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ABSTRACT OF THE THESIS
LOGICAL SIMULATION OF COMMUNICATION SUBSYSTEM FOR UNIVERSAL
SERIAL BUS (USB)
by
Terikere Badarinarayana
Florida International University, 2003
Miami, Florida
Professor Malcolm Heimer, Major Professor

The primary purpose of this thesis was to design a logical simulation of a communication
sub block to be used in the effective communication of digital data between the host and
the peripheral devices. The module designed is a Serial interface engine in the Universal
Serial Bus that effectively controls the flow of data for communication between the host
and the peripheral devices with the emphasis on the study of timing and control signals,
considering the practical aspects of them.

In this study an attempt was made to realize data communication in the hardware using
the Verilog Hardware Description language, which is supported by most popular logic
synthesis tools. Various techniques like Cyclic Redundancy Checks, bit-stuffing and Non
Return to Zero are implemented in the design to provide enhanced performance of the

module.
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Chapter 1 Very Large Scale Integration (VLSI)

1.1 Introduction

Very Large Scale Integration (VLSI) of systems of transistor-based circuits on a
single chip first occurred in the 1980s as part of the semiconductor and communication

technologies that were being developed.

The first semiconductor chips held one transistor each. Subsequent advances
added more and more transistors, and as a consequence more individual functions or
systems were integrated over time. The microprocessor is a VLSI device. In its short life
span, microelectronics has become the most complex of our everyday technologies.
embracing as it does physics, chemistry, materials, thermodynamics, and micro
mechanical engineering, as well as electrical and electronic engineering and computer
science. (No one person can hope to be expert in all these diverse aspects.) With the
advent of VLSI. The number of applications of integrated circuits in high-performance
computing, telecommunications, and consumer electronics has been rising steadily, and
at a very fast pace. Typically, the required computational power (or, in other words, the
intelligence) of these applications is the driving force for the fast development of this
field. The current leading-edge technologies (such as low bit-rate video and cellular
communications) already provide the end-users a certain amount of processing power and
portability. This trend is expected to continue, with very important implications on VLSI
and systems design. Figure 1.1 gives an overview of the prominent trends in information

technologies over the next few decades. One of the most important characteristics of



information services is their increasing need for very high processing power and
bandwidth (in order to handle real-time video, for example). The other important
characteristic is that the information services tend to become more and more personalized
(as opposed to collective services such as broadcasting), which means that the devices

must be more intelligent to answer individual demands, and at the same time they must

be portable to allow more flexibility/mobility. [1][2] [3]
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Figure 1.1 Prominent trends in information service technologies [11]

The communication systems have many complex functions thus integrating these
is not simple in to a single package the need to integrate them is also on a rise. The levels

of integration as measured by the number of logic gates in a monolithic chip has been



steadily rising for almost three decades, mainly due to the rapid progress in processing

technology and interconnect technology

1.2 History of VLSI [10]

1948 TRANSISTOR INVENTED (SHOCKLEY AT&T)

GERMANIUM-GOLD CONTACT

1954 SILICON TRANSISTOR (TEAL TI) HIGHT TEMP.
1956 TRANSISTOR COMPUTER (CRAY)
1958 FIRST MONOLITHIC CIRCUIT (IC)

BJTs (KIRBY - TI & NOYCE - FAIRCHILD)
1960 SSI (< 100 TRANSISTORS)

MOSFET - PMOS, METAL GATE (BELL LABS)

1961 TTL (PACIFIC MICROTEL) - 25UM FEATURE SIZE

1962 ECL (MOTOROLA)

1964 OPAMP (WILDAR - FAIRCHILD U709)

1965 PDP-8 < $20,000

1966 MSI (100 - 1000 TRANSISTORS)

1967 FIRST PRODUCTION MOS CHIPS

1969 LSI (1000 - 10000 TRANSISTORS) PMOS, NMOS, CMOS

1969 E-BEAM PRODUCTION, DIGITAL WATCHES, CALCULATORS
1970 CCD (BELL LABS), MICROPROCESSOR (HOFT - INTEL)

1971 ION IMPLANTATION

1972 2L (IBM), 16 BIT MICROS



1975 VLSI (10,000 - 100,000 TRANSISTORS)
SELF-ALIGNED PROCESSES
1975 SPICE DEVELOPED (U CAL. BERKLEY)
1980’s ULSI (> 100,000 TRANSISTORS)
ASICS, PLD, TRENCH CAPS,
DUAL WELL, BIMOS, HVICS
FEATURE SIZE 2UM
1990’s > 1,000,000 TRANSISTORS
64-bit MICROS, MICROMACHINING, FPGA

SYNTHESIS, VHDL, FEATURE SIZE 0.5UM

1.3 Design Methodologies

The design process, at various levels, is usually evolutionary in nature. It starts
with a given set of requirements. Initial design is developed and tested against the
requirements. When requirements are not met, the design has to be improved. If such
improvement is either not possible or too costly, then the revision of requirements and its
impact analysis must be considered. The Y-chart (first introduced by D. Gajski) shown in
Fig. 1.2 illustrates a design flow for most logic chips, using design activities on three

different axes (domains) that resemble the letter Y.



The Y-chart consists of three major domains, namely:

* Behavioral domain,
e Structural domain,

e Geometrical layout domain.

The design flow starts from the algorithm that describes the behavior of the target
chip. The corresponding architecture of the processor is first defined. It is mapped onto
the chip surface by floor planning. The next design evolution in the behavioral domain
defines finite state machines (FSMs) that are structurally implemented with functional
modules such as registers and arithmetic logic units (ALUs). These modules are then
geometrically placed onto the chip surface using CAD tools for automatic module
placement followed by routing, with a goal of minimizing the interconnects area and
signal delays. The third evolution starts with a behavioral module description. Individual
modules are then implemented with leaf cells. At this stage the chip is described in terms
of logic gates (leaf cells), which can be placed and interconnected by using a cell
placement & routing program. The last evolution involves a detailed Boolean description
of leaf cells followed by a transistor level implementation of leaf cells and mask
generation. In standard-cell based design, leaf cells are already pre-designed and stored in

a library for logic design use.
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Structural
Domain

Processor Algoritnm
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Module
Placernen:
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Figure 1.2 Typical VLSI design flow in three domains (Y-chart representation) [11]

Figure 1.3 depicts a more simplified view of the VLSI design flow that takes into
account the various representations, or abstractions of design - behavioral, logic, circuit
and mask layout. Note that at every step the verification of design is performed, which is
a very important role during this process. The failure to do so in its early phases typically
causes significant and expensive re-design at a later stage, which ultimately increases the

time-to-market.

The diagram showing the design process is doing it in linear fashion for
simplicity, in reality there is much iteration back and forth, especially between any two
neighboring steps, and occasionally even remotely separated pairs. Although top-down

design flow provides an excellent design process control, in reality, there is no truly



unidirectional top-down design flow. Both top-down and bottom-up approaches have to
be combined. For instance, if a chip designer defined architecture without close
estimation of the corresponding chip area, then it is very likely that the resulting chip
layout exceeds the area limit of the available technology. In such a case, in order to fit the
architecture into the allowable chip area, some functions may have to be removed and the
design process must be repeated. Such changes may require significant modification of
the original requirements. Thus, it is very important to feed forward low-level

information to higher levels (bottom up) as early as possible.

VLSI
DESIGN
FLOW

System Specit-cation

Furctionzl

(Architecture) Design [

Behavioral
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Logic Design

Logic Verification

Circuit Design

Logic
{Gate-level)
Representation

Circuit
‘Representalion

Circuit Verification

Physical Design
Layout Verification

Fabrication & Testing

Layout
Representation

Figure 1.3 VLSI design flow [11]



1.4 Design Hierarchy

This technique involves dividing the module in to simpler ones reducing the

complexity levels to the level that it can be managed.

As an example of structural hierarchy, Fig. 1.4 shows the structural
decomposition of a CMOS four-bit adder into its components. The adder can be
decomposed progressively into one- bit adders, separate carry and sum circuits, and
finally, into individual logic gates. At this lower level of the hierarchy, the design of a
simple circuit realizing a well-defined Boolean function is much more easier to handle

than at the higher levels of the hierarchy.
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Figure 1.4 Structural decomposition of a four-bit adder circuit, showing the
hierarchy down to gate level [11]



1.5 Design Styles

There are several designs available for chip implementations of specified
algorithms or logic functions. These come with there own merits hence a right choice of

it is very important to provide functionality at low cost.

1.5.1 Field Programmable Gate Array (FPGA)

Fully fabricated FPGA chips containing thousands of logic gates or even more.
with programmable interconnects, are available to users for their custom hardware
programming to realize desired functionality. This design style provides a means for fast
prototyping and also for cost-effective chip design, especially for low-volume
applications. A typical field programmable gate array (FPGA) chip consists of /O
buffers, an array of configurable logic blocks (CLBs), and programmable interconnect
structures. The programming of the interconnects is implemented by programming of
RAM cells whose output terminals are connected to the gates of MOS pass transistors. A
general architecture of FPGA from XILINX is shown in Fig.1.5. A more detailed view
showing the locations of switch matrices used for interconnect routing is given in

Fig.1.6

A simple CLB (model XC2000 from XILINX) is shown in Fig. 1.7 It consists of
four signal input terminals (A, B, C, D), a clock signal terminal, user-programmable
multiplexers, an SR-latch, and a look-up table (LUT). The LUT is a digital memory that

stores the truth table of the Boolean function. Thus, it can generate any function of up to



four variables or any two functions of three variables. The control terminals of

multiplexers are not shown explicitly in Fig.1.7.

The CLB is configured such that many different logic functions can be realized by
programming its array. More sophisticated CLBs have also been introduced to map
complex functions. The typical design flow of an FPGA chip starts with the behavioral
description of its functionality, using a hardware description language such as VHDL or
Verilog HDL. The synthesized architecture is then technology-mapped (or partitioned)
into circuits or logic cells. At this stage, the chip design is completely described in terms
of available logic cells. Next, the placement and routing step assigns individual logic
cells to FPGA sites (CLBs) and determines the routing patterns among the cells in
accordance with the netlist. After routing is completed, the on-chip performance of the
design can be simulated and verified before downloading the design for programming of .
the FPGA chip. The programming of the chip remains valid as long as the chip is
powered-on, or until new programming is done. In most cases, full utilization of the

FPGA chip area is not possible - many cell sites may remain unused.

The largest advantage of FPGA-based design is the very short turn-around time.
i.e., the time required from the start of the design process until a functional chip is
available. Since no physical manufacturing step is necessary for customizing the FPGA
chip. a functional sample can be obtained almost as soon as the design is mapped into a

specific technology.

10
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Figure 1.5 General architecture of Xilinx FPGAs [11]
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Figure 1.7 XC2000 CLB of the Xilinx FPGA [11]

1.5.2 Gate Array Design

The design implementation of the gate array is done with metal mask design and

processing while that of the FPGA chip is done with user programming.
Gate array implementation requires a two-step manufacturing process: The first

phase, which is based on generic (standard) masks, results in an array of uncommitted

transistors on each GA chip. These uncommitted chips can be stored for later

12



customization, which is completed by defining the metal interconnects between the
transistors of the array as in fig 1.8 Since the patterning of metallic interconnects is done
at the end of the chip fabrication, the turn-around time can be still short, a few days to a
few weeks. Figure 1.9 shows a corner of a gate array chip which contains bonding pads
on its left and bottom edges, diodes for I/O protection, nMOS transistors and pMOS
transistors for chip output driver circuits in the neighboring areas of bonding pads, arrays
of nMOS transistors and pMOS transistors, underpass wire segments, and power and

ground buses along with contact windows.

iwo-step manufacture :

first {deep) standard base wafers

: N . —
processing sleps masks

WL i
T
HTHID
e e
customizalion : cuslom
contacts & metal layers masks "}
ASIC
L 1
L—r1 R i)
[YECO 2% VY
) Hes

Figure 1.8 Basic processing steps required for gate array implementation [11]
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Figure 1.9 A corner of a typical gate array chip [11]

1.5.3 Standard-Cells Based Design

The standard-cells based design is one of the most prevalent full custom design
styles that require development of a full custom mask set. The standard cell 1s also called
the polycell. In this design style, all of the commonly used logic cells are developed.
characterized, and stored in a standard cell library. A typical library may contain a few
hundred cells including inverters, NAND gates, NOR gates, complex AOI, OAI gates. D-
latches. and flip-flops. Each gate type can have multiple implementations to provide
adequate driving capability for different fan-outs. For instance, the inverter gate can have
standard size transistors, double size transistors, and quadruple size transistors so that the

chip designer can choose the proper size to achieve high circuit speed and layout density.

14



The characterization of each cell is done for several different categories. It consists of

» Delay time vs. Load capacitance
e Circuit simulation model

e Timing simulation model

e Fault simulation model

o Cell data for place-and-route

e Mask data

To enable automated placement of the cells and routing of inter-cell connections,
each cell layout is designed with a fixed height, so that a number of cells can be abutted
side-by-side to form rows. The power and ground rails typically run parallel to the upper
and lower boundaries of the cell, thus, neighboring cells share a common power and
ground bus. The input and output pins are located on the upper and lower boundaries of
the cell. Figure 1.10 shows the layout of a typical standard cell. Notice that the nMOS
transistors are located closer to the ground rail while the pMOS transistors are placed
closer to the power rail. Figure 1.11 shows a floor plan for standard-cell based design.
Inside the I/O frame that is reserved for I/O cells, the chip area contains rows or columns
of standard cells. Between cell rows are channels for dedicated inter-cell routing. As in
the case of Sea-of-Gates, with over-the- cell routing, the channel areas can be reduced or

even removed provided that the cell rows offer sufficient routing space.

15



Figure 1.10 A standard cell layout example [11]

The physical design and layout of logic cells ensure that when cells are placed
into rows, their heights are matched and neighboring cells can be abutted side-by-side.
which provides natural connections for power and ground lines in each row. The signal
delay, noise margins, and power consumption of each cell should be also optimized with

proper sizing of transistors using circuit simulation.

1.5.4 Full Custom Design

Although the standard-cells based design is often called full custom design, in a
strict sense, it is somewhat less than fully custom since the cells are pre-designed for
general use and the same cells are utilized in many different chip designs. In a fuller

custom design, the entire mask design is done anew without use of any library.
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Figure 1.11 A simplified floor plan of standard-cells-based design [11]

However, the development cost of such a design style is becoming prohibitively
high. Thus, the concept of design reuse is becoming popular in order to reduce design
cycle time and development cost. The most rigorous full custom design can be the design
of a memory cell, be it static or dynamic. Since the same layout design is replicated, there
would not be any alternative to high-density memory chip design. For logic chip design. a
good compromise can be achieved by using a combination of different design styles on
the same chip, such as standard cells, data-path cells and PLAs. In real full-custom layout
in which the geometry, orientation and placement of every transistor is done individually
by the designer, design productivity is usually very low - typically 10 to 20 transistors per

day, per designer.
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In digital CMOS VLSI, full-custom design is rarely used due to the high labor
cost. Exceptions to this include the design of high-volume products such as memory

chips, high- performance microprocessors and FPGA masters.

IC
I |
Standard IC ASSP ASIC
I [
| [ [ I I |
MPU RAM OPAmp CODEC LANIC USART
[ I
Programmable IC Semi Custom IC Custom IC
I | | [ [ |
PLD FRGA | [Memories MCU Gate Array Linear Array | § Cell Based IC | | Full Custom IC)
PROM  Fused, EPROM  EPROM Channeled Standard Cells
PAL Antifused- EEPROM  EEPROM Sea of Gates Macro Cells
PLA FPGA oTP QTP
Flash Flash
Mask

Figure 1.12 Overview of VLSI design styles [11]
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Chapter 2 Verilog Hardware Description Language

2.1 Hardware Description Language

Hardware Description Languages, or HDLs, are languages used to design
hardware with. As the name implies, an HDL can also be used to describe the
functionality of hardware as well as its implementation.

With the advent of VLSI (Very Large Scale Integration) technology, designers
could design single chips with more than 1,00,000 transistors. Because of the complexity
of these circuits, it was not possible to verify these circuits on a breadboard. Computer-
aided techniques became critical for verification and design of VLSI digital circuits.
Computer programs to do automatic placement and routing of circuit layouts also became
popular. The designers were now building gate-level digital circuits manually on graphic
terminals. They would build small building blocks and then derive higher-level blocks
from them. This process would continue until they had built the top-level block. Logic
simulators came into existence to verify the functionality of these circuits before they
were fabricated on chip. As designs got larger and more complex, logic simulation
assumed an important role in the design process. Designers could iron out functional bugs
in the architecture before the chip was designed further.

The principal feature of a hardware description language is that it contains the
capability to describe the function of a piece of hardware independently of the
implementation. The great advance with modern HDLs was the recognition that a single

language could be used to describe the function of the design and also to describe the
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implementation. This allows the entire design process to take place in a single language.

and thus a single representation of the design.

2.2 History and growth of Verilog [2]

The Verilog Hardware Description Language, usually just called Verilog, was
designed and first implemented by Phil Moorby at Gateway Design Automation in 1984
and 1985. It was first used beginning in 1985 and was extended substantially through

1987. The implementation was the Verilog-XL simulator sold by Gateway.

1986 - Verilog-XL

The first major extension to the language was Verilog-XL, which added a few
features and implemented the infamous "XL algorithm,” a very efficient method for
doing gate-level simulation. This occurred in 1986, and marked the beginning of
Verilog's growth period. Many leading-edge electronic designers began using Verilog at
this time because it was fast at gate level simulation, and had the capabilities to model at
higher levels of abstraction. These users began to do full system simulation of their
designs, where the actual logic being designed was represented by a netlist and other

parts of the system were modeled behaviorally.

1988 - Synopsis Design Compiler
In 1988, Synopsys delivered the first logic synthesizer, which used Verilog as an
input language. This was a major event, as now the top-down design methodology could

actually be used effectively. The design could be done at the "register transfer level”, and
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then Synopsys' Design Compiler could translate that into gates. With this event, the use

of Verilog increased dramatically.

1989 - ASIC Signoff Certification

Beginning in 1989, another major trend began to emerge, the use of Verilog-XL
for sign-off certification by ASIC vendors. As Verilog became popular with the
semiconductor vendor's customers, they began to move away from their own, proprietary
simulators, and started allowing customers to simulate using Verilog-XL for timing
certification. As more ASIC vendors certified Verilog-XL, they requested more features.
especially related to timing checks, back annotation, and delay specification. In response.
Gateway implemented many new features in the language and the simulator to
accommodate this need.

Cadence Design Systems acquired Gateway in December 1989, and continued to
market Verilog as both a language and a simulator. At the same time, Synopsys was
marketing the top-down design methodology, using Verilog. This was a powertul

combination.

1990-5 - Opening of Verilog

From its inception through the end of the 1980s, Verilog was a proprietary
language. No other vendors were allowed to make a Verilog simulator. By 1990, Cadence
recognized that if Verilog remained a closed language, the pressures of standardization
would eventually cause the industry to shift to VHDL. Consequently, Cadence organized

Open Verilog International (OVI), and in 1991 gave it the documentation for the Verilog
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Hardware Description Language. This was the event, which "opened" the
language. Subsequently, OVI did a considerable amount of work to improve the
Language Reference Manual (LRM), clarifying things and making the language
specification as vendor-independent as possible.

In 1994, the IEEE 1364 working group was formed to turn the OVI LRM into an
IEEE standard. This effort was concluded with a successful ballot in 1995, and Verilog

became an IEEE standard in December 1995.

1992-Present - Multiple Vendors

When Cadence gave OVI the LRM, several companies began working on Verilog
simulators. In 1992, the first of these were announced, and by 1993 there were several
Verilog simulators available from companies other than Cadence. The most successful of
these was VCS, the Verilog Compiled Simulator, from Chronologic Simulation. This was
a true compiler as opposed to an interpreter, which is what Verilog-XL was. As a result.
compile time was substantial, but simulation execution speed was much faster. Now.
Verilog simulators are available for most computers at a variety of prices, and which
have a variety of performance characteristics and features. Verilog is more heavily used
than ever, and it is growing faster than any other hardware description language. It has

truly become the standard hardware description language.

2.3 Hierarchical Modeling concepts

In digital design it is very important to understand basic hierarchical concepts. The

designer must use a good design methodology to do efficient Verilog HDL based design.
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2.3.1 Design Methodologies
There are two basic types of digital design methodologies
Top-down design methodology and
Bottom-up design methodology.

In top down we define the top-level block and identify the sub blocks necessary to
build the top-level block Further, sub blocks are divided until we come to leaf cells,
which are the cells that cannot be further divided.

In bottom up design methodology, first identify the building blocks that are
available for designing of the module. After identifying the basic cells, bigger cells are
built using these building blocks. These cells are then used for higher-level blocks until
we build the top-level block in the design.

Typically a Combination of the top down and bottom up flows is used Design
architects define the specifications of the top-level block. Logical designers decide how
the design should be structured by breaking up the functionality into blocks and sub
blocks. At the same time the circuit designers are designing optimized circuits for leaf
level cells they build higher level cells by using these leaf cells The flow meets at an
intermediate point where the switch level circuit designers have created a library of cells
by using switches, and logic designers have designed from top down until all modules are

defined in terms of leaf cells.
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2.3.2 Modules

HDL has an concept of module .it forms the basic building block in Verilog .A
module can be an element or an collection of lower level design blocks. Typically.
elements are grouped in to modules to provide common functionality that is used at many
places in the design .a module provides the necessary functionality to the higher-level
block through its port interface (inputs and outputs), but hides the internal
implementation. This allows the designer to module internals without affecting the rest of
the design
Module is a logical component of a model.

Model is the logic design that a set of Verilog source files describes. This is a
generic term, which comes from "simulation model”. System and design are often used as
synonyms.

Modules have definitions and instances. The definition contains declarative and
procedural code sections, net and registers declarations, task and function definitions.
module instantiations, and port definitions for connecting to other parts of the hierarchy.

A module is defined like this:

module <module_name> (<portlist>);
// module components
endmodule

In Verilog it is illegal to nest modules. One module definition cannot contain
another module definition within the module and end module statements. Instead a
module can incorporate the copies of the other modules by instantiating them.it s

important not to confuse module definitions and instances of a module. Module
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definitions simply specify how the module works its internals and its interface. Modules

must be instantiated for use in the design.

2.3.3 Instance

Is an embodiment of a module in the overall Verilog model.

A module provides a template from which you can create actual objects. When a
module is invoked, Verilog creates a unique object from the template. Each object has its
own name, variables, parameters and I/O interface. The process of creating objects from a

module template is called instantiation, and objects are called instances.

2.4 Ports
Ports are Verilog structures that pass data between parent and child modules.

Thus, ports can be thought of as wires connecting modules. The connections provided by
ports can be input (input port), output (output port), or bi-directional (inout port).
Ports are listed in the port list in the module definition, and their direction is declared
following the module statement
Signal names in the instance port list are matched up left-to-right with signal names in the
module definition port list.

Signal names in the instance port list can also be matched up with the signal names in
the module definition by name.
The <module_name> is the type of this module. The <portlist> is the list of connections.

or ports, which allows data to flow into and out of modules of this type.
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2.5 Components of a simulation

Once a design block is completed it has to be verified, it must be tested. The
functionality of the design block can be tested by applying stimulus and checking results
At is called the stimulus block. It is good practice to keep the stimulus and the design
blocks separate. The stimulus block can be written in Verilog separate language is not
required to describe stimulus. The stimulus block is also commonly called a test bench.
Different test benches can be used to thoroughly test the design block.

Two styles of stimulus application are possible.

In the first style the stimulus block instantiates the design block and directly
drives the signals in the design block.

The second style of applying stimulus is to instantiate both the stimulus and the
design blocks in a top-level dummy module. Stimulus block interacts with the design

block only through the interface.
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Chapter 3 Veriwell Simulations for Verilog

3.1 The levels of module abstraction in Verilog HDL

The hierarchical modeling concepts of the VerilogHDL provide a concept of
module, which is the basic building block of the Verilog designs. Verilog is both a
behavioral and a structural language, internals of each module can be defined at four
levels of abstraction, depending on the needs of the design .the module behaves
identically with the external environment irrespective of the level of abstraction at which
the module is described. The internals of the modules are hidden from the environment.
Thus the level of abstraction, to describe a module can be changed without any change in

the environment. Given are the following four levels

3.1.1 Behavioral or Algorithmic Level

This is the highest level of abstraction provided by Verilog HDL.A module can be
implemented in terms of the desired design algorithm without concern for the hardware
implementation details. Designing at this level is very similar to C programming.

The behavior of a design is described using procedural constructs. These are:
¢ Initial statement: This statement executes only once.
e Always statement: This statement always executes in a loop, that is, the

statement is executed repeatedly.
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Only a register data type can be assigned a value in either of these statements.
Such a data type retains its value until a new value is assigned. All initial statements and

always statements begin execution at time 0 concurrently.

3.1.2 Dataflow Level

At this level the module is designed by specifying the data flow .the designer is
aware of how data flows between hardware registers and how the data is processed in the
design

The basic mechanism used to model a design in the dataflow style is the
continuous assignment. In a continuous assignment, a value is assigned to a net. The
syntax of a continuous assignment is:
assign [delay] LHS_net = RHS_expression

Anytime the value of an operand used in the right-hand side expression changes.
the right-hand side expression is evaluated, and the value is assigned to the left-hand side
net after the specified delay. The delay specifies the time duration between a change of
operand on the right-hand side and the assignment to the left-hand side. If no delay value

is specified, the default is zero delay.

3.1.3 Gate Level

The module is implemented in terms of the logic gates and interconnections
between these gates. Design at this level is similar to describing a design in terms of gate

level logic diagram. Verilog supports basic logic gates as predefined primitives. These
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are instantiated like modules except that they are predefined in Verilog and do not need a
module definition. All logic circuits can be designed by using basic gates. There are two
types of basic gates they are AND/OR gates and BUF/NOT gates. AND/OR gates have
one scalar output and multiple scalar inputs.

The AND/OR gates available in Verilog are shown below

AND, OR, XOR, NAND, NOR, XNOR, BUF/NOT gates have one scalar input and one
or more scalar outputs.

Two basic gate primitives are

BUF

NOT

3.1.4 Switch Level

This is the lowest level of abstraction provided by Verilog. A module can be
implemented in terms of switches storage nodes and the interconnections between them.

Design at this level requires the knowledge of switch level implementation details.

Verilog allows the designer to mix and match all four levels of abstractions in a
design. In the digital design community, the term register transfer level is frequently used
for a Verilog description that uses a combination of behavioral and dataflow constructs
and is acceptable to logic synthesis tools. If a design contains four modules. Verilog
allows each of the modules to be written at a different level of abstraction. As the design

matures, most modules are replaced with gate-level implementations.
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Normally, the higher the level of abstraction, the more flexible and technology
independent the design. As one goes lower toward the switch level design, the design
becomes technology dependent and inflexible. A small modification can cause a
significant number of changes in the design. Consider the analogy with C programming
and assembly language programming. It is easier to program in a higher-level language
such as C .The program can be easily ported to any machine. However, if you design at
the assembly level the program is specific for that machine and cannot be easily ported to

another machine.

3.2 Simulation Tool

The simulation tool used in this project to run the Verilog HDL programs is

VeriWell 2.0. VeriWell was developed by Wellspring Solutions, Inc.

VeriWell is a comprehensive implementation of Verilog HDL. VeriWell supports
a number of platforms and operating environments.  These currently include
386/486/Pentium systems under DOS, Sparc or Sparc compatible systems under SunOS
4.1.x or greater and Solaris. VeriWell is designed to be as portable as possible. Nearly
100% of the sources are shared between the different platform versions. The DOS
version uses a DOS extender to compensate for the shortcomings of DOS and to fully

utilize the 32-bit architecture of the 386/486/Pentium processors.
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VeriWell supports the Verilog language as specified by the OVI (Open Verilog
International) Language Reference Manual. VeriWell was first introduced in December
1992, and is the first independently developed simulator to be written, from the first line
of code, to be compatible with the OVI standard and with Verilog-XL. Because it was

developed on the PC, it was specifically designed to be memory-efficient with relatively

high performance.

VeriWell is used by IC designers and consultants for all pre-synthesis model
development. As new features are added, VeriWell can be used in all phases of model
development, including structural verification and back-annotated timing
verification. As a component of a large-scale top-down design methodology, VeriWell is
used in conjunction with other high-end OVI-compliant simulators, such as Verilog-XL

or Chronologic's.

3.2.1 Simulation Steps for the VeriWell Verilog Simulator

I. Open the Veriwell simulation window by clicking on the saved Veriwell
executable file.
2. Create a new project.
A VeriWell project is a collection of all the Verilog source files you need
to run the simulation.
Steps to create a new project

a. From the menu at the top of the window, select project -> new project.
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b. Enter a project name in the Save as window.
c. VeriWell creates a blank window that represents the new project.
3. Create a new Source File
Steps to create a new source file
a. Select File New from main menu, to create a new verilog source file.
b. Select File -> Save As to store the file with the desired name.
c. Assume the project name is testP. When saved projects have an extension
.prj. Let the source file be named testS. Source files have an extension
.v. Thus we have a project testP.prj and a source file testS.v.
4. Enter the Verilog code in the source file (testS.v).
5. Add the source file to the project, by selecting Project->Add from the main menu.
6. Run the simulation. Select Project->Run.
7. VeriWell compiles the source file in the project.
8. If the compilation is successful, the console window reports a success and a

command prompt appears.

3.2.2 Steps to Create Simulation Waves

To create waves the Veriwell waves output capabilities from the Veriwell is used.
Veriwave is integrated in to Veriwell and does not require a separate executable.
1. During the creation of the source file, the statement “dumpvars” should be added

to the source code.
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2. After successful compilation of the source code, to view the simulation waves.

select, Project->dumpvars, in the main window.
3. This creates a wave file. Assign a name to the wave file. It will be stored with a

. Vwf extension. A simulation window now pops up, containing the waveforms.

3.2.3 Examples using Veriwell Verilog Simulator
Software Details

Name: VeriWell Verilog Simulator

Version: 2.1.1

Operating System: Microsoft Windows

Source: http://www.ece.ogi.edu/~strom/eceS573/downloads.htm

Note: The evaluation version of the simulator will not execute programs that exceed

1000 lines of Verilog Code.

3.2.3.1 Half Adder

The ‘Half Adder’ module consists of the following
Input ports: “a‘and ‘b
Out ports: ‘s’ and ‘¢

All ports are 1 bit.

The Half Adder shown below is an example of a group of logic gates connected to

produce a logic circuit. The Half Adder has two inputs (the bits to be summed) and two
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outputs (the sum bit and the carry bit). A Half Adder is the simplest form of an adder

circuit. It has two operand bits a and b that are added to form a sum bit s and a carry bit ¢.
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Figure 3. 1 Half Adder [2]

Table 3.1 Half Adder Truth Table.

A B Carry Sum
0 0 0 0
0 1 0 1

1 0 0 1

1 1 1 0
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Gate Level Modeling
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Gate level modeling - half adder
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module ha (s,c,a,b); // name of module

input a,b; // input declarations
output s,c; // output declarations
wire a,b,s,c;
xor x1 (s,a,b); // instances for xor
and al (c,a,b); // instances for and
endmodule // end of module
module test; // module test
reg a,b; /I input registers
wire s.c; // output wires
hahl (s,c,a,b); /1 instance for half adder
initial
begin
$dumpvars; // dumping the variables for the wave file
$dumpfile("x1.dmp");
a=0:;b=0;
$monitor("a=%b,b=%b,c=%b,s=%b",a,b,c,s);
#5 a=0;b=1;
#5 a=1;b=0;
#5 a=1;b=1;
#5 $finish;
end
endmodule

Register Level Modeling

/******************************************************

Register level modeling of half adder

******************************************************/
module ha(d,c,a,b); // module name

input a,b;
output d,c;
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wire a,b;
reg d,c;
always @ (a or b) // start for signals at ‘a’ or ‘b’
begin
if(a==1 && b::O)
begin
d=1;
c=0;
end
else if(a==0 & b==1)
begin
d=1;
c=0;
end
else if(a==1 & b==1)
begin
d=0;
c=1;
end
else
begin
d=0;
c=0;
end
end
endmodule
module test;
reg a,b;
wire S8,C;
ha hl (s,c,a,b);
initial
begin
$dumpvars;
$dumpfile("ha.dmp");
a=1'b0;b=1'bO0;
$monitor("a=%b,b=%b,c=%b,s=%b",a,b,c,s);
#5 a=1b0;b=1Db1;
#5 a=1'b1;b=10;
#5 a=1bl;b=1"bl;
#5 $finish;
end
endmodule
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Figure 3.3 Waveform Analysis of Half Adder

3.2.3.2 Full Adder

The module * Full Adder * consists of the following

Input ports: “a*," b ‘and ‘cin "
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Out ports: ‘c *and ‘d °

All ports are 1 bit

To construct a full adder circuit, we'll need three inputs and two outputs. Since
we'll have both an input carry and an output carry, we'll designate them as C1 and C. At

the same time, use S to designate the final Sum output. The resulting truth table is shown.

Here C is an OR function.
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Figure 3.4 Full Adder [2]
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Table 3.2 Full Adder Truth Table

A B CIN C
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 0 1 1
1 1 1 1
Gate Level Modeling

/******************************

Gate level full adder

ok ok ok ook sk sk skook Sk sk skokok dkok skokokosk sk sk ok ok koskskokokok

module FA (s,c,a,b,cin); // module name
input a,b,cin; /! input ports
output s,c; /[ output ports
wire a,b,c,cin,s; /! internal wires
wire wl,w2,w3; /! creation of instances
xor x1(wl,a,b); // creation of instances
and al (w2,a,b); // creation of instances
xor x2(s,wl,cin); /1 creation of instances
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and a2(w3,cin,wl); /I creation of instances

or ol(c,w3,w2); // creation of instances
endmodule

module test; // module test
reg a,b,cin;

wire 8,C;

FA fl(s,c,a,b,cin);

initial

begin

//$dumpvars;

//$dumpfile("x2.dmp");

a=0;b=0;cin=0;
$monitor("a=%b,b=%b,cin=%b,s=%b,c=%b",a,b,cin,s,c,$time);
#5 a=0;b=0;cin=1;

#5 a=0;b=1;cin=0;

#5 a=0;b=1;cin=1;

#5 a=1;b=0;cin=0;

#5 a=1;b=0;cin=1;

#5 a=1;b=1;cin=0;

#5 a=1;b=1:cin=1;

#5 $finish;

end

endmodule
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Figure 3.6 Waveform Analysis of Full Adder

3.2.3.3 Decoder

The ‘Decoder ‘ module consists of the following
e Input ports : SysRst,Addr .
e Qutports :ACF
e Ports A,CFand SysRst are 1 bits

e Port Addris 2 bit in size.

2 Bit Adder

Decoder Module

v

Sys Rst

Figure 3.7 Block Diagram of Decoder

42




2-Bit Address Decoder
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2-bit address decoder

***********************************************************/

module Deco (SysRst,Addr,A,C,F); //module name
input SysRst;
input  [1:0] Addr;
output A,CF,;
wire SysRst;
wire  [1:0] Addr;
reg A,CF;
always @ (SysRst or Addr)
begin
if (!SysRst)
begin
A=1b0;
C =1b0;
F=1b0;
end
else
begin
case (Addr)
2'b00: begin
A=1Ddl;
C =1b0;
F=1b0;
end
2'b01: begin
A=1b0;
C =1bl;
F=1"D0;
end
2'b10: begin
A=1D0;
C =1D0;
F=1bl;
end
default:begin
A=1'bO;
C =1b0;
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F=1'b0;

end
endcase
end
end
endmodule

module test;

reg SysRst;

reg [1:0] Addr;

wire A,CF;

Deco dl (SysRst,Addr,A,C.F);
initial

begin

/$dumpvars(1,d1.Addr,d1.AddrEn,d1.CrcEn,d1.FifoEn);
Sdumpvars;

Sdumpfile("Deco.dmp");

Addr=2'b00;SysRst=0;

Smonitor("SysRst=%b,Addr=%b,A=%b,C=%b,F=%b" SysRst,Addr,A,C,F);

#5 Addr=2'b00;SysRst=1;
#5 Addr=2'b01;

#5 Addr=2'b10;

#5 Addr=2'bl11

#5 Sfinish;

end

endmodule
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Chapter 4 Universal Serial Bus (USB)

4.1 Introduction to Universal Serial Bus (USB)

The Universal Serial Bus was originally developed in 1995 by many of the same
industry leading companies currently working on USB 2.0. The Universal Serial Bus

(USB) is a communications architecture that gives a PC the ability to interconnect a

variety of devices.

Universal serial Bus in short called USB emerged as a result of the difficulties
associated with the cost, configuration and attachment of peripheral devices in the
personal computer environment. In short, USB creates a method of attaching and
accessing peripheral devices that reduces overall cast, simplifies the attachment and
configuration from the end-user perspective. and solves several technical issues

associated with old style peripherals.

The major goal of USB was to define an external expansion bus, which makes
adding peripherals to a PC as easy as hooking up a telephone to a wall-jack.
The program’s driving Goals were ease-of-use and low cost.
e PC host controller hardware and software
e Robust connectors and cable assemblies
e Peripheral friendly master-slave protocols

e Expandable through multi-port hubs.
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Universal Serial Bus (USB) has been around for a few years now, and USB ports
are fitted to just about every computer now, the Operating Systems didn't have the

required level on support until recently

The USB supports the following characteristics.

e Upto 127 devices on one port.

e USB supplies power to the peripherals, reducing the need for wall warts,
power bricks and power stealing from the keyboard connector

e Full speed devices communicate with the PC at 12Mbps. Mice and keyboards
etc. can communicate at a lower 1.5Mbps rate to reduce cost.

e Hot Pluggable.

e PlugNPlay - The PC recognises each device that is plugged in and loads the
appropriate driver. If it's a new device for which it has no driver, and doesn't
run with a generic driver, it prompts for a driver to be loaded.

e No confusing cabling - no null modem cables, handshaking lines to mess with
etc.

e Supports 4 different data transfer types: - Isochronous, Control, Interrupt.

Bulk

USB breaks away from the resource problems associated with legacy PC 10

implementations. The resource constraints related to IO address space, IRQ (Interrupt

Request) lines, and DMA (Direct Memory Access) channels no longer exist with the
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USB implementation. Devices residing on the USB are assigned an address known only
to the USB subsystem and this does not consume any system resources. The number of
USB devices supported in a single implementation is limited in number to 127. USB
devices typically contain a number of individual registers or ports that can be indirectly

accessed by USB device drivers. These registers are known as USB device endpoints.

When a transaction is sent over the USB, all devices (except low speed devices)
will see the transaction. Each transaction begins with a packet transmission that defines
the type of transaction being performed along with the USB device and endpoint
addresses. This addressing is managed by USB software, and other non-USB devices and

related software within the system are not impacted by these addresses.

Every USB device must have an endpoint address zero that is reserved for
configuration. Via endpoint zero, USB system software accesses USB devices descriptors
from the device. These descriptors provide information necessary for identifying the
device, specifying the number of endpoints, and the purpose of each. In this manner.
system software can detect the device type or class and determine how the device is to be

accessed
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4.2 Universal Serial Bus (USB) System

4.2.1 Role of Host PC Hardware and Software

The role of the system software is to provide a uniform view of 10 system for all
applications software. It hides hardware implementation details so that application
software is more portable. For the USB IO subsystem in particular, it manages the
dynamic attach and detach of peripherals. This phase, called enumeration, involves
communicating with the peripheral to discover the identity of a device driver that it
should load, if not already loaded. A unique address is assigned to each peripheral during
enumeration to be used for run-time data transfers. During run-time the host PC initiates
transactions to specific peripherals, and each peripheral accepts it’s transactions and
responds accordingly. Additionally the host PC software incorporates the peripheral into
the system power management scheme and can manage overall system power without

user interaction.

Figurel shows the USB system in terms of its hardware and software
configuration. USB software initiates all the transactions on the USB system. A USB
driver acts as an interface between the device driver and the host controller when the
device driver is communicating with its device. This software is responsible for
translating client requests into one or more transactions that are directed to or from a

target USB device.
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Figure 4.1 Communication Flow in a USB System

The SIE (Serial Interface Engine) is the link between the physical and logical
components of the USB. The SIE is to the USB what the UART (Universal
Asynchronous Receiver Transmitter) is to the RS-232 interface. The primary USB
Hardware consists of the following USB Host Controller/Root Hub/Serial Interface
Engine, USB Hubs and USB Devices. The primary USB Software includes USB Device

Drivers, USB Driver and Host Controller Driver.
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4.2.2 Universal Serial Bus Hardware

All communication on USB originates at the host under software control. The
host hardware consists of the USB host controller, which initiates transactions over the
USB system, and the root hub, which provides attachment points for USB devices. The
host controller is responsible for generating the transactions that have been scheduled by
the host software. The host controller driver, or HCD, software builds a linked list of data
structures in memory that defines the transactions that are scheduled to be performed
during a given frame. These data structures, called transfer descriptors, contain all of the
information the host controller needs to generate the transactions. This information
includes USB Device Address, Type of Transfer, Direction of Transfer, and Address of

Device Driver’s Memory Buffer.

The host controller performs writes to a target device by reading data from a
memory buffer that is to be delivered to the target device. The host controller performs a
parallel to serial conversion on the data, creates the USB transaction, and forwards it to

the root hub to send over the bus.

If a read transfer is required, the host controller builds the read transaction and
sends it to the root hub. The hub transmits the read transaction over the USB. The target
device recognizes that it is being addressed and that data is being requested. The device
then transmits data back to the root hub, which forwards the data on to the host controller.

The host controller performs the serial to parallel conversion on the data and transfers the
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data to the device driver’s memory buffer. Transactions generated by the host controller
are forwarded to the root hub to be transmitted to the USB. Consequently, every USB
transaction originates at the root hub. The root hub provides the connection points for

USB devices and performs the following key operations:

Controls power to its USB ports

Enables and disables ports

e Recognizes devices attached to each port

Sets and reports status events associated with each port

In addition to the root hub, USB systems support additional hubs that permit
extension of the USB system by providing one or more USB ports for attaching other
USB devices. USB hubs may be integrated into devices such as keyboards or monitors. or
implemented as stand-alone devices as shown in Fig. 3.2. Furthermore, hubs are bus
powered (i.e., derive power for itself and all attached devices from the USB bus) or may
be self-powered. Bus powered hubs are limited by the amount of power available from

the bus and can therefore support a maximum of four USB ports.

Hubs contain two major functional elements:
e Hub Controller

e Repeater

The Hub Controller contains a USB interface, or serial interface engine (SIE). It

also contains the descriptors that software reads to identify the device as a hub. The hub
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controller gathers hub and port status information also read by the USB host software to
detect the connection and removal of devices and to determine other status information.
The controller also receives commands from host software to control various aspects of

the hub’s operation (e.g., powering and enabling the ports).

Bus traffic arriving at the hub must be forwarded on in either the upstream
(toward the host) or downstream (away from the host) direction. Transmissions
originating at the host will arrive on the hub’s root port and must be forwarded to all
enabled ports. When a target device responds to a host-initiated transaction it must
transmit a response upstream, which the hub must forward from the downstream port to

the root port

The hub controller contains a USB interface, or serial interface engine (SIE). It
also contains the descriptors that software reads to identify the device as a hub. The hub
controller gathers hub and port status information also read by the USB host software to
detect the connection and removal of devices and to determine other status information.
The controller also receives commands from host software to control various aspects of

the hub’s operation (e.g., powering and enabling the ports).
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Figure 4.2 USB Hub Types

Bus traffic arriving at the hub must be forwarded on in either the upstream
(toward the host) or downstream (away from the host) direction. Transmissions
originating at the host will arrive on the hub’s root port and must be forwarded to all
enabled ports. When a target device responds to a host-initiated transaction it must
transmit a response upstream, which the hub must forward from the downstream port to

the root port.

54




4.2.3 Role of the Peripherals

All USB peripherals which are the USB devices are slaves that obey a defined
protocol. They must react to request transactions sent from the host PC. The peripheral
responds to control transactions that, for example, request detailed information about the
device and it’s configuration. The peripheral sends and receives data to/from the host
using a standard USB data format. This standardized data movement to/from the PC host
and interpretation by the peripheral gives USB its enormous flexibility with little PC host

software changes

USB devices contain descriptors that specify a given devices attributes and
characteristics. This information specifies to host software a variety of features and
capabilities that are needed to configure the device and to locate the USB client software
driver. The USB device driver may also use device descriptors to determine additional
information needed to access the device in the proper fashion. This mechanism is referred
to as the Device Framework and must be understood by software in order to configure
and access the device correctly. USB devices can be implemented either as high-speed or

low-speed devices.

High-Speed devices see all transactions broadcast over the USB and can be

implemented as full-feature devices. These devices accept and send serial data at the

maximum 12Mb/s rate.
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Low-speed devices are limited in not only throughput (1.5Mb/s) but also feature
support. Furthermore, low-speed devices only see USB transactions that follow a
preamble packet. Low-speed hub ports remain disabled during full-speed transactions.
preventing full-speed bus traffic from being sent over low-speed cables. Preamble
packets specify that the following transaction will be broadcast at low speed. Hubs enable
their low-speed ports after detecting a preamble packet, permitting low-speed devices to

see the low-speed bus activity.

4.2.4 Universal Serial Bus Software

4.2.4.1 Universal Serial Bus Device Drivers

USB device drivers (or client drivers) issue requests to the USB driver via 10
Request Packets (IRPs). These IRPs initiate a given transfer to or from a target USB
device. For example, a USB keyboard driver must initiate an interrupt transfer by
establishing an IRP and supplying a memory buffer into which data will be returned from
the USB keyboard. Note that the client driver has no knowledge of the USB serial

transfer mechanisms.

4.2.4.2 Universal Serial Bus Driver

The USB driver knows the characteristics of the USB target device and how to
communicate with the device via the USB. The USB driver detects the USB

characteristics when it parses the device descriptors during device configuration. For
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example, some devices require a specific amount of throughput during each frame, while

others may only require periodic access every nth frame.

When an IRP is received from a USB client driver, the USB driver organizes the
request into individual transactions that will be executed during a series of 1ms frames.
The USB driver sets up the transactions based on its knowledge of the USB device

requirements, the needs of the client driver, and the limitations/capabilities of the USB.

Depending on the operating environment, the USB driver may be shipped along

with the operating system or added as an extension via a loadable device driver.

4.2.4.3 Universal Serial Bus Host Controller Driver

The USB host controller driver (HCD) schedules transactions to be broadcast over
the USB. The host controller driver schedules transactions by building a series of
transaction lists. Each list consists of pending transactions targeted for one or more of the
USB devices attached to the bus. A transaction list, or frame list, defines the sequence of
transactions to be performed during each 1ms frame. The USB host controller executes
these transaction lists at Ims intervals. Note that a single block transfer requested by a
USB client may be performed as a series of transactions that are scheduled and executed
during consecutive 1ms frames. The actual scheduling depends on a variety of factors
including; the type of transaction, transfer requirements specified by the device and the

transaction traffic of other USB devices.
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The USB host controller initiates transactions via its root hub or hubs. Each Ims
frame begins with a start of frame (SOF) transaction and is followed by the serial
broadcast of all transactions contained within the current list. For example, if one of the
requested transactions is a request to transfer data to a USB printer, the host controller
would obtain the data to be sent from a memory buffer supplied by the client software
and transmit the data over the USB. The hub portion of the controller converts the

requested transactions into the low level protocols required by the USB.

4.3 Serial Interface Engine

USB implementation is via a layered model of software and hardware
functionality that is reflected in both transmitting and receiving devices in a manner
similar to the Open Systems Interconnection (OSI) or Transmission Control
Protocol/Internet Protocol (TCP/IP) models. Actual communications flow occurs through
the layers in a transmitting system, across a physical link to a receiving system, and then
through a similar stack of hardware and software layers in the receiver. However, there 1s
also a logical interconnection between corresponding layers in the transmitter and
receiver. To some degree, these protocols provide a level of abstraction where successful
communication can be achieved based on knowledge of adjacent and corresponding

layers without having to deal with the complexity of the entire model.

A key difference between the USB model and the more familiar communications

protocols is the level on which the subscribers to the protocol are communicating. TCP/IP
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and OSI can be considered macro protocols that allow connection of multiple processors
across an external network, while the USB can be considered a micro protocol that allows
peripherals to interconnect with a processing platform on its self contained network. A
second difference is the network implementation. OSI and TCP/IP compliant
communications can be implemented under multiple networking protocols, the USB
format provides for a token-based network that provides full requested bandwidth for its

users, but denies entry to the net for new users if their bandwidth requirement cannot be

met.

While the USB specification does not limit bus implementation to any single
processor type or electrical interconnection format, USB controllers most commonly
reside on the Peripheral Component Interconnect (PCI) bus of Pentium Class or Power
PC Macintosh computers. The required circuitry is normally included as a built-in feature
of the motherboard, but PCI add-in card USB ports are available for older X86 based

PC’s.
The SIE is the border between the physical and logical components of the USB.
The SIE is to the USB what the UART is to the RS-232 interface. The SIE is built into

most USB micro-controllers along with a USB transceiver.

The SIE is commonly called upon to perform the following list of tasks:

e Recognition of bits and proper transaction sequence.
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Generation and detection of start of data bits, end of data bits, reset, and

resume signals.
Separation of clock and data.
Generating and verifying Cyclic Redundancy Checks (CRC) for data.

Performing parallel to serial and serial to parallel conversion.
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Chapter 5 Module Design
5.1 Design Features of the Communication System

The communication device is a logical block, which is implemented in the USB
as a Serial Interface Engine in this thesis. It is at the interface between Host and the
peripherals, but is also an independent block by itself, which can be interfaced with
devices where transmission of 16 bits of data from host to the peripheral devices is
needed.

e The communication block does the following.

¢ Recognition of bits and proper transaction sequence.

e Generation and detection of start of data bits, end of data bits, reset and

resume signals

e Separation of clock and data.

e Generating and verifying Cyclic Redundancy Checks (CRC) for error

handling of data.

e Performing parallel to serial and serial to parallel conversions.

e Storing the data in buffers and FIFO’s.

e Synchronizing the host speed with peripheral devices speed.

e To separate address, data and CRC bits from the stream of bits coming from

the host i.e., a processor.
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e Controlling all the operations and conversions with respect to clock.
® Using techniques like bitstuffing to ensure reliability of the data bits.
® NRZ-Icoding is employed on the bits to improve the performance.

5.2 Techniques used for Reliable and Efficient Transmission

The transmission of a stream of bits from one device to another across a
transmission link requires a great deal of cooperation and the agreement between the two
sides. One of the most fundamental requirements is synchronization. The receiver must
know the rate at which the bits are received so that it can sample the line at regular

intervals to determine the value at each received bit.

5.2.1 Bit-Stuffing

The bit stuffing is the insertion of noninformation bits into data. It is the practice
of adding bits to a stream of data. Bit-stuffing is required by many network and
communications protocols for the following reasons:

e To prevent data being interpreted as control information. For example, many
frame-based protocols, such as HDLC (high level data link control), signal the
beginning and end of a frame with six consecutive 1 bits. Therefore, if the
actual data being transmitted has six | bits in a row; a zero is inserted after the
first 5 so that the data is not interpreted as a frame delimiter. Of course, on the
receiving end, the stuffed bits must be discarded.

e For protocols that require a fixed-size frame, bits are sometimes inserted to

make the frame size equal to this set size.
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® For protocols that required a continuous stream of data, zero bits are
sometimes inserted to ensure that the stream is not broken.

e Stuffed bits should not be confused with overhead bits.

* In data transmission, bit stuffing is used for various purposes, such as for
synchronizing bit streams that do not necessarily have the same or rationally
related bit rates, or to fill buffers or frames. The location of the stuffing bits is
communicated to the receiving end of the data link, where these extra bits are
removed to return the bit streams to their original bit rates or form. Bit
stuffing may be used to synchronize several channels before multiplexing or
to rate-match two single channels to each other.

e The receiver needs to be able to determine what the relationship of the bits in
the received stream have to one another, that is, what the logical units of

transfer are, and where each received bit fits into the logical units.

5.2.2 Error checking using CRC (Cyclic Redundancy Check)

Regardless of the design of the transmission system, there will be errors, resulting
in the change of one or more bits in a transmitted frame. There are transmission
impairments. This can be defined as probabilities with respect to errors in transmitted
frames. The error detection techniques operate on the principle that the probability of
occurrence of errors in the communication system is very low compared to the magnitude
of information signals that are transmitted in the communication system. For a given

frame of bits additional code of bits that constitute the error detecting code are added by
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the transmitter. This code is calculated as the function of the other transmitted bits the
receiver performs the same calculation and compares the two results. A detected error
occurs if and only if there is a mismatch.

One of the most common and one of the powerful error detecting codes is the
Cyclic Redundancy Check also known as CRC, which can be described as follows. Given
a k-bit block of bits, or message, the transmitter generates an n bit sequence, know as
frame check sequence (FCS), so that the resulting frame, consists of k+n bits it is this that
1s transmitted to the receiver and the receiver calculates CRC on the data received. if

there is no error CRC calculated in the receiver matches with that of the transmitter.

5.2.3 NRZ (Non Return to Zero)

A binary encoding scheme in which a signal parameter, such as electric current or
voltage, undergoes a change in a significant condition or level every time that a "one"
occurs, but when a "zero" occurs, it remains the same, that is no transition occurs. The
transitions could also occur only when "zeros" occur and not when "ones" occur. If the
significant condition transition occurs on each "zero," the encoding scheme is called
"non-return-to-zero space" (NRZ-S). NRZ-M and NRZ-S signals are technically
interchangeable, one is the logical "NOT" (inverse) of the other. It is necessary for the
receiver to have prior knowledge of which scheme is being used. Without such
knowledge, it is impossible for the receiver to interpret the data stream correctly: its

output may be the correct data stream or the logical inverse of the correct data stream.
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5.3 Design Description of Serial Interface Engine

Datalnput(16 bit)
‘ Addr (2 bty [———
———— 9 Serial nrzi
TxEnable > Transmitter Output
Write ——————
Parallel o/p 16 bit Serial nrz1
I I < Input
| Device Addr 4 bit | ¢ Read
RxFull :
T Receiver
RxHalf ——
RxEmpty Device
Clock
Interrupt
Clock

T f

Figure 5.1 Block Diagram of Serial Interface Engine

The device which is a Serial Interface Engine is the main module, has two

modules which comprises it these functional modules are the Transmitter and the

Receiver.
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e Transmitter: the data from the host that has to be sent across to the connected

USB devices is sent to this block. This block has many functions, which

process the data and coordinate the movement within the block synchronized

with the host processor before sending it over to the next block. This module

consists of the following sub modules,

Decoder

Clock

Buffer

TxFIFO (Transmitter side First In First Out)
Control Logic

Multiplexer

CRC Generator

Parallel to Serial Converter

NRZ-I coding

Bitstuffing

e Receiver: This module consists of the following sub modules,

D-NRZI

DeBitstuffing decoder
Serial to Parallel Converter
Demultiplexer

Control Logic
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Figure 5.2 Design of the Block Diagram of Full Duplex
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Chapter 6 Transmitter and Receiver

6.1 Transmitter

6.1.1 Decoder

Module name is Decoder. The Binary-Output Decoder block produces a binary
message vector (signal) from a binary input vector (signal) that it receives from the host
processor.

The module consists of:
The input ports are SysRst (System Reset)
Addr (2 bit, Address)
The output ports are  AddrEn (Address Enable Signal)
FifoEn (FIFO Enable Signal)
CrcEn (CRC Enable Signal)
The logic used is shown in the form of table, which shows the various signals generated

for the different addr signals.

Table 1. Relation between address and the signals generated

Addr Signal generated

00 Address Enable
01 CRC Enable
10 FIFO Enable
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Source code for Decoder Tx_Decoder

3% sk stk ok sk sk sk sk sk sk sk ok se s ok sk e sk sk sk sk sk ok sk e sk ok sk sk sk Rk s s s sk ok stk st sk sk sk sk stk sk sk ks sk ok

Module Name is Decoder
ko st st s sk st stk ok ok sk ok s ok sk stk s sk sk stk ok sk ok sk sk sk sk sk tok sk stk sk stk ok sk sk sk sk skok kR R skok ok /

module Deco (SysRst,Addr,AddrEn,CrcEn,FifoEn);

[ Rk sk ok ok sk sk o ok Input/Output Declarations **#*%sskskskstkskskkekorok ook
input SysRst;

input  [1:0] Addr;

output AddrEn,CrcEn,FifoEn;

/R FREE R Kok kK Wire/Reg Declarations st s sk sk s ok st ke sk ok ok ok sk ok sk sk sk sk sk ok ok kook
wire SysRst;

wire  [1:0] Addr;

reg AddrEn,CrcEn,FifoEn;

[fFsswsskkxionskk Functional Description st ke s sk s e s ok ke o ok ok ok sk sk sk sk ok sk sk ok ok

always @ (SysRst or Addr)

begin
if (1SysRst)
begin
AddrEn=1b0;
CrcEn =1'b0;
FifoEn=1'b0;
end
else
begin
case (Addr)
2'b00: begin
AddrEn=1'bl;
CrcEn =1'b0;
FifoEn=1'b0;
end
2'b01: begin
AddrEn=1'b0;
CrcEn =1bl;
FifoEn=1'b0;
end
2'b10: begin
AddrEn=1'b0;
CrcEn =1'00;
FifoEn=1'b1;
end
default:begin
AddrEn=1'b0;
CrcEn =1'b0;
FifoEn=1'b0;
end
endcase
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end
end
endmodule

6.1.2 Buffer

In electronic modules buffer is used to temporary store data, when speed of the

processor is slower than the data incoming in order to constantly feed the data with out

overwhelming the processor.

The module Buffer consists of:

Input ports are Dataln (16 bit Data Input), Wr (Write Signal),
AddrEn (Address Enable Signal), CrcEn (CRC Enable Signal).
FifoEn (FIFO Enable Signal), SysClk (System Clock),
SysRst (System Reset)

Output ports are AddrReg (16 bit Address Register),

CrcReg (16 bit CRC Register), FifoSel (FIFO Select Signal)

6.1.2.1 Logical functioning of the Buffer

When there is a system reset all outputs are set to zero. The input data is stored in
Address Register when both Write Signal and Address Enable signal are high. The input
data is stored into CRC register. When both Write Signal and CRC Enable Signal are
high. The FIFO Select Signal is generated when both  Write Signal and FIFO Enable
signal are high. For the rest of the Signals same data is maintained until a respective

change occurs.
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Source code for Tx_Buffer.V

K% sk ok stk stk sk ok ok ok s ok ke ke ok sk sk sk sk ke sk o sk sk st sk sk s sk se sk s stk sk s ke sk sk sk sk sk ok ok ke ko ok sk ok ok
Tx_Buffer

otk stk sk sk sk ksl sk ok ook sk ke okt sk stk sk ok ks sk ok ook sk ook ok sk

module Buffer (SysClk,Wr,Dataln,AddrEn,CrcEn,FifoEn,SysRst,CrcReg,AddrReg,FifoSel);

ﬂ*************InpuVChnputI)eckuaﬁons********************

?nput SysClk,Wr,AddrEn,CrcEn,FifoEn,SysRst;
input  [15:0] Dataln;

output [15:0] CrcReg,AddrReg;
output FifoSel;

//************* Wire/Reg DeClaratiOnS 3k 3k 3k sk sk 3k sk sk ok sk 3k sk sk ke sk sk skok sk skokok ok

wire SysClk,Wr,AddrEn,CrcEn,FifoEn,SysRst;
reg FifoSel,
wire [15:0] Dataln;

reg [15:0] CrcReg,AddrReg;

Jppxssssskrk Functional Description *#kxskkioksioioohkkoskx

always @ (SysClk or SysRst)
begin
if (!SysRst)
begin
AddrReg<=16'h0000;
CrcReg <=16'h0000;
FifoSel<=1'b0;
end
else begin
if (Wr)
begin
if (AddrEn)
begin
AddrReg<=Dataln;
//$strobe ("¥rRREE KRR RKIKRE AddrReg=h",AddrReg);
end

else if(CrcEn)
CrcReg <=Dataln;
else if(FifoEn)
FifoSel<=Dataln[0];
else
begin
AddrReg<=AddrReg;
CrcReg <=CrcReg;
FifoSel<=FifoSel;
end
end
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else
begin
AddrReg<=AddrReg;
CrcReg <=CrcReg;
FifoSel<=FifoSel;
end
end
end
endmodule

6.1.3 Clock

Module Name is Tx_Clock. File Name is Tx_Clock.V.
Clock Produces continuous digital clock pulses this does not need any input. This

1s the system clock module.
Input Ports are none. Output Ports are SysClk

Source Code for Clock Module Tx_Clock.V

/***********************************************************************

Module Name is Tx_Clock
>k*********************************************************************/
module Tx_Clock (SysClk);
output SysClk;
reg SysClk;
initial
begin

SysClk=1'bl;
//$dumpvars;
//$dumpfile("xx.dmp");
//$monitor("clk1=%b" clk1);
#2000 $finish;
end

always #5 SysClk=~SysClk;

endmodule
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6.1.4 First In First OQut

Module Name is First In First Out. File Name is Tx_FIFO.V
FIFO is made up of 16 registers also called as 16x16 bit FIFO, which stores the
data before it is sent out to the multiplexer for transmission. There are three signals.
which determine the state of the data flowing in to FIFO. They are empty signal, half
signal and full signal.
Input Ports are FifoIn (16 bit FIFO Input), FifoSel (FIFO Select Signal),
Eoc (End of Conversion Signal), Wr (Write Signal),
SysClk (System Clock), SysRst (System Reset)
Output Ports are FifoOut (16 bit FIFO Output), Full (FIFO Full Signal),
Empty (FIFO Empty Signal), Half (FIFO Half Signal)

Source code for Tx_FIFO

/******************************* 3k sk ok sk ok sk sk ok sk sk sk ok sk sk ok Sk sk ok sk sk sk sk sk ok sk ok ok

Module Name :FirstInFirstOut (FIFO)
************>k**********************************************************/
module Tx_FIFO

(FifoIn,FifoOut,SysClk,Eoc,Wr,SysRst,FifoSel,Full, Empty,Half);

input [15:0] Fifoln;

input SysClIk,SysRst,Wr,FifoSel,Eoc;
output [15:0] FifoOut;

output Full,Empty,Half;

wire [15:0] Fifoln;

wire SysClk,SysRst,Wr,FifoSel,Eoc;
reg [15:0] FifoOut;

reg Full,Empty,Half;

reg [15:0] FIFO [0:157;

reg {3:0] Rdptr,Wrptr;

integer [4:0] Count;
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[ F RSk kR sokokokskok kR ok xRk kf EUNCTIONAL
DESCRIP TN %k sk sk ok ke ok sk sk sk sk sk sk sk skeok sk sk ok sk ok sk sk sk s ok ok

always @
begin

if

else if

else

end
always @
begin

if

FifoSel=%b" ,Wrptr, FIFO[Wrptr],FifoSel);

else

end
always @
begin

begin

else  begin
FifoOut=FIFO[Rdptr];
Rdptr =Rdptr+1;
Count =Count-1;

end

end

always @
begin

(posedge SysClk or negedge SysRst)

('SysRst)
Wrptr=4'd0;

(Wr && FifoSel)

Wrptr=Wrptr+1;

Wrptr=Wrptr;

(posedge SysClk)

(Wr && FifoSel)

begin
FIFO[Wrptr]=Fifoln;
/1$display("Fifo[%d]=%h
Count  =Count+1;
end

FIFO[Wrptr]=FIFO[WTrptr];

(posedge Eoc or negedge SysRst)

('SysRst)
Rdptr=4'd0;

Count=0;
end

(Count or SysRst)

if (!SysRst)

else if

else if

begin
Full =1'b0;
Empty=1'b0;
Half =1'b0;
end
(Count==0)
begin
Full =1'b0;
Empty=1'b1;
Half =1'b0;
end
(Count>=15)
begin
Full =1'bl;
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Empty=1'b0;

Half =1'b0;
end
else if (Count==8)
begin
Full =1'b0;
Empty=1'b0;
Half =1'bl;
end
else
begin
Full =1'b0;
Empty=1'b0;
Haif =1'b0;
end
end
endmodule

6.1.5 Control Logic

Module is Control Logic. File Name is Tx_Control.V .
This module generates three-control signals Select Address Signal, Select FIFO
Signal and Select CRC signal.
Input Ports are TxEn (Transmitter Enable), Eoc (End of Conversion Signal),
Empty (Empty Signal)
Output Ports are SelAddr (Select Address Signal), SelFifo (Select FIFO Signal),
SelCrc (Select CRC Signal)

Source Code for Control Logic Tx_Control.V

stk Rk sk ok Rk ko skok ok sk Rk ko kR sk Rk kR kK sk oK

Module Name is Control Logic
stk ke ok sk ok skt ok s s ok stk sk s e s ks ks etk sk ko ok ok ok sk sk ok sk ok ok ok

module  Tx_Control (TxEn,Empty,Eoc,SelAddr,SelFifo,SelCrc);

U*************InpuUT)uqnu])eChuaﬁons********************
input TxEn,Empty,Eoc;
output SelAddr,SelFifo,SelCrc;

Jprssaksrkkkonk Wire/Reg Declarations **% skt fokodokdokk ko
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w?re TxEn,Empty,Eoc;
wire SelAddr,SelFifo,SelCrc;
wire wl;

//************* FunCtiOnal DeSCriptiOn 3k 3k 3k >k ok 3k ok Kk ke s Sk ok Sk sk sk ok kok ko ok ok
assign wl  =~Empty;

ass?gn SelAddr= (w1 & TxEn);

assign SelFifo= (w1l & Eoc);

assign SelCrc = (Eoc & Empty);

endmodule

6.1.6 Multiplexer

Module Name is Multiplexer. File Name is Tx_Mux.V.

This module multiplexer multiplexes data from different modules that it selects as

the input data. Such as address from the address register, data from the FIFO and CRC

bits from the CRC module. At all other times the data remains the same.

Input Ports are DataAddr (16bit Data Address), FifoOut (16 bit FIFO Output),

CRC (4 bit CRC), SelAddr (Select Address Signal),

SelFifo (Select FIFO Signal), SelCrc (Select CRC Signal),

SysRst (System Reset)
Output Ports are PDataln (16 bit Parallel Data Input)

Source Code for Multiplexer Module Tx_Mux.V

/**********************************************************

Module Name :Multiplexer

skeok st ok sk ok sk ok sk ok sk ok sk ke st ok sk e skeook e ke ok sk s sk sk s sk sk ke sk sk ok ke ok sk sk ok ok sk ok sk sk ok sk sk ok sk sk ok ko sk ok sk stk ke k /

module Tx_Mux (DataAddr,FifoOut,CRC,PDataln,SelAddr,SelFifo,SelCrc,SysRst);

//************* Input/Output DeClaratiOnS ok 3k 3k 3k ok sk 3k sk sk sk sk sk ok sk ok ok Kok sk k

input [15:0] DataAddr,FifoOut;
input [3:0] CRC;
input SelAddr,SelFifo,SelCrc,SysRst;

output  [15:0} PDataln;

JEsrksookx Wire/Reg Declarations ks sk ook ok ook ok

wire [15:0] DataAddr,FifoOut;
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W?r (S [3:0] CRC;
wire SelAddr,SelFifo,SelCrc,SysRst;
reg [15:0] PDataln:

[/ 3% s sk sk sk sk ok sk sk sk sk sk FUnCtional DeSCriptiOn >k 3k ok 3k sk 3k >k ok ok sk ok ok >k sk sk sk sk ok skok ok ok

EIW?)’S @ ( SysRst or DataAddr or FifoOut or CRC or SelAddr or SelFifo or SelCrc)
egin

if (!SysRst)
PDataln=16'hzzzz;
else if(SelAddr)
PDataln=DataAddr;
else if(SelFifo)
PDataIn=FifoOut;
else if(SelCrc)
begin
PDataln[3:0]=CRC;
PDataln[15:4]=12'hzzz;
end
else PDataln=PDataln;
end
endmodule

6.1.7 CRC Generator

Module Name is Cyclic Redundancy Check (CRC) Generator. File Name is

Tx_Crc.V.

This is the module that does the error handling by a technique called as CRC
(Cyclic Redundancy Checks) creating Cyclic Redundancy Check bits. The CRC
Generator first calculates the CRC bits for the first 16 bits of FIFO output and the CRC
bits for the next 16 bit FIFO Output is calculated with respect to the first generated CRC
bits. In this way the process continues and finally 4 CRC bits are generated for whole
data and sent to the Parallel to Serial Converter for transmission.

Input Ports are FifoOut (16 bit FIFO Output), CRC_Reg (16 bit CRC Register).

Eoc (End of Conversion Signal), SysRst (System Reset)
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Output Ports are CRC (4 bit CRC)

Source Code for CRC Generator Module Tx_Crc.V

[k sk sk sk ok sk sk ok sk ke ok o sk ok sk sk sk ok sk ok s e sk skese sk sk sk ke s s o sk sk sk sk st ek s s ke sk sk sk ok ok ke sk

Module Name is Tx_CRC Calculator

ootk ook kR sk ksl kR ok sk sk ok sk ootk sk ok ok sk ke sk ko sk sk ke ks sk ok

module CrcGen (CRC,FifoOut,SysRst, CRC_Reg,Eoc);
?npul [15:0] FifoOut; //Message coming from FIFO
Input [15:0] CRC_Reg; // Generator polynomial value
input SysRst,Eoc;

output {3:0] CRC;

wire [15:0] FifoOut;

wire SysRst,Eoc;

wire [15:0] CRC_Reg;

reg {3:0] CRC;

JxxRsckckkkxkInternal Wire/Reg Declaratios #x¥dkkskokkokkoxkokx
reg [4:0} GenPoly; //Generator Polynomial value (5 bit)
reg [3:0] Temp;

always @ (posedge Eoc or negedge SysRst)
begin
GenPoly=CRC_Reg[4:0];
if ('SysRst)
Temp =4'd0;
else
begin
CRC =CRC_Cal(FifoOut,Temp,GenPoly);
Temp =CRC;
end
end
function [3:0] CRC_Cal;
parameter Zero=5'b00000;
input [15:0} FifoOut;
input [3:0] Temp;
input [4:0] GenPoly;
[k Internal Reg Declaratios **###ksksiokscioksionok
reg {20:1] msgtemp;
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reg [4:0] Templ;

reg [4:0] Rem;
Integer

begin

msgtemp=({FifoOut,Temp});

//3display(" @ @ @ @ @ @ @msgtemp=%b",msgtemp);
Templ=msgtemp[20:16];
/$display(" ******%k4*Temp=%b", Temp1),
for(i=15;1>0;i=i-1)
begin
if (GenPoly<=Temp1)
begin
Rem=GenPoly * Templ;
/$display("*****Rem(Result)=%b",Rem);
Rem=Rem << 1;
/[$display("*****Rem(after removing
MSB)=%b" ,Rem);
Rem[0] = msgtemp(i];
/f$display("*****Rem(after appending M(x)
bit)=%b",Rem);
end
else
begin
Rem=Temp1~Zero;
/$display("*****Rem(Result)=%b" ,Rem);
Rem=Rem<< 1;
/[$display("*****Rem(after removing
MSB)=%b",Rem);
Rem[0]=msgtempli];
//$display("*****Rem(after appending M(x)
bit)=%b",Rem);
end
/1$display("(Remainder=%b",Rem);
Templ=Rem;
end
CRC_Cal=Rem(3:0];

/$display("MANAAAAANCRC_Cal=%b" ,CRC_Cal);

end
endfunction
endmodule
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6.1.8 Parallel to Serial Converter

Module Name is Parallel to Serial Bit Converter. File Name is Tx_PtoS.V.
This Module is converting the Parallel data in to serial data for transmission .It

employs a buffer to store the 16 bit parallel data temporarily before it is converted to

serial data bits for transmission.

Input Ports are PDataln (16 bit Parallel Data Input),
SelAddr (Select Address Signal), SelCrc (Select CRC Signal),
Start (Start Signal), Clk (Clock synchronizing with device),
SysRst (System Reset)

Output Ports are Sout (Serial Output), Eoc (End of Conversion Signal)

Source Code for Parallel to Serial Converter Module Tx_PtoS.V

/******************************* ke 3k sk sk ok sk sk sk sk ok sk ok sk ok e sk ok sk sk ok Sk ok k ok sk ok ok

Module Name is Parallel to Serial Bit Converter

e s sk ok e ke ok ok e ke s ok ok ke sk sk ok sk ok ok ok ok sk ok sk sk ok ke ok sk ok sk stk sk sk sk ok ke sk sk ke sk sk ke stk kol sksk kol ok sk skl skoskokeskok sk ok ok sk okok skokok skok sk ook

module Tx_PtoS (PDataln,nrziout,Start,SysRst,Clk,Eoc,SelCrc,SelAddr);

mput [15:0] PDataln;
mput Clk,SysRst,Start,SelCre,SelAddr;

output nrziout,Eoc;

wire [15:0] PDataln;

wire Clk,SysRst,Start,SelCrc,SelAddr;
reg Sout,ref,nrziout,Eoc;

reg [15:0] Buffer;

integer 1,d;

always @ (negedge Clk)
begin
if (Start | SelAddr)
begin
Buffer<=PDataln;
Eoc <=1'b0;
1 <=0,
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end
else if (SelCrc)
begin
Buffer <=PDataln;
Eoc <=1b0;
i <=0
end
else
Buffer <=Buffer;
end
always @ (posedge Clk or negedge SysRst)
begin
if (!SysRst)

begin
Buffer=16'hzzzz;
Eoc =1D0;
1 =0;
Sout =1'bz;
ref =0,
nrziout=1'bz;
d =0;
end
else
begin
if(d<6)
begin
Sout=Buffer[i];
1 =i+1;
d =d+1;
if(i==16)
begin
Eoc=1'bl;
1 =0;
end
else
Eoc=1'b0;
end
else
begin
Sout=1'b0;
d =0;
end
end
if (Sout==0IISout==1)
begin
if (Sout==0)
begin

nrziout=~ref;
ref =nrziout;
end
else
begin
nrziout=ref;
ref =nrziout;
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end

end
else
nrziout=nrziout;
end
endmodule

6.1.9 Transmitter Module

Module Name is Transmitter. File Name is Tx.V.

Transmitter is the collection of modules that integrates all the modules explained
above in order to process the data from the host to make it error free for transmission. it
Synchronizes the working of various modules .

Input Ports are Dataln (16 bit Input Data), Addr (2 bit Address),
TxEn (Transmitter Enable), Wr (Write Signal),
SysClk (System Clock), SysRst (System Reset)
Output Ports are Sout (Serial Output)

Source Code for Transmitter Module Tx.V

/**********************************************************

Module Name is Transmitter
************************************************************/

module Tr (SysClk,SysRst,Addr,Dataln,Wr,nrziout, TxEn);

//************* Input/output Declarations 3k 3k 3k 3k K 3k ok 3k 3k ok ok 3k 3K ok sk ok 5k %k 3k 3k
input SysClk,SysRst,Wr, TxEn;

input  [1:0] Addr;

input  [15:0] Dataln;

output nrziout;

//************* Wire/Reg Declarations sk ok sk 3k ok ok ok ok sk ok sk sk skl sk Sk ok sk skok skeok k-

wire SysClk,SysRst,Wr,TxEn;
wire [1:0] Addr;

wire [15:0] Dataln;

wire nrziout;

//************* Internal Wire DCCIaratiOnS Sk sk ok sk >k e sk ok sk sk ok sk skok sk sk %ok k
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w?re [15:0] CrcReg,AddrReg FifoOut,PDataln;

wire [3:0] CRC;

wire AddrEn,CrcEn,FifoEn,FifoSel;

wire Eoc,Full, Empty,Half,SelAddr,SelFifo,SelCrc,Sout;

[PrxFxsRFwsokk Module Instantiation for Transmitter *#*%% sk

Deco d (SysRst,Addr,AddrEn,CrcEn,FifoEn);

Buffer b (SysClk,Wr,Dataln,AddrEn,CrcEn,FifoEn,SysRst,CrcReg,AddrReg,FifoSel);
TxFIFO f (Dataln,FifoOut,SysClk,Eoc,Wr,SysRst,FifoSel,Full, Empty,Half);
CrcGen ¢ (CRC FifoOut,SysRst,CrcReg,Eoc);

Control t (TxEn,Empty,Eoc,SelAddr,SelFifo,SelCrc);

Mux m (AddrReg,FifoOut,CRC,PDataln,SelAddr,SelFifo,SelCrc,SysRst);

PtoS p (PDataln,nrziout,Eoc,SysRst,SysClk,Eoc,SelCrc,SelAddr);

/Inrzi n (SysClk,Sout,nrziout,SysRst);

endmodule

¥Rk Rokokkok Simulation Module %% ksokskskkskokskokok kokkok ok ok ok kokokok
module TxTest;

VAR EEREE LS L2 Wire/Reg Declarations %% skskskskok ok sk sk sk ksk kok
reg SysRst,Wr, TxEn;

reg [1:0] Addr,
reg [15:0] Dataln;
wire nrziout;

wire SysClk;

Tx T (SysClk,SysRst,Addr,Dataln,Wr,nrziout, TXxEn);
Clock ¢ (SysClk);

initial
begin
SysRst=1; Dataln=16'h00aa; Addr=2"b00;TxEn=1'b0;Wr=1'b1;
$monitor ("SysClk=%b Dataln=%h Buffer=%b Sout=%b Eoc=%b PDataln=%h TxEn=%b
FifoSel=%b,nrziout=%b",SysClk,Dataln,T.p.Buffer,T.p.Sout,T.p.Eoc,T.m.PDataln, TXEn,T.b.FifoSel.nrzio
ut, $time);
#2  SysRst=0;

#2  SysRst=1;

#10 Dataln=16'h0013; Addr=2'b01;
#10 Dataln=16'n0001; Addr=2'b10;
#2 Dataln=16'haaaa; Addr=2'b11;

#10 Dataln=16'haaaa;
#10 Dataln=16'haaaa; TxEn=1'bl;
#10 Dataln=16'haaaa; TxEn=1'b0;
#10 Dataln=16'haaaa;
#10 Dataln=16'haaaa;
#10 Dataln=16'haaaa;
#10 Dataln=16'haaaa,
#10 Dataln=16'haaaa,
#10 Dataln=16haaaa;
#10 Dataln=16'haaaa;
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#10 Dataln=16'haaaa;
#10 Dataln=16haaaa;
#10 Dataln=16'haaaa;
#10 Dataln=16'haaaa;
#10 Dataln=16haaaa;
#1000  $finish;

end

endmodule

6.2 Receiver

6.2.1 Serial to Parallel Converter

Module Name is Serial to Parallel bit converter. File Name is Rec_StoP.V.

This module is the first one to receive data from the transmitter that converts the
serial data to parallel which is the form the data has to be for further processing. The data
1s stored in the buffer temporarily for conversion. It generates address flag and end of
conversion signals which are the control signals for other modules.

Input Ports are Sin (Serial Input), Ld (Load Signal), SysClk (System Clock),
SysRst (System Reset)

Output Ports are POut (16 bit Parallel Output), AddrFlag (Address Flag),
RxEoc (Receiver side End of Conversion)

Source Code for Serial to Parallel Converter Module Rec_StoP.V

/**********************************************************

Module Name is Serial To Parallel Converter

module Rec_StoP  (SysClk,SysRst,nrziout,Ld,POut,RxEoc,AddrFlag);
//************* Inputloutput Declarations sk sk sk sk sk sk sk ok sk sk sk ok ok ok ok sk kok ok

input SysClk,SysRst,nrziout,Ld;
output  [15:0] POuy
output RxEoc,AddrFlag;

Jprrsssessics Wire/Reg Declarations *x%sksk st kors kakdkoak

wire SysClk,SysRst,nrziout,Ld;
reg [15:0] POut

84



reg RxEoc,AddrFlag,ref,Sin;
reg [15:0] Buffer;

integer i

integer [2:0] d;

integer [3:0] x;

//************* Funclional DeSCriptiOn sk sk ok ok 5k sk 3k ok sk sk sk sk ok sk sk Sk ok ok sk sk ok ok ok

always @ (negedge SysClk)

begin
if (Ld)
begin
POut =Buffer;
RxEoc =RxEoc;
i =0;
#5 AddrFlag =1'b0;
RxEoc =1'b0;
end
else
begin
POut =POut;
RxEoc =RxEoc;
AddrFlag=AddrFlag;
end
end

always @ (posedge SysClk or negedge SysRst)

begin
if(!SysRst)
begin
Buffer =16'h0000;
AddrFlag =1bl;
i =1'b0;
d =3'd0;
X =4'ds,
ref =1'b0;
RxEoc =1b0;
end
//added str 1
else
begin
d=d+1;
if((nrziout==1'b0)(nrziout==1'b1))
begin
if (nrziout==ref)
begin
Sin =1'bl;
ref =nrziout;
/! d =d+1;
end
clse
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begin

Sin =1'b0;
ref =nrziout;
" d =d+1;
end
end
else
d =d;

end
//added stop 1
/lalways @ (posedge SysClk) //or negedge SysRst)
//if(d<3'd6)
if(d<x)
begin
if ((Sin==1'b0)I(Sin==1'b1))

" begin
//
begin
Buffer[i]=Sin;
i =i+1;
RxEoc =1'b0;
d =d;
if 1==16)
begin
1 =0;

// d =d; //
RxEoc=1'bl;
end
else
RxEoc=1'b0;
end

else
begin
d =d;
i =i
end
end

else
begin

// Sin  =Sin;

// Buffer[i}]=Buffer[i];
i =i;

d =0;
X =4'd7;
end

/*  end
else

begin
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end

*/
end
endmodule

6.2.2 Demultiplexer

Module Name is Demultiplexer. File Name is Rec_Dmux.V.

This module does opposite in function to what multiplexer does in transmitter it
sends parallel data to address register, FIFO and to CRC depending on the control
signals. The purpose is to send the received information to respective places where they
are processed later.

Input Ports are POut (16 bit Parallel Data), RxAddrEn ( Address Enable Signal).
RxFifoEn (FIFO Enable Signal), RxCrcEn (CRC Enable Signal),
SysRst (System Reset)

Output Ports are RxAddrReg (16 bit Address Register),
RxFifoln (16 bit FIFO Input), RxCrcReg (4 bit CRC Register)

Source Code for Demultiplexer Module Rec_Dmux.V

/****************>k*****************************************

Module Name is Receiver Side Demultiplexer

ke sk ok ke st ok sk ok ok Sk ok ke sk sk sk kst sk ok e sk ok skok Sk ok sk ok sk ok sk sk ke ko sk okl kool st sk ok sk sk sfokok sokok ok kkok

module Rec_Dmux
(RxAddrReg,RxFifoln,RxCrcReg,POut,RxAddrEn,RxFifoEn,RxCrcEn,SysRst);

//************* Input/Output Declarations ok ok sk sk ok sk sk ok sk ok sk sk sk ok ok sk ok Sk skesk

input [15:0] POut;
input RxAddrEn,RxFifoEn,RxCrcEn,SysRst;
output [15:0] RxAddrReg,RxFifoln;

output  [3:0] RxCrcReg;

J R kK O Wire/Reg Declarations * ok sk sk ko sk stk s sk skook sk sk s sk sk ok
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wire [15:0] POut;
wire RxAddrEn,RxFifoEn,RxCrcEn,SysRst;

reg [15:0] RxAddrReg,RxFifoln;
reg [3:0]  RxCrcReg;

//************* FUnCtiOnal DeSCriptiOn 3k sk ok sk sk sk sk ok sk sk sk ok ok sk sk ok sk sk sk sk ok ok ok
always @ (POut or RxAddrEn or RxFifoEn or RxCrcEn or SysRst)
begin
if(!SysRst)
begin

RxAddrReg = 16'hzzzz;

RxFifoln = 16'hzzzz;

RxCrcReg = 4'hz;

end
else if(RxAddrEn)
begin
RxAddrReg = POut;
end
else if(RxFifoEn)
begin
RxFifoln = PQut;
end
else if(RxCrcEn)
begin
RxCrcReg = POut[3:0];
end
else
begin
RxAddrReg = RxAddrReg;
RxFifoln = RxFifoln;
RxCrcReg = RxCrcReg;
end
end
endmodule

6.2.3 Control Logic

Module Name is Control Logic Block. File Name is Rec_Control. V.
The module receiver control generates control signals, which are address enable
signal, FIFO enable signal and CRC Enable signal. These are important for control and to

maintain timing for other modules.
Input Ports are AddrFlag (Address Flag), CrcFlag (CRC Flag),

RxEoc (End of Conversion)
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Output Ports are RxAddrEn (Address Enable Signal),
RxFifoEn (FIFO Enable Signal), RxCrcEn (CRC Enable Signal)

Source Code for Control Logic Module Rec_Control.V

/e skt stk st etk skt ok s ok s s sk sk sk o ok ke st ok ke ok st ok sk ok sk sk sl sk sk s sk sk ok s ok s ok sk ok sk sk sk sk sk sk ok

Module Name is CRC Calculator

**********************************************************/

module Rec_CrcGen (RxCRC,RxFifoln,SysRst,RxEoc);

//************INPUT/OUTPUT DECLARATION % sk sk sk sk ook ks ks ok sk sok

input [15:0] RxFifoln; //Message coming from FIFO
/f Generator polynomial value

input SysRst,RxEoc;

output [3:0] RxCRC;

[1xFxFR kxR WIRE/REG DECLAR A TTON %%k kok ko otk sk sksok ok stk s ok s

wire [15:0] RxFifoln;

wire SysRst,RxEoc;

reg [3:0] RxCRC;

[rexFERkkkk kI nternal Wire/Reg Declaratios ¥¥kskskoksoksoakookx

reg [4:0] GenPoly; //Generator Polynomial value (5 bit)

always @ (negedge RxEoc or negedge SysRst)
begin
if (!SysRst)
begin
Temp =4'd0;
GenPoly=5'b10011;
end
else
begin
RxCRC =CRC_Cal(RxFifoIn,Temp,GenPoly);
Temp =RxCRC;
end
end
function [3:0] CRC_Cal;
parameter Zero=5'b00000;
input [15:0] FifoOut;
input [3:0] Temp;
input (4:0] GenPoly;
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//************ In[erna] Reg Declara[ios sk ok ok ok ok 3k o >t ke sk ok ok ko ok ok

reg [20:1] msgtemp;
reg [4:0] Templ;
reg [4:0] Rem;
integer i

begin

msgtemp=({FifoOut,Temp});

/1$display(" @ @ @ @ @ @ @msgtemp=%b",msgtemp);
Templ=msgtemp[20:16];
/1$display("#ikssssks*Temp=9%b" Temp1);
for(i=15;i>0;i=i-1)
begin
if (GenPoly<=Temp1)
begin
Rem=GenPoly * Templ;
/1$display("*****Rem(Result)=%b" ,Rem);
Rem=Rem << 1;
//$display("*****Rem(after removing
MSB)=%b",Rem);
Rem([0] = msgtempli];
/f$display("*****Rem(after appending M(x)
bit)=%b",Rem);
end
else
begin
Rem=Temp1*Zero;
//$display("*****Rem(Result)=%b" ,Rem);
Rem=Rem<< 1;
//$display("*****Rem(after removing
MSB)=%b",Rem);
Rem[0]=msgtempli];
//$display("*****Rem(after appending M(x)
bit)=%b" ,Rem);
end
//$display("(Remainder=%b",Rem);
Templ=Rem;
end
CRC_Cal=Rem[3:0];

/$display("MAMAAMAAMAMCRC_Cal=%b" ,CRC_Cal);

end
endfunction
endmodule
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6.2.4 Address Decoder

Module Name is Address Decoder. File Name is Rec_AddrDec.V
This module extracts the 4-bit address that corresponds to 16 devices connected
and the size of the data sent which is 12-bit.
Input Ports are RxAddrReg (16 bit Address Register),
RxAddrEn (Address Enable Signal), SysRst (System Reset)
Output Ports are DevAddr (4 bit Device Address), DataSize (12 bit Data Size)

Source Code for Address Decoder Module Rec_AddrDec.V

[ stk sk stk sk sk ok skl stk sk okookok sk ok sk s stk sk ok sk ok sk sk stk kol ok kol ok skeokok ok skokok ok ok sk ook

Module Name is Receiver Address Decoder
ok sk KKK kKRR KRR KK Sk RSk ok ok sk sk ok ol ok ok ok ok sk ok sk kR ok ks ok o

module Rec_AddrReg (DevAddr,DataSize,RxAddrEn,RxAddrReg,SysRst);
//************* Input/Output DeClaratiOnS sk sk sk ok sk ok sk sk ok 3k ok ok sk ok sk ok ks ok sk

input [15:0] RxAddrReg;
input RxAddrEn,SysRst;
output [3:0] DevAddr;

output [11:0] DataSize;

//************* Wire/Reg DeClara[iOnS 3k 3k sk sk sk ok sk ok ok sk ok ok ok ok ok sk sk ok sk sk sk sk skok
wire [15:0] RxAddrReg;

wire RxAddrEn,SysRst;

reg [3:0] DevAddr;
reg [11:0] DataSize;

//************* FUnCtiOnal DeSCriptiOn sk sk ok e sk sk ke ok sk ok ke ok sk sk ok Sk sk Sk ok kok ki

always @ (RxAddrEn or RxAddrReg or SysRst)
begin

if(!SysRst)

begin
DevAddr =4'd0;
DataSize=12'd0;

end

else if(RxAddrEn)

begin

$display("******DevAddr=%b DataSize=%h" ,DevAddr,DataSize);
DevAddr = RxAddrReg[3:0];
DataSize= RxAddrReg[15:4];

end

else
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begin
DevAddr = DevAddr;
DataSize= DataSize;
end

end
endmodule

6.2.5 Timer

Module Name is Timer. File Name is Rec_Timer.V.

This module gives CRC Flag signal, which is an input to control logic to generate
control signals .a counter set up here does the down counting of data size to generate
control flag when the count is zero.

Input Ports are DataSize (12 bit Data Size), RxEoc (End of Conversion Signal).
RxAddrEn (Address Enable Signal), SysRst (System Reset)
Output Ports are CrcFlag (CRC Flag)

Source Code for Timer Module Rec_Timer.V

/**********************************************************

Module Name is Reciever Flag Generater
s ke ok sk ke ot ok sk ke ok ok o ke ke ok ok s sk ok ke sk sk sk sk s sk sk sk ok sk ke sk ok ok sk kst sk sk sk ok sk ok kol ok sk sk ok s ko sk skokkok k f

module Rec_Timer (CrcFlag,RxEoc,DataSize,SysRst,RxAddrEn);

//************* Input/Output Declarations sk ok >k ok sk sk sk ok >k sk sk sk sk ok ok ok ok ok %k

input RxEoc,SysRst;

input {11:0) DataSize;

input RxAddrEn;

output CrcFlag;

//************* Wire/Reg Declarations ok ok ok ok sk ok sk sk ok ok ok sk 3k sk sk ok e Sk k¢ Sk ek sk %k
wire RxEoc,SysRst,RxAddrEn;
wire [11:0] DataSize;

reg CrcFlag;

//************* Internal Wire/reg DeClaratiOnS 3k 3K sk sk ok ok sk ok 3k ok ok ok sk skok
integer Count;

reg Flag;

[ KKK Functional Description e ok s sk sk sk sk ok sk ok sk ok s ok ok ok ok ok ok ok ok
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always @ (negedge SysRst or negedge RxEoc )

begin
if(!SysRst)
begin
CrcFlag = 1'b0;
Count = 12'h001;
Flag =11,
end
else if (Flag==1'bl)
begin
Count = DataSize;
Flag = 1'b0;
/1$strobe("$$8$$$$Count=%h",Count);
CrcFlag = 1'b0;
end
else begin
Count =Count-1;
if(Count==0)
begin
CrcFlag =1'bl;
Count =Count;
end
else
begin
CrcFlag =CrcFlag;
Count =Count;
end
end
end
endmodule
6.2.6 CRC Generator
Module Name is Cyclic Redundancy Check (CRC) Generator. File Name is
Rec_Crc.V

This module calculates the CRC bits for error handling. The CRC Generator first
calculates the CRC bits for the first 16 bits of FIFO Input and the CRC bits for the next
16 bit FIFO Input is calculated with respect to the first generated CRC bits. In this way
the process continues and finally 4 CRC bits are generated for whole data and sent to the

CRC Comparator to check whether the generated CRC bits and received CRC bits are
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same. If they are same then the data is received without any error otherwise there is an

error in received data.

Input Ports are RxFifoln (16 bit FIFO Input), RxEoc (End of Conversion Signal).
SysRst (System Reset)

Output Ports are RxCRC (4 bit CRC)

Source Code for CRC Generator Module Rec_Crc.V

[tk sk sk sk s sk sk ok sk s ok sk ok ok ok ok sk ok ok K ok Kk sk ok ok ok ok sk o sk ok sk s ok ok ok sk ok sk ok sk ok sk ook sk ok ok ok

Module Name is CRC Calculator

sk sk etk oRoR KRRk ok o ok ok ok Rk sk sk R R s ok sk ek

module Rec_CrcGen (RxCRC,RxFifoln,SysRst,RxEoc);

input [15:0] RxFifoln; //Message coming from FIFO
/! Generator polynomial value

input SysRst,RxEoc;

output [3:0} RxCRC;

wire [15:0] RxFifoln;

wire SysRst,RxEoc;

reg [3:0] RxCRC;

JfFHEssssok sk k Internal Wire/Reg Declaratios *ixrioksiorioioc

reg [4:0] GenPoly; //Generator Polynomial value (5 bit)

reg [3:0] Temp;

always @ (negedge RxEoc or negedge SysRst)
begin
if (!SysRst)
begin
Temp =4'd0;
GenPoly=5'b10011;
end
else
begin

RxCRC =CRC_Cal(RxFifoln, Temp,GenPoly);
Temp =RxCRC;
end
end
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function [3:0] CRC_Cal;

parameter Zero=5'b00000;
%nput [15:0] FifoOut;
input [3:0] Temp;
input [4:0] GenPoly;
[[FFF RSk [ntarnal Reg Declaratios *** ¥ %k kokok stk
reg [20:1] msgtemp;
reg [4:0] Templ;
reg (4:0] Rem;
integer i
begin

msgtemp=({FifoOut,Temp});

/$display("@ @ @ @ @ @ @msgtemp=%b",msgtemp);
Temp l=msgtemp[20:16];
H$display (" ******¥***Temp=%b", Temp1);
for(i=15;i>0;i=i-1)
begin
if (GenPoly<=Templ)
begin
Rem=GenPoly » Temp;
/$display("*****Rem(Result)=%b" Rem);
Rem=Rem << I;
//$display("*****Rem(after removing
MSB)=%b",Rem);
Rem[0] = msgtemp(i};
//$display("*****Rem(after appending M(x)
bit)=%b" . Rem);
end
else
begin
Rem=Temp1*Zero;
//$display("*****Rem(Result)=%b" ,Rem);
Rem=Rem<< I;
//$display("*****Rem(after removing
MSB)=%b" ,Rem);
Rem[0]=msgtempli];
//$display("*****Rem(after appending M(x)
bit)=%b",Rem);
end
//$display("(Remainder=%b",Rem);
Templ=Rem;
end
CRC_Cal=Rem|[3:0];

/$display (" MANMAIAMAACRC_Cal=%b" ,CRC_Cal);
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end
endfunction
endmodule

6.2.7 CRC Comparator

Module Name is CRC Comparator. File Name is Rec_CrcComp.V.
This module compares the CRC bits received from the transmitter with the CRC bits
generated by the receiver. If the two CRC’s are equal then the data is received without

any error and if the two CRC’s are not equal then an Interrupt is generated to resend the

data again.
Input Ports are CRC (4 bit CRC from Transmitter),
RxCRC (4 bit CRC generated in the receiver),
RxCrcEn (CRC Enable Signal), SysRst (System Reset)
Output Ports are Intr (Interrupt)

Source code for Rec_CrcComp.V

/**********************************************************

Module Name is CRC Comparator
****************************’k*******************************/
module Rec_CrcComp (Intr,CRC,RxCRC,RxCrcEn,SysRst);

//************* Input/Output Declarations >k sk sk sk sk ok Sk sk Sk ke sk sk ok ok sk sk ok

input [3:0] CRC,RxCRC;
input RxCrcEn,SysRst;
output Intr;

[ RO R Wire/Reg Declarations %%k %ok ok seksk ok sk ok sk ok
wire [3:0] CRC,RxCRC;

wire RxCrcEn,SysRst;
reg Intr;
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[[FFFFF R KRk kR Bunctional Description *¥kkktdsk sk kokkk ok

always @ (negedge RxCrcEn or negedge SysRst)
begin
if (!SysRst)
Intr = 1'b0;
else if(RxCrcEn==1'b0)
begin
if(RxCRC!=CRC)
Intr=1'bl;
else
Intr = 1'b0;
end
else
Intr = Intr;
end
endmodule

6.2.8 Rec_FIFO (First In First Out)

Module Name is First In First Out. File Name is Rec_ FIFO.V
In this module if FIFO has nothing in it FIFO Empty Signal is generated allowing
the data to be written into the FIFO, if the FIFO is half full then FIFO Half Signal is
generated allowing the data to be still written in FIFO and if the FIFO is full then FIFO
Full Signal is generated not allowing any data to be written in the FIFO until there is free
size to be written. An internal Flag is created in such a way that whenever it is high the
data is copied into the FIFO and whenever the Read Signal is high data which is written
first is sent out to the device. This is a 16x16 bit FIFO
Input Ports are RxFifoln (16 bit FIFO Input), Rd (Read Signal),
RxEoc (End of Conversion Signal),
DevClk (Device Clock), SysRst (System Reset)
Output Ports are RxFifoOut (16 bit FIFO Output), RxFull (FIFO Full Signal),

RxEmpty (FIFO Empty Signal), RxHalf (FIFO Half Signal)
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The source code for Rec_FIFO.V

73 3 sk s stk sk ok ok ok ke sk ok sk ks k ok K 3K k3K sk ok sk o s sk sk ke fok sk sk stk sk sk ok ok ke ke ke sk skokske sk ok

Module Name is FirstInFirstOut (FIFO)
skt ok sk kb ko skl ek Rk ko ke stk otk sl el ol R R SR RSk kKRS kK Rk KRk RSk Kk K
module Rec_FIFO(RxFifoIn,RxFifoOut,RxEoc,DevClk,Rd,SysRst,RxFull, RxEmpty,R xHalf);
J1FRFFAS Rk koo ok sk ok g koksoksskokokok ok kXN PUT/OUTPUT DECLARATIQN 5 ks ksksesk skt ko shofskok ok ot o

%nput [15:0] RxFifoln;

input DevClk,SysRst,Rd,RxEoc;
output [15:0] RxFifoOut;

output RxFull,RxEmpty,RxHalf;

[ Rk ok kR skoktook ok ol ok ok ok W TR B/REG DECL AR ATIQN # ok kokstofs ks stk stk stk s

wire [15:0] RxFifoln;

wire DevClk,SysRst,Rd,RxEoc;
reg [15:0] RxFifoOut;

reg RxFull,RxEmpty,RxHalf;

reg [15:0] FIFO [0:15];

reg (3:0] Rdptr, Wrptr;
integer [4:0] Count;

reg Flag;

J Ak s ok kKR R R Rk koo EUNC TION AL
DESCRIPTION # %k sk sk sk soesotokok ok ek

always @ (negedge RxEoc or negedge SysRst)
begin if (!SysRst)
begin
Wrptr=4'b0000;
Flag =0;
end
else if (Flag)
begin

FIFO[Wrptr]=RxFifoln;
/1$display (" AMANMAMAAANERIFO[%d |=%h", Wrptr, FIFO[Wrptr].$time ):
Wrptr  =Wrptr+1;

Count  =Count+1;
end
else
Flag=1;
end
always @ (posedge DevClk or negedge SysRst)
begin
if (1SysRst)
begin
Rdptr=4'd0;
Count=0;
end
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else if (Rd)
begin
RxFifoOut=FIFO[Rdptr];
Rdptr =Rdptr+1;
Count =Count-1;

end
end
always @ (Count or SysRst)
begin
if (!SysRst)
begin
RxFull =1'b0;
RxEmpty=1'b0;
RxHalf =1'b0;
end
else if (Count==0)
begin
RxFull =1'b0;
RxEmpty=1'bl;
RxHalf =1'b0;
end
else if (Count>=15)
begin
RxFull =1'bl;
RxEmpty=1'b0;
RxHalf =1'b0;
end
else if (Count==8)
begin
RxFull =1'b0;
RxEmpty=1'b0;
RxHalf =1'bl;
end
else
begin
RxFull =1'b0;
RxEmpty=1'b0;
RxHalf =1'b0;
end
end
endmodule
6.2.9 Receiver Module

Module Name is Receiver. File Name is Receiver.V.
This module is basically the integration of all the 8 modules explained above which are

responsible for receiving the data from the peripheral device to the host without any error
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and also synchronizing the speeds of the host and the peripheral device and converting

serial data into parallel data.
Input Ports are Sin (Serial Input Data), DevClk (Device Clock),
Rd (Read Signal),
SysClIk (System Clock), SysRst (System Reset)
Output Ports are RxFifoOut (16 bit FIFO Output), DevAddr (4 bit Device Address)
RxFull (FIFO Full Signal), RxHalf (FIFO Half Signal),
RxEmpty (FIFO Empty Signal), Intr (Interrupt)

Source code for the Receiver.V

/**********************************************************

Module Name is Receiver
************************************************************/

/f/module Receiver
(SysClk,DevClk,Rd,RxFifoOut,CRC,SysRst,Sin,DevAddr,CrcFlag, RxFull,RxHalf, RxEmpty, RxCRC):
module Rx  (SysClk,DevClk,Rd,RxFifoOut,SysRst,nrziout,DevAddr,RxFull,RxHalf,RxEmpty,Intr):
//************* Input/oulput Declarations sk 3k ok ok ok ke ok sk ok s sk e sk sk ok ok Sk ok ok ok

input SysClk,SysRst,nrziout,DevClk,Rd;

output [3:0] DevAddr;
output RxFull,RxHalf, RxEmpty Intr;
output [15:0] RxFifoOut;

//************* Wire/Reg DeClaraliOnS sk sk sk ok ok ok ok ok sk ok sk ke sk sk sk sk skok ok ok skeok ok

wire SysClk,SysRst,nrziout,DevClk,Rd,Intr;

wire [3:0] DevAddr,RxCRC,CRC;
wire CrcFlag,RxFull,RxHalf, RXEmpty;
wire  [15:0] RxFifoOut;

ok rRkR* Internal Wire Declarations *##s% kst ok kkok

wire RxEoc,AddrFlag, RxAddrEn,RxFifoEn,RxCrcEn;
wire (15:0] POut,;

wire  [15:0] RxAddrReg,RxFifoln;
wire [11:0] DataSize;

100



//StoP s (SysClk,SysRst,Sin,RxEoc,POut,RXEOC,AddrFlag);
StoP s (SysClk,SysRst,nrziout,RxEoc,POut,RxEoc,AddrFlag);

RxControl ¢ (RxAddrEn,RxFifoEn,RxCrcEn,AddrFlag,CrcFlag,RxEoc);

RxDmux d (RxAddrReg,RxFifoln,CRC,POut,RxAddrEn,RxFifoEn,RxCrcEn,SysRst):
[[HHR*FFERAEE0000000000000000000000000000000000000000* * 5

RxAddrReg a (DevAddr,DataSize,RxAddrEn,RxAddrReg,SysRst);

RxFIFO f (RxFifolIn,RxFifoOut,RxEoc,DevClk,Rd,SysRst,RxFull, RxEmpty,RxHalf):

RxCrcGen g (RxCRC,RxFifoln,SysRst,RxEoc);
Timer (CrcFlag,RxEoc,DataSize,SysRst,RxAddrEn);

CrcComp m (Intr, CRC,RxCRC,RxCrcEn,SysRst);
VAR EEEE LT E TR FuncﬁonalI)escﬁptknl***********************
endmodule

6.3 Serial Interface Engine

Module Name is Serial Interface Engine. File Name is Comm.V.
This module is an integration of both receiver and transmitter. This module is tested by
connecting transmitter serial output to receiver serial input and all the results are verified.
Input Ports are Dataln (16 bit Input Data), Addr (2 bit Address),
TxEn (Transmitter Enable), Wr (Write Signal),
Rd (Read Signal), SysClk (System Clock),
SysRst (System Reset)
Output Ports are RxFifoOut (16 bit FIFO Output), DevAddr (4 bit Device Address)
RxFull (FIFO Full Signal), RxHalf (FIFO Half Signal),
RxEmpty (FIFO Empty Signal), Intr (Interrupt)

Source Code for Serial Interface Engine Module Comm.V

JokoRsk skt Rk Rk ks sk sk sk kR sk ok sk kR sk Rk R Sk sk kR R ok sk ok kR sk ok

Module Name is Serial Interface Engine

Module Description
sk ok stk ok sk ok KK RSk sk okl ok s sk sk sk sk ok stk s stk stk sk sk sk stk ko sk o kR kKK sk sk kR ok f
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module  Sie

( SysClk‘SysRst,Addr,DataIn,Wr,TxEn,Rd,RxFifoOu(,DevAddr,RxFull,RxHalf,RxEmpty,Intr);
//************* Input/Output Declarations >k 3k 3k ok sk sk sk sk sk ok sk 3k sk sk sk ok ok ok ok sk

input SysClk,SysRst,Wr,TxEn,Rd;

input  [1:0] Addr;

input  [15:0] Dataln;

output [15:0] RxFifoOut;
output [3:0] DevAddr;

output RxFull,RxHalf, RxEmpty,Intr;
[ ok sk sk sk ok o K ok ok Wire/Reg Declarations %%k %ok koskskok s ok sk ok ok ko

wire SysClk,SysRst,Wr,TxEn,Rd;
wire [1:0] Addr;
wire [15:0] Dataln;

wire [15:0] RxFifoOut;

wire [3:0] DevAddr;

wire RxFull,RxHalf,RxEmpty,Intr;
wire nrziout;

//************* Functional DeSCriptiOn 3k 3k ok Sk sk sk sk ok sk sk sk sk sk sk sk stk ok sk sk sk kok

Tx t(SysClk,SysRst,Addr,Dataln,Wr,nrziout, TxEn);
Rx r (SysClk,DevClk,Rd,RxFifoOut,SysRst,nrziout, DevAddr,RxFull,RxHalf, RxEmpty,Intr);

endmodule
//************ Simulau‘on MOdule 3k ¥ ok 3k 3k ok sk s ok ke sk Sk sk ke sk ok sk sk e sk sk sk skoskeosk ok ok sk

module SieTest;

//************ Wire/Reg Declarations e ok sk sk sk sk sk sk e ok sk sk sk ok sk sk ok sk ok ke sk skoskosk
reg SysRst,Wr,TxEn,Ld; //addedf Ld

reg [1:0] Addr;

reg [15:0] Dataln;

wire SysClk;

wire [15:0] RxFifoOut;

wire [3:0] DevAddr;

wire RxFull,RxHalf,RxEmpty,Intr;

Sie s (SysClk,SysRst,Addr,Dataln,Wr,TxEn,Rd,RxFifoOut,DevAddr,RxFull, RxHalf, RxEmpty,Intr):
Clock ¢ (SysClk);

initial
begin
SysRst=1; Dataln=16'h00aa; Addr=2"b00;TxEn=1'b0;Wr=1'bl; // added Ld

$dumpvars(1 ,s.t.SysClk,s.[.SysRst,s.l.DataIn,s.l.nrziout,s.t.TxEn,s.rAf.RxFifoIn,s.r.RxFul],s.r.RxHalf.s.r.Rx
Empty,s.r.Intr,s.r.DevAddr);
$dumpfile("sie.dmp");
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$monitor (" Dataln=%h nrziout=%b Eoc=%b RxEoc=%b PDataln=%h RxFifoln=%h Sin=%h

Addr=%h",Dataln,s.t.nrziout,s.t.p.Eoc,s.r.s.RxEoc,s.t.m.PDataln,s.r.d.RxFifoln,s.r.s.Sin,DevAddr. $time):
#2  SysRst=0;

#2  SysRst=1;

#10 Dataln=16'h0013; Addr=2'b01;
#10 Dataln=16'h0001; Addr=2'b10;
#2  Dataln=16'haaaa; Addr=2'b11,;
#10 Dataln=16'h5555; TxEn=1'b1;
#10 Dataln=16'h0000; TxEn=1'bO0;
#10 Dataln=16'hffff;

#10 Dataln=16'h0000;

#10 Dataln=16'hffff;

#10 Dataln=16'h0000;

#10 Dataln=16'hffff;

#10 Dataln=16'h0000;

#10 Dataln=16'hffff;

#10 Dataln=16'h0000;

#10 Dataln=16'hffff;

#10 Dataln=16'h0000;

#10 Dataln=16'hffff;

#10 Dataln=16'h0000;

#10 Dataln=16'hffff;

Wr=1'b0;

#2720 $finish;

end

endmodule
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Chapter 7 Results and Conclusion

7.1 Simulated Waves of the Serial Interface Engine (SIE)

“UFle Edt Search Project Window Heb

el T T T T =S vmes
£1:00s CZ2-0s
Dataln[15:0] \ 3

Figure7.1 Simulated Waves of the final module
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_iFle Ect Search Project Window Heb
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| Untitled oo
3 TI-C2=30s

Figure 7.2 Simulated Wave files of the final module
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Contd,.
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Figure 7.3 Simulated Waves of the final module
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eriwell - [Yeriwel
W e Edt Search |

Verivell -k C:\Documents and Settings‘hstnlab\Desktop\WINDOWS\DESKTOP\baser\j
Ver;Hell: warning: Cannot open log file 'C:\Documents and Settings“hstnlab“Dg
Verillell: warning: Cannot open key file 'C:“\Documents and Settings“hstnlab\Dg
VeriWell for Win32 HDL (Version 2.1.1> Sat Jan 11 17:39:05 2003

This is a free version of the VeriWell for Win32 Simulator
Dzstrlbutg this freely; call 1-800-VERIVELL for ordering information
VSEE the file "lreadne.1st" for more informationl

Copyright (c) 1993-96 Wellspring Solutions, Inc.
All rights reserved

Hemory Available: 0

Entering Phase I...

Compiling source file : Buffer .V
Compiling source file : Clock.¥
Compiling source file : Control.V
Compiling source file : Rx.V
Conpiling source file : Crc.V
Compiling source file : Deco.V
Compiling source file @ Mux.V
Compiling source file : RxAddrDec.V
Compiling source file : RxControl.V
Compiling source file : RzCrc.V
Compiling source file @ RxCrcComp.V
Compiling source file : RxDnux ¥
Compiling source file : RxFIFO.V
Conpiling source file : Timer.V
Compiling source file : TxFIFO.V
Compiling source file : PtoSZ2.¥
Conpiling source file : Sei_test.V
Compiling source file : Txl.V
Compiling source file : stop 1.V
The =zize of this nodel is [54%, 86%] of the capacity of the free version

Entering Phase II. ..
Entering Phase III...

2 warnings in compilation
No errors in compilation
Top-level modules:

Figure 7.4 VeriWell Console for the SIE
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VeriWeII-[VerWlItosiel R
B Fle Et Seach Projct Window Hep

CEEE

SieTest

Dataln=00aa nrziout=z Eoc=x RxBocex PDataln-szzx RuFifoln=saxx Sin=z Addr=x
Dataln=00aa nrziout=z Eoc=0 RxEoc0 FDataln=zzzz ReFifoln=zzzz Sin=x Addr=(
Dataln=0013 nrziout=z Eoe=0 RxEoc=0 PDataln-zzzz ReFifoln=zzzz Sin=x Addr=0
Dataln=0001 nrziout=z Eoc=0 RxBoc=0 PDataln=zzzz RuFifoln=zzzz Sinx Addr=D
Dataln=assa nrziout=z Eoc=0 RxEoc=0 Pataln=zzzz ReFifoln=zzzz Sin=x Addr=0
Dataln=8555 nrziout=z Eoc=0 RxEoc=0 PDataln=00aa ReFifoln=zzzz Sin=x Addr=0
Dataln=0000 nrziout=z Eoc=0 RxEoc=0 PDataln=00aa ReFifoln=zzzz Sin=x Addr=0
Dataln=0000 nrziout=1 Eoc=0 RxEoc=0 FDataln=00aa RxFifoln=zzzz Sin=xz Addr=0
Dataln=ffif nrziout=1 Eoc=0 RxEoc=0 EDataln=00aa RxFifoln=zzzz Sin=x Addr=(
Dataln=ff{f nrziout=1 Eoc=0 RxEoc=0 PDataln=00aa RxFifoln=zzzz Sin=0 Addr=0
Dataln=0000 nrziout=1 Enc=0 RxEoc=0 PDataln=00aa RxFifoln=zzzz Sin=0 Addr=0
Dataln=0000 nrziout=0 Eoc=0 RxEoc=0 PDataln=00aa RxFifoln=zzzz Sin=1 Addr=(0
Dataln=ffff nrziout=0 Eoc=0 RxEoc=0 PDataln=00aa ReFifoln=zzzz Sin=1 Addr=0
Dataln=ffff nrziout=1 Eoc=0 RxEoc=0 PDataln=00aa ReFifoln=zzzz Sin=0 Addr=0
Dataln=0000 nrziout=1 Eoc=0 RxEoc=0 PDataln=00aa RFifoln=zzzz Sin=0 iddr=0
Dataln=ffff nrziout=1 Eoc=0 ReEoc=0 Flataln=00aa ReFifoln=zzzz Sin=0 Addr=0
Dataln=ffff nrziout=0 Enc=0 ReEoc=0 PDataln=00az RxFifoln=zzzz Sin=1 Addr=0
Dataln=0000 nrziout=0 Eoc=0 RzEoc=0 PDataln=00aa RzFifoln=zzzz Sin=1 Addr=0
Dataln=0000 nrziout=0 Eoc=0 RxEoc=0 PDataln=00aa RzFifoln=zzzz Sin=0 Addr=0
Dataln=ffff nrziout=0 Eoc=0 RxEoc=0 PDataln=00aa RxFifaln=zzzz Sin=0 Addr=0
Dataln=ffff nrziout=1 Eoc=0 RxEoc=0 PDataln=00aa RxFifoln=zzzz Sin=1 Addr=0
Dataln=0000 nrziout=1 Eoc=0 RxEoc=0 PDataln=00aa RxFifoln=zzzz Sin=1 Addr=0
Dataln=0000 nrziout=1 Eoc=0 RzEoc=0 PDataln=00aa RxFifcIn=zzzz Sin=0 Addr=0
Dataln=ffff nrziout=1 Eoc=0 ReEoc=0 PDataln=00aa RxFifoln=zzzz Sin=0 Addr=(
Dataln=ffff nrziout=0 Eoc=0 RzEoc=0 PDataln=(0aa RxFifoln=zzzz Sin=1 Addr=(0
Dataln=0000 nrziout=0 Eoc=0 ReEoc=0 PDataln=00aa RxFifoln=zzzz Sin=1 Addr=0
Dataln=0000 nrziout=1 Eoc=0 ReEoc=0 PDataln=(0aa ReFifoln=zzzz Sin=0 Addr=0
Dataln=ffff nrziout=1 Eoc=0 RzEoc=0 PDataln=00aa ReFifnln=zzzz Sin=0 Addr=0
Dataln=ffff nrziout=0 Eoc=0 RzEoc=0 PDataln=00aa ReFifoln=zzzz Sin=0 Addr=(
Dataln=0000 nrziout=0 Eoc=0 RxEoc=0 PDataln=00aa RxFifaln=zzzz Sin=0 Addr=0
DataIn=0000 nrziout=1 Eoc=0 RxEoc=0 PDataln=00aa ReFifoln=zzzz Sin=0 &ddr=(
Dataln=ffff nrziout=1 Eoc=0 RxEoc=0 PDataln=00aa ReFifaln=zzzz Sin=0 Addr=(
Dataln=ffff nrziout=0 Eoc=0 RxEoc=0 PDataln=00aa RxFifoln=zzzz Sin=0 Addr=(
Dataln=ffff nrziout=1 Eoc=0 RxEoc=0 PDataln=00aa ReFifoln=zzzz Sin=0 Addr=(
Dataln=ffff nrziout=0 Eoc=0 RxEoc=0 PDataln=00aa ReFifoln=zzzz Sin=0 Addr=0
Dataln=ffff nrziout=1 Eoc=0 RxEoc=0 PDataln=00aa RxFifoln=zzzz Sin=0 Addr=(0
Dataln=fftf nrziout=0 Eoc=0 RxEoc=0 PDataln=00aa RxFifoln=zzzz Sin=0 Addr=0
Dataln=ffff nrziout=1 Eoc=1 RxEoc=0 PDataln=aaas RxFifoln=zzzz Sin=0 Addr=0
Dataln=ffff nreiout=1 Eoc=0 RxEoc=0 PDataln=aaaa RxFifoln=zzzz Sin=0 Addr=(0

Enoc
Eac
Eac
Eaoc

100
106
110
116
120
126
130
136
140
146
150
156
160
166
170
176
180
190
200
210
220
230
235

Figure 7.5 VeriWell Console for the SIE
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wexeexlavdddr=0000 DataSize=000

weeendlevlddr=2727  DataSizeszzz

Dataln=ffff nrziout=) Eoc<0 RxEcc=1 Pataln=asaa ReFifoln=zzzz Sin=0 Addr=x
woeeekleviddr-gewy  DataSizesyux

Dataln=tfff nrziout=0 Eoc=0 Refoc=1 PDataln-asaa RxFifoln=zzzz Sin=0 Addr=a
Dataln=ffff nrziout=0 Eoc=0 Refoc=0 PDataln=asaa RsFifoln=zzzz Sin=) Addr=s
Dataln=tfff nrziout=1 Eoc=0 RsFoc=0 FDatalnzaaaa RwFifoln=zzzz Sin=l Addr=a
Dataln=ffff nrziout=1 Eoc=0 RsEoc=0 PDataln=aaaa RxFifoln=zzzz Sin=0 Addr=a
Dataln=ffff nrziout=0 Eoc=0 ReFoc=0 Plataln=aasa ReFifoln=zzzz Sin=1 Addr=a
DataIn=tfff nrziout=1 Eoc=0 ReEoc=) PDataln=asaa ReFifoln=zzzz Sin=0 Addr=a
Dataln=fiff nrziout=0 Eoc=0 ReEoc=0 Plataln=asaa ReFifoln=zzzz Sin=1 Addr=a
Dataln=ffff nrziout=0 Eoc=0 RxEoc=0 PDataln=azaa ReFifoln=zzzz Sin=0 Addr=a
Dataln=ffff nrziout=1 Eoc=0 RxEoc=0 PDataln=asaa RxFifoln=zzzz Sin=1 Addr=a
Dataln=tfff nrziout=1 Eoc=0 RxEoc=0 Plataln=asaa RxFifoln=zzzz Sin=0 Addr=a
Dataln=tfit nrziout=0 Eoc=0 ReEoc=0 PDataln=asaa RxFifcln=zzzz Sin=1 Addr=a
Dataln=ffif nrziout=1 Eoc=0 RxEoc=0 PDataln-aaaa RxFifoln=zzzz Sin=0 Addr=a
Dataln=ffff nrziout=0 Eoc=0 RiEoc=0 PDataIn=aaaa ReFifoln=zzzz Sin=1 Addr=a
Dataln=tiff nrziout=0 Eoc=0 RxEoc=0 Plataln=assa ReFifoln=zzzz Sin=0 Addr=a
Dataln=tfff nrziout=1 Eoc=0 RxEoc=0 PDataln=assa ReFifoln=zzzz Sin=1 Addr=a
Dataln=ffff nrziout=1 Eoc=1 RxEoc=0 PDataln=5555 ReFifoln=zzzz Sin=0 Addr=a
Dataln=tfff nrziout=1 Eoc=0 RxEoc=0 PDataln=5555 ReFifoln=zzzz Sin=0 Addr=a
Dataln=ffff nrziout=0 Eoc=0 RxEoc=1 PDataln=5555 ReFifoln=00aa Sin=1 Addr=a
Dataln=ffff nrziout=0 Eoc=0 RxEoc=1 PDataln=5555 ReFifoln=asaa Sin=1 Addr=a
Dataln=fftf nrziout=0 Eoc=0 RxEoc=0 PDataln=5555 ReFifcln=azaa Sin=0 Addr=a
Dataln=ffff nrziout=1 Eoc=0 RxEoc=0 PDataln=5555 ReFifoln=asaa Sin=1 Addr=a
Dataln=ffff nrziout=1 Eoc=0 RxEoc=0 PDataln=5555 ReFifoln=aaaa Sin=0 Addr=a
Dataln=ffff nrziout=0 Eoc=0 RxEoc=0 PDataln=5555 ReFifoln=aaaa Sin=1 Addr=a
Dataln=tfff nrziout=0 Eoc=0 RxEoc=0 PDataln=5555 RxFifoln=aaaa Sin=0 Addr=a
Dataln=ftftf nrziout=1 Eoc=0 RxEoc=0 PDataln=5555 ReFifoln=aaaa Sin=1 Addr=a
Dataln=ffff nrziout=0 Eoc=0 RxEoc=0 PDataln=5555 ReFifoln=saaa Sin=0 Addr=a
Dataln=ffff nrziout=1 Eoc=0 RxEoc=0 PDataln=5555 RxFifoln=aaaa Sin=1 Addr=a
Dataln=ffff nrziout=1 Eoc=0 RxEoc=0 PDataln=5555 RxFifoln=aasa Sin=0 Addr=a
Dataln=ffff nrziout=0 Eoc=0 RxEoc=0 PDataln=5555 RxFifoln=zaaa Sin=1 Addr=a
Dataln=ffff nrziout=0 Eoc=0 ReEoc=0 PDataln=5555 ReFifoln=zasa Sin=0 Addr=a
Dataln=tfff nrziout=1 Eoc=0 RxEoc=0 FDataln=5555 RxFifoln=aasa Sin=1 Addr=a
Dataln=tfff nrziout=0 Eoc=0 ReEoc=0 PDataln=5555 ReFifoln=aasa Sin=0 Addr=a
Dataln=tfff nrziout=1 Eoc=0 RsEoc=0 PDataln=5555 ReFifoln=asaa Sin=1 Addr=a
Dataln=ffft nrziout=1 Eoc=0 ReFoc=0 PDataln=5555 ReFifoln=azaa Sin=0 Addr=a
Dataln=tfff nrziout=0 Eoc=1 RzEoc=0 PDataln=0000 RxFifoln=azaa Sin=1 Addr=a
Dataln=ffff nrziout=0 Eoc=0 R=Eoc=0 PDataln=0000 RxFifoln=azaa Sin=1 Addr=a

Dataln=ffff nfﬁiﬂut?i Euﬁéﬂ.ﬁéénﬁéﬂiPDatﬁiﬁ=aéa;:Rxf1%61n=ziiz Sin=U Adéf=ﬂ '
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Figure 7.6 VeriWell Console for the STE
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7.2 Conclusion

In this thesis, hardware is designed using the VLSI techniques, which is a logical
design of communication block to show the data communication of binary signals. The
design considers the various aspects for providing reliable and effective digital data
transmission in the hardware. It employs control signals in a very effective manner to
integrate the functioning of various modules. Though the model designed is a part of an
USB it can also be used as an interfacing block in any device-connecting host with
peripheral devices. Unlike, USART and UART, this device can interface host with more
than one device. The design shows that it can connect 16 devices. The device is a full
duplex where both the host and the peripheral devices can communicate signals at the
same time.

In addition some effective Data Communication techniques are employed in the
design. They are

e Generation of bit patterns in an optimal manner
e Use of CRC, Bitstuffing and NRZ techniques
e Synchronization of Clock and Data

e Effective use of control signals like Reset and Resume signals.
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7.3 Future work

* Different encoding schemes can be used like that of differential encoding.

* The use of different Simulation environment like using Verilog-XL by Cadence
Design Systems, inc. Active HDL by Aldec for better Designing.

® Usage of Improved algorithms to realize the complexity of Functions and
to reduce the number of modules by integrating various Functions in the
Algorithms.

¢ Implementations of communication protocols like Higher Data Level Control.

e Performance of the Hardware is best utilized in association with Suitable software

like Device Drivers.
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