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ABSTRACT OF THE THESIS

IDENTIFICATION OF GENES DOWNSTREAM OF ENDOTHELIN-3 SIGNALING:

CHARACTERIZATION OF WSB1 AND SPC12

by

Aniveny Ayala

Florida International University, 2001

Miami, Florida

Professor Lidia Kos, Major Professor

Signaling of endothelin-3 (Edn3) through its receptor, endothelin receptor B

(EdnrB), has been shown to be indispensable for the development of certain neural crest

derivatives. Since no research has been directed to investigate what the downstream

targets of this signaling pathway are, the purpose of this study was to identify and

characterize genes that are transcriptionally regulated by Edn3 signaling.

Data from Differential Display RT-PCR of Edn-3 induced cDNA vs. non-induced

cDNA obtained from primary neural crest cultures was analyzed. Thirty bands that were

differentially expressed were sequenced and submitted for a homology search (BLAST).

Among the genes identified were WSB 1 (a member of the SOCS family of negative

regulators) and SPC 12 (the smallest subunit, 12kDa, of mammalian signal peptidase).

Using whole-mount in-situ hybridization, the expression patterns of EdnrB,

WSB 1 and SPC 12 were characterized. WSB 1 and SPC 12 expression patterns were

found to overlap with that of EdnrB, suggesting that Edn3 might regulate the

transcription of these genes in specific neural crest derived lineages.
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I. INTRODUCTION

Hirschsprung disease, a congenital disease characterized by lack of enteric

ganglia and abnormal pigmentation pattern, has an incidence of 1:5000 in live births.

People suffering from this disease show patches of skin with no pigment and develop

megacolon as a result of the lack of innervation of their distal colon, indicating that the

normal development of melanocytes (pigment producing cells) and enteric neurons has

been altered. When the loci of genes mutated in Hirschsprung disease cases were

identified, a new door for research was opened. Mutations in the loci coding for

Endothelin-3 (Edn3) and its receptor, endothelin receptor B (EdnrB) have since been held

responsible for the aberrant phenotype and the signaling cascade they trigger considered

essential for the proper development of the neural crest derivatives affected: melanocytes

and enteric neurons. Many studies have demonstrated that addition of Edn3 to neural

crest cultures increases proliferation and might favor differentiation of melanocytes but

might also delay the differentiation of enteric neurons. In situ-hybridization studies of

the expression pattern of EdnrB and Edn3 during embryogenesis have shown that cells

from neural crest derived lineages express EdnrB while Edn3 is expressed in the

environment through which these cells migrate. Transgenic studies attempting to rescue

the wild type phenotype in mutant mice and rats (suffering from aganglionosis and

pigmentation defects) had Edn3 and EdnrB loci placed under control of promoters such

as dopamine-p-hydroxylase (DPH) and tetracycline-dependent transactivators (tTa or

rtTA), respectively. They were able to determine that the Edn3/EdnrB signaling pathway

is required from lOdpc (days post coitus) through 12.5dpc for the proper development of



melanocytes and enteric neurons, which is consistent with previous understanding that

melanoblasts and enteric neuroblasts begin their migration at about the same time.

Moreover, Edn3 has been widely hypothesized to prevent immature differentiation of

melanoblasts and neuroblasts until they reach their final destination. However, there has

not been any active research investigating what the downstream targets of the

Edn3/EdnrB signaling pathway are at a genetic and molecular level. Therefore, the

purpose of study was to identify and characterize genes that are transcriptionally

regulated by the biochemical pathway that Edn3 signaling elicits.

II. LITERATURE REVIEW

1. The neural crest.

During the early steps of embryogenesis, a large central region of the ectoderm

(neural plate) thickens, rolls up into a tube and pinches off from the rest of the ectodermal

sheet (epidermis) in a process known as neurulation. The newly formed neural tube gives

rise to the central nervous system. Following neurulation, a distinct group of cells

originates at the dorsalmost region of the neural tube, in between the neural plate and the

epidermis. These cells, widely known as neural crest cells, delaminate and subsequently

migrate throughout the vertebrate embryo, ultimately differentiating into numerous cell

types along their characteristic migratory paths (Weston, 1963).

Neural crest cells (NCC) are initially pluripotent, yielding a large variety of

derivatives including melanocytes, PNS neurons, glia, endocrine cells, bone, cartilage,

chromaffin cells (reviewed by Le Douarin, 1993) and smooth muscle cells (reviewed by

Anderson, 1997). However, their migratory behavior, together with the axial level at
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Figure 1. The Neural Crest. Diagramatic representation of the
pathways that trunk neural crest cells (red) follow as they migrate
from the dorsalmost region of the closing neural tube (NT). Also
labeled are the ectoderm (Ec), dermomyotome (DM), sclerotome
(Scl), notochord (No) and the developing aorta (Ao) (from
Gilbert, 2000).

which they arise and the final environment to which their cell derivatives localize are

very closely related to their diversification (Le Douarin, 1986). For example, only

cephalic neural crest forms the dermis, the membrane, cartilage, and bones of the skull

vault, the skull basis, and the face (reviewed by Le Douarin, 1993). NCCs arising at the

level of the hindbrain give rise to bone, cartilage and sensory neurons; and, smooth

muscle, enteric neurons and endocrine cells (thyroid) are derivatives of vagal neural crest

only (Le Douarin, 1982). Trunk NCCs differentiate into neurons and glia of sensory and

autonomic ganglia (reviewed by Groves and Anderson, 1996) and follow two major

pathways of migration, a ventral pathway through the rostral half of the somites and a
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dorsolateral pathway between the dermomyotome and the epidermis (Figure 1).

Interestingly, melanocyte and glia (Schwann cells) are common derivatives of all axial

levels.

Classical embryological studies performed mainly in avian embryos and clonal

studies have shown that the process of commitment and differentiation of the neural crest

cells is gradual, occurring as they migrate and reach their final targets (Le Douarin et al.,

1994). A variety of precursors with more restricted potentials arise along the way, such

as one committed only to giving rise to glia and melanocytes (Le Douarin et al., 1994;

Gilbert, 1997).

The differentiation of NCCs involves an interaction between intrinsic and

extrinsic signals. Extrinsic signals are usually molecules that affect cell-intrinsic

regulators that in turn modulate how the cell might respond to the extracellular

environment (Groves and Anderson, 1996). Extrinsic signals can act as instructive or

permissive factors (Gilbert, 2000). Instructive factors directly influence the fate a cell

acquires during its process of differentiation. An example of an instructive factor is

BMP2 (bone morphogenetic factor 2), a member of the TGFP (transforming growth

factor-P) superfamily, which forms neurons at the expense of glial cells (Shah et al.,

1996). Permissive factors, such as fibronectin, are those which provide the right

environment without directing a cell to its final fate. For example, many cells require a

solid substrate containing fibronectin or laminin in order to develop and grow.

Fibronectin or laminin do not change the type of cell that is produced, but rather allow

the cell to express what has been determined to be expressed.
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Intrinsic regulation is based on the activity of transcription factors which trigger a

cascade of regulatory genes that can help specify cell fate in general, and cell identity

more precisely (Jan and Jan, 1995).

An alteration of any of these regulatory pathways, such as naturally occurring or

targeted mutations, could possibly cause a defect in various neural crest-derived cell

lineages. Developmental biologists use these mutations to study the different steps

involved in neural crest development: determination, migration, colonization,

differentiation, and survival (Le Douarin et al., 1994). For instance, mutations present in

genes encoding the c-Kit receptor tyrosine kinase and its extracellular ligand, Steel factor,

result in fertility and hematopoietic defects as well as a 'patchy' phenotype, with patches

of non-pigmented skin due to a failure in melanocyte precursors survival. Mice

displaying these phenotypes have been named Dominant white spotting (W) and Steel

(Sl), respectively (Jackson, 1991). Mutations in the c-Ret receptor tyrosine kinase result

in a megacolon phenotype due to a failure of the enteric ganglion neurons to populate the

distal part of the gut (Schuchardt et al., 1994). Mutations in transcription factors such as

Pax3 result in hypopigmentation, deafness, skeletal muscle and neural tube defects in

Splotch mice (Sp). A mutation in Mitf (also a transcription factor) has also been found to

be responsible for hypopigmentation, deafness and retinal defects of Micropthalmia (Mi)

mice (reviewed by Barsh, 1996; Jackson, 1997); and, mutations affecting the ErbB family

of receptors (ErbB2 and ErbB3) and their ligand neuregulin-1, result in severe deficits of

Schwann cells, another NCC derivative (Riethmacher et al., 1997).

All these mutations give us a sense of the importance of ligands and receptors in

initiating a flow of biochemical reactions in order for the cell to respond to its
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surrounding environment. When one of these components is ablated, the signaling

pathway to which it belongs is interrupted and, therefore, the normal development and

differentiation of neural crest cells that are dependent on this pathway are also affected.

Such is also the case of other two mutations that have been linked to neural crest

derivatives defects. Lethal spotting (is) and piebald-lethal (sl) mice are a result of

mutations in the genes encoding Endothelin-3 (Edn3) and its receptor Endothelin

receptor-B (EdnrB), respectively. Both mutant phenotypes are characterized by an

abnormal pigmentation pattern with varying degrees of pigment loss and an aganglionic

megacolon as a result of faulty melanocyte development and a defect in neural crest

derived neuronal colonization of the hindgut (Baynash et al., 1994; Hosoda et al., 1994).

EdnrB mutations have also been identified in the rat as responsible for the spotting lethal

condition (Ceccherini et al., 1995; Gariepy et al., 1996; Shin et al., 1997) and in the horse

for the lethal white foal syndrome (Santschi et al., 1998). In humans, EDNRB, has been

found to be mutated in 5% of the cases of Hirschsprung disease Type II characterized by

almost identical phenotypes as those found in the mouse (Chakravarti, 1996;

Puffenberger et al., 1994). Homozygous mutations in EDN3 have been linked to a

combination of Waardenburg syndrome Type II and Hirschsprung disease phenotype,

referred to as Shah-Waardenburg syndrome. Patients with Shah-Waardenburg syndrome

exhibit depigmentation as well as deafness (Hofstra et al., 1996).

2. Endothelin-3 and Endothelin Receptor-B.

Endothelins were first identified when a potent vasoconstrictor precursor peptide

was isolated from culture supernatant of porcine aortic endothelial cells. This precursor
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peptide, preproendothelin, undergoes proteolytical processing producing a mature 21-

amino acid peptide (endothelin) that was found to be secreted by endothelial cells once

they are exposed to various physical and chemical stimuli such as noradrenaline,

thrombin, hypoxia and mechanical stretch (Yanagisawa et al.,, 1988).

The porcine preproendothelin cDNA was cloned and sequenced (Yanagisawa et

al.1, 1988) and shortly after, both human (Itoh et al., 1988) and rat (Yanagisawa et al. 2 ,

1988) preproendothelins were also cloned and sequenced. Originally, the differences

among them were thought to be due to species variation until 1989 when Inoue et al.

made a distinction among three isopeptides encoded by different genes in the mammalian

genome but all with 'endothelin-like' sequences. The original endothelial derived

porcine endothelin and the human endothelin were named "endothelin-1". The rat

endothelin was named "endothelin-3" and a human endothelin-3 was later cloned (Bloch

et al., 1989). The third endothelin gene sequence discovered by this group was named

"endothelin-2".

Endothelin-1, endothelin-2 and/or endothelin-3 found in humans, pigs, rats and

later in mice and dogs share the same disulfide bonding. Although all of them are 21-

residue peptides, they differ from each other in amino acid composition (reviewed by

Phillips et al., 1992). For example, endothelin-1 has the same amino acid sequence in all

five species mentioned before. Mouse and human endothelin-2 differ by only one amino

acid but differ from endothelin-1 by three and two amino acids respectively. Endothelin-

3 from rats and humans have identical amino acid sequences but differ from endothelin-1

by six amino acids (Phillips et al., 1992).
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Numerous studies identified two subtypes of receptors for the three types of

endothelin. Endothelin receptor A (EdnrA) was found to have high affinity for

endothelin-1 and endothelin-2 but not endothelin-3, whereas endothelin receptor B

(EdnrB) can bind all three types of endothelin (Takayanagi et al., 1991). EdnrB and

EdnrA were further characterized as G-coupled seven transmembrane receptors (Hosoda

et al., 1994).

Despite the fact that all three types of endothelin act as vasoconstrictors, it has

been established that they have different functions during embryonic development. For

instance, signaling of Edn-1 through EdnrA plays an important role in the development of

cardiac neural crest cells. Embryos deficient for both EdnrA and Edn-1 display defects in

craniofacial structures, great vessels, and cardiac outflow tract (Clouthier et al., 1998;

Kurihara et al., 1994). Also, it has been found that the Edn-1/EdnrA signaling pathway

plays an essential role in aortic patterning by affecting postmigratory cardiac neural crest

cell development (Yanagisawa et al., 1998).

Similarly to the Edn-1/EdnrA signaling pathway, the Edn-3/EdnrB signaling

pathway has been found to be indispensable for the proper embryonic development of

neural crest derivatives such as, melanocytes and enteric neurons. As mentioned before,

mutations in mouse Edn3 and EdnrB result in the lethal spotting (ls) and piebald lethal

(s) phenotypes, respectively, both of which exhibit lack of enteric ganglia and abnormal

pigmentation. Since the development of these cell types is affected by the disruption of

the Edn3/EdnrB signaling pathway, the specific stages in development in which it is

necessary as well as its mode of action, at a cellular level and at a molecular level, are

still a matter of investigation.
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Analysis of the temporal and spatial pattern of Edn3 and EdnrB in mouse

embryos have shown that Edn3 is expressed in distal and proximal gut mesenchyme

throughout embryonic days 10-14 (10-14dpc) with stronger expression in the caecum

(10-12dpc) at about the same time that EdnrB expressing neural crest cells arrive at the

site (Leibl, et al., 1999). Studies on EdnrB expression on avian neural crest have shown

that it is expressed by cells of the neuroepithelium just as the neural tube begins to fold at

the level of the mesencephalon. It was also noted that EdnrB expression was especially

intense in the neural folds that later yield neural crest cells, depending on the rostro-

caudal level considered (Nataf et al., 1996). Later in development EdnrB positive cells

were found in dorsal root ganglia (DRG) and sympathetic ganglia (SG) at the trunk level,

in cranial nerves and associated sensory ganglia at the cephalic level, in Schwann cells

lining the peripheral nerves and in the adrenal medulla up to E8 in quail (Nataf et al.,

1996). EdnrB was also found to be expressed by vagal neural crest cells during their

migration and after they formed the Auerbach's and Meissner's plexuses of the gut wall

and in the post-umbilical gut caudal to the ileocaecal junction from E6 onward (Nataf et

al., 1996) during the colonization of the gut as described previously (Le Douarin and

Teillet, 1973). The expression pattern of EdnrB in mouse embryos is similar to that of

avian embryos (Southard-Smith et al., 1998) but a detailed temporal analysis is missing.

Since EdnrB and Edn3 are expressed from E8 onwards, the phenotypes observed

in the EdnrB/Edn3 mutants could be due to the disruption of their signaling pathway at

any of the stages of melanocyte and enteric development. Therefore, the EdnrB/Edn3

signaling pathway may be affecting neural crest precursors as they start migrating, after

their lineages have segregated or after they have reached their final targets. Early studies
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on piebald mice conducted by Mayer (1965) in which he grafted embryonic neural tube

and skin of piebald and wild type mouse embryos to White Leghorn chick embryos,

demonstrated that melanoblasts differentiate only in the tissue environment of hair

follicles. He proposed that the 'piebald gene' (now identified as mutant EdnrB) renders

melanoblasts more sensitive to different levels of melanogenic stimuli and, therefore,

piebald melanoblasts would not be able to differentiate unless they find themselves in an

environment of high melanocytic activity such as the hair follicle. In order to support this

hypothesis, Mayer (1967) conducted a second experiment to test if the lack of pigment

observed in piebald mice was a result of a failure in migration or as he had proposed

before, due to a failure in melanoblast differentiation. Using the same technique, he

grafted 9dpc neural tube and 11dpc skin explants from wild type and piebald mouse

embryos into combination to chick emryos. After 15 days of incubation he examined

pigment production and migration of neural tube cells using tritiated thymidine and

autoradiography. Grafts of wild-type neural tubes and wild-type skin produced

pigmented hair whereas grafts of piebald neural tubes and piebald skin produced pigment

free hair. However, the pattern of migration of labeled wild type melanoblasts was

identical to that of piebald melanoblasts which favors Mayer's hypothesis that the coat

spotting present in piebald mice is due to a failure of melanoblasts differentiation in

certain tissue environments, not a failure in their migration.

In a more recent study conducted by Pavan and Tilghman (1994), melanocyte

development in piebald lethal embryos was examined using tyrosine related protein-2

(Trp-2) as an early maker for melanoblasts. They found that the number of Trp-2+ cells

was significantly lower in piebald embryos at 10.5dpc than in wild type embryos
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suggesting that this difference in number represents the earliest indication of the piebald

gene's activity and that the wild type gene (EdnrB) must act very early in melanocyte

development, before or at the same time as neural crest migration.

After the lethal spotting and the piebald lethal loci were identified (Edn3 and

EdnrB, respectively), numerous transgenic studies were directed to find out the time of

action of the genes involved in the development of the cell types affected (melanocytes

and enteric neurons). Transgenic studies using the human dopamine-p-hydroxylase

(DPH) promoter' to direct expression of EdnrB in spotting lethal (sl/sl) rats demonstrated

that EdnrB is necessary for the development of enteric neurons at a different time than it

is for melanocytes. In this study, researchers were able to prevent aganglionosis but were

not able to prevent color coat spotting suggesting that the time of action of EdnrB on

enteric neurons happens after melanocytes have diverged from their common precursor

(Gariepy et al., 1998). In contrast with the previous study, a different group had the

EdnrB locus under the control of tetracycline-dependant transactivators, tTA or rtTA in

mice (Shin et al., 1999). This group was able to pin-point a specific time period during

which EdnrB expression is necessary for the regular development of both, melanoblasts

and enteric neurons. They found EdnrB expression is required between lOdpc and

12.5dpc for the development of enteric neurons and melanoblasts, which coincides with

the time when they begin migrating from the MSA (migrating stage area)2. To further

support Shin's conclusion, another group used a dopamine-p-hydroxylase (DPH)

D H activity begins at 9.5dpc, continues throughout gut colonization and persists postnatally in a subset
of enteric neurons.
2 The MSA (migrating stage area) is an area lateral to the neural tube where neural crest derived
melanoblasts presumably remain for 24 hours before they begin their migration (lOdpc) (Shin et al., 1999).
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promoter to control the expression of Edn3 and Ret (receptor tyrosine kinase), which has

also been identified as necessary for the development of enteric neural crest lineage

together with its ligand gdnf (glial-cell derived neurotrophic factor). When they used

homozygous lethal spotting (is/s) mouse embryos to determine if the transgene would

compensate for the Edn3 defficiency, they found that the DPH-Edn3 transgene was able

to prevent aganglionosis and piebaldism showing that the timing is the same for both

lineages, whereas DPH-Ret was not. They also found that Edn3 signaling is necessary

for enteric neuroblasts once they reach the gut and as they begin colonization, implying

that Edn3 might prevent precursor cells from differentiating until they reach their target

position (Rice et al., 2000).

Since Edn3 expression was localized to the environment surrounding NCCs

(Nataf et al., 1998), many studies were devoted to investigating what the effects of Edn3

would be in vitro, especially on melanocytes and enteric neurons, the two cell types

affected by mutations in Edn3 and EdnrB. Lahav et al. (1996), found that Edn3 acts as a

proliferating agent of avian NCCs, greatly increasing the number of melanocytes in

primary neural crest cultures. Similar results were obtained for mouse neural crest

cultures which showed that Edn3 induces the proliferation and aids in the survival of

melanocyte progenitors in conjunction with the signaling of steel factor through the c-kit

receptor (Reid et al., 1996). Their study also pointed out that Edn3 (but not Edni)

induces neural crest cells pigmentation suggesting that Edn3 plays a role in the final

differentiation of melanocytes. However, studies by Stone et al. (1997) using clonal

analysis, concluded that although there was an increase in the number of neural crest

cells, these were not only melanoblasts and melanocytes but also multipotent precursors
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yielding more than one cell type. Their results suggest that Edn3 acts on two types of

precursors: those giving rise to melanocytes, adrenergic cells and sensory-like cells, and

those giving rise to melanocytes and Schwann cells. Their results also suggest that Edn3

inhibits the final differentiation of precursor cells and prevents their loss of

developmental potential. This suggests that, in the case of melanoblasts, it keeps them

undifferentiated until they reach their final destination. Furthermore, a study conducted

by Opdecamp et al. (1998) revealed that melanoblasts did not differentiate or proliferate

unless subjected to treatment with any of the three types of endothelin. Once endothelins

were added to neural crest cultures the number of melanoblasts and melanocytes

increased significantly. This was consistent with an early finding that endothelins acted

on signal transduction and proliferation in human melanocytes based on the observation

that DNA synthesis as well as melanin synthesis (characteristics of a proliferative agent)

were stimulated by endothelins (Yada et al., 1991). Not only has Edn3 been shown to

increase the number of melanocytes, it has also been found to induce the reversion of

melanocytes to glia via a glia-melanocyte progenitor (Dupin et al., 2000). Nevertheless,

Wu et al. (1999) used crest derived fetal gut cells and demonstrated that Edn3 did not

have the same effect on mammalian precursors of enteric neurons. It actually decreased

the number of NC derived neurons and induced the development of enteric smooth

muscle. They proposed that Edn3 prevents immature differentiation of precursors until

they colonize the gut, an idea previously described by Stone et al. (1997).
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3. The question.

Although there is overwhelming data indicating that many neural crest derivatives

depend upon Edn3 signaling through EdnrB, there is little information on what happens

downstream of this pathway.

As mentioned before, EdnrB and EdnrA have been identified as seven-

transmembrane G-coupled receptors. Early studies on signal transduction in fibroblasts

found that Edni stimulated proliferation through transduction associated with inositol

phosphate (Kusuhara et al., 1989). Subsequent studies on human melanocytes found that

levels of inositol triphosphate (IP 3) and intracellular calcium were substantially increased

after the addition of Ednl, Edn2 and Edn3 to melanocytes cultures. In addition,

endothelins stimulated DNA and melanin synthesis as well as increase proliferation of

melanocytes (Yada et al., 1991). Later studies demonstrated that EdnrB binds all three

endothelins and is coupled to heterotrimeric G proteins (Aramori and Nakanishi, 1992;

Takagi et al., 1995). Vichi et al. (1999) showed that the seventh transmembrane domain

(TMD7) of EdnrB regulates the AP-1 3 (active gene regulation protein) transcriptional

3 Some G coupled receptors, such as EdnrB, activate phopho-inositide specific phopholipase C. This
enzyme cleaves PIP2 (phosphatidylinositol biphosphate) to generate IP 3 (inositol triphosphate) and DAG
(diacylglycerol). IP 3 leaves the plasma membrane and binds to Ca2+ channels in the endoplasmic reticulum
(ER) which triggers the release of Ca2+ into the cytosol. The biological significance of Ca2+ release is still
unclear. On the other hand, DAG can be further cleaved to arachidonic acid which can act as a messenger
or be used in the synthesis of eicosanoids. But most importantly, DAG activates a crucial serine/threonine
protein kinase, pkC, which phosphorylates selected proteins in the cell. The initial rise in cytosolic Ca2+
causes pkC to translocate from the cytosol to the cytoplasmic side of the plasma membrane where it is
activated by DAG, Ca2+ and phospholipid phophatidylserine. PkC then goes on to regulate transcription in
either of two ways: it can activate an inhibitor protein which releases a gene regulatory protein or it can
activate other kinases such as a MAP kinase which in turn activates regulatory gene proteins. One
important member of MAP kinase transcriptional activation is the complex formed by Elk-1 and serum
response factor (SRF) which is bound to the regulatory region of thefos gene. Activation of this complex
leads to transcription offos. Alternatively, MAP kinases can activate Jun proteins which combine with the
newly made Fos protein to form the active gene regulatory protein called AP-1. AP-1 turns on additional
genes, although its role in cell proliferation is still unclear (Alberts et al., 1994).
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pathway and that the cytoplasmic tail of the receptor is involved in selective Gq

coupling.4 It has also been found that the third intracellular loop of EdnrB is important for

Gi coupling involved in the inhibition of the cyclic AMP pathway, and that it does not

interfere with Gq coupling (Auricchio et al., 1999). More recent studies found that

optimal signal transduction through EdnrB depends on Gq coupling rather than on Go or

Gi coupling (Imamura et al., 2000). However, the most recent study on EdnrB signal

transduction showed that Gi coupling and therefore, cAMP activity, might also be

important for intracellular signaling leading to neural crest cell derived neuron and glial

differentiation (Fuchs et al., 2001).

In spite of all this information on EdnrB signal transduction, no research has been

conducted to identify downstream targets of EdnrB mediated signaling of Edn3.

Consequently, this study has been concentrated on identifying such transcriptionally

regulated targets which follow Edn3/EdnrB signaling.

4. Preliminary data: Differential Display

Differential Display (DD) RT-PCR was the method chosen to identify genes that are

transcriptionally modified downstream of the Edn3/EdnrB signaling pathway. Primary

neural tube cultures from 9.5dpc mouse embryos were established. Sixty-one cultures

were induced with Edn3 and eighty-four cultures were not induced. Both sets of cultures

were incubated at 37°C for a two-day period after which RNA was extracted.

Approximately 855ng of RNA were obtained from the non-induced cultures and

4 The major signaling pathway after EdnrB activation follows Gq couplin , increase in intracellular Ca>
concentrations and activation of a Jun N-terminal kinase (JNK). The minor signaling pathway involves
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8 8 8.75ng were obtained from cultures induced with Edn3. The extracted RNA was

subjected to RT-PCR using anchoring primers specially designed to bind to the poly-A

tail of mRNA and the immediate nucleotide upstream of the poly-A tail. These primers

were labeled H-T 11G, H-T 1 1A and H-T1 1 C. Each one of them contains 11 T's

(complementary to the poly-A tail) and an anchoring G, A, or C designed to bind a C, T,

or G, respectively, that might be found immediately upstream the poly-A tail.

The cDNA obtained from RT-PCR was then amplified using the same anchoring

primers used for the previous reaction together with arbitrary primers designed to bind

consensus promoter sequences. The eight arbitrary primers used were labeled AP,

through AP8 . Both sets of primers were part of a Differential Display kit obtained from

GenHunter.

The products of this amplification were run in a 6% polyacrylamide gel creating a

characteristic 'fingerprint' of the initial mRNA. Products from induced and non-induced

cultures were loaded in contiguous lanes (induced: right, non-induced:left) to facilitate

the identification of differentially expressed bands. If a band in the 'induced' lane appears

darker or lighter than in the 'non-induced' lane it denoted upregulation or downregulation

after induction of Edn3, respectively. A picture of the Differential Display Gel is shown

in Figure 2. Forty-eight differentially expressed bands were selected for analyses. Thirty

bands of the forty-eight selected were analyzed in this study. Glycerol stocks of clones

containing bands 25, 28, 38, 39 and 48 had been established prior to the beginning of this

project, but were also analyzed and included in this investigation.

activation of Ga which inhibits adenylate cyclase (Fuchs et al., 2001).

16



III. METHODOLOGY.

1. Re-amplification.

To avoid any artifacts and to confirm the amplification of differentially expressed bands,

25 bands were subjected to re-amplification. Bands 4, 6, 9, 17, 18, 21, 26, 27, 29, 30, 31,

32, 33, 34, 35, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, and 47 were re-amplified using the

same anchoring primers used for DD-RT PCR obtained from GenHunter.

The primers used for re-amplification of these 25 bands were:

" Arbitrary primers: API, AP2, AP3, AP4, AP5, AP6, and AP8

" Anchoring primer: H-T IC

The same anchoring primer, H-T 1iC, was used for all re-amplification reactions. API

was used to amplify bands 4, 9, 29, 30, and 31. AP2 was used to amplify bands 6, 32, and

33. AP 3 was used to amplify bands 34, 35, 36, and 37. AP4 was used to amplify band 40.

AP5 was used to amplify bands 41, 42, 43, 44, and 45. AP 6 was used to amplify bands

17, 18, 21, 46, and 47. APs was used to amplify bands 26 and 28.

All PCR reactions underwent the same thermocycle: (1) 94°C x 5' (2) 94*C x 30" (3)

40°C x 2' (4) 72*C x 1' (5) Go to 2 x 40 (6) 72*C x 5' (7) 4°C forever.

All PCR products were run in a 1% agarose gel to check for re-amplification. Only

eleven bands were successfully re-amplified.

2. Preparation of clones.

Bands that were re-amplified were excised from the agarose gel and Gel Purified (Qvick)

according to the manufacturer's protocol. They were subsequently cloned into the pCR

II cloning vector (Invitrogen) following manufacturer's instructions. Transformed cells
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Figure 2. Differential Display RT-PCR Gel. The arbitrary primers (labeled P1.
8) and the oligo-dT primers (HT1iG, HTIA and HTIC) used for each lane are
shown at the top of the gel. Each pair of lanes contains cDNA obtained from
Edn-3 induced cultures (right lane) and non-induced cultures (left lane). Bands
that showed upregulation after induction with Edn-3 are darker in the 'induced'
lane whereas bands showing downregulation are lighter in the 'induced' lane.
Forty-eight bands that clearly displayed this difference were selected for
analysis.
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were plated on LB plates containing X-gal and ampicillin and left to grow overnight at

37°C. White colonies were picked and grown overnight in LB with ampicillin

(100ug/mL). Plasmid DNA was isolated the following day using a SV Miniprep kit

(Promega) and quantitated with a spectrophotometer.

3. Sequencing.

200-700ng of plasmid DNA were used for each sequencing reaction together with 3ul

dilution buffer, 2ul primer M13 (F or R), 2ul Big Dye terminator and UV-treated dH20 to

complete a 20ul total volume. These samples were then subjected to the following

thermocycle: (1) 96°C x 30" (2) 50°C x 30" (3) 60°C x 3' (4) Go to 1 x 29 (5) 4°C forever.

One volume of 7M NH 4OAC (1 Oul) and 3 volumes of ETOH (90ul) were added to each

reaction, covered with aluminum foil to protect from light and left to precipitate

overnight at -20°C. The precipitate was centrifuged at 14000 rpm for 30min at 4°C, the

pellet washed with 70% ETOH and then air-dried. At this point the samples can be kept

as pellets at -20"C and when ready for sequencing, resuspended in 3ul of deionized

formamide:dextran (5:1). All samples were sequenced using an ABI 377 automatic

sequencer.

4. Blasting.

The sequences obtained from the ABI 377 were edited to delete the pCR II plasmid

sequence. The sequence of the inserts was then submitted to GenBank

(www.ncbi.nlm.nih.gov/Database/index.html) for a homology search (BLAST). The

inserts were blasted against a nucleotide database, a protein database as well as against an
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EST (Expressed Sequence Tags) database. Inserts corresponding to bands 28, 39 and 40

were selected for further characterization because to of their high homology to SPC12

and WSB1.

5. Semi-quantitative RT-PCR.

cDNAs from Edn3-induced cultures and from non-induced cultures were subjected to

semi-quantitative PCR to compare the amount of WSB1 (band no. 39) and SPC12 (band

no. 28) present in both of them. Primers were designed to target a fragment of this

sequence and for HPRTg, a housekeeping gene used as a control. All primers were

designed using Primer 3 software from The Whitehead Institute for Genomic Research

(www-genome.wi.mit.edu) and then ordered from Res Gen (Invitrogen - Life

Technologies). The primers ordered for semiquantitative PCR were:

" WSB1-R: 5'-TGAATGGGCCCTTTAGTTTTCTC-3' and WSB1-L: 5'-

CCCATGGTCTTAAAATAATTGTCCC-3' which yield a 458 bp product size that is

part of the 2463 bp cDNA sequence of WSB-1 (accession number: NM019653),

starting at position 1819 and ending at position 2276. The scale of synthesis was 50n

mol. The PCR cycle used was: (1) 94"C x 5' (2) 94°C x 1' (3) 58"C x 1' (4) 72"C x

1' (5) Go to 2 x 44 (6) 72°C x 10' (7) 4"C forever.

* SPC12-L: 5'-CAAGGGGCAGAAACTAGCTG-3' and SPC12-R: 5'-

CACACGGGAAAGAAGCATTG-3' which yield a 510 bp product size that is part of

the 703 bp full cDNA sequence obtained from the pancreas of a 10 day old mouse

(accession number: AK007336). The starting position was 166 and ending at base

675. The scale of synthesis was 50nmol. The PCR cycle for the amplification of this
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fragment was: (1) 94"C x 5'(2) 94°C x 1' (3) 55"C x 1' (4) 72"C x 1' (5) Go to 2 x 44

(6) 72"C x 10' (7) 4"C forever.

" HPRTg-L: 5'-AGGACTGAAAGACTTGCTCGA-3' and HPRTg-R: 5'-

GTAGCTCTTCAGTCTGATAAA-3' which yield a 200bp product size that is part of

HPRTg, a housekeeping gene. The scale of synthesis was 50n mol. The PCR cycle

for the amplification of this fragment was: (1) 94°C x 5' (2) 94°C x 1' (3) 58"C x 1'

(4) 72"C x 1' (5) Go to 2 x 44 (6) 72*C x 10' (7) 4"C forever.

Primers were resuspended to a concentration of 100mM in UV-treated H20. 1 Oul of this

solution was used to prepare a 10mM working stock. All primers were stored at -20"C.

6. Image clones.

For in-situ hybridization experiments, 1 or 2 ESTs (obtained from embryonic stages of

development) homologous to the three genes to be characterized (SPC 12, WSB1 and

ubiquitinol cytochrome c reductase) were selected to be used as probes. For comparison

purposes, another member of the SOCS (suppressor of cytokine signaling) family of

genes (of which WSB 1 is a member) was examined and an EST selected for it. Image

Clones containing these ESTs in mammalian vectors with sites for SP6, T7 and/or T3

polymerases were purchased from ResGen-Invitrogen Corporation. These are the image

clones purchased:

" Image clone # 4016049: contained WSB1-EST (Accession Number: BF140245)

inserted into pCMV-Sport6 cloning vector.

" Image clone# 3601047: contained WSB2-EST (Accession Number: BE382004)

inserted into pCMV-Sport6 cloning vector.
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* Image clone# 1382191: contained 40a-EST (accession number: AI462067) inserted

into pT3T7d cloning vector.

* Image clone# 389242: contained 28-EST (accession number: W74994) inserted into

pT3T7d cloning vector.

" Image clone# 3025933: contained WSB1-EST (2) (accession number: AW744360)

inserted into pT3T7d cloning vector.

All image clones were provided as cultures in LB media with 8%glycerol. The cultures

were streaked on LB plates containing ampicillin and grown at 37°C overnight. The

image clones were stored at -80"C. The following day, twelve colonies were picked and

plated again on a new LB plate with ampicillin and grown at 37"C overnight. The

streaked plates were wrapped in parafilm and stored at 4"C. To determine which of the

12 colonies contained the insert, I performed 'colony-PCR'. A Master Mix for each

image clone was prepared containing 222.6u1 UV-treated and filtered dH20, 28u1 loX

buffer, 5.6ul dNTPs, 5.6ul primer #1, 5.6ul primer #2, and 5.6ul Taq polymerase. The

mix was then aliquoted into 13 tubes containing 19.5ul of the mix (12 for each colony

and 1 as control). The 12 colonies were picked and used to inoculate each of the

reactions. The samples were then subjected to their correspondent PCR cycle depending

on the set of primers used:

* Image clone # 4016049: WSB1-EST-L: 5'-GGATCAGCTACTCCTGCCAC-3' and

WSB1-EST-R: 5'-ACTCGCCTTGGTAGTGTGCT-3' which yield an 886 bp product

from the WSB1-EST cDNA (AN: BF140245) selected from the blasting results,

starting at position 16 through 901. The PCR cycle used for colony PCR was: (1)
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94°C x 10' (2) 94°C x 1' (3) 55"C x 1' (4) 72"C x 1' (5) Go to 2 x 30 (6) 72"C x

10' (7) 4"C forever.

" Image clone# 3601047: WSB2-EST-L: 5'-AAGGATTCGAAGCCAAGAGC-3' and

WSB2-EST-R: 5'-CAAACACACGGGTGTCAAAC-3' which yield a 604 bp product

from the WSB2-EST cDNA (AN: BE382004) selected from the blasting results,

starting at position 68 through 671. The PCR cycle used for colony PCR was: (1)

94"C x 10' (2) 94°C x 1' (3) 55"C x 1' (4) 72°C x 1' (5) Go to 2 x 30 (6) 72°C x

10' (7) 4"C forever.

" Image clone# 1382191: 40aEST-L: 5'-AGATGTGCATGCTAACAATGG-3' and

40aEST-R: 5'-TCTTCTGACATTACCTCACTGC-3' which yield a 313 bp product

from the 40a-EST cDNA (AN: A1462067) selected from blasting results, starting at

position 95 through 407. The PCR cycle used for colony PCR was: (1) 94"C x 10' (2)

94"C x 1' (3) 54°C x 1' (4) 72°C x 1' (5) Go to 2 x 35 (6) 72"C x 10' (7) 4°C forever.

" Image clone# 389242: 28EST-L: 5'-CCCCGCAAACTTTACTCCTT-3' and 28EST-

R: 5'-GGCGGTTTAAGCTCATGTTT-3' which yield a 465 bp product from the

28EST cDNA (AN: W74994) selected from blasting results, starting at position 13

through 477. The PCR cycle used for colony PCR was: (1) 94"C x 10' (2) 94"C x 1'

(3) 54°C x 1' (4) 72°C x 1' (5) Go to 2 x 35 (6) 72°C x 10' (7) 4"C forever.

" Image clone# 3025933: WSB 1-EST (2)-L: 5'-AGGAAGCTGGAAGGTCATCA-3'

and WSB1-EST(2)-R: 5'-GGCAGTCTTGGGACTTCTTG-3' which yield a 476 bp

product from the WSB 1-EST cDNA (AN: AW744360) selected from blasting results,

starting at position 46 through 521. The PCR cycle used for colony PCR was: (1)
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94"C x 10' (2) 94"C x l' (3) 54"C x 1' (4) 72C x 1' (5) Go to 2 x 35 (6) 72"C x 10'

(7) 4°C forever.

Upon completion of PCR, the samples were run in a 1.5% agarose gel to check which of

the 12 colonies contained the insert. If all colonies were positive for the insert, one of

them was selected randomly to inoculate LB (with amp) and grow overnight at 37°C. A

glycerol stock was created for each clone and stored at -80"C.

7. Isolation of Plasmid DNA.

After growing the clones overnight, plasmid DNA containing the inserts was isolated

using a SV Miniprep Kit (Promega) according to manufacturer's instructions. Plasmid

concentration was then measured using a SmartSpec spectrophotometer (Biorad).

In-situ hybridization.

8. Riboprobe synthesis.

About IOug of plasmid DNA was linearized with appropriate enzymes (EcoRI for

pCMV-Sport6 and XhoI for pT3T7d cloning vector) for lhr at 37"C. The linearized

plasmid template was incubated for another half an hour after the addition of 1 ul of

proteinase k (1 Omg/ml). Two phenol extractions and one of chloroform followed, as well

as ethanol precipitation overnight at -20"C. The following day, the samples were spun

down at 14 000 rpm for 30 minutes at 4"C and resuspended in lOul to a concentration of

1 ug/ul. One microliter was run in a 1.5% agarose gel to check for complete

linearization. The riboprobe synthesis reaction was set up as follows: lul linearized
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template (1 ug/ml), 2u1 1 OX transcription buffer, 2u1 dig-labeled NTPs mix, 2u1 RNA

polymerase (T7, T3 or SP6), lul RNAse inhibitor and 12ul DEPC H20. The reaction was

incubated at 37°C for 2hrs in a water bath. 2ul of 0.2M EDTA and 2.5ul of 4M LiCl

were added to stop the reaction and 75ul ETOH to precipitate nucleic acids. The samples

were centrifuged for 30 minutes at maximum speed (14 000 rpm) at 4°C, pellet was

washed with 70% ETOH in DEPC H20 and centrifuged again for 15 minutes under the

same conditions. The pellet was finally resuspended in 20u1 of DEPC H20 and one

microliter was run in a 1.5% agarose gel to compare the amount of RNA synthesized to

DNA left. All probes were stored at -20°C.

9. Whole mount in-situ hybridization

Embryos of ages 8.5dpc through 12.5dpc were dissected from C57BL/6J pregnant mice,

placed in 4m1 glass vials and fixed in 4% paraformaldehyde overnight. They were then

placed in 100% methanol and kept at -20°C. The whole mount in-situ hybridization

protocol that I used is divided into four days:

Dayl: Pretreatment and hybridization. Embryos were rehydrated through the following

dilutions of MeOH in PBT (PBS+0.1%Tween 20): 75%, 50% and 25% MeOH in PBT

for 5 minutes each and then washed with PBT twice. The embryos were then bleached

with 6% hydrogen peroxide in PBT for 1 hour while rocking at room temperature. Their

hindbrains were then punctured with the help of forceps and the embryos were

subsequently permeabilized with 1 Oug/ml proteinase K in PBT. Permeabilization times

were as follows: 8.5d: 15 minutes; 9.5d: 20 minutes; 10.5d: 25 minutes; 11.5d: 30

minutes; 12.5d: 35 minutes. The treatment was stopped with 2mg/ml glycine in PBT for
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10 minutes at room temperature while rocking. The embryos were washed with PBT

twice before post-fixing them with 4% paraformaldehyde, 0.2%gluteraldehyde in PBT

for 20 minutes at room temperature while rocking, and washed again twice with PBT.

They were placed in enough hybridization solution (50% formamide, 5X SSC pH4.5,

50ug/ml yeast tRNA, 1% SDS, 50ug/ml heparin) to cover them completely and were pre-

hybridized for at least an hour at 70°C. Embryos can be stored at this point at -20"C for a

long time. The hybridization solution was removed and new hybridization solution

containing the probe (about lug/ml) was added. Embryos were hybridized overnight at

70*C in a water bath.

Day 2: Washing and Antibody addition. Embryos were washed with freshly made

Solution 1 (50% formamide, 5X SSC pH 4.5, 1% SDS) three times for 30 minutes each at

70"C. They were then washed with also freshly made Solution 2 (50% formamide, 2X

SSC pH 4.5) three times for 30 minutes at 65*C and then washed another three times with

TBST (TBS+0.1% Tween 20) at room temperature for 5 minutes each. Embryos were

blocked in 10% goat serum (heat inactivated at 56"C for 1 hour) in TBST for 2 hours at

room temperature while rocking. Meanwhile, the anti-dig antibody was preabsorbed by

adding a tiny amount of embryo powder5 to 0.5ml of TBST for each in-situ vial and

heating at 70°C for 30 minutes, vortexing it and cooling in ice to finally add 5ul of goat

serum and 1 ul of anti-dig antibody. The antibody solution was then rocked at 4"C for 1

hour, pelleted and the supernatant was diluted with 1.5m1 of 1% goat serum in TBST.

3Embryo powder was obtained from homogenizing 12.5-14.5 embryos in cold PBS, adding 4 volumes of
cold acetone, mixing, and incubating on ice for 30 minutes. The mix was then centrifuged at 10 000g for
10 min after which the supernantant was removed, the pellet washed with cold acetone and spun again.
The pellet was spread out and grounded with a mortar and a pestle into a fine powder on a sheet of filter
paper. It was then air-dried and stored at 4"C.
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The blocking solution was removed from the embryos and replaced with the diluted

antibody solution. The embryos were left rocking overnight at 4*C.

Day 3: Washing antibody. The embryos were washed 3 times with TBST at room

temperature for 5 minutes each. They were then washed 5 times with TBST at room

temperature for 1 hour or more each. Levamisole (24mg/50ml) was added to the final

wash and the embryos were left rocking overnight at 4"C.

Day 4: Detection. Embryos were washed with NTMT (100mM NaCl, 100mM Tris pH

9.5, 50mM MgCl2, 0.1% Tween 20, 2mM levamisole) 3 times at room temperature for 10

minutes each. NTMT was removed and replaced with substrate solution (45ul NBT and

35u1 BCIP in 10ml NTMT). The vials were wrapped with aluminum foil to protect them

from light and monitored every half and hour under a dissecting scope. When detection

was complete they were washed in PBT twice and stored at 4"C in PBT. They were then

photographed in PBT using 160T Ektachrome Kodak film.

10. Cryosectioning.

Following whole mount in-situ hybridization, embryos were post fixed in 4%

paraformaldehyde at 4°C overnight while rocking. They were rocked in 10% sucrose at

4"C for 6 hours and left in 20% sucrose at 4°C overnight. The embryos were smeared

with OCT twice to get rid of any sucrose, mounted in a plastic mold and frozen at -80"C

for about 5 minutes or until the OCT completely solidified. They were mounted head up

on a mounting block by spreading some OCT, attaching the OCT block to it and letting it

freeze inside the Cryostat (chamber temperature: -20"C). More OCT was poured around

the block containing the embryo until it was firmly on the mounting block. All embryos
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were cross-sectioned at 30um. All sections were placed on glass slides and kept on a

slide warmer for 30 minutes. The slides were then mounted using water based mounting

media and sealed with clear nail polish. Sections were examined using a compound

microscope and some selected to be photographed using 160T Kodak film.

IV. RESULTS

1. Expression pattern of EdnrB.

Since the previously mentioned expression studies of EdnrB have mostly been done

on avian embryos, whole mount in-situ hybridization was performed on mouse embryos

using EdnrB as a probe in order to confirm the expression seen in the chick. The

digoxigenin-labeled riboprobes that were synthesized, hybridize to the complementary

mRNA found in the embryo. An anti-dig antibody conjugated with alkaline phosphatase

was used as part of the technique. Finally, development with alkaline phosphatase

substrates yields color where hybridization has occurred. Consequently, areas that

appeared to be dark purple in the embryos denoted hybridization of the probe to the

complementary mRNA transcript.

At 11.5 dpc, EdnrB expression was very strong in the ventricular zone of the brain

and spinal cord as well as in various neural crest derivatives such as trigeminal ganglion,

dorsal root ganglia, sympathetic ganglia, and the Schawnn cells lining of the peripheral

nerves (Fig. 3A). 12.5 dpc embryos showed that EdnrB continues to be expressed in the

ventricular zone of the brain and spinal cord, in the dorsal root ganglia, sympathetic

ganglia (and their projections) and in the trigeminal ganglion (Fig. 3B). Strong expression
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was also found in the heart and in the enteric neuron precursors colonizing the gut (Fig.

3B).

Figure 3. EdnrB expression pattern. Whole-mount in-situ hybridization of 11.5dpc
(A) and 12.5dpc (B,C) embryos. drg: dorsal root ganglia, fag: facio-acoustic ganglia, fb:
forebrain, h: heart, sg: sympathetic ganglia, arrow: enteric ganglia.

29



2. Identification of differentially expressed bands after induction with Edn3.

In order to confirm the amplification of the bands selected from the Differential

Display Gel, they were re-amplified with the same primers used for their amplification

prior to running the gel. Only 11 bands (4, 9, 27, 30, 32, 34, 35, 37, 40, 44) out of 256

selected for the reaction were re-amplified and subsequently gel purified. The 11

fragments were cloned into the pCR-II cloning vector. Three clones from each cloning

reaction were grown, the plasmid containing the insert was isolated and sequenced to

check for possible amplification of more than one band by the primers and cycles used

for DD RT-PCR. Clones that were previously obtained from bands 25, 28 and 39 were

also sequenced. All sequences were submitted to GenBank for a nucleotide homology

search (BLAST). The results from the BLAST are presented in Table 1.

Since the fragments obtained from the Differential Display could belong to the

untranslated region (UTR) of a gene sequence, sequences that showed high homology to

uncharacterized cDNAs, were subjected to a secondary nucleotide blast. The results from

the secondary BLAST are shown in Table 2.

cDNA sequences that had no significant homology to any known gene or gene

family after the secondary blast were subjected to a translation BLAST to search for

protein homology and conserved protein domains (GenBank translates the nucleotide

sequence given and searches for homology against all translated sequences in the

database). The results from the translation BLAST are shown in Table 3.

6 The 25 bands subjected to re-amplification were: 4, 6, 9, 17, 18, 21, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36,
37, 40, 41, 42, 43, 44, 45, 46, 47.
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BAND LONE PRIMARY BLAST SCORE e VALUE ACCESSION No UPREGULATED/
No. DOWNREGULATED

mRNA ribosomal protein S6 (Rsp6) 204 3 e-53 AK012284
a 10/11d embryo cDNA 204 3 e-53 AK013333

4 11 d embryo cDNA 204 3 e-53 NM009096 downregulated
b same as clone 4a________________

-c same as clone 4a
mRNA ribosomal protein S6 (Rsp6) 204 2 e-50 NM009096

a li d embryo cDNA 204 2 e-50 AK012284
9 10/11d embryo cDNA 204 2 e-50 AK013333 downregulated

b same as clone 9a________________
c no homology

Adult male tongue cDNA 432 e-121 AK009322
a Homo sapiens TATA box binding protein (TBP)-assoc. 96 7 e-20 NM003187

24 factor, RNA polymerase 11, G, 32kDa (TAF2G) downregulated
Human transcriptional activation factor TAFII32 mRNA 96 7 e-20 HSU21858

b not available
c not available _________

a no homology _______

25 b not available upregulated

c not available
Similar to transmembrane 7 superfamily member 1 121 4 e-25 BC003212

a Transmembrane 7 superfamily member 1 (Tm7sf1) 121 4 e-25 NM031999
27 Putative 7 pass transmembrane protein (Tm7sf1)mRNA 121 4 e-25 AF154337 upregulated

b same as 27a
c not available
a 1 Od old male pancreas cDNA 363 3 e-98 AK007336

28 T-cell receptor alpha locus BAC clone 137 3 e-30 AF259072 upregulated

b not available
c not available ____________ ________

a not able to edit sequence ____________

30 b no homology ________________ downregulated

c Human chr 16 BAG clone AG002044 ________

Table 1. Primary nucleotide BLAST results. Continued on next page.
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BAND CLONE PRIMARY BLAST SCORE e VALUE ACCESSION No UPREGULATED/
No. DOWNREGULATED

a Cctb gene for chaperonin containing TCP-1 beta subunit 210 1 e-54 AB022156
94kb genomic sequence encoding Tsx gene 198 2 e-48 MMTSXDNA
Endobrevin (Vamp8) gene-exon1 196 9 e-48 AF247193

32 b Non-receptor tyrosine kinase, Tyk2 gene 196 9 e-48 AF052607 downregulated
GTF21RD1 and CYLN2 genes 194 4 e-47 AF289667

c not able to edit sequence
a Embryonic stem cells cDNA 89.7 3 e-15 AK010304

34 b not able to edit sequence downregulated

c not available

94kb genomic sequence encoding Tsx gene 204 3 e-50 MMTSXDNA
a Endobrevin (Vamp8) gene-exon1 202 1 e-49 AF247193

35 Non-receptor tyrosine kinase, Tyk2 gene 202 1 e-49 AF052607 downregulated
GTF21RD1 and CYLN2 genes 200 5 e-49 AF289667

b 18d embryo cDNA 446 e-123 AK003980
c not able to edit sequence

a 11d embryo cDNA 341 2 e-91 AK019206
39 b not available downregulated

c not available

a 18d embryo cDNA 367 2 e-99 AK003443
Adult male hippocampus cDNA 361 1 e-97 AK013513

40 b Myeloid ecotropic viral integration site-related gene Mrg1 305 8 e-81 NM010825.1 upregulated
mRNA for homeodomain protein Meis2d 305 8 e-81 MMU57343

c 18d embryo cDNA 276 6 e-72 AK003443
Adult male hippocampus cDNA 270 4 e-70 AK013513

a Protein kinase inhibitor, gamma (Pkig) 333 8 e-89 MMU97170
47 Adenosine deaminase (ADA) gene 333 8 e-89 MMU73107 upregulated

b same as 47a
c not available

Table 1. Primary Nucleotide Blast. Description on next page.
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Table 1. Primary nucleotide BLAST results. The three clones from each band were
denoted a, b and c. This table includes the known gene sequences and cDNA sequences
obtained from homology searches. Score and e-values are also presented. A score is
obtained from a local alignment without gaps of a pair of equal length segments, one
from each of the two sequences being compared. A modification of the Smith-Waterman
or Sellers algorithms finds all segment pairs whose scores can not be improved by
extension or trimming. These are called high-scoring segment pairs or HSP scores.
Because HSP scores tend to be higher if the alignments are longer, the e-value becomes
necessary for statistical significance. The e-value is the probability of finding another
homologous sequence with a higher score. Therefore, the smaller the e-value the more
significant the results become. The accession number for GenBank of the known genes
and cDNA sequences found are also shown. Sequences obtained from band 44 were did
not give significant homology to any sequence in GenBank and therefore, were not
included in this table. The actual sequences can be found in the Appendix.
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BAND/ PRIMARY BLAST SECONDARY BLAST SCORE e ACCESSION
CLONE VALUE No.

4a 10/11d embryo cDNA (AK013333) Ribosomal protein S6 (Rps6), mRNA 1584 0.0 NM009096
11 d embryo cDNA (AK012284)

9a 10/11d embryo cDNA (AK013333) Same as 4a 1584 0.0 NM009096
11d embryo cDNA (AK012284)

24a Adult male tongue cDNA (AK009322) Human transcriptional activation factor TAFII32 846 0.0 HSU21858
mRNA
Rattus norvegicus neuronal cell death related gene 309 6 e-84 RNU40188

28a 10d old male pancreas cDNA (AK007336) Homo sapiens HSPC033, mRNA 454 e-125 AF092138
Homo sapiens 12kDa signal peptidase subunit, 450 e-124 HUMSP1S
mRNA

34a Embryonic stem cells cDNA (AK010304) no homology
35b 18d embryo cDNA (AK003980) no homology
39a 11d embryo cDNA (AK019206) WSB-1, mRNA 2488 0.0 NM019653

18d embryo cDNA (AK003443) Bos taurus smallest subunit (6.4kDa) of ubiquinol 172 4 e-43 D55637
cytochrome c reductase

40a Homo sapiens smallest subunit (6.4kDa) of ubiquinol 133 3 e-31 D55636

cytochrome c reductase

Adult male hippocampus cDNA (AK013513) same as 40a

40c same as 40a

Table 2. Secondary Blast. Some of the sequences from Table 1 that had significant alignment with a cDNA sequence were

submitted to GenBank for a search of sequence homology (Secondary Blast). The results are presented in this table as well as

scores and e values. A score is obtained from a local alignment without gaps of a pair of equal length segments, one from each of

the two sequences being compared. A modification of the Smith-Waterman or Sellers algorithms finds all segment pairs whose

scores can not be improved by extension or trimming. These are called high-scoring segment pairs or HSP scores. Because HSP

scores tend to be higher if the alignments are longer, the e-value becomes necessary for statistical significance. The e-value is the

probability of finding another homologous sequence with a higher score. Therefore, the smaller the e-value the more significant

the results become. The accession number for GenBank of the known genes and cDNA sequences found are also shown. It is

important to point out that the two genes characterized for this study were obtained from this secondary blast: WSB1 and SPC 12.
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BAND/ SECONDARY BLAST PROTEIN BLAST SCORE e ACCESSION
VALUE No.

CLONE

32a not available Rattus norvegicus Hermansky-Pudlak syndrome 54.7 2 e-07 AF333327
protein variant
Rattus norvegicus ubiquitin ligase Nedd4 46.6 5 e-05 S70642

32b not available Neprilysin-like peptidase gamma 58.2 2 e-08 AF302077
Tyrosine protein kinase Jak-3 47 3 e-05 Q62137

Embryonic stem cells cDNA (AK010304) Homo sapiens hypothetical protein FLJ21148 666 0.0 NP_079136
34a Saccharomyces cerevisiae transcription 89.4 e 3-17 NP_010543

regulator, Rms1p

35a not available same as 32b

35b 18d embryo cDNA (AK003980) no homology

Table 3. Protein Blast. Some sequences were submitted to GenBank for a search of homology using a protein database.

GenBank translates the submitted nucleotide sequence and searches for significant alignments with already existent

translated sequences. Sequences from bands/clones 32a, 32b and 35a were submitted for this search due to the arbitrary

results obtained from the previous blasts. Sequences with no significant sequence homology after the secondary blast (34a

and 35b) were also submitted to GenBank to search for homology with conserved protein domains. The results for this

Blast are shown in this table as well as scores and e values. A score is obtained from a local alignment without gaps of a

pair of equal length segments, one from each of the two sequences being compared. A modification of the Smith-Waterman

or Sellers algorithms finds all segment pairs whose scores can not be improved by extension or trimming. These are called

high-scoring segment pairs or HSP scores. Because HSP scores tend to be higher if the alignments are longer, the e-value

becomes necessary for statistical significance. The e-value is the probability of finding another homologous sequence with

a higher score. Therefore, the smaller the e-value the more significant the results become. The accession number for

GenBank of the proteins and putative proteins obtained from this search is also shown.
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3. Semiquantitative RT-PCR.

Two bands were selected for characterization: 28, corresponding to SPC12 the

smallest subunit (12kDa) of mammalian signal peptidase, and 39, corresponding to

WSB 1 (a member of the SOCS family of negative regulators). For alignments refer to

Appendix B and Appendix C.

In order to confirm the upregulation or downregulation of these two bands seen in

the DD gel, semiquantitative RT-PCR was performed using the same cDNA obtained

from the initial RT-PCR reaction. The results of semiquantitative PCR done on WSB 1

and SPC12 are shown in Figure 4 and Figure 5, respectively. WSB1 was downregulated

after induction with Edn3 which confirmed the results from the DD gel. However, after

semiquantitative RT-PCR the opposite effect was seen for SPC12. In the DD gel, the

band corresponding to SPC12 (28) is upregulated but appeared to be downregulated after

subjected to semiquantitative RT-PCR.

4. Characterization of WSBI and SPC12 using whole-mount in-situ hybridization.

Whole mount in-situ hybridization was the technique used to characterize the

expression patterns of WSB1 and SPC12. For comparison purposes, the expression

pattern of WSB2 (another WD-40/SOCS protein) was also analyzed. In order to make the

probes, ESTs containing a partial sequence of these genes were selected. All ESTs were

obtained from mouse embryonic libraries and were cloned into vectors containing

binding sites for the RNA polymerases adequate for riboprobe synthesis (T7, T3 and

SP6). Expression analyses of WSB1, WSB2 and SPC12 on whole-mount hybridized

embryos at different stages of murine embryonic development are presented here.
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NI I NI Figure 4. Semi-
quantitative PCR of
WSB1. cDNA from
induced (I) and non
induced (NI) cultures were
subjected to PCR using
WSB-1 and HPRTg
specific primers. HPRTg
(a house keeping gene)
was used as control
comparison. The ratio of

WSB-1 HPRTg cDNA used was 8 (I) : I
(NI).

[ NI I NI

Figure 5. Semi-quantitative
PCR of SPC12 cDNA from
induced (I) and non induced
(NI) cultures were subjected
to PCR using SPC12 and
HPRTg specific primers.
HPRTg (a house keeping
gene) was used as control
comparison. The ratio of
cDNA used was 8 (I): 1 (NI).

SPC12 HPRTg
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" WSB1 expression pattern.

At 9.5dpc (Fig. 6A, B, C), WSB1 was highly expressed in the notochord as well

as in the nephric duct. It was also expressed in the forebrain, hindbrain, migrating cranial

neural crest cells and forming cranial ganglia. At 11.5 dpc (Fig. 6D, E), it continued to

be expressed in the hindbrain and also in the dorsal root ganglia and in the apical region

of the developing limb buds. Cross-sections of 11.5dpc embryos hybridized with the

WSB 1 probe revealed that it is also expressed in the lateral aspect of the neural tube and

confirmed expression in the dorsal root ganglia (Fig. 6G, H). It was also expressed in the

genital ridge (which gives rise to the gonads), and in the limb buds (Fig. 6I).

At 12.5dpc (Fig. 6F), WSB1 appears to be downregulated since the hybridization

signal was not as strong as in the previous stages. However, it still shows low levels of

expression in the dorsal root ganglia as well as in the developing brain and limb buds.

WSB2 expression pattern was analyzed for comparison purposes. At 11.5dpc

(Fig. 7A), it was highly expressed in the somites and the limb buds as well as in the brain.

At 12.5dpc (Fig. 7B), WSB2 continued to be expressed in the same structures.

* SPC12 expression pattern.

At 11.5dpc (Fig. 8A), SPC 12 was found to be expressed in the neural tube, in the

dorsal root ganglia, in the forebrain and in the developing cartilage of the trunk. SPC12

was highly expressed in the limb buds as well as in the eye, and showed a peculiar pattern

of expression in the liver. Cryosectioning allowed us to obtain cross sections of these

whole-mount embryos. Sections of 11.5dpc (Fig. 8C, D) confirmed SPC12 expression in

the eye, specifically in the lens, the iris and in the ciliary body. Sections through the
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Figure 6. WSB1 expression pattern. Whole-mount in-situ hybridization of 9.5dpc
(A, B, C), 11.5dpc (D, E) and 12.5dpc (F) embryos. Cross-sections (30um) of 11.5dpc
whole-mount embryos (G, H, I). fb: forebrain, hb: hindbrain, cnc: cranial neural crest,
lba: first branchial arch, n: notochord, nd: nephric duct, lb: limb bud, drg: dorsal root
ganglia, lm: lateral mesenchyme, nt: neural tube, gr: genital ridge.
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Figure 7. WSB2 expression pattern. Whole-mount in-situ hybridization of
11.dpc (A) and 12.5dpc (B) embryos. lb: limb buds, s: somites.

trunk confirmed expression in the dorsal aspect of the neural well as in the dorsal root

ganglia.

At 12.5dpc (Fig. 8B), SPC12 expression continued to be present in the neural

tube, in the adjacent dorsal root ganglia, in the forebrain, in the liver and in the eye.

SPC 12 continued to be highly expressed in the limb buds and at this stage, began to be

expressed in the hair follicles of the face.
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Figure 8. SPC12 expression pattern. Whole-mount in-situ
hybridization of 11.5dpc (A) and 12.5dpc (B) embryos. lb: limb buds, Iv:
liver, s: somites, drg: dorsal root ganglia, hf: hair follicles, 1: lens, i: iris,
nt: neural tube.
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V. DISCUSSION

From the initial 30 bands selected for analysis, 11 showed significant sequence

homology to previously identified gene sequences (Table 1). The first two genes

identified in the course of this study were WSB 1 and SPC 12 and therefore, selected for

expression pattern studies. Using whole-mount in-situ hybridization, the expression of

both genes was analyzed at different stages of murine development. The results from this

analysis can be found in the previous section (see Results).

1. WSB1: A member of the SOCS family of negative regulators.

Band 39 was among the first ones to be sequenced. When blasted, it showed

100% homology to a complete cDNA sequence obtained from an 11.5d embryonic

library (AN: AK019206). When this sequence was submitted again for a secondary blast,

it was found to be 100% homologous to the sequence coding for mouse WSB1 (AN:

NM019653). The original sequence obtained from band 39 was found to be homologous

to the UTR (untranslated region) of the WSB1 gene and therefore not included in the

mRNA sequence of the gene.

A review of the literature available on this gene revealed that WSB 1 is a member

of the family of SOCS (suppressors of cytokine signaling) proteins. The recently

identified family members share a denominated SOCS box carboxy-terminal to distinct

domains characteristic of each subfamily. While the original SOCS proteins contain SH2

domains, WSB1 and WSB2 contain WD-40 repeats amino-terminal to the SOCS box.

" SOCS: Suppressors of cytokine signaling.
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Edn3 can also be classified as a cytokine because it is a protein that informs the

cell about its surrounding environment. The kind of signal they convey and the specific

cell response obtained depend on the type of cell targeted as well as the biological

process in which they are involved (Nicola, 1994). Cytokines are known to control

processes such as proliferation, growth, differentiation, immune and hematopoietic

responses, as well as anti-apoptotic signals (Leonard, 1999). Extensive research on their

mode of action led to the finding of a family of tyrosine kinases involved in many

signaling pathways induced by cytokines. The Janus family of tyrosine kinases (Jak

kinases) and signal transducers and activators of transcription (STATs) were among the

first to be identified as active entities of a transducing pathway from the cell surface to

the nucleus.

Jak kinases were physically associated to cytokine receptors when Withuhn et al.

(1993) and Argetsinger et al. (1993) demonstrated there was an interaction between Jak27

and the erythropoietin and growth hormone receptors, respectively. The binding of their

respective cytokine to these receptors induces receptor dimerization or oligomerization

resulting in a juxtaposition of associated Jaks. These cross-phosphorylate causing

enzymatic activation and in turn phosphorylate the receptor at multiple residues of its

cytoplasmic domain (reviewed by Darnell, 1997). This creates docking sites for STATs

(containing an SH2 binding domain) which are phosphorylated by active Jaks. STATs

subsequently dimerize and are translocated to the nucleus where they activate the

transcription of their target genes (reviewed by Imada, K. and Leonard, W.J., 2000).

It is important to note that four mammalian Jak kinases have been identified: Jakl, Jak2, Jak3 and Tyk2
(Horvath and Darnell, 1997; Leonard and O'Shea, 1998). Interestingly, Jak3 and Tyk2 were identified
during the course of this study (see BLAST results Table 1, 2 and 3).
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Although it is broadly accepted that cytokine signaling involves associated

kinases, it is also well known that the signal they convey needs to be regulated in

magnitude and duration (Krebs and Hilton, 2000). This is when the need for negative

regulators, such as SOCS proteins (suppressors of cytokine signaling), becomes critical.

The first member of the SOCS family of negative regulators to be identified was CIS

(now called CIS 1), for cytokine-inducible SH2 containing protein (Yoshimura et al.,

2000). It was found to be an early downstream gene of IL-2, IL-3, and EPO signaling

(Yoshimura et al., 2000). The second family member, SOCS 1, was identified by three

groups. The first group cloned it as an inhibitor of IL-6 signaling in the myeloid leukemia

cell line M1 and gave it the name of suppressor of cytokine signaling: SOCS (Starr et al.,

1997). The second group identified it as an SH2 containing protein that binds Jak kinases

and named it JAB for Jak-binding protein (Endo et al., 1997); and Naka et al., identified

it using an antibody that recognized the SH2 binding domain of STAT3 to look for novel

STAT familiy members. However, they found that the novel member was nothing else

but, SOCS1. They called it SSI-1 for STAT-induced STAT-inhibitor.

CIS and SOCS 1 transcription is rapidly induced after exposure to a range of

cytokines and both of them can inhibit cytokine signaling capabilities but in different

ways. CIS competes with STAT for docking sites in the receptor (Yoshimura et al.,

1995) whereas SOCS 1 binds to JAK kinases inhibiting their catalytic activity (Endo et

al., 1997; Yasukawa et al., 1999).

A study conducted by Hilton et al. (1998) in which the predicted amino acid

sequence of SOCS 1 was submitted for homology to databases revealed that there were as

many as six other proteins that contained and SH2 binding domain (SOCS2 to SOCS7)
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and as many as twenty that shared a conserved 40-amino-acid carboxyl-terminal

denominated, the SOCS box. Despite their common denominator, these twenty novel

proteins were divided into five structural classes according to the domains they exhibit

upstream of the SOCS box. The SOCS family (SOCS1 to SOCS7; CIS) contains an SH2

binding domain; the other proteins contain instead ankyrin repeats (ASB 1 to ASB4),

SPRY domains (SSB1 to SSB3), GTPase-like domains, or WD-40 motifs. Two proteins

containing WD-40 repeats have been identified: WSB1 and WSB2 (Hilton et al., 1998).
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Figure 9. SOCS proteins. Diagram representing the twenty novel proteins
identified which contain a common SOCS box (yellow). Green bars indicated
SH2 domains, blue bars indicate WD-40 repeats, pink bars indicate ankyrin
repeats, peach indicates SPRY domains and red indicates GTPase domains (from
Hilton et al., 1998).

Although the SOCS box is conserved in all family members, research on its

functionality is still underway. Early studies suggested that it is dispensable for the

inhibitory activity of SOCS1 and SOCS3 (Nicholson et al., 1999; Narazaki et al., 1998).

Other studies suggest that it is an active part in protein turnover in all family members
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(reviewed by Alexander et al., 1999). It has recently been suggested that the SOCS box

interacts with elongins B and C because of their sequence similarity to regions of the von

Hippel-Lindau tumor suppressor protein and elongin A, both of which bind to elongins B

and C (Kamura et al., 1998; Zhang et al., 1999). However, Kamura et al. propose that the

interaction with elongins extends SOCS protein half-life. On the other hand, since

elongin B has a ubiquitin-like sequence able to interact with proteasomal proteins and

since CIS has been shown to be ubiquitinated and sensitive to proteasomal degradation

(Verdier et al., 1998), Zhang et al. (1999) suggest that SOCS proteins interact with bound

molecules and direct them towards proteasomal degradation. It has also been shown that

cytokine receptors, Jak kinases and STATs remain very active in the presence of

proteasomal inhibitors (Verdier et al., 1998; Yu and Burakoff, 1997). The idea that

SOCS proteins might negatively regulate cytokine signaling by targeting these molecules

for degradation seems possible although it would also mean that deletion of the SOCS

box would cause cells to be extremely sensitive to cytokine signaling (Alexander et al.,

1999). Unfortunately, this concept does not correlate with previous findings that the

SOCS box is indeed not essential for the proper biological activity of SOCS proteins (see

above).

" WSB1 and WSB2

WSB1 and WSB2 were identified as members of the SOCS family of proteins

after a study revealed that they also contain (together with other 18 proteins) the

conserved 40-amino-acid carboxyl-terminal sequence denominated, SOCS box (Hilton et

al., 1998). WSB1 and WSB2 differ from the original SOCS proteins in the domain they

46



exhibit amino-terminal to the SOCS box. WSB1 and WSB2 contain WD-40 repeats

upstream of the SOCS box, whereas other SOCS proteins contain SH2 binding domains,

ankyrin repeats, SPRY domains or GTPase-like domains.

WD-40 repeats are conserved core units that usually end with Trp-Asp (WD) and

were first identified in P-subunits of heterotrimeric GTP-binding proteins. WD-40

domains contain a region of variable length followed by a residue core of somewhat

constant length (40 amino acids) which is flanked by two characteristic pattern elements,

GH (Gly-His) and WD (reviewed by Neer et al., 1994). Analysis of the structure of

human WSB 1 allowed the identification of eight WD-40 repeats (Kehrer-Sawatzki et al.,

1999). However, WD-proteins do not have a common function. Some of the already

identified proteins containing this motif have functions that range from playing a role in

signal transduction to RNA splicing (Neer et al., 1999). Therefore, the function of WSB1

cannot be specified based on its WD structure.

Human WSB1 has also been identified, mapped to chromosome 17, and found to

be close to the neurofibromatosis type 1 locus (Kehrer-Sawatzki et al., 1999).

Additionally, an avian homolog of WSB 1 has also been identified: Swip 1. Studies of

Swipi have revealed that its expression is regulated by Sonic Hedgehog (Shh) signaling

in the developing somites and in the developing limb buds (Vasiliauskas et al., 1999).

Swipi was also found to be expressed in the dorsal and ventral aspects of the neural tube,

in the notochord, in the intermediate mesoderm (which gives rise to the urogenital

system) at stage 10 (equivalent to the mouse 9.5dpc stage), and later on found to have

strong expression in the branchial arches (stage 20). From stage 18 through stage 28,
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Swipi showed expression in the limb buds; and, from stage 20 through 29 it was found to

be expressed in the gut (Vasiliauskas et al., 1999).

Analysis of the expression pattern of WSB 1 and WSB2 has revealed that they are

expressed by certain neural crest derived cells as well as other non-neural crest

derivatives. At 9.5dpc, WSB 1 was expressed in the migrating cranial neural crest but

also, in the developing brain, the nephric duct, the developing limb buds (apical region)

and in the notochord. At 11.5dpc, WSB 1 continued to be expressed in these same

structures (with the exception of the notochord and the nephric duct) as well as in the

lateral aspect of the neural tube and the adjacent dorsal root ganglia. At 12.5dpc, WSB1

appeared to be downregulated but was still expressed at low levels in the dorsal root

ganglia and the developing brain. Analysis of the expression of WSB2 revealed that it is

expressed in the somites, the developing limb buds, and the brain from 11.5dpc through

12.5dpc.

Neither WSBI expression nor WSB2 expression alone shows the same pattern as

Swipi. However, if both patterns are combined, the resulting pattern is very similar to

that of Swipi. This suggests that murine WSBI and WSB2 might have diverged from the

primitive avian Swip] during a duplication event.

" WSB1 as a downstream target of Edn3 signaling.

Comparison of the expression patterns of WSBI and EdnrB show partial overlap.

WSBI and EdnrB are both expressed in some neural crest derivatives such as the cranial

crest (9.5dpc) and the dorsal root ganglia (11.5-12.5dpc). This overlap suggests that if
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WSBI expression is, indeed, downregulated by Edn3 signaling, this regulation might take

place in the cells that form the structures in which WSBI and EdnrB expression overlap.

In addition, because WSB 1 has been shown to bind Elongin BC (Kamura et al., 1998)

and a module composed of a member of the cullin family (Cul5) and a RING-H2 finger

protein (Rbx 1) to reconstitute potential ubiquitin ligases (Kamura et al., 2001),

downregulation of WSBI following Edn3 signaling might prevent ubiquitination8 of key

proteins, such as pkC and MAP kinase, that act downstream of the Edn3/EdnrB signaling

pathway.

Certain cullin family members have been shown to associate with other proteins,

such as Skp1, to also form ubiquitin ligase complexes. The complex formed by

Skpl/Cull/F-box (SCF-like ubiquitin ligase) has been found to continuously degrade p-

catenin in the cytoplasm, which is found downstream of the Wnt/Frizzled signaling

pathway (Latres et al., 1999). p-catenin has been identified as a transcription factor and

also functions as a tumor suppressor. Mutations affecting members of the Wnt/Frizzled

signaling pathway lead to an abnormal increase of 3-catenin activity which, in turn, leads

to the activation of genes involved in cell division (Gilbert, 2000). Because WSB 1 binds

a member of the cullin family and has ubiquitin ligase activity, it might be possible that

its assembly with these proteins leads to the degradation of certain transcription factors

that activate genes involved in cell proliferation, as in the case of SCF and p-catenin.

Therefore, if Edn3 downregulates the expression of WSBI, the ubiquitin ligase activity of

8 Ubiquitin ligases (E3) play a role in ubiquitination (targeting of proteins for degradation) by facilitating
the formation of isopeptide bonds between the carboxyl-terminus of ubiquitin and lysine residues in the
target protein or on the last ubiquitin of a protein-bound multiubiquitin chain. Proteins linked to
multiubiquitin chains are potent signals for proteosomal degradation (reviewed by Ciechanover, 1998).
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the complex formed by WSB1/Cul5/ElonginBC can be potentially decreased, preventing

the degradation of transcription factors that activate genes involved in cell proliferation.

2. SPC12: The smallest subunit (12kD) of the signal peptidase complex.

When the sequence of band 28 from the differential display was blasted, it was

found to be highly homologous to a cDNA sequence obtained from the pancreas of a 10

day old male mouse (AN: AK0077336). A subsequent blast of this sequence gave us no

significant homology to any other nucleotide sequences from GenBank. However, a

translated blast against the protein database of GenBank gave high homology to the

smallest subunit (12kDa) of the signal peptidase complex (see Table 1). Little

information is available on signal peptidases and it was only recently that the 12-kDa

subunit of the mammalian signal peptidase complex was cloned (Kalies and Hartmann,

1996).

Signal peptidases generally cleave off signal sequences of secretory and

membrane proteins in the lumen of the endoplasmic reticulum (ER), during protein

translocation across the membrane of the ER (reviewed by von Heijne, 1994). However,

the signal peptidase complex is possibly also involved in other proteolytic events in the

ER membrane such as further digesting cleaved signal peptides (Lyko et al., 1995) or

degrading membrane proteins in yeast (Mullins et al., 1995).

Mammalian signal peptidase was purified from canine pancreas microsomes as a

complex of five polypeptide subunits: SPC25, SPC22/23, SPC21, SPC18 and SPC12

(Evans et al., 1986). SPC 18, SPC21 and SPC 22/23 are single-spanning membrane

proteins that have the majority of their domains in the lumen of the ER (Shelness et al.,
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1993) and are similar in sequence to leader peptidase (van Dijl et al., 1992), the enzyme

that cleaves signal sequences during translocation of proteins across the plasma

membrane in bacteria (Zwizinski and Wickner, 1980). As a result, these polypeptides are

thought to also play a catalytic role in cleavage of signal peptides in eukaryotes.

Conversely, SPC 12 and SPC25 were found to span the membrane twice and to be largely

exposed to the cytosolic compartment with very few amino acid residues in the lumen of

the ER (Kalies and Hartmann, 1996). Since the active site of the signal peptidase

complex is in the lumen, it is improbable that SPC12 and SPC25 take part in the catalytic

activity of the enzyme. Furthermore, studies done on yeast have shown that Spclp (yeast

homolog of SPC 12) is non essential for proteolytic cleavage of certain precursor proteins

or for the degradation of proteins (Fang et al., 1996). It has also been found that yeast

mutants lacking Spclp and Spc2p (homolog of SPC25) are able to grow relatively well

when compared to wild type yeast, suggesting that the signal peptidase complex can still

be active in the absence of two of its subunits (Mullins et al., 1996). However, Spclp

does seem to be important for efficient signal peptidase activity (Fang et al., 1996).

It has also been shown that Sec1 ip (homologous to SPC18 and SPC21) is

essential for cell viability (Bohni et al., 1988) and cleavage of tested precursor proteins

(Mullins et al., 1995), suggesting that it contains the catalytic site. A study using Sec] ]p

mutants (sec1], temperature sensitive allele) revealed that when they are exposed to high

temperatures, they rapidly accumulate precursors of secretory proteins and stop growing

(Bohni et al., 1988). A more recent study showed that overexpression of Spclp

suppressed the sec] temperature-sensitive phenotype and increased the amount of

precursor proteins cleavage found in the sec] mutant, whereas depletion of Spclp
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exacerbated the secl] defect (Fang et al., 1996), suggesting that it might play a role in the

efficiency of the complex.

There is no more information about the function of yeast Spclp or mammalian

SPC12. Being part of such a ubiquitous complex, it was surprising to find that SPC12

has a restricted expression pattern during development. Because it has been shown that

SPC 12 is not part of the active site of the signal peptidase, it might be possible that it has

an alternative function during embryonic development. Due to the scarce information on

this specific subunit, one can only speculate that if SPC 12 is indeed involved in post-

translational modifications, it might play a role in the cleavage of precursor proteins

whose transcription has been induced indirectly by the Edn3/EdnrB pathway.

3. Concluding Remarks

The role that the two genes characterized in this study play during development is yet

to be established. Both of them were found to be expressed by neural crest derived cells

which suggests that they might play a part in the development of these cells. However,

subsequent functional studies, such as a knock-out, might help us identify those cell

lineages whose proper differentiation depends upon the function of WSB1 or SPC12. In

the case of WSB1, because of its ubiquitin ligase activity, enzymology assays would help

identify the substrate targeted by the WSBl/Cul5/ElonginBC complex. In the case of

SPC 12 it would be interesting to analyze the expression patterns of the other subunits of

the signal peptidase. If the other subunits share the same expression pattern, then SPC 12

might be acting during development as part of the signal peptidase complex. If the
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expression patterns are not the same, then SPC 12 could be playing an alternate role

during the development of the cells expressing it.

It is important to note that the technique used in this study for identifying

differentially expressed genes, DD RT-PCR, is not completely accurate. Although, DD

RT-PCR is inexpensive, not difficult to carry out and yields plenty of information to be

analyzed, it can convey misleading artifacts. For example, band 28, which corresponded

to SPC 12, was shown to be upregulated after Edn3 induction in the DD gel. However,

after repeated trials of semiquantitative PCR, SPC 12 was shown to be downregulated

after Edn3 induction. Such contradictions lead to lay emphasis on the drawbacks of

selecting this technique for similar studies.

Although only two genes have been characterized for this study, the remaining

genes identified and listed in Tables 1, 2 and 3 are yet to be characterized.

Characterization of the latter is strongly suggested for ensuing projects as well as

functional studies of WSB1 and SPC 12. Characterizing the expression pattern and

uncovering the function of more genes found downstream of Edn3 signaling could

identify possible players in NCC development and eventually lead to the emergence of a

novel regulatory pathway.
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VIII. APPENDICES

APPENDIX A

Sequences from selected bands from the Differential Display gel.

4 clone a:
AAGCTTTTTTTTTTTCAAGGTCATTATTTATTTGTTGCTCTTAAAGACTCAT
TTTTGACTGGACTCAGACTTAGAAGTAGAAGCTCTCAGTGAGGACAGCCT
ACGTCTCTTGGCAATCAAGCTTA

clone b:
AAGCTTTTTTTTTTTCAAGGTCATTATTTATTTGTTGCTCTTAAAGACTCAT
TTTTGACTGGACTCAGACTTAGAAGTAGAAGCTCTCAGTGAGGACAGCCT
ACGTCTCTTGGCAATCAAGCTTA

clone c:
AAGCTTTTTTTTTTTCAAGGTCATTATTTATTTGTTGCTCTTAAAGACTCAT
TTTTGACTGGACTCAGACTTAGAAGTAGAAGCTCTCAGTGAGGACAGCCT
ACGTCTCTTGGCAATCAAGCTTA

9 clone a:
AAGCTTTTTTTTTTTCAAGGTCATTATTTATTTGTTGCTCTTAAAGACTCAT
TTTTGACTGGACTCAGACTTAGAAGTAGAAGCTCTCAGTGAGGACAGCCT
ACGTCTCTTGGCAATCAAGCTTATAACGCAGGAAAGAACATGNGAGCNA

clone b:
AAGCTTGATTGCCAAGAGACGTAGGCTGTCCTCACTGAGAGCTTCTACTT
CTAAGTCTGAGTCCAGTCAAAAATGAGTCTTTAAGAGCAACAAATAAATA
ATGACCTTGAAAAAAAAAAAGCTA

clone c:
AAGCTTTTTTTTTTTCATAAATCTCATCACTTTATTCGNTGGTGGGCAATCA
AGCTTANGCCG

27 clone a:
AAGCTTGCACCATCAACAGTTCAGAATGTTCTTATTAATCCATCGGTAATT
GGGTCCAAAAACATTCTTATTACTACTAATATGGTATCACAGAATACAGC
CGAGTCAGCAAATGCACTGAAACGGAAACGTGAAGACGATGATGATGAC
GATGATGACGATGATGATGATGACTATGATAATATGTAGTCTAGCCACGA
TGCATGTAACCTGTGTTCTTGGACTTGGATCCATTGTACTACAAGTTAAAA

62



AGCATGTTAGATGTTTTAAAGCTGTACTTTAGAAAGTGGTGTTTCATACGT
ATGCTTTGCTTTTTGATTAAAATGTTCAGTTTTACTAGAACTAGTGATGGT
TTTTCATCAACCTTTATGCACAAATAAAATTGTCATTTATCAGTTTGA
AAAAAAAAAAGCTTA

clone b: not available

clone c: not available

25 clone a:
AAGCTTTTACCGCCTAAATATCGTTTTGGTCAGTGAACTGCATATTACCAT
AAGATGGTAATGGAGCTGAAAAATTCCTGGGACCTAGCGAGGTCACAGCT
GTGATGATGTGTTTTACTCAGGTCTTGGTGCAAACAAGCCAGTGCATTGCC
AGTCTTGTAAAAATGTAGCACAATTGTGTACAGTACATACTTGATAGTGC
TAATAAATGGCTTACTGATCTATGTAAA AAAAAAAAGCTTA

clone b: not available

clone c: not available

27 clone a:
NTTTTNGAGCCCGAGTTNCTCNAGNCNCNACGTGTGCNATCTACATGCNT
GCTCGAGCGGCCGCCACTTGACTATAGANNCNATATNGAACCCTCTNTAN
GCNTGCTTACNGCNGCNNACACATTNNAAGNTANGGGGANNCATAGTAC
NNNGGGNTGTACCNANCATGCTCAATNNCAANANTTTNTNNNANACTCTG
NCCTAAGCCTGGCCCTTCTTNATCTGAAAGCACTACTACNAGCACTCCAT
NAACNANNGNATACTGTTANTANNTAGATGNTGACACTATTAAACCTCCT
CTGNTGTGTGGGTANNNAAAAAAAGCTTA

clone b:

CGCCCGANTNACTCCAGGCNCNACGTTGCNNTCTACATGCCTGCTCGAGG
CGGNCCCCACTNNCTATAGATANTATATAGAACCCTCTNTTAANCTTCTAC
CGCCNCTCANNCATTCCAAGTTANGGGGAANCATAGTACCANGGGCTGTA
CCNANCATGCTCANNCCAANATTTTGTNNNANACTCTGCCCTANGCCTGC
CCTTCTTCATCTGAAAGCACTACTACNNGCACTCCAGTGACNAAGGGATN
CTNGTAATAATNNAGNNGCTGCCACTTATAAANCCTCCTTTGCTGGGGGG
GTAAAAA AAAANGNTNAGGGGGAAATTCNAAANCCTTGNCGGCNGTTN
NTATNGAANCCAANCTCGNANCCANNNTTGNNGCNNACTTGGGGANTTT
NNTANGGGANCCNAANTANNTNGCCAAATTNANGGCNNNANTNGNTTCN
TNNGTNAAATGGCTNTCCGTTCCNATTCNACAAAGATNACAACCGGANCC
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GCGTNGNGCTCACTGCCCGGTNTCCAATGGGGGAANCCTGNCGCCCAANT
TGGATTAANGAACCGNCNCCNTCCGGGGAGAGGNAATTTGCNTTTNGNGC

NCTTTNACGATTCTCCCACACTGACTNGATNGGCCTNGGNCNTTNNNGTG
NNTTATCCGTNTTNTCTCTCTNNAAAGNGGNNANNCGGTNTCCCNAAANC
GGGGGANNCCCNGAAAANANATGGGGGCT

28 clone a:
AAGCTTTTACCGCCTATGTTCTTATAGCACAGCTGTGTCGAGATCTAATTG
TCATGGCTTCATTTCTAATCCAAATGTATTTTAAGTTATGACTATTTTATAC
CATCTCTTCATAAGCTTGTTATGGAGAACAGGAGATACAAGTATGCAATG
CTTCTTTCCCGTGTGTATAATGAATAAACACTTCATAACTTGTAAAAAAAA
AAAGCTTACAGAATCAGGGGATAACGCNG

clone b: not available

clone c: not available

30 clone a: not able to edit

clone b:
AAGCTTTTTTTTTTTCAATGTGTTATAACAAATGGATGTTNGGCTCANGAG
CCCAGAACAGCCTCTCTATCAATCACAGCAGGCAGTTATCACATGGTAGG
CTCCAAGGAGGAACTGTGTGCGCCCCAAGTGTCTGATGGCTGGCTGTACT
TCTCTTCCAC

clone c:
AAGCTTTTTTTTTTTCAATGTGTTATAACAAATGGATGTTAGGCTCAGGAG
CCCAGAACAGCCTCTCTATCAATCACAGCAGGCAGTTATCACATGGTAGG
CTCCAAGGAGGAACTGTGTGCGCCCCAAGTGTCTGATGGCTGGCTGTACT
TCTCTTCCAC

32 clone a:
AAGCTTTGGTCAGGCAAGGGGGAAGTACTAGGAGCAGCCATTATACACTG
AGGTCAGAGGAGGGTGGCATAGCTGGTTGAGGTTGTGTTTGGAAAGGGCT
TAAGAAAGACTCTGAGGGGCTCAGGAGTTAAGAGCACTGACCGCTCTTCC
AGGGGTCCTGAGTTCAATTCCCAGTAACTACATGGTGGCTCACAGCCATC
TGTAATGGGATCTGATGCCCTCTTCTGGTGTGTCTGAAGACAGAGACAGT
GTATTCACGTACATGAAAAAAAAAAAGCTTA
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clone b:
AAGCTTTTTTTTTTTCGAGACAGGGTTTCTCTGTGTAGCCCTGGCTGTCCA
GGAACTCACTTTGTAGACCAGGCTGTCCTCGAACTCANAAATCTGCCTGC
CTCTGTCTCCCAAGTGCTGGGATTAAAGGGNGGNGGGGGACACCTTTACT
AGACTTNCTTCTTATATATTTCATATCACAAATACNCCAGCTCCTTTATGG
NTTTATTCTATTTGGGAATTATAGAAGGGATTCTAGGNTTNAAAAACATA
ACAATGNGNATTGNAAAGCATAAAAAATGNTTAGACTCCTTAAACAGNC
NAAGCTTAANGGGGAAATTCANCACACTGGGGGGCGGTCTAANGGA

clone c: not able to edit

34 clone a:

GCCCGGTNCTCCAGNCNCNACGNTGCNNTCTANTGCCTGCTCGAGCGGCC
CGCCTNACTATAGANNNNAANNGACCCTCNCTATNCCTTCTCTCACGNAN
GGCNATTCCACCAAAGGTNGNNGNATCCTTGNNAAGAGTTTNNGCTATCC
TCGGGNTTTCGCCATNCCANATNAANTNNTTNGTACCACTTTTGGGATTA
NNTCTGGTTTGAGAGGANAGAAAANCTATTNCATGAGACNCTTTACTCCC
AATCCAAAAGCAGATGCTTGCANANGAACTCANTNCTACAAGATTCATAN
NNCTTACCCCCTANNTGCNCANATGGGNTCNAATNNNNACAAGAANCTN
AANNCTACCCNNNNAAAAANANANNTNNGGGCCAATTNCNANANNANG
GNGGNCNNTACCNTGGGAANCCAACNCNNTACCNAGCNTTNCNNCNNAC
TTGGGGANTNTANTAGGGGACCCCAACTNCGTGGCNNAATNANNGGCAN
AACTGGNTNCNNNGTGNAAGTGGCTTACNGTCNCAAGTNCACACAAGAT
ACCANCCGGNACCCTTAANAGNTAAGNCNCGGGTGCCTTATNANGGNAC
CTACCNACCTTAAANGNNTTGNGCTCAACCCCCGGTTTCCAATGGGGGAA
CCTNGCCNCCNAATTGGNTTANGGATCCNGNCCCCTCCNNGAAAAGGAA
NCTGGNGATCNGCGCNTTTACGGATCCTNCCNACCTNNNTNATAAGGCTN
NNTCCNTTTTGNTCNNNNATNCGGTTTCNCCCNCTCNN

clone b:

GCGCCCGAGTNACTCCAGGCNCNACGTTGCNNTCTACTGCCTGCTCGAGC
GGCCCCCACTNACTATAGATNCNATACAGAACCCTCNCTTAGCCTNCTCN
NNCCNGGNNGNNCTTACATNGGGGGNNGGAACTCACAANCTNAGNNNGC
TTCCTGANAACCTTTTAACAGTCATGTNCTGTNNCTTNCAAAGGANGCAA
ANTTGCTACTTCCNTATTTGGCATGATAATCAAATGAAAAATNACTAAAA
AGTNAANTTACATGTNTNCNCNTTTGGANTGNTGTCNACAAATTTATGAG
CATGCTATTTNNACTAATGCCNTCANANNTTNTTAGAACTTAATNAACAN
GNGCTGNNTTCAANTTTGANNNANNAAAANCTTANAGNCCAATTCAACA
CACTGNNNGNCGTTCTAGNGGATNCAAACTCTNNACCANGNNTGANGCA
TAACTNGAGTANTCTATAANGGCACCNAAACNCCTTGCCGNANTCATNGC
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CATAGCTGNGTNCTGTNTNAAATTGNTTNCGCTCNCNATTCCACACANNA
TACAANCCGGAACCNTAAANAATNAANNCTGGGGGCCTATTCANNGAGC
TAACTCCNTTAATNGCNNTGGGCTCACTNCCCGNTTTCCAATNNGGGAAC
CCTGCCCNCCAANTGCATTAATGAATNCNGCCCCNNTCNNNGANAGGGA
NCTTGCNNNCCNGCNCTTTTCCGNTTCTNCNCCT

35 clone a:
AAGCTTCGACTGTTTATAGATAGTCTTAACATTTTTTATGCTTTGCAATAC
ACATTGTTATGATTCTGAAACCTAGAATACCTTCTATAAATCACAAATAG
AATAAAAACATAAAGGAGCTGGAGTATTTGTGATATGAAATATATAAGA
AGGAAGTCTAGTAAAGGTGTCCACCACCACCCTTTAATCCCAGCACTTGG
GAGACAGAGGCAGGCAGATTTCTGAGTTCGAGGACAGCCTGGTCTACAA
AGTGAGTTCCTGGACAGCCAGGGCTACACAGAGAAACCCTGTCTCGAAA
AAAAAAAAGCTTA

clone b:
AAGCTTTTTTTTTTTCAAATTGATTAATAAAATAGAAATTTTATTATACTTT
GCATATCCTTAAAAATATGAAAAACAAGGCCAAAAGTTTAAAAACAGTTT
TACAGATGTGCATGCTAACAATGGTTTAATACATTTCCAATTATATAAAAT
ACATTATATAAAAGATGCCTAGATTTTTACATACATCAAGTGAATTAAAT
AAAGCATTCATATATTTCTATGATCTAAGTGCAATATGCACATACGTAGA
AAAAAAATACTGATTTCCTGACCAAAGCTTA

clone c: not able to edit

36 clone a:

GCCCGGTTCTCAGGCNCNACGGTGCCNTCTAATGCNTGCTCGAGCGGCCG
CCACTGTNTATAGATANCTGCAGAANCCTCNCTTACCTTCTCTNACGGAC
NGCTGTNTAATAATATTAGGNNGAAGGNGACCNNTAGCTATTATNTTATA
TNANGAGAAAGTTCTTCTGANGATCATNGGTTATTACANNGATANNAAGT
TATCAGCANNTNAACCATATCTNATCTNACTTTATTGCTAGAGTTTATAGC
ATTACAGGATTTCTTATTANNTTATTTNGGNAGAGTGATATAATTTGTTTT
AAAACTGNGCCTTANCAATTGTTGAAAAAAAAAAAGCTTAANGGCGAAT
TCCAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCT
TGATGCATANCTTGAGTATTCTATAAGGGNACCNAAANAGNTTGGCGTAA
TCATGGCCATAGCTGGNTNCTGTGTGAAATTGNTANCCGCNCACGATTCC
ACACANNATACAANCCCGGACNNTAAAGNGTNAAGCCTGGGGTGCCTAA
TGAGTNAGCTNACTCCCTTAATTGCGNNGCGCTCACTGNCCGGTNTCCAA
TNGGGAAACCTGNCNCCNACTGNTTAANGNNTCNGCCNCCCNNCNNNGA
NAGGCNNCTGNNNNNCGGNCNNCNTTTNNGNNTCCTNNCTNNCTGNNTN
NNTGGC
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clone b:

TGTTTGTGCCCGNTNCTNAGNCNCNACGGTGCCNTCTACTGCCTGCTCGA
GCGGCCGCCANTGCTATNGNTATCTGCAGAANCCTCNCTTAANCTTCTCN
CACGGACNGCTGTNTAATAATATTAGGNAAAAGGNGANCNGTAGCTATT
ATGNTATATNANGNGAAAGTTCTTCTGANGATCATNGGTTATTACANNGA
TANNAAGTTATCAGGANNTNAACCNTATCTTATCTCACTTTATTGCTAGAG
TTTATAGCATTACAGGATTTCTTATTAGNTTATTTNGGNAGAGTGATATAA
TTTGTTNNAAAACGGGCCTTANCANTTGTTGA AAAAAAAAAAGCTTAAGG
GCGAATTCCAANACACTGNGGCCGTTACTAGNGGATCCNAGCTCGNTACC
AAGCTTGANNGCATACTTGAGTATTCTATAANGGNACCNAAANNGCTTGG
CGTAATCATGGCCATAGCTGGNTNCTGTGTAGAAATTGCATNCGCTCNCN
ATNNCACNCAANATACAANCCCGGACCNTAAAGNGTAAAGCCTGGGGTG
CCTAATGAGTGANCTTACTNACATTAATTGCGNTGNGCTCACTGNCCGNT
TTCCANTGGGGAACCTNCNNCCNANTTGCTTNATGAATNNNGCCCNNNTN
CNGNGANAGGNNNCT

clone c: not available

39 clone a:
AAGCTTTGGTCAGGATAGATGGTGTGAAACTGATAAGAGGTTTTGGATGT
GAAAAAGAGTTTCCAAAAGAATGGTGTCTGGGAGTTTGAATGTGATGATT
AAAAAAAGAGCCAAGGAAAAAGGTAGCTAGAAAAAAAGGTTGGCTCTCA
TCAGCCTTAATTTTGGAAAGCAGCTACTTACCCCTCAGAGAATAAAGTAT
TATGCATTCTTGTCAATTTGAAAAAAAAAAAGCTTA

clone b: not available

clone c: not available

40 clone a:
AAGCTTTTTTTTTTTCCAAGGCATAAGAATAAGGTTTAATGCTGCACCCAT
CAAGGCAGCCCTAGTGTCTGTCAACATGGAAGCTCCCTGAGCGGTGCAGA
CCTCTCCAGTGTCCAGCTTCCTCAGTGTCTTCCACAGGACTACGCTGTGTC
TGAGGCCTCGGCACATGGTACCATCGAGGCCTGTGGTGGGGGAGGGGCT

clone b:
AAGCTTTTTTTTTTTCAATTGAGGTAAACACATAGAATATCTAACATGAAA
CAATTAAAAGACCGAACTCTGTACGAAGTTTGTTACAGTATTCTCTTGCTC
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CTTTTTATCCCCCAAGCTTTGAGTTCCTGATAGAATCCTACTTATGGTGCA
ACGACCATGAATAACTTGTGTGTGTGTGTGTGTGTATGNGCGNNGANAAN
CTTA

clone c:
AAGCTTTTTTTTTTTCCAAGGCATAAGAATAAGGTTTAATGCTGCACCCAT
CAAGGCAGCCCTAGTGTCTGTCAACATGGAAGCTCCCTGAGCGGTGCAGA
CCTCTCCAGTGTCCAGCTTNCTCAGTGTCTTCCACAGGACTACNCTGTGNN
TGNNGCCTCGNCACATGGTACCATNNANNCCTGTGGNGG

44 clone a:
AAGCTTAGTAGGCAAAAAGACAAGTATCTGGAAACAAGAACACAGCGCC
TTAGAGTAAAGGAGGAAAGACTGGGACATCACCTGACTGTGGTTGNNNT
ACAGGNGA

clone b: not able to edit

clone c:
AAGCTTAGTAGGCAAAAAGACAAGTATCCGGAAACAAGAACACAGCGCC
TTAGAGTAAAGGAGGAAAGACTGGGACATCACCTGACTGTGGTTGTTTTA
CAGGGGATCTTCAGAGCTGTTGAGATCATTAAAGCATTAAACCTGCATTG
TAGGTTGNTAACTGATTTTTCATAACACGCTTCAATGCTTTTACTAATCCT
AGTAATTGTTAATGNCACTTGNGAAGATGNACAATTNCAGTANNTNATNT
TANATATTTANATTATTANACCTTTTATATTANNTG

47 clone a:
AAGCTTGCACCATGAGATGTTATTTATTCAGCTAGGCGGGGCTCGAGCCA
GGCCCTGCCCCTAGGTGAGCAGCCGCCACCTGGACAGGGACTGTCCTGTC
ACCACTCACCCTCCAGCCAGCCTGTCTGTCAGGAAGATCTTCCTAGCCCTT
TTTTAAAGCCTCTTTTACATTTTTTAAAAACATAACTTTTTCAGAGAGAGA
GGGGAGCTGACAATCACTTTTCTTCTGTTTTGGTTTTTGGTTTTGGTTTTGT
TTTGAAAGCCGTTTAAAGCTCAGTTCTGATGATCTATGCAGCTCTAAGTTT
CCTCATGGAGCCTCACAGATCCAGTTTTGGGAAAGGATTTGGACTCAAAA
CTAACTGACCAATTCTTTGCCCTTTGTACCAAGAGACTGATACTTANGCCC
AGGAAATAAATGCTGGTGGTTTGNGAAAA AAAAAAAGCTTA

clone b:

NAGNNTGNNCCNTTTGNAAAGGGGTACTNTTGGATTCCNGNTGGACNNA
AATCACNTGAATAAAAGNTCCNTNCTGGGNGCTNATTTGNGGGGGGGNG
GGCTNAAGTGTGTACCAAGAATTGGGTGGNGGNNACAGAGACACACCCC
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CTCTNTGACACAACCCTCCTTTNCCCCGAAANTAAATGCGNGNNTTTATNT
AAAACNCAACNTTNTGTGGAGANCCANANAATAAATTTGTNAAACANAA
GNTTNCTGTGTGACCCCNGNAANGGGTATNCNATNNTATNTTTNTNGNAN
ACTGTGTGTCNTATATGGGAAAAAGNTCTCTAACCNNGTGTTTGTGGNGG
CNCCNCATGGGTAGAANATTNANACTGNTNCCCATTAAAANNTGAAGAA
CTTNTTGGTGNATGAAAAAAAANACNCCTCTTCTCAAAAAAAAAAANTTN
TTGGNGGATNTCTCCACCNNGTGGCGGNNCTAATTGGAGCCCCCTCCTNC
CCCNNTNTTGATAATTTGGNGANTTTNTTTGGCCCAAATNANTTGGNGGG
ANTATGTGTNNTTGTTNCTGGGGAAANTGTTNTCCNCTCCAATTCCCCANA
TACANCCGGAGNTAAAGNNNAANCNTGGG

clone c: not available
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Appendix B

Alignment: 10 day old male pancreas cDNA, SPC12, and 28.

* 20 40 * 60 * 80

10d ------- TRGGICIAIV"CGAIGBMIAAIIITCG4I TGMTIGGCCTTG®i0T9

S P C 1 2 TGGGCTTAIAAJGSCIFT.ST--ICGEQCGIR9AGTVSCAlAlCTTA000JBIAQ

28 --------------------------------------------------------------------------------------

g g c cggc a tga cgc gc g C ctc cg t a c c c c t

* 100 120 * 140 160

10d IATIGSITJIGTCSVT(TCITiVTIG'TAB GGTIETCAGyyASJiBvlall.RA

S P C 1 2 iGCITIICIJCCG®4CJCAFS.CiyClClCCIS--- jjCAGCjjGBIijj18j jiG

28 ------------------- -------------------------------------------------

a c gc ac cg t g tg c g tc Ct ca ccatgctgga ca c t g a g t c g c t g c c c a c c a g a t g g a t t a

180 200 220 240 2

10d lAnill§G®l1UgasAlinCi1V.SilssSiM.Bli!alflilGGJCATEIiiMy aliiallui

S P C 1 2 9isuu C s uaiG a18e7 si s s mQ QAA iTTA ra©l C L ̂
28 -------- ----------------------- -------------------------------------- -

caaggg cagaa ctagctgaacagatgtttcaggg t tcttttttctgcaatagttgg tttatctacgggtacgtggctg

60 280 * 300 320 * 340

10d Ji1sTjaT1, u'1'gIii9, C21 lai.110111uIf 61 4.72di1 uIIiIC01CfB U
M. 1:9u f 11 e- C9u .... 'e .. u ser y r ni s c .0 1 !! i y : T'11 1 u^r eu 9u^Tu us la 161TjaAlev5a

ejj u aj160 WeTeb

28 ----------- ------------ ----------------------------------------------- -

aacagtt gggtggactgtcta atagttatggccggatttgcttt tc tgtttgctgacacttcctccatggcc atcta cgc

* 360 * 380 * 400 420

10d nT C 423

S P C 1 2 RG T9e Cia ujuuaJi3aa7aa1'641UiAaCjAu®iIs iC s aa : iC A 424

28 -------------------------------------------------------------------------------------- -

cg catcc ct aagtggttacctgttcaaga t a gcacaga gacaagaaa cagggga agaaaaattaagaggcatgctaa

440 460 480 * 500

10d

S P C 1 2 
DWIWIIM

28 ------------------------------------------------------------------------------------ A '-

aaataa tga g tttcatgattcagcacctgcttttgtttc tgtgagatgagct aattgctttcata c a a a gA
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5 2 00 5 60 5 80 60 0

SPC12 :IIAT2IIAIIIIAICIIIII IIIIIIIIIIATIIITIGICIITITATA GC GT GG --- 588

28 : lIEITTIIIII-1IIhIllIUIEIIIIIIIUI IUS iIII IiI GT

GCTtaaACCgCCTA TGt= ZGC ACAGCTGTGTocAGATcTAaTTgTCaTgg CTTCATTTCTAatCCAaaTGtaTTTtaa

620 * 640 * 660 680

10d : iiaEaiahaIaasaaa'Eaih ahiiEEEhDG hII hiEhE ! EEUEE A
SPC12 :---------------------------------------- -------------------------------

28 :aDhiD!EmEE91 1 ih haEEEaEII hhEIhhIa I'A GTIGTCTCGiiihI tiEA
gttat gactat tttat accatctcttcat aagcttgttat gagagaacagagatacaagtat gca at gct tct t tcc cg tgtgtat

* 700 *720 * 740

10d iDE~iciiiaiEahhhl!Ei®IC------ --------------------------- 703

SPC12 ------- --------------------- -------- -------------------

28 : llAEflgji5flg iiAAAATAAAAAAAAAAAGCTTACAGAATCAGGGGATAACGCNG 233

aatga taaacacttcataaCttg
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APPENDIX C

Alignment: 39, 11d embryo cDNA and WSB1

* 20 40 60 80

39 -------------------------------------------------------------------------------------- -

11d CCAGGAACATTCGGCGGCGGAAGCATTGGCGGGCTGTGTGAGTCTGTGAGTGGAAGGCGC GC CGGCTCT TT TGTCT GAGTGTGACC 86

W S B 1 --------------------------------------------------------------------------------------

* 100 120 * 140 160

39 -------------------------------------------------------------------------------------- -

11d CGGTGGCTTTGTTCCAGGCATTCCGGTGAT TTCCT CC GGGCAGTCCGCAGAAGCCGCAGCGGCCGC CCGC GCTCTCTCTGCAGTCT 172

WSB1

180 200 * 220 240 * 2

39 ------------------------------ -------------------------------- -

11d CCACACCCGGGAGAGCCT GAGCCCGCGTCACGCCCCT CAGCCCCC GC TGAGTCC CTTCTCTGTTGTCGC GTCCGAATCGAG TTCCC 258

WSB1 - ------------- ------ --------

60 * 280 * 300 * 320 340

39 ---- ------ ------------------------- -- ------------------- -

11d GGAATCAGACGGTGCCCCATAG p 11" iIIIIZe diIIIIAnV.2i '
WSB1 ----_-_-____ ----- :p5 ppiL II1911ppl71i1674161iipZi1100 111

atggccagctttcccccgagggttaacgagaaagagatcgtgagatcacgtactataggggaac

* 360 380 * 400 420 '

39 ------------- ------ -------------------------------------------------- -

11d 82621 6. IS E." Q
W S B 1 p ppyl dJp' i Vi 'pp u'pppp i 'iiVii e 5 rup p 3616 ulh

tcttggctccagcagctccttttgacaagaaatgtggtggtgagaactggacggttgcttttgctcctgatggttcctactttgcg

440 460 * 480 500

39

ltd p ppi®ii ipipp®Sip: p4ii ppp p p94p p CsBi p ppppii i'
WSB1

tggtcacaaggatatcgcatagtgaagcttgtcccgtggtcccagtgccgtaagaac tttcttttgcatggttccaaaaatgttac
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5 2 0 * 5 4 0 5 6 0 * 5 8 0 * 600

39 -------- 1----------- 1---/-------e------------1-----------------------------------------

11d i ii\1 J iii Lt 1r la iii lS iii Y i uu vu / 7i® J i1 -

WSB1 9,a i l i7 i 4 i ii il7iiii V i . dv wr l7i iiiii i ii:

caattcaagctgtctaaaattggcaagacaaaacagtaatggtggtcagaaaaacaagcctcctgagcacgttatagactgtggag

620 640 * 660 680

39 -------------------------------------------------------------------------------------- -

1 1 d a®QBQu©®BZEQ®©rllBllBBBB®Iuailliml©allamusaalal:lMalilialZ

WSB1 a a aEl I 'a M ®© U L I { u iu il L al a aaaaa a^ c'aul a ul C 'uC' 'WE 'Imutel@Kwgw

acatagtctggagtcttgcttttgggtcttcagttccagaaaaacagagtcgttgcgttaatatagaatggcatcggttccgattt

700 720 * 740 760

39 -------------------------------------------------------------------------------------- -

11d a Ca a© a L M ar f l M uu : ir allllaaa :al flr a© aaaaf l
W S B 1 a 7a ar au e 71 31 1 u a au +ilyl aaa aal B M G i9al iaaaac C.l GGGATGTATATACAGGAAAACTCCTCCTTAA

ggacaggatcagctactccttgccacaggattaaacaatggtcgcatcaaaatctgggatgtatatacaggaaaactcctccttaa

780 800 * 820 840 860

39 ------------ - ------------------------- ------------------- - -

11d

w SB1 " Glr r4li rirril iY iiiiiwr. ly i nr 'i i C7i Y {7 C1 .9 u r L7 iSi rer. Bibb Q.

tttggtagaccacattgaaatggttagagatttaacttttgctccagatgggagcttactccttgtatcagcttcaagagacaaaa

880 900 920 940

39 ---------------------------------------------------------------------------- ----- -

11d l 1 l aa sul uM!®® a ®® iaa r aM r u a ©u pQa:a aL r yu L J aaa u l {a L ©a 1r u

W S B 1 7 aa a'l u ua Y7 uaaa a ua aaaa®a©6 J iiViaa ©i LIV YL

ctctaagagtgtgggacctgaaagatgatggaaacatggtgaaagtattgcgggcacatcagaattgggtgtacagttgtgcattc

960 980 1000 1020

39 -------------------------------------------------------------------------------------- -

11d 7©y r 77yti a ©Ql ©01 :©ur ©4 1 L7 aV/ f il M CI ® +®I au aaa aLG ©1 7 1 1 1 ©l ©

W S B 1 i7 7iic7 a ii ©©s V u ii a J u ®a ©sai au Yl

tctcccgactgttctatgctgtgttcagttggcgccagtaaagcagttttcctttggaatatggataaatacaccatgattaggaa
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1040 * 1060 1080 1100 11

39 -------------------------------------------------------------------------------------- -

11d ...Ra..®B.a®.aa.aa©auaIIaaaaaIIIaaa..a..a..©...0I.

gctggaaggtcatcaccatgatgttgtagcttgtgacttttctcctgatggagcattgctagctact gcatcc tatgacactcgtg

20 1140 * 1160 * 1180 1200

39 ----------------------------------------- -------------------------------------

11d ...... 1sia"S u.2.a.aa.a4.©....aaaI!I9.11aIaa -
W S B 1 .yi321aZIT123aaaaaI.auu.waIaIIIaIaIIIaa

tgtatgtctgggatccaca ca at ggagacc ttctgat ggagtttgggca cc tgtttccc tcgcc cactcc aat at ttgctggagga

* 1220 1240 1260 1280

39 -------------------------------------------------------------------------------------- -

11d ..... au...".6...©......©IaIaIaaa...a..a..aZsiaa.s.a.aaa
WSB1

gcaaatgaccgat9ggtgagagctgtgtctttcagtcatgatggactgcatgttgccagccttgctgatgataaaatggtgaggtt

1300 1320 1340 1360

39 ------------------- --------------- ---------- ------- -

WSB1 : aaII.f..a...a0..®.®I®1..aZa.a..aaaZI.IIaaIu.'a..aIZaoaa
ctggagaatcgatgaggattgtccggtacaagttgcacctttgagcaatggtctttgctgtgccttttctactgatggcagtgttt

1380 * 1400 1420 * 1440 1460

39 ---------------------- ---- ------------------------- -

11d TUOa aj 1 u1119146 ..uIe ".e ss5a I ",e 111, IaaaI.I.II.saIS..111 .111
W S B 1 ..aa-aCau.a.a.I.a..aISII ".e a IT BiI ua a a ..'. E s3a 1111111 %, Ze 'Mum

tagct g tgggacacatgatggaagtgtgtatttttgggccactccaaggcaagtccctagccttcaacatatatgtc9catgtc

* 1480 1500 * 1520 1540

39 -------------------------------------------------------------------------------------- -

11d ..I.....u.....I...6.0....uaiu1a1.ii..181111Z8Bs.IB.®...

aatccgaagagtgatgtccacccaagaagtccaaaaactgcctgttccttccaaaatattggcgtttctctcctaccgcggttag
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1560 * 1580 1600 1620

39 -------------------------------------------------------------------------------------- -

I I d CT GAAGACTGCCTTTCC TGGTAGGCCTGC CAGACAGAGCGCCCTTTACAAGACACACCTCAAGCTTTACCAGCTCAAGCGTCTGTC 1634

WSB1 -------------------------------------------------------------------------------------- '

1640 1660 1680 * 1700 1720

39 -------------------------------------------------------------------------------------- -

11d CTTGGAGGCTCAGCAGATTTATTTAATTGGAATCCACTCTTATTCTTCATTTCATTAGTTGGACTTTTAAAGCATTAT TTATACAC 
1720

WSB1 ------------------------------- --------------- '

1740 1760 1780 1800

39 ---------------------------------------------- ------- ----- ----------- -

11d CATAGAAATATTT CT GAACATATCAT GTAATTTTT TTAAGATAACTGTGAAAACATTACAT ACAT GTAT AT AT TTAGACATGAG CT 1806

WSB1 ------------------------------- --- ------------------------ -

1820 1840 1860 1880

39 -------------------------------------------------------------------------------------- 
-

11d GC TGC TAT ATATTGAATGGGCCCT TTAG TTTTCTCTTAGTTCTGACCTGTATATATTGC TTTAATAGAGCCAC GATT TGTAT AT GT 1892

WSB1 ---------------------------- -

1900 1920 1940 * 1960 * 19

39 --------------------------------------------------------------------------- 
-

11d GCTGTTCATTAGAGCAAATTCAGGGGAATTTTTGTTCTTTTTTTTTTTATTTGGGGGCACTAAGTTTAGATGAGATGAATTGCCTC 
1978

W S B 1 -------------------------------------------------------------------------------------- 
-

80 2000 2020 2040 2060

39 -------- AA6CT© Qu i i©a ©ui 0©Bi airi u © i .

11d

WSB1 --- ---- -------------------------------------------------------------------
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