
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

1-15-2003

Logical simulation of communication subsystem
for Universal Serial Bus (USB)
Terikere Badarinarayana
Florida International University

DOI: 10.25148/etd.FI14050403
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Badarinarayana, Terikere, "Logical simulation of communication subsystem for Universal Serial Bus (USB)" (2003). FIU Electronic
Theses and Dissertations. 1363.
https://digitalcommons.fiu.edu/etd/1363

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1363&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.fiu.edu%2Fetd%2F1363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1363?utm_source=digitalcommons.fiu.edu%2Fetd%2F1363&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

LOGICAL SIMULATION OF COMMUNICATION SUBSYSTEM FOR UNIVERSAL

SERIAL BUS (USB)

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Terikere Badarinarayana

2003

To: Dean Vish Prasad
College of Engineering

This thesis, written by Terikere Badarinarayana, and entitled Logical Simulation of
Communication Subsystem for Universal Serial Bus (USB), having been approved in
respect to style and intellectual content is referred to you for judgment.

We have read this thesis and recommend that it be approved.

Subbarao Wunnava

Tadeusz M. Babij

Malcolm Heimer, Major Professor

Date of Defense: January 15, 2003

The thesis of Terikere Badarinarayana is approved.

Dean Vish Prasad

College of Engineeri 1g

* '6 ean D glas Wartzok
University Graduate School

Florida International University, 2003

ii

DEDICATION

I dedicate this thesis to my parents: T. P Srinivasa and Sathya Prema, and my brother

Raghavendra. Without their support, care and patience, this thesis would not have been

possible.

iii

ACKNOWLEDGMENTS

I would like to thank my committee members: Dr.Tadeusz Babij, Dr. Subbarao Wunnava,

and my Major Professor Dr. Malcolm Heimer for guiding me through this thesis.

Without their invaluable guidance and patience, completion of this thesis would not have

been possible. I would also like to thank all my lab members for their support. I would

also like to thank my friends Suneel Konduru and Ravi Kishan Arikere for all the help

they have provided me.

I would like to thank everyone in FIU Electrical Engineering Department, especially to

Pat Brammer for her constant words of encouragement throughout my stay here.

iv

ABSTRACT OF THE THESIS

LOGICAL SIMULATION OF COMMUNICATION SUBSYSTEM FOR UNIVERSAL

SERIAL BUS (USB)

by

Terikere Badarinarayana

Florida International University, 2003

Miami, Florida

Professor Malcolm Heimer, Major Professor

The primary purpose of this thesis was to design a logical simulation of a communication

sub block to be used in the effective communication of digital data between the host and

the peripheral devices. The module designed is a Serial interface engine in the Universal

Serial Bus that effectively controls the flow of data for communication between the host

and the peripheral devices with the emphasis on the study of timing and control signals,

considering the practical aspects of them.

In this study an attempt was made to realize data communication in the hardware using

the Verilog Hardware Description language, which is supported by most popular logic

synthesis tools. Various techniques like Cyclic Redundancy Checks, bit-stuffing and Non

Return to Zero are implemented in the design to provide enhanced performance of the

module.

v

TABLE OF CONTENTS

CHAPTER PAGE

1. Very Large Scale Integration... I

1.1 Introduction ... I

1.2 History of VLSI...3

1.3 Design Methodologies...4

1.4 Design Hierarchy...8

1.5 D esign S tyles .. . 9

1.5.1 Field Programmable Gate Array .. 9

1.5.2 G ate A rray D esign .. . 12

1.5.4 F ull C ustom D esign ... 17

2. Verilog Hardware Description Language.. 19

2.1 Hardware Description Language... 19

2.2 History and growth of Verilog ... 20

2.3 Hierarchical Modeling concepts... 22

2.3. 1 Design Methdologies.......... 2

2.3.2 MD esnMetodloge................... 2432.3.2 M d es ...Met ...d 23

2 .3 .3 In stance 2 5

2.4 Ports ... 25

2.5 Components of a simulation .. 26

3. V eriw ell Sim ulations for V erilog .. 27

3.1 The levels of module abstraction inVerilog HDL ... 27

3.1.1 Behavioral or Algorithmic Level..............................27

vi

3.1.2 D ataflow Level.. 28

3.1.3 G ate Level .. 28

3.1.4 Sw itch Level.. 29

3.2 Sim ulation Tool ... 30

3.2.1 Sim ulation Steps for the VeriW ell Verilog Sim ulator 3 1

3.2.2 Steps to Create Sim ulation W aves .. 32

3.2.3 Exam ples using Veriwell Verilog sim ulator .. 33

3.2.3.1 H alf A dder.. 33

3.2.3.2 Full Adder ... 37

3.2.3.3 D ecoder .. 41

4. U niversal Serial Bus.. 46

4.1 Introduction to U niversal Serial Bus .. 46

4.2 U niversal Serial Bus System .. 49

4.2.1 Role of H ost PC H ardw are and Softw are... 49

4.2.2 U niversal Serial Bus H ardw are .. 5 1

4.2.3 Role of the Peripherals .. 54

4.2.4 U niversal Serial Bus Software .. 56

4.2.4.1 U niversal Serial Bus D evice D rivers... 56

4.2.4.2 U niversal Serial Bus D river .. 56

4.2.4.3 U niversal Serial Bus Host Controller D river .. 57

4.3 Serial Interface Engine ... 58

vii

5. Module Design ... 61

5.1 D esign Features of the Com m unication System .. 61

5.2 Techniques used for Reliable and Efficient Transmission 62

5.2.1g .. 62

5.2.2 Error checking using Cyclic Redundancy Check 63

5.2.3 N RZ (N on Return to Zero)... 64

5.3 Design description of Serial Interface Engine... 65

6. Transm itter and Receiver ... 68

6.1 Transm itter ... 68

6.1.1 Decoder ... 68

6.1.2 Buffer ... 70

6.1.2.1 Logical functioning of the Buffer.. 71

6.1.3 C ... 72

6.1 .4 First In First Out ... 73

6.1.5 Control Logic ... 75

6.1.6 M ultiplexer ... 76

6.1.7 CRC Generator .. 77

6.1.8 Parallel to Serial Converter ... 80

6.1.9 Transm itter M odule... 82

6.2 Receiver.. 84

6.2.1 Serial to Parallel Converter ... 84

6.2.2 D em ultiplexer.. 87

6.2.3 Control Logic ... 88

viii

6.2.4 Address Decoder ... 91

6.2.5 Timer ... 92

6.2.6 CRC Generator .. 93

6.2.7 CRC Comparator.. 96

6.2.8 First In First Out ... 97

6.2.9 Receiver Module .. 99

6.3 Serial Interface Engine ... 101

7. Results and Conclusion .. 104

7.1 Simulated Waves of the Serial Interface Engine (SIE) 104

7.2 Conclusions .. 109

7.3 Future Work ... 110

References .. 1 1 1

ix

Chapter 1 Very Large Scale Integration (VLSI)

1.1 Introduction

Very Large Scale Integration (VLSI) of systems of transistor-based circuits on a

single chip first occurred in the 1980s as part of the semiconductor and communication

technologies that were being developed.

The first semiconductor chips held one transistor each. Subsequent advances

added more and more transistors, and as a consequence more individual functions or

systems were integrated over time. The microprocessor is a VLSI device. In its short life

span, microelectronics has become the most complex of our everyday technologies,

embracing as it does physics, chemistry, materials, thermodynamics, and micro

mechanical engineering, as well as electrical and electronic engineering and computer

science. (No one person can hope to be expert in all these diverse aspects.) With the

advent of VLSI. The number of applications of integrated circuits in high-performance

computing, telecommunications, and consumer electronics has been rising steadily, and

at a very fast pace. Typically, the required computational power (or, in other words, the

intelligence) of these applications is the driving force for the fast development of this

field. The current leading-edge technologies (such as low bit-rate video and cellular

communications) already provide the end-users a certain amount of processing power and

portability. This trend is expected to continue, with very important implications on VLSI

and systems design. Figure 1.1 gives an overview of the prominent trends in information

technologies over the next few decades. One of the most important characteristics of

I

information services is their increasing need for very high processing power and

bandwidth (in order to handle real-time video, for example). The other important

characteristic is that the information services tend to become more and more personalized

(as opposed to collective services such as broadcasting), which means that the devices

must be more intelligent to answer individual demands, and at the same time they must

be portable to allow more flexibility/mobility. [1][2] [3]

REAL-TmE SPONiTKC0DSLY
FOREICN LA JGUAGE INTERACTIVi PPOVIDED

25 YEARS TRANSLATCN TELECOMMU9ICAMN IN OAMATION,
AND ENITERTAIWMENT WMMUNHCATON

LANGUAGE ENTERTAI[NT

PARSING

SPEtCN CuSrouinoD
RooN~O PAESEUCTAT3QN5

W POCET SZE .AT PANEL-

$MR IlLTl.ME7 3D D15PI AY

TEAMINALS COMMUNICATION I M1RAL

C ~~ELECtyRQNIG USER >K[Ttk1N

w vbICE DE ORK .M
I DIALING

W OCP nS34A L S ECiRE TERA A T

2POR TABLE R ADIO CUMMUNICATION PAWK
J EL EC ONIC N WCRnxs

MAIL HIGH DEFINITION ViDIO
LOW 8IT RATE

POTS VIDEO apT14rAbi TE> I16A

M$ON BROADUAHV LANMAN TAHSPORT

COPPER--- - GLASS FItER
BANDw101N BANUIOTHSource: Bell-core

Figure 1.1 Prominent trends in information service technologies [11]

The communication systems have many complex functions thus integrating these

is not simple in to a single package the need to integrate them is also on a rise. The levels

of integration as measured by the number of logic gates in a monolithic chip has been

2

steadily rising for almost three decades, mainly due to the rapid progress in processing

technology and interconnect technology

1.2 History of VLSI [10]

1948 TRANSISTOR INVENTED (SHOCKLEY AT&T)

GERMANIUM-GOLD CONTACT

1954 SILICON TRANSISTOR (TEAL TI) HIGHT TEMP.

1956 TRANSISTOR COMPUTER (CRAY)

1958 FIRST MONOLITHIC CIRCUIT (IC)

BJTs (KIRBY - TI & NOYCE - FAIRCHILD)

1960 SSI (< 100 TRANSISTORS)

MOSFET - PMOS, METAL GATE (BELL LABS)

1961 TTL (PACIFIC MICROTEL) - 25UM FEATURE SIZE

1962 ECL (MOTOROLA)

1964 OPAMP (WILDAR - FAIRCHILD U709)

1965 PDP-8 < $20,000

1966 MSI (100 - 1000 TRANSISTORS)

1967 FIRST PRODUCTION MOS CHIPS

1969 LSI (1000 - 10000 TRANSISTORS) PMOS, NMOS, CMOS

1969 E-BEAM PRODUCTION, DIGITAL WATCHES, CALCULATORS

1970 CCD (BELL LABS), MICROPROCESSOR (HOFT - INTEL)

1971 ION IMPLANTATION

1972 I2L (IBM), 16 BIT MICROS

3

1975 VLSI (10,000 - 100,000 TRANSISTORS)

SELF-ALIGNED PROCESSES

1975 SPICE DEVELOPED (U CAL. BERKLEY)

1980's ULSI (> 100,000 TRANSISTORS)

ASICS, PLD, TRENCH CAPS,

DUAL WELL, BIMOS, HVICS

FEATURE SIZE 2UM

1990's > 1,000,000 TRANSISTORS

64-bit MICROS, MICROMACHINING, FPGA

SYNTHESIS, VHDL, FEATURE SIZE 0.5UM

1.3 Design Methodologies

The design process, at various levels, is usually evolutionary in nature. It starts

with a given set of requirements. Initial design is developed and tested against the

requirements. When requirements are not met, the design has to be improved. If such

improvement is either not possible or too costly, then the revision of requirements and its

impact analysis must be considered. The Y-chart (first introduced by D. Gajski) shown in

Fig. 1.2 illustrates a design flow for most logic chips, using design activities on three

different axes (domains) that resemble the letter Y.

4

The Y-chart consists of three major domains, namely:

" Behavioral domain,

" Structural domain,

" Geometrical layout domain.

The design flow starts from the algorithm that describes the behavior of the target

chip. The corresponding architecture of the processor is first defined. It is mapped onto

the chip surface by floor planning. The next design evolution in the behavioral domain

defines finite state machines (FSMs) that are structurally implemented with functional

modules such as registers and arithmetic logic units (ALUs). These modules are then

geometrically placed onto the chip surface using CAD tools for automatic module

placement followed by routing, with a goal of minimizing the interconnects area and

signal delays. The third evolution starts with a behavioral module description. Individual

modules are then implemented with leaf cells. At this stage the chip is described in terms

of logic gates (leaf cells), which can be placed and interconnected by using a cell

placement & routing program. The last evolution involves a detailed Boolean description

of leaf cells followed by a transistor level implementation of leaf cells and mask

generation. In standard-cell based design, leaf cells are already pre-designed and stored in

a library for logic design use.

5

Structural Behavioral
Domain Domain

Processor Algorimm

Register Frl

Leao in eed m Y- chtNe
uescriptio

Transislor B.Dolea

CEdI
Placermenl'

Module
Placerment

Cnip
Fl orplan

Geometrical Layout
Domain

Figure 1.2 Typical VLSI design flow in three domains (Y-chart representation) [I I]

Figure 1.3 depicts a more simplified view of the VLSI design flow that takes into

account the various representations, or abstractions of design - behavioral, logic, circuit

and mask layout. Note that at every step the verification of design is performed, which is

a very important role during this process. The failure to do so in its early phases typically

causes significant and expensive re-design at a later stage, which ultimately increases the

time-to-market.

The diagram showing the design process is doing it in linear fashion for

simplicity, in reality there is much iteration back and forth, especially between any two

neighboring steps, and occasionally even remotely separated pairs. Although top-down

design flow provides an excellent design process control, in reality, there is no truly

6

unidirectional top-down design flow. Both top-down and bottom-up approaches have to

be combined. For instance, if a chip designer defined architecture without close

estimation of the corresponding chip area, then it is very likely that the resulting chip

layout exceeds the area limit of the available technology. In such a case, in order to fit the

architecture into the allowable chip area, some functions may have to be removed and the

design process must be repeated. Such changes may require significant modification of

the original requirements. Thus, it is very important to feed forward low-level

information to higher levels (bottom up) as early as possible.

DESIGN System Specif cation

FLOW

Functional
(Architecture) Design

Behavioral Functional Verification
Representation

Logic Design

Logic

(epre enttion Logic Verification

Circuit Design .

Circuit Circuit Verification
Representation

Physical Design

LayRout Layout Verification
Representation

Fabrication & Testing

Figure 1.3 VLSI design flow [11]

7

1.4 Design Hierarchy

This technique involves dividing the module in to simpler ones reducing the

complexity levels to the level that it can be managed.

As an example of structural hierarchy, Fig. 1.4 shows the structural

decomposition of a CMOS four-bit adder into its components. The adder can be

decomposed progressively into one- bit adders, separate carry and sum circuits, and

finally, into individual logic gates. At this lower level of the hierarchy, the design of a

simple circuit realizing a well-defined Boolean function is much more easier to handle

than at the higher levels of the hierarchy.

Ca

b(3:0J ---

addE a[3.01

add add add add

aa-d

C
carry Surn carry sum carry surn arrY surrca ry

b 'cam - cc

(a)

Figure 1.4 Structural decomposition of a four-bit adder circuit, showing the
hierarchy down to gate level [11]

8

1.5 Design Styles

There are several designs available for chip implementations of specified

algorithms or logic functions. These come with there own merits hence a right choice of

it is very important to provide functionality at low cost.

1.5.1 Field Programmable Gate Array (FPGA)

Fully fabricated FPGA chips containing thousands of logic gates or even more,

with programmable interconnects, are available to users for their custom hardware

programming to realize desired functionality. This design style provides a means for fast

prototyping and also for cost-effective chip design, especially for low-volume

applications. A typical field programmable gate array (FPGA) chip consists of I/O

buffers, an array of configurable logic blocks (CLBs), and programmable interconnect

structures. The programming of the interconnects is implemented by programming of

RAM cells whose output terminals are connected to the gates of MOS pass transistors. A

general architecture of FPGA from XILINX is shown in Fig. 1.5. A more detailed view

showing the locations of switch matrices used for interconnect routing is given in

Fig. 1.6

A simple CLB (model XC2000 from XILINX) is shown in Fig. 1.7 It consists of

four signal input terminals (A, B, C, D), a clock signal terminal, user-programmable

multiplexers, an SR-latch, and a look-up table (LUT). The LUT is a digital memory that

stores the truth table of the Boolean function. Thus, it can generate any function of up to

9

four variables or any two functions of three variables. The control terminals of

multiplexers are not shown explicitly in Fig.1.7.

The CLB is configured such that many different logic functions can be realized by

programming its array. More sophisticated CLBs have also been introduced to map

complex functions. The typical design flow of an FPGA chip starts with the behavioral

description of its functionality, using a hardware description language such as VHDL or

Verilog HDL. The synthesized architecture is then technology-mapped (or partitioned)

into circuits or logic cells. At this stage, the chip design is completely described in terms

of available logic cells. Next, the placement and routing step assigns individual logic

cells to FPGA sites (CLBs) and determines the routing patterns among the cells in

accordance with the netlist. After routing is completed, the on-chip performance of the

design can be simulated and verified before downloading the design for programming of

the FPGA chip. The programming of the chip remains valid as long as the chip is

powered-on, or until new programming is done. In most cases, full utilization of the

FPGA chip area is not possible - many cell sites may remain unused.

The largest advantage of FPGA-based design is the very short turn-around time,

i.e., the time required from the start of the design process until a functional chip is

available. Since no physical manufacturing step is necessary for customizing the FPGA

chip, a functional sample can be obtained almost as soon as the design is mapped into a

specific technology.

10

DE LI LIZConfigurable
D D 01 D D DLogic Black

I I

I/O Block-*-]

U LL D Horizontal
V aRouting

Channel

Figure 1.5 General architecture of Xilinx FPGAs [11]

SPx PAW 1STOl A 0T

Singl-kngth Iae Swtch Mariz coanectlona

SWATCH
MATRCES

Duube-Iemgih lines Im CLB army

Figure 1.6 Detailed view of switch matrices and interconnection routing between

CLBs [11]

11

x
A - - - ---- - -

I KB Look-upCTable

I _ _ _ _ _ _ _ _ _ II I
- - - -- - - -0- - - - - -

Clock

User-programmed
M ultiplexer

Figure 1.7 XC2000 CLB of the Xilinx FPGA [11]

1.5.2 Gate Array Design

The design implementation of the gate array is done with metal mask design and

processing while that of the FPGA chip is done with user programming.

Gate array implementation requires a two-step manufacturing process: The first

phase, which is based on generic (standard) masks, results in an array of uncommitted

transistors on each GA chip. These uncommitted chips can be stored for later

12

customization, which is completed by defining the metal interconnects between the

transistors of the array as in fig 1.8 Since the patterning of metallic interconnects is done

at the end of the chip fabrication, the turn-around time can be still short, a few days to a

few weeks. Figure 1.9 shows a corner of a gate array chip which contains bonding pads

on its left and bottom edges, diodes for 1/0 protection, nMOS transistors and pMOS

transistors for chip output driver circuits in the neighboring areas of bonding pads, arrays

of nMOS transistors and pMOS transistors, underpass wire segments, and power and

ground buses along with contact windows.

two-slop manufacture:

first (deep) standard base wafers
processing steps masks

INUMAWM-LP

cusiomizarion : custom
contacts & melal Layers masks

ASIC

1 i i r

Figure 1.8 Basic processing steps required for gate array implementation [11]

13

C~r /Fcvr
Ltderpa.ses %TE PrECT Ca.-s

~r =
I _ = - . a__ -a -: .

e

. Q - r- ae -- WLL

II' = - - - - - -

1.r r u 2_ !

P1 I z

Figure 1.9 A corner of a typical gate array chip [11]

1.5.3 Standard-Cells Based Design

The standard-cells based design is one of the most prevalent full custom design

styles that require development of a full custom mask set. The standard cell is also called

the polycell. In this design style, all of the commonly used logic cells are developed,

characterized, and stored in a standard cell library. A typical library may contain a f'ew

hundred cells including inverters, NAND gates, NOR gates, complex AOI, OAI gates, D-

latches, and flip-flops. Each gate type can have multiple implementations to provide

adequate driving capability for different fan-outs. For instance, the inverter gate can have

standard size transistors, double size transistors, and quadruple size transistors so that the

chip designer can choose the proper size to achieve high circuit speed and layout density.

14

The characterization of each cell is done for several different categories. It consists of

" Delay time vs. Load capacitance

" Circuit simulation model

" Timing simulation model

" Fault simulation model

" Cell data for place-and-route

" Mask data

To enable automated placement of the cells and routing of inter-cell connections,

each cell layout is designed with a fixed height, so that a number of cells can be abutted

side-by-side to form rows. The power and ground rails typically run parallel to the upper

and lower boundaries of the cell, thus, neighboring cells share a common power and

ground bus. The input and output pins are located on the upper and lower boundaries of

the cell. Figure 1.10 shows the layout of a typical standard cell. Notice that the nMOS

transistors are located closer to the ground rail while the pMOS transistors are placed

closer to the power rail. Figure 1.11 shows a floor plan for standard-cell based design.

Inside the 1/0 frame that is reserved for 11O cells, the chip area contains rows or columns

of standard cells. Between cell rows are channels for dedicated inter-cell routing. As in

the case of Sea-of-Gates, with over-the- cell routing, the channel areas can be reduced or

even removed provided that the cell rows offer sufficient routing space.

15

7: Lr L' a *: &ri a

Figure 1.10 A standard cell layout example [11]

The physical design and layout of logic cells ensure that when cells are placed

into rows, their heights are matched and neighboring cells can be abutted side-by-side,

which provides natural connections for power and ground lines in each row. The signal

delay, noise margins, and power consumption of each cell should be also optimized with

proper sizing of transistors using circuit simulation.

1.5.4 Full Custom Design

Although the standard-cells based design is often called full custom design, in a

strict sense, it is somewhat less than fully custom since the cells are pre-designed for

general use and the same cells are utilized in many different chip designs. In a fuller

custom design, the entire mask design is done anew without use of any library.

16

SLandard-cell Row

ROU(INg Chan rel

loisting Chanea

E.iI .. _ Routing Channe

Figure 1.11 A simplified floor plan of standard-cells-based design [11]

However, the development cost of such a design style is becoming prohibitively

high. Thus, the concept of design reuse is becoming popular in order to reduce design

cycle time and development cost. The most rigorous full custom design can be the design

of a memory cell, be it static or dynamic. Since the same layout design is replicated, there

would not be any alternative to high-density memory chip design. For logic chip design, a

good compromise can be achieved by using a combination of different design styles on

the same chip, such as standard cells, data-path cells and PLAs. In real full-custom layout

in which the geometry, orientation and placement of every transistor is done individually

by the designer, design productivity is usually very low - typically 10 to 20 transistors per

day, per designer.

17

In digital CMOS VLSI, full-custom design is rarely used due to the high labor

cost. Exceptions to this include the design of high-volume products such as memory

chips, high- performance microprocessors and FPGA masters.

IC

Standard IC ASSP ASIC

MPU RAM OPAmp CODEC LAN IC USART

PLD FPG Memores MCU Gate Array Linear Array Cell Based IC Full Custom IC

PROM Fused ., EPRO M EPROM Channeled Standard Cells
PAL Antifused- EEPROM EEPROM Sea of Gates Macro Cells
PLA FPGA OTP OTP

Flash Flash
Mask

Figure 1.12 Overview of VLSI design styles [11]

18

Chapter 2 Verilog Hardware Description Language

2.1 Hardware Description Language

Hardware Description Languages, or HDLs, are languages used to design

hardware with. As the name implies, an HDL can also be used to describe the

functionality of hardware as well as its implementation.

With the advent of VLSI (Very Large Scale Integration) technology, designers

could design single chips with more than 1,00,000 transistors. Because of the complexity

of these circuits, it was not possible to verify these circuits on a breadboard. Computer-

aided techniques became critical for verification and design of VLSI digital circuits.

Computer programs to do automatic placement and routing of circuit layouts also became

popular. The designers were now building gate-level digital circuits manually on graphic

terminals. They would build small building blocks and then derive higher-level blocks

from them. This process would continue until they had built the top-level block. Logic

simulators came into existence to verify the functionality of these circuits before they

were fabricated on chip. As designs got larger and more complex, logic simulation

assumed an important role in the design process. Designers could iron out functional bugs

in the architecture before the chip was designed further.

The principal feature of a hardware description language is that it contains the

capability to describe the function of a piece of hardware independently of the

implementation. The great advance with modern HDLs was the recognition that a single

language could be used to describe the function of the design and also to describe the

19

implementation. This allows the entire design process to take place in a single language,

and thus a single representation of the design.

2.2 History and growth of Verilog [2]

The Verilog Hardware Description Language, usually just called Verilog, was

designed and first implemented by Phil Moorby at Gateway Design Automation in 1984

and 1985. It was first used beginning in 1985 and was extended substantially through

1987. The implementation was the Verilog-XL simulator sold by Gateway.

1986 - Verilog-XL

The first major extension to the language was Verilog-XL, which added a few

features and implemented the infamous "XL algorithm," a very efficient method for

doing gate-level simulation. This occurred in 1986, and marked the beginning of

Verilog's growth period. Many leading-edge electronic designers began using Verilog at

this time because it was fast at gate level simulation, and had the capabilities to model at

higher levels of abstraction. These users began to do full system simulation of their

designs, where the actual logic being designed was represented by a netlist and other

parts of the system were modeled behaviorally.

1988 - Synopsis Design Compiler

In 1988, Synopsys delivered the first logic synthesizer, which used Verilog as an

input language. This was a major event, as now the top-down design methodology could

actually be used effectively. The design could be done at the "register transfer level", and

20

then Synopsys' Design Compiler could translate that into gates. With this event, the use

of Verilog increased dramatically.

1989 - ASIC Signoff Certification

Beginning in 1989, another major trend began to emerge, the use of Verilog-XL

for sign-off certification by ASIC vendors. As Verilog became popular with the

semiconductor vendor's customers, they began to move away from their own, proprietary

simulators, and started allowing customers to simulate using Verilog-XL for timing

certification. As more ASIC vendors certified Verilog-XL, they requested more features,

especially related to timing checks, back annotation, and delay specification. In response,

Gateway implemented many new features in the language and the simulator to

accommodate this need.

Cadence Design Systems acquired Gateway in December 1989, and continued to

market Verilog as both a language and a simulator. At the same time, Synopsys was

marketing the top-down design methodology, using Verilog. This was a powerful

combination.

1990-5 - Opening of Verilog

From its inception through the end of the 1980s, Verilog was a proprietary

language. No other vendors were allowed to make a Verilog simulator. By 1990, Cadence

recognized that if Verilog remained a closed language, the pressures of standardization

would eventually cause the industry to shift to VHDL. Consequently, Cadence organized

Open Verilog International (OVI), and in 1991 gave it the documentation for the Verilog

21

Hardware Description Language. This was the event, which "opened" the

language. Subsequently, OVI did a considerable amount of work to improve the

Language Reference Manual (LRM), clarifying things and making the language

specification as vendor-independent as possible.

In 1994, the IEEE 1364 working group was formed to turn the OVI LRM into an

IEEE standard. This effort was concluded with a successful ballot in 1995, and Verilog

became an IEEE standard in December 1995.

1992-Present - Multiple Vendors

When Cadence gave OVI the LRM, several companies began working on Verilog

simulators. In 1992, the first of these were announced, and by 1993 there were several

Verilog simulators available from companies other than Cadence. The most successful of

these was VCS, the Verilog Compiled Simulator, from Chronologic Simulation. This was

a true compiler as opposed to an interpreter, which is what Verilog-XL was. As a result,

compile time was substantial, but simulation execution speed was much faster. Now,

Verilog simulators are available for most computers at a variety of prices, and which

have a variety of performance characteristics and features. Verilog is more heavily used

than ever, and it is growing faster than any other hardware description language. It has

truly become the standard hardware description language.

2.3 Hierarchical Modeling concepts

In digital design it is very important to understand basic hierarchical concepts. The

designer must use a good design methodology to do efficient Verilog HDL based design.

22

2.3.1 Design Methodologies

There are two basic types of digital design methodologies

Top-down design methodology and

Bottom-up design methodology.

In top down we define the top-level block and identify the sub blocks necessary to

build the top-level block Further, sub blocks are divided until we come to leaf cells,

which are the cells that cannot be further divided.

In bottom up design methodology, first identify the building blocks that are

available for designing of the module. After identifying the basic cells, bigger cells are

built using these building blocks. These cells are then used for higher-level blocks until

we build the top-level block in the design.

Typically a Combination of the top down and bottom up flows is used Design

architects define the specifications of the top-level block. Logical designers decide how

the design should be structured by breaking up the functionality into blocks and sub

blocks. At the same time the circuit designers are designing optimized circuits for leaf

level cells they build higher level cells by using these leaf cells The flow meets at an

intermediate point where the switch level circuit designers have created a library of cells

by using switches, and logic designers have designed from top down until all modules are

defined in terms of leaf cells.

23

2.3.2 Modules

HDL has an concept of module .it forms the basic building block in Verilog .A

module can be an element or an collection of lower level design blocks. Typically,

elements are grouped in to modules to provide common functionality that is used at many

places in the design .a module provides the necessary functionality to the higher-level

block through its port interface (inputs and outputs), but hides the internal

implementation. This allows the designer to module internals without affecting the rest of

the design

Module is a logical component of a model.

Model is the logic design that a set of Verilog source files describes. This is a

generic term, which comes from "simulation model". System and design are often used as

synonyms.

Modules have definitions and instances. The definition contains declarative and

procedural code sections, net and registers declarations, task and function definitions.

module instantiations, and port definitions for connecting to other parts of the hierarchy.

A module is defined like this:

module <modulename> (<portlist>);

// module components

endmodule

In Verilog it is illegal to nest modules. One module definition cannot contain

another module definition within the module and end module statements. Instead a

module can incorporate the copies of the other modules by instantiating them.it is

important not to confuse module definitions and instances of a module. Module

24

definitions simply specify how the module works its internals and its interface. Modules

must be instantiated for use in the design.

2.3.3 Instance

Is an embodiment of a module in the overall Verilog model.

A module provides a template from which you can create actual objects. When a

module is invoked, Verilog creates a unique object from the template. Each object has its

own name, variables, parameters and 1/0 interface. The process of creating objects from a

module template is called instantiation, and objects are called instances.

2.4 Ports

Ports are Verilog structures that pass data between parent and child modules.

Thus, ports can be thought of as wires connecting modules. The connections provided by

ports can be input (input port), output (output port), or bi-directional (inout port).

Ports are listed in the port list in the module definition, and their direction is declared

following the module statement

Signal names in the instance port list are matched up left-to-right with signal names in the

module definition port list.

Signal names in the instance port list can also be matched up with the signal names in

the module definition by name.

The <module_name> is the type of this module. The <portlist> is the list of connections.

or ports, which allows data to flow into and out of modules of this type.

25

2.5 Components of a simulation

Once a design block is completed it has to be verified, it must be tested. The

functionality of the design block can be tested by applying stimulus and checking results

.it is called the stimulus block. It is good practice to keep the stimulus and the design

blocks separate. The stimulus block can be written in Verilog separate language is not

required to describe stimulus. The stimulus block is also commonly called a test bench.

Different test benches can be used to thoroughly test the design block.

Two styles of stimulus application are possible.

In the first style the stimulus block instantiates the design block and directly

drives the signals in the design block.

The second style of applying stimulus is to instantiate both the stimulus and the

design blocks in a top-level dummy module. Stimulus block interacts with the design

block only through the interface.

26

Chapter 3 Veriwell Simulations for Verilog

3.1 The levels of module abstraction in Verilog HDL

The hierarchical modeling concepts of the VerilogHDL provide a concept of

module, which is the basic building block of the Verilog designs. Verilog is both a

behavioral and a structural language, internals of each module can be defined at four

levels of abstraction, depending on the needs of the design .the module behaves

identically with the external environment irrespective of the level of abstraction at which

the module is described. The internals of the modules are hidden from the environment.

Thus the level of abstraction, to describe a module can be changed without any change in

the environment. Given are the following four levels

3.1.1 Behavioral or Algorithmic Level

This is the highest level of abstraction provided by Verilog HDI.A module can be

implemented in terms of the desired design algorithm without concern for the hardware

implementation details. Designing at this level is very similar to C programming.

The behavior of a design is described using procedural constructs. These are:

" Initial statement: This statement executes only once.

" Always statement: This statement always executes in a loop, that is, the

statement is executed repeatedly.

27

Only a register data type can be assigned a value in either of these statements.

Such a data type retains its value until a new value is assigned. All initial statements and

always statements begin execution at time 0 concurrently.

3.1.2 Dataflow Level

At this level the module is designed by specifying the data flow .the designer is

aware of how data flows between hardware registers and how the data is processed in the

design

The basic mechanism used to model a design in the dataflow style is the

continuous assignment. In a continuous assignment, a value is assigned to a net. The

syntax of a continuous assignment is:

assign [delay] LHS_net = RHSexpression

Anytime the value of an operand used in the right-hand side expression changes,

the right-hand side expression is evaluated, and the value is assigned to the left-hand side

net after the specified delay. The delay specifies the time duration between a change of

operand on the right-hand side and the assignment to the left-hand side. If no delay value

is specified, the default is zero delay.

3.1.3 Gate Level

The module is implemented in terms of the logic gates and interconnections

between these gates. Design at this level is similar to describing a design in terms of gate

level logic diagram. Verilog supports basic logic gates as predefined primitives. These

28

are instantiated like modules except that they are predefined in Verilog and do not need a

module definition. All logic circuits can be designed by using basic gates. There are two

types of basic gates they are AND/OR gates and BUF/NOT gates. AND/OR gates have

one scalar output and multiple scalar inputs.

The AND/OR gates available in Verilog are shown below

AND, OR, XOR, NAND, NOR, XNOR, BUF/NOT gates have one scalar input and one

or more scalar outputs.

Two basic gate primitives are

BUF

NOT

3.1.4 Switch Level

This is the lowest level of abstraction provided by Verilog. A module can be

implemented in terms of switches storage nodes and the interconnections between them.

Design at this level requires the knowledge of switch level implementation details.

Verilog allows the designer to mix and match all four levels of abstractions in a

design. In the digital design community, the term register transfer level is frequently used

for a Verilog description that uses a combination of behavioral and dataflow constructs

and is acceptable to logic synthesis tools. If a design contains four modules. Verilog

allows each of the modules to be written at a different level of abstraction. As the design

matures, most modules are replaced with gate-level implementations.

29

Normally, the higher the level of abstraction, the more flexible and technology

independent the design. As one goes lower toward the switch level design, the design

becomes technology dependent and inflexible. A small modification can cause a

significant number of changes in the design. Consider the analogy with C programming

and assembly language programming. It is easier to program in a higher-level language

such as C .The program can be easily ported to any machine. However, if you design at

the assembly level the program is specific for that machine and cannot be easily ported to

another machine.

3.2 Simulation Tool

The simulation tool used in this project to run the Verilog HDL programs is

VeriWell 2.0. VeriWell was developed by Wellspring Solutions, Inc.

VeriWell is a comprehensive implementation of Verilog HDL. VeriWell supports

a number of platforms and operating environments. These currently include

386/486/Pentium systems under DOS, Sparc or Sparc compatible systems under SunOS

4.1.x or greater and Solaris. VeriWell is designed to be as portable as possible. Nearly

100% of the sources are shared between the different platform versions. The DOS

version uses a DOS extender to compensate for the shortcomings of DOS and to fully

utilize the 32-bit architecture of the 386/486/Pentium processors.

30

VeriWell supports the Verilog language as specified by the OVI (Open Verilog

International) Language Reference Manual. VeriWell was first introduced in December

1992, and is the first independently developed simulator to be written, from the first line

of code, to be compatible with the OVI standard and with Verilog-XL. Because it was

developed on the PC, it was specifically designed to be memory-efficient with relatively

high performance.

VeriWell is used by IC designers and consultants for all pre-synthesis model

development. As new features are added, VeriWell can be used in all phases of model

development, including structural verification and back-annotated timing

verification. As a component of a large-scale top-down design methodology, VeriWell is

used in conjunction with other high-end OVI-compliant simulators, such as Verilog-XL

or Chronologic's.

3.2.1 Simulation Steps for the VeriWell Verilog Simulator

1. Open the Veriwell simulation window by clicking on the saved Veriwell

executable file.

2. Create a new project.

A VeriWell project is a collection of all the Verilog source files you need

to run the simulation.

Steps to create a new project

a. From the menu at the top of the window, select project -> new project.

31

b. Enter a project name in the Save as window.

c. VeriWell creates a blank window that represents the new project.

3. Create a new Source File

Steps to create a new source file

a. Select File New from main menu, to create a new verilog source file.

b. Select File -> Save As to store the file with the desired name.

c. Assume the project name is testP. When saved projects have an extension

.prj. Let the source file be named testS. Source files have an extension

.v. Thus we have a project testP.prj and a source file testS.v.

4. Enter the Verilog code in the source file (testS.v).

5. Add the source file to the project, by selecting Project->Add from the main menu.

6. Run the simulation. Select Project->Run.

7. VeriWell compiles the source file in the project.

8. If the compilation is successful, the console window reports a success and a

command prompt appears.

3.2.2 Steps to Create Simulation Waves

To create waves the Veriwell waves output capabilities from the Veriwell is used.

Veriwave is integrated in to Veriwell and does not require a separate executable.

1. During the creation of the source file, the statement "dumpvars" should be added

to the source code.

32

2. After successful compilation of the source code, to view the simulation waves,

select, Project->dumpvars, in the main window.

3. This creates a wave file. Assign a name to the wave file. It will be stored with a

. Vwf extension. A simulation window now pops up, containing the waveforms.

3.2.3 Examples using Veriwell Verilog Simulator

Software Details

Name: VeriWell Verilog Simulator

Version: 2.1.1

Operating System: Microsoft Windows

Source: http://www.ece.ogi.edu/-strom/ece573/downloads.htm

Note: The evaluation version of the simulator will not execute programs that exceed

1000 lines of Verilog Code.

3.2.3.1 Half Adder

The 'Half Adder' module consists of the following

Input ports: ' a ' and ' b '

Out ports: ' s' and ' c '

All ports are 1 bit.

The Half Adder shown below is an example of a group of logic gates connected to

produce a logic circuit. The Half Adder has two inputs (the bits to be summed) and two

33

outputs (the sum bit and the carry bit). A Half Adder is the simplest form of an adder

circuit. It has two operand bits a and b that are added to form a sum bit s and a carry bit c.

........ A....P..

7 W

'13 C
2 -.

Figure 3. 1 Half Adder [2]

Table 3.1 Half Adder Truth Table.

A B Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

34

Gate Level Modeling

Gate level modeling - half adder

module ha (s,c,a,b); // name of module
input a,b; /input declarations
output s,c; // output declarations
wire a,b,s,c;
xor x1 (s,a,b); // instances for xor
and al (c,a,b); // instances for and

endmodule // end of module
module test; // module test

reg a,b; // input registers
wire s,c; // output wires
ha h 1 (s,c,a,b); // instance for half adder

initial
begin

$dumpvars; // dumping the variables for the wave file
$dumpfile("x 1 .dmp");

a=O;b=O;
$monitor("a=%b,b=%b,c=%b,s=%b",a,b,c,s);

#5 a=O;b=1;
#5 a=l;b=0;
#5 a=l;b=1;
#5 $finish;
end
endmodule

Register Level Modeling

Register level modeling of half adder

module ha(d,c,a,b); // module name

input a,b;

output d,c;

35

wire a,b;
reg d,c;

always @ (a or b) // start for signals at 'a' or 'b'
begin

if(a==1 && b==0)
begin
d=1;
c=O;
end

else if(a==0 & b==1)
begin

d=1;
c=O;

end
else if(a==1 & b==1)

begin
d=0;
c=1;

end
else

begin
d=0;
c=O;

end
end
endmodule
module test;

reg a,b;
wire s,c;
ha h1 (s,c,a,b);

initial
begin

$dumpvars;
$dumpfile("ha.dmp");
a=1'b0;b=I'bM;
$monitor("a=%b,b=%b,c=%b,s=%b",a,b,c,s);
#5 a=1'b0;b=1'bl;
#5 a=1'bl;b=1'b0;
#5 a=1'bl;b=1'bl;
#5 $finish;

end
endmodule

36

9 He Edit Search Project Wndow Hey

Verit-ll -k C Documents and Settings hstnlab Desktop test Tx sie usb\test usb prj\Veri~ell key -1 C Documents and S
"erilell for Win32 HDL 'Version 2 1 1> Sat Jan 04 14 32 14 [003

Th- is a free version of the Veriell for 2in32 Simulator
Distribute this freely: call 1-800-VERIVELL for ordering information
See the file "Ireadme lst" for pore informationi

Copyright (c) 1993-96 Wellspring Solutions Inc.-
All rights reserved

Memory Available 0
Entering Phase I
Compiling source file ha V
The size of this model is [2. 1%] of the capacity of the free version

Entering Phase II
Entering Phase III
No errors in compilation
Top-level modules:

test

Cl)

Figure 3.2. Veriwell Console for Half Adder

>I m +iL -- Untitled

C1 3 C2=0 s C1-C2=0 s

a <test>

b <test>

c (test>

Figure 3.3 Waveform Analysis of Half Adder

3.2.3.2 Full Adder

The module ' Full Adder ' consists of the following

Input ports: 'a ' ,' b 'and ' cin

37

Out ports: ' c ' and ' d '

All ports are 1 bit

To construct a full adder circuit, we'll need three inputs and two outputs. Since

we'll have both an input carry and an output carry, we'll designate them as C1 and C. At

the same time, use S to designate the final Sum output. The resulting truth table is shown.

Here C is an OR function.

CIk

U1[A1tD
A _____ S

3 i 2

'_
_

U 12°1.

U1__A

liltA 2 C_______

2 74M3

Figure 3.4 Full Adder [2]

38

Table 3.2 Full Adder Truth Table

A B CIN C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 0 1 1 0

1 1 1 1 1

Gate Level Modeling

Gate level full adder

module FA (s,c,a,b,cin); // module name

input a,b,cin; // input ports

output s,c; // output ports
wire a,b,c,cin,s; // internal wires

wire wl,w2,w3; // creation of instances

xor x 1(w 1,a,b); // creation of instances

and al (w2,a,b); // creation of instances

xor x2(s,wl,cin); // creation of instances

39

and a2(w3,cin,w 1); // creation of instances
or ol(c,w3,w2); // creation of instances

endmodule

module test; // module test
reg a,b,cin;
wire s,c;
FA fl(s,c,a,b,cin);
initial
begin
//$dumpvars;
//$dumpfile("x2.dmp");
a=O;b=O;cin=0;
$monitor("a=%b,b=%b,cin=%b,s=%b,c=%b",a,b,cin,s,c,$time);
#5 a=O;b=O;cin=1;
#5 a=O;b=1;cin=0;
#5 a=0;b=1;cin=1;
#5 a=l;b=O;cin=0;
#5 a=l;b=O;cin=1;
#5 a=1;b=1;cin=0;
#5 a=1;b=1;cin=1;
#5 $finish;
end
endmodule

40

3 Fe Edit Search Project Wndow Help

|Iol oD X 61oi "r
Compiling source file ha V
The size of this model is [2% 1%] of the capacity of the free version

Entering Phase II
Entering Phase III
No errors in compilation
Top-level modules.

test
Cl Sfinish
Exiting VeriWell for Win32 at time 00 Errors 0 Warnings, Memory Used 39809
Compile time = 0.2, Load time = 0 0 Simulation time = 0.1
Normal exit
Thank you for using VeriWell for Vin32
Veriiell -k C: Documents and Settings\hstnlab\Desktop\test.Tx.sie.usb\test.usbprj\VeriVell key -1 C Documents and S
VeriWell for Uin32 NDL <Version 2.1.1> Sat Jan 04 14:39:31 2003

This is a free version of the VeriWell for Vin32 Simulator
Distribute this freely call 1-800-VERIVELL for ordering information
See the file "'readme 1st" for more information

Copyright (c) 1993-96 Wellspring Solutions, Inc
All rights reserved

Memory Available 0
Entering Phase I
Compiling source file fa V
The size of this model is [4%, 1%) of the capacity of the free version

Entering Phase II
Entering Phase III.
No errors in compilation
Top-level modules

test

Cl

Figure 3.5 Veriwell Console for Full Adder

File Edit Search Project Window Help

BE> I II - F ii Untitled

C C2=0 s C1-C2=0 s

a (est>

b test>

C <test>

cin test>

S ' test>

41

Figure 3.6 Waveform Analysis of Full Adder

3.2.3.3 Decoder

The 'Decoder ' module consists of the following

" Input ports SysRst,Addr.

" Out ports : A,C,F

" Ports A,C,F and SysRst are 1 bits

" Port Addr is 2 bit in size.

D: - 0 A
2 Bit Adder

Decoder Module O C

yF

Sys Rst

Figure 3.7 Block Diagram of Decoder

42

2-Bit Address Decoder

** ****** *** ** **** ***** ********************

2-bit address decoder

module Deco (SysRst,Addr,A,C,F); /module name
input SysRst;
input [1:0] Addr;
output A,C,F;
wire SysRst;
wire [1:0] Addr;
reg A,C,F;
always @ (SysRst or Addr)
begin

if (!SysRst)

begin
A=l'b0;
C =1'b0;
F=1'bM;

end
else

begin
case (Addr)

2'b00: begin
A=l'bl;
C =1'b;
F=1'bM;

end
2'b01: begin

A=1'b0;
C =1'bl;
F=1'b0;

end

2'b 10: begin
A=1'bM;
C =1'bM;
F=l'b1;

end

default:begin
A=1'b0;
C =1'b0;

43

F=l'bO;
end
endcase

end
end
endmodule

module test;
reg SysRst;
reg [1:0] Addr;
wire A,C,F;
Deco dl (SysRst,Addr,A,C,F);
initial
begin

//$dumpvars(1,dl .Addr,dl .AddrEn,dl .CrcEn,dl .FifoEn);
$dumpvars;
$dumpfile("Deco.dmp");
Addr=2'b00;SysRst=0;
$monitor("SysRst=%b,Addr=%b,A=%b,C=%b,F=%b",SysRst,Addr,A,C,F);
#5 Addr=2'b00;SysRst=1;
#5 Addr=2'b01;
#5 Addr=2'b 10;
#5 Addr=2'bl 1;
#5 $finish;
end
endmodule

M ile Edit search Project Window Help -18X'

10

11riwll C Docum.nts and Settingshs- lab DesktoSt Tx sie usb teot usbprt Veruell key
ariWet tor Wn32 HDL <Versxon 2 1 1> Sat Jan O4 144754 2003

Thi_ a freer of the VerxWell for Win32 Simulator
Disstribute this [reely call 1-800-VERIUELL for ordering intormation
See the file readme 1st" for more informationI

Copyright (c) 1993-96 Wellspring Solutions. Inc
All rights reserved

Memory Available: 0
Entering Phase I
Compiling sour e file ..deo1). usb.V
The size of this model is [4i, 4%] of the capacity of the free version

Entering Phase II
Entering Phase III.
fi errors in ompilation
Top-level modules

test

-yrl, ~ dllA C~
sRst-O, Addr-00 A=.C=0.F=0

SysRst1. Addr-00l A-1.C-0.F-0
ysRst-1, Addr-01. A-OC-1,F-0

SysRst=1Addr=10 A=O.C=O.F-1
,ysRst-1,Addr-11.A-UC-O.F-O

Exiting VeriUell for Uin32 at time 25
0 Errors, 0 Warnings, Memory Used. 44326
Compile time - 0.2, Load time - 0 0. Simulation time - 0 0
Normal eit
Thank you Eor uing Verr~ell for Win32

Hated tn 35, Col 1 2:51 PM

Figure 3.8 Veriwell Console for Decoder

44

File Edit Search Project Window Help -ii 2 1

tZZZ-7 -- -1L] Untitled

A te - -

Addr[1 :0 t

C lde t>

F ,-lest;

SysRst test>

r

-Halted 9:33 PM

Figure 3.9 Waveform Analysis of a 2-bit Decoder

45

Chapter 4 Universal Serial Bus (USB)

4.1 Introduction to Universal Serial Bus (USB)

The Universal Serial Bus was originally developed in 1995 by many of the same

industry leading companies currently working on USB 2.0. The Universal Serial Bus

(USB) is a communications architecture that gives a PC the ability to interconnect a

variety of devices.

Universal serial Bus in short called USB emerged as a result of the difficulties

associated with the cost, configuration and attachment of peripheral devices in the

personal computer environment. In short, USB creates a method of attaching and

accessing peripheral devices that reduces overall cast, simplifies the attachment and

configuration from the end-user perspective, and solves several technical issues

associated with old style peripherals.

The major goal of USB was to define an external expansion bus, which makes

adding peripherals to a PC as easy as hooking up a telephone to a wall-jack.

The program's driving Goals were ease-of-use and low cost.

" PC host controller hardware and software

" Robust connectors and cable assemblies

" Peripheral friendly master-slave protocols

" Expandable through multi-port hubs.

46

Universal Serial Bus (USB) has been around for a few years now, and USB ports

are fitted to just about every computer now, the Operating Systems didn't have the

required level on support until recently

The USB supports the following characteristics.

* Upto 127 devices on one port.

" USB supplies power to the peripherals, reducing the need for wall warts,

power bricks and power stealing from the keyboard connector

" Full speed devices communicate with the PC at 12Mbps. Mice and keyboards

etc. can communicate at a lower 1.5Mbps rate to reduce cost.

" Hot Pluggable.

" PlugNPlay - The PC recognises each device that is plugged in and loads the

appropriate driver. If it's a new device for which it has no driver, and doesn't

run with a generic driver, it prompts for a driver to be loaded.

" No confusing cabling - no null modem cables, handshaking lines to mess with

etc.

" Supports 4 different data transfer types: - Isochronous, Control, Interrupt,

Bulk

USB breaks away from the resource problems associated with legacy PC 10

implementations. The resource constraints related to IO address space, IRQ (Interrupt

Request) lines, and DMA (Direct Memory Access) channels no longer exist with the

47

USB implementation. Devices residing on the USB are assigned an address known only

to the USB subsystem and this does not consume any system resources. The number of

USB devices supported in a single implementation is limited in number to 127. USB

devices typically contain a number of individual registers or ports that can be indirectly

accessed by USB device drivers. These registers are known as USB device endpoints.

When a transaction is sent over the USB, all devices (except low speed devices)

will see the transaction. Each transaction begins with a packet transmission that defines

the type of transaction being performed along with the USB device and endpoint

addresses. This addressing is managed by USB software, and other non-USB devices and

related software within the system are not impacted by these addresses.

Every USB device must have an endpoint address zero that is reserved for

configuration. Via endpoint zero, USB system software accesses USB devices descriptors

from the device. These descriptors provide information necessary for identifying the

device, specifying the number of endpoints, and the purpose of each. In this manner.

system software can detect the device type or class and determine how the device is to be

accessed

48

4.2 Universal Serial Bus (USB) System

4.2.1 Role of Host PC Hardware and Software

The role of the system software is to provide a uniform view of IO system for all

applications software. It hides hardware implementation details so that application

software is more portable. For the USB IO subsystem in particular, it manages the

dynamic attach and detach of peripherals. This phase, called enumeration, involves

communicating with the peripheral to discover the identity of a device driver that it

should load, if not already loaded. A unique address is assigned to each peripheral during

enumeration to be used for run-time data transfers. During run-time the host PC initiates

transactions to specific peripherals, and each peripheral accepts it's transactions and

responds accordingly. Additionally the host PC software incorporates the peripheral into

the system power management scheme and can manage overall system power without

user interaction.

Figure l shows the USB system in terms of its hardware and software

configuration. USB software initiates all the transactions on the USB system. A USB

driver acts as an interface between the device driver and the host controller when the

device driver is communicating with its device. This software is responsible for

translating client requests into one or more transactions that are directed to or from a

target USB device.

49

Host System USB Device

Client Software Function

USB Logical
USB System Device
Software (USB
Drivers & Host
Controller Drivers)

USB Host USB Bus
Controller/Hub/Ser Interface

ial Interface
Engine

Figure 4.1 Communication Flow in a USB System

The SIE (Serial Interface Engine) is the link between the physical and logical

components of the USB. The SIE is to the USB what the UART (Universal

Asynchronous Receiver Transmitter) is to the RS-232 interface. The primary USB

Hardware consists of the following USB Host Controller/Root Hub/Serial Interface

Engine, USB Hubs and USB Devices. The primary USB Software includes USB Device

Drivers, USB Driver and Host Controller Driver.

50

4.2.2 Universal Serial Bus Hardware

All communication on USB originates at the host under software control. The

host hardware consists of the USB host controller, which initiates transactions over the

USB system, and the root hub, which provides attachment points for USB devices. The

host controller is responsible for generating the transactions that have been scheduled by

the host software. The host controller driver, or HCD, software builds a linked list of data

structures in memory that defines the transactions that are scheduled to be performed

during a given frame. These data structures, called transfer descriptors, contain all of the

information the host controller needs to generate the transactions. This information

includes USB Device Address, Type of Transfer, Direction of Transfer, and Address of

Device Driver's Memory Buffer.

The host controller performs writes to a target device by reading data from a

memory buffer that is to be delivered to the target device. The host controller performs a

parallel to serial conversion on the data, creates the USB transaction, and forwards it to

the root hub to send over the bus.

If a read transfer is required, the host controller builds the read transaction and

sends it to the root hub. The hub transmits the read transaction over the USB. The target

device recognizes that it is being addressed and that data is being requested. The device

then transmits data back to the root hub, which forwards the data on to the host controller.

The host controller performs the serial to parallel conversion on the data and transfers the

51

data to the device driver's memory buffer. Transactions generated by the host controller

are forwarded to the root hub to be transmitted to the USB. Consequently, every USB

transaction originates at the root hub. The root hub provides the connection points for

USB devices and performs the following key operations:

" Controls power to its USB ports

" Enables and disables ports

" Recognizes devices attached to each port

" Sets and reports status events associated with each port

In addition to the root hub, USB systems support additional hubs that permit

extension of the USB system by providing one or more USB ports for attaching other

USB devices. USB hubs may be integrated into devices such as keyboards or monitors, or

implemented as stand-alone devices as shown in Fig. 3.2. Furthermore, hubs are bus

powered (i.e., derive power for itself and all attached devices from the USB bus) or may

be self-powered. Bus powered hubs are limited by the amount of power available from

the bus and can therefore support a maximum of four USB ports.

Hubs contain two major functional elements:

" Hub Controller

" Repeater

The Hub Controller contains a USB interface, or serial interface engine (SIE). It

also contains the descriptors that software reads to identify the device as a hub. The 1b

52

controller gathers hub and port status information also read by the USB host software to

detect the connection and removal of devices and to determine other status information.

The controller also receives commands from host software to control various aspects of

the hub's operation (e.g., powering and enabling the ports).

Bus traffic arriving at the hub must be forwarded on in either the upstream

(toward the host) or downstream (away from the host) direction. Transmissions

originating at the host will arrive on the hub's root port and must be forwarded to all

enabled ports. When a target device responds to a host-initiated transaction it must

transmit a response upstream, which the hub must forward from the downstream port to

the root port

The hub controller contains a USB interface, or serial interface engine (SIE). It

also contains the descriptors that software reads to identify the device as a hub. The hub

controller gathers hub and port status information also read by the USB host software to

detect the connection and removal of devices and to determine other status information.

The controller also receives commands from host software to control various aspects of

the hub's operation (e.g., powering and enabling the ports).

53

USB HoUst Cotller1C

Root Hub
Hub Hub

Device
Device

Device Device

Figure 4.2 USB Hub Types

Bus traffic arriving at the hub must be forwarded on in either the upstream

(toward the host) or downstream (away from the host) direction. Transmissions

originating at the host will arrive on the hub's root port and must be forwarded to all

enabled ports. When a target device responds to a host-initiated transaction it must

transmit a response upstream, which the hub must forward from the downstream port to

the root port.

54

4.2.3 Role of the Peripherals

All USB peripherals which are the USB devices are slaves that obey a defined

protocol. They must react to request transactions sent from the host PC. The peripheral

responds to control transactions that, for example, request detailed information about the

device and it's configuration. The peripheral sends and receives data to/from the host

using a standard USB data format. This standardized data movement to/from the PC host

and interpretation by the peripheral gives USB its enormous flexibility with little PC host

software changes

USB devices contain descriptors that specify a given devices attributes and

characteristics. This information specifies to host software a variety of features and

capabilities that are needed to configure the device and to locate the USB client software

driver. The USB device driver may also use device descriptors to determine additional

information needed to access the device in the proper fashion. This mechanism is referred

to as the Device Framework and must be understood by software in order to configure

and access the device correctly. USB devices can be implemented either as high-speed or

low-speed devices.

High-Speed devices see all transactions broadcast over the USB and can he

implemented as full-feature devices. These devices accept and send serial data at the

maximum 12Mb/s rate.

55

Low-speed devices are limited in not only throughput (1.5Mb/s) but also feature

support. Furthermore, low-speed devices only see USB transactions that follow a

preamble packet. Low-speed hub ports remain disabled during full-speed transactions.

preventing full-speed bus traffic from being sent over low-speed cables. Preamble

packets specify that the following transaction will be broadcast at low speed. Hubs enable

their low-speed ports after detecting a preamble packet, permitting low-speed devices to

see the low-speed bus activity.

4.2.4 Universal Serial Bus Software

4.2.4.1 Universal Serial Bus Device Drivers

USB device drivers (or client drivers) issue requests to the USB driver via 10

Request Packets (IRPs). These IRPs initiate a given transfer to or from a target USB

device. For example, a USB keyboard driver must initiate an interrupt transfer by

establishing an IRP and supplying a memory buffer into which data will be returned from

the USB keyboard. Note that the client driver has no knowledge of the USB serial

transfer mechanisms.

4.2.4.2 Universal Serial Bus Driver

The USB driver knows the characteristics of the USB target device and how to

communicate with the device via the USB. The USB driver detects the USB

characteristics when it parses the device descriptors during device configuration. For

56

example, some devices require a specific amount of throughput during each frame, while

others may only require periodic access every nth frame.

When an IRP is received from a USB client driver, the USB driver organizes the

request into individual transactions that will be executed during a series of lms frames.

The USB driver sets up the transactions based on its knowledge of the USB device

requirements, the needs of the client driver, and the limitations/capabilities of the USB.

Depending on the operating environment, the USB driver may be shipped along

with the operating system or added as an extension via a loadable device driver.

4.2.4.3 Universal Serial Bus Host Controller Driver

The USB host controller driver (HCD) schedules transactions to be broadcast over

the USB. The host controller driver schedules transactions by building a series of

transaction lists. Each list consists of pending transactions targeted for one or more of the

USB devices attached to the bus. A transaction list, or frame list, defines the sequence of

transactions to be performed during each ims frame. The USB host controller executes

these transaction lists at ims intervals. Note that a single block transfer requested by a

USB client may be performed as a series of transactions that are scheduled and executed

during consecutive I ms frames. The actual scheduling depends on a variety of factors

including; the type of transaction, transfer requirements specified by the device and the

transaction traffic of other USB devices.

57

The USB host controller initiates transactions via its root hub or hubs. Each I ms

frame begins with a start of frame (SOF) transaction and is followed by the serial

broadcast of all transactions contained within the current list. For example, if one of the

requested transactions is a request to transfer data to a USB printer, the host controller

would obtain the data to be sent from a memory buffer supplied by the client software

and transmit the data over the USB. The hub portion of the controller converts the

requested transactions into the low level protocols required by the USB.

4.3 Serial Interface Engine

USB implementation is via a layered model of software and hardware

functionality that is reflected in both transmitting and receiving devices in a manner

similar to the Open Systems Interconnection (OSI) or Transmission Control

Protocol/Internet Protocol (TCP/IP) models. Actual communications flow occurs through

the layers in a transmitting system, across a physical link to a receiving system, and then

through a similar stack of hardware and software layers in the receiver. However, there is

also a logical interconnection between corresponding layers in the transmitter and

receiver. To some degree, these protocols provide a level of abstraction where successful

communication can be achieved based on knowledge of adjacent and corresponding

layers without having to deal with the complexity of the entire model.

A key difference between the USB model and the more familiar communications

protocols is the level on which the subscribers to the protocol are communicating. TCP/IP

58

and OSI can be considered macro protocols that allow connection of multiple processors

across an external network, while the USB can be considered a micro protocol that allows

peripherals to interconnect with a processing platform on its self contained network. A

second difference is the network implementation. OSI and TCP/IP compliant

communications can be implemented under multiple networking protocols, the USB

format provides for a token-based network that provides full requested bandwidth for its

users, but denies entry to the net for new users if their bandwidth requirement cannot be

met.

While the USB specification does not limit bus implementation to any single

processor type or electrical interconnection format, USB controllers most commonly

reside on the Peripheral Component Interconnect (PCI) bus of Pentium Class or Power

PC Macintosh computers. The required circuitry is normally included as a built-in feature

of the motherboard, but PCI add-in card USB ports are available for older X86 based

PC's.

The SIE is the border between the physical and logical components of the USB.

The SIE is to the USB what the UART is to the RS-232 interface. The SIE is built into

most USB micro-controllers along with a USB transceiver.

The SIE is commonly called upon to perform the following list of tasks:

" Recognition of bits and proper transaction sequence.

59

" Generation and detection of start of data bits, end of data bits, reset, and

resume signals.

* Separation of clock and data.

" Generating and verifying Cyclic Redundancy Checks (CRC) for data.

" Performing parallel to serial and serial to parallel conversion.

60

Chapter 5 Module Design

5.1 Design Features of the Communication System

The communication device is a logical block, which is implemented in the USB

as a Serial Interface Engine in this thesis. It is at the interface between Host and the

peripherals, but is also an independent block by itself, which can be interfaced with

devices where transmission of 16 bits of data from host to the peripheral devices is

needed.

" The communication block does the following.

* Recognition of bits and proper transaction sequence.

" Generation and detection of start of data bits, end of data bits, reset and

resume signals

" Separation of clock and data.

* Generating and verifying Cyclic Redundancy Checks (CRC) for error

handling of data.

* Performing parallel to serial and serial to parallel conversions.

" Storing the data in buffers and FIFO's.

* Synchronizing the host speed with peripheral devices speed.

* To separate address, data and CRC bits from the stream of bits coming from

the host i.e., a processor.

61

" Controlling all the operations and conversions with respect to clock.

* Using techniques like bitstuffing to ensure reliability of the data bits.

" NRZ- I coding is employed on the bits to improve the performance.

5.2 Techniques used for Reliable and Efficient Transmission

The transmission of a stream of bits from one device to another across a

transmission link requires a great deal of cooperation and the agreement between the two

sides. One of the most fundamental requirements is synchronization. The receiver must

know the rate at which the bits are received so that it can sample the line at regular

intervals to determine the value at each received bit.

5.2.1 Bit-Stuffing

The bit stuffing is the insertion of noninformation bits into data. It is the practice

of adding bits to a stream of data. Bit-stuffing is required by many network and

communications protocols for the following reasons:

" To prevent data being interpreted as control information. For example, many

frame-based protocols, such as HDLC (high level data link control), signal the

beginning and end of a frame with six consecutive 1 bits. Therefore, if the

actual data being transmitted has six 1 bits in a row; a zero is inserted after the

first 5 so that the data is not interpreted as a frame delimiter. Of course, on the

receiving end, the stuffed bits must be discarded.

* For protocols that require a fixed-size frame, bits are sometimes inserted to

make the frame size equal to this set size.

62

" For protocols that required a continuous stream of data, zero bits are

sometimes inserted to ensure that the stream is not broken.

" Stuffed bits should not be confused with overhead bits.

" In data transmission, bit stuffing is used for various purposes, such as for

synchronizing bit streams that do not necessarily have the same or rationally

related bit rates, or to fill buffers or frames. The location of the stuffing bits is

communicated to the receiving end of the data link, where these extra bits are

removed to return the bit streams to their original bit rates or form. Bit

stuffing may be used to synchronize several channels before multiplexing or

to rate-match two single channels to each other.

" The receiver needs to be able to determine what the relationship of the bits in

the received stream have to one another, that is, what the logical units of

transfer are, and where each received bit fits into the logical units.

5.2.2 Error checking using CRC (Cyclic Redundancy Check)

Regardless of the design of the transmission system, there will be errors, resulting

in the change of one or more bits in a transmitted frame. There are transmission

impairments. This can be defined as probabilities with respect to errors in transmitted

frames. The error detection techniques operate on the principle that the probability of

occurrence of errors in the communication system is very low compared to the magnitude

of information signals that are transmitted in the communication system. For a given

frame of bits additional code of bits that constitute the error detecting code are added by

63

the transmitter. This code is calculated as the function of the other transmitted bits the

receiver performs the same calculation and compares the two results. A detected error

occurs if and only if there is a mismatch.

One of the most common and one of the powerful error detecting codes is the

Cyclic Redundancy Check also known as CRC, which can be described as follows. Given

a k-bit block of bits, or message, the transmitter generates an n bit sequence, know as

frame check sequence (FCS), so that the resulting frame, consists of k+n bits it is this that

is transmitted to the receiver and the receiver calculates CRC on the data received, if

there is no error CRC calculated in the receiver matches with that of the transmitter.

5.2.3 NRZ (Non Return to Zero)

A binary encoding scheme in which a signal parameter, such as electric current or

voltage, undergoes a change in a significant condition or level every time that a "one"

occurs, but when a "zero" occurs, it remains the same, that is no transition occurs. The

transitions could also occur only when "zeros" occur and not when "ones" occur. If the

significant condition transition occurs on each "zero," the encoding scheme is called

"non-return-to-zero space" (NRZ-S). NRZ-M and NRZ-S signals are technically

interchangeable, one is the logical "NOT" (inverse) of the other. It is necessary for the

receiver to have prior knowledge of which scheme is being used. Without such

knowledge, it is impossible for the receiver to interpret the data stream correctly; its

output may be the correct data stream or the logical inverse of the correct data stream.

64

5.3 Design Description of Serial Interface Engine

DataInput(16 bit)

Addr (2 bit)

SSerial nrzi

TxEnable Transipte

Write

Parallel o/p 16 bit Serial nrzi
Input

Device Addr 4 bit - Read

RxFull Receiver
RxHalf

RxEmpty Device

Clock
Interrupt

Clock

-Reset

Figure 5.1 Block Diagram of Serial Interface Engine

The device which is a Serial Interface Engine is the main module, has two

modules which comprises it these functional modules are the Transmitter and the

Receiver.

65

" Transmitter: the data from the host that has to be sent across to the connected

USB devices is sent to this block. This block has many functions, which

process the data and coordinate the movement within the block synchronized

with the host processor before sending it over to the next block. This module

consists of the following sub modules,

" Decoder

" Clock

" Buffer

" TxFIFO (Transmitter side First In First Out)

" Control Logic

" Multiplexer

" CRC Generator

" Parallel to Serial Converter

" NRZ-I coding

" Bitstuffing

* Receiver: This module consists of the following sub modules,

" D-NRZI

" DeBitstuffing decoder

" Serial to Parallel Converter

" Demultiplexer

" Control Logic

66

" Address Decoder

" Timer

" CRC Generator

" CRC Comparator

" Receiver side First In First Out

Host side Peripheral side

Transmitter Transmitter

Receiver Receiver

Figure 5.2 Design of the Block Diagram of Full Duplex

67

Chapter 6 Transmitter and Receiver

6.1 Transmitter

6.1.1 Decoder

Module name is Decoder. The Binary-Output Decoder block produces a binary

message vector (signal) from a binary input vector (signal) that it receives from the host

processor.

The module consists of:

The input ports are SysRst (System Reset)

Addr (2 bit, Address)

The output ports are AddrEn (Address Enable Signal)

FifoEn (FIFO Enable Signal)

CrcEn (CRC Enable Signal)

The logic used is shown in the form of table, which shows the various signals generated

for the different addr signals.

Table 1. Relation between address and the signals generated

Addr Signal generated

00 Address Enable

01 CRC Enable

10 FIFO Enable

68

Source code for Decoder TxDecoder

Module Name is Decoder

module Deco (SysRst,Addr,AddrEn,CrcEn,FifoEn);

//*************Input/Output Declarations ********************
input SysRst;
input [1:0] Addr;

output AddrEn,CrcEn,FifoEn;

//************* Wire/Reg Declarations ************************
wire SysRst;
wire [1:0] Addr;

reg AddrEn,CrcEn,FifoEn;

//************* Functional Description ***********************

always @ (SysRst or Addr)
begin

if (!SysRst)
begin

AddrEn=1'bM;
CrcEn =1'b0;
FifoEn=1'b0;

end

else
begin
case (Addr)

2'bO: begin
AddrEn=1'b 1;
CrcEn =1'b0;
FifoEn=l'b0;

end
2'b01: begin

AddrEn=1'bM;
CrcEn =1'bl;
FifoEn=1'b0;

end

2'b 10: begin
AddrEn=1'b0;
CrcEn =1'b0;
FifoEn=1'b 1;

end

default:begin
AddrEn=1'bM;
CrcEn =1'b0;
FifoEn=1'b0;

end
endcase

69

end

end
endmodule

6.1.2 Buffer

In electronic modules buffer is used to temporary store data, when speed of the

processor is slower than the data incoming in order to constantly feed the data with out

overwhelming the processor.

The module Buffer consists of:

Input ports are Dataln (16 bit Data Input), Wr (Write Signal),

AddrEn (Address Enable Signal), CrcEn (CRC Enable Signal),

FifoEn (FIFO Enable Signal), SysClk (System Clock),

SysRst (System Reset)

Output ports are AddrReg (16 bit Address Register),

CrcReg (16 bit CRC Register), FifoSel (FIFO Select Signal)

6.1.2.1 Logical functioning of the Buffer

When there is a system reset all outputs are set to zero. The input data is stored in

Address Register when both Write Signal and Address Enable signal are high. The input

data is stored into CRC register. When both Write Signal and CRC Enable Signal are

high. The FIFO Select Signal is generated when both Write Signal and FIFO Enable

signal are high. For the rest of the Signals same data is maintained until a respective

change occurs.

70

Source code for TxBuffer.V

Tx_Buffer

module Buffer (SysClk,Wr,Dataln,AddrEn,CrcEn,FifoEn,SysRst,CrcReg,AddrReg,FifoSel);

//************* Input/Output Declarations ********************
input SysClk,Wr,AddrEn,CrcEn,FifoEn,SysRst;
input [15:0] Dataln;

output [15:0] CrcReg,AddrReg;
output FifoSel;

//************* Wire/Reg Declarations ************************

wire SysClk,Wr,AddrEn,CrcEn,FifoEn,SysRst;
reg FifoSel;
wire [15:0] DataIn;

reg [15:0] CrcReg,AddrReg;

//************* Functional Description ***********************

always @ (SysClk or SysRst)
begin

if (!SysRst)
begin

AddrReg<= 16'h0000;
CrcReg <=16'h0000;
FifoSel<=1'b0;

end
else begin

if (Wr)

begin
if (AddrEn)

begin
AddrReg<=Dataln;
//$strobe ("*****************AddrReg=%h",AddrReg);

end

else if(CrcEn)
CrcReg <=Dataln;

else if(FifoEn)
FifoSel<=DataIn[0];

else
begin

AddrReg<=AddrReg;
CrcReg <=CrcReg;
FifoSel<=FifoSel;

end

end

71

else
begin

AddrReg<=AddrReg;
CrcReg <=CrcReg;
FifoSel<=FifoSel;

end

end
end

endmodule

6.1.3 Clock

Module Name is TxClock. File Name is TxClock.V.

Clock Produces continuous digital clock pulses this does not need any input. This

is the system clock module.

Input Ports are none. Output Ports are SysClk

Source Code for Clock Module Tx_Clock.V

Module Name is TxClock

module TxClock (SysClk);
//********INPUT/OUTPUT DECLARATION**********************
output SysClk;

//******WIRE/REG DECLARATION**************************
reg SysClk;
//********************************FUNCTIONAL

DESCRIPTION*****************************

initial

begin
SysClk=l'bl;
//$dumpvars;

//$dumpfile("xx.dmp");
//$monitor("clkl=%b",clk1);

#2000 $finish;
end

always #5 SysClk=-SysClk;

endmodule

72

6.1.4 First In First Out

Module Name is First In First Out. File Name is Tx_FIFO.V

FIFO is made up of 16 registers also called as 16x16 bit FIFO, which stores the

data before it is sent out to the multiplexer for transmission. There are three signals,

which determine the state of the data flowing in to FIFO. They are empty signal, half

signal and full signal.

Input Ports are Fifoln (16 bit FIFO Input), FifoSel (FIFO Select Signal),

Eoc (End of Conversion Signal), Wr (Write Signal),

SysClk (System Clock), SysRst (System Reset)

Output Ports are FifoOut (16 bit FIFO Output), Full (FIFO Full Signal),

Empty (FIFO Empty Signal), Half (FIFO Half Signal)

Source code for Tx_FIFO

Module Name :FirstInFirstOut (FIFO)

module TxFIFO

(Fifoln,FifoOut,SysClk,Eoc,Wr,SysRst,FifoSel,Full,Empty,Half);
//**********************************INPUT/OUTPUT DECLARATION**********************

input [15:0] FifoIn;
input SysClk,SysRst,Wr,FifoSel,Eoc;

output [15:0] FifoOut;
output Full,Empty,Half;

//*********************************WIRE/REG DECLARATION**************************

wire [15:0] FifoIn;
wire SysClk,SysRst,Wr,FifoSel,Eoc;

reg [15:0] FifoOut;
reg Full,Empty,Half;

reg [15:0] FIFO [0:15];

reg [3:0] Rdptr,Wrptr;
integer [4:0] Count;

73

DESCRIPTION*****************************

always @ (posedge SysClk or negedge SysRst)
begin

if (!SysRst)
Wrptr=4'd0;

else if (Wr && FifoSel)
Wrptr=Wrptr+ 1;

else
Wrptr=Wrptr;

end
always @ (posedge SysClk)
begin

if (Wr && FifoSel)
begin
FIFO[Wrptr]=Fifoln;
//$display("Fifo[%d]=%h

FifoSel=%b",Wrptr,FIFO[Wrptr],FifoSel);
Count =Count+1;
end

else
FIFO[Wrptr]=FIFO[Wrptr];

end
always @ (posedge Eoc or negedge SysRst)
begin

if (!SysRst)
begin

Rdptr=4'd0;
Count=0;

end

else begin
FifoOut=FIFO[Rdptr];
Rdptr =Rdptr+ 1;
Count =Count-1;

end
end

always @ (Count or SysRst)
begin

if (!SysRst)
begin

Full =1'b0;
Empty=1'b0;
Half =1'b0;

end
else if (Count==0)

begin
Full =l'b0;
Empty= 'b 1;
Half =1'b0;

end

else if (Count>=15)
begin

Full =l'bl;

74

Empty= I'b0;
Half ='b0;

end
else if (Count==8)

begin
Full =1'b0;
Empty= l'b0;
Half =1'bl;

end
else

begin
Full =1'b0;
Empty= l'b0;
Half =1'b0;

end
end
endmodule

6.1.5 Control Logic

Module is Control Logic. File Name is Tx_Control.V .

This module generates three-control signals Select Address Signal, Select FIFO

Signal and Select CRC signal.

Input Ports are TxEn (Transmitter Enable), Eoc (End of Conversion Signal),

Empty (Empty Signal)

Output Ports are SelAddr (Select Address Signal), SelFifo (Select FIFO Signal),

SelCrc (Select CRC Signal)

Source Code for Control Logic TxControl.V

Module Name is Control Logic

module TxControl (TxEn,Empty,Eoc,SelAddr,SelFifo,SelCrc);

//************* Input/Output Declarations ********************

input TxEn,Empty,Eoc;

output SelAddr,SelFifo,SelCrc;

//************* Wire/Reg Declarations ************************

75

wire TxEn,Empty,Eoc;
wire SelAddr,SelFifo,SelCrc;
wire wi;

//************* Functional Description ***********************
assign wl =~Empty;
assign SelAddr= (wi & TxEn);
assign SelFifo= (wl & Eoc);
assign SelCrc = (Eoc & Empty);
endmodule

6.1.6 Multiplexer

Module Name is Multiplexer. File Name is Tx_Mux.V.

This module multiplexer multiplexes data from different modules that it selects as

the input data. Such as address from the address register, data from the FIFO and CRC

bits from the CRC module. At all other times the data remains the same.

Input Ports are DataAddr (16bit Data Address), FifoOut (16 bit FIFO Output),

CRC (4 bit CRC), SelAddr (Select Address Signal),

SelFifo (Select FIFO Signal), SelCrc (Select CRC Signal),

SysRst (System Reset)

Output Ports are PDataln (16 bit Parallel Data Input)

Source Code for Multiplexer Module Tx_Mux.V

Module Name :Multiplexer

module Tx_Mux (DataAddr,FifoOut,CRC,PDataln,SelAddr,SelFifo,SelCrc,SysRst);

//************* Input/Output Declarations ********************
input [15:01 DataAddr,FifoOut;
input [3:0] CRC;
input SelAddr,SelFifo,SelCrc,SysRst;

output [15:01 PDataln;

//************* Wire/Reg Declarations ************************

wire [15:0] DataAddr,FifoOut;

76

wire [3:0] CRC;
wire SelAddr,SelFifo,SelCrc,SysRst;
reg [15:0] PDataln;

//************* Functional Description ***********************

always @ (SysRst or DataAddr or FifoOut or CRC or SelAddr or SelFifo or SelCrc)
begin

if (!SysRst)
PDataIn=16'hzzzz;

else if(SelAddr)
PDataIn=DataAddr;

else if(SelFifo)
PDataln=FifoOut;

else if(SelCrc)
begin

PDataIn[3:0]=CRC;
PDataIn[15:4]=12'hzzz;

end
else PDataln=PDataln;

end

endmodule

6.1.7 CRC Generator

Module Name is Cyclic Redundancy Check (CRC) Generator. File Name is

Tx_Crc.V.

This is the module that does the error handling by a technique called as CRC

(Cyclic Redundancy Checks) creating Cyclic Redundancy Check bits. The CRC

Generator first calculates the CRC bits for the first 16 bits of FIFO output and the CRC

bits for the next 16 bit FIFO Output is calculated with respect to the first generated CRC

bits. In this way the process continues and finally 4 CRC bits are generated for whole

data and sent to the Parallel to Serial Converter for transmission.

Input Ports are FifoOut (16 bit FIFO Output), CRCReg (16 bit CRC Register).

Eoc (End of Conversion Signal), SysRst (System Reset)

77

Output Ports are CRC (4 bit CRC)

Source Code for CRC Generator Module TxCrc.V

Module Name is TxCRC Calculator
**** ********** ******************* *********/

module CrcGen (CRC,FifoOut,SysRst,CRCReg,Eoc);
//************INPUT/OUTPUT DECLARATION**********************
input [15:0] FifoOut; //Message coming from FIFO
input [15:0] CRCReg; // Generator polynomial value
input SysRst,Eoc;

output [3:0] CRC;
//************WIRE/REG DECLARATION**************************
wire [15:0] FifoOut;
wire SysRst,Eoc;
wire [15:0] CRCReg;

reg [3:0] CRC;

//************Internal Wire/Reg Declaratios ****************

reg [4:0] GenPoly; //Generator Polynomial value (5 bit)

reg [3:0] Temp;

//***********FUNCTIONAL DESCRIPTION**************************

always @ (posedge Eoc or negedge SysRst)
begin

GenPoly=CRCReg[4:0];

if (!SysRst)
Temp =4'd0;

else
begin

CRC =CRCCal(FifoOut,Temp,GenPoly);

Temp =CRC;
end

end

function [3:0] CRC_Cal;
parameter Zero=5'b00000;

input [15:0] FifoOut;
input [3:0] Temp;
input [4:0] GenPoly;
//************ Internal Reg Declaratios ****************

reg [20:1] msgtemp;

78

reg [4:0] Temp1;
reg [4:0] Rem;
integer i

begin

msgtemp=({ FifoOut,Temp 1);
//$display(" @ @ @ @ @ @ @msgtemp=%b",msgtemp);

Temp 1=msgtemp[20:16];
//$display(" **********Temp=%b",Temp 1);
for(i=15;i>0;i=i-1)
begin
if (GenPoly<=Temp 1)

begin
Rem=GenPoly ^ Temp 1;

//$display(" *****Rem(Result)=%b",Rem);
Rem=Rem << 1;

//$display("*****Rem(after removing
MSB)=%b",Rem);

Rem[0] = msgtemp[i];
//$display("*****Rem(after appending M(x)

bit)=%b",Rem);

end

else

begin
Rem=Temp Zero;

//$display(" *****Rem(Result)=%b",Rem);
Rem=Rem« 1;

//$display("*****Rem(after removing
MSB)=%b",Rem);

Rem[0]=msgtemp[i];
//$display("*****Rem(after appending M(x)

bit)=%b",Rem);
end

//$display("(Remainder=%b",Rem);
Temp 1=Rem;

end

CRC_Cal=Rem[3:0];

//$display("^^^^^^^^^^^^^^CRC_Cal=%b",CRCCal);

end

endfunction

endmodule

79

6.1.8 Parallel to Serial Converter

Module Name is Parallel to Serial Bit Converter. File Name is TxPtoS.V.

This Module is converting the Parallel data in to serial data for transmission It

employs a buffer to store the 16 bit parallel data temporarily before it is converted to

serial data bits for transmission.

Input Ports are PDataIn (16 bit Parallel Data Input),

SelAddr (Select Address Signal), SelCrc (Select CRC Signal),

Start (Start Signal), Clk (Clock synchronizing with device),

SysRst (System Reset)

Output Ports are Sout (Serial Output), Eoc (End of Conversion Signal)

Source Code for Parallel to Serial Converter Module TxPtoS.V

Module Name is Parallel to Serial Bit Converter

module Tx_PtoS (PDataln,nrziout,Start,SysRst,Clk,Eoc,SelCrc,SelAddr);

//**********************************INPUT/OUTPUT DECLARATION*********************

input [15:0] PDataln;
input Clk,SysRst,Start,SelCrc,SelAddr;

output nrziout,Eoc;

//*********************************WIRE/REG DECLARATION**************************
wire [15:0] PDataIn;
wire Clk,SysRst,Start,SelCrc,SelAddr;
reg Sout,ref,nrziout,Eoc;

reg [15:0] Buffer;
integer i,d;
//********************************FUNCTIONAL

DESCRIPTION*****************************

always @ (negedge Clk)
begin

if (Start I SelAddr)
begin

Buffer<=PDataln;
Eoc <=1'b0;
i <=0;

80

end
else if (SelCrc)

begin
Buffer <=PDataln;
Eoc <=1'b0;
i <=0;

end
else

Buffer <=Buffer;
end

always @ (posedge Clk or negedge SysRst)
begin

if (!SysRst)
begin

Buffer=16'hzzzz;

Eoc =1'b0;
i =0;
Sout =l'bz;

ref =0;

nrziout=l'bz;
d =0;
end

else
begin

if(d<6)
begin

Sout=Buffer[i];

d =d+1;
if(i==16)

begin
Eoc=l'b 1;
i =0;

end
else

Eoc=1'b0;
end

else
begin
Sout=l'b0;
d =0;
end

end

if (Sout==OIISout==1)
begin

if (Sout==0)
begin

nrziout=-ref;
ref =nrziout;

end
else
begin

nrziout=ref;

ref =nrziout;

81

end
end

else
nrziout=nrziout;

end

endmodule

6.1.9 Transmitter Module

Module Name is Transmitter. File Name is Tx.V.

Transmitter is the collection of modules that integrates all the modules explained

above in order to process the data from the host to make it error free for transmission. it

Synchronizes the working of various modules .

Input Ports are DataIn (16 bit Input Data), Addr (2 bit Address),

TxEn (Transmitter Enable), Wr (Write Signal),

SysClk (System Clock), SysRst (System Reset)

Output Ports are Sout (Serial Output)

Source Code for Transmitter Module Tx.V

/* ** ** ** * * ************** ***** ************ *************

Module Name is Transmitter

module Tr (SysClk,SysRst,Addr,Dataln,Wr,nrziout,TxEn);

//************* Input/Output Declarations ********************
input SysClk,SysRst,Wr,TxEn;
input [1:0] Addr;
input [15:0] Dataln;

output nrziout;

//************* Wire/Reg Declarations ************************

wire SysClk,SysRst,Wr,TxEn;
wire [1:0] Addr;
wire [15:0] DataIn;
wire nrziout;

//************* Internal Wire Declarations *******************

82

wire [15:0] CrcReg,AddrReg,FifoOut,PDataIn;
wire [3:0] CRC;
wire AddrEn,CrcEn,FifoEn,FifoSel;
wire Eoc,Full,Empty,Half,SelAddr,SelFifo,SelCrc,Sout;

//************ Module Instantiation for Transmitter *********

Deco d (SysRst,Addr,AddrEn,CrcEn,FifoEn);

Buffer b (SysClk,Wr,Dataln,AddrEn,CrcEn,FifoEn,SysRst,CrcReg,AddrReg,FifoSel);
TxFIFO f (DataIn,FifoOut,SysClk,Eoc,Wr,SysRst,FifoSel,Full,Empty,Half);
CrcGen g (CRC,FifoOut,SysRst,CrcReg,Eoc);
Control t (TxEn,Empty,Eoc,SelAddr,SelFifo,SelCrc);
Mux m (AddrReg,FifoOut,CRC,PDataln,SelAddr,SelFifo,SelCrc,SysRst);
PtoS p (PDataln,nrziout,Eoc,SysRst,SysClk,Eoc,SelCrc,SelAddr);
//nrzi n (SysClk,Sout,nrziout,SysRst);

endmodule
//************ Simulation Module ****************************

module TxTest;
//************ Wire/Reg Declarations ************************

reg SysRst,Wr,TxEn;
reg [1:0] Addr;
reg [15:0] Dataln;
wire nrziout;

wire SysClk;

Tx T (SysClk,SysRst,Addr,Dataln,Wr,nrziout,TxEn);
Clock c (SysClk);

initial

begin
SysRst=1; Dataln= I6'h00aa; Addr=2'b00;TxEn=1'bO;Wr=l'b 1;

$monitor ("SysClk=%b Dataln=%h Buffer=%b Sout=%b Eoc=%b PDataIn=%h TxEn=%b

FifoSel=%b,nrziout=%b",SysClk,Dataln,T.p.Buffer,T.p.Sout,T.p.Eoc,T.m.PDatan,TxEn,T.b.FifoSel,nrziO
ut, $time);

#2 SysRst=0;

#2 SysRst=1;
#10 DataIn=16'h0013; Addr=2'b01;
#10 Dataln=16'h0001; Addr=2'b10;
#2 Dataln=16'haaaa; Addr=2'bl 1;

#10 Dataln= 16'haaaa;
#10 Dataln=16'haaaa; TxEn='bl;
#10 Dataln=16'haaaa; TxEn=1'bM;
#10 Dataln= I 6'haaaa;
#10 DataIn=16'haaaa;
#10 DataIn=l 6'haaaa;
#10 DataIn=l 6'haaaa;

#10 DataIn=l6'haaaa;
#10 Dataln= 1 6'haaaa;

#10 Dataln= I6'haaaa;

83

#10 DataIn=16'haaaa;
#10 DataIn=16'haaaa;
#10 DataIn=16'haaaa;
#10 DataIn=16'haaaa;
#10 DataIn=16'haaaa;
#1000 $finish;
end

endmodule

6.2 Receiver

6.2.1 Serial to Parallel Converter

Module Name is Serial to Parallel bit converter. File Name is RecStoP.V.

This module is the first one to receive data from the transmitter that converts the

serial data to parallel which is the form the data has to be for further processing. The data

is stored in the buffer temporarily for conversion. It generates address flag and end of

conversion signals which are the control signals for other modules.

Input Ports are Sin (Serial Input), Ld (Load Signal), SysClk (System Clock),

SysRst (System Reset)

Output Ports are POut (16 bit Parallel Output), AddrFlag (Address Flag),

RxEoc (Receiver side End of Conversion)

Source Code for Serial to Parallel Converter Module Rec_StoP.V

/*** *** **************** ******* ***** ******* ***** ** **** ***

Module Name is Serial To Parallel Converter

module Rec_StoP (SysClk,SysRst,nrziout,Ld,POut,RxEoc,AddrFlag);
//************* Input/Output Declarations ********************

input SysClk,SysRst,nrziout,Ld;
output [15:0] POut;
output RxEoc,AddrFlag;

//************* Wire/Reg Declarations ************************

wire SysClk,SysRst,nrziout,Ld;

reg [15:0] POut;

84

reg RxEoc,AddrFlag,ref,Sin;

reg [15:0] Buffer;
integer i;
integer [2:0] d;
integer [3:0] x;

/************* Functional Description ***********************

always @ (negedge SysClk)
begin

if (Ld)
begin

POut =Buffer;
RxEoc =RxEoc;
i =0;

#5 AddrFlag =1'b0;
RxEoc =1'b0;

end

else
begin

POut =POut;
RxEoc =RxEoc;
AddrFlag=AddrFlag;

end

end

always @ (posedge SysClk or negedge SysRst)
begin

if(!SysRst)
begin

Buffer =16'h0000;
AddrFlag =1'bl;
i =1'b0;
d =3'd0;
x =4'd8;
ref =1'b0;
RxEoc =1'b0;

end

/added str 1

else
begin
d=d+1;
if((nrziout==1'b0)I(nrziout==1'b1))
begin
if (nrziout==ref)

begin
Sin =1bl;
ref =nrziout;

d =d+1;
end

else

85

begin
Sin =1'b0;
ref =nrziout;

d =d+1;
end

end
else

d =d;

end
//added stop 1

//always @ (posedge SysClk) //or negedge SysRst)
//if(d<3'd6)
if(d<x)

begin
if ((Sin==1'b0)I(Sin==1'bl))

begin

//

begin
Buffer[i]=Sin;
i =i+1;

RxEoc =1'b0;
d =d;

if (i==16)
begin

i =0;
// d =d; //

RxEoc=1'bl;
end
else

RxEoc=I'b0;
end

else
begin

d =d;
1 =i;

end
end

else
begin

Sin =Sin;
Buffer[i]=Buffer[i];

d =0;
x =4'd7;

end
/* end

else
begin

86

i =0;
d =d;
end

*/
end
endmodule

6.2.2 Demultiplexer

Module Name is Demultiplexer. File Name is Rec_Dmux.V.

This module does opposite in function to what multiplexer does in transmitter it

sends parallel data to address register, FIFO and to CRC depending on the control

signals. The purpose is to send the received information to respective places where they

are processed later.

Input Ports are POut (16 bit Parallel Data), RxAddrEn (Address Enable Signal),

RxFifoEn (FIFO Enable Signal), RxCrcEn (CRC Enable Signal),

SysRst (System Reset)

Output Ports are RxAddrReg (16 bit Address Register),

RxFifoIn (16 bit FIFO Input), RxCrcReg (4 bit CRC Register)

Source Code for Demultiplexer Module Rec_Dmux.V

/*********** ** *********** ***** ******* ******** **********

Module Name is Receiver Side Demultiplexer

module Rec_Dmux
(RxAddrReg,RxFifoIn,RxCrcReg,POut,RxAddrEn,RxFifoEn,RxCrcEn,SysRst);

//************* Input/Output Declarations ********************
input [15:0] POut;
input RxAddrEn,RxFifoEn,RxCrcEn,SysRst;

output [15:0] RxAddrReg,RxFifoIn;
output [3:0] RxCrcReg;

//************* Wire/Reg Declarations ************************

87

wire [15:0] POut;
wire RxAddrEn,RxFifoEn,RxCrcEn,SysRst;

reg [15:0] RxAddrReg,RxFifoIn;
reg [3:0] RxCrcReg;

/************* Functional Description ***********************
always @ (POut or RxAddrEn or RxFifoEn or RxCrcEn or SysRst)

begin

if(!SysRst)

begin
RxAddrReg = 16'hzzzz;
RxFifoIn = 16'hzzzz;
RxCrcReg = 4'hz;

end
else if(RxAddrEn)

begin
RxAddrReg = POut;

end
else if(RxFifoEn)

begin
RxFifoIn = POut;

end
else if(RxCrcEn)

begin
RxCrcReg = POut[3:0];

end
else

begin
RxAddrReg = RxAddrReg;
RxFifoIn = RxFifoIn;
RxCrcReg = RxCrcReg;

end
end

endmodule

6.2.3 Control Logic

Module Name is Control Logic Block. File Name is Rec_Control.V.

The module receiver control generates control signals, which are address enable

signal, FIFO enable signal and CRC Enable signal. These are important for control and to

maintain timing for other modules.

Input Ports are AddrFlag (Address Flag), CrcFlag (CRC Flag),

RxEoc (End of Conversion)

88

Output Ports are RxAddrEn (Address Enable Signal),

RxFifoEn (FIFO Enable Signal), RxCrcEn (CRC Enable Signal)

Source Code for Control Logic Module Rec_Control.V

* * ***** *************** ** **************

Module Name is CRC Calculator

module RecCrcGen (RxCRC,RxFifoIn,SysRst,RxEoc);
//************INPUT/OUTPUT DECLARATION**********************

input [15:0] RxFifoIn; //Message coming from FIFO
// Generator polynomial value

input SysRst,RxEoc;

output [3:0] RxCRC;
//************WIRE/REG DECLARATION**************************
wire [15:0] RxFifoIn;
wire SysRst,RxEoc;

reg [3:0] RxCRC;

//************Internal Wire/Reg Declaratios ****************

reg [4:0] GenPoly; //Generator Polynomial value (5 bit)

//***********FUNCTIONAL DESCRIPTION**************************

always @ (negedge RxEoc or negedge SysRst)
begin

if (!SysRst)
begin

Temp =4'd0;
GenPoly=5'b10011;

end
else

begin
RxCRC =CRCCal(RxFifoIn,Temp,GenPoly);
Temp =RxCRC;

end
end

function [3:0] CRC_Cal;
parameter Zero=5'b00000;

input [15:0] FifoOut;
input [3:0] Temp;
input [4:0] GenPoly;

89

/************ Internal Reg Declaratios ****************
reg [20:1] msgtemp;
reg [4:0] Templ;
reg [4:0] Rem;
integer i;

begin

msgtemp=({ FifoOut,Temp });

//$display(" @ @ @ @ @ @ @msgtemp=%b",msgtemp);

Temp 1=msgtemp[20:16];
//$display(" **********Temp=%b",Temp 1);
for(i=1 5;i>0;i=i-1)
begin
if (GenPoly<=Temp 1)

begin
Rem=GenPoly ^ Temp 1;

//$display("*****Rem(Result)=%b",Rem);
Rem=Rem << 1;

//$display("*****Rem(after removing
MSB)=%b",Rem);

Rem[0] = msgtemp[i];
//$display("*****Rem(after appending M(x)

bit)=%b",Rem);
end

else

begin
Rem=Temp 1 ^Zero;

//$display("*****Rem(Result)=%b",Rem);
Rem=Rem« 1;

//$display("*****Rem(after removing
MSB)=%b",Rem);

Rem[0]=msgtemp[i];
//$display("*****Rem(after appending M(x)

bit)=%b",Rem);
end

//$display("(Remainder=%b",Rem);

Temp 1=Rem;
end
CRC_Cal=Rem[3:0];

//$display("^^^^^^^^^^^^^^CRC_Cal=%b",CRCCal);

end

end func tion
endmodule

90

6.2.4 Address Decoder

Module Name is Address Decoder. File Name is RecAddrDec.V

This module extracts the 4-bit address that corresponds to 16 devices connected

and the size of the data sent which is 12-bit.

Input Ports are RxAddrReg (16 bit Address Register),

RxAddrEn (Address Enable Signal), SysRst (System Reset)

Output Ports are DevAddr (4 bit Device Address), DataSize (12 bit Data Size)

Source Code for Address Decoder Module RecAddrDec.V

/** ** * *** ******* ********** ** ****************** *******

Module Name is Receiver Address Decoder

module Rec_AddrReg (DevAddr,DataSize,RxAddrEn,RxAddrReg,SysRst);
//************* Input/Output Declarations ********************
input [15:0] RxAddrReg;
input RxAddrEn,SysRst;

output [3:0] DevAddr;
output [11:0] DataSize;
//************ Wire/Reg Declarations ************************

wire [15:0 RxAddrReg;
wire RxAddrEn,SysRst;

reg [3:0] DevAddr;
reg [11:0] DataSize;

//************* Functional Description ***********************

always @ (RxAddrEn or RxAddrReg or SysRst)
begin

if(!SysRst)
begin

DevAddr =4'd0;
DataSize=12'd0;

end
else if(RxAddrEn)

begin
$display("******DevAddr=%b DataSize=%h",DevAddr,DataSize);

DevAddr = RxAddrReg[3:0];
DataSize= RxAddrReg[15:4];

end

else

91

begin
DevAddr = DevAddr;
DataSize= DataSize;

end

end
endmodule

6.2.5 Timer

Module Name is Timer. File Name is Rec Timer.V.

This module gives CRC Flag signal, which is an input to control logic to generate

control signals .a counter set up here does the down counting of data size to generate

control flag when the count is zero.

Input Ports are DataSize (12 bit Data Size), RxEoc (End of Conversion Signal).

RxAddrEn (Address Enable Signal), SysRst (System Reset)

Output Ports are CrcFlag (CRC Flag)

Source Code for Timer Module RecTimer.V

Module Name is Reciever Flag Generater

module RecTimer (CrcFlag,RxEoc,DataSize,SysRst,RxAddrEn);

//************* Input/Output Declarations ********************

input RxEoc,SysRst;
input [l1:0] DataSize;
input RxAddrEn;
output CrcFlag;
//************* Wire/Reg Declarations ************************

wire RxEoc,SysRst,RxAddrEn;
wire [11:0] DataSize;

reg CrcFlag;

//************* Internal Wire/reg Declarations ***************

integer Count;

reg Flag;

//************* Functional Description **********************

92

always @ (negedge SysRst or negedge RxEoc)
begin

if(!SysRst)
begin

CrcFlag = 'b0;
Count = 12'h001;

Flag = 1'bl;
end

else if (Flag==I'b1)
begin

Count = DataSize;
Flag = i'b0;
//$strobe("$$$$$$$Count=%h",Count);

CrcFlag = 1'b0;
end

else begin

Count =Count-1;
if(Count==0)

begin
CrcFlag =1'bl;

Count =Count;

end

else

begin
CrcFlag =CrcFlag;
Count =Count;

end

end

end
endmodule

6.2.6 CRC Generator

Module Name is Cyclic Redundancy Check (CRC) Generator. File Name is

Rec_Crc.V

This module calculates the CRC bits for error handling. The CRC Generator first

calculates the CRC bits for the first 16 bits of FIFO Input and the CRC bits for the next

16 bit FIFO Input is calculated with respect to the first generated CRC bits. In this way

the process continues and finally 4 CRC bits are generated for whole data and sent to the

CRC Comparator to check whether the generated CRC bits and received CRC bits are

93

same. If they are same then the data is received without any error otherwise there is an

error in received data.

Input Ports are RxFifoIn (16 bit FIFO Input), RxEoc (End of Conversion Signal),

SysRst (System Reset)

Output Ports are RxCRC (4 bit CRC)

Source Code for CRC Generator Module RecCrc.V

Module Name is CRC Calculator

module RecCrcGen (RxCRC,RxFifoln,SysRst,RxEoc);
//************INPUT/OUTPUT DECLARATION**********************
input [15:0] RxFifoIn; //Message coming from FIFO

// Generator polynomial value

input SysRst,RxEoc;

output [3:0] RxCRC;
//************WIRE/REG DECLARATION**************************
wire [15:0] RxFifoIn;
wire SysRst,RxEoc;

reg [3:0] RxCRC;

//************Internal Wire/Reg Declaratios ****************

reg [4:0] GenPoly; //Generator Polynomial value (5 bit)

reg [3:0] Temp;

//***********FUNCTIONAL DESCRIPTION**************************

always @ (negedge RxEoc or negedge SysRst)
begin

if (!SysRst)
begin

Temp =4'd0;
GenPoly=5'b 10011;

end
else

begin
RxCRC =CRCCal(RxFifoln,Temp,GenPoly);
Temp =RxCRC;

end

end

94

function [3:0] CRC_Cal;
parameter Zero=5'b00000;

input [15:0] FifoOut;
input [3:0] Temp;
input [4:0] GenPoly;
//************ Internal Reg Declaratios ****************
reg [20:1] msgtemp;
reg [4:0] Temp1;
reg [4:0] Rem;
integer i;

begin

msgtemp=({ FifoOut,Temp});

//$display(" @ @ @ @ @ @ @msgtemp=%b",msgtemp);

Temp 1=msgtemp[20:16];
//$display("**********Temp=%b",Temp1);
for(i=15;i>0;i=i-1)
begin
if (GenPoly<=Temp 1)

begin
Rem=GenPoly ^ Temp 1;

//$display("*****Rem(Result)=%b",Rem);
Rem=Rem << 1;

//$display("*****Rem(after removing
MSB)=%b",Rem);

Rem[0] = msgtemp[i];
//$display("*****Rem(after appending M(x)

bit)=%b",Rem);
end

else
begin
Rem=Temp 1^ Zero;

//$display(" *****Rem(Result)=%b",Rem);
Rem=Rem« 1;

//$display("*****Rem(after removing
MSB)=%b",Rem);

Rem[0]=msgtemp[i];
//$display("*****Rem(after appending M(x)

bit)=%b",Rem);
end

//$display("(Remainder=%b",Rem);
Temp 1=Rem;

end

CRC_Cal=Rem[3:0];

//$display("^^^^^^^^^^^^^^CRC_Cal=%b",CRCCal);

95

end
endfunction
endmodule

6.2.7 CRC Comparator

Module Name is CRC Comparator. File Name is Rec_CrcComp.V.

This module compares the CRC bits received from the transmitter with the CRC bits

generated by the receiver. If the two CRC's are equal then the data is received without

any error and if the two CRC's are not equal then an Interrupt is generated to resend the

data again.

Input Ports are CRC (4 bit CRC from Transmitter),

RxCRC (4 bit CRC generated in the receiver),

RxCrcEn (CRC Enable Signal), SysRst (System Reset)

Output Ports are Intr (Interrupt)

Source code for Rec_CrcComp.V

Module Name is CRC Comparator

module Rec_CrcComp (Intr,CRC,RxCRC,RxCrcEn,SysRst);
//************* Input/Output Declarations ********************

input [3:0] CRC,RxCRC;
input RxCrcEn,SysRst;

output Intr;

//************* Wire/Reg Declarations ************************

wire [3:0] CRC,RxCRC;
wire RxCrcEn,SysRst;

reg Intr;

96

//************* Functional Description ***********************

always @ (negedge RxCrcEn or negedge SysRst)
begin

if (!SysRst)
Intr = i'b0;

else if(RxCrcEn==1'b0)

begin
if(RxCRC!=CRC)

Intr=1'bl;
else

Intr = l'b0;
end

else
Intr = Intr;

end

endimodule

6.2.8 RecFIFO (First In First Out)

Module Name is First In First Out. File Name is RecFIFO.V

In this module if FIFO has nothing in it FIFO Empty Signal is generated allowing

the data to be written into the FIFO, if the FIFO is half full then FIFO Half Signal is

generated allowing the data to be still written in FIFO and if the FIFO is full then FIFO

Full Signal is generated not allowing any data to be written in the FIFO until there is free

size to be written. An internal Flag is created in such a way that whenever it is high the

data is copied into the FIFO and whenever the Read Signal is high data which is written

first is sent out to the device. This is a 16x16 bit FIFO

Input Ports are RxFifoIn (16 bit FIFO Input), Rd (Read Signal),

RxEoc (End of Conversion Signal),

DevClk (Device Clock), SysRst (System Reset)

Output Ports are RxFifoOut (16 bit FIFO Output), RxFull (FIFO Full Signal),

RxEmpty (FIFO Empty Signal), RxHalf (FIFO Half Signal)

97

The source code for RecFIFO.V

Module Name is FirstInFirstOut (FIFO)

module RecFIFO(RxFifoln,RxFifoOut,RxEoc,DevClk,Rd,SysRst,RxFull, RxEmpty,RxHalf);
//**********************************INPUT/OUTPUT DECLARATION*********************'

input [15:0] RxFifoIn;
input DevClk,SysRst,Rd,RxEoc;

output [15:0] RxFifoOut;
output RxFull,RxEmpty,RxHalf;

//***:*****************************WIRE/REG DECLARATION**************************

wire [15:0] RxFifoln;
wire DevClk,SysRst,Rd,RxEoc;

reg [15:0] RxFifoOut;
reg RxFull,RxEmpty,RxHalf;

reg [15:0] FIFO [0:15];

reg [3:0] Rdptr,Wrptr;
integer [4:0] Count;

reg Flag;

//********************************FUNCTIONAL

DESCRIPTION*****************************

always @ (negedge RxEoc or negedge SysRst)
begin if (!SysRst)

begin
Wrptr=4'b0000;
Flag =0;
end

else if (Flag)
begin

FIFO[Wrptr]=RxFifoln;
//$display("^^^^^^^^^^^^^FIFO[%d]=%h",Wrptr,FIFO[Wrptr],$timc
Wrptr =Wrptr+l;

Count =Count+ l;
end

else
Flag=1;

end

always @ (posedge DevClk or negedge SysRst)
begin

if (!SysRst)
begin

Rdptr=4'd0;
Count=0;

end

98

else if (Rd)
begin

RxFifoOut=FIFO[Rdptr];
Rdptr =Rdptr+ 1;
Count =Count-1;

end
end

always @ (Count or SysRst)
begin

if (!SysRst)
begin

RxFull =1'b0;
RxEmpty= 1'b0;
RxHalf =1'b0;

end
else if (Count==0)

begin
RxFull =1'b0;
RxEmpty=1'b 1;
RxHalf =1'b0;

end
else if (Count>=15)

begin
RxFull =1'bl;
RxEmpty= 1'b0;
RxHalf =1'b0;

end

else if (Count==8)
begin

RxFull =1'b0;
RxEmpty= I'b0;
RxHalf =1'b 1;

end
else

begin
RxFull =l'b0;
RxEmpty= I'b0;
RxHalf =1'b0;

end
end

endmodule

6.2.9 Receiver Module

Module Name is Receiver. File Name is Receiver.V.

This module is basically the integration of all the 8 modules explained above which are

responsible for receiving the data from the peripheral device to the host without any error

99

and also synchronizing the speeds of the host and the peripheral device and converting

serial data into parallel data.

Input Ports are Sin (Serial Input Data), DevClk (Device Clock),

Rd (Read Signal),

SysClk (System Clock), SysRst (System Reset)

Output Ports are RxFifoOut (16 bit FIFO Output), DevAddr (4 bit Device Address)

RxFull (FIFO Full Signal), RxHalf (FIFO Half Signal),

RxEmpty (FIFO Empty Signal), Intr (Interrupt)

Source code for the Receiver.V

Module Name is Receiver
******* ******* ************************* ********* *******

//module Receiver
(SysClk,DevClk,Rd,RxFifoOut,CRC,SysRst,Sin,DevAddr,CrcFlag,RxFull,RxHalf,RxEmpty,RxCRC);
module Rx (SysClk,DevClk,Rd,RxFifoOut,SysRst,nrziout,DevAddr,RxFull,RxHalf,RxEmpty,Intr):
//************* Input/Output Declarations ********************

input SysClk,SysRst,nrziout,DevClk,Rd;

output [3:0] DevAddr;
output RxFull,RxHalf,RxEmpty,Intr;
output [15:0] RxFifoOut;

//************* Wire/Reg Declarations ************************

wire SysClk,SysRst,nrziout,DevClk,Rd,Intr;

wire [3:0] DevAddr,RxCRC,CRC;
wire CrcFlag,RxFull,RxHalf,RxEmpty;
wire [15:0] RxFifoOut;

//************* Internal Wire Declarations ************************

wire RxEoc,AddrFlag,RxAddrEn,RxFifoEn,RxCrcEn;
wire [15:0] POut;

wire [15:0] RxAddrReg,RxFifoIn;
wire [11:0] DataSize;

100

//StoP s (SysClk,SysRst,Sin,RxEoc,POut,RxEoc,AddrFlag);
StoP s (SysClk,SysRst,nrziout,RxEoc,POut,RxEoc,AddrFlag);
RxControl c (RxAddrEn,RxFifoEn,RxCrcEn,AddrFlag,CrcFlag,RxEoc);
RxDmux d (RxAddrReg,RxFifoln,CRC,POut,RxAddrEn,RxFifoEn,RxCrcEn,SysRst):
//**********00******

RxAddrReg a (DevAddr,DataSize,RxAddrEn,RxAddrReg,SysRst);
RxFIFO f (RxFifoln,RxFifoOut,RxEoc,DevClk,Rd,SysRst,RxFullRxEmptyRxHalf);

RxCrcGen g (RxCRC,RxFifoIn,SysRst,RxEoc);
Timer t (CrcFlag,RxEoc,DataSize,SysRst,RxAddrEn);
CrcComp m (Intr,CRC,RxCRC,RxCrcEn,SysRst);
//************* Functional Description ***********************

endmodule

6.3 Serial Interface Engine

Module Name is Serial Interface Engine. File Name is Comm.V.

This module is an integration of both receiver and transmitter. This module is tested by

connecting transmitter serial output to receiver serial input and all the results are verified.

Input Ports are DataIn (16 bit Input Data), Addr (2 bit Address),

TxEn (Transmitter Enable), Wr (Write Signal),

Rd (Read Signal), SysClk (System Clock),

SysRst (System Reset)

Output Ports are RxFifoOut (16 bit FIFO Output), DevAddr (4 bit Device Address)

RxFull (FIFO Full Signal), RxHalf (FIFO Half Signal),

RxEmpty (FIFO Empty Signal), Intr (Interrupt)

Source Code for Serial Interface Engine Module Comm.V

Module Name is Serial Interface Engine
Module Description

101

module Sie
(SysClkSysRstAddr,DataInWrTxEnRdRxFifoOutDevAddrRxFull,RxHalfRxEmptyIntr);
//************* Input/Output Declarations ********************
input SysClk,SysRst,Wr,TxEn,Rd;
input [1:0] Addr;
input [15:0] DataIn;

output [15:0] RxFifoOut;
output [3:0] DevAddr;
output RxFull,RxHalf,RxEmpty,Intr;
//************* Wire/Reg Declarations ************************

wire SysClk,SysRst,Wr,TxEn,Rd;
wire [1:0] Addr;
wire [15:0] DataIn;

wire [15:0] RxFifoOut;
wire [3:0] DevAddr;
wire RxFull,RxHalf,RxEmpty,Intr;

wire nrziout;

//************* Functional Description ***********************

Tx t (SysClk,SysRst,Addr,DataIn,Wr,nrziout,TxEn);
Rx r (SysClk,DevClk,Rd,RxFifoOut,SysRst,nrziout,DevAddr,RxFul,RxHalf,RxEmpty,Intr);

endmodule
//************ Simulation Module ****************************

module SieTest;
//************ Wire/Reg Declarations ************************

reg SysRst,Wr,TxEn,Ld; //addedf Ld
reg [1:0] Addr;
reg [15:0] DataIn;
wire SysClk;

wire [15:0] RxFifoOut;
wire [3:0] DevAddr;
wire RxFull,RxHalf,RxEmpty,Intr;

Sie s (SysClk,SysRst,Addr,DataIn,Wr,TxEn,Rd,RxFifoOut,DevAddr,RxFull,RxHalf,RxEmpty,Intr):
Clock c (SysClk);

initial
begin

SysRst=1; DataIn=16'h00aa; Addr=2'b00;TxEn=1'bO;Wr=1'b 1; // added Ld

$dumpvars(l,s.t.SysClk,s.t.SysRst,s.t.Dataln,s.t.nrziout,s.t.TxEn,s.r.f.RxFifoIn,s.r.RxFull,s.r.RxHalf,s.r.1Rx
Empty,s.r.Intr,s.r.DevAddr);

$dumpfile("sie.dmp");

102

$monitor (" DataIn=%h nrziout=%b Eoc=%b RxEoc=%b PDataIn=%h RxFifoIn=%h Sin=%h
Addr=%h",Dataln,s.t.nrziout,s.t.p.Eoc,s.r.s.RxEoc,s.t.m.PDataIn,s.r.d.RxFifoIn,s.r.s.Sin,DevAddr, $time)
#2 SysRst=0;

#2 SysRst=1;
#10 DataIn=16'h0013; Addr=2'b01;
#10 DataIn=16'h0001; Addr=2'b10;
#2 DataIn=16'haaaa; Addr=2'b 11;
#10 DataIn=16'h5555; TxEn=1'b1;
#10 DataIn=16'h0000; TxEn=1'bO;
#10 DataIn=16'hffff;
#10 DataIn=16'h0000;
#10 DataIn=16'hffff;
#10 DataIn=16'h0000;
#10 DataIn=16'hffff;
#10 DataIn=16'h0000;
#10 Dataln= 16'hffff;

#10 DataIn=16'h0000;
#10 DataIn=16'hffff;
#10 DataIn=16'h0000;
#10 Dataln=I6'hffff;
#10 DataIn=16'h0000;
#10 DataIn=16'hffff;
Wr=1'bM;
#2720 $finish;
end
endmodule

103

Chapter 7 Results and Conclusion

7.1 Simulated Waves of the Serial Interface Engine (SIE)

FYe Ed& Se ar, Prolect Wnd-w Help

Sys Rst

nrziout
D)vAddr[3 0} <.

RxEmpty e
RxFu r

RxFifoIn[5 1]

Figure7.1 Simulated Waves of the final module

Contd.

File Ed Search Proect Wkdw Help

. ; M- H Uljntjt ed '

Rx~HaltRxioc h 1,C= OjZ9(

Figure 7.2 Simulated Wave files of the final module

104

Contd.

Fe Edit Search Projed Window Help

-f H Untitled "

C C4 s C1-C290 S

Dataln[15:FF <F

SysCk kSi Te

SysRst KSi IT.

nrziut :SgE

Dev~ddr3fiI K
Intr ~S ues,s

RxEmpty Sie

IN~ull (Sieti

RxFifaIn115:01

Figure 7.3 Simulated Waves of the final module

105

e - I ionsr--]

File Edit Search Project Window Help

Veriwell -k C \Documents and Settings\hstnlab\Desktop\WINDOWS\DESKTOP\baser\
Veriwell warning: Cannot open log file 'C:\Documents and Settings hstnlab\D
VeriWell: warning: Cannot open key file 'C:\Documents and Settings\hstnlab\D
VeriWell for Vin32 HDL <Version 2.1.1> Sat Jan 11 17:39:05 2003

This is a free version of the VeriWell for Win32 Simulator
Distribute this freely; call 1-800-VERIVELL for ordering information
See the file "Ireadme.lst" for more informationi

Copyright (c) 1993-96 Wellspring Solutions, Inc.
All rights reserved

Memory Available: 0
Entering Phase I...
Compiling source file Buffer.V
Compiling source file Clock.V
Compiling source file Control.V
Compiling source file Rx.V
Compiling source file Crc.V
Compiling source file : Deco.V
Compiling source file Mux.V
Compiling source file : RxkddrDec.V
Compiling source file RxControl.V
Compiling source file RxCrc.V
Compiling source file RxCrcComp.V
Compiling source file : RxDmux V
Compiling source file RxFIFO.V
Compiling source file Timer.V
Compiling source file TxFIFO.V
Compiling source file PtoS2.V
Compiling source file : Sei_test.V
Compiling source file Txl.V
Compiling source file : stop_l.V
The size of this model is [54%, 86%] of the capacity of the free version

Entering Phase II...
Entering Phase III
2 warnings in compilation
No errors in compilation
Top-level modules:

Figure 7.4 VeriWell Console for the SIE

106

Fie Edit Search Proec Window Help

:;ieTest

DataIn=00aa nrziout=x Eoc=x RxEoc=x PDataIn=xxxx RxFifoIn=xxxx Sin=x Addr=x 0
DataIn=00aa nrziout=z Eoc=O RxEoc=0 PDataIn=zzzz RxFifoIn=zzzz Sin=x Addr=0 2
DataIn=0013 nrziout=z Eoc= RxEoc=0 PDataIn=zzzz RxFifoIn=zzzz Sin=x Addr=0 14
DataIn=0001 nrziout=z Eoc=0 RxEoc=0 PDataIn=zzzz RxFifoIn=zzzz Sin=x Addr=0 24
DataIn=aaaa nrziout=z Eoc=0 RxEoc=0 PDataIn=zzzz RxFifoIn=zzzz Sin=x Addr=0 26
DataIn=5555 nrziout=z Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=x Addr=0 36
DataIn=0000 nrziout=z Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=x Addr=0 46
Dat.aIn=0000 nrziout=1 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=x Addr=0 50
DataIn=ffff nrziout=1 Eoc=0 RxEoc=0 PDataIn=00aa ExFifoIn=zzzz Sin=x Addr=0 56
DataIn=ffff nrziout=1 Eoc=0 RxEoc=0 PDataIn=00aa ExFifoIn=zzzz Sin=0 Addr=0 60
Dataln=0000 nrziout=1 Eoc=0 RxEoc=O PDataIn=00aa RxFifoIn=zzzz Sin=O Addr=0 66
DataIn=0000 nrziout=0 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=1 Addr=0 70
DataIn=ffff nrziout=0 Eoc=O RxEoc=O PDataIn=00aa RxFifoIn=zzzz Sin=1 Addr=O 76
DataIn=ffff nrziout=1 Eoc= RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=0 80
Dataln=0000 nrziout=1 Eoc=O RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=O 86
DataIn=ffff nrziout=1 Eoc=O RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=0 96
DataIn=ffff nrziout=0 Eoc= xEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=1 Addr=0 100
DataIn=0000 nrziout=0 Eoc=O RxEoc=0 PDataIn=00aa ExFifoIn=zzzz Sin=1 Addr=0 106
DataIn=0000 nrziout=0 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=0 110
DataIn=ffff nrziout=0 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=0 116
DataIn=ffff nrziout=1 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=1 Addr=0 120
DataIn=0000 nrziout=1 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=1 Addr=0 126
DataIn=0000 nrziout=1 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=0 130
DataIn=ffff nrziout=1 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=0 136
DataIn=ffff nrziout=0 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=1 Addr=0 140
DataIn=0000 nrziout=0 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=1 Addr=0 146
DataIn=0000 nrziout=1 Eoc=0 RxEoc=0 PDataIn=00aa ExFifoIn=zzzz Sin=0 Addr=0 150
DataIn=ffff nrziout=1 Eoc= RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=0 156
DataIn=ffff nrziout=0 Eoc=O RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=0 160
DataIn=0000 nrziout=0 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=0 166
DataIn=0000 nrziout=1 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=0 170
DataIn=fff f nrziout=1 Eoc=0 RxEoc=0 PDataIn=00aa ExFifoIn=zzzz Sin=0 Addr=0 176
DataIn=ffff nrziout=0 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoln=zzzz Sin=0 Addr=0 180
DataIn=ffff nrziout=1 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=0 190
DataIn=ffff nrziout=0 Eoc=0 RxEoc=0 PDataIn=00aa ExFifoIn=zzzz Sin=0 Addr=0 200
Dataln=fff f nrziout=1 Eoc=O RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=0 210
DataIn=fff f nrziout=0 Eoc=0 RxEoc=0 PDataIn=00aa RxFifoIn=zzzz Sin=0 Addr=0 220
DataIn=fff f nrziout=1 Eoc=1 RxEoc=0 PDataIn=aaaa RxFifoIn=zzzz Sin=0 Addr=0 230
Dqtpln'f f ff nrziat'1 En'=0 Fsnc=0 Pfataln'aaaa RsFifoIn'zzzz Sin=0 kdr'0 23

Figure 7.5 VeriWell Console for the SIE

107

* File Edit Search Project Window Help

DataIn=ffff nrziout=1 Eoc=O RxEoc=O PDataIn=aaaa ExFifoln=zzzz Sin=O Addr=O 235
******DevAddr=0000 DataSize=000
******DevAddr=zzzz DataSize=zzz
DataIn=ffff nrziout=0 Eoc=0 RxEoc=1 PDataIn=aaaa RxFifoIn=zzzz Sin=0 Addr=x 240

******DevAddr=xxxx DataSize=xxx
Dataln=fff f nrziout=0 Eoc=0 RxEoc=1 PDataIn=aaaa ExFifoln=zzzz Sin=O Addr=a 245
DataIn=ffff nrziout=0 Eoc=O RxEoc=O PDataln=aaaa RxFifoIn=zzzz Sin=0 Addr=a 250
DataIn=ffff nrziout=1 Eoc=O RxEoc=0 PDataIn=aaaa RxFifoIn=zzzz Sin=1 Addr=a 260
Dataln=ffff nrziout=1 Eoc=0 RxEoc=0 PDataIn=aaaa RxFifoIn=zzzz Sin=O Addr=a 270
DataIn=ffff nrziout=0 Eoc=O ExEoc=O PDataIn=aaaa RxFifoIn=zzzz Sin=1 Addr=a 280
Dataln=ffff nrziout=1 Eoc=0 RxEoc=0 PDataIn=aaaa RxFifoIn=zzzz Sin=j Addr=a 290
DataIn=ffff nrziout=0 Eoc=0 RxEoc=0 PDataIn=aaaa RxFifoIn=zzzz Sin=1 Addr=a 310
DataIn=ffff nrziout=0 Eoc=O RxEoc=0 PDataln=aaaa RxFifoIn=zzzz Sin=0 Addr=a 320
DataIn=ffff nrziout=1 Eoc=0 RxEoc=0 PDataIn=aaaa RxFifoIn=zzzz Sin=1 Addr=a 330
DataIn=ffff nrziout=1 Eoc=0 RxEoc=0 PDataIn=aaaa ExFifoIn=zzzz Sin=O Addr=a 340
DataIn=ffff nrziout=0 Eoc=0 RxEoc=0 PDataIn=aaaa ExFifoIn=zzzz Sin=1 Addr=a 350
DataIn=ffff nrziout=1 Eoc=0 RxEoc=0 PDataIn=aaaa ExFifoIn=zzzz Sin=O Addr=a 360
DataIn=ffff nrziout=0 Eoc=O RxEoc=O PDataIn=aaaa ExFifoIn=zzzz Sin=1 Addr=a 380
DataIn=ffff nrziout=0 Eoc=O ExEoc=O PDataln=aaaa RxFifoIn=zzzz Sin=O Addr=a 390
DataIn=ffff nrziout=1 Eoc=0 RxEoc=0 PDataIn=aaaa RxFifoIn=zzzz Sin=1 Addr=a 400
DataIrn'ffff nrziout=1 Eoc=i ExEoc=O PDataIn=5555 RxFifoIn=zzzz Sin=O Addr=a 410
DataIn=ffff nrziout=1 Eoc=O RxEoc=O PDataIn=5555 ExFifoln=zzzz Sin=0 Addr=a 415
DataIn=ffff nrziout=0 Eoc=0 RxEoc=1 PDataIn=5555 ExFifoIn=00aa Sin=1 Addr=a 420
DataIn=ffff nrziout=0 Eoc=0 RxEoc=1 PDataln=5555 RxFifoln=aaaa Sin=1 Addr=a 425
DataIn=ffff nrziout=0 Eoc=O RxEoc=0 PDataIn=5555 RxFifoln=aaaa Sin=0 Addr=a 430
DataIn=ffff nrziout=1 Eoc=O RxEoc=O PDataIn=5555 RxFifoIn=aaaa Sin=1 Addr=a 440
DataIn=ffff nrziout=1 Eoc=O RxEoc=O PDataIn=S555 RxFifoIn=aaaa Sin=O Addr=a 450
DataIn=ffff nrziout=0 Eoc=O RxEoc=O PDataIn=5555 RxFifoIn=aaaa Sin=1 Addr=a 460
DataIn=ffff nrziout=0 Eoc=O RxEoc=O PDataIn=5555 RxFifoln=aaaa Sin=O Addr=a 470
DataIn=ffff nrziout=1 Eoc=O RxEoc=0 PDataIn=5555 RxFifoIn=aaaa Sin=1 Addr=a 480
DataIn=ffff nrziout=0 Eoc=0 RxEoc=0 PDataIn=5555 ExFifoIn=aaaa Sin=O Addr=a 490
DataIn=ffff nrziout=1 Eoc=O ExEoc=O PDataIn=5555 RxFifoIn=aaaa Sin=1 Addr=a 510
DataIn=ffff nrziout=1 Eoc=0 RxEoc=O PDataIn=5555 RxFifoln=aaaa Sin=0 Addr=a 520
DataIn=ffff nrziout=0 Ecc=O RxEoc=0 PDataln=5555 RxFifoIn=aaaa Sin=1 Addr=a 530
DataIn=ffff nrziout=0 Eoc=O RxEoc=O PDataIn=5555 RxFifoIn=aaaa Sin=O Addr=a 540
Dataln=fff f nrziout=1 Eoc=O RxEoc=O PDataIn=5555 ExFifoIn=aaaa Sin=1 Addr=a 550
Dataln=ffff nrziout=0 Eoc=0 RxEoc=O PDataIn=5555 RxFifoIn=aaaa Sin=O Addr=a 560
Dataln=ffff nrziout=l Eoc=O RxEoc=O PDataIn=5555 RxFifoIn=aaaa Sin=l Addr=a 580
Dataln=ffff nrziout=1 Eoc=O ExEoc=O PDataIn=SS5 RxFifoIn=aaaa Sin=O Addr=a 590
DataIn=ffff nrziout=0 Eoc=1 ExEoc=O PDataIn=0000 RxFifoIn=aaaa Sin=1 Addr=a 600
DataIn=ffff nrziout=0 Eoc=0 ExEoc=0 PDataIn=0000 RxFifoIn=aaaa Sin=1 Addr=a 605

Figure 7.6 VeriWell Console for the SIE

108

7.2 Conclusion

In this thesis, hardware is designed using the VLSI techniques, which is a logical

design of communication block to show the data communication of binary signals. The

design considers the various aspects for providing reliable and effective digital data

transmission in the hardware. It employs control signals in a very effective manner to

integrate the functioning of various modules. Though the model designed is a part of an

USB it can also be used as an interfacing block in any device-connecting host with

peripheral devices. Unlike, USART and UART, this device can interface host with more

than one device. The design shows that it can connect 16 devices. The device is a full

duplex where both the host and the peripheral devices can communicate signals at the

same time.

In addition some effective Data Communication techniques are employed in the

design. They are

" Generation of bit patterns in an optimal manner

" Use of CRC, Bitstuffing and NRZ techniques

" Synchronization of Clock and Data

" Effective use of control signals like Reset and Resume signals.

109

7.3 Future work

" Different encoding schemes can be used like that of differential encoding.

" The use of different Simulation environment like using Verilog-XL by Cadence

Design Systems, inc. Active HDL by Aldec for better Designing.

" Usage of Improved algorithms to realize the complexity of Functions and

to reduce the number of modules by integrating various Functions in the

Algorithms.

" Implementations of communication protocols like Higher Data Level Control.

" Performance of the Hardware is best utilized in association with Suitable software

like Device Drivers.

110

References

[1] William Stallings, "Data and Computer Communications", Prentice Hall, 6th
Edition (September 2000).

[2] Samir Palnitkar, "Verilog HDL A Guide to Digital Design and Synthesis".
Prentice Hall, 2nd Edition (February 1996).

[3] Tom Sheldon "Encyclopedia of Networking & Telecommunications", Tata
McGraw-Hill, 2nd Edition (May 2001)

[4] Universal Serial Bus Specifications, Revision 2.0 April 27, 2000.
http://www.usb.org/

[5] Don Anderson, Dave Dzatko, Inc Mindshare. "Universal Serial Bus System
Architecture", Addison-Wesley, 2 "d Edition (April 2001).

[6] Wayne Wolf. " Modern VLSI Design", Prentice Hall, 3 rd Edition (January 2002).

[7] Alexander, M. J., and Robins, G. " New Performance-Driven FPGA Routing
Algorithms, "IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 15, No. 12, December 1996, pp. 1505-1517.

[8] V. Betz and J. Rose, "Circuit Design, Transistor Sizing and Wire Layout of FPGA
Interconnect," IEEE Custom Integrated Circuits Conference, San Diego, CA.
May 1999, pp. 171 - 174.

[9] History of VLSI
http://www.doe.carleton.ca/-rmason/Teachiing/489-a.pdf

[10] Design of VLSI Systems
http://vlsi.wpi.edu/webcourse/ch0Il/ch0 1 .html

[1 1] Zainalabedin Navabi. "VHDL, Analysis and Modeling of Digital Systems".
McGraw-Hill, 2"d Edition (December 1997).

[12] Alexander, M. J., Cohoon, J. P., Ganley, J. L., Robins, G., Placement and Routing
for Performance-Oriented FPGA Layout, VLSI Design: an International Journal

of Custom-Chip Design, Simulation, and Testing, Vol. 7, No. 1, 1998.

[13] Steven M Rubin, "Computer Aids for VLSI Design", Addison-Wesley, 21"
Edition (June 1987).

111

	Florida International University
	FIU Digital Commons
	1-15-2003

	Logical simulation of communication subsystem for Universal Serial Bus (USB)
	Terikere Badarinarayana
	Recommended Citation

	tmp.1402000808.pdf.C92aA

