint propagation. However, these

descriptions do not account for subtle changes in joint geometry near points

of intersection.

Field observations demonstrate that in some cases cross joints

approach pre-existing joints with a curving-perpendicular geometry

10



(a)

(b)

cross

joints

conjugated joints

Fig. 1-6. Several of the joint-system architectural styles on bedding planes

described by Hancock (1985). (a) Letter shapes of joint abutments.

(b) A-shaped patterns resulting from regular cross joints

superimposed on pre-existing conjugated joints. Based on

descriptions of Hancock (1985).
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(Figs. 1-4b & c, Fig. 1-5b,), whereas in other cases a curving-parallel

geometry is displayed (Fig. 1-5a). These changes in joint trajectory are

thought to arise from local stress perturbations created by the pre-existing

joint. The paths taken by cross joints result from a combination of remote

and local stresses. Cross joints initiate at some distance away from the pre-

existing joint, and thus initial trends are strongly controlled by the remote

tectonic stress field. However, cross joint paths often deviate from the

regional trend in zones adjacent to pre-existing joints due to changes in the

local stress field. In other words, initial cross joint trend reflects a change

in the orientation of the tectonic stress field subsequent to formation of the

systematic joints, whereas the curving geometry indicates changes in local

stress orientations encountered during cross joint growth.

GOALS OF THE THESIS

The first analytical treatment of cross joint geometry was provided

by Dyer (1988), who derived relationships for cross joint growth as a

function of orientation and relative magnitude of the remote principal

stresses. The primary goal of this thesis is to augment Dyer's contributions

by solving analytically for the following:

1) The angle of cross joint growth as a function of distance from a pre-

existing joint, which yields theoretical cross joint trajectories

2) The size of the compressive zone that develops in the vicinity of pre-

existing joints; this zone tends to inhibit cross joint growth

12



3) The influence of internal fluid pressure on the growth and geometry of

cross joints; elevated fluid pressures are the dominant mechanism for joint

propagation at depth, where all three principal stresses are generally

compressive.

Another goal of the thesis is to apply cross joint theory to several

field examples. Thus, one can evaluate the usefulness of the theoretical

analysis of cross joints in estimating tectonic stress and the effect of

mechanical interactions.

Cross joints have received little attention in the geologic literature

primarily because they are limited in size and are subsidiary to the more

prominent and throughgoing systematic joints. However, cross joints play a

critical role in enhancing fluid flow in fractured rock, as they provide

connectivity among otherwise isolated joints. Therefore, understanding the

formation and resulting geometries of cross joints can lead to a better

understanding of the subsurface flow of hydrocarbons, groundwater, and

contaminants in rocks that have undergone brittle deformation. In addition,

the orientation and relative magnitude of remote stresses derived from the

study of cross joints may give important insights into the tectonic

development of a region.

13



DYER'S (1988) ANALYSIS

Dyer's field observations revealed that cross joints can either curve in

a parallel or a perpendicular fashion as they approach pre-existing joints

(Fig. 1-5, Dyer, 1988). He concluded that cross joints form after a rotation

of the remote horizontal principal stresses that prevailed during formation

of the pre-existing joints. Furthermore, Dyer considered that the initial

cross joint trend is parallel to the local maximum horizontal stress, and the

curving geometry of cross joints in the vicinity of the pre-existing joints is

caused by a perturbation in the local stress field due to the pre-existing

joints. Therefore, following the assumption that joints always propagate

perpendicular to the least principal stress, he was able to calculate principal

stress trajectories in the vicinity of the pre-existing joints and to predict the

propagation paths of cross joints (Fig. 2-1).

In Dyer's model the pre-existing systematic joint is represented by a

through crack of infinite length and of constant height (2c) in an infinite

14



Pre-existing stresses in accordance with

remex g the coordinate system

stress field

6 3

stress 6, y
S field

rotation

new remas (oie wrwing crossct

sre ss field

Fake-off loal prin cipal stresses
png j t near pre-existing joint

resolved bacal
stresses in accordance

with the coordinate c join it
system

z axis (colinear with the pre-existing fracture)

Fig. 2-1. Dyer's conceptual model. In the pre-existing stress state, fe was

parallel to the pre-exist in t, while a was perpendicular to the

pre-existing joint. After formation of the pre-existing joint, the

remote stresses rotated through an angle of . Cross joints formed

in accordance with the new stress field. The figure shows that the

initial trend of the cross joint is perpendicular to the new remote

least principal stress. As the cross joint approaches the pre-existing

joint, a curving geometry occurs in response to the local stress field

near the pre-existing joint. The figure also shows the resolved

remote and local stresses with respect to the coordinate system shown

in Fig. 2-2.
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000

622

Fig. 2-2. Dyer's stress configuration and coordinate system. The figure

shows a joint of infinite length and of height 2c subjected to a remote

stress field in which uF is vertical, and u; and u; are horizontal.

After Dyer (1988).
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homogeneous and isotropic elastic medium. The elastic medium containing

the pre-existing joint is subjected to remote stresses where the maximum

principal stress is vertical, and the intermediate and least principal stresses

are horizontal (Fig. 2-2). After the formation of the initial joint set and the

subsequent rotation of the tectonic stress about x -axis, the horizontal

principal stresses become re-aligned, with g representing the acute angle

between the intermediate principal stress and the pre-existing joint. Note

that the coordinate system defined by Dyer is left-handed, in which the x-

axis is vertical and lies in the plane of the pre-existing joint, the y-axis is

horizontal and perpendicular to the plane of the pre-existing joint, and the

z-axis is horizontal and lies in the plane of the pre-existing joint (Fig. 2-2).

Dyer made three important assumptions in his theoretical treatment

of cross joints. First, a tensile minimum principal stress (a,) is required

for joint growth. In the case of internal fluid pressure, this can be an

effective tensile stress. Second, the orientation of the growing cross joint is

perpendicular to the local minimum horizontal stress (a,). Third, there is

no interaction between the pre-existing joint and the growing cross joint,

which means the stresses around the pre-existing joint are not affected by

the presence of the cross joint.

Based on the stress configuration, the coordinate system defined in

Fig. 2-2 and using the equations of Mohr circle construction, Dyer first

obtained the resolved remote stresses in the directions of the coordinate

system (Fig. 2-2). They are

u= [(6; + - ( -- u; )cos2(90 - )]/2, (2-1)

17



6Z = [ + )+ (6; - a )cos2(900 - )]/2, (2-2)

o;*=[(a - 3 )sin 2(90' - g)]/2, (2-3)

(Dyer's equation 1, 2, 3). The "take-off" angle, g, is the angle between the

maximum horizontal stress and the pre-existing joint (i.e., z-axis, Fig. 2-2),

6; and 6; are the maximum and minimum remote horizontal stresses

respectively, and a;, 6* and a* represent the remote normal stresses and

the shear stress corresponding to the coordinate system in Fig. 2-2.

Dyer assumed that the pre-existing joint is open when 6* is tensile

( , < 0) and closed when 6;, is compressive (u;. > 0). This division

results in four specific stress states relevant to cross joint growth (Fig. 2-3).

There are two subclasses in the open case according to the value of oZZ .

When 6ZZ > 0, curving-parallel geometry occurs, whereas when u < 0,

curving-perpendicular geometry occurs.

In the closed case, the opposing rock walls are in contact, and two

subclasses can also be distinguished based on the coefficient of friction along

the pre-existing joint. One is the frictional sliding case (i.e., a shear stress

exists along the pre-existing joint), where the frictional coefficient of the

pre-existing joint is not zero. The other is the frictionless case, where there

is no shear stress on the joint surface, and hence the coefficient of friction is

zero.

Using the above considerations, Dyer then analytically solved for the

local stresses with respect to the coordinate system (Fig. 2-2) in the x = 0

plane, which for the open case are:
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Cross Joints

Pre-existing Joint Open Pre-existing Joint Closed

Curving- Curving- Frictional Frictionless
parallel perpendicular sliding
(c >0) (c < 0) (Z(X = o) # 0) (ax(X = o= 0)

1 9 I I 0

C 0
o N

CO CDp

E 2
0 0

Fig. 2-3. The four cross joint subclasses of Dyer (1988). Note that cross

joints are inhibited from growing in compressive zones.
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6 (x = 0) = a7iy3I/(y 2 + c2)3"2, (2-4)

(X = 0) = 6 Jyl(y2 + 2c 2 )3/ 2 / ( 2 + c2 )3/2 -1], (2-5)

Z (X =0)= [IyI/(y 2 + c2 )/2 , (2-6)

(x = 0) = u + V( + , , (2-7)

(Dyer's equation 9, 10, 11, 12), and for the closed case are:

6,., = CC, (2-8)

a, = 6 , (2-9)

-,Z = o [s+(1 +s)y /(y 2 + c 2)/ 2], (2-10)

6(X = 0) = ZZ + V(6 + 6,,), (2-11)

which are the equation 21 and equation group 22 in Dyer's (1988) paper.

The terms ax, a,, and 6u are local normal stresses, 6, is local shear stress

corresponding to the coordinate system defined in Fig. 2-2, 6u is the

remote stress in the direction of z axis (i.e., parallel to the pre-existing

joint), c is the half height of the pre-existing joint, and v is Poisson ratio of

the elastic medium. Friction is accounted through the shear stress ratio (s),

defined as s= Qj<x= o>/ -;, where 6,Z x = o> is the shear stress along the pre-
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existing joint. Because r >= =Co-, we have s = Cob-. / 6, where Co is

the coefficient of friction belonging to the pre-existing joint surface.

After analytically deriving the magnitudes of local stresses as

functions of distance from the pre-existing joint and remote stresses, Dyer

then used the standard Mohr circle construction to determine the local

principal stresses for the special case of g = 30, which is the angle between

the maximum horizontal stress and the pre-existing joints.

In the open case (i.e., ,, < 0) with g = 30, he found that (1) curving-

parallel geometry occurs when the remote principal stress ratio is between

-3 and -1/3 (Fig. 2-4a); (2) curving-perpendicular geometry occurs when

the remote principal stress ratio is between -1/3 and 1 (Fig. 2-4b); and (3)

there is no compressive zone in this case (Fig. 2-4a & b). In the closed

case, systematic changes in the directions of the local principal stresses also

occur (Fig. 2-5a & b), however a compressive zone exists in both the

frictional sliding and frictionless subclasses. The width of this compressive

zone is approximately 0.6c (Fig. 2-5a & b).

From the above description, we can see that Dyer's work provides an

excellent first order approximation of the relationships between cross joint

geometry and remote principal stress ratios. These simple results can be

easily applied to outcrops in an attempt to map the tectonic stress field. The

initial cross joint trend gives the orientation of the maximum horizontal

stress, and the curving geometry provides the relative magnitude of the

ratio between the maximum and minimum horizontal stresses.

Several workers have applied Dyer's study of cross joints in Arches

National Park, Utah, to cross joints found elsewhere. Gross (1993a) studied

cross joints in the Monterey Formation of California, and concluded that the
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y/c

3003 - - 3 2

G3 Tensile 1

(a) curving-parallel z

- - -- -y/c

30° 62 63

2

1

\3 Tensile

(b) curving-perpendicular z

Fig. 2-4. Dyer's curving-parallel and curving-perpendicular cases for an

open pre-existing joint. (a) Curving-parallel case. (b) Curving-

perpendicular case. The figures show the orientations of local

principal stresses as a function of normalized distance from the pre-

existing joint (y/c). The remote principal stress ratio is -2. The

angle between the pre-existing joint (collinear with z axis) and the

remote maximum horizontal stress is 300. Note 63 remains tensile

everywhere in both cases. After Dyer (1988).
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3O/c
30° \2 3 -2

(a) Frictional case 63 Tensile 1

3 Compressiva
z

y/c

30 3 2

(b) Frictionless case

63 Tensile

3 Compressive
- > z

Fig. 2-5. Dyer's frictional and frictionless cases for a closed pre-existing

joint. (a) Frictional case. (b) Frictionless case. The remote

principal stress ratio is -5. Note the change in principal stress

orientations. The angle between the pre-existing joint (collinear with

z -axis) and the remote maximum stress is 300. In the frictional case,

a Byerlee-type friction law with a coefficient of 0.6 is used. Note (3

changes sign at y / c = 0.6 in both cases. After Dyer (1988).
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ratio of maximum stress to minimum stress in the bedding plane was

between -1/3 and 1 during the formation of the cross joints. In another

example, Engelder and Gross (1993) studied the orientations of the

neotectonic stress field and the differential stress based on cross joint traces

observed on bedding-plane surfaces of Devonian Catskill clastic rocks of the

Appalachian Plateau of western New York state. These studies demonstrate

the applicability of Dyer's approach to studying both the orientations and

relative magnitudes of stress fields.

Dyer's study, however, focused primarily on a special case in which

the angle between the initial cross joint trend and the pre-existing joint is

300. Furthermore, relationships between cross joint geometry and fluid

pressure were not fully considered in his study. Thus, there are several

limitations to the general application of Dyer's analysis. For example, what

is the range of the remote principal stress ratio when the takeoff angle is a

value other than 300? How does cross joint geometry vary with depth

where the principal stresses are all compressive? What is the meaning of a

cross joint geometry which is neither curving-parallel nor curving-

perpendicular? Is the width of the compressive zone in the closed case

always approximately 0.6c ? What controls the width of this compressive

zone? In the following chapters, I will attempt to answer these questions.
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THEORETICAL DERIVATION

The goal of this chapter is to study the relationships between cross

joint geometry and remote principal stresses as well as pore pressure. To

achieve this goal, I first clarify the theoretical model and assumptions used

in the derivations. Then, based on the defined theoretical model and

coordinate system, I discuss the general conditions for open and closed pre-

existing joints. After that, I solve for cross joint geometry as a function of

remote principal stress for the open and closed pre-existing joint cases,

respectively. Based on the assumption that joints cannot propagate into a

compressive area (i.e., where all principal stresses are compressive), I

discuss constrains on cross joint propagation in the fourth step. Finally, I

examine the role of pore pressure in controlling cross joint geometry by

defining the concept of the effective remote stress ratio. The term "remote

stresses" refers to stress configurations located at a point sufficiently far

away from any pre-existing joint, such that it is mechanically unaffected by
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a pre-existing joint. Remote stresses do not necessarily coincide with the

tectonic stresses. Rather, "remote stresses" is used in this study to mean the

same as "far field stresses" in the mechanics literature, which was defined

based on the Saint-Venant Principal (Timoshenko and Goodier, 1970).

COORDINATE SYSTEM AND ASSUMPTIONS IN THIS STUDY

Before proceeding with analytical solutions for cross joint

geometries, I outline the boundary conditions and assumptions in the model

to be employed, which differ slightly from those of Dyer's (1988) analysis.

Following Dyer's example, my model supposes a through crack of infinite

length and of constant height (2c) formed in an infinite homogeneous and

isotropic elastic medium. This crack represents the systematic joint that

existed prior to cross joint propagation (Fig. 3-1), and in layered rocks the

height (2c) often corresponds to bed thickness (e.g., Price, 1966; Narr and

Suppe, 1991) . Whereas Dyer used a left-handed coordinate system

(Fig. 22), I designate a right-handed coordinate system where the x-axis is

vertical and lies in the plane of the pre-existing joint, the y-axis is

horizontal and perpendicular to the plane of the pre-existing joint, and the

z-axis is horizontal and lies in the plane of the pre-existing joint (Fig. 3-1).

In order to avoid unnecessary complications with theoretical

derivations, the model considers the simple geologic case of vertical

fractures developing in horizontal strata. Thus, the pre-existing joint

developed in a stress field where the maximum principal stress was vertical,

the medium principal stress was horizontal and parallel to the pre-existing
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36

Fig. 3-1. Coordinate system and stress state that prevailed during

formation of the pre-existing joint adopted for use in this study.

Note that the coordinate system is right-handed in contrast to Dyer's

left-handed coordinate system in Fig. 2-2.
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joint, and the least principal stress was horizontal and perpendicular to the

pre-existing joint (Fig. 3-1). Due to temporal changes in the remote stress

field, the principal stress directions changed subsequent to formation of the

pre-existing joint. Suppose there was a clockwise rotation in the horizontal

principal stress directions as shown in Fig. 3-2, then new joints would form

in accordance with the new remote stress field. Here I designate the

maximum, medium and least principal stresses of the new remote stress

field as u;, 6; and o , respectively. The initial trend of the new joints,

which are the cross joints, lies in the plane of 6; and 6; as shown in

Fig. 3-2. The angle between the pre-existing joint and the initial trend of

the cross joint is called the takeoff angle, g.

In all the following derivations, I will use three assumptions, which

are: (1) a cross joint path is perpendicular to the local least horizontal stress

in terms of the theoretical model (Fig. 3-2), which is based on the definition

of joints (Pollard and Segall, 1987), (2) there is no interaction between a

growing cross joint and the pre-existing joint, and (3) there is no interaction

between two adjacent cross joints. Assumptions (2) and (3) mean that the

stress field in the vicinity of the pre-existing joint is not affected by

introducing any cross joint. Therefore, cross joint paths can be constructed

just based on stress trajectories.
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62 pre-existing
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/0Z

cross joint

010

Fig. 3-2. Formation of a cross joint after rotation of the horizontal remote

principal stresses. The figure shows the coordinate system, the

rotated remote horizontal stresses, the pre-existing joint and a cross

joint with a curving-parallel geometry.
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CONDITIONS FOR OPEN AND CLOSED

PRE-EXISTING JOINTS

In Dyer's special case where the take-off angle (; ) equals 300,

curving-parallel geometries occur when the ratio of maximum to minimum

horizontal stress (i.e., a;/; ) ranges from -3 to -1/3 (Figs. 2-4, 2-5). On

the other hand, curving perpendicular geometries occur when the ratio is

-1/3 to 1. In the following analysis I consider the general case in which the

cross joint initiates from an arbitrary take-off angle.

Based on the coordinate system, the stress configuration defined in

Fig. 3-2 and using the equations of Mohr circle construction (Jaeger and

Cook, 1979), one can obtain the resolved remote stresses in the directions

of the coordinate system. They are

6.=[(62 + ;) -(a; - a;)cos2g]/2, (3-1)

6Z = [(6 + a3)+(U2 - 6; )cos 2g]/2, (3-2)

6 =4(2 -C;)sin2g]/2. (3-3)

Here o;, u and 6* represent the remote normal stresses and the shear

stress corresponding to our coordinate system in Fig. 3-2. These solutions

are slightly different from Dyer's solutions (shown in equations 2-1, 2-2

and 2-3). In fact, there is a minor mistake in Dyer's equations, and 6;; of

his solution should be replaced by 6*.
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According to Dyer (1988), when o, is tensile (i.e., c-,<0), the pre-

existing joint is open. In contrast, the pre-existing joint is closed when 6-

is compressive (i.e., 6;,>0). Using equation (3-1), and considering the

conditions in forming the cross joints (- <0), as well as the convention

a; > , the condition for an open pre-existing joint is

-(1 + cos2;)/(1- cos2g) < a; /; <1, (3-4)

and the condition for a closed pre-existing joint is

a; /0; < -(1+ cos2g)/(1 - cos2g). (3-5)

Note that cos2g >0 when 0' < 45', and cos2g S 0, when 45' g 90. For

convenience in the following discussion, the absolute value of cos2; is used

to define the conditions for open and closed pre-existing joints. The

conditions for an open and a closed pre-existing joint are shown in Table 3-

1. From Table 3-1, we can see that an open or closed status for the pre-

existing joint not only depends upon the remote principal stress ratio, but

also upon the takeoff angle g. For example, when the remote principal

stress ratio is -2, the pre-existing joint is open when g = 30'. However, for

the same stress ratio, the pre-existing joint is closed when ; =60.
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Table 3-1. Conditions for open and closed pre-existing joints. In this

table, g represents the take off angle, o2 / o, is the remote principal stress

ratio. The numbers in the parentheses are just for the convenience in the

following discussions. S = -(1+Icos2q1) / (1-Icos2;I),

T = -(1-Icos 2;1) / (1+Icos 2;1).

<S S<- <T T< <1

0 < ; < 45 Closed Case #1 Open Case #1 Open Case #2

45 < g < 90 Closed Case #2 Closed Case #3 Open Case #3
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CROSS JOINT GEOMETRY AS A FUNCTION OF REMOTE

PRINCIPAL STRESS RATIO

The goal of this section is to derive expressions that outline cross

joint propagation paths as a function of relative stress magnitudes and

orientations. This is accomplished by discussing the two different cases,

i.e., open and closed pre-existing joint cases, respectively.

I. OPEN PRE-EXISTING JOINT CASE

In discussing the open pre-existing joint case, a three-step procedure

is used. The first step is to define the general conditions for curving-

parallel and curving-perpendicular geometries as a function of remote stress

ratio and take-off angle. The second step solves for the stress components

adjacent to the pre-existing joint, and then determines the orientation of

local maximum horizontal stress as a function of distance from the pre-

existing joint. Based on the assumption that cross joint traces are aligned

parallel to maximum horizontal principal stress, the third step plots

expected cross joint trajectories as a function of stress ratios for selected

take-off angles.

(1). Conditions for curving-parallel and curving-perpendicular

geometries

In his analysis, Dyer (1988) concluded that both curving-parallel and

curving-perpendicular geometries can occur when 6-* <0. The difference
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in geometries of these cross joints are controlled by u . When a- > 0, a

curving-parallel geometry occurs, whereas, when Ou < 0, a curving-

perpendicular geometry occurs. Based on these considerations and using

equations (3-1) and (3-2), the general formulations for the curving-parallel

geometry case are

6 + 2 -Y2 cos2g <0, (3-6)
2 2

and = + cos2g >0. (3-7)
2 2

Combining these two inequalities yields

-(1 + cos2g)/(1 - cos2g) < 6 /63 < -(1 - cos2g)/(1 + cos2g). (3-8)

Simple inspection of equation (3-8) reveals that it is only valid when

00< g < 450, which means that curving-parallel geometries can occur only

when the angle between the pre-existing joints and the main trend of the

cross joints is less than 45.

Following the same steps, the conditions for the curving-

perpendicular case are

2= 3_ 2 cos2;<0, (3-9)
2 2

and 6Z = 2 + 2 cos 2g< 0, (3-10)
22

which lead to
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- ( <g<45) -11)
63 1+cos2g

and 2> -1+ cos2. (45 < g < 90) (3-12)
og 1 -cos2g

Combining (3-11) and (3-12), we have

_ 1-I cos 2g, (0 < g < 90) (3-13)
6 3  1+Icos2gI

Considering the fact that 2 > a; and a; <0, then

62 / G; 1. (3-14)

Therefore, the conditions for achieving a curving-perpendicular geometry

in the open case are

-(1-Icos2gI)/(1+Icos2gI)< 6;'/6 <1. (3-15)

Dyer (1988) specifically looked at the situation where g = 30°.

Substituting this value into (3-8) and (3-15), the remote stress ratio is

-3 < ; /Q;* <-1/3 for curving-parallel geometries, and -1/3 < a; /a- <1 for

curving perpendicular geometries. Thus my results are in complete agree

with Dyer's conclusions. The results from (3-8) and (3-15) are summarized

as the open cases in Table 3-2.
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Table 3-2. Classification of cross joint geometries. In this table, g

represents the take off angle, 2 / - = 7 is the remote principal stress

ratio, C = [(7 -1)sin 2;] /[(1- cos2g) + (1 + cos2S)] is the critical frictional

coefficient, c is the coefficient of friction for the pre-existing joint.

S = -(1+Icos2qI) / (1-Icos2qI), T = -(1-Icos2;I) / (1+Icos2qI).

2<S S< <T T< <1

o <g<45 CLOSED CASE #1 OPEN CASE #1 OPEN CASE #2
* > 0, 6Z > 0 < 0, * > 0 < 0, z < 0

quasi-curving curving-parallel curving-
parallel perpendicular

CLOSED CASE #2 CLOSED CASE #3 OPEN CASE #3
oC> 0, i > 0 - > 0, Z < 0 *< 0, a < 0

Closed Case #2a Closed Case #3a

unlocked unlocked
pre-existing joint pre-existing joint
quasi-curving- quasi-curving-
perpendicular perpendicular curving-

perpendicular

45 < g <90 Closed Case #2b Closed Case #3b
Co >Co Co>co
locked locked

pre-existing joint pre-existing joint
non-curving non-curving
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(2). Local stresses adjacent to the pre-existing joint

In order to calculate the cross joint paths using the assumption that

cross joint traces follow the trajectory of the maximum principal stress in

the x = 0 plane (refer to Fig. 3-2), we first need to formulate the boundary

conditions, and then calculate the stress components around the pre-existing

joints. By setting x = 0 for the general solution, we can obtain the stresses

in the x = 0 plane and thus calculate the principal stresses in the x = 0

plane.

An open pre-existing joint means the joint faces are traction free.

Therefore, the boundary conditions on the pre-existing joint surfaces are

at y = 0, Ixl < c: 6,, = ,. = 6, =0,

i.e., the normal stress (a,) and the shear stresses (6,Z, a,) on the pre-

existing joint are zero.

According to the theoretical model (Fig. 3-2), we can formulate the

remote boundary conditions as

at (x2 +y2)" _O:

7 =0
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pre-existing joint
of length 2c

Fig. 3-3. Tripolar coordinate system used in deriving local stresses.

Redrawn from Pollard and Segall (1987).
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where 6. , ,- , ig, ,l, 6I, and o are local normal and shear stresses.

Using the above boundary conditions, we can employ Pollard and

Segall's (1987) derivation based on elastic fracture mechanics theory to

determine the stress components at a specified point adjacent to the pre-

existing joint (see Fig. 3-3). These are

a = cr[cos(y - T)+ sin ysin 3T, (3-16)

2

6 = + 6 cos(y - T) -1- sin yrsin 3TP, (3-17)
R R'

6,, = 6 cos(y - T) , (3-18)
R_

= .(3-19)

Here c is the half height of the pre-existing joint (see Fig. 3-2),

r= x2 +y2 , r,= (x+c)2 +y 2 , r2 = (x-c) 2 +y 2 , R= rr 2

T = (y+ y2)/2, yr, r,, r2 , y, and V2 are all shown in Fig. 3-3.

To study cross joint propagation paths in the x = 0 plane (Fig. 3-2),

only -,x, 6,, and 677 are useful. By letting x = 0 in equations (3-16), (3-18)

and (3-19), the stresses in the x = 0 plane become

cx - y_
(y 2 + c 2 )3/2 , (3-20)
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(T Y (3-21)
(y2 + c 2 )1/2

6z = 6Z;. (3-22)

These equations provide expressions for local stresses as a function of

distance from the pre-existing joint and remote stresses.

(3). Cross joint trajectories

Let 0 represent the angle from the direction of local maximum

horizontal principal stress to the z axis (Fig. 3-4). According to the theory

of elastic mechanics (Timoshenko and Goodier, 1970), we have

tan 26 = 2A,/(Q. - 6.,). (3-23)

By substituting (3-1), (3-2), (3-3), (3-20), (3-21) and (3-22) into (3-

23), we have

2(62 - - 63) 2 y2 mi sin 2g

tan 20 = (y + c) 3 (3-24)

(6- + 6- )+ (at - (T -)cos 2g - + 6 - ( y*co g 2 2
(y + c )

This equation gives the angle between the local maximum principal

stress and the pre-existing joint (z-axis). Assuming that cross joints always

propagate in the direction of local maximum principal stress, the angle 0
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angle bweand~~~ local cross jontaglt()cross joint path and A
the pre-existing joint

at an arbitrary
point A

z axis (collinear with the pre-existing fracture)

Fig. 3-4. Schematic diagram showing the definitions of take off angle (g)

and local cross joint angle (0).
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represents the angle between the pre-existing joint and the tangent to the

cross joint path (Fig. 3-4). Therefore, equation (3-24) describes the change

of o as a function of normalized distance from the pre-existing joint (y / c),

and thus delineates the trajectory for cross joint growth . I refer to 0 as the

"local cross joint angle ".

As two examples, I plotted 0 as a function of the normalized distance

from the pre-existing joint (y / c) in Fig. 3-5 and Fig. 3-7, assuming a take-

off angle of 300 and 600, respectively, and under different remote principal

stress ratios (a2 /; ). Figures 3-6 and 3-8 show the physical views of cross

joint paths corresponding to Fig. 3-5 and 3-7.

II. CLOSED PRE-EXISTING CRACK CASE

Now let us turn our attention to the other major category of pre-

existing joints, namely the closed case. In dealing with the closed case, the

same procedures used in discussing the open case are not applicable because

in the open pre-existing joint case, curving-parallel and curving-

perpendicular geometry classification is based solely on the signs of the

remote normal stresses (i.e., 6, and ; ). In the closed case, however, cross

joint geometry classification cannot be determined before obtaining the

local cross joint angle. In order to obtain the local cross joint angle, one

must derive stresses in the area adjacent to the cross joint. Therefore, this

section will follow a different three-step procedure. The first step is to

derive the stresses adjacent to the pre-existing joint. Then, a general

formulation of the local cross joint angle is made based on these stress
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curving-perpendicular

0) 7560 -

3X -5 5=---a)
000

00

15 curving-parallel300
UI I

0 1 2 3 4
r)
C

Normalized distance from the pre-existing joint (y/c)

Fig. 3-5. Relationships between local cross joint angle (0) and the

normalized distance from the pre-existing joint (y/c) for different

remote principal stress ratios (ri), a take off angle (;) of 300, and

under the conditions for an open pre-existing joint. The number

next to each curve indicates the remote principal stress ratio. Note

that when -3<f<-1/3 curving-parallel geometry occurs,

corresponding to Open Case #1 in Table 3-2. When -1/3<q<1

curving-perpendicular geometry occurs, corresponding to Open Case

#2 in Table 3-2.
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OPEN CASE S = 300

10 (a)
8

6

2 0.2 0.6 0.8

0

Pre-existing joint

4(b) 

r
0.8

0

Pre-existing joint

Fig. 3-6. Physical views of cross joint propagation paths corresponding to Fig. 3-5. The takeoff
angle is 30. The number next to each curve (in both a and b) indicates the remote principal
stress ratio. (a) Small scale. (b) Large scale showing closed-up view of intersection between
cross joint and pre-existing joint.



curving-perpencicular

0 90
ei OPEN CASE -

C,

Q 80 -
0)0-

C cn s

U 70 -

60 ___ __ __ _ .__ __ ___ ._ __ __ __ __

0 1 2 3 4

0)

Normalized distance from the pre-existing joint (y/c)

Fig. 3-7. Relationships between local cross joint angle (6) and the

normalized distance from the pre-existing joint (y/c) for different

remote principal stress ratios (fl) a take off angle (g) of 600, and

under the conditions for an open pre-existing joint. The number

next to each curve indicates the remote principal stress ratio. Note

that only curving-perpendicular geometry occurs in this case,

corresponding to Open Case #3 in Table 3-2.
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OPEN CASE S = 600

10

8

6

- 0.8 0.4 0 -1/3

4

2

(a)
0

Pre-existing joint

4

(b)

0 2 -

0

Pre-existing joint

Fig. 3-8. Physical views of cross joint propagation paths corresponding to

Fig. 3-7. The takeoff angle (g) is 60. The number next to each

curve (in both a and b) indicates the remote principal stress ratio.

(a) Small scale. (b) Large scale showing close-up view of

intersection between cross joint and pre-existing joint.
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solutions, and a general cross joint geometry classification is constructed

based on the possible values of the local cross joint angle. The third step

provides a detailed cross joint geometry classification and plots theoretical

cross joint trajectories considering the friction along the pre-existing joint.

(1). Local stresses adjacent to the pre-existing joint

In the closed pre-existing joint case, the pre-existing joint faces are

not traction free, which means the shear stresses and the normal stress along

the pre-existing joint surfaces are not zero. Here, I consider a simple case

in which the normal stress acting on the pre-existing surface (a,) is not

zero, and equals to the remote normal stress in the same direction (a;).

The shear stress in the z direction (a,) is not zero, and it is a fraction of the

remote shear stress of the same direction (a;), but the shear stress in the x

direction (a,) is zero. Therefore the boundary conditions on the pre-

existing joint surfaces can be formulated as

at y = 0, 1x1 < c: a, = a;,

a,, = sa ,

a, =0,

where s is called the shear stress ratio, i.e., the ratio of the shear stress on

the pre-existing joint (a, at y = 0 and 1xi < c) to the remote shear stress

( a ), and 0 s 1. From its definition, we know that s= 0 corresponds to a

perfectly lubricated pre-existing joint, while s= 1 represents a locked pre-

existing joint, i.e., the two walls of the joint are completely welded
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together. Using a Byerlee (1978) type friction law, we can express s as

s = Cob* / 6**, provided that the right side of this equation falls within the

range of 0 to 1, where Co is the coefficient of friction.

The remote stresses for the closed case are the same as in the open

case (Fig. 3-2), which are

I/2
at(x 2 +y 2 ) -. OO: =*

6u~ = 6ZZ,

97= Or, =0

Again according to Pollard and Segall (1987), we obtain the general

solutions for the non-zero stresses around the pre-existing joint, which are

(1 = 6 , (3-25)

0,, = 0,, (3-26)

6Z = 6Z, (3-27)

6,. = s* + (1- s)* ZRLcos(yi - T)]. (3-28)

In the x = 0 plane, we have
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= (3-29)

6,z = 6Z, (3-30)

, = sa +(1-s)a7 2  2 )" (3-31)
(y +c )

These equations give the local stresses adjacent to the pre-existing joint.

(2). General formulation of local cross joint angle and cross

joint geometry classification

As I did in discussing the open case, local cross joint angle (6) can be

obtained using the relationship between 0 and local stresses adjacent to the

pre-existing joint as expressed by equation (3-23).

Substituting (3-29) (3-30) (3-31) (3-1) (3-2) (3-3) into (3-23), we

have

tan 20 = s+(1-s) 2 y 2 12 1tan2g. (3-32)
(y2 + c2

Equation (3-32) shows the relation between the instantaneous angle of

the cross joint (6) and normalized distance from the pre-existing joint

(y / c) for different shear stress ratios (s) and takeoff angles (S). In order

to classify cross joint geometry in the closed case, let us consider the value
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of tan 20 when y = 0, which marks the intersection point of the cross joint

with the pre-existing joint. Substituting y = 0 into equation (3-32), we have

tan 20 = s tan 2g. (3-33)

Considering the condition for each closed pre-existing joint case in

Table 3-1, we can construct Table 3-2 based on the following subdivisions:

(i). For Closed Case #1, since 0 s< 1, and tan 2g > 0 for 0° g 45°,

we have, tan 20 0 or 00 0< 45 at y = 0. In other words, cross joints are

not necessarily aligned parallel or perpendicular to the pre-existing joints at

the point of intersection. Rather, the local cross joint angle lies between 0°

and 45°. Hence, I label this kind of geometry as "quasi-curving-parallel"

geometry. The two end members of this case correspond to s= 0 and s =

1. For s = 0, tan20=0 at y = 0, which corresponds to 0=00 and a

curving-parallel geometry. On the other hand, when s= 1, i.e., the pre-

existing joint is locked, we have tan 20 = tan 2;. Thus, &= g, which means

the cross joint path does not deviate from its original take-off angle as it

approaches the pre-existing joint.

(ii). For Closed Cases #2 and #3, we have tan 20 0, or 45 0 _ 90' at

y = 0, based on the conditions of 0 s 1 and tan2g 0 when 45 S < 90°. I

refer to this geometry as "quasi-curving-perpendicular" geometry. Again,

s= 0 and s= 1 represent two end members in these cases. When s= 0,

purely curving-perpendicular geometry occurs, whereas s= 1 implies that

cross joints do not curve.
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(3). Cross joint geometry and the coefficient of friction along

pre-existing joint----detailed cross joint geometry classification

In order to determine the relationships among 6, y / c, take-off angle

(g) and remote principal stress ratio (3 / ; ), we need to substitute

s= Cob, / 6~ into equation (3-32). Before proceeding, first let us discuss

the meaning of the constraint 0< s 1. Using s = Cob- / Z, and equations

(3-1) and (3-3), we have

0 C[(a* + 63) - (6 - o )cos2g] 1. (3-34)
(63 - 63 )sin2g

For convenience here I use T1 to represent the remote principal stress ratio

( 3 / a; ). Rewriting equation (3-34), we have

1+ cos2, (335)
-1-cos2g

and Co < (71-1)sin2; .3-36)
q(1 - cos 2g) + (1 + cos 2g)

From Table 3-1 we can see that for all the closed cases, equation (3-35) can

be satisfied. Inequality (3-36) is the constraint on the coefficient of friction

by s 1. However, the coefficient of friction for most rocks is nearly a

constant (Byerlee, 1978), and thus equation (3-36) should be used to

determine whether or not the pre-existing joint is locked. If we express the

right side of the equation as the critical value of the frictional coefficient
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C*- (q -1) sin 2S (3-37)
i(1- cos2;)+(1+cos2;)

we can say that when C0 s Co, the pre-existing joint is not locked, and

s = Co6; / 6 ; is valid. However, when CO > Co, the pre-existing joint is

locked, and s= 1.

Now let us consider the three closed cases in Table 3-1 in detail.

Under the conditions for Closed Case #1 in Table 3-1, and using equation

(3-37), we can show that Co >1. That means in this case there is no

constraint on the frictional coefficient of the pre-existing joint because C is

always less than C*, and consequently s = C°a;, / a is valid. Substituting

s = Coa / a-, and equations (3-1) (3-2) and (3-3) into equation (3-32), we

obtain

tan 2 = 2+ 1 - 2 C ( +1)-(7 - 1)cos2] tan 2g. (3-38)
(y2 + c2)u2 (y2 + c2)'/2 ° (1 - 1)sin2 2g(

As an example, Fig. 3-9 shows the relation between 0 and y / c under

different remote principal stress ratios (i7) using a takeoff angle (g) of 30°

and a frictional coefficient of 0.6. Figure 3-10 shows the physical views of

cross joint paths corresponding to Fig. 3-9.

For Closed Cases #2 and #3 in Table 3-1, in order to use equation (3-

38) to calculate cross joint paths, we must first consider whether equation

(3-36) can be satisfied. If C° < Co, the pre-existing joint is not locked and

we can use equation (3-38) to plot the cross joint paths. However, if

Co > Co, the pre-existing joint is locked and s= 1. From equation (3-32) we
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',

CLOSED CASE
c 5=30

a)

0 1 2

Normalized distance from the pre-existing joint (y/c)

Fig. 3-9. Relationships between local cross joint angle (0) and the

normalized distance from the pre-existing joint (y/c) for different

remote principal stress ratios (fl), a take off angle (g) of 300, and

under the conditions for a closed pre-existing joint. The number

next to each curve indicates the remote principal stress ratio. The

figure shows the quasi-curving-parallel case, which corresponding to

Closed Case #1 in Table 3-2.
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CLOSED CASE =300

10

8 (a)

6 6

4

2

0
Pre-existing joint

4

(b)

0

Pre-existing joint

Fig. 3-10. Physical views of cross joint propagation paths corresponding to Fig. 3-9.
The takeoff angle is 30°. The number next to each curve (in both a and b)
indicates the remote principal stress ratio. (a) Small scale. (b) Large scale
showing close-up view of intersection between cross joint and pre-existing
joint.
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Fig. 3-11. Relations between the critical value of the coefficient of friction

(Cs*) along the pre-existing joint and the remote principal stress ratio

( r5).
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know that 8= g for s= 1, which means that cross joint paths do not curve.

Figure (3-11) shows the critical value of the coefficient of friction (C*)

determined by equation (3-37) as a function of remote principal stress ratio

( r) at take-off angles (g) of 450, 60° and 75°. From this plot we can see

that for a take-off angle of 600, a frictional coefficient of 0.6 can satisfy

C0 < C* at remote principal stress ratios greater than -10 and less than -1/3,

which means the pre-existing joint is not locked. Therefore, we can use

equation (3-38) to plot the relation between 0 and the normalized distance

from the pre-existing joint (y / c), and to plot the cross joint paths which are

shown in Fig. 3-12 and 3-13, respectively.

From the above analysis, we now have created subcategorizes for

Closed Cases #2 and #3, namely the non-curving cases when Co > Co (also

called the locked-pre-existing joint cases) which are summarized in Table 3-

2. Also, I diagrammatically show the cross joint geometry classification in

Fig. 3-14. Figure 3-14a shows the frictionless cases (Co= 0) along the pre-

existing joint, and Fig. 3-14b shows the case of Co = 0.6. Table 3-2 and

Fig. 3-14 represent an intermediate stage of cross joint classification.

Incorporating the dimension of compressive zone, outlined in the following

section, will result in a more detailed classification.
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*c90

CLSOED CASE
s=60

quasi-curving-perpendicular

C,,

C,, 00c -107'0-7-

0

C -3
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a) 60 -
0 1 2

Normalized distance from the pre-existing joint (y/c)

Fig. 3-12. Relationships between local cross joint angle (0) and the

normalized distance from the pre-existing joint (y/c) for different

remote principal stress ratios (rl), a take off angle (s) of 60°, and

under the conditions for a closed pre-existing joint using a

coefficient of friction along the pre-existing joint of 0.6. The

number next to each curve indicates the remote principal stress ratio.

The figure shows the quasi-curving-perpendicular case,

corresponding to Closed Cases #2a and #3a in Table 3-2.
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CLOSED CASE S =60

1O0( 0 (a)

8

6

4

2

0

Pre-existing joint

4, (b)
2 'p

0

Pre-existing joint

Fig. 3-13. Physical views of cross joint propagation paths corresponding

to Fig. 3-12. The takeoff angle (g) is 600. The number next to each

curve (in both a and b) indicates the remote principal stress ratio.

(a) Small scale. (b) Large scale showing closed-up view of

intersection between cross joint and pre-existing joint.
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-. 0 Open Case #2 Open Case #3
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Fig. 3-14. Cross joint geometry classification based on takeoff angle (g)

and remote principal stress ratio (fl). This figure is drawn according

to the information provided in Table 3-2. (a) The case of a

frictionless pre-existing joint. (b) The case when the coefficient of

friction along the pre-existing joint (Co) is 0.6.
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COMPRESSIVE ZONE: CONSTRAINTS ON CROSS JOINT

GROWTH

Theoretically, a mode-I fracture cannot propagate into a region

where the effective least principal stress is compressive. Therefore, the

development of a compressive region (i.e., a zone where both 62 and 6, are

compressive) adjacent to pre-existing joints would inhibit cross joint

growth. Because localized zones of compression can in fact develop in

fractured elastic media, it is important to determine the dimensions of such

zones, and the boundary where a, switches from tensile to compressive.

The latter may indicate the position where cross joints cease to grow. Dyer

(1988) found that in open cases the dimension of the compressive zone is

zero, implying that tips of cross joints remain in an effective tensile stress

field throughout their growth. In contrast, for his closed pre-existing joint

case, Dyer determined the extent of the compressive zone was

approximately 0.6 times the half height of the pre-existing joint. In the

following section I will provide a general expression for the dimension of

the compressive zone and its related factors.

I. OPEN PRE-EXISTING CRACK CASE

From equations (3-1), (3-2), (3-3), (3-20), (3-21) and (3-22) we can

calculate the magnitude of the local principal stresses in the open case,

which are
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x / \ y3

6 2 3 =(A + Bcos2g)+(A - Bcos2g) (y
(y2 + 2)3

-

- 2 
2 1 / 2

(A + Bcos2g) - (A - Bcos2g) (y2 +c2)32 + 2B 2  }12 (3-39)

where A=(62 +6- )/4, and B=(6* -- 3 )/4.

Let t represent the normalized distance from the pre-existing joint

(y / c), and rj represent the remote principal stress ratio (o6 / x3').

Considering 02 >Q and u- <0, we have

S= 1 4 + 4cos2 g + - 4 cos2g 23

S-2 - 1/2

+a"+ 7- os1 - 1 - cs t3 (17 -1)tsin2g
+ 3+ -S2 - - COS2;N(2 +13/2 I+ L (1- 1i 1  (3-40)

4 4 4 4 )(t2+0 2(t2+ 1)

From the above expression, we have

U3 + n c -1cos2g + 7+1 - -1cos2g t3
4 4 ) 4 4 (t2 + 1)

+ + 1 cos2g ±+1 o7s2 t1 c , (3-41)
4 4 4 4 (t 2 +1)

which is equivalent to
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a± < [7(1+cos2g)+(1 -cos2g)]+[(1 -cos2g)+(1+ cos2g)] (t 2 1)/2

+ [1j(1+cos2g)+(1-co s)]-[ (1-cos2g)+(1+cos2)] t m . (3-42)
4 (t2 + 1)

Based on equation (3-42) and considering the conditions for the open

pre-existing joint case in Table 3-1, which, in terms of 77, are

-1 + cos2; < 1j 1 and 00 < ; < 45 (Open Cases #1 and #2), (3-43)
1- cos2g

or

7 > -1-Icos2gl and 45 < g < 90 (Open Case #3), (3-44)
1+1 cos 2gl

we find that in the open pre-existing joint case , 0 everywhere. In other

words, compressive regions do not develop in the open case. The only

limitations for cross joint propagation in this case are the pre-existing joint

faces themselves. Therefore, both curving-parallel and curving-

perpendicular cross joints that form under open conditions (i.e., o' >0)

have the capability of intersecting pre-existing joints. This result is shown

in Table 3-3 and is in agreement with Dyer's conclusions.
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Table 3-3. Summary of cross joint geometries and their characteristics.
In this table, g represents the take off angle, 62 / a- = j is the remote

principal stress ratio, Co = [(7 -1)sin2;] / [r(1 - cos2;)+(1+ cos2;)] is the

critical frictional coefficient, Co is the coefficient of friction for the pre-

existing joint, to is the dimension of compressive zone

R = -[1 + (cos2 2; + s2 sin 2 2;)I/2] / [1- (cos 2 2; + s2 sin 2 2;)I/2],

S = -[1+Icos2;1] / [1-Icos2;I], and T = -[1-Icos2;I] / [1+Icos2;I].

6z<R R<6z<S S<6z<T T<G2 -1

CLOSED CASE #1 OPEN CASE #1 OPEN CASE #2
a- > 0, 6z > 0 < 0, * > 0 a< 0, a* < 0

0o < ; < 45 quasi-curving curving-parallel curving-
parallel perpendicular

t o >0

CLOSED CASE #2 CLOSED CASE # OPEN CASE #3
a*> 0, a >0 > 0, aZ <0 < 0, a <0

Closed Case #2a Closed Case #3a
Co <Co Co <Co

45 <g <90 unlocked pre- unlocked
existing joint pre-existing joint curving-

quasi-curving- perpendicular

er endicular
Closed Closed quasi-curving-
Case Case perpendicular
#2a1 #2all to = 0
to>0 to=0

Closed Case #2b Closed Case#3b
Co >Co ors= 1 Co >Co ors= 1

locked pre-existing locked
joint pre-existing joint

non-curving non-curving
to=0 to=0
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II. CLOSED PRE-EXISTING JOINT CASE

According to equations (3-29), (3-30), (3-31), (3-1), (3-2) and (3-3),

the derived local principal stresses for the closed pre-existing case are

- 2 1/2

62,3 = 62 + 3 + 2 - 6 Cos2 2g + s + (1 - s) 2  1/2 sin 2 2 . (3-45)
2 2 (y2 +C 2)

From Table 3-1, we know the conditions for the closed pre-existing

case are

1+<cos2gl 1-Icos 2gI and 45 < g < 90 (Closed Case #3), (3-46)
1-Icos 2gI 1+Icos 2gI

or

7 < -1+Icos2gi and 0 <g < 90 (Closed Case #1 and #2). (3-47)
1-I cos 2gI

First, let us consider 6 2 . From (3-45), we have

2 62 2 + Icos2;I. (3-48)

2 2

Under the conditions of (3-46), (3-47) and (3-48), we can derive that

62 > 0. Therefore, a2 is compressive everywhere in the closed pre-existing

joint cases.

Second, let us consider a, in several steps.
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(i) For Closed Case #3 in Table 3-1, we know that

1+Icos2gI 1-Icos2gI and 45 < g < 90. (3-49)
1-Icos2gI 1+Icos2gI

From (3-45), we have

- 2 1/2

63 = 62 + {3 _ 62 - cos2 2g + + (1 - s) ( 2  12 sin 2 2g}. (3-50)
2 2 (y2 + c2)

From this expression, the following inequality is obtained

23 - + 2 Icos2gI, (3-51)

which may be converted to

3 S l (1-Icos2[0 ) + os (1+Icos2gI)]. (3-52)

From the conditions outlined in equation (3-49), we have

a (1-lcos2gJ)+ a3 (1+Icos2gl) < 0. (3-53)

Therefore, 6; <0, i.e., there is no compressive zone for the Closed Case #3

(Table 3-3).

(ii) For Closed Cases #1 and #2, we have
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71 <-cos2 and 0 < g < 90. (3-54)
1-I cos2I

In terms of 17 and t, and according to equation (3-50), 6, can be

expressed as

- 2 1/2

o(7= +1) _ 67 (7 -1) cos2 2g+ K + (1 - s) t 12 sin 2 24. (3-55)
2 2 (t2 + 1)

In order to determine the sign of 63, we need to differentiate equation (3-

55) with respect to the normalized distance from the pre-existing joint (t ).

The differentiation results in

T3 (n -1)sin2 2g s +(1 - s) 2 it (1 - s) 3/2

d6 __ (t2+1) (t2+1)
-t 2n . (3-56)

2 cos2 2; + s + (1- s) t2  i 2 sin 2 24
(t2 + 1)

From (3-56), we can see that os < 0, for 0 s< 1 and 7 <0, which is clear
dt

from equation (3-54). It means that 6, decreases in value with increasing

normalized distance from the pre-existing joint.

Now let us evaluate the value of u, at t -+ oo, and t = 0. From (3-55),

we have

(t oo)= a;( + 1) _ 6;*(T - 1) = 6; < 0. (3-57)
2 2
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At t = 0, from (3-57), we have

6 (t = 0) = a; (i+ 1) a ( 1)(cos22 +s2 sin2 2). (3-58)
2 2

Suppose 6,(t =0) >0, we have

1 + (cos 2 2g + s2 sin 2g)1/2

1-(cos22; +s2 sin 2S) 2

Therefore, if equation (3-59) can be satisfied, there must be a t= to between

0 and oo where 6, =0, such that for t < to, 3 > 0, and when t > to, 3 <0. In

other words, t = to defines a line, which is parallel to the pre-existing joint

and represents the transition from compressive least principal stress near

the pre-existing joint to a field marked by tensile least principal stress. The

magnitude of to gives the dimension of the compressive zone. By assuming

G =0 in (3-55), we can calculate to as

((1+ 1)/( -1))2 - cos 2 2;) sin 2 2;] -13-60s

to =/ 2 n ./ (3-60)

(1- s) 2 - j(((7i + 1)/(1 -1))2 - cos 2 2;) sin 2 2;] -s

On the other hand, if equation (3-59) cannot be satisfied, we have

csjt=0) 0, which means that a compressive zone does not exist.

For Closed Case #1, by substituting equations (3-1) and (3-3) as well

as s = Coa, / a; (because Co >1 for Closed Case #1, refer to equation (3-37),
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into equation (3-59), we determine the range of the remote principal stress

ratio (ij)

S<1+ cos2; (3-61)
1- cos2;

Equation (3-61) corresponds to the condition for Closed Case #1.

Therefore, in Closed Case #1, there is a compressive zone with dimension

of to expressed as in equation (3-60). For Closed Case #2, it is clear that

1+ (cos 2 + s2 sin 2;) 1+lcos2(3
-2 < - .(3-62)

1- (cos2 2g + s2 sin 2;) 1-Icos2gl

Therefore, we can subdivide Closed Case #2a (see Table 3-2) more

specifically according to the value of the remote principal stress ratio. If 77
is less than or equal to the left side of equation (3-62), there is a

compressive zone with a dimension of to which is described by equation (3-

60) (Closed Case #2aI in Table 3-3). However, if 7 is greater than the left

side of equation (3-62) and less than the right side of equation (3-62), there

is no compressive zone (Closed Case #2aII) in Table 3-3). Most

importantly, when s= 1, i.e., the pre-existing joint is locked, the dimension

of the compressive zone is zero.

Figure 3-15a shows the plots of the dimension of the compressive

zone (to) versus the remote principal stress ratio (r) by assuming a take-off

angle of 300, and Co = 0 and 0.6, respectively. Figure 3-15b shows the

compressive zone dimension (to) as a function of take-off angle (g),

assuming the remote principal stress ratio (r7 ) is -5, and a frictional
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Fig. 3-15. (a) Dimension of compressive zone (to) as a function of remote

principal stress ratio (rI). These plots represent examples of the

Closed Case #1 in Table 3-2, in which g = 30°, Co = 0 and 0.6,

respectively. (b) Dimension of compressive zone variation as a

function of take off angle (g) under the condition for a closed pre-

existing joint. The number next to each curve, in both (a) and (b),

indicates the coefficient of friction along the pre-existing joint.
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coefficient of 0 and 0.6, respectively. The plots predict large compressive

zones for more negative stress ratios (Fig. 3-15a), while a greater value of

as (as 0) corresponds to a greater value of 6; (; >0). In other words,

the greater the maximum horizontal stress component, the greater the

compressive zone.

The presence or absence of a compressive zone depends to a large

extent on the take-off angle; for cross joints that take-off nearly parallel or

perpendicular to the pre-existing joint, compressive zones do not exist

because either aV, or a, is tensile (i.e., negative). Consequently, with

respect to the take-off angle, the maximum compressive zone dimension is

found at an intermediate value of the take-off angle (Fig. 3-15b).

The detailed categorization of cross joint geometries according to

such characteristics as remote principal stress ratio, take-off angle,

frictional coefficient, and compressive zone is summarized in Table 3-3.

For convenience in using Table 3-3, the results are also shown

diagrammatically in Fig. 3-16. In Fig. 3-16a, a perfectly lubricated pre-

existing joint is assumed (i.e., Co is zero). In Fig. 3-16b, a frictional

coefficient of 0.6 was used in the plot.

INFLUENCES OF PORE PRESSURE ON CROSS JOINT

GROWTH

Until now the effect of pore pressure has not been considered in the

treatment of cross joint growth. In the following section, I will discuss the

role of pore pressure in controlling the geometry of cross joints.
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Fig. 3-16. Cross joint geometries and their characteristics as a function of

takeoff angle (g) and remote principal stress ratio (i). (a)

Completely lubricated pre-existing joint case (i.e., Co = 0). (b) The

case when the coefficient of friction along the pre-existing joint (Co)

is 0.6.
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According to fracture mechanics theory (Lawn and Wilshaw, 1975;

Cherepanov, 1979; Broek, 1986), mode-I fractures form in response to a

tensile stress in the direction normal to the fracture face. That means 63 <0

in terms of our coordinate system and the conventions we used in the

previous sections. Although local tensile stresses may exist in some special

structural positions such as above a neutral surface in an anticline, pure

tensile stresses are rarely found on regional scales, especially at depths

greater than several hundred meters. One explanation for the pervasive

distribution of regional joint sets found both in outcrops and in the

subsurface is the role played by pore pressure.

To consider the role of pore pressure, I first introduce the concepts

of effective stresses and effective remote principal stress ratio. Then, by

incorporating the concepts of effective stresses and effective remote

principal stress ratio into the results from the previous sections, I discuss

influences of pore pressure on cross joint geometry.

I. EFFECTIVE STRESS AND EFFECTIVE REMOTE

PRINCIPAL STRESS RATIO

The general expression for the effective stress tensor is defined as

- aP,84, (3-63)

where 6-; represents stress in the j direction acting on the plane normal to

the i direction, PP is pore pressure, 6; is Kroenecker's delta, and a is the

72



Biot pore-pressure coefficient. The Biot pore-pressure coefficient, in turn

can be expressed as

a=1-K/K,, (3-64)

where K is the bulk modulus of the saturated rock, and K, is the intrinsic

modulus of the rock material (Nur and Byerlee, 1971). The commonly

used effective stress law is a special form of equation (3-63) which assumes

a =1 (Jaeger and Cook, 1979, Engelder, 1993), and is expressed as

6y = ai - PA; . (3-65)

In the following section, I will use the effective stress law described by

equation (3-65) to study the role of pore pressure in controlling cross joint

growth.

If the pore pressure is uniformly distributed in the elastic domain

(Fig. 3-3), the analysis in the former sections can be recast in terms of

effective stresses defined by equation (3-65). All the analyses will be valid

if we substitute effective stresses into the former equations.

By incorporating pore pressure, we can change the remote principal

stress ratio into the following form, which is

* = 6 ,P (3-66)

3 -P
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where i* is refered to as the effective principal stress ratio. Rewriting

equation (3-66) yields

1* = (3-67)
1- P /6

This equation describes relationships among the remote principal stress

ratio (c; / o;, i.e., q), effective remote principal stress ratio (i*) and pore

pressure to least principal stress ratio (P, / 6; ). A plot of i* versus 62 / 6

at P, / as = 1.1, 1.5 and 2.0, respectively, is shown in Fig. 3-17a. In Fig. 3-

17b, the relation between i* versus Pp / 63 is plotted at 7=1.5, 2.0, 3.0 and

4.0, respectively. Figure 3-17a shows that the relation between remote

principal stress ratio (6;*/; , i.e., n) and effective principal stress ratio

(if) depends upon the pore pressure to least horizontal stress ratio (P, / r );

at the same pore pressure to least horizontal stress ratio (P,, / ; ), the

effective remote principal stress ratio (if) decreases with increasing remote

principal stress ratio (n). Figure 3-17b shows that effective principal stress

ratio (f*) increases with increasing pore pressure to least horizontal stress

ratio (P,, / a;) for the same remote principal stress ratio (71).
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Fig. 3-17. (a) Relations between the effective remote principal stress ratio

(4*) and the remote principal stress ratio (a). (b) Relations between

the effective remote principal stress ratio (f*) and the pore pressure

to the least principal stress ratio (P, / P).
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II. CROSS JOINT GEOMETRY AND PORE PRESSURE

In order to study the role of pore pressure in controlling the cross

joint geometry, let us discuss two different cases.

First, let us consider take-off angles less than 45°. As described in

Table 3-3, when the take-off angle (;) is less than 450, cross joint geometry

will vary from quasi-curving-parallel with a compressive zone to curving-

parallel to curving-perpendicular with increasing remote principal stress

ratio (ri), and these changes are independent of the coefficient of friction

along the pre-existing joint. As an example, I will investigate cross joint

paths with a take-off angle of 30, which is Dyer's special case. As stated

previously, for Dyer's case curving-parallel geometries occur when the

remote stress ratio is between -3 and -1/3, whereas curving-perpendicular

geometries occur when the remote principal stress ratio is between -1/3 and

1. These statements hold true for rocks subjected to internal pore pressure

if we substitute the remote principal stress ratio with the effective remote

principal stress ratio. In equation (3-67), if we suppose n*= -3, -1/3 and 1,

respectively, and both of the principal stresses are compressive (i.e.,

positive), we can draw the ranges for different cross joint geometries

corresponding to Closed Case #1, and Open Cases #1 and #2 in Table 3-3,

which are shown in Fig. 3-18.

From Fig. 3-18, we can see that cross joint geometry will change

with increasing pore pressure for a given remote principal stress ratio

(62 / ). When the pore pressure is low (P, / o, <1), jointing cannot occur

because both of the principal effective stresses are positive, i.e., the whole

region is in a compressive condition. However, when pore pressure exceeds
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Fig. 3-18. Cross joint geometry variation as a function of pore pressure.

The arrow shows that cross joint geometry will change from quasi-

curving-parallel with compressive zone (Closed Case #1) to curving-

parallel (Open Case #1) to curving-perpendicular (Open Case #2) as

pore pressure increases. This figure shows the case in which the

takeoff angle g = 30°.
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the least principal stress (i.e., P, / c- > 1), cross joint geometry will change

from quasi-curving-parallel (Closed Case #1) to curving-parallel (Open

Case #2) to curving-perpendicular (Open Case #3) with increasing pore

pressure. The arrow in Fig. 3-18 shows the change of cross joint geometry

with increasing pore pressure.

Second, we now consider the case of take-off angles greater than 45

and less than 90, corresponding to Closed Cases #2 and #3, and Open Case

#3 in Table 3-3. Situations where take-off angles are greater than 450 are

more complex than those with take-off angle less than 450, because when

45 S < 90 cross joint geometries not only depend upon take-off angle ( g)

and remote principal stress ratio ( 17) but also upon the coefficient of

friction ( Co) along the pre-existing joint. Due to this increased complexity,

the relationship between cross joint geometry and pore pressure are

evaluated separately for take-off angles of 50°, 60°, 700 and 800.

(1) Take-off angle ( g) is 50 . For S = 500 cross joint geometry will

change from quasi-curving-perpendicular with a compressive zone (Closed

Case #2aI) to quasi-curving-perpendicular without a compressive zone

(Closed Cases #2aII and #3a) to curving-perpendicular (Open Case #3) (Fig.

3-16). The boundary between Open Case #3 and Closed Case #3a in terms

of effective remote principal stress ratio is defined by (refer to Table 3-3)

* =-1-Icos2gl 3-68)
1+lcos2gI

and the boundary between Closed Case #2aI and Closed Case #2aII is

defined by
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* =1 + (cost 2g + s2 sin 2 2g)12 (3-69)
I - (cos2 2g + s2 sin 2 2g)/2

Because both Closed Case #3a and Closed Case #2aII are characterized by

quasi-curving-perpendicular geometry without a compressive zone, it is not

necessary to define the boundary between them. By substituting g = 50° into

equations (3-68) and (3-69), we have ij*= -0.70 and -2.17, respectively. By

setting the effective remote principal stress ratio to be -0.70 and -2.17,

respectively, in equation (3-67), we can plot 6; / 6, versus P / ; -, which is

shown in Fig. 3-19. The arrow in Fig. 3-19 shows the predicted change in

cross joint geometry as a function of increasing pore pressure while keeping

6; / 6 as a constant.

(2) Take-off angle ( g) is 60 . Figure 3-16b shows that the possible

cross joint geometries when g= 60° are curving-perpendicular (Open Case

#3) and quasi-curving-perpendicular without a compressive zone (Closed

Case #3a and #2aII). The boundary between them is defined by equation

(3-68). Substituting g= 60° into equation (3-68), we can get i* = -1/3.

Again, using 7* = -1/3 in equation (3-67), we can plot 6; / 6;* versus

PI / ; , which is shown in Fig. 3-20. Figure 3-20 shows that as pore

pressure increases cross joint geometry will change from quasi-curving-

perpendicular without a compressive zone to curving-perpendicular even

under the condition of an unchanged remote stress field, i.e., r is a

constant.

(3) Take-off angle ( g) is 70°. From Fig. 3-16b, we can see that the

possible cross joint geometries in this case are curving-perpendicular (Open

Case #3), quasi-curving-perpendicular without compressive zone (Closed
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Fig. 3-20. Cross joint geometry variation as a function of pore pressure.

The arrow shows that cross joint geometry will change from quasi-

curving-perpendicular without compressive zone (Closed Cases #2aII

and #3a) to curving-perpendicular (Open Case #3) as pore pressure

increases. This figure shows the case in which the takeoff angle

S = 60°.
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Case #3a) and non-curving without compressive zone (Closed Cases #2b and

#3b). Again, the boundary between Open Case #3 and Closed Case #3a is

defined by equation (3-68). The boundary between Closed Cases #3a and

#3b is defined by (refer to equations (3-36), (3-37) and the corresponding

discussion)

CO= (*1)i2 (3-70)
r (1- cos2g)+(1+cos2g) (-0

By substituting Co = 0.6 and g = 700 into equation (3-70), we can get

7* = -1.88, and by setting g = 70° in equation (3-68), we can obtain

T* = -0.13. Following the same procedures we can substitute i* = -1.88 and

-0.13 into equation (3-67), and obtain the plots of o2 / og versus P / oJ,

shown in Fig. 3-21. From Fig. 3-21 we can see that cross joint geometry

will change from non-curving without a compressive zone to quasi-curving-

perpendicular without a compressive zone to curving-perpendicular as pore

pressure increases.

(4) Take-off angle ( g) is 80 . The cross joint geometries in the case

of ; = 80° are the same as for ; =70° because Closed Cases #2b and #3b both

give non-curving cross joints without compressive zones. The

corresponding plots of 62 / 63 versus P, / 63 for g =80° are shown in Fig 3-

22. In this case cross joint geometry will change from non-curving without

a compressive zone to quasi-curving-perpendicular without a compressive

zone to curving-perpendicular as pore pressure increases.

The above examples provide a general description of the relations

between cross joint geometry and pore pressure in a compressive
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Fig. 3-22. Cross joint geometry variation as a function of pore pressure.

The arrow shows that cross joint geometry will change from non-

curving without compressive zone (Closed Case #3b) to quasi-

curving-perpendicular without compressive zone (Closed Case #3a)

to curving-perpendicular (Open Case #3) as pore pressure increases.

This figure shows the case in which the takeoff angle ; = 800.
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environment. The examples clearly demonstrate that theoretically cross

joint geometry does vary as a function of pore pressure. Furthermore,

cross joint geometry variations depend upon the take-off angle ( g), the ratio

of pore pressure to least principal stress ( P, / us ) and the remote principal

stress ratio ( r, i.e., 6; / * -).

SUMMARY

This chapter provides a theoretical derivation for predicting cross

joint geometries based on the orientation and relative magnitudes of remote

stresses, and the angular relationship with a set of pre-existing joints. The

analytical solution is modeled after Dyer's (1988) treatment, which

evaluates local stresses around an isolated crack in an elastic medium. The

orientations and magnitudes of principal stresses adjacent to the pre-

existing joint will control the paths taken by cross joints and result in

diagnostic intersection geometries.

The most important results of my analysis are:

(1) A general expression for local cross joint angle (6) as a function

of remote stress ratio, take-off angle, coefficient of friction, and distance

from the pre-existing joint. By plotting 6 as a function of distance from

the pre-existing joint, one can construct cross joint trajectories for

different boundary conditions. In addition to the end-member curving-

parallel and curving-perpendicular geometries reported by Dyer, a number

of other geometries are predicted such as quasi-curving parallel, quasi-

curving perpendicular, and non-curving.
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(2) A general analytical solution for the dimension of the

compressive zone around the pre-existing joint. The compressive zone,

which is an area adjacent to the pre-existing joint where all local principal

stresses are compressive, inhibits cross joint growth. Therefore, in the

absence of a compressive zone the cross joint will intersect the pre-existing

joint, whereas the presence of a compressive zone will result in termination

of the cross joint prior to intersection.

(3) Analytical solutions are provided that incorporate effects of pore

pressure into solutions for cross joint geometry. These solutions consider

cross joint growth in terms of effective stress, and can be applied to

fracturing at depth, where all principle stresses are generally compressive.

(4) Based on the results of (1) - (3) a new, more detailed

classification of cross joint geometries is provided.
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APPLICATION OF CROSS JOINT THEORY TO
FIELD EXAMPLES

INTRODUCTION

In the preceding chapter a series of expressions were derived in

order to delineate trajectories for cross joint growth. A detailed

classification of cross joints was then constructed based on cross joint

geometries, remote stresses, and friction along the pre-existing joint. The

purpose of this chapter is to apply results of the theoretical analysis to cross

joints found in outcrop. By carefully examining geometries and

orientations of cross joints in the field, one may help constrain the stress

state that prevailed during the course of cross joint development, which

may in turn shed light on the tectonic development of a region.
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PROCEDURES FOR FIELD DATA COLLECTION AND

ANALYSIS

The procedure for analyzing cross joints in the field begins with

careful descriptions of geometries and orientations. The first step is to

sketch the overall joint pattern found in the outcrop, making sure to

include joint trends and abutting relationships. Because cross joints curve

due to mechanical interactions with other structures, it is important to

document all features that may perturb or influence local structures. These

include lithology, bed thickness, and height, length, and orientation of pre-

existing joints. Bed thickness often controls the spacing of systematic joints

(e.g., Hobbs, 1967; Ladiera and Price, 1981; Huang and Angelier 1989;

Gross et al. 1995), which in turn may determine whether or not the cross

joint take-off angle is aligned parallel to remote intermediate principal

stress; if systematic joints are closely spaced, then cross joints may not

initiate as if in a homogeneous elastic medium. Furthermore, because

theoretical cross joint paths are normalized to half-height of the pre-

existing joint (c), and joint height equals bed thickness in many sedimentary

rock sequences, comparisons with theoretical models require knowledge of

bed thickness.

The most critical feature to measure is the cross joint trajectory,

especially in areas of curvature. This can be accomplished by carefully

measuring the orientation of each cross joint at various positions along its

length. Alternatively, one can photograph or accurately sketch the joints in
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order to record their trajectories. The cross joint orientation at the

midpoint between systematic joints should be measured; the angle between

midpoint orientation and the orientation of the pre-existing joint represents

the take-off angle (g). If the cross joints intersect pre-existing joints, then

the nature of cross joint abutments must be sketched and noted.

Termination geometries should be placed into one of the categories

outlined in Table 3-3, such as curving-perpendicular, curving-parallel,

non-curving, quasi-curving perpendicular, and quasi-curving parallel. In

the case where cross joints terminate within the rock mass prior to

reaching pre-existing joints, the distance between the cross joint tip and the

pre-existing joint should be measured. This distance represents the

dimension of the compressive zone (to) around the pre-existing joint.

With field data in hand, one can proceed with the analysis and

interpretation of the cross joints. The remote least principal stress trend is

perpendicular to the initial cross joint orientation as measured at the

midpoint between pre-existing joints. The maximum and intermediate

principal stresses lie in the plane of the cross joint. For flat-lying rocks

and vertical a7, the intermediate remote principal stress (i.e., maximum

horizontal stress) is parallel to initial cross joint trend.

The geometry of cross joint terminations can determine whether the

pre-existing joint was open or closed. For pure curving-perpendicular and

curving parallel geometries the pre-existing joint was open during cross

joint development, otherwise it was closed (Table 3-3). A pure curving-

perpendicular intersection is easily identified in the field, and indicates that

local stresses parallel and normal to the pre-existing joint were both tensile
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during cross joint growth. A pure curving-parallel geometry may be more

difficult to identify, and implies a compressive stress parallel to the pre-

existing joint.

The next step is to determine the range of the remote principal stress

ratio based on take-off angle and curving geometries of cross joints

outlined in Table 3-3. For the open cases, one then applies equation (3-24)

along with knowledge of remote principal stress ratio and measured bed

thickness to plot a series of cross joint trajectories, as shown in Figs 3-5

through 3-8. One must then select the theoretical trajectory that best

matches the measured cross joint path, which in turn provides constraints

on the remote principal stress ratio during cross joint formation.

For closed cases, one must first classify the observed cross joint

geometry according to its quasi-curving or non-curving geometry. For

non-curving geometries one can determine the range of the remote

principal stress ration by using equation (3-36) and assuming a value for

the coefficient of friction along the pre-existing joint. For quasi-curving

geometries equation (3-38) can be employed along with constraints on

remote stress ratio to plot several theoretical cross joint paths, as

demonstrated in Figs 3-9, 3-10, 3-12, and 3-13. Once again, by comparing

theoretical paths with the observed cross joint path, one can estimate the

remote principal stress ratio that prevailed during cross joint propagation.

For cases where compressive zones exist near pre-existing joints, one

can determine stress ratios using two methods: the cross joint trajectory

method of equation (3-38) (i.e., "path fit method") and the equation

describing compressive zone dimensions (equation 3-60) (i.e.,
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"compressive zone dimension method"). This provides the opportunity to

compare independently-derived values for the remote stress ratio.

The steps involved in estimating stress ratios from field examples are

outlined in the flow chart of Fig. 4-1. Application of cross joint theory to

joints measured in outcrop are provided in the following three field

examples from California, Israel, and New York.

EXAMPLE 1: CURVING PARALLEL AND CURVING-

PERPENDICULAR CROSS JOINTS FROM THE

MONTEREY FORMATION, CALIFORNIA

The outcrop, referred to as Lompoc Landing, is located along the

Pacific coastline in the southern Santa Maria Basin, California (Fig. 4-2).

Figure 4-3 (a) is a photograph of a portion of the outcrop depicting several

cross joints in the vicinity of a pre-existing joint exposed on a bedding

plane surface of the Miocene Monterey Formation. The two dominant

systematic joint sets in the Monterey Formation are both normal to

bedding, with one parallel to the trend of regional fold axes and the other

normal to fold axes (e.g., Dunham and Blake, 1987; Narr and Suppe, 1991;

Gross, 1995). The flat-lying bed containing the cross joint is a dolomitic

opal-CT porcellanite with a mechanical thickness of 22 cm. By carefully

sketching the photograph, one can measure the angular relationships

between the initial cross joint trends and the trend of the pre-existing joint,

as shown in Fig. 4-3 (b). Four individual cross joints were measured, with
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measure initial trend, sketch cross joint path and measure bed thickness

Determine the least principal stress direction
according to the initial trend of the cross joint

--- Determire the category of the cross joint path

curving-parallel or Open quasi-curving-parallel or n-rvg
curving-perpendicular case quasi-curving-perpendicular on-curving

Determine the range of remote DetermiDe the range of remote Closed

principal stress ratio prindpal stress ratio case

Plot theoretical cross joint Plot theoretical cross joint
paths using equation (3-24) paths using equation (3-38)

Compare the obseraed and Compare the obseraed and
theoretiFl cross joint paths, theoretical cross joint paths,
and determine the accurate and determine the accurate

remote principal stress ratio remote principal stress ratio

Determie the range of
remote prircipal stress

ratio using (3-36)

Determine dimension of compressive
zone using (3-60)

Fig. 4-1. Procedures for applying analytical solutions to cross joints

observed in the field.
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Fig. 4-2. Regional structural map of the western Transverse Ranges.
(A fter Hornafius, 1985; Gross, 1993b).
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10 cm
takeoff

cross joints main trend of the angle
pre-existing joint 34°

pre-existing
/ joint / 3

1 7
/ ~ 2

initial trend of
cross joint

Fig. 4-3. (a) A photo of cross joint examples from the Monterey
formation, California. (b) Sketch of the pre-existing joint
and cross joints in the photo. Photo was provided by
Dr. Michael Gross.
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take-off angles ranging from 340 to 390 and a mean of 36°. As stated

above, initial cross joint trends are aligned parallel to the remote maximum

horizontal principal stress orientation (a;) during formation of the cross

joints. Therefore, (G;) rotated ~ 360 during the time interval between

development of the systematic joints and subsequent cross joints.

I. CROSS JOINT ANALYSIS

Inspection of cross joint termination geometries indicate that joints

#1, #2, and #3 belong to the curving-perpendicular category, and cross

joint #4 is curving-parallel (refer to Table 3-3). In all cases there is no

evidence for a significant compressive zone. Therefore, one may conclude

the pre-existing joint was open during formation of these cross joints.

Based on curving geometries and the fact that all take-off angles are less

than 450, the cross joints can be further classified according to Table 3-3;

joints #1, #2, #3 belong to Open Case #2, whereas joint #4 belongs to Open

Case #1. Ranges in remote principal stress ratio can then be estimated, as

listed in Table 4-1.

The next step is to construct cross joint paths based on take-off angle,

bed thickness and range of remote principal stress ratio. For cross joint #1

the calculated paths are shown in Fig. 4-4a. By comparing theoretical

trajectories to the measured path for cross joint #1, one concludes that the

remote principal stress ratio was approximately -0.4 during formation of
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Normalized distance along the pre-existing joint (z/c)

(b)

observed cross calculated cross joint path
iE---ointpath(take off angle = 390

agef39 n a remote principal stress(cross joint #1 ratio = -0.4in Fig. 4-2)
390

Fig. 4-4. (a) Calculated cross joint paths for different remote principal

stress ratios with a takeoff angle of 390. (b) Comparison of observed

and calculated cross joint paths. Note that the observed cross joint

path is very closed to the calculated cross joint path with a takeoff

angle of 390 and a remote principal stress ratio of -0.4.
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(a) 2 3

0

"10 2

Normalized distance along the pre-existing joint (z/c)

(b)

calculated cross joint
observed cross path (takeoff angle =
joint path 34°, remote principal
(cross joint #2 stress ratio=0, -0.2,

34° in Fig. 4-2) respectively)

Fig. 4-5. (a) Calculated cross joint paths for different remote principal

stress ratios with a takeoff angle of 34°. (b) Comparison of observed

and calculated cross joint paths. In this example the observed cross

joint path and the calculated cross joint paths have a greater

discrepancy than that in Figs. 4-3 and 4-5.
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Table 4-1. Principal stress ratios estimated from the cross joint examples

in Fig. 4-2.

Cross joint

#in 1 2 3 4

Fig. 3-1

Takeoff

angle(') 39 34 37 34

Main

Open Case Open Case Open Case Open Case
category

#2 #2 #2 #1

Range of

effective

principal -0.66< T*<1 -0.45< r *<1 -0.57< ,*<1 -2.20<rI*<-0.45

stress

ratio ( *)

Effective

principal

stress -0.4 0.0 ~ -0.2 -0.3 -1.0

ratio(r *)
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the cross joint (Fig. 4-4b). The same procedure was followed for the other

cross joints. Theoretical paths for cross joints #2, #3, and #4 are shown in

Fig. 4-5a, 4-6a, and 4-7a, respectively. Comparison of theoretically-

derived trajectories with measured traces of cross joints #3 and #4 also

yield excellent matches (Figs. 4-6b and 4-7b). Estimated effective

principal stress ratios that prevailed during the formation of cross joints #3

and #4 are -0.3 and -1.0, respectively (Table 4-1). In contrast, the same

procedure applied to cross joint #2 does not provide an accurate match. At

best one can place cross joint #2 within a stress ratio range of 0 to -0.2

(Fig. 4-5b).

II. INTERPRETATION OF CROSS JOINTS IN THE

MONTEREY FORMATION

The application of theoretical cross joint analysis to the example

from the Monterey Formation in Fig. 4-3 leads to several results that

require further interpretation. One question to address is why does cross

joint #2 differ from adjacent cross joints #1 and #3? One must also address

the geologic significance of the different stress ratios derived from curving

perpendicular (f - - 0.3) and curving-parallel cross joints (rg - - 1.0).

The difficulty in finding a good match between theoretical

trajectories and the measured path for cross joint #2 may arise because the

assumption of no interaction between adjacent cross joints no longer

applies. Like other mechanically-confined systematic joints, sets of cross

joints develop through a process of "sequential infilling ", whereby new
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joints form in between existing joints (e.g., Hobbs, 1967; Gross, 1993a &

b). Evidence for sequential infilling is provided by different amounts of

vein filling in boudinaged piedmontite grains (Masuda and Kuriyama,

1988; Masuda et al, 1989, 1990), as well as alternating curving and non-

curving cross joints (Engelder and Gross, 1993). Because paths of cross

joints #1 and #3 match theoretical trajectories, it appears they propagated

as if in a homogeneous medium. If cross joint #2 formed during infilling

subsequent to joints #1 and #3, then its development may have been

influenced by the presence of pre-existing cross joints. In fact, Engelder

and Gross (1993) demonstrate that when cross joint spacing is relatively

small, late-forming cross joints are indeed affected by interaction with

pre-existing cross joints. Therefore, I conclude that cross joint #2 formed

subsequent to cross joints #1 and #3 during infilling, and its deviation from

theoretically-predicted paths is due to mechanical interaction with adjacent

pre-existing cross joints. It should also be noted that the estimated value

for stress ratio from cross joint #2 (i.e., 0 < h < -0.2) is close to the values

derived from cross joints #1 and #3.

Because cross joint #4 is curving-parallel, it formed under markedly

different stress conditions than cross joints #1 and #3; for curving-

perpendicular joints (i.e., #1, #2, and #3) both the stresses normal and

parallel to the pre-existing joint were tensile, whereas for curving-parallel

cross joints (i.e., #4) the stress normal to the joint was tensile but parallel

to the pre-existing joint the stress was compressive during propagation.

One may note that with respect to cross joints #1-#3, cross joint #4 is on

the opposite side of the pre-existing joint. This means that the timing of
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propagation for #4 relative to the other cross joints is unclear. However,

one cannot reach the general conclusion that there is a switch in geometry

from parallel to perpendicular across the pre-existing joint; both styles of

cross joint termination are found on either side. In fact the cross joint

adjacent to #4 (top left corner of Fig. 4-3 a, b) has a curving-perpendicular

geometry. Therefore, an explanation must be found that accounts for

changes in cross joint geometry, and hence principal stress ratios, at this

locality.

The take-off angle for cross joints #2 and #4 is 340, whereas for

cross joints #1 and #3 the angle is slightly larger at 390 and 370,

respectively. It is thus possible that cross joints #2 and #4 propagated after

a slight reorientation of the remote stress field that formed joints #1 and

#3. However, it is my opinion that the differences in take-off angles are

too small to resolve, and hence I do not attribute these small differences to

changes in remote stress orientation. Rather, I assume a uniformly

oriented remote stress field throughout development of curving-

perpendicular and curving-parallel cross joints.

There are two possible geologic scenarios that may give rise to the

cross joint pattern observed in the outcrop of Monterey Formation along

the Santa Maria coastline. One explanation considers the effects of

fluctuating pore pressure on effective stress ratio. If the magnitudes of a;

and a; remain constant, the effective stress ratio can change due to

fluctuation in pore pressure, as shown in Fig. 4-8a. In terms of Mohr

space, this would translate a Mohr's circle of fixed diameter along the

horizontal (e.g., normal stress) axis (Fig. 4-8b). For the general outcrop
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Fig. 4-8. (a) Plot of effective remote principal stress ratio (T,*) versus fluid

pressure/least principal stress ratio (Pp / 63) at a constant remote

principal stress ratio (TI). (b) Mohr circle diagram showing stress

state variation as a function of fluid pressure (Pp) with constant

remote principal stresses (62 and (ao). Note that curving-

perpendicular geometry occurs at higher fluid pressure and curving-

parallel geometry occurs at lower fluid pressure. (c) Mohr circle

diagram showing stress state variation as a function of maximum

horizontal stress (cr) with constant minimum horizontal stress ((T )

and fluid pressure (PP). Note that curving-perpendicular geometry

occurs at lower 62 and curving-parallel geometry occurs at higher

629.
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stress conditions of 71 <0 (see Table 4-1), cross joints with curving-

perpendicular geometries would form when I63 - Pl>i62 - P 1, whereas

curving-parallel cross joint would develop when I63 - Ppi=162 - PPI. As

shown in the Mohr diagram in Fig. 4-8b, the curving-perpendicular cross

joints develop under higher fluid pressures than the curving-parallel cross

joints.

Joints often grow in stages, with increments of extension followed by

periods of non-growth. Evidence for such incremental joint growth is

provided by plumose structures often preserved on joint surfaces (e.g.,

Kulander et al, 1985; Bahat and Engelder, 1984; Lacazette and Engelder,

1992; Wu and Pollard, 1995). Each increment of growth is marked by an

arrest line indicating the point of temporary cessation of joint growth

(Fig. 4-9a). As mentioned earlier, fluid pressure plays a key role in

enabling joints to propagate under compressive stress conditions (e.g.,

Secor, 1965; Segall and Pollard, 1983; Engelder and Lacazette, 1990).

Consequently, the series of arrest lines often found on single joint surfaces

are thought to represent cyclic joint propagation due to fluctuations in fluid

pressure (fig. 4-9b) (Lacazette and Engelder, 1992). In other words, when

fluid pressure within the joint reaches a critical value, the joint extends a

certain distance until the internal fluid pressure drops. The drop in fluid

pressure occurs because the quantity of fluid is now distributed across a

larger volume. This leads in turn to a decrease in pore pressure in the

surrounding rock as fluid moves from a zone of higher pressure (i.e.,

surrounding rock) to a zone of lower pressure (i.e., the joint). Thus, fluid
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Fig. 4-9. (a) Block diagram of a joint surface showing arrest lines, plume

axis and fracture propagation direction. Arrest lines are indicators

of temporary cessation of joint growth (Redrawn from Kulander et

al, 1990). (b) Fluid pressure variation through time during

incremental joint propagation.
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pressure cycles through time as shown in Fig. 4-9b, at a rate controlled by

the permeability of the host rock and the mechanism for creating

overpressured conditions.

It is certainly possible that pore pressure fluctuated during

development of cross joints in the Monterey Formation, as the pre-existing

joints could have served as a plumbing mechanism for transporting fluid

into and out of the rock system. For the cross joints observed in Fig. 4-3a,

curving-perpendicular joints would have formed under higher pore

pressures, whereas curving-parallel joints would have formed under lower

pore pressures. Due to fluctuations in pore pressure magnitude under this

scenario, one would expect alternating geometries to develop throughout

the history of formation of the cross joint set.

The second possible explanation for the observed cross joint pattern

is termed the "tectonic stress effect", and considers the case where a; and

P, remain constant through time. Under this scenario, the Mohr's circle of

stress remains anchored on the left side as shown in Fig. 4-8c. Curving-

perpendicular geometries form under low differential stress, where

lag - PI>162 - PCl. An increase in maximum horizontal stress (in this case

(;), perhaps due to intensification of tectonic shortening across Santa

Maria Basin (e.g., Namson and Davis, 1990), would lead to an increase in

differential stress, and hence a Mohr's circle with larger diameter.

Curving-parallel cross joints would then form under conditions of higher

differential stress when I63 - PPI=162 - PPI. In contrast to the pore pressure

fluctuation model, under this scenario one would expect a switch from
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curving-perpendicular cross joint propagation to curving-parallel

development through time.

EXAMPLE 2: A QUASI-CURVING-PARALLEL CROSS

JOINT FROM THE GEROFIT FORMATION,

ISRAEL

From Table 3-3 we can see that quasi-curving-parallel cross joints

belong to the Closed Case #1. The typical features of the Closed Case #1

are such that cross joints are not exactly parallel to the pre-existing joint,

and there are compressive zones in the vicinity of the pre-existing joint.

Theoretically, cross joints cannot propagate into a compressive zone (Dyer,

1988). Therefore, cross joint termination can be used as an indicator of

the compressive zone boundary. In example 1 I showed a method of

estimating the remote effective principal stress ratio by fitting the observed

cross joint paths with the theoretical cross joint paths, which is called the

path-fit method. In this example, I will demonstrate a method of using the

dimension of the compressive zone to estimate remote effective principal

stress ratio, which I refer to as the compressive zone dimension method.

Figure 4-10a shows a picture of a cross joint and a pre-existing joint

developed in a marly limestone unit with a bed thickness of 6 cm in the

Gerofit Formation of Israel. The outcrop is located on the southern flank

of the Haluza Anticline in the vicinity of the Zin Fault (Fig. 4-11). The

Haluza Anticline is an open drape-fold with maximum limb dips of about
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Fig. 4-10. (a) A photo of cross joint example from Israel.
(b) Sketch of the pre-existing joint and the cross joint
in the photo. Photo taken by Dr. Alexander Beker.
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300. The Zin Fault is a steep reverse fault belonging to the Syrian Arc

Fault System.

Figure 4-10b is the sketch of the photo in Fig. 4-10a. The angle

between the initial trend of the cross joint and the main trend of the pre-

existing joint shows that the horizontal principal stress direction during

cross joint formation lies in the direction of 28° (i.e., the take off angle)

from the pre-existing joint. From the equations provided in Table 3-3 and

using a take off angle of 280, one estimates that the remote effective

principal stress ratio during the formation of the cross joint was less than

-3.54.

Now let us use the dimension of the compressive zone to estimate the

remote effective principal stress ratio more accurately. Using a take off

angle of 28° and assuming the coefficient of friction along the pre-existing

joint is 0, 0.6 and 0.9, respectively, we can plot the dimension of the

compressive zone versus the remote effective principal stress ratio with

equation (3-60) in chapter 3. The plots are shown in Fig. 4-12. It was

mentioned above that cross joint termination can be used as an indicator of

the compressive zone boundary. Using this criterion we can draw the

boundary of the compressive zone in our examples, which is shown in Fig.

4-lOb. The dimension of the compressive zone in the example is 6 cm

(Fig. 4-lOb). By normalizing the dimension of the compressive zone using

the half bed thickness of 3 cm, we derive a normalized dimension of the

compressive zone of 2. Using this number, we can find the corresponding

remote effective principal stress ratios from Fig. 4-12, which are -27.0,
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Fig. 4-12. Plots of dimension of compression versus remote effective

principal stress ratio for Closed Case #1 (Table 2-3) with a take off

angle of 280. The number next to each curve indicate the coefficient

of friction along the pre-existing joint.
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-37.9 and -48.3, corresponding to coefficients of friction of 0.0, 0.6 and

0.9.

To verify this result, let us plot the theoretical cross joint paths based

on the parameters from our example using equation (3-38). Figure 4-13a

shows the calculated cross joint paths with effective remote principal stress

ratios in the range of -26 ~ -50. The cross joint path change as a function

of effective remote principal stress ratio is not detectable in the prescribed

range of effective remote principal stress ratio. By comparing the

theoretical cross joint path with the observed cross joint path in Fig. 4-10,

we find that theoretical cross joint paths with remote effective principal

stress ratios greater than -50 and less than -26 can fit the observed cross

joint path (Fig. 4-13b). This result is in agreement with the result derived

from the compressive zone dimension method, though the compressive

zone dimension method yields more accurate estimations. The results are

summarized in Table 4-2.

From the above discussion, we can see that the compressive zone

dimension method is relatively easy to use because the only thing one needs

to do is to plot the relationship between the dimension of compressive zone

and the remote effective principal stress ratio. This method can also be

used in Closed Case #2aI (refer Table 3-3), which is the quasi-curving-

perpendicular case with a compressive zone.
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Fig. 4-13. (a) Calculated cross joint paths for different remote principal

stress ratios with a takeoff angle of 280. (b) Comparison of observed

and calculated cross joint paths. In this example the observed cross

joint path is very close to the calculated cross joint path with a

remote principal stress ratio of -5.0.
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Table 4-2. Remote effective principal stress and pre-existing joint

information obtained from the cross joint in Fig. 4-7.

Cross joint in Fig. 4-7

Take off angle (0) 28

Main category Closed Case #1 in Table 3-3

Range of the remote effective
71 < -3.54

principal stress ratio ( _*)

Co =0.0 CO =0.6 Co =0.9
Remote effective principal stress

ratio

( i*) from the Compressive Zone
-27.0 -37.9 -48.3

Dimension Method

Remote effective principal stress
-26.0 - -50.0

ratio ( 1*) from the Path-fit

Method
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EXAMPLE 3: NON-CURVING AND CURVING

PERPENDICULAR CROSS JOINTS FROM

BELMONT, NEW YORK

As an example of non-curving cross joints, I use the cross joints

observed in the Canadaway Group in the Genesee River bed at Belmont,

New York (Fig. 4-14a), reported by Engelder and Gross (1993). As

described by Engelder and Gross (1993), the joints at Belmont group into

three sets, which are the strike-perpendicular systematic joint set, the east-

west systematic joint set and the non-systematic joint set (Fig. 4-14b). The

strike-perpendicular systematic joints are oriented 3200, which reflect the

orientation of the maximum horizontal stress during the Alleghanian

orogeny (Engelder and Gross, 1993). The east-west systematic joints are

oriented 085°. Their origin is unknown. The non-systematic joints formed

in between the strike-perpendicular systematic joints. For the purpose of

maintaining consistent nomenclature, I refer to the strike-perpendicular

systematic joints as pre-existing joints, and the non-systematic joints as

cross joints.

As shown in Fig. 4-14b, the cross joints can be classified into two

groups, (3a) and (3b). Cross joint (3a) is oriented 0710 and has an angle of

690 with the pre-existing joints, while cross joint (3b) is oriented 0540 with

an angle of 860 with the pre-existing joints. From their orientations, we

can determine that the maximum horizontal stress was in the direction of

071 during the formation of cross joint (3a), and was in the direction of

086° during the formation of cross joint (3b). Furthermore, we can see
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Fig. 4-14. (a) Map showing the location of Belmont, New York. (b)

Sketch diagram showing the three joint sets in Canadaway Group

siltstones in Genesee River bed at Belmont, New York. The circled

numbers in the figure indicate the relative ages of the joint sets from

oldest (1) to youngest (3). After Engelder and Gross (1993).
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that the pre-existing joints were open during the formation of cross joint

(3a) because purely curving-perpendicular geometries can only occur in

the open case (Table 3-3). However, based on Table 3-3 the pre-existing

joints were closed during the formation of cross joint (3b).

Now let us consider what information we can determine regarding

the remote effective principal stress ratio. For the non-curving case, we

can only estimate the range for the remote effective principal stress ratio.

The condition for the non-curving geometry is CO < Co as shown in Table 3-

3. By referring to equation (3-37) in terms of the effective remote

principal stress ratio ( if), we have the complete expression for this

condition as

CO < , 77 ,1si (4-1)7*(1 -cos2g)+(1+ coos )

Rewriting equation (4-1), we arrive at the range for the remote effective

principal stress ratio, which is

* < - C0(1+ cos2g)+ sin 2. (4-2)
C°(1 - cos2g) - sin 2g

For the non-curving cross joint in Fig. 4-14b, i.e., cross joint (3b), the take

off angle is 86°. By substituting this value into equation (4-2), we get the

relation between the maximum remote effective principal stress ratio

versus the coefficient of friction along the pre-existing joint ( CO), which is

shown in Fig. 4-15. For CO = 0.6, we have i* < -0.14, which defines the
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Fig. 4-15. Relation between the maximum value of remote effective

principal stress ratio and the coefficient of friction along the pre-

existing joint for the non-curving cross joint, i.e., cross joint (3b), in

Fig. 4-10.
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Table 4-3. Remote effective principal stress and pre-existing joint

information obtained from cross joint (3a) and (3b) in Figure 4-10.

Cross joint (3a) Cross joint (3b)

Direction of the maximum
071° 0540

horizontal principal stress

Status of the pre-existing joint
open closed

during the formation of the

cross joint

Range of the remote effective
-0.15 < * <1.0 rl < -0.14

principal stress ratio ( r * )
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range of the remote effective principal stress ratio during the formation of

cross joint (3b) (Fig. 4-15).

Cross joint (3a) shows a curving-perpendicular geometry, which

belongs to the Open Case #3 in Table 3-3. Using the equations provided in

Table 3-3, we calculate that the range of the remote effective principal

stress ratio during the formation of cross joint (3a) falls in the range of

-0.15 < «f< 1.0. It is not possible to derive an accurate remote effective

principal stress ratio using the path-fit method because the bed thickness is

not available. The results from the above discussion are summarized in

Table 4-3.

SUMMARY

The above analyses show that our theoretical results can be useful in

analyzing the remote principal stress orientations and relative stress

magnitudes based on field observations of cross joint geometry. Two

methods can be used to analyze the remote effective principal stress ratio,

the path-fit method and the compressive zone dimension method. The

path-fit method can be applied when cross joints belong to curving-parallel

(Open Case #1) (refer to Table 3-3), curving-perpendicular ( Open Cases

#2 and #3) , quasi-curving-parallel ( Closed Case #1) and quasi-curving-

perpendicular (Closed Cases #2a and #3a) categories. The compressive

zone dimension method can be used in the Closed Case #2a and #3a, i.e.,

when compressive zones exist. The non-curving cases (Closed Cases #2b
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and #3b) can only occur when the pre-existing joint is closed. From the

orientations of non-curving cross joints, we can only estimate the range of

the remote effective principal stress ratio.

One noteworthy item to mention here is that the application of the

theory is limited by its assumptions. In using this theory, the spacing

between the pre-existing joints and between the cross joints needs to be

relatively high because effects of joint interactions are not considered in

our derivations. This limitation is clearly shown in discussing example 1 in

this chapter.
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DISCUSSION AND SUMMARY

The study of the relationship between cross joint geometry and

remote stress field as well as pore pressure in the previous chapters

demonstrates that cross joint geometry can be used as an indicator of both

the orientations and ratio of remote stresses during their formation. A

detailed theoretical study based on the remote principal stress ratio, take-

off angle and the coefficient of friction along the pre-existing joint shows

that cross joint geometries can vary among curving-parallel, curving-

perpendicular, non-curving, quasi-curving-parallel and quasi-curving-

perpendicular configurations. In some of the closed pre-existing joint

cases, there exist compressive zones in the vicinity of the pre-existing joint.

In a compressive environment, pore pressure plays a key role in

propagating cross joints and in controlling cross joint geometry. Applying

the analytical solutions to cross joints observed in the field shows that cross
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joint geometries and orientations can be used to constrain the stress state

during cross joint development. Based on different cross joint geometries,

two different methods, the path-fit method and the compressive zone

dimension method, can be used to estimate the remote principal stress ratio.

I have attempted to build upon the advances of Dyer's (1988) work

by (1) providing the general conditions for an open and a closed pre-

existing joint at an arbitrary take off angle (g) (equations (3-4) and (3-5));

(2) developing a detailed cross joint classification. By studying the local

cross joint angle (6, i.e., the angle between cross joint along its path and

the pre-existing joint) , cross joint geometries can be classified as quasi-

curving-perpendicular, quasi-curving-parallel and non-curving in addition

to Dyer's curving-parallel and curving-perpendicular geometries. For

each of the above cross joint geometries, the general conditions with

respect to the remote principal stress ratio at an arbitrary take off angle are

provided (Table 3-3); (3) deriving a general formulation for the

dimension of the compressive zone, which shows that the dimension of the

compressive zone depends not only upon the take off angle and the remote

principal stress ratio, but also upon the coefficient of friction along the

pre-existing joint (equation (3-60)); and (4) accounting for fluid pressure

in the analytical solution, which provides a method to study cross joint

geometry variation in a compressive stress environment.

There are two significant aspects that result from this study. First,

by detailed observation and measurement of cross joint geometry in the

field, one can determine the principal stress orientations and estimate the

stress ratios that prevailed during cross joint growth. Where cross joints
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are present, the regional documentation of cross joints can constrain the

regional stress field, which may yield valuable information concerning the

tectonic development of a region. Second, based on the stress orientations

and ratios as well as the orientation of the pre-existing joint set in an area,

one can predict the expected cross joint geometry. In other words, one can

predict the type of cross joint geometry that would develop, for example,

in the subsurface. Together with the pre-existing joints, the predicted cross

joint geometry may provide a hypothetical picture of the fracture network

in a region, which in turn is a main factor in controlling fluid conductivity

and very important in groundwater modeling and oil and gas exploration

and production.

In the next section, I will discuss the implications of cross joint

geometry on fluid conductivity in more detail based on the different

possible types of cross joint geometries. Following that, I will discuss the

significance of the compressive zone. Then I will discuss relations between

cross joint geometries and fluid pressure. In the last two sections I will

analyze the limitations of the analytical solutions and propose some future

work.

CROSS JOINT GEOMETRY AND FLUID CONDUCTIVITY

To study the effect of cross joint geometry on the hydraulic

conductivity or conductivity for oil and gas, let us consider the following

situations. Here I use the term fluid conductivity instead of hydraulic
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conductivity or conductivity for oil and gas. Assuming the fluid

conductivity of the rock which contains the fluid is very low prior to

developing any joints, the rock is homogeneous and isotropic in plan view

(Fig. 5-la). The coordinate system is designated as both i and j directions

are parallel to the bedding plane (Fig. 5-1). Therefore, before any joint

develops, fluid conductivity in both the i and j directions, i.e., K and K ,

respectively, are very low. After that, a systematic joint set develops in the

direction parallel to the i direction (Fig. 5-1b). As a result, fluid

conductivity in the i direction (K) increases dramatically (Fig. 5-ib)

according to the theory of flow in fractures (Fetter, 1994). If we take the

systematic joints as the pre-existing joints described in the previous

sections, and assume there is a stress field rotation, then cross joints

develop in between the systematic joint as shown in Fig. 5-1c, d, e,f, g, h

and k Fig. 5-1c and d depict compressive zones adjacent to the pre-existing

joints. Because cross joints cannot propagate into a compressive zone, they

cannot be connected with the pre-existing joints. As a result, fluid

conductivity in the j direction (K1 ) does not change. However, if

compressive zones do not exist, the cross joints can be connected with the

pre-existing joints, and fluid conductivity in the j direction (K1 ) will

increase considerably (Figs. 5-le, f, g, h and k). The relative magnitudes

of K in Figs. 5-1 e,f, g, h and k may vary according to the lengths of the

cross joint paths, which are shown schematically in Fig. 5-2.
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Fig. 5-1. Sketch diagrams showing the relationships between cross joint

geometries and fluid conductivity of rocks. (a) No jointing.

(b) Only pre-existing joints. (c) Pre-existing joints and quasi-

curving-parallel cross joints with compressive zones in the vicinity

of pre-existing joints. (d) Pre-existing joints and quasi-curving-

perpendicular cross joints with compressive zones in the vicinity of

pre-existing joints. (e) Pre-existing joints and curving-parallel cross

joints. (f) Pre-existing joints and curving-perpendicular cross joints.

(g) Pre-existing joints and quasi-curving-parallel cross joints without

compressive zones. (h) Pre-existing joints and quasi-curving-

perpendicular cross joints. (k) Pre-existing joints and non-curving

cross joints. The lengths of Ki and Kj depict the relative magnitudes

of fluid conductivity in the corresponding directions.
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ABCH > ABCG > ABCF > ABE > ABD A

B

non-curving

curving-parallel C

H G F D pre-existing joint

quasi-curving-parallel

quasi-curving-perpendicular curving-perpendicular

Fig. 5-2. Cross joint geometries and their relative lengths of their paths.

Note that shorter paths will provide a higher conductivity.
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SIGNIFICANCE OF COMPRESSIVE ZONE

The significance of the compressive zone must be noted in two

different ways. One is that the compressive zone can give information

about the remote principal stress ratio. The other is that compressive zones

serve as barriers for fluid flow.

As mentioned in the previous section, cross joints cannot propagate

into a compressive zone where all the principal stresses are compressive.

This provides the criterion for determining compressive zones in the field.

Theoretically, the compressive zone lies in the vicinity of the pre-existing

joint with a boundary line parallel to the pre-existing joint. In doing field

work, one can determine the boundary of a compressive zone by connecting

the termination points of cross joints belonging to the same cross joint set.

The same cross joint set refers to cross joints that formed at approximately

the same time under the same stress field. After determining the boundary

of the compressive zone, one can measure the dimension of the compressive

zone. Together with other measurements from the cross joints and the pre-

existing joint, such as orientations, one can determine the principal stress

ratio during the formation of the cross joints using the compressive zone

dimension method as shown in chapter 4.

In the previous section I already discussed the implications of

compressive zones on fluid conductivity. Now let us consider the following

questions:

(1) How does one predict the existence of compressive zones?

(2) What kind of parameters are necessary to make this prediction?
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(3) Under what conditions are compressive zones most likely to exist?

To answer these questions, let us recall the theoretical results in chapter 3.

Table 3-3 and Fig. 3-16 show the cross joint geometry classification

based on the theoretical derivations. From the table and figure, we can see

that in order to predict the existence of a compressive zone, one needs the

take-off angle (;), the remote principal stress ratio (ri), and the coefficient

of friction along the pre-existing joint. The coefficient of friction along the

pre-existing joint can be easily obtained from the literature (e.g. Handin,

1966) or by conducting some experimental work. In order to determine

the take-off angle and remote principal stress ratio one requires the

orientation of the pre-existing joints and the orientations and relative

magnitudes of the principal stresses. With the knowledge of these

parameters in hand, one can easily predict the category of the cross joints

by using the inequalities in Table 3-3 or by diagrammatic plotting the

remote principal stress ratio (rj) versus the take-off angle (;) in Fig. 3-16.

If the predicted cross joint geometry category is Closed Case #1 or Closed

Case #2Ia, compressive zone exists. Otherwise, a compressive zone does

not exist. The favorable conditions for the existence of a compressive zone

can be seen from Fig. 3-15. Fig. 3-15a shows that the more negative the

remote principal stress ratio, the more likely it is for the compressive zone

to exist. Fig. 3-15b shows that compressive zones are most likely to exist

when the take-off angle is a medium value (- 40).
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SIGNIFICANCE OF THE RELATION BETWEEN CROSS JOINT

GEOMETRY AND FLUID PRESSURE

The relation between pore pressure and cross joint geometry is a

rather complicated problem, especially when the take off angle is greater

than 450 (Table 3-3 and Fig. 3-16). The general trend in the case of take

off angle less than 450 is that cross joint geometry changes from quasi-

curving-parallel with compressive zone to curving-parallel to curving-

perpendicular with increasing pore pressure (Fig. 3-18). In this process,

connectivity between cross joints and pre-existing joints is improved. The

same can be said for the case when the take off angle is 50° (Fig. 3-19).

For the other cases described in chapter 3 (Fig. 3-20, 3-21, and 3-22),

compressive zones do not exist, and the general change in cross joint trend

is from non-curving to quasi-curving-perpendicular to curving-

perpendicular. Therefore, on theoretical grounds all cross joints in these

categories are initially connected. However, one thing that can be said is

that fluid conductivity in the direction normal to the pre-existing joint is

improved with increasing pore pressure because cross joint length is

systematically reduced when cross joint geometry changes from non-

curving to quasi-curving-perpendicular to curving-perpendicular (Fig. 5-

2).

These results provide a tool for predicting cross joint geometry with

the knowledge of remote principal stress ratio, orientations of the maximum

horizontal stress and the pre-existing joints, as well as the magnitude of

fluid pressure. Conversely, we can predict the magnitude of fluid pressure
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if we know the cross joint geometry, the remote principal stress ratio, and

the orientations of the maximum horizontal stress and the pre-existing

joints. Most interestingly, in an area where cross joint geometry changed

through time (e.g., the Monterey cross joints in example 1 of chapter 4), we

can garner some information about the history of fluid pressure variations

in the area.

LIMITATIONS IN USING THE THEORETICAL RESULTS

In using the analytical results provided in chapter 3, one must

remember the assumptions in the theoretical derivations. The assumptions I

made are (1) a cross joint path is perpendicular to the local least horizontal

stress in terms of the theoretical model (Fig. 3-2), (2) there is no interaction

between a growing cross joint and the pre-existing joint, and (3) there is no

interaction between two cross joints. Under the limitations of these

assumptions, we can only use the theoretical results when the spacing of the

pre-existing joints and that of the cross joints are relatively high. In terms

of fracture spacing index (FSI, i.e., the ratio of mechanical layer thickness,

MLT, to median joint spacing, defined as the slope of the best-fit line on

plots of MLT versus median joint spacing, with median joint spacing as the

dependent variable) or fracture spacing ratio (FSR, i.e., the ratio of

mechanical layer thickness to median joint spacing in a jointed layer) (Narr,

1991, Narr and Suppe, 1991, Gross, 1993a), the FSI or FSR must be

relatively low. Otherwise, interactions between a growing cross joint and
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the pre-existing joint and that of adjacent cross joints must be considered.

However, studying interaction between different joint sets is beyond the

capacity of the analytical method. Numerically it is possible to solve this

problem.

FUTURE WORK

Although the analytical work in this thesis builds upon Dyer's (1988)

analysis, some further studies should be continued in the future, especially

pertaining to verification of the assumptions.

As I stated in discussing the limitations of the analytical solutions, in

order to satisfy the assumptions, the spacing of the pre-existing joints and

that of the cross joints must be relatively high. One may ask the question

"How high?" Frankly speaking, I do not know exactly what the answer is.

Analytically, the only clue can be drawn from the Saint-Venant Principle

(Timoshenko and Goodier, 1970). Based on the Saint-Venant Principle, we

can say that the spacing of the pre-existing joints and that of the cross joints

must be at least 5 to 10 times the height of the pre-existing joint. In order

to get the exact answer to the question, I suggest the following work.

First, one needs to do some numerical modeling. Although it is

impossible to include fracture interactions analytically, numerically it is

possible to include a number of fractures in a single model. Therefore,

fracture interactions can be studied using a numerical model. For the

purpose of studying cross joint geometries, I suggest to use a 3-D model,
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because through fractures need to be introduced into the model to represent

the pre-existing joints, and layered structures need to be used in order to

represent the real situations in layered sedimentary rocks. Using a 3-D

model, one can study cross joint propagation paths by actually propagating

the cross joints in the model under different boundary conditions. Then one

can verify the analytical solutions by comparing the modeled cross joint

paths with the analytical solutions.

Second, one can verify the analytical solutions by doing some more

detailed field work. For this purpose, one needs to select an area with well-

developed cross joints where the orientations and relative magnitudes of

principal stresses can be independently derived. By measuring the cross

joint paths and the orientation of the pre-existing joints, one can use the

analytical solutions in this thesis to obtain the orientations and ratio of the

remote stress field during cross joint formation. By comparing the results

of orientations and relative magnitudes of the remote principal stresses

from the cross joints to those from other independent methods, one can

verify the analytical solutions in this thesis.

To finish any of the above projects, much more effort needs to be

devoted beyond solving for the equations in this thesis. To mark the end of

this thesis, I wish to invoke a Chinese proverb. It says " No matter how

long a road is, you are able to reach to its end, if you walk steadily step by

step; no matter how high a mountain is, you are able to reach to its peak, if

you climb steadily step by step."
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A

HOW TO CONSTRUCT A THEORETICAL CROSS
JOINT PATH

In terms of the coordinate system defined in chapter 3 (Fig. 3-2), a

cross joint path is a function of y versus z (Fig. 3-4). In chapter 3, I also

provided the expressions of the local cross joint angle (0) for the open pre-

existing joint case (eq. 3-24) and for the closed pre-existing joint case (eq.

3-38).

By the definition of the local cross joint angle (0), we have

dy = tanO. (A-1)
dz

From equations (3-24) and (3-38), we can see that for a given take-off angle

(g) and a given remote principal stress ratio (fl), 0 is only a function of y,

i.e., 0 = 0(y), because the half height of the pre-existing joint (c) and the
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coefficient of friction along the pre-existing joint (Co) are constants.

Therefore, we have

z = f l dy . (A-2)
tan 0

This equation provides the theoretical relation of z versus y. By plotting z

versus y, we can get the theoretical cross joint path at a given take-off angle

(;) and a specified remote principal stress ratio (ri).

However, in reality it is not easy to plot z versus y according to (A-

2) because e is a very complicated function. The cross joint paths can only

be calculated numerically. The numerical approximation of equation (A-2)

is

n
zn = [Ay / tan 0(y,)]. (A-3)

In using equation (A-3) to plot the theoretical cross joint paths in this

thesis (e.g., Figs. 3-6, 4-4b), I used KaleidaGraphTM 3.0 and followed the

following procedures:

Step 1: Generate y1 , Y2, ..., y., with a small increment, Ay. Here y,

is zero and ym = mAy, which is the maximum value of the distance from the

pre-existing joint you want to use.

Step 2: Calculate Ay / tan0(y;) for each y; (i =1, 2, ..., m).

Step 3: Calculate zn, using equation (A-3).

Step 4: Plot yn versus zn (n = 1, 2, ..., m), which gives the theoretical

cross joint path.
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