
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

7-5-2000

Integration and querying of heterogeneous,
autonomous, distributed database systems
Rukshan Indika Athauda
Florida International University

DOI: 10.25148/etd.FI14032366
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Databases and Information Systems Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Athauda, Rukshan Indika, "Integration and querying of heterogeneous, autonomous, distributed database systems" (2000). FIU
Electronic Theses and Dissertations. 1332.
https://digitalcommons.fiu.edu/etd/1332

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.fiu.edu%2Fetd%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1332?utm_source=digitalcommons.fiu.edu%2Fetd%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

INTEGRATION AND QUERYING OF HETEROGENEOUS, AUTONOMOUS,

DISTRIBUTED DATABASE SYSTEMS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Rukshan Indika Athauda

2000

To: Dean Arthur W. Herriott
College of Arts and Sciences

This dissertation, written by Rukshan Indika Athauda, and entitled Integration and

Querying of Heterogeneous, Autonomous, Distributed Database Systems, having been

approved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Jun Yuan

Nagarajan Prabhakar

Subbarao Wunnava

Naphtali Rishe, Major Professor

Date of Defense: July 5, 2000

The dissertation of Rukshan Indika Athauda is approved.

Dean Arthur W. Herriott

College of Arts and Sciences

Dean Richard L. Campbell
Division of Graduate Studies

Florida International University, 2000

ii

© Copyright 2000 by High-performance Database Research Center at

Florida International University

All rights reserved.

iii

DEDICATION

I dedicate this dissertation to my parents. I am forever indebt for their guidance,

patience, understanding, support and love throughout my whole life.

iv

ACKNOWLEDGMENTS

I wish to thank Dr. Naphtali Rishe, my major professor, who provided me with

guidance, direction and support to perform my doctoral research. I wish to thank my

committee members Dr. Prabhakaran, Dr. Wunnava and Dr. Yuan for taking the time to

review my thesis and for their helpful comments. I would like to thank Dr. Yuan for his

support throughout the design and implementation of the project. Dr. Shu-Ching Chen

deserves a special note of thanks for providing me with very helpful comments, revisions

in paper writing and my dissertation work. Also, my colleagues, Xiaoling Lu's and

Xiaobin Ma's efforts in implementing the wrapper project is greatly appreciated. I would

like to thank the secretaries, Theresa O'Connel and Maria Monteagudo, who were always

willing to help me. I would like to thank, Catherine Hernandez and support staff for

promptly responding to our requests. A special note of thanks is extended to the library

and its staff for providing access to many research resources without which this project

may not be feasible. I deeply regret the fact that I am unable to acknowledge everyone

who supported me throughout the years at FIU (especially the excellent faculty). I would

like to convey my heartfelt appreciation and gratitude to them.

v

ABSTRACT OF THE DISSERTATION

INTEGRATION AND QUERYING OF HETEROGENEOUS, AUTONOMOUS,

DISTRIBUTED DATABASE SYSTEMS

by

Rukshan Indika Athauda

Florida International University, 2000

Miami, Florida

Professor Naphtali Rishe, Major Professor

Today, databases have become an integral part of information systems. In the past

two decades, we have seen different database systems being developed independently and

used in different applications domains. Today's interconnected networks and advanced

applications, such as data warehousing, data mining & knowledge discovery and

intelligent data access to information on the Web, have created a need for integrated

access to such heterogeneous, autonomous, distributed database systems.

Heterogeneous/multidatabase research has focused on this issue resulting in many

different approaches. However, a single, generally accepted methodology in academia or

industry has not emerged providing ubiquitous intelligent data access from

heterogeneous, autonomous, distributed information sources.

This thesis describes a heterogeneous database system being developed at High-

performance Database Research Center (HPDRC). A major impediment to ubiquitous

vi

deployment of multidatabase technology is the difficulty in resolving semantic

heterogeneity. That is, identifying related information sources for integration and

querying purposes. Our approach considers the semantics of the meta-data constructs in

resolving this issue. The major contributions of the thesis work include: (i.) providing a

scalable, easy-to-implement architecture for developing a heterogeneous multidatabase

system, utilizing Semantic Binary Object-oriented Data Model (Sem-ODM) and

Semantic SQL query language to capture the semantics of the data sources being

integrated and to provide an easy-to-use query facility; (ii.) a methodology for semantic

heterogeneity resolution by investigating into the extents of the meta-data constructs of

component schemas. This methodology is shown to be correct, complete and

unambiguous; (iii.) a semi-automated technique for identifying semantic relations, which

is the basis of semantic knowledge for integration and querying, using shared ontologies

for context-mediation; (iv.) resolutions for schematic conflicts and a language for

defining global views from a set of component Sem-ODM schemas; (v.) design of a

knowledge base for storing and manipulating meta-data and knowledge acquired during

the integration process. This knowledge base acts as the interface between integration and

query processing modules; (vi.) techniques for Semantic SQL query processing and

optimization based on semantic knowledge in a heterogeneous database environment; and

(vii.) a framework for intelligent computing and communication on the Internet applying

the concepts of our work.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION ... 1
1.1 R elated W ork ... 5
1.2 O ur W ork .. 7

1.2.1 Contributions of Thesis ... 8
1.2.2 L im itations ... 11
1.2.3 O utline of T hesis ... 11

2 HETEROGENEOUS DISTRIBUTED DATABASE SYSTEM 13
2.1 R elated W ork ... 13
2.2 O ur W ork ... 16

2.2.1 Semantic Binary Object-oriented Data Model 16
2.2.2 Semantic SQL Query Language ... 19
2.2.3 System Architecture ... 25

2.3 Benefits ... 29

3 SEMANTIC HETEROGENEITY RESOLUTION 34
3.1 R elated W ork ... 36
3 .2 O ur W ork ... 4 1

3.2.1 Foundations of Semantic Knowledge 42
3.2.1.1 Semantic Relations ... 43
3.2.1.2 Object Equivalence ... 46
3.2.1.3 Boundary Conditions .. 50

3.2.2 Identification of Semantic Relations 52
3.2.2.1 Relevant Work ... 53

3.2.2.1.1 Ontological Foundations 53
3.2.2.1.2 Classification Techniques 58

3.2.2.2 Methodology ... 60
3.2.2.2.1 Step 1: Conversion to Sem-ODM 61
3.2.2.2.2 Step 2: Obtaining Property Functions 63
3.2.2.2.3 Step 3: Mapping to Shared Ontology 66
3.2.2.2.4 Step 4: Discovering Semantic Relations 69

3 .3 S u m m ary ... 7 2

4 SCHEMATIC HETEROGENEITY RESOLUTION 74
4 .1 R elated W ork ... 74
4 .2 O ur W ork ... 75

4.2.1 Sem O SQ L/M .. 76
4.2.2 Schema-level Conflicts and Resolutions 78

4.2.2.1 Naming Conflicts .. 79
4.2.2.2 D ata C onflicts .. 80
4.2.2.3 Attribute Type Conflicts .. 82

Viii

4.2.2.4 Attribute Granularity Conflicts 83
4.2.2.5 Missing Attribute Conflicts 84
4.2.2.6 Missing Attributes With Implicit Values 86
4.2.2.7 Basic Relations .. 87
4.2.2.8 Composite Relations ... 89
4.2.2.9 Inter-schema Relations .. 91
4.2.2.10 Category Inclusion Conflicts 92
4.2.2.11 Attribute Inclusion Conflicts 93
4.2.2.12 Category-versus-Attribute Conflicts 94

4.2.3 Handling Inconsistent Data .. 97
4.2.4 Knowledge Management in Database Integration 98

4.2.4.1 Knowledge Base ... 99
4.2.4.1.1 Knowledge Bases at Component Sites 99
4.2.4.1.2 Knowledge Base at Global Site 106

4.2.4.2 A Tool used for Global View Definition 110
4.3 Summary ... 113

5 QUERY PROCESSING ... 117
5.1 Related Work .. 118
5.2 Our Work .. 121

5.2.1 Step 1: Scanning, Parsing and Semantic Checking 122
5.2.2 Step 2: Relational Algebra and Logical Optimization 126
5.2.3 Step 3: Expanding the Virtual Tables 129
5.2.4 Step 4: Global Query Optimization .. 131
5.2.5 Step 5: Generating Subqueries ... 141

5.3 Summary ... 142

6 A FRAMEWORK FOR THE INTELLIGENT WEB 144
6.1 Related Work .. 146
6.2 Our Work .. 149

6.2.1 Framework for the Internet ... 150
6.2.2 A Futuristic View of E-Commerce Applications 154
6.2.3 Future Research Issues and Technology Directions 157

6.3 Summary ... 158

7 CONCLUSION .. 160

LIST OF REFERENCES ... 163

APPENDICES ... 175

VITA .. 189

ix

LIST OF FIGURES

FIGURE PAGE

1. Schema of a Relational Database Developed for a University Application 1

2. Semantic Database Schema in Computer Science Department of University
Consisting Information of Students and Projects 2

3. Relational Schema Equivalent to the Sem-ODM Schema Presented in Figure 2. 17

4. (a.) Semantic SQL Query posed on the Sem-ODM Schema
(b.) SQL Query posed on the Equivalent Relational Schema 23

5. Architecture of Heterogeneous Distributed Database System 24

6. Semantic Schema of a University Application .. 34

7. (a.) Schema of Database DB1 in Administration Office of Company A
(b.) Schema of Database DB2 in Lab L of Company A 38

8. Integrated Schema for Schemas Presented in Figure 7 39

9. All Possible Scenarios for EXT(A) and EXT(B):
(a.) EXT(A) = EXT(B)
(b.) EXT(A) c EXT(B)
(c.) EXT(A) n EXT(B) $
(d.) EX T(A) n EX T(B) =. ... 44

10. (a.) Category of Database DBI Containing Information of Students in
University A
(b.) Category of Database DB 2 Containing Information of Students in

University A ... 47

11. A Semantic Net with ISA and AKO Links ... 59

12. Schem a in Sem -O D M ... 63

13. Schema for Database DB 2 in Example 1 .. 67

14. Schemas with Naming Conflicts ... 79

15. Schemas with Data Conflicts ... 81

x

16. Schemas with Missing Attribute Conflicts .. 85

17. Schemas having Missing Attributes with Implicit Value Conflicts 86

18. Schemas with Basic Relations .. 88

19. Schemas with Composite Relations ... 90

20. Schemas with Inter-schema Relations .. 91

21. Schemas with Category Inclusion Conflicts 93

22. Schemas with Category-versus-Attribute Conflicts 95

23. Semantic Schema Created By Transforming a Relational Schema 104

24. Sem-ODM Schema of DB 2 108

25. Tree Representation of a Virtual Table ... 130

26. Query Execution Plan Without Considering Semantic Relations 135

27. Query Execution Plan Without Considering Semantic Relations 140

28. Query Execution Plan Considering Semantic Relations 140

29. Overall View of Proposed Framework for the Internet 151

30. A Model for E-Commerce Applications on the Web 152

xi

1. INTRODUCTION

Databases have become an integral part of information systems. In the past two-

decades, different database systems have been developed and maintained independently

for different types of information systems. Databases are utilized by different groups of

users and organizations for their daily functions. Each of these information systems are

developed independently and customized to meet the particular requirements of the

organization. However, today's interconnected networks have provided access and a need

for integrated access to these independently developed information systems as a basic

necessity for developing the next generation global information systems. Sophisticated

user requirements (such as data warehousing, knowledge discovery and data mining,

intelligent access to information on the Web) and the availability of a proliferation of data

sources containing related information has created intelligent data access from

heterogeneous distributed data sources a critically importance research issue. The focus

of research into heterogeneous (multi-) database systems has been to provide such an

integrated transparent access to a multitude of heterogeneous distributed data sources in a

meaningful way. In order to better illustrate the problem domain, let us consider the

following simplified example.

Example 1: Let us consider two database schemas of a university:

Schema 1: A relational database containing information about students and faculty of the

university.

STUDENT
student-id last name first-name address

COURSEENROLLMENT
student-id course-id section-id semester ear rade

1

COURSEOFFERING
course-id section-id semester ear instructor-id

COURSE

course-id j course-name j description I

INSTRUCTOR
id lastname first-name address dept-id

Figure 1. Schema of a Relational Database Developed for a University Application

Schema 2: A Semantic Database Schema [94] in the Computer Science department of the

university consisting of information about students and the projects they are currently

working at the department.

STUDENT GRANT
student-id: String key grant-id: String key

name:String description:String
email:String funded-by funding-agency:String

m: m) Amount:Number

works-on (m:m) PROJECT
name:String

description:String

Figure 2. Semantic Database Schema in Computer Science Department of University

Consisting Information of Students and Projects

Let us consider the following query:

Query 1: List students who are working in project 'A' of 'Computer Science' department

and the courses they have taken at the university.

Query 1 is a simple query requiring information from two different databases. The results

for query 1 require accessing schema 2 to obtain information on students working for

2

project 'A' and also requires accessing schema 1 to obtain course information of the

students.

A straight-forward approach for obtaining the results for the above query is to

write an application program that firstly accesses Schema 2 to obtain the students

working on project A. This requires the programmer to write a query in a native query

language that the database engine supports, (in this case Semantic SQL [98] for Semantic

Databases). Next, the program accesses Schema 1 to obtain information on students and

their courses. Similar to the previous database access, the programmer needs to access in

a different query language pertinent to the database, (in this instance, SQL supported by

the relational database engine). Finally, the program integrates the results of the two

previous queries to obtain the result for query 1. The developer of the program needs to

consider the distribution of data sources and program in different data communication

protocols to obtain the results of the queries due to network and platform heterogeneity.

It is evident from the above description that the effort required to access

distributed, heterogeneous data sources is significant and complex. It is not viable to

expect an application developer to develop such applications accessing a large number of

data sources for every required data access. Also, in today's dynamic environments such

as the World Wide Web where information sources change frequently, keeping these

applications up-to-date is an enormous task and practically impossible. Some of the

disadvantages of this approach are enumerated below:

3

(i.) Expensive: Need to hire an Application Developer to implement the query to

access heterogeneous data sources.

(ii.) Non-generalized solution: That is, a different query requires the development of a

new application program.

(iii.) Heterogeneous data models and query interfaces: The application developer must

be familiar with the different data models and query facilities of the data sources.

(iv.) Distributed environment and different communication protocols: The application

developer needs to consider the data distribution and communication protocols

when accessing the data sources.

(v.) Considerable effort: Integration the results of different queries require substantial

effort by the programmer.

(vi.) Not scalable: Integrating a new data source requires re-writing the application

program.

(vii.) Non-optimal solution: Usually the application developer is not well versed with

the query optimization techniques of distributed databases. Thus, (s)he, most

probably, will develop the application using a non-optimal query processing

strategy that may result in considerable degrading of system performance.

(viii.) Semantic and Schematic Heterogeneity Resolution: The application programmer

requires to familiarize himself/herself with the data contained in all of component

databases in order to decide the databases that are required to be accessed. In

addition, the application developer needs to resolve schema-level heterogeneities

that may occur due to different representations of similar data in different

component databases.

4

(ix.) Data consistency problems: Changes of the data sources are not easily

incorporated.

The solution proposed by the heterogeneous database researchers is to develop a

homogenizing layer over the heterogeneous, distributed databases providing a single data

model and query language. This allows the user to pose queries directly to the

heterogeneous database system, which provides the illusion of a centralized

homogeneous database system. This methodology avoids the disadvantages described in

the previous approach.

1.1 Related Work

Three major approaches for building heterogeneous/multi-database systems can

be identified in literature:

(i.) Global schema approach: Schemas of component database are exported to a

global site and schema integration phase considers the creation of a global

schema. In this approach, a global integrated schema, capturing the information

content of the component databases in a single data model and query language, is

presented to the user. Global schema approach has been discussed in [1], [9],

[31], [33], [41], [56] and others.

(ii.) Federated database approach: This approach imports sharable schemas of remote

databases and integrates with the local schema. Discussion on federated database

approach can be found in [76], [105] and others.

5

(iii.) Multi-database query language approach: A powerful multidatabase language is

provided to the users to manipulate data and meta-data in a multitude of non-

integrated schemas. This approach is discussed in [62], [71], [72] and others.

We now investigate some of the strengths and weaknesses of each approach.

(i.) Global Schema Approach: Global schema approach provides users with a single

global schema identical to the interface of a centralized database system, which

provides a single schema (in a homogeneous data model and query language),

containing the information content of all the integrated data sources. This is an

ideal solution since this provides a well-known paradigm for heterogeneous

distributed data access. However, the critics of this approach have pointed out the

difficulty and inability to obtain such global schemas when a large number of data

sources are integrated (i.e. solution is not scalable) and practically impossible (i.e.

solution is not feasibile) to obtain the knowledge needed for the creation of such a

global schema. Also, another limitation, which is not discussed in to a great

extent, is the overhead of maintaining global schemas with dynamically changing

component data sources.

(ii.) The federated database approach does not aim to provide a single global schema,

rather integrates the local schema with other data sources containing relevant

information. The creation of global schemas is avoided in this approach.

However, the issue of identifying related information sources and resolving

schematic heterogeneity must be addressed.

6

(iii.) Multidatabase language approach: In the multidatabase language approach, the

system does not take part in the integration process. The major advantage is that

the system is relieved from creating and maintaining global schemas. That is, the

quality and completeness of content of information depends on the users' ability

to specify his/her requirements adequately. The main limitation of this approach,

is the assumption that the user have the expertise to express their intentions by

using the complex language features provided for information sharing and

exchange. Usually, a user of database system may be a naive user with little

knowledge of different data sources and technical know-how to manipulate the

language.

1.2 Our Work

At High-performance Database Research Center (HPDRC [95]), we undertook the

Heterogeneous Distributed Database Project, which aims at integrating information from

a variety of distributed heterogeneous data sources (which includes structured data

sources such as relational databases, semantic databases and semi-/un-structured data

sources such as information from the World-Wide Web). This thesis describes the results

of our efforts in designing the heterogeneous distributed database project at HPDRC.

A common issue to every approach discussed above is the resolution of semantic

and schematic heterogeneity. That is, identifying related information from a multitude of

heterogeneous data sources (i.e. resolve semantic conflicts) so as provide complete,

coherent answers (i.e. resolve schema/data level conflicts) to users' requests. Our

7

approach provides a global knowledge base consisting of semantic knowledge to resolve

semantic heterogeneity. The semantic heterogeneity resolution methodology applied is

complete and unambiguous. We present a semi-automated, stepwise methodology to

acquire semantic knowledge, thus reducing the effort required to gain initial knowledge

for integration. The semantic heterogeneity resolution methodology presented can be

easily adapted by global schema approach, federated database approach and multi-

database approach, thus providing better means for intelligent data access. We applied

this approach to a modified version of global-schema/federated database approach. Our

approach provides a semi-automated way to create global views to the different user

groups fulfilling their information requirements. Thus, we provide the ideal solution to

each user group (that is, an integrated schema in a single query facility similar to a

centralized database) accessing heterogeneous multiple data sources; however, we avoid

creating and maintaining a single large global schema. Also, the creation and

maintenance of global views is semi-automated, thus reducing the overhead. Since the

approach is based on resolving semantic conflicts, it is scalable and has the ability to

handle dynamic changes to a high degree. Also, most of the integration processes are

automated, thus avoiding the need for great efforts and complexities inherent in the

previous approaches. Further discussion on our semantic and schema level heterogeneity

mechanisms are discussed in chapters 3 and 4. The next section briefly enumerates the

contributions of this thesis.

1.2.1 Contributions of Thesis

The contributions of our research include the following:

8

" Architecture for Heterogeneous Distributed Database System: A scalable, easy-to-

develop architecture using state-of-art technologies for the design of a heterogeneous

database system is discussed.

" Semantic Binary Object-oriented Data Model and Semantic SQL query language: We

have used an expressive data model and query language for the integration of

heterogeneous data sources, namely Semantic Binary Object-oriented Data Model

(Sem-ODM) [94] and Semantic SQL query language [98]. The ability to capture

complex semantics and easy-to-use query facility made Sem-ODM and Semantic

SQL excellent candidates for information integration and querying of heterogeneous

data sources. Our approach is different from other approaches as we try to capture

semantics of the data being integrated for easier integration and querying through our

data model and other techniques.

" Semantic Heterogeneity Resolution Methodology: A major impediment for the

ubiquitous use of multidatabase technology is the difficulty in resolving semantic

heterogeneity between data sources. That is, identifying and managing semantically

related information from heterogeneous distributed databases. We outline a

methodology based on extents of meta-data constructs of schemas to resolve semantic

heterogeneity. We outline the correctness and completeness of our methodology.

" Schematic Heterogeneity Resolution: A database system provides a schema (meta-

data) describing the information content of the database. Similarly, a heterogeneous

database system requires the definition of global views for the different user groups

allowing access to the required information. Resolving schema-level heterogeneities

(that occur due to different representation of semantically related information in

9

component schemas) is an issue that is addressed in the creation of global Sem-ODM

schemas. A language to create global Sem-ODM schemas over a set component Sem-

ODM schemas resolving schema-level heterogeneities is provided. The different

schema conflicts and their resolutions using the language is illustrated.

* Heterogeneity Resolution Methodology and Knowledge Bases: As discussed earlier,

our approach to resolving conflicts is unique since we take a step-wise process by

firstly resolving semantic conflicts and then considering resolving schema-level

conflicts. The semantic knowledge acquired during semantic heterogeneity resolution

process is exploited to assist in resolving schema-level heterogeneities. The design of

a knowledge base is a critical component to store and manage such semantic

knowledge. Sem-ODM schemas for the storage component of the knowledge bases

are presented. Rules that semi-automatically resolve conflicts and assist in the

creation of global views are outlined. This simplifies the creation of global views

significantly reducing the overhead in the global schema approach.

" Query processing and optimization: Query processing of Semantic SQL statements

over a Sem-ODM global schema are presented along with strategies to optimize them

utilizing semantic knowledge. Our optimizing strategies focus on utilizing semantic

knowledge acquired during schema integration process to gain maximal system

performance.

" A framework for Internet computing: Most database researchers see the Internet as a

database system, which is loosely structured. However, a more natural perspective is

to view the Internet as a distributed computing medium with heterogeneous data

sources and services. We present a framework for Internet computing and present

10

how some of our concepts discussed can be applied in such a framework. This

framework is presented as a future area of research with the goal being to achieve

intelligent ubiquitous computing and communication on the Internet.

1.2.2 Limitations

Similar to other research projects and systems, we also have limitations in our

research project. In this thesis, we have only considered read-only queries. Insert, delete

and update queries including distributed transaction processing in a set of heterogeneous

distributed data sources have been omitted from discussion in our thesis work.

1.2.3 Outline of Thesis

This thesis is organized as follows. Chapter 2 describes the high-level

architectural design of the Heterogeneous Distributed Database System along with

descriptions of the Semantic Binary Object-oriented Data Model and Semantic SQL

query facility. Chapter 3 discusses the knowledge required for semantic heterogeneity

resolution including a methodology for automated identification of semantic relations.

Chapter 4 describes a language used for creation of Semantic Views over a set of

component Sem-ODM database schemas resolving schema-level heterogeneities. Also,

this chapter describes the Knowledge Base tool that assists in the creation of global views

and Knowledge Base schemas used for the storage of such information. Chapter 5

discusses Semantic SQL query processing in a heterogeneous database system including

strategies for optimizing using semantic knowledge. Chapter 6 provides an overview of a

framework for distributed computing and communication paradigm in the Internet. This

11

chapter also details the use of techniques and methodologies developed in the previous

chapters in the context of this paradigm. Chapter 7 provides the concluding remarks with

some discussion on future research directions.

12

2. HETEROGENEOUS DISTRIBUTED DATABASE SYSTEM

The Heterogeneous Distributed Database System being developed at HPDRC

provides access to a set of heterogeneous distributed data sources using the Semantic

Binary Object-oriented Data Model and Semantic SQL query facility. Providing

Semantic Access to a multitude of heterogeneous data sources is a more natural,

expressive and rational approach for integrated data access. In addition, with the

adaptation of SQL query language to Semantic Databases (called Semantic SQL), we

have provided a popular declarative query facility for Semantic Data Access. These

features and other advantages have illustrated that providing Semantic Access to a set of

heterogeneous data sources reap significant benefits for data integration and query

processing.

Subsequent sections of this chapter are organized as follows. Firstly, we provide

an overview of some of the multidatabase systems that have been developed. Next, we

introduce our prototype system by firstly discussing Semantic Binary Object-oriented

Data Model. Semantic SQL query language and its adaptation to Sem-ODM schemas are

discussed in the next section. System architecture of the Heterogeneous Distributed

Database System including its main components is described in section 2.1.3. Finally,

benefits of utilizing the proposed architecture and integration methodology are

summarized.

13

2.1 Related Work

Many research prototypes and a few commercial heterogeneous/multidatabase

systems have been developed. Following is a list of some multidatabase systems

developed over the past two decades:

1. Multibase [63] is first designed and implemented multidatabase prototype.

Multibase provides a uniform integrated interface for retrieving data from pre-

existing heterogeneous distributed databases. It uses a global schema in a

functional data model to create an integrated view of the data. A functional query

language, DAPLEX [107], is provided as the query facility.

2. Amoco Distributed Database System (ADDS [15], [16]) is another industrial

prototype of a multidatabase system. It provides both retrieval and update

facilities on a set of component databases. The global schema is a relational

schema with two relational query languages provided.

3. Pegasus ([102], [103]) is an effort by the Hewlett-Packard Laboratories in

building a heterogeneous multidatabase management system. It provides an

object-oriented data model schema with HOSQL query facility.

4. UniSQL/M [52] is a multidatabase system integrating relational and object-

oriented schemas. A data definition and manipulation language, SQL/M, is used

in the creation of global schemas.

5. Carnot [28] is an effort by Microelectronics and Computer Technology

Corporation (MCC) to integrate heterogeneous data using the Cyc - knowledge

base. Cyc knowledge base uses semantic information, in addition to structural

knowledge in integration of different schemas. InfoSleuth [10] is an extension of

14

Carnot in a web environment with the use of agents and existence of unstructured

dynamically changing data sources.

5. TSIMMIS ([23], [44], [49], [86]) is a system to integrate information from semi-

and un-structured data sources. A common object model, Object Exchange Model

(OEM), and a query language, OEM-QL, is developed. Major contributions of

this research include the use of wrappers and mediators to obtain structure and

query semi- and un- structured data sources.

6. Garlic [100], was an effort by IBM to integrate information systems and focuses

on multi-media data and information. An object-oriented data modeling facility is

used in the integration process.

Other projects include Mermaid ([19], [125]), Information Manifold [69], METU [36],

OASIS [99].

It is evident from the above discussion that considerable effort has been focused

into information integration during past two decades. We have observed a tendency to

utilize expressive data models and querying capabilities to integrate heterogeneous data

sources. For instance, earlier prototypes (i.e. Multibase) used functional data models and

then relational data models were used (i.e. ADDS, etc.) and currently focuses on object-

oriented data models (i.e. Pegasus, TSIMMIS, Garlic, etc.). However, with over two

decades of research and systems being built using a multitude of methodologies, there has

not emerged a generally accepted methodology or system in research or industry for

integration and querying a set of heterogeneous data sources. Information integration is

still a very active research area that has become critically important research issue

15

recently with the advent of the Internet allowing access to thousands and millions of

heterogeneous distributed data sources and documents.

2.2 Our Work

Our approach to the development of a heterogeneous database system considers a

scalable, easy-to-develop architecture using state-of-art technologies and use of Semantic

Binary Object-oriented Data Model (as the canonical data model) and Semantic SQL

query facilities (as the query facility to heterogeneous data sources).

2.2.1 Semantic Binary Object-oriented Data Model

Semantic Binary Object-Oriented Data Model (Sem - ODM) [94] combines the

advantages of relational and object-oriented data models. Sem-ODM provides expressive

data modeling capabilities, similar to object-oriented data models, but also has the

simplicity of constructs similar to the relational data model [26] (which provides only one

construct, namely table).

The central notion of the Semantic Model is an object. An object may be either

abstract or concrete. An abstract object is any real world entity that may be stored in the

database. An abstract object may be tangible (such as car, building, person) or intangible

(such as idea, event). Concrete objects are printable objects (such as numbers, character

strings or dates). Objects that possess common properties are grouped into classes called

categories. The categories may or may not be disjoint allowing an object to belong to

multiple categories simultaneously. Categories can be further divided into Abstract and

16

Concrete whose objects are always abstract or always concrete respectively. Categories

can be inherited (called subcategories) from other categories (called supercategories).

Objects of a subcategory are also objects of its supercategories. The category hierarchy

does not contain a cycle for obvious reasons.

Every object in the real world contains properties ([21], [22]). Relationships

between two categories are used to model properties (called relations). Relations have

different cardinalities, such as 1:1, 1:m, m:1 or m:m, specifying the maximum number of

objects in the domain category and range category that may be related at any database

instant via the relation. Also, a relation may be total which specifies that the existence of

an object in the domain category requires the object to be related by the total relation.

Further discussion on Sem-ODM can be found in [94]. In order to illustrate the

expressiveness of the Semantic Model, we present the relational schema for the semantic

schema presented in figure 2 of chapter 1. The semantic schema in figure 2 is a simple

schema that does not contain expressive constructs such as sub-class/super-class

relationships which cannot be directly represented in the relational data model.

STUDENT
student-id name email

WORK

student-id project-id

PROJECT
project-id name description

FUNDED

project-id grand-id I

17

GRANT

grant-id j description I funding-agency amount

Figure 3. Relational Schema Equivalent to the Sem-ODM Schema Presented in Figure 2

In order to represent works-on and funded-by relations which has cardinality m:m, two

tables needed to be introduced (i.e. WORK and FUNDED). These tables are introduced

to capture the relationships between tables rather than to provide means for storage of

data. Also, in the table PROJECT, a field, project-id, which is the primary key field, is

introduced. This spurious field was required in order to provide a relationship between

tables GRANT and PROJECT. Note that project-id field does not capture any

semantically useful information of the real-world. It is merely added as a means for

creating a relationship.

This example illustrates a simple scenario of a Semantic Schema and its

equivalent relational schema. It is apparent that the Semantic Schema captures

semantically rich information set while relational databases require significant overhead

to capture the same information and the end schema is not easy to understand by a human

much less for a machine. Graphically, Sem-ODM schemas are represented as follows:

- Abstract categories are represented by rectangles with the name of category placed

inside the rectangle;

- Subcategory relationships are represented by a dashed arrow from the subcategory to

the supercategory;

18

- Relations are represented by thick arrows pointing from domain category to range

category with constraints and cardinalities described in brackets;

- Attributes are placed in their respective domain categories with the range concrete

category placed after ":" (semi-colon).

It is important to point out that Semantic Binary Object-oriented Data Model is a

semantic data model, with object-oriented features incorporated. Semantic Data models

are usually more powerful and more easy to use than current proposed object-oriented

data models. They are especially more powerful in representing integrity constraints and

various relationships. Object-oriented data models are generally based on class

hierarchies and inheritance, plus their ability to represent the behavior of objects (for

further details see [14]). Since Sem-ODM has object-oriented features incorporated, it

allows the specification of methods and procedures in a category (see chapter 10 of [94]).

However, the current implementation of Sem-ODB ([89], [91], [92], [97], [104], [117])

does not support the definition of methods. This has resulted in enabling us to adapt SQL-

92 [110] for Semantic Database without any modifications to the syntax. Hence, in the

subsequent chapters, we omit the discussion of methods and procedures. We can easily

incorporate behavioral properties into the current Sem-ODB implementation and we are

confident that we will be able to utilize up-coming standard SQL languages such as SQL-

99 [20] when behavioral aspects are included into our implementation.

19

2.2.2 Semantic SQL Query Language

One of the major advantages contributing to relational databases' success is the

standard query language, SQL, which is declarative in nature. Object-Oriented

Databases' (OODB) query languages (such as OQL [13], and others) need to be

correlated with an Object-Oriented Programming Language (OOPL) and/or are

procedural in nature [58]. This has also resulted in the well-known problem of impedance

mismatch. We have adapted SQL (specifically SQL-92 [110]) for Sem-ODM (called

Semantic SQL [98]), thus providing a well-known declarative query language for Sem-

ODM.

Semantic SQL [98] is the interpretation of SQL language, specifically SQL-92

[110], on Sem-ODM schemas. SQL-92 is a query language based on the relational data

model. The basic constructs of the relational data model are tables. Basically, a SQL

query statement is a set of operations on a set of tables of the relational schema. Thus, in

order to adapt SQL for Semantic Binary Object-oriented Data Model, we provided a

means to interpret tables from a Sem-ODM schema. The tables over a Sem-ODM schema

are named virtual tables. Next, we adapted SQL for Sem-ODM, called Semantic SQL,

which is SQL over virtual tables of a Sem-ODM schema.

Virtual tables of a Sem-ODM schema are named thus because they are never

physically generated. Every virtual table is a finite representation of a spanning tree of

Sem-ODM schema starting at a certain category in the schema. A formal recursive

definition for virtual tables is presented in [98]. We provide it below for completeness.

20

Definition of virtual table T(C):

Let us consider virtual table T(C) where C is the starting category:

* C - attribute of T, range: C (m:1)

For every attribute A of T, for every relation r whose domain intersects with the

range of A

" A__r - attribute of T, range: range(r) (m: 1)

Note that this recursive definition may result in an infinite table (i.e. a table with an

infinite number of attributes). A finite depth of this virtual table is determined by

examining the query being processed. That is, we recursively generate the virtual table

until all the attributes mentioned in the query statement are placed in the virtual table.

After eliminating the extraneous paths traversed (i.e. paths traversed that do not contain

the attributes mentioned in the query), the query is posed on the resultant virtual table.

That is, the query is posed on the minimal virtual table containing all the attributes

mentioned in the query statement.

Another aspect of the above definition is that attribute names for virtual tables are

long in certain cases. Abbreviation of attribute names by eliminating the prefixes is

allowed as long as no ambiguity arises. That is, attribute y of T is a synonym of the

attribute Xy if T has no other attribute Zy where depth(Z) ; depth(X) such that

depth(x) represents the length of path x.

In order to understand the semantics for generating a virtual table, we re-iterate

the definition of an extension of a virtual table from [98].

21

Definition of the Extension of a Table:

The virtual table T for a category C is logically generated as follows:

(1) Initially, t[C] = C, i.e. T contains one column called C whose values are the

objects of the category

(2) For every attribute A of T, for every schema relation or attribute r whose

domain may intersect range(A), let R be the relation r with its domain

renamed A and range renamed A__r, let T be the left-outer-join of T with R

(unlike a regular join, the outer join creates Ar = null when there is no

match.)

Notice that during the creation of a virtual table, null values may be placed for every

relation traversed. This issue is considered during query processing of Semantic SQL

statements (see chapter 5).

Semantic SQL query language has identical syntax and semantics of SQL-92 with

the exception that a Semantic SQL query statement is posed on (minimally projected)

virtual tables generated for the Sem-ODM schema instead of actual physically resident

tables in the database which is the case for relational database. There are many benefits of

using Semantic SQL over Sem-ODM schema rather than SQL over its equivalent

relational schemas such as the size of the resultant queries. To illustrate this feature, let us

consider Semantic SQL query posed on the Sem-ODM schema provided in figure 2 and a

semantically equivalent SQL query posed on the relational schema presented in figure 3.

Query: For every grant, obtain grant-id, the names of project that it funds and the names

of students working for the project.

22

a. Semantic SQL:
SELECT grant-id, funded-by name, workson name

FROM GRANT

b. SQL:
SELECT GRANT.grant-id, PROJECT.name,

STUDENT.name
FROM (((GRANT LEFT OUTER JOIN FUND ON

(GRANT.grant-id = FUNDED.grant-id)) LEFT OUTER
JOIN PROJECT ON(PROJECT.project-id =
FUNDED.project-id)) LEFT OUTER JOIN WORK ON
(PROJECT.project-id = WORK.project-id) LEFT OUTER
JOIN STUDENT ON (WORK.student-id =
STUDENT.student-id)

Figure 4. (a.) Semantic SQL Query posed on the Sem-ODM Schema (b.) SQL Query posed
on the Equivalent Relational Schema

As apparent from figure 4, Semantic SQL queries posed on Sem-ODM schemas are much

shorter than its counter-part SQL queries on an equivalent relational schema. Further

discussion on benefits of using Semantic SQL is presented in section 2.4.

23

User
DBA

View Definition & Sem-ODM Semantic SQL

GLOBAL SITE Semantic Knowledge Views queries/results

r---------------- ------------------- --------------------- ------------- ,
1 ,

I ,

Integrator & '

,' Knowledge Knowledge Global Query

Reconciliator Base Processor & Optimizer
I

I
1

'

L -----------------------------------

----------------. ':3
CORBA

Semantic SQL sub-

queries, QEP &

Sem-ODM schema DBA/Domain

RELATIONAL & meta-data Expert EMANTIC

SITE _ SITE
------------ -- ------ --------------- ---- ------------- 1

1 - -- I t 1

KDBTool
Subquery

Processor
Subquery

Custo * ed Semantic Processor ;

S ema and info. ;
I 1 1 ,

Semant' SQL ;

queries results Knowledge Semantic Schema ; Knowledge Se antic SQL

Base Base quer s & results
1 I 1

1 1 1

Query Schema
Derivation SDB-SQL ;

Translator Loader

information Engine ;

, I I 1

, 1 I 1

1 I ,

----- --- - - ------- ----- ---------

SQL queries Relational Schema

DBC Native C++/Java A

Commercial RDBMS

(e.g. ORACLE, SQL Server,-) Sem-ODB

Figure 5. Architecture of Heterogeneous Distributed Database System

24

2.2.3 System Architecture

The system architecture of the Heterogeneous Distributed Database System is

given in figure 5. It consists of three major components: (i.) Relational Site; (ii.)

Semantic Site; and (iii.) Global Site.

" Relational Site: The relational site contains a relational database. The relational

database is wrapped using a wrapper (i.e. SemWrap [74], [96], [97]) to provide the

illusion of a Semantic Binary Object-oriented Database (Sem-ODB [92], [97], [104],

[117]). The wrapper provides both a Sem-ODM schema and Semantic SQL query

facility to the relational database. The components that make up the relational site

are:

(i.) Relational Database: The relational database is usually an existing commercial

relational database (such as Oracle [85], SQL Server [109] or Access [2]).

This commercial database is accessed using the Object Database Connectivity

(ODBC [81]) protocol.

(ii.) Schema Loader: This module imports the relational schema into the

knowledge base. In addition, it creates an equivalent Sem-ODM schema for

the relational database schema and stores this information along with

derivation rules for schema mappings in the knowledge base. The schema

transformation process is a bottom-up methodology similar to the reverse

order of conversion described in [90].

(iii.) Knowledge Base: This component acts as the interface among the Knowledge

Base Tool (KDBTool), Schema Loader and Query Translator components.

Knowledge Base stores schema information (semantic and relational

25

schemas), derivation information between relational schema and its equivalent

semantic schema, and context information about constructs of the semantic

schema. Further discussion about the knowledge base is presented in [74],

[93] and subsequent chapters.

(iv.) Knowledge Base Tool (KDBTool): The relational schema does not have the

ability to express complex semantics such as inheritance and m:m relations

which are inherent to the Sem-ODM schemas. Hence, semantic schema

generated by Schema Loader does not contain such complex structures. The

DBA uses the KDBTool (also called Knowledge Base Editor) and Knowledge

Base to add such complex features to the semantic schema along with

derivation rules. The DBA also provides other semantic information such as

context information, discussed in chapter 3, in order to resolve semantic

heterogeneity.

(v.) Query Translator: The purpose of this module is to translate Semantic SQL

queries based on the semantic schema to its equivalent SQL queries in the

relational schema. To achieve this goal, the module uses the existing

derivation information and schema information stored in the Knowledge Base.

A detailed discussion on translation of Semantic SQL queries based on the

Sem-ODM schemas to SQL queries based on the equivalent relational schema

is presented in [74].

(vi.) Subquery Processor: This module receives the query execution plan (QEP) for

the site and Semantic SQL subqueries. The Semantic SQL subqueries are

passed to the query translator and the operations specified by the QEP are

26

performed on the query results and transmitted to the appropriate site. Note

that postquery processing of the query results may be needed to resolve

heterogeneities and/or integrate results from subqueries of remote data

sources. These tasks are specified in the QEP and performed by the subquery

processor.

" Semantic Site: This module implements the Semantic Database Engine (Sem-ODB

[92], [97], [104], [117]), Semantic SQL interpreter ([97]), Knowledge Base and

Subquery Processor. Sem-ODB engine is a multi-platform fully functional client-

server database system (platforms include Solaris, HPUX, Linux, and various

versions of Windows). Clients running on any platform can interact with one or more

database servers running on the same or different platforms. Moreover, database files

are fully compatible across platforms at binary level. Multiple clients can access

server through network protocols such as TCP/IP or NETBIOS while some other

clients can run locally as threads within the server process. In addition to the SQL-

level access provided by Semantic SQL interpreter, the database engine provides a

native C++ and Java API for elementary database access, similar to procedural access

in an OODB. SQL-level access is provided by the SDB-SQL Server which interacts

with the database engine via the elementary database access interfaces. Subquery

Processor at the semantic site performs similar tasks as in the relational site.

Knowledge Base interacts with the domain expert to obtain context information.

Further discussion on Semantic Site including Sem-ODB and SDB-SQL Server can

be found in [92], [97] and [117].

27

" Global Site: The significant tasks and processing for integration and global query

processing are performed at the global site. Resolutions of heterogeneities such as

semantic heterogeneities, global view definitions including resolving schematic

heterogeneities are performed at this level. Also, global query processing and

optimization of users' Semantic SQL queries are carried out. During the incorporation

of a data source into the Heterogeneous Distributed Database System, a Sem-ODM

schema is imported to the global site including its relevant context information. This

meta-data is integrated to existing knowledge in a semi-automated methodology

(described in chapter 3). The Integrator and Knowledge Reconciliator module

performs the integration process, including semantic heterogeneity resolution and

schema-level heterogeneity resolution. The global views are created by the DBA (see

chapter 4) and stored in knowledge base along with relevant meta-data and semantic

information. The users pose Semantic SQL queries on the Sem-ODM global views.

The Global Query Processor and Optimizer module creates an optimized query

execution plan and a set of subqueries to obtain the results for the users' query. In

order to accomplish this task, this module uses knowledge acquired during integration

process which is stored in the knowledge base. The subqueries along with the

appropriate QEPs are transmitted to the relevant sites to obtain results for the query.

Certain postquery processing of the results for subqueries are executed at the

component and global sites as specified by the QEP.

It is significant to note the communication protocols that have been used in the

architecture for inter-site communication and from the wrapper to relational database.

28

For inter-site communication, we have used Object Management Group's (OMG [84]),

Common Object Request Broker Architecture (CORBA), which is an industry standard

for application development within heterogeneous distributed environments. CORBA

provides a network transparent distributed computing medium for developing

applications on a distributed heterogeneous environment. CORBA consists of numerous

features, including ORB Core, Interface Definition Language (IDL), Stubs, Skeletons,

Services (such as Name Service, Query Service) and others. The main feature of ORB

Core is its abstractions of the object implementations. Due to these features, the

application developer need not consider the state of the object, how to communicate the

remote object (such as TCP/IP, RPC, etc.) and other complexities. The use of CORBA

has significantly reduced the effort and complexity in developing our system. Further

information on CORBA and its use in Heterogeneous Distributed Database System are

provided in [74]. We enumerate some of the benefits of using CORBA in section 2.4. In

addition, we developed common interfaces (APIs) to access the Semantic as well as

Relational sites thus re-using much of the code for accessing data sources.

At the relational site, Object Database Connectivity (ODBC) protocol and

standard query language, SQL, is utilized. The use of such industry-wide standards has

achieved portability and reusability to a very high-degree. We discuss these issues in the

next section which outlines the benefits of using the architecture and methodology for the

Heterogeneous Distributed Database System.

29

2.3 Benefits

Our approach in designing and developing the Heterogeneous Distributed Database

System provides many advantages from the use of Semantic Binary Object-oriented Data

Model, Semantic SQL query language, CORBA architecture, standard query languages

such as SQL, standard protocols such as ODBC and other design considerations. We

discuss these aspects below.

There are many advantages of using Sem-ODM as the canonical data model in the

Heterogeneous Distributed Database System. They include:

(i.) A semantically expressive data model capturing the meaning of information

content in a set of heterogeneous distributed data sources. Expressive modeling

capabilities include m:m relations, disjoint categories, inheritance, arbitrary

relations, multi-valued attributes and others.

(ii.) Due to the fact that Sem-ODM captures the semantics of the information content

presented, it provides (a.) friendlier and more intelligent generic user interfaces;

(b.) comprehensive enforcement of integrity constraints; (c.) greater flexibility;

(d.) substantially shorter application programs; and (e.) easier query facility.

By adapting SQL for Sem-ODM, we have gained many benefits including,

(i.) A well-known declarative query language;

(ii.) The ability to use existing relational tools. That is, with the SQL interface

provided to the Sem-ODM, we can reutilize tools that execute on relational

database platforms without any modification;

30

(iii.) Easier query facility. We have gained an easier and less complex query facility. A

Semantic SQL query over a Sem-ODM is significantly shorter and less complex

than a SQL statement on an equivalent relational schema. This is, due to the

ability to traverse relations in a semantic schema without specifying joins and the

expressiveness of Sem-ODM when compared to relational schemas. This feature

is demonstrated in [74], [96] and [97].

The use of CORBA as the communication protocol between component and

global sites has:

(i.) Significantly reduced the complexity and effort required in developing the

system;

(ii.) Resulted in faster development time. CORBA's ORB and Name Service is

utilized to locate, identify and communicate to component data sources

transparent of the network. This has resulted in less complexity and faster

development time;

(iii.) CORBA's Object Model has resulted in modular design. Every data source is

considered as a CORBA object with a common interface;

(iv.) Platform and network level heterogeneity is resolved. A common interface to all

data sources avoids the use of different communication and/or network protocols;

(v.) Scalability: CORBA architecture provides scalability by allowing hundreds and/or

thousands of data source to be seamlessly incorporated into the system.

31

During the development of the wrapper for relational databases, we utilized the

standard query language SQL and ODBC protocol. This has resulted in many advantages

including,

(i.) Reusability: That is, use of ODBC and SQL has resulted in enabling the wrapper

to be plugged into any commercial relational database system (consisting of

required ODBC Driver) without any modification;

(ii.) Portability: The wrapper can connect to databases residing on different platforms.

By providing a common interface (that is, Sem-ODB interface) to component

database, we gain many benefits such as:

(i.) Extendibility: A new type of data source can be integrated into the Heterogeneous

Distributed Database System by providing a Sem-ODM interface to the data

source. Such an approach is considered in Data Extractor project [12], which

integrates semi- and un- structured data from the Web data sources into the

Heterogeneous Distributed Database System;

(ii.) Reusability: Since all data sources contain a common Sem-ODM interface,

Subquery Processor module and CORBA IDL interfaces can be reused;

(iii.) Preserved autonomy of data sources: Our architecture preserves component

databases' autonomy. That is, component data source does not require any

changes in order to participate in the Heterogeneous Distributed Database System.

The transformation of component data schema to a common model and

exportation of these schemas to the global sites has been discussed in [105]. The use of

32

CORBA as a distributed communication and integration medium for resolving network

and platform heterogeneity is seen in METU ([36], [37]) and OASIS [99] multidatabase

systems. OASIS uses a translation knowledge base similar to the relational wrapper,

SemWrap [96]. Also, wrappers and mediators are used in TSIMMIS ([23], [44], [49],

[86]). However, our architecture is unique with the fact that we have incorporated a

Semantic Binary Object-oriented Data Model (i.e. a semantic object-oriented data model)

with SQL query language (i.e. a well-known declarative query language) to provide a

semantic access to a set of heterogeneous distributed data sources. The architecture

described in this section is extendible, scalable, resolves platform and network

heterogeneity, preserves autonomy of data sources and provides a common interface

(data model and query facility) to component databases providing integrated access to

heterogeneous distributed data sources. However, as mentioned earlier, ubiquitous

deployment of heterogeneous database systems is hindered by the difficulty of resolving

semantic heterogeneity. The next two chapters address this issue in detail.

33

3. SEMANTIC HETEROGENEITY RESOLUTION

As mentioned in chapter 1, a significant impediment for ubiquitous deployment of

multidatabase technologies is the difficulty in identifying semantically related entities of

different database schema. To illustrate this problem, we will use the following example.

Example 2: Let us consider the following semantic schema of a university application.

PUPIL

s-id:Number key
lname:String

address:String

major minor
GRADUATE (m: 1) (m:1) UNDERGRADUATE

DEPARTMENT

name:String 1:m

Figure 6. Semantic Schema of a University Application

Provided with schemas such as in figures 3 and 6, how do we integrate them? This is the

problem faced by heterogeneous database researchers. This is an over simplified

example. Consider a scenario of hundreds of schemas independently developed being

provided and asked to integrate them. The answer to the above-mentioned problem

necessitates two steps for its solution.

Step 1: Identify the constructs of the schemas that capture the same real-world concepts.

Step 2: Represent these constructs in a non-redundant, meaningful way.

34

Step 1 pertains to semantic heterogeneity resolution. Step 2 pertains to schema-level

heterogeneity resolution. In this chapter, we will consider semantic heterogeneity

resolution. In the next chapter, we discuss the schema-level heterogeneity resolution

schemes.

Step 1 discussed above seems to be a simple problem. Let us investigate in detail.

Looking at the schemas provided in figures 3 and 6, we kind of see that category PUPIL

in schema of figure 3 is related to category STUDENT of figure 6. We figured this

relationship based on our previous knowledge on what PUPIL and STUDENT meant and

probably looking at the structures and relations within the schema which seem to

correspond. Now if we take away all the pre-assumed and context knowledge based on

which we made the previous conclusion, just taking into consideration the schema

diagrams by themselves, can we conclude any relationship. The answer is obviously

"No". Thus, it is clear that even humans are unable to conclude relationships between

constructs of schemas without the appropriate knowledge to make these decisions. Thus,

it is safe to conclude that computers & programs cannot determine relationships without

providing the appropriate knowledge ("assuming that humans are intelligent than

computers"). Practically, in real world situations, we are faced with schemas of a large

number of legacy systems without adequate knowledge on what schemas capture in their

data sources. Now it is clearer as to why heterogeneous database researchers are moving

in the direction of utilizing expressive data models that capture more information to be

used for integration. This is to obtain as much knowledge as possible so as to make

intelligent design decisions in integration. In our approach, we used the Semantic Binary

35

Object-oriented Data Model instead of relational or object-oriented data model since we

are convinced that Sem-ODM is expressive to capture the semantics of the data being

modeled.

3.1 Related Work

In this section, we consider the existing approaches proposed for identification of

related entities of different database schemas. Next, we discuss answer-completeness of

queries and illustrate why current approaches fail to satisfy this requirement.

In the early work, such as the twelve approaches outlined in [9], [105] and others,

we have seen the assumption that step 1 is resolved manually and focuses on techniques

for resolving step 2, which is the representation issue. This approach may result in good

integration, however require the integrator(s) to familiarize themselves with the schemas

of component data sources and place much effort into integration. With a large number of

schemas, this may be impractical and automation of semantic heterogeneity resolution is

a highly desirable goal.

In [83], domains (extents) of the schema constructs in Entity-Category-

Relationship (E-C-R) model ([42], [122]) are considered for resolving semantic

heterogeneity. Also, methodologies for resolving schema level heterogeneities with

different domain relationships are outlined. In [65], the authors present a heuristic method

for determining the different domain relationships by using attribute equivalences based

on the common principle of integrating attributes. A tool developed, using these

36

principles, to assist database designers in schema integration and modeling is discussed in

[106].

In [18], a semantic heterogeneity resolution methodology for multidatabase

language system is presented. The Summary Schemas Model is introduced which uses a

global data structure to abstract information available in a multidatabase system. The use

of linguistic theory for translation of users' queries to a set of system imprecise queries is

discussed. The important feature is that semantic heterogeneity is resolved by translating

users' queries to a set of semantically related system defined terms. The resultant queries

are imprecise and provide imprecise answers unlike centralized homogeneous database

systems. However, a global schema is not created thus avoiding this effort.

In [6], a stepwise methodology to obtain information from a remote schema is

presented and integrated with the local schema. This methodology uses a Heterogeneous

Semantic Data Model (HSDM) as the canonical data model to enrich the remote schema

with semantic information. However, this methodology uses knowledge extensively from

local domain expert and remote domain experts for integration decisions. For legacy

systems, it may be difficult to obtain such information from domain experts.

In [70], neural networks are trained (based on field specifications and data

contents) to identify equivalent attributes and similarity constructs of schemas. In [50],

MUVIS system is introduced. MUVIS determines the degree of similarity and

37

dissimilarity of two objects based on comparing the field names of the attributes. Next,

this tool provides recommendations on the integration process.

All of the approaches discussed above provide with non-exact reasoning

techniques for semantic heterogeneity resolution. For instance, methodology presented in

[18] results in imprecise queries, techniques described in [50], [65], [70] uses heuristic

based approaches and conclude via names and structures specification of attributes, thus

it is possible to result in incomplete incorrect answers and/or recommendations. This

leads to problems such as obtaining incomplete answers for queries. An example best

illustrates the problem of answer-completeness.

Example 3. Let us consider accessing two databases (i.e. DBI and DB2) with the

following schema (figure 7):

PERSON PROJECT
RESEARCHER

ssn: Number key id: Number key
last_name:String social-sec: Number key works-in name:String
first_name:String position:String m:m funding-

address:String Office:String agency:String

(a.) (b.)

Figure 7. (a.) Schema of Database DB1 in Administration Office of Company A
(b.) Schema of Database DB2 in Lab L of Company A

Note that we consider only Sem-ODM schemas for integration since the architecture

presented in chapter 2 provides a Sem-ODM schema of every component data source.

However, our presentation of answer completeness problem can be extended to the any

data model without loss of generality.

38

The category PERSON in database DBI contains objects describing the currently

employed personnel at company A. Database DB2 describes researchers and their projects

at lab L of company A since its inception. The category RESEARCHER contains the

researchers working or has worked at lab L of company A. The category PROJECT

contains projects that the lab is currently working or already completed. The attributes

social-sec and ssn in categories PERSON and RESEARCHER represent the social

security number of a person.

Let us consider the above-mentioned approaches to schema integration.

Accordingly, categories PERSON and RESEARCHER will be mapped as equivalent since

they both represent personnel working at company A or mapped as a sub-category/super-

category relationship because categories RESEARCHER represent a specialized class of

all personnel working at company A represented by category PERSON. Thus, the

integration process results in the following integrated schema:

PERSON

ssn: Number key
lastname:String
firstname:String

address:String

1
PROJECT

RESEARCHER works-in (m:m) id: Number key
name:String

position:String funding-

Office:String agency:String

Figure 8. Integrated Schema for Schemas Presented in Figure 7

39

The derivation rules for the integrated schema are as follows. Note that 4 represents is

derived from semantics:

Rule,: PERSON 4 DBI.PERSON

Rule 2 : RESEARCHER 4 DB 2.RESEARCHER

Rule 3 : PROJECT 4 DB2 .PROJECT

Rule4 : works-in 4 DB 2.works-in

Note that derivation rules for attributes are not presented here (as they are obvious).

Equivalence condition for common objects of PERSON and RESEACHER is as follows:

DB 1.PERSON.ssn = DB 2.RESEARCHER.social-sec

The schema in figure 8 along with above-mentioned derivation rules can be considered as

a reasonable result of integration using the approaches discussed above (such as based of

name equivalences and structural equivalences).

Let us now consider the query, which obtains the last names of researchers who

worked or are working at lab L, and the names of the projects they worked on or are

working on. This query can be represented by the following Semantic SQL query on the

integrated schema (see figure 8):

SELECT RESEARCHER.last_name, RESEARCHER.works-inname

FROM RESEARCHER

The heterogeneous/multidatabase or mediator system translates this query (based on the

derivation rules) to the set of operations depicted by the following SQL statement:

SELECT DB1.PERSON.last_name, DB2.RESEARCHERworks-inname

40

FROM DBI.PERSON, DB2.RESEARCHER

WHERE DB1.PERSON.ssn = DB2.RRESEARCHER.social-sec

Note that the result of this query only suffices to provide only a partial answer.

Researchers who have worked on a project at lab L but not currently employed in

company A are not represented in the query result. This aspect is known as answer-

completeness [68], [82] of queries. This issue becomes a critical factor when dealing with

multiple databases.

Our approach, based on extent of schema constructs, for database integration and

query processing of multitude of data sources is guaranteed to avoid errors such as

incomplete answers. A very desirable goal of heterogeneous databases users is obtaining

relevant, complete, correct information from a variety of available heterogeneous

distributed data sources. These factors translate to successful integration of data sources

and answer-completeness of user's queries. Our approach addresses both these situations

successfully. This approach is discussed in detail in section 3.3.

3.2 Our Work

The goal of our methodology is to achieve reliable, correct and complete answers

to users' requests from a heterogeneous database management system, similar to

centralized database system, through unambiguous, complete and correct integration. It is

important to note that in achieving this goal, we incorporated many techniques discussed

in previous approaches into our methodology. Our methodology is based on the extents

of schema constructs similar to [83]. It is apparent from our previous discussion that

41

without appropriate knowledge, we are unable to achieve correct integration. We employ

a step-wise process similar to [6] to gain such knowledge. In [18] a global data structure

was used for matching users terms with systems concepts. In our approach we use shared

ontologies to obtain the context meanings of schema constructs.

In describing our methodology, we will first introduce the foundations of

semantic knowledge, which is the basis for integration. Next, we outline a methodology

based on ontological concepts to semi-automatically obtain semantic knowledge.

3.2.1 Foundations of Semantic Knowledge

Our approach to resolving semantic heterogeneity assumes the existence of a

schema describing the information content of a data source. The architecture (discussed

in chapter 2) provides us a Sem-ODM schema for every component data source. The

schema of a data source provides us with an unambiguous definition of the data content

of the source, whether easily comprehensible or not. The schema captures the original

database designer's intent of precisely what is stored in the database. The data is stored as

a set of data items (extent) for each construct in the schema. Utilizing this information,

we propose a set of relations, called semantic relations, which exploits both schema and

its extent in database integration and query processing. This is similar to the domain

relations discussed in [83]. However, we extend this concept in many ways to provide a

complete basis for integration. With the use of the semantic relations as the basis in

integration, we can easily preserve data quality attributes including completeness and

42

accuracy, which is not guaranteed in the approaches using heuristic methods based on

name equivalences.

3.2.1.1 Semantic Relations

We have identified four semantic relations between entities of different schema.

Before discussing the semantic relations, we introduce the notation, EXT(A) which is

used to represent the extent of schema construct A. Let A be a construct of Schema and B

be a construct of Schema2. We can derive four possible semantic relations between

constructs A and B as follows: There are as follows:

1. Semantically Equivalent (SEMEQ): A is semantically equivalent to B (represented

as, A SEMEQ B) if and only if EXT(A) = EXT(B) for all database instances at any

given time t.

2. Semantically Subset (SEMSUB): A is semantically subset of B (represented as, A

SEMSUB B) if and only if EXT(A) _ EXT(B) for all database instances at any given

time t1 and EXT(A) c EXT(B) for some database instance at time t2 .

3. Semantically Overlap (SEMOVER): A is semantically overlapping with B

(represented as, A SEM_OVER B) if and only if EXT(A) n EXT(B) # $ for some

database instances at time t, and EXT(A) n EXT(B) # A or EXT(A) n EXT(B) # B

for all database instances.

4. Semantically Disjoint (SEMDIS): A is semantically disjoint with B (represented as, A

SEM_DIS B) if and only if EXT(A) n EXT(B) = $ for all database instances at any

given time t.

43

Note that the semantic relations are disjoint. That is, if A r) B and A r2 B where ri, r2 e

{SEMEQ, SEMSUB, SEMOVER, SEMDIS}, then r i = r2.

Proof Sketch: The completeness and correctness of the above semantic relations can be

verified by examining all the possible scenarios of a Venn diagram for the extents of

constructs A and B (see figure 9(a.)-(d.)). EXT(A) and EXT(B) are shaded in the figure.

EXT(A E EXT(B -

EXT

EXT(A) EXT(B) EXT(A) EXT(B)

(a.) (b.) (c.) (d.)

Figure 9. All Possible Scenarios for EXT(A) and EXT(B): (a.) EXT(A) = EXT(B):

(b.) EXT(A) c EXT(B): (c.) EXT(A) n EXT(B) # $; (d.) EXT(A) n EXT(B)= $

Note that E represents the { domain of database containing construct A} u {domain of

database containing construct B}. Figure 9(a.) - (d.), depict all possible cases for

semantic relations between any two database constructs A and B.

Some commutative rules and inference rules for semantic relations are

enumerated below:

Rule 1: A SEMEQ B - B SEMEQ A

Rule2: A SEM_DIS B = B SEMDIS A

Rule 3: A SEMOVER B = B SEM_OVER A

Rule 4: If A SEMEQ B and B SEM EQ C then A SEM EQ C

Rule 5: If A SEMEQ B and B SEM_SUB C then A SEMSUB C

44

Rule 6: If A SEM EQ B and B SEMOVER C then A SEM_OVER C

Rule 7: If A SEM EQ B and B SEMDIS C then A SEMDIS C

Rule 8: If A SEMSUB B and B SEMSUB C then A SEMSUB C

Rule 9: If A SEMSUB B and B SEMDIS C then A SEMDIS C

where A, B, C are constructs of different database schemas. The correctness of each rule

can be directly verified using Venn diagrams or using set theory principles and thus not

discussed any further.

The following example illustrates each semantic relation:

Example 4. Let us consider five constructs of different database schema in a university

application.

Database Construct Extent

Registrar Employee contains all current employees of

university A

Registrar Student contains all currently enrolled

students of university A

Registrar Department contains all the departments of

university A

Payroll Faculty contains all current faculty of

university A

Payroll Emp contains all current employees of

university A

45

By considering the extents, we can assume the following. In section 3.2.2, we discuss a

methodology to automatically identify these relations.

* Registrar.Employee SEM EQ Payroll.Emp (since both constructs represents the

current employees of university A)

" Payroll.Faculty SEMSUB Registrar.Employee (since Faculty construct contain

the current faculty members of university A who are also employees of university

A)

" Payroll.Faculty SEMOVER Registrar.Student (assuming that the faculty member

can also be registered to courses as students in university A)

" Registrar.Department SEM_DIS Payroll.Emp (since departments cannot be

employees for obvious reasons)

Utilizing the rules described above, we can generate the following semantic

knowledge from existing knowledge:

Payroll.Faculty SEMSUB Registrar.Emp (Rule 5)

Registrar.Department SEM_DIS Payroll.Employee (Rule 7)

Payroll.Faculty SEMDIS Registrar.Department (Rule 9)

The above-mentioned rules are important in gaining new knowledge from existing

semantic relations and also for checking correctness and consistency of the existing

knowledge in the knowledge base. Further discussion on the knowledge base can be

found in chapter 4.

46

3.2.1.2 Object Equivalence

When two constructs, say A and B, are known to be semantically related by either

SEMEQ, SEMSUB or SEM OVER, it is possible for EXT(A) and EXT(B) to have the

same real-world objects represented (i.e. this is the set of objects in EXT(A) n EXT(B)).

The identification of equivalent objects in different constructs is especially advantageous

in schema integration. This allows extraction of extra information. To illustrate this fact,

we provide the following example.

Example 5. Let us consider two databases schemas DB1 and DB 2 consisting of students

at university A:

STUDENT
PUPIL

social-sec:Number key
ssn:Number key gpa: Real
address:String phone:String

(a.)
(b.)

Figure 10 (a.) Category of Database DB 1 Containing Information of Students in
University A (b.) Category of Database DB 2 Containing Information of Students in
University A

For simplicity, let us assume that DBI.PUPIL SEMEQ DB2.STUDENT and

attributes, ssn and socialsec, represent social security numbers in the same format and

they are key attributes of categories DB 1 .PUPIL and DB2 .STUDENT respectively. Hence,

if DB 1.PUPIL.ssn match with DB 2.STUDENT.social_sec, implies that objects are

equivalent (i.e. the same student).

Since Pupil SEMEQ Student, every object in Pupil has a matching object in

Student and vice-versa at every database instance. These matching objects are identified

by comparing attributes DBI.PUPIL.ssn and DB 2.STUDENT.social_sec. Hence, it is

47

possible to obtain a category, say STD, in global schema, which contains attributes:

socialsecurity, address, gpa, and phone for every student object of university A. This

information cannot be obtained by accessing DBI or DB 2 individually. That is, it was

possible to obtain additional information (i.e. address, gpa, phone attributes collectively)

for every student in university A using an integrated access to DBI and DB2 . This

example illustrates a simple scenario; this concept can be generalized for complex

schemas.

In order to make the semantic relations useful for schema integration we obtain a

condition which when satisfied will identify the common objects in entities A and B. The

direct methodology is to identify a key attribute(s) that match in the two entities. For

instance, in our previous example, we have equivalence condition as: DBI.PUPIL.ssn =

DB2 .STUDENT.social-sec. In the general case, obtaining such equivalent key attributes

between entities DBI.A and DBE+1.B may not be possible. Then we try to gain an

equivalence condition by using the following theorems.

Theorem 1. There exists an equivalence condition from entity DB1.A to entity DBn+].B

as follows:

(DB 1.A.KeyAttr = DB 2.CAT 2.KeyAttr) AND

(DB 2.CAT2.KeyAttr = DB3.CAT3.KeyAttr) AND

(DBk.CATk.KeyAttr = DBk+J.CATk+.KeyAttr) AND

48

(DB,,.CAT,,.KeyAttr = DB,1+,.B.KeyAttr)

where DBk.CATk sem_rel DBk+I.CATk+i such that sem_rel e { SEMEQ, SEMSUB }

and DBk.CATk.KeyAttr = DBk+,/.CATk+/.KeyAttr represents the equivalence condition

between entities DBk.CATk and DBk+;.CATk+i.

Proof Sketch: Since DBk.CATk and DBk+I.CATk+/ are related by SEMEQ or

SEM_SUB, joining the objects of DBk.CATk and DBk+,.CATk+J by the equivalence

condition does not result in any loss of objects in DBk.CATk. Thus by continuing on the

path joining iteratively we gain attributes until finally, we gain an attribute which match

the key attribute of DB~,1 .B.

Theorem 2: If there exists an equivalence condition from entity DBI.A to entity DB~+,.B

as follows:

(DB1.A.KeyAttr = DB 2.CAT2.KeyAttr) AND

(DB2.CAT2.KeyAttr = DB3.CAT3.KeyAttr) AND

(DBk.CATk.KeyAttr = DBk+I,.CATk+,.KeyAttr) AND

(DB,2.CAT,,.KeyAttr = DB~,n .B.KeyAttr)

where DBk.CATk sem_rel DBk+I,.CATk+I such that sem_rel e {SEMEQ, SEMSUB}

and DBk.CATk.KeyAttr = DBk+,.CATk+.KeyAttr represents the equivalence condition

between entities DBk.CATk and DBk+I.CATk+i.

49

Then, the reverse traversal generates an equivalence condition from DBn+].B to entity

DB .A.

Proof Sketch: Proof idea for theorem I says that traversing from entity A to B does not

result in any loss of common objects. Although, reverse traversal of joins may loose some

objects in DBn+,.B, it does not loose common objects (by previous proof). Thus common

objects can be identified by reverse traversal.

3.2.1.3 Boundary Conditions

When either semantic relations, SEMSUB or SUMOVER relates two

constructs, it is important to consider the boundary conditions on which the two

constructs intersect. Considering these boundary conditions provides useful knowledge

similar to object equivalence which otherwise is not explicit. The boundary conditions

are rarely given importance (for instance, in [46] where only intersection classes are

considered and not boundary classes). However, considering boundary conditions

provide significant semantics which otherwise is lost. The example below illustrated this

issue:

Example 6. Let us consider the scenario presented in example 3. Since category

PERSON contains all the employees currently working for company A and category

RESEARCHER contains all the persons who worked or are working in lab L of company

A, by considering the extents, we can infer that PERSON SEM_OVER RESEARCHER.

The persons currently working at lab L who are also employees of company A consists of

EXT(PERSON) n EXT(RESEARCHER). Current employees of company A not working

50

in lab L are in { EXT(PERSON) - EXT(RESEARCHER)}. Researchers who used to work

at lab L, but are not presently employees of company A are in {EXT(RESEARCHER) -

EXT(PERSON)}. This semantic knowledge allows us to extract more information as

shown below.

For instance, we can now answer the query that asks for social security numbers

of researchers who worked in lab L but have left company A (not currently working for

company A) as follows:

SELECT DISTINCT DB2.RESEARCHER.ssn

FROM DB 2.RESEARCHER

WHERE DB2 .RESEARCHER.ssn NOT IN

(SELECT DB 1 .PERSON.ssn

FROM DB1.PERSON)

This information could not be obtained by accessing the databases individually or without

considering the extents. Note that in example 3, EXT(RESEARCHER) was considered a

subset of EXT(PERSON) using previous methods. Thus, query mentioned above could

not be posed or it would result in an empty result (i.e. incorrect answer). This example

illustrates a simple case, but can be generalized for complex schemas. In addition

boundary conditions is used for optimizing queries which is discussed further in chapter

5.

In our schema integration methodology, we consider semantic relations, object

equivalences and boundary conditions. This will result in complete, correct and

51

unambiguous integration and querying of heterogeneous data sources. These aspects will

be discussed in detail in section 3.3. Next, section discusses a methodology for automated

identification of semantic relations.

3.2.2 Identification of Semantic Relations

Even though our approach provides complete, correct and unambiguous

integration and querying, we have not discussed an easy way to identify the semantic

relations discussed in the previous section. This becomes a bottleneck in the use of such

knowledge during integration of a large number of schemas. Thus, this section

investigates into this issue and provides a semi-automated methodology for identifying

semantic relations. Our methodology is not based on heuristics, unlike previous attempts,

and thus is guaranteed to provide correct results.

The main problem in resolving semantic heterogeneity and identifying semantic

relations alike is the lack of appropriate knowledge and a need for automated

identification of semantic knowledge. Usually, the intended extents are in the original

database designer's mind, represented partially in conceptual models and to a lesser

extent in the schemas. However, in most application domains, the only high-level

knowledge available to the integrator is schema-level descriptions of legacy databases.

The direct method of comparing extents is incorrect and impossible. In this section, we

propose a stepwise methodology for identification of semantic relations without looking

into all the possible combinations of attributes or the extent of classes. This methodology

borrows many concepts from a variety of computer science research areas. Concepts

52

from ontology-based research, artificial intelligence (AI) and heterogeneous database

research are incorporated. Section 3.2.2.1 outlines some of the relevant work from the

different disciplines. Section 3.2.2.2 describes the methodology for semantic relations

identification providing detailed discussion of each step.

3.2.2.1 Relevant Work

We have incorporated concepts from a number of disciplines including ontology

(philosophy), semantic networks and classification techniques (artificial intelligence and

biology) and databases. In this section, we describe these concepts prior to illustrating

how they have been incorporated into our methodology for clarity. Section 3.2.2.1.1

discusses the ontological aspects. Section 3.2.2.1.2 discusses the semantic networks and

classification of concepts.

3.2.2.1.1 Ontological Foundations

In this section, we describe some concepts from Bunge's ontological model ([21],

[22]). His model articulates a set of high-level, abstract constructs that are intended to be

means of representing all real-world phenomena. Bunge's ontological framework is well

known and used by others ([118], [119], [120]) to analyze phenomena within computer

science and information systems domains. Hence, we feel it is a good candidate for our

work as well. In this section, we re-state some of the definitions and postulates of

Bunge's ontology for completeness and clarity of our discussion. We also refer to some

concepts from [118] in this section. A "*" (star) is placed to represent concepts of

Bunge's ontological model.

53

Postulate 1*: The world is made of things that possess properties.

In 00 modeling methodology, a thing is equivalent to an object. Thus, in a conceptual

model it is an instance.

Rule 1: An instance in a conceptual model is a representation of a thing in the ontological

model [118].

Postulate 2*: There are no things without properties. Moreover, properties are attached

to things.

A property can depend on one or more things. A distinction is made between:

" intrinsic properties - properties that depend only on one thing only; and

" mutual or relational properties - properties that depend on two or more things.

For instance, the weight of a person is an intrinsic property, because it depends only on

the existence of the person. The property of being an employee is a mutual property,

because it depends upon the existence of both a person and a tertiary institution.

Rule 2: All attributes and relationships in an instance in conceptual model are

representative of properties of things in ontological model [118].

"The properties of a thing exist, whether or not humans are aware of them. Humans

conceive of things, however, in terms of models of things. Attributes are characteristics

assigned to (model of) things according to human perceptions. Depending upon

circumstances, humans may use different models of the same thing and therefore assign

different sets of attributes to the same thing" [118]. For instance, let us consider a

54

database in a university registrar office that model students records, including level of

study of a student, transcript information and tuition payment information. Another

database at a department in the university may model information regarding students'

projects, papers published and other related information. The same student things are

assigned different attributes and relationships since they model different perspectives.

Rule 3*: Properties themselves cannot have properties.

For instance, at first glance, the height of a person may seem to have a property

associated with the time at which the height was measured. The "real" meaning here is

that the person has a variable height (the property is not just height but height at time t).

"The possibility of properties having properties is only contemplated when we have not

fully specified (or properly understood) a property in the first place" [118].

Postulate 3: Humans conceive of properties of things in terms of the attributes of their

conceptual models, and properties are known to humans only as attributes [118].

Postulate 4*: Every property in general can be represented by a prepositional (attribute)

function: A: Ti x ... x T~ x VI x ... x Vm -> Statement regarding A; and every specific

property can be represented as an attribute function of the form: A(ti, ... , tn, vI, ... , vm)

where ti e Ti, vj e Vj, Ti (i = 1, ... , n) represent the set of things and Vj (j = 1, ... , m)

represents the set of values.

For instance, the property "a student in a university" can be represented as S: T1 x T 2 x D

4 P, where T1 is the set of students, T 2 is the set of universities, D is a set of dates, and P

55

is a set of statements of the form: "p (from set Ti) is a student of c (from set T 2) at d

(from the set D)". We can represent this statement as an attribute function Student-of(p,

c, d) meaning student p, is a student of university c, at date d.

Definition 1*: The scope of a property is the set of things that possess the property. That

is, if 6 is the set of things and P is the set of all properties, the scope function S is the

mapping A: P - 26.

Definition 2*: A subset of things, X, is called a class if and only if a property exists such

that the subset is the scope of that property. That is, a subset X of the set of things 6 is

called a class of things iff 3p e P such that X = S(p) e 26.

Definition 3*: Let R be a set of properties. An R-kind is the intersection of all scopes of

properties in R.

Definition 4: Any restriction on the set of properties of an R-kind is termed law.

Let R be a finite set of properties with possible laws on the values of its properties. Then,

we term R-kind to be a generic class.

We can now map, a general class in conceptual model to a generic class in the

ontological model.

56

Rule 5: A class in the conceptual model is representative of generic class in the

ontological model.

The following definition formalizes the concept of inheritance.

Definition 4: A subset of things, X, is a subclass of another set of things, Y, if and only if

X is a proper subset of Y. Conversely, Y is a superclass of X [118].

Corollary: If S(pi) = X and S(p 2) = Y, p1, p2 E P, then X is a subclass of Y if and only if

S(p 1) c S(p 2) [118].

Let us consider a set of properties P1 = {pii, p12, ... , pin} and a set of properties P2 =

{p21, ... , P2m}. Let X be the class consisting of things S(P 1) and Y be the class consisting

of things S(P 2). If P2 _ Pi, then we can represent Y as a subclass of X. This is generally

true in conceptual modeling where subclasses contain specializing attributes and

relationships (i.e. properties) than superclasses and superclasses generalize the concepts

of subclasses.

Composition of things is outlined in Postulate 5.

Postulate 5*: Two things may associate to form another.

Based on this postulate, a thing is a composite if and only if at least two concrete things

combine to form it. The reason for assembling these things to form composite things is

the possibility to obtain emergent properties of the composite that is interesting, which is

not a property of any of its component things [118].

57

Definition 5*: A property of a composite thing is inherited if and only if it is a property

of any of its components; otherwise, it is emergent.

For instance, a computer is a composite thing since it is composed of main memory,

processor, etc. Thus, the size of main memory is an inherited property because it is a

property of main memory. However, the processing power of a computer is an emergent

property because it is not a property of any of the individual components [118].

Ontology postulates that humans view an aggregation of things as a composite

thing only if they are interested in at least one emergent characteristic of the composite:

Postulate 6*: Every composite thing possesses emergent properties.

In the next, section we discuss some concepts of classification techniques used in

databases, Al and biology.

3.2.2.1.2 Classification Techniques

Classification techniques have been used in artificial intelligence as a means of

knowledge representation and also in biological sciences to classify different types of

plants and animals. An example of a classic Al technique that can be utilized for

classification is the semantic network [87], originally developed as a way of representing

human memory and language understanding.

58

The structure of a semantic network is shown graphically in terms of nodes and

the arcs (links) connecting them. The nodes are generally used to represent physical

objects, concepts, or situations. The links are used to express relationships. Two types of

commonly used links are IS-A and A-KIND-OF, which are sometimes written as ISA and

AKO [123]. IS-A means "an instance of' while A-KIND-OF means

"specialization/generalization" relationship. Figure 11 depicts a semantic network with

ISA and AKO links. For instance, in figure 11, node University represents the set of all

universities and node UniversityA represents an instance of university called UniversityA.

We revisit this figure in subsequent discussions.

UniversityA ISA University

has students has-departments

work-in (m:m)

Student aj-imm) Department

AKO has projects
ISA

AKO AKO

Graduate Undergrad Special Project Departm-
Student Student Student entA

Figure 11. A Semantic Net with ISA and AKO Links

The extents of the different nodes (i.e. for non-instance nodes) are considered disjoint

unless otherwise specified.

59

Having discussed some of the relevant work that is useful to our approach, let us

now discuss the methodology for identifying semantically related items of different

schemas. Identifying semantic relations between classes of different database schema is

the basis for successful resolution of semantic heterogeneity during integrating. We focus

on this issue in the next section.

3.2.2.2 Methodology

A significant impediment to identifying semantic relations in a definitive manner

is the difficulty in obtaining knowledge of the extent of classes of database schema.

Usually, the intended extents are in the original database designer's mind, represented

partially in conceptual models and to a lesser extent in the schemas. However, in most

application domains the only high-level knowledge available to the integrator is schema-

level descriptions of legacy databases.

It is obvious that without the appropriate knowledge of the extents of classes, it is

impossible to make a reliable decision as to the types of semantic relations that are

present. Hence, our approach takes a stepwise process to obtain this information.

Before discussion of the steps of the proposed methodology, we present some

obvious techniques for identifying semantic related classes and discuss why these

techniques are infeasible. Discussing and comparing these techniques provides us with

insights as to some problems related to semantic heterogeneity resolution and also

provide justifications for the methodology we propose.

60

Technique 1: A brute force and obvious algorithm is to determine if two classes are

SEMEQ, SEM_SUB, SEMOVER or SEM_DIS is to compare the extents for each

class. This is practically impossible and theoretically incorrect. It is practically

impossible because the sheer number of possible comparisons. It is theoretically

incorrect, because we need to check for every database instance at time t and thus for

instance, extents of class A and extents of class B being equal at the current moment do

not necessarily mean that they will do so in future. Hence, this algorithm is impractical

and incorrect.

Technique 2: Another approach would be to enumerate all the possible properties

(discussed in section 2.1) for each class in the schema. Then comparison of matching

properties of different classes enables to determine the semantic relationship between

classes of different database schema. In terms of efficiency compared to technique 1, this

approach is significantly efficient and may be practically possible for a small number of

schemas. However, a main obstacle to this approach is the inability to verify if the set of

all possible properties are generated for a particular class or whether to determine if this

set is finite at all. Another technical hurdle is to find the matching properties in different

classes.

The following sections describe our approach to identifying semantic relations.

61

3.2.2.2.1 Step 1: Conversion to Sem-ODM

The first step of an integration process is to reduce the heterogeneities that may

occur due to different data models in which the schemas are represented. A generally

accepted framework is to transform these schemas of different data models to a canonical

data model (CDM) [105]. In the architecture presented in chapter 2, we convert the

schemas to Sem-ODM through wrappers ([74], [96], [97]) for non-Sem-ODB data

sources. The algorithm for automated translation from relational schema to semantic

schema (by the Schema Transformer module of SemWrap [96]) is given below:

Algorithm:

- For each table in the relational schema

o Create a category in the semantic schema with same name as in table.

o For each field in the table

- Create an attribute corresponding in the respective category

with same name of field

- For each functional dependency (i.e. foreign key, primary key relationship)

except when the primary key is composite (i.e. multiple fields make up the

primary key field) and there are more than one functional dependency from

foreign table to primary table.

o Create a relation with cardinality m:1 from category corresponding to

foreign table to category corresponding to primary table. The name of

relation is "DomainCategoryName"_"RangeCategoryName"_# where

represents a number which is unique for relations between Domain

and Range categories

62

Note that we avoided creating relations when there exists ambiguity in identifying the

participating fields of primary and foreign tables due to composite primary key fields and

multiple functional dependencies between the two tables.

3.2.2.2.2 Step 2: Obtaining Property Functions

The next step in the methodology is to obtain context information incorporated

into the component schemas and have a common framework for sharing the semantic

meaning of schemas. This step focuses on obtaining context information. The following

example illustrates context information in detail:

Example 7: Let us consider a database containing information on students and major

departments in a university. Figure 12 illustrates such a schema in Sem-ODM.

STUDENT DEPARTMENT
id: String key majors-in (m:m) J dept-code: String key
lname: String name: String
fname: String building: String

birth-date: Date campus: String

Figure 12. Schema in Sem-ODM

An important aspect that can be noticed from the schema is the lack of context

information. Context information is the knowledge within the application domain that is

not generally explicitly stated. However, when we bring out these schemas into the

domains of other application areas for schema integration, specifying the context

information is important. Context information is a generalized property which is

common to every class within a database schema. For instance, schema in figure 12

describe a particular university A. This context information is not shown in the schema

63

but when comparing this schema with other schemas in a multidatabase environment this

context information is significant.

We now extent some of the definitions from Bunge's ontological model in order

to gain a formalism for defining the semantics of schema constructs.

Postulate 7: For every class C in conceptual model, there exists an abstract concept, C'

(called general class of C), such that EXT(C) C EXT(C')

Hence for every class, C, in Sem-ODM, there exists a general class for C' that consists of

at least the set of items represented by C.

Postulate 8: The extent of every class C can be defined unambiguously using a property

function P. P (M, {fl, ... , f~}) 4 Extent of C, where M (called primary mapping) is a

mapping from C to one of its general classes C', and f;: C' x A (i = 1, ... , n) where A is

an abstract concept.

Ontologically, this means that S(M) n S(fl) n S(f 2) n ... n S(f~) = EXT(C) where f; (i =

1, ... , n) represent a property.

An example of a property function is shown below:

Example 8: Let us consider the schema in example 2. We have the following property

functions for categories STUDENT and DEPARTMENT.

1. STUDENT:

Property Function: (M, F) such that

M : STUDENT 4 S

64

F : Is-student-of(S x UA), At-time(S x Ts) }

where STUDENT : { set of current students in UniversityA }

S : {set of students of all universities at any instance of time}

UA : {UniversityA}

Ts : {Current}

Therefore (M, F) represents "Set of current (Ts) students (S) in UniversityA (UA)".

(M, F) unambiguously defines the EXT(STUDENT). That is, S(S) n S(Is-student-of)

n S(At-time) = EXT(STUDENT) where S is the scope function.

2. DEPARTMENT:

Property Function: (M, F) such that

M : DEPARTMENT -> D

F : {Department-of(D x UA), At-time(D x Ts)}

where DEPARTMENT: { Set of departments in UniversityA }

D: {set of all departments of all universities at any instance of time }

UA: {UniversityA}

Ts: {Current}

Therefore (M,F) represents "Set of current (Ts) departments (D) of UniversityA (UA).

(M, F) unambiguously defines EXT(DEPARTMENT). That is, S(D) n

S(Department-of) n S(At-time) = EXT(DEPARTMENT) where S is the scope

function.

65

The next step in the methodology is to map the property function to a shared

ontology representing the application domain, which is discussed in the following

section.

3.2.2.2.2 Step 3: Mapping To Shared Ontology

This step tries to achieve a common language for sharing semantics between a set

of component schemas so as to determine the semantically related constructs of the

schema. The common medium for exchanging semantics is the use of a shared ontology

represented by a semantic network (example shown in section 3.2.2.1.2). Let us now look

at some previous work that provides justification for our claim (i.e. it is possible to build

an ontology using a semantic network for a general application domain for which a

database schema is designed). Previous work, such as in [101], uses a shared ontology for

semantic interoperability. Thus, this is shown to be feasible. Our assumption that general

conceptual models can be built for a general application domain is justified by previously

demonstrated work such as in [111] which discusses a tool to automatically design

schemas based user requirements. In [111], generalized schemas are stored in the

Application Domain Base (ADB) and learning takes place when schemas from

Application Case Base (ACB) are moved to the Application Domain Base. Empirical

testing of the system provides favorable results. In [43], we have seen the use of ontology

to describe information on Web pages. We postulate that similar techniques can be used

to generate classification graphs for different domains. We feel that semantic network is a

powerful expressive technique for representing shared ontology. This is justified by

previous work such as [14] which argues that semantic network is powerful than 00

66

models. Also, we have seen in [112], the design of ontologies for general applications

based on semantic networks.

This section describes a technique to map the property functions of the classes of

each schema to shared ontologies of the application domains. These mappings enable to

determine semantic relations between classes of different schemas (see step 4 below).

Our technique is best illustrated by an example.

Example 9: Let us consider the schema in figure 12. The property functions for

categories STUDENT and DEPARTMENT are given in example 8. Let us say that

schema in figure 12 corresponds to DB 1 and the following schema (i.e. figure 13)

corresponds to DB 2.

STUDENT PROJECT
ssn: String (key) works-in (m:m) project-id: String (key)

name: String name: String
phone: Number description: String

funding-agency: String

Figure 13. Schema for Database DB 2 in Example 1

The property functions for DB 2 are as follows:

STUDENT:

Property Function: (M, F) such that

M : STUDENT -- S

F : { Is-student-of(S x UA), Work-in(S x DA), At-time(S x Ts) }

where STUDENT : {set of students in UniversityA who work in DepartmentA of

UniversityA }

S : {set of students of all universities at any instance of time}

67

UA : {UniversityA}

DA : {DepartmentA of UniversityA}

Ts : {Current}

Therefore (M, F) represents "Set of current (Ts) students (S) in UniversityA who work

in DepartmentA (DA) of UniversityA".

PROJECT:

Property Function: (M, F) such that

M : PROJECT -> P

F : {Project-of(P x DA), At-time(P x Ts) }

where PROJECT : {set of current projects in DepartmentA of UniversityA }

P : {set of all projects in all departments of all universities at any instance

of time}

DA : { DepartmentA of UniversityA }

Ts : {Current}

Therefore (M, F) represents "Set of current (Ts) projects (P) in DepartmentA of

UniversityA (DA)".

We will map the property functions to semantic network given in figure 11. Note

that node Time has been omitted in the semantic network. All nodes of the semantic

network have relationship to Time node called At-time. The property At-time of every

class is mapped to this relationship and is omitted from discussion below. Ts: {Current }

is mapped to a node called Current which is an instance of Time (related by ISA).

68

Matching property Matched node of Semantic Net

DB 1.STUDENT S 4 Student

DBI.STUDENT UA 4 UniversityA

DBI.STUDENT Is-student-of 4 has-students

DBI.DEPARTMENT D 4 Department

DB 1.DEPARTMENT UA 4 UniversityA

DB .DEPARTMENT Department-of 4 has-departments

DB 2.STUDENT S 4 Student

DB 2.STUDENT UA 4 UniversityA

DB 2.STUDENT DA 4 DepartmentA

DB2.STUDENT Is-student-of 4 has-students

DB2 .STUDENT works-in 4 work-in

DB2 .PROJECT P 4 Project

DB 2.PROJECT DA 4 DepartmentA

DB2.PROJECT Project-of 4 has-projects

Having mapped to a common ontology presented in figure 11, let us now consider the

derivation of semantic relations, which is the focus in the next section.

3.2.2.2.2 Step 4: Discovering Semantic Relations

This section discusses some rules that utilize the mapping information illustrated

above to derive semantic relations. Application of these rules produce semantic relations.

69

Let A be a construct in schema 1 while B is a construct of schema 2.

Rule I: If the primary mapping of class A map to the same node as primary mapping of

class B and all other properties of classes A and B map to the same set of nodes and links

in the semantic network, then A SEM_EQ B (i.e. EXT(A) = EXT(B) at any given time t).

Proof Sketch: In postulate 8, we claimed that a concept is unambiguously defined using

a property function. In step 3, we mapped the property function onto a shared ontology.

Thus, if the mappings of two constructs correspond, then these concepts are describing

the same concept. Hence, the extents are identical at any given instance.

Rule II: If the primary mapping of class A map to node in the semantic network which is

disjoint with node in the semantic network to which the primary mapping of class B maps

to, then A SEM_DIS B (i.e. EXT(A) n EXT(B) = 0 for all instances of time t)

Proof Sketch: Let A' be the primary mapping of class A and B' be the primary mapping

of B. Since A' and B' are disjoint EXT(A') n EXT(B') = 0 for all instances of time t. By

postulate 7, EXT(A) c EXT(A') and EXT(B) C EXT(B') for all instances of time t.

Hence, EXT(A) n EXT(B) = 0 for all instances of time t.

For instance, if we consider node "Department" is disjoint with node "Student" in

figure 1, then we can conclude that DB2.STUDENT SEM_DIS DBL.DEPARTMENT by

Rule II.

70

Rule III: Let NodesA represent the set of nodes and links in the semantic network for

which there is a mapping from a property of class A. Similarly, let NodesB represent the

set of nodes and links in the semantic network for which there is a mapping from class B.

If either the primary mapping of class A map to the same node as primary mapping of

class B or if there is a path from the primary mapping of class B to primary mapping of

class A using only AKO links and NodesA C NodesB, then B SEM_SUB A.

Proof Sketch: Let A' be the primary mapping of class A and B' be the primary mapping

of B. Let NodesA = {n,, n, ... , nk} and NodesB = {n 1, n-2, ., nk, ..- , nn}. Note that AKO

represents a "specialization/generalization" relationship. Thus, if there exists a path from

B' to A', then EXT(B') c EXT (A'). By postulate 8, EXT(A) = S(A') n S(nj) n ... n

S(nk) and EXT(B) = S(B') n S(n1) n ... n S(nk) n S(nk+i) n ... n S(nn). Hence, EXT(B)

c EXT (A).

For instance, in example 4, NodeSDB.STUDENT = (Student, UniversityA, has-students} and

NodeDB2STUDENT = {Student, UniversityA, has-students, DepartmentA, work-in}.

Primary mapping of classes DBI.STUDENT and DB2 .STUDENT is "Student" node.

Hence by Rule III, DB2.STUDENT SEM_SUB DBi.STUDENT (i.e.

EXT(DB2.STUDENT) c EXT(DB L.STUDENT)). This is true since DB I.STUDENT

represents students of university A, while DB2 .STUDENT represents student of

university A who work for department A.

71

The rules presented by no means provide set of all semantic relations between

constructs of database schema. However, these rules combined with rules presented in

section 3.2.2.1 provide a basis for automated discovery of many semantic rules. Usually

step 1 is automated with the domain expert customizing the automatically generated

schemas. Steps 2-3 are performed at the component site with the interaction from domain

expert. Step 4, combined with rules discussed in section 3.2.2.1 are executed at the global

site by the Integrator and Knowledge Reconciliator (see chapter 2) automatically. This

module further interacts with global DBA to identify further semantic knowledge and to

create global views.

3.3 Summary

In this chapter, we introduced the problem of semantic heterogeneity. We

discussed some of the existing approaches that address this issue. Almost all of the

approaches use heuristic means to acquire knowledge and resolve semantic

heterogeneity. These approaches can result in incorrect results during integration (such as

incomplete answers to queries). We incorporate many techniques mentioned in previous

approaches and propose a methodology for semantic heterogeneity resolution. Our

methodology is based on the acquisition of semantic knowledge for resolving semantic

heterogeneity. The basis for acquiring semantic knowledge is determining semantic

relations between entities of different component schemas. The completeness and

correctness of these relations are outlined. We extend the semantic knowledge by

acquiring object equivalences and boundary conditions for certain types of semantically

72

related entities. This methodology resolves semantic heterogeneity and provides correct,

complete and unambiguous integration (will not result in incomplete query results). The

acquired semantic knowledge can be exploited during the creation of global schemas (see

chapter 4) and for optimizing queries posed on the global schema (see chapter 5). An

automated methodology for identifying semantically related entities is highly desirable.

We investigate into ontological research and knowledge representation techniques in

designing a semi-automated step-wise methodology for identifying semantic relations.

Investigating into techniques for easy specification of property functions and discovering

rules for identifying semantic relations are future research directions we consider for

improving our methodology.

73

4. SCHEMATIC HETEROGENEITY RESOLUTION

As mentioned in chapter 1, the ideal situation is to provide an interface similar to

a centralized database system to the multidatabase users. This requires the definition of

global schemas/views from a set of component database schemas. An issue that needs to

be addressed when creating a global schema/view is the resolution schema-level conflicts

(known as schematic heterogeneity). Schematic heterogeneity occurs when semantically

related (in our case SEM_EQ, SEM_SUB, SEM_OVER) schema constructs are

represented differently in different component schemas. For instance, the address of a

person may be represented by a category in one schema and as an attribute in another.

The price of an item may be represented in 'US Dollars' in one schema while the price of

the same item may be represented in 'British Pounds' in another schema. During global

schema/view definition, a single representation schema for data items must be decided

and a conversion from different representations of the component schemas to the

representation of the global schema must be defined. This chapter focuses on the

resolution of schematic heterogeneity and global view definition including knowledge

management issues for database integration.

In section 4.1, a brief discussion into related work regarding schema-level

heterogeneity resolution and database integration is presented. Section 4.2 discusses our

approach to global schema definition and schema integration. Benefits of our approach to

database integration when compared with previous approaches are outlined in section 4.3.

74

4.1 Related Work

Early research into multidatabase systems has focused on the schema-level

heterogeneities. A plethora of approaches for resolving schema level conflicts are

presented in literature ([9], [17], [31], [33], [53], [54], [55], [59], [83], [105] and others).

Many broad classes of schema-level conflicts have been identified and resolved. Almost

all of these methodologies have focused on the relational and object-oriented data

models. In [55], an exhaustive enumeration of schematic conflict types and their

resolutions for integrating relational and object-oriented schemas has been presented.

However, we have not found any previous work regarding schema-level heterogeneity

resolution taking Semantic Data Models into consideration. We focus on this issue in the

subsequent sections.

4.2 Our Work

This section outlines our schematic heterogeneity resolution including knowledge

management for database integration as a whole. The organization of this section is as

follows. Firstly, a language, called SemOSQL/M, for defining global Sem-ODM views

over component Sem-ODM schemas is introduced. In section 4.2.2, the use of

SemOSQL/M to resolve each type of schema-level conflict resolution during global view

definition is illustrated. A desirable and advantageous goal is to store and manage the

semantic knowledge and schema-resolution knowledge in a centralized manner for global

schema definition and query processing. In section 4.2.4.1, schemas designed for

Knowledge Bases to store and manage such information are presented. Next, a tool that

assists the process of global view definition using the existing knowledge in the

75

Knowledge Base is presented. Finally, section 4.3 discusses the benefits of our approach

to existing approaches.

4.2.1 SemOSQL/M

This section introduces SemOSQL/M which is a language used in the creation of

SemODM global views over a set of component SemODM schemas. SemOSQL/M is

similar to SQL but extended in certain aspects to incorporate features of multidatabase

systems.

In SemOSQL/M, the definition of a category in the global schema has two

components. The first component is the signature of the global category. The second

component is a list of SQL like statements that specify a methodology to derive

information for the categories from component schemas. The second component includes

one query for each of the component database (CDB) entities being integrated.

Following is the syntax for the category definition:

CREATE CATEGORY category name

[SUPERCATEGORY super-category {,super-category}*]

attr deflist

AS SELECT selectionlist

FROM entity-speclist

[WHERE searchconditions]

[GROUP BY selection list]

[HAVING searchconditions],

76

SELECT selectionlist

FROM entity speclist

[WHERE searchconditions]

[GROUP BY selection-list]

[HAVING searchconditions],

entity-specjlist ::= cdb_entityname [variable]

{, cdbentityname [variable] }

cdb_entityname ::= [cdbname.]entityname

The attr_def list consists of attributes and their domains, along with methods and

relations. A comma separates each component query. The selectionlist is an extension to

SQL to handle schematic and data heterogeneities. The entityspeclist determines the

various entities from different CDBs against which the query is to be evaluated. The

searchconditions are identical to those in SQL. The supercategory defines name of the

super category in the inheritance hierarchy.

The syntax for the definition of a relation in SemOSQL/M is as follows:

CREATE RELATION relation-name

(DOMAIN domain-category RANGE range-category

[CARD cardinality][TOTAL])

AS FROM selection-list

WHERE join-conditions

77

FROM selection-list

WHERE join-conditions

The relation-name contains the name of the relation in the global schema. The domain-

category denotes the category name of the domain of the relation. The range-category

denotes the category name of the range of the relation. The DBA can specify the freest

(freest is described below) cardinality in cardinality as m:1, 1:m, 1:1 or m:m. If the

cardinality is not specified, then it is assumed to the default (m:m). The totality of a

relation is specified by TOTAL. If not specified, it is assumed to be not total by default.

The selection-list, in the case of a semantic schema as the CDB schema, will contain a

relation on the schema. In the case of relation spanning across component schemas,

selection-list will contain two category names in different schema with the join-

conditions specifying a condition to satisfy in order for the objects to be considered

related in the domain and range categories.

The schema-level conflicts and their resolutions specified using SemOSQL/M

statements are illustrated in the next section.

4.2.2 Schema-level Conflicts and Resolutions

A number of efforts to resolve schema-level conflicts in object-oriented schemas

and relational schemas have been discussed previously in literature. However, schema

conflicts among a set of Sem-ODM schemas are lacking. In this section, we present

resolutions for different types of schema-level conflict among Sem-ODM schemas. Note

78

that in our presentation, there is an overlap of certain ideas with previous work (such as

in [55]), however we included them for clarity and completeness of our discussion.

This section describes the different types of schema conflicts and their

resolutions. Each conflict type will be illustrated with an example and its resolution will

be specified using SemOSQL/M. Note that in all of the examples, we assume that the

categories represented are semantically equivalent (i.e. SEMEQ) and we create a

semantically equivalent global category for the presented component schemas' categories

unless stated otherwise. This assumption simplifies our presentation and does not restrict

in any aspect. The ideas presented can be easily extended to SEM_SUB and SEM_OVER

without any loss of generality. The only difference is that we may need to specify the

boundary conditions in the WHERE clause for category definitions appropriately.

4.2.2.1 Naming Conflicts

Conflict: Semantically equivalent categories and attributes may have different names in

the component database schema

Resolution: Renaming entities and attributes in the global schema and mapping them to

their corresponding entities and attributes in CDBs.

Example 10: Let us consider the following schemas:

cdbl: STUDENT cdb2: GRADSTUDENT
ssn : INTEGER SocalSec:INTEGER
address : STRING address : STRING

Figure 14. Schemas with Naming Conflicts

79

The SemOSQL/M statement looks as follows:

CREATE CATEGORY STUDENT

(SocialSecurity:INTEGER, address:STRING)

AS SELECT ssn, address

FROM cdbl.STUDENT

SELECT SocialSec, address

FROM cdb2.GRAD_STUDENT

The extension of category STUDENT in the global schema can be obtained by visiting

either categories, cdbl.STUDENT or cdb2.GRAD_STUDENT (since STUDENT,

cdbl.STUDENT and cdb2.GRAD_STUDENT are related by SEMEQ relation).

However, our system encourages the global DBA to define all the semantically related

entities of data sources in deriving the global construct as this information can be used in

deriving intelligent query optimization strategies (discussed in chapter 5).

4.2.2.2 Data Conflicts

Conflict: Data conflicts occur, when semantically equivalent data are represented

differently.

Resolution: Homogenizing the representations. In the global schema, the data are

represented in one form (same expression, same unit, same precision). This may lead to

loss of accuracy/precision. For instance, converting marks from 1-100 scale to grade

'A','B','C','D' and F'. Homogenizing representations are allowed in SemOSQL/M using

80

arithmetic operators and DBA defined functions (Note that DBA defined functions are

preceded by "dba." string).

Example 11: Let us consider the following schema of two semantically related (i.e.

SEMEQ) entities:

cdb 1: PERSON cdb2: STUDENT
ssn :INTEGER ssn:Integer
wtin-kg :INTEGER wtinlb:Integer
ht_in_inch :INTEGER htincm:Integer

Figure 15. Schemas with Data Conflicts

Let us assume that weight is specified in kg (by wtjinjkg attribute) in cdbl.PERSON and

height is specified in inches (by ht-in inch attribute). Also, weight is specified in lbs (by

wtinlb attribute) and height in centimeters (by htincm attribute).

Following is a SemOSQL/M statement that resolves the data conflicts:

CREATE CATEGORY PERSON

(ssn:INTEGER, wtinlb:INTEGER, ht_in_in:INTEGER)

AS SELECT ssn, dba.changejlb(wt-in-kg), ht-ininch

FROM cdb l .PERSON

SELECT ssn, wt_in_lb:INTEGER, htincm/2.54

FROM cdb2.STUDENT

In the above definition, to convert to lbs in the first SELECT statement, we use a DBA

defined function (i.e. dba.changelb()). In the second SELECT statement, the division (/)

operator is used. Note that there is a loss of precision when converting from cm to inch.

81

An important aspect to note that is not explicitly stated is that, in defining conversion

functions to resolve conflicts, we also need to specify reverse functions to perform the

opposite conversion. For instance, for the dba.change_lb(), we need to specify a function

dba.changekg() which takes as input a field in lbs and outputs the value in kg. This

function is used during query processing to translate the queries to the format of

component database. For instance, let consider the following query:

SELECT ssn

FROM PERSON

WHERE wtinlb > 100

In order to translate this query into a query of cdb I, we need to first convert value '100'

mentioned in the WHERE clause of the global query to units in kgs for which the query

processor utilizes function dba.changekg().

4.2.2.3 Attribute Type Conflicts

Conflict: Semantically equivalent attributes may have different types.

Resolution: Type coercion. Most of the types may be coerced. Type coercion is allowed

in SemOSQL/M with the keyword AS or by DBA defined functions.

Example 12: Assume that for above example attribute ssn is represented as a STRING in

cdbl.

CREATE CATEGORY PERSON

(ssn:INTEGER, wt_in_lb:INTEGER, ht_in_in:INTEGER)

AS SELECT ssn AS INTEGER, dba.change_lb(wt_in_kg),

82

htininch

FROM cdbl.PERSON

SELECT ssn, wt_in_lb:INTEGER, htincm/2.54

FROM cdb2.STUDENT

The above SemOSQL/M statement using AS keyword to convert the type from STRING

to INTEGER.

4.2.2.4 Attribute Granularity Conflicts

Conflict: A single attribute in a CDB is equivalent to a group of attributes in another

CDB.

Resolution: There are two alternatives for this conflict type. (i.) Concatenate the attributes

and represent it as a single attribute in the global entity. (ii.) Simplify the complex

attribute to multiple attributes, and represent it as a group of attributes. In SemOSLQ/M,

square brackets ([]) are used for attribute concatenation of strings; arithmetic operators

for defined operand types and DBA defined methods for attribute simplification.

Example 13: In the following schemas, cdbl.PERSON.name contains both last name and

first name.

cdbl: PERSON(name:STRING, ssn:INTEGER)

cdb2: EMPLOYEE(lastname:STRING, firstname:STRING,

ssn:INTEGER)

Alternative 1: Concatenating the attributes for strings.

CREATE CATEGORY PERSON

83

(ssn:INTEGER, fullname:STRING)

AS SELECT ssn, name

FROM cdbl.PERSON

SELECT ssn, [lastname,firstname]

FROM cdb2.EMPLOYEE

Alternative 2: Simplifying the attributes

CREATE CATEGORY PERSON

(ssn:INTEGER, firstname:STRING lastname:STRING)

AS SELECT ssn, dba.extractFirst(name),

dba.extractlast(name)

FROM cdbl.PERSON

SELECT ssn, lastname, firstname

FROM cdb2.EMPLOYEE

4.2.2.5 Missing Attribute Conflicts

Conflict: There may be attributes missing in the entities of CDB schemas.

Resolution: There are 3 ways to resolve this type of conflict. (i) Coerce non-existent

attributes with NULL ("values not known"). Note that having a NULL value does not

mean that every object in the CDB entity will obtain a NULL value for the missing

attribute. If there exists a non-NULL value for an attribute of a semantically equivalent

object from a different CDB entity, these values will be replaced instead of NULL values.

(ii.) Exclude the extra attributes from the selection list of the component query for the

84

CDB entity, which has more attributes than other CDB entities with which it is being

integrated. (iii) Model the entity with fewer attributes as the super-category of the others,

provided that all entities being integrated are related by the inclusion relationship (that is,

every object in the subcategory must also be an object in the super category).

Examples of the first and third resolutions are given below.

cdbl: cdb2:
PERSON STUDENT

name : STRING ssn:INTEGER
ssn :INTEGER name:STRING
sex : CHAR

Figure 16. Schemas with Missing Attribute Conflicts

Alternative 1: Using NULL values.

CREATE CATEGORY PERSON

(name:STRING, ssn:INTEGER, sex:char)

AS SELECT name, ssn, sex

FROM cdbl.PERSON

SELECT name, ssn, NULL

FROM cdb2.STUDENT

Alternative 3: Using super/sub categories.

CREATE CATEGORY PERSON

(name:STRING, ssn:INTEGER)

AS SELECT name, ssn

FROM cdbl.PERSON

85

SELECT name, ssn

FROM cdb2.STUDENT

CREATE CATEGORY PERSON_1 SUBCATEGORY PERSON

(sex:CHAR)

AS SELECT sex

FROM cdb 1.PERSON

4.2.2.6 Missing Attributes with Implicit Values

Conflict: This type of conflict has entities with missing attributes which are implicit (such

as context information); hence not included in the CDB schema.

Resolution: An expression cdb_attr_name = value is included as an element of the

selectionlist of a component query in the definition of the global category, where

cdb_attr_name is the name of the missing attribute in a CDB entity, and its value is the

implicit default value.

Example 14: Let us look at the following schemas. In this case, cdb 1.STUDENT,

student type denotes whether a given student is an undergraduate or graduate student.

cdbl: GRAD cdb2:
GRADSTUDENT

ssn :INTEGER ssn INTEGER
name : STRING Name : STRING
studenttype:CHAR

Figure 17. Schemas having Missing Attributes with Implicit Value Conflicts

86

CREATE CATEGORY GRADUATESTUDENT

(ssn:INTEGER, name:STRING, student_type:CHAR)

AS SELECT ssn, name, student type

FROM cdbl.GRAD

SELECT ssn, name, studentjtype = 'G'

FROM cdb2.GRAD_STUDENT

4.2.2.7 Basic Relations

Conflict: Importing relations, between entities of component database schemas, to the

global schema.

Resolution: We can import relations between entities of same component database and

represent them as a relation in the global schema. The totality of a relation and cardinality

conflicts are resolved as follows.

" Total: The relation defined in the global schema is total iff every sub-relation it is

based on is total, otherwise it is not total.

" Cardinality: The cardinality is determined as the freest possible case of the sub-

relations. By freest, we mean that we take the largest value for the right hand and

left hand of the cardinality from the set of cardinalities of the sub-relations. For

instance, if we have the following cardinalities (m: 1) and (1:1) then freest

cardinality is (m:1) (that is m is largest on r.h.s. and 1 in l.h.s.).

Example 15: Following are component schemas of cdb1 and cdb2.

87

cdb 1: STUDENT majors (m:1) DEPARTMENT
ssn:INTEGER name : STRING
address:STRING bldg :STRING

cdb2: STUDENT majoring (m:m) DEPARTMENT
ssn:INTEGER name : STRING
address:STRING bldg :STRING

Figure 18. Schemas with Basic Relations

Let us assume that the following categories have already been created in the global

schema.

CREATE CATEGROY STUDENT

(ssn:INTEGER, address:STRING)

AS SELECT ssn, name

FROM cdbl.STUDENT

SELECT ssn, name

FROM cdb2.STUDENT

CREATE CATEGROY DEPARTMENT

(name:STRING, bldg:STRING)

AS SELECT name, bldg

FROM cdb L.DEPARTMENT

SELECT name, bldg

FROM cdb2.DEPARTMENT

Now let us consider how the "majors" relation is defined between category STUDENT

and DEPARTMENT in the global schema.

88

CREATE RELATION majors

(DOMAIN STUDENT RANGE DEPARTMENT)

(CARD m:m)

AS FROM cdbl.STUDENT.majors

FROM cdb2.majoring

4.2.2.8 Composite Relations

Conflict: Importing a composition of relations, between entities of component database

schemas, to the global schema.

Resolution: We can import a composition of relations between entities of same

component database and represent them as a relation in the global schema. The totality of

a relation and cardinality conflicts are resolved as follows:

" Total: The relation defined in the global schema is total iff the direction of the relation

is the same as the direction of every sub-relation in the composite relation and each

sub-relation is total.

" Cardinality: The highest value from the left hand side of cardinality of every sub-

relation is taken for the left-hand value of the cardinality for the composite relation.

The highest value from the right-hand value is taken for the right-hand value of the

cardinality for the composite relation assuming the same direction of composite

relation as the global relation. For instance, if we have the following cardinalities

(m: 1) and (1:m) of two sub-relations which make a composite relation then we take

cardinality as (m:m) for the cardinality of composite relation. Next we find the freest

possible relation from all local relations as the cardinality of the global relation.

89

Example 16: Following is the schema of component database cdb 1.

cdb 1: STUDENT majors (m: 1) DEPARTMENT works-in (m:1) INSTRUCTOR
ssn:INTEGER name : STRING name : STRING
address:STRING bldg :STRING phone : STRING

Figure 19. Schemas with Composite Relations

Let us assume that the following categories have already been created in the global

schema.

CREATE CATEGROY STUDENT

(ssn:INTEGER, address:STRING)

AS SELECT ssn, name

FROM cdbl.STUDENT

CREATE CATEGROY INSTRUCTOR

(name:STRING, phone:STRING)

AS SELECT name, phone

FROM cdb L.INSTRUCTOR

Now let us consider how the "major-dept-inst" relation is defined between category

STUDENT and INSTRUCTOR in the global schema.

CREATE RELATION major-dept-inst

(DOMAIN STUDENT RANGE INSTRUCTOR)

(CARD m:m)

AS FROM cdbl.STUDENT.STUDENTmajors__worksin

90

Note that we have used a similar syntax as Semantic SQL where two underscores (i.e.

') means direct relation (non-inverse) while three underscores (i.e. '') means

inverse relation. It is also important to point out that the cardinality of 'major-dept-inst' is

(m:m) since 'majors_' cardinality is (m:1) and 'works-in_' cardinality is (1:m).

4.2.2.9 Inter-schema Relations

Conflict: Defining relations between entities in different component database schemas.

Resolution: When defining a relation between entities in different component databases,

the relation cannot be declared as total. This is because the CDBs are autonomous and we

cannot guarantee the existence of a RANGE object. Also, the relation has cardinality

(m:m) due to the same reason.

Example 17: Let us look at the following schemas.

cdb 1: STUDENT cdb2: DEPARTMENT
name : STRING name : STRING
major-dept : STRING bldg : STRING

Figure 20. Schemas with Inter-schema Relations

Let us assume that the following categories have already been defined.

CREATE CATEGROY STUDENT

(name:STRING)

AS SELECT name

FROM cdbl.STUDENT

CREATE CATEGROY DEPARTMENT

91

(name:STRING, bldg:STRING)

AS SELECT name, bldg

FROM cdb2.DEPARTMENT

Now let us consider the inter-schema relation majors from category STUDENT to

DEPARTMENT.

CREATE RELATION majors

(DOMAIN STUDENT RANGE DEPARTMENT)

AS FROM cdbl.STUDENT s, cdb2.DEPARTMENT d

WHERE s.major-dept = d.name

Note that, a join-condition (i.e. major-dept = name) needed to be specified for an inter-

schema relation. A similar methodology can be used to create a relation between

categories of the same CDB schemas where a relation between the categories does not

exist (called join-relation conflict).

4.2.2.10 Category Inclusion Conflicts

Conflict: A category in a CDB is semantically subset with a category in another

component database.

Resolution: Two categories are defined in the global schema with one category being a

subcategory of the other. The DBA must ensure that the entity inclusion relationship is

preserved (that is every object is in the subcategory is also a member of the super-

category).

92

Example 18: Let us look at the following schemas.

cdb 1: STUDENT cdb2: GRADSTUDENT
ssn :INTEGER ssn :INTEGER
address:STRING address:STRING

major : STRING

Figure 21. Schemas with Category Inclusion Conflicts

Let us assume that cdb2.GRAD STUDENT is SEM SUBSET of cdbl.STUDENT.

Following are the SemOSQL/M statements that define these categories in the global

schema.

CREATE CATEGORY STUDENT

(ssn:INTEGER, address:STRING)

AS SELECT ssn, address

FROM cdbl.STUDENT

SELECT ssn, address

FROM cdb2.GRADSTUDENT

CREATE GRADSTUDENT SUBCATEGORY STUDENT

(major:STRING)

AS SELECT major

FROM cdb2.GRAD_STUDENT

4.2.2.11 Attribute Inclusion Conflicts

Conflict: There is an inclusion relationship between attributes in semantically equivalent

entities.

Resolution: We use inheritance to resolve the conflict.

93

Example 19: Let us look at the following schema.

cdbl: PEOPLE(name:STRING, age:INTEGER, childname:STRING)

cdb2: PERSON(name:STRING, age:INTEGER, son_name:STRING)

The following SemOSQL/M statements define the inheritance hierarchy:

CREATE CATEGORY PARENTS

(name:STRING, age:INTEGER, child:STRING)

AS SELECT name, age, childname

FROM cdb L.PEOPLE

SELECT name, age, son-name

FROM cdb2.PERSON

CREATE CATEGORY PARENTSOFMEN SUBCATEGORY PARENTS ()

AS SELECT *

FROM cdb2.PERSON

4.2.2.12 Category-versus-Attribute Conflicts

Conflict: These conflicts arise when a concept is represented as a category in one CDB,

however as a set of attributes (belonging to a semantically equivalent entity) in another

CDB.

Resolution: The category may be split into multiple parts, or two categories (or parts

thereof) may be integrated into one.

94

Example 20: Let us look at the following schemas.

cdbl: STUDENT cdb2: STUDENT ADDRESS
ssn : INTEGER ssn : INTEGER street : STRING
name : STRING name : STRING city : STRING
address : STRING zip : STRING

Figure 22. Schemas with Category-versus-Attribute Conflicts

Following are the SemOSQL/M statements:

Alternative 1: Splitting

CREATE CATGEORY STUDENT

(name: STRING, ssn:INTEGER)

AS SELECT name, ssn

FROM cdbl.STUDENT

SELECT name, ssn

FROM cdb2.STUDENT

CREATE CATEGORY ADDRESS

(address:STRING)

AS SELECT address

FROM cdbl.STUDENT

SELECT [street, city, zip]

FROM cdb2.ADDRESS

CREATE RELATION ADDRESSOF

95

(DOMAIN STUDENT RANGE ADDRESS)

AS FROM cdbl.STUDENT a, cdb1.STUDENT b

WHERE a.STUDENT = b.STUDENT

FROM cdb2.STUDENThas_

Note that we used the surrogate (STUDENT attribute) to identify common objects in

WHERE clause.

Alternative 2: Integrating

CREATE CATEGORY STUDENT

(ssn:INTEGER, name:STRING, address:STRING)

AS SELECT ssn, name, address

FROM cdbl.STUDENT

SELECT ssn, name, [has_street, hascity, has-zip]

FROM cdb2.STUDENT

Note that in alternative 2, we use the relation has to query category cdb2.ADDRESS.

Usually, when resolving schema-level conflicts a combination of the above

resolutions may need to be applied. The DBA creating the global views firstly determines

the semantic relation between global schema construct and one of the component

database schema constructs. Next, Knowledge Base tool interacts with the DBA to assist

in creating a semantically correct global view from the component database schemas. In

the next sections, we will consider the methodologies of managing the meta-data and

96

knowledge gained in integration for intelligent design decisions and query processing

strategies.

4.2.3 Handling Inconsistent Data

In previous discussions, we did not consider the issue of inconsistent data. That is,

similar concepts in different component databases having different data values. For

instance, let us consider a category EMPLOYEE derived from categories

cdb l .EMPLOYEE and cdb2.EMP. Both categories contain an attribute called salary

which represents the salary of an employee. Let us assume that the equivalence condition

is cdbl.EMPLOYEE.social-sec = cdb2.EMP.ssn . It is possible that the attribute salary in

categories cdb2.EMP and cdb l .EMPLOYEE may contain different values when

cdbl.EMPLOYEE.social-sec = cdb2.EMP.ssn . That is, same employee may have

different salary values. Until now, we choose either cdbl.EMPLOYEE.salary or

cdb2.EMP.salary value even for equivalent objects assuming that they are consistent.

Another resolution is to obtain the combined values of cdb L.EMPLOYEE.salary and

cdb2.EMP.salary using some aggregate functions. Let us look at the SemOSQL/M

statement for this case:

CREATE CATEGORY EMPLOYEE

(ssn:INTEGER, name:STRING, salary:NUMBER)

AS SELECT cdb L.EMPLOYEE.social-sec, cdb l .EMPLOYEE.name,

SUM(cdb L.EMPLOYEE.salary, cdb2.EMP.salary)

FROM cdbl .EMPLOYEE, cdb2.EMP

WHERE cdbl.EMPLOYEE = cdb2.EMP BY EQCOND

97

SELECT social-sec, name, salary

FROM cdb 1.EMPLOYEE

WHERE cdbl.EMPLOYEE BY BOUNDARY

(cdb 1.EMPLOYEE - cdb2.EMP)

SELECT ssn, name, salary

FROM cdb2.EMP

WHERE cdb2.EMP BY BOUNDARY (cdb2.EMP - cdb 1.EMPLOYEE)

Note that in the above instance, we create a global category EMPLOYEE which is a

union of objects of cdbl.EMPLOYEE and cdb2.EMP which themselves are related by

SEMOVER (i.e. cdbl.EMPLOYEE SEM_OVER cdb2.EMP). Hence, when considering

objects in category EMPLOYEE which are common to both categories cdb 1.EMP and

cdb2.EMPLOYEE by object equivalence (presented in SemOSQL/M as EQCOND), we

take the SUM of cdbl.EMPLOYEE.salary and cdb2.EMP.salary to obtain the salary of

EMPLOYEE (i.e. handling inconsistencies). In other cases, we obtain either

cdbl.EMPLOYEE.salary or cdb2.EMP.salary for the boundary cases. The equivalence

and boundary cases are specified in the WHERE clause.

4.2.4 Knowledge Management in Database Integration

It is advantageous to store and manage the meta-data and knowledge mentioned

earlier in a centralized manner. This will allow easily verifying the consistency of

existing knowledge, acquiring new knowledge and maintaining the knowledge. The use

of semantic dictionaries, global thesauruses and other techniques has been proposed in

literature. We adopt Knowledge Bases for this purpose. The schemas for the storage

98

component of the Knowledge Bases are discussed in section 4.2.4.1. A tool that utilizes

the knowledge in the knowledge base in creating the global views is outlined in section

4.2.4.2.

4.2.4.1 Knowledge Base

A Knowledge Base (KB) is used as a means for storage and manipulation of

meta-data and knowledge discussed previously. In the architecture (see chapter 2),

Knowledge Bases act as the interface between integration/schema definition phase with

query processing phase at the Global and Relational Sites. The knowledge acquired

during the integration/schema definition processes is made available through the

Knowledge Base for query processing. In our architecture (refer chapter 2), three

Knowledge Bases can be identified. Knowledge Bases used at the Relational and

Semantic Sites and a Knowledge Base used at the Global Site. The Knowledge Bases

store and manage different types of information at the different sites. Due to the fact that

Sem-ODM is an expressive and powerful data model, it was natural to utilize a Sem-

ODB for the storage component for the Knowledge Bases. The semantic schema designs

for each Knowledge Base are presented in appendices 1-5. In the following sections, we

describe each KB schema.

4.2.4.1.1 Knowledge Bases at Component Sites

The KB at the Relational Site subsumes the information content captured by the

KB at the component Semantic Site. Hence, we will discuss the Knowledge Base at the

Relational Site and provide descriptions for the common portions with the knowledge

99

base at Semantic Site. The knowledge base schema at the Relational Site captures the

following information: (i.) relational database schema; (ii.) transformed Sem-ODM

database schema; and (iii.) mapping information between the relational database schema

and its transformed Sem-ODM schema. This information is crucial for both schema

transformation and query translation. Also, semantic enrichment of the transformed

schemas (which includes incorporating context information through ontology and

property functions) is stored in the Knowledge Base. The Integration and Knowledge

Reconciliator module uses this information for semantic heterogeneity resolution. The

sub-schemas that make up the knowledge base schema of the Relational Site are

presented in appendices 1 - 4. Each sub-schema is described below.

Sem-ODM consists of category, which may be inherited and relation, which is a

relationship between categories. Appendix 1 presents the meta-schema of Sem-ODM.

Note that this sub-schema covers only the main concepts of the Sem-ODM data model. A

detailed meta-schema and its descriptions can be found in [117]. The primary constructs

of Sem-ODM are CATEGORYs and RELATIONs. A CATEGORY can be either

ABSTRACT or CONCRETE. ABSTRACT CATEGORYs represent objects that are

explicitly created representing real-world concepts, ideas or objects. CONCRETE

CATEGORYs represents printable values. CONCRETE CATEGORY captures the

different types of datatypes present in Sem-ODM. These can be different number ranges

(represented by NUMBERS RANGE), string ranges (represented by STRINGS RANGE),

user enumerated types (represented by ENUMERATED TYPE) or binary range types

(represented by BINARY). A RELATION is a mapping between objects in the domain to

100

objects in the range. A RELATION having a range of a CONCRETE CATEGORY is

termed an attribute of the domain. This subschema has the ability to store any semantic

schema.

The meta-schema of a relational database schema is shown in appendix 2. This

sub-schema contains TABLEs, FIELDs which belong to tables and their respective

DA TA TYPEs. Primary and foreign keys are represented by categories PRIMARY KEY

FIELD and FOREIGN KEY FIELD respectively. The functional dependencies are

represented by relation refers-to. It is evident how the relational schemas are stored in

this sub-schema and hence not discussed further.

The subschema illustrated in appendix 3 represents the mapping information

between the transformed Sem-ODM and component relational schemas. Categories

META OBJECT and COMPONENT META OBJECT are the same categories represented

in appendices 1 and 2 respectively. It is significant to note that category META OBJECT

is not directly derived from COMPONENT META OBJECT, instead from category VIEW

META OBJECT. VIEW META OBJECT is categorized to COMPONENT META OBJECT

and VIEW SPECIFICATION, which is further categorized to categories VIRTUAL

CATEGORY, VIRTUAL RELATION and VIRTUAL ATTRIBUTE. If the object in the

Sem-ODM schema is directly derived from the relational schema object, then META

OBJECT is derived from an object in category COMPONENT META OBJECT.

However, it is quite possible to contain different types of schematic heterogeneities

between Sem-ODM schema and relational schema similar to schematic heterogeneities

101

between Sem-ODM component and global schemas (see section 4.2.2). Similar to the

creating global Sem-ODM schemas from component schemas, the different types of

schematic heterogeneities are specified in SemOSQL/M and translated and stored in the

knowledge base schema. Note that we will not discuss schema level heterogeneity

resolutions between Sem-ODM and relational schemas as the issue of schematic

heterogeneity resolution between 00 and relational data models have been discussed

extensively in previous work and can be directly applied to Sem-ODM as described in

[7].

The fact that we store the derivation information specified in SemOSQL/M in the

knowledge base schema, allows to conveniently derive the semantics of the conflicts

resolutions. The schematic heterogeneity resolutions are stored in the categories

represented by VIEW SPECIFICATION. Category VIRTUAL CATEGORY captures

schema level heterogeneities that may occur between a category in Sem-ODM schema

and a set of tables in the relational schema. For instance, a category GRADSTUDENT in

Sem-ODM schema represents the graduate students. However, this is derived from table

STUDENT which represents both graduate and undergraduate students. Hence, an object

in VIRTUAL CATEGORY will represent the extraction of only graduate students from

table STUDENT via the attribute VIRTUALCATEGORY::where clause (this example

describes the boundary condition specification using the where clause). Similarly, a

relation in the Sem-ODM schema is derived from a functional dependency in component

relational schema. This is specified by category VIRTUAL RELATION. An attribute in

the Sem-ODM schema may have schema level conflicts with fields of the relational

102

schema (similar to conflicts between component Sem-ODM schemas and global Sem-

ODM schema specified in sections 4.2.2). This information is captured by category

VIRTUAL ATTRIBUTE. Likewise, different types of heterogeneities are resolved with the

addition of middle-level categories between transformed schema and component schema.

For clarity and illustration purposes, we describe the following example.

Example 21. Let us consider the following relational schema.

STUDENT(soc-sec, last-name, first-name, birth-year, major-dept, minor-dept)

INSTRUCTOR(soc-sec, last-name, first-name, birth-year)

DEPARTMENT(dept-code)

DEPARTMENTNAMING(name-key, main-name)

WORK(instructor-id-in-key, department-main-name-in-key)

The names of tables are represented outside the brackets in capital letters and fields of

each table are placed inside the appropriate brackets. The primary key fields of each table

are underlined. The fields major-dept and minor-dept of table STUDENT are foreign keys

referring to dept-code field of DEPARTMENT table representing the student's majoring

and minoring departments respectively. The dept-code field of table DEPARTMENT is a

foreign key referring to the name-key field of table DEPARTMENTNAMING. The field

instructor-id-in-key of table WORK is a foreign key field referring to soc-sec field of

table INSTRUCTOR and department-main-name-in-key is a foreign key field referring to

field dept-code of table DEPARTMENT.

103

Let us assume that the KDBTool and DBA at the component Relational Site

generated the Sem-ODM schema shown in figure 23, which represents the transformed

relational schema represented above. The storage of the relational schema and its

transformed Sem-ODM schema in the meta-schemas presented in appendices 1 and 2 are

self-explanatory and is omitted from discussion. We consider the mapping between

relational and Sem-ODM schema which is captured by the sub-schema presented in

appendix 3. This mapping information and the respective categories of sub-schemas

shown in appendices 1-3 are given in table 1.

PERSON
soc-sec:Number key

last-name: String
first-name: String
birth-vear: Date

STUDENT INSTRUCTOR

major (m: I)

works-in (m:m)
minor (m:1)

DEPARTMENT
dept-code: Number key

name:String l:m

Figure 23. Semantic Schema Created By Transforming a Relational Schema

Semantic Schema Entity Relational Schema Entity Category in Knowledge Base
(is-derived-from) Schema

PERSON STUDENT TABLE
INSTRUCTOR TABLE

PERSON.soc-sec STUDENT.soc-sec FIELD
INSTRUCTOR.soc-sec FIELD

PERSON.last-name STUDENT.last-name FIELD
INSTRUCTOR.last-name FIELD

PERSON.first-name STUDENT.Iast-name FIELD
INSTRUCTOR.last-name FIELD

PERSON.birth-year STUDENT.birth-year FIELD
INSTRUCTOR.birth-year FIELD

STUDENT STUDENT TABLE

104

IRNA G VIRTUAL_ATTRIBUTE::has
where: DEPARTMENT.dept- relation)

code = DEPARTMENT
_NAMING.name-key

STUDENT::major from: STUDENT, VIRTUAL_ RELATION
DEPARTMENT

where: STUDENT.major-dept =

DEPARTMENT.dept-code

STUDENT::minor from: STUDENT, VIRTUAL_ RELATION
DEPARTMENT

where: STUDENT.minor-dept =

DEPARTMENT.dept-code

INSTRUCTOR::work from: INSTRUCTOR, VIRTUAL_ RELATION
WORK, DEPARTMENT

where: (INSTRUCTOR.soc-sec =
WORK.instructor-id-in-key)
AND (WORK.department-
main-name-in-key =
DEPARTMENT.dept-code)

Table 1. Mappings between Sem-ODM and relational schema

The above example illustrates the use of middle-layer categories in the mapping

schema (Appendix 3) for resolving conflicts. The attribute DEPARTMENT.name has

cardinality 1:m which is not possible to be represented directly by a relational schema.

Thus, VIRTUALATTRIBUTE category is used for resolving this conflict. Similarly,

relations in semantic schema cannot be directly mapped to relational schema constructs

and hence we introduce the category VIRTUAL_RELATION.

Appendix 4 depicts sub-schema capturing ontology information and mappings

from Sem-ODM schema to the ontology. The ontology is composed of a set of META

CONCEPTs which are either CONCEPTs or RELATIONSHIPs between concepts.

According to the discussion in chapter 3, a semantic network is used as a representation

105

scheme for ontologies. Thus, in sub-schema of appendix 4, the category CONCEPT maps

to the node of the semantic network while category RELATIONSHIP maps to the links

between the nodes. A meta-object of Sem-ODM schema maps to the ontology via a

property function represented by category PROPERTY FUNCTION. In the general case,

attributes and categories in Sem-ODM are mapped to a CONCEPT while relations in

Sem-ODM are mapped to an OTHER relationship. Property functions have a primary

mapping and a set of restrictions which is captured by relation restricted-by. The

mapping from a Sem-ODM schema to ontology is discussed in chapter 3 and hence not

explained further. The current implementation of SemWrap [96] does not support

ontology mappings, however plans to include ontology concepts in the future versions.

Knowledge Base at Semantic Site is similar to Knowledge Base schema at

relational site. However, it contains only sub-schemas shown in appendices 1 and 4 as it

does not need to contain relational schemas similar to the KB at Relational Site.

However, similar to Relational Site's Knowledge Base, it contains mappings to the

ontological concepts. The next section describes the Knowledge Base at the Global Site

that stores integration information from a set of Sem-ODM schemas.

4.2.4.1.2 Knowledge Base at Global Site

The heterogeneities between a set of Sem-ODM schemas are resolved at the

Global Site. This process requires (i.) identification of semantic relations between

constructs of component schemas; (ii.) acquiring means for determining object

equivalences for related constructs; (iii.) determining boundary conditions of related

106

entities; and (iv.) resolving schematic heterogeneities. The KB at Global Site focuses on

the storage of these types of knowledge. The concepts mentioned in (i.)-(iii. have been

discussed in chapter 3 and (iv.) in the previous sections of this chapter.

A sub-schema of the KB schema at Global Site is presented in appendix 5. The

category META OBJECT is part of a sub-schema similar to appendix 1 (not shown due to

redundancy). Category VIEW SPECIFICATION has subcategories VIRTUAL RELATION,

VIRTUAL CATEGORY and VIRTUAL ATTRIBUTE similar to sub-schema in appendix 3.

These categories are not shown in this schema to avoid complexity and redundancy.

Attributes of each category are omitted as well from discussion to avoid complexity and

ease of discussion. Category SEMANTIC RELATION captures the different types of

semantically related entities. Semantic relation "semantically disjoint" (i.e. SEMDIS) is

not represented and assumed by default. Object equivalences (described in section 3.2)

are represented by category OBJECT EQUIVALENCE PATH. The boundary conditions

(discussed in section 3.2) are specified in category BOUNDARY CONDITION and are

represented by an object of INTEGRATED META OBJECT (using relation represented

_by). Similar to appendix 4, INTEGRATED META OBJECT is mapped to ontology. This

sub-schema is omitted since it is discussed in appendix 4. The INTEGRATED META

OBJECT category contains all the concepts of component databases as well as global

views. A META OBJECT belongs to (represented by belongs-to relation) either a global

view (represented by categories GLOBAL) or component database schema (represented

by categories COMPONENT DATABASE). A global meta object is derived from an

INTEGRATED META OBJECT category (via relation is-derived-from) similar to META

107

OBJECTs being derived from VIEW META OBJECT of subschema of appendix 3. Most

of the discussions on previous schemas in the above sections overlap with this schema

and hence we avoid further discussion of this schema. A pre-cursor to the work presented

in this section can be found in [93].

For illustration purposes, we describe the following example that describes the

different types of semantic knowledge stored at the KB of Global Site.

Example 22. Consider two schemas from different component databases, DBI and DB2.

Let us assume that schema of DBI has the Sem-ODB schema presented in figure 23 of

universityA. Let DB 2 have the Sem-ODM schema of universityA shown in figure 24. We

have the following semantic relations from schemas of DBI and DB 2. The semantic

relation, SEM_DIS, is assumed by default:

DEPT EMPLOYEE
code: Number key works-for (m:m) social-security:Number key
name: String 1:m first-name: String

description: String last-name: String
position : String
salary : Number

FACULTY STAFF

Figure 24. Sem-ODM Schema of DB2

DB 1:

[1] DB I.STUDENT SEM_SUB DB I.PERSON (ISA relationship)

[2] DBI.INSTR UCTOR SEM_SUB DBI.PERSON (ISA relationship)

DB2:

108

[3] DB2.STAFF SEM_SUB DB2.EMPLOYEE (ISA relationship)

[4] DB2.FACULTY SEM_SUB DB2. EMPLOYEE (ISA relationship)

Semantic relations between DB1 and DB 2:

[5] DB1.PERSON SEM_OVER DB2.EMPLOYEE (since category

PERSON contains the faculty and students of universityA while category

EMPLOYEE contains faculty and staff of universityA).

We will not enumerate all the possible semantic relations between entities of DB 1 and

DB 2 due to space limitations. These semantic relations are obtained using rules described

in chapter 3. Also, the global DBA can identify them as well. For this example, object

equivalence conditions and boundary conditions for relation [5] are illustrated below.

Assuming that key attributes social-security of DB2.EMPLOYEE match key attribute soc-

sec of DB 1.PERSON are both referring to the social security numbers of a person, we can

directly obtain the following equivalence condition:

DB1.PERSON.soc-sec = DB2.EMPLOYEE.social-security

Hence, the same real world persons in both DBI.PERSON and DB 2.EMPLOYEE can be

determined by comparing their social-security numbers.

The boundary conditions for [5] include the following. Note that in the following

rules, we have assumed that all objects of category DB 2.EMPLOYEE are either objects of

category DB2.FACULTY or DB2.STAFF which are disjoint categories.

109

1. EXT(DB .PERSON) n EXT(DB 2.EMPLOYEE): contains the set of

instructors/faculty at universityA, which is represented by entities DB 2.FACULTY and

DBI.INSTRUCTOR which are related by semantic relation SEMEQ.

2. EXT(DB 1.PERSON) - EXT(DB 2.EMPLOYEE): contains the set of students of

universityA, which is represented by entity DB 1.STUDENT.

3. EXT(DB 2.EMPLOYEE) - EXT(DB 1.PERSON): contains the set of staff members of

universityA, which is represented by entity DB 2.STAFF

This information will be stored in the Knowledge Base of Global Site and used in the

creation of global schemas/views and query processing. The creation of global views

with the assistance of a tool is discussed in the next section.

4.2.4.2 A Tool used for Global View Definition

A major overhead in the global schema approach is the need for creating and

maintaining a global schema over the component heterogeneous databases. In our

approach, we feel that a single global schema is not required. This is because of the large

number of component schemas are integrated into the system and hence it is usually the

case that a single user/user group may not require access to all of such information.

Hence, we propose the creation of global views for different groups of users meeting

their requirements. This reduces the complexity of creating and maintaining a global

schema significantly. Also, a tool to semi-automatically create the global views is

described in this section, thus reducing the complexity and overhead further. This tool

uses the semantic knowledge, stored in the Knowledge Base, to provide intelligent design

decisions in creating global views.

110

Similar to creating a Sem-ODM schema for an application, we first proceed

creating the constructs (i.e. categories and relations) for the global view. Once, we have

defined the global view for the particular user group or application, the next step is to

define the meaning for each construct of the global schema. This is performed, by

mapping each construct onto the ontology. The knowledge base tool, then obtains all the

semantically related constructs (i.e. SEMEQ, SEMSUB, SEMOVER) from the

component database schemas by referring to the knowledge base. Also, it provides with

information as to the degree of completeness of information in the component database

constructs (since the semantic relations are based on extents of schema constructs). This

provides the global DBA to express the extents for each construct in the global schema.

For instance, in the scenario of example 22, we create a category TEACHER in

the global schema which represents the set of instructors in UniversityA. Then, the tool by

referring the Knowledge Base will present categories INSTRUCTOR and PERSON of

DB 1 with the appropriate boundary conditions and means to create object equivalences.

Also, it will present the DBA with categories STAFF and EMPLOYEE with the relevant

information. The DBA need not learn any semantics of the component database schema

or specific information about the component schemas. The DBA does not require

searching all the constructs of the component database schemas to find schema

constructs, which contain relevant information. Basically, the problem of semantic

heterogeneity is resolved. This is one of the major obstacles for ubiquitous use of

multidatabase technology and this factor is resolved. Next, the DBA defines the global

111

view resolving schema-level heterogeneities. The tool makes important suggestion at this

stage as well. By considering the different types of schematic heterogeneities present in

the Knowledge Base, the tool is capable of suggesting intelligent design choices for

schema definition.

Another limitation of the global schema approach is that the necessity for all

semantic knowledge before-hand in creating a global schema. Our approach allows

incremental acquisition of knowledge about component schemas as they progress and

learn about the component database schema. For instance, certain component schema

may not be mapped to ontologies initially due to lack of information. They may be

represented as semantically disjoint entities from semantically related entities. When

knowledge is acquired incrementally over a period of time, these new semantic relations

are identified. Note that this process is transparent to the users' global schema which is

designed in top-down methodology similar to centralized database design. As new

semantically related entities are gained they are mapped to constructs of the global views,

hence made available to global users without the need to change their applications.

There are many other advantages of using our approach. It is quite probable that

the schemas of the underlying databases may change. In our approach, the changes have a

minimal effect of the global users with the least overhead to the global DBA. When the

semantics of a component schema construct change, say a construct is deleted, the

changes are reflected in the property functions and ontology mappings, which are

transmitted to the global site. This change may result in a change of semantic relations

112

between component schema construct and global schema construct. Then this mapping is

deleted or altered as necessary and informed to the DBA. The users of global view do not

see any effect. A query on the global construct will obtain results from a different

component database. Also, the completeness of the query results can be viewed notified

to the user if the system is unable to provide complete answers due to the change in

semantics. For instance, in the previous example, it is learnt that DB 1.INSTRUCTOR

category represents instructors of UniversityB rather than UniversityA. This change is

noted in the ontology mapping and transmitted to the global site. At the global site, there

will be change from global category TEACHER being related by SEMEQ to

DB 1.INSTRUCTOR to TEACHER SEM_DIS DB 1.INSTRUCTOR assuming that

instructors in UniversityA cannot be instructors of UniversityB. This change is propagated

within the Knowledge Base using rules described in chapter 3 to make the knowledge

consistent. The mapping from global category STUDENT to DBI.INSTRUCTOR is

deleted automatically. Hence, now a query to obtain instructor information will be

directed to only component database DB 2. This change is transparent to the user and

minimal work by the DBA. The DBA is informed of the change by the tool.

The next section summarizes this chapter with a description of the advantages of

the discussed approach to database integration when compared with other approaches.

4.3 Summary

In this chapter, we introduced a language called SemOSQL/M to define global

views over a set of Sem-ODM component schemas. An exhaustive list of the different

113

types of schematic heterogeneities that may occur during integration of a set of

component Sem-ODM schemas is discussed and their resolutions are presented.

Knowledge management in our architecture is discussed. Knowledge Base schemas for

global and component sites are extensively discussed. Finally, a tool that assists in

creating global views is described.

Our approach to integration is unique from other approaches as it combines the

semantic conflict resolution techniques (described in chapter 3) with schema-level

conflict resolution. We have seen a similar approach in [51] which combines context

information to schema level heterogeneity resolution. However, our approach to semantic

heterogeneity resolution is based on semantic relations (similar to [83]) in contrast to

[51].

As we mentioned in the first chapter, the ideal situation is to provide an interface

similar to a centralized database system to the multidatabase users. Similar to a

centralized database system, this requires the creation of global schemas/views. A major

disadvantage in global schema multidatabase approach, which the critics of this approach

have pointed out, is the significant overhead in the creating and maintaining of a single

global schema. This factor is significantly reduced in our approach by allowing different

views to be created for different user groups. This factor avoids the creation of a single

global schema. Also, the need for complete semantic knowledge of all schemas is

avoided. The methodology allows step-wise incremental approach to gain knowledge

about the component schemas, which minimizes the effect to the global users whose

114

global views are designed in a top-down manner to meet their requirements. Also, an

intelligent tool, utilizing the semantic knowledge acquired during integration process is

outlined which automates a significant portion of creating a global view. This tool

resolves the semantic heterogeneity problem.

Also, in today's dynamically changing environments, efficient means for

incorporating changes must be considered. Since our integration is based on semantic

knowledge, the changes in semantics are easily propagated without affecting the global

users or applications of the global views. Also, it is possible to guarantee the

completeness of user's query results, since our semantic knowledge is based on extents.

When complete answers are impossible, the degree of completeness can be efficiently

measured.

In summary, the benefits of our approach include (i.) ideal solution to

heterogeneous data access problem by providing global views for users' accessing

multiple heterogeneous data sources in an expressive data model and query language

(similar to centralized database systems); (ii.) our methodology avoids the overhead of

creating and maintaining a single global schema by allowing the creation of multiple

global views for each user group; (iii.) global view definition is performed in a top-down

manner similar to database design methodologies of a centralized system, meeting the

requirements of each user group. Next, these schemas are mapped to ontologies from

which automatic semantic heterogeneity resolution takes place. This is significant

improvement from existing approaches; (iv.) the ability of our methodology to gain

115

semantic knowledge in a step-wise, incremental manner without affecting the global

users is beneficial. This has significant advantages from previous attempts, which require

all semantic knowledge before creating a global schema. Obtaining such knowledge

before-hand may be impossible and impractical for legacy database system due to the un-

availability of domain experts; and (v.) our approach can handle dynamic changes of

component database schemas in a very graceful manner (in contrast to most previous

approaches).

The above-mentioned factors are significant improvements from the existing

approaches. Hence, our approach to database integration provides an ideal situation for

distributed, heterogeneous database access reducing the overhead incurred previously.

The next chapter focuses on the query processing aspects of the Heterogeneous

Distributed Database System. Query optimization algorithms try to exploit the semantic

knowledge for efficient query processing providing results that adhere to data quality

attributes such as completeness.

116

5. QUERY PROCESSING

We have seen extensive work on query processing and optimization in database

systems, centralized and distributed alike, in the past two-three decades. This has resulted

in important and well-understood principles and approaches to query processing in

general. Query processing in multidatabase systems include several steps. Firstly, a query

based on a global view is decomposed into a set of subqueries, along with a query

execution plan (postquery processing [79]) to combine the results of the subqueries. Next,

the translation and optimizing of subqueries at the local sites takes place. Query

processing in multidatabase systems borrows concepts and techniques used in query

processing of centralized and distributed database systems. However, certain unique

features of multidatabase systems require developing innovative techniques for query

processing and optimizing.

In this chapter, we will focus on Semantic SQL query processing in the

Heterogeneous Distributed Database System introduced in the previous chapters. Our

approach to Semantic SQL query processing and optimizing incorporates many existing

techniques discussed in literature related to centralized database query processing,

distributed database query processing and multidatabase query processing. We discuss

some related work in section 5.1. In section 5.2, we discuss our approach to Semantic

SQL query processing in a multidatabase environment. The adoption of techniques

initially developed for relational SQL query processing to Semantic SQL query

processing is described. A unique feature of our integration process (see chapters 3-4) is

the acquisition of semantic knowledge. Such semantic knowledge can be exploited for

117

optimization of Semantic SQL queries. We present some techniques that utilize the

semantic knowledge for query optimization. Finally, concluding remarks for the chapter

is presented.

5.1 Related Work

The relational model was introduced by Codd in [26] (extended later in [27]).

There onwards we have seen relational algebra being used to query a relational schema.

Next, we have seen the development of declarative query languages for the relational

model and finally the standard query language SQL [110] which has been extended from

time to time (SQL-89, SQL-92, SQL-99). Optimization of such queries specified in these

query languages has taken shape in a centralized environment. Usually, a SQL query

statement is broken into blocks of SQL statements (each block containing SELECT-

FROM-WHERE-GROUP BY clause). Next, each query block is transformed into a set of

relational algebra operators specifying the query. Logical optimization takes place at this

level (rule-based optimization - such as pushing down selects). Physical optimization is

performed (considering index structures, access paths, etc.) to reduce data retrieval costs.

Many database textbooks (such as [32], [40], [45], [88], [116] and others) discuss this

process in detail.

Distributed database query processing considers the data distribution costs,

transmission costs and horizontally and vertically partitioned relations. Many approaches

for distributed database query processing and optimization (such as semi-joins [11]) are

described in literature [124]. Some of these techniques can be directly applied for query

118

processing and optimizing in multidatabase systems as well. However, distinctive

features of multidatabase systems give rise to unique issues which do not arise in query

optimization for homogeneous distributed database systems. Some unique features of

multidatabase systems from distributed database systems include [73]:

(i.) Site autonomy: Component database retains complete control over local data and

processing. This fact has many implications such as communication autonomy

which means that component sites independently determines what information it

will share with the global system, what global requests it will service, when it will

participate in the multidatabase system, and also when it will stop participating.

This adds complexity to the query processing due to dynamical changes of the

data sources. Another implication is design autonomy which means that

component databases are free to optimize access paths and query processing

methods without any obligation to the multidatabase system. Also, statistical and

relevant information may not be available for the global query optimizer. Thirdly,

execution autonomy where the global system is considered as another user and no

cooperation between global query processing and component database query

processing modules to correlate optimizing procedures similar to distributed

database query processing.

(ii.) System heterogeneity: System heterogeneity occurs at several different levels.

Component databases may reside on computer systems with different

architectures, connected via different types of networks, use different types of

communication protocols and support different types of data models. Hence, the

119

assumption in distributed databases that the local sites equal in terms of the

processing capability no longer holds.

(iii.) Semantic heterogeneity: Same real-world object may be stored in different

component databases. This situation is avoided in the homogeneous distributed

database approach.

Query processing in multidatabase systems needs to address these issues.

The issues of system and semantic heterogeneity in multidatabase systems have

been discussed extensively in previous chapters. We discuss some related work in query

processing and optimizing in multidatabase systems. Due to the different data models of

the component databases, a global query after decomposing into a set of subqueries needs

to be translated into the appropriate query language supported by the component

database. Query translation between different query languages have been studied

extensively by many researchers ([25], [64], [80], [126], and others). Most of the work is

in translation from either object-oriented databases to relational databases or relational

queries to queries against hierarchical and network databases. Translation of Semantic

SQL queries to relational queries in SemWrap [96] has been detailed in [74]. Due to site

autonomy, obtaining statistics from component database systems is difficult for query

optimization. Different approaches to acquire cost parameters for accessing component

databases have been discussed in [38], [128] and others. Query optimization utilizing

different operations (such as semi-joins, outer joins) to obtain inexpensive query

execution plans (QEPs) have been discussed in [24], [34], [35], [39]. Exploiting

parallelism for query processing optimization is discussed in [113]. Due to the schema

120

conflicts, it is possible for query answers to be partial (i.e. not certain). A methodology

for understanding uncertain answer tuples for global queries is presented in [115]. Query

optimization in multidatabase systems taking into consideration the different schema

conflicts is discussed in [66]. These methodologies take into consideration different

aspects for optimizing queries in a multidatabase system. In the next section, we will

discuss query processing of Semantic SQL queries in the Heterogeneous Distributed

Database System and consider optimization techniques utilizing semantic knowledge.

5.2 Our Work

This section discusses the steps involved in processing a Semantic SQL query

statement posed on a global Sem-ODM view. The steps in Semantic SQL query

processing include the following: (i.) A Semantic SQL query statement is firstly scanned,

parsed and checked for semantic errors. The semantic checking phase un-abbreviates the

abbreviated Semantic SQL query. This un-abbreviation process produces the virtual

tables on which the Semantic SQL query is posed. This step is discussed in section 5.2.1.

(ii.) Next, the Semantic SQL statement is transformed to a relational algebra expression

based on the virtual tables. Consequently, relational algebra expression is optimized

based on logical optimization techniques (rule-based optimization). This step is described

in section 5.2.2. (iii.) Thirdly, an internal representation of the virtual table is presented

and further simplification of virtual tables is discussed. Logical optimization of QEP is

carried out further. This step is described in section 5.2.3. (iv.) Next, the constructs of the

global schema are replaced by component database constructs. At this step, optimization

strategies are considered to efficiently acquire the query result. Application of existing

121

techniques for query optimization is presented. Also, innovative query optimization

strategies based on semantic knowledge are discussed. Section 5.2.4 discusses these

issues. (iv.) Finally, generation of subqueries from the QEP and query execution plans for

integrating the results of subqueries at different sites are discussed.

5.2.1 Step 1: Scanning, Parsing and Semantic Checking

Similar to standard query processing, error checking, scanning, parsing and

semantic checking procedures takes place in processing of Semantic SQL queries. A

distinction between Semantic SQL query processing and relational SQL query processing

is that semantic checking phase un-abbreviates the abbreviated Semantic SQL statement,

in addition to checking the correctness of the query. That is, this process determines the

size and the attributes of each virtual table that the query references. An algorithm that

produces the virtual tables and the un-abbreviated Semantic SQL query statement is

given below:

Algorithm:

Input - Abbreviated Semantic SQL query (AbbSemSQLQuery) and a Sem-ODM

view (SemanticSchema) on which the query is posed

Output - Unabbreviated Semantic SQL query (UnAbbSemSQLQuery) and a set of

virtual tables (VirtualTables) on which the query is posed.

1. UnAbbSemSQLQuery <- AlgorithmA(AbbSemSQLQuery, SemanticSchema)

2. if UnAbbSemSQLQuery NULL then

VirtualTables <- AlgorithmB(UnAbbSemSQLQuery, SemanticSchema)

else

122

return NULL, NULL

To achieve its goal the algorithm uses two sub-modules, namely AlgorithmA and

AlgorithmB which are described below.

AlgorithmA: The function of AlgorithmA is to un-abbreviate the abbreviated attribute

names in the original Semantic SQL query. AlgorithmA outputs NULL for an erroneous

Semantic SQL query, hence it is checked for NULL in step 2 of the algorithm given

above. The high-level pseudo-code of AlgorithmA is provided below:

1. Scan, parse and semantic check for any errors in AbbSemSQLQuery. If Error,

return NULL

2. For each abbreviated attribute, n, in AbbSemSQLQuery

- Find the shortest path, p, from the starting category C to n in the

SemanticSchema, where C is a category or alias name in the FROM clause

of AbbSemSQLQuery.

- Concatenate p to n to obtain the full name of n

3. Return the unabbreviated query

Note that the abbreviated attribute, n, discussed in step 2 above is identified as follows.

Let us consider an attribute, m, mentioned in AbbSemSQLQuery after step 1.

- Firstly, we check if attribute, m, begins with a category/alias name mentioned in

the FROM clause of corresponding SQL statement

- If yes, then we determine m to be un-abbreviated.

- If not, we determine m to be abbreviated

123

Finding the shortest path to an abbreviated attribute, m, is processed as follows:

- For every category/alias name in the corresponding FROM clause of m

We first calculate the shortest path (via relations) to a prefix of m, say

s, where s is either a relation or attribute name. This is processed using

a modified version of Dijkstra's shortest path algorithm.

- Next, we check if there exists more than one shortest path to attribute m

- If there exists more than one shortest path to m, then return NULL

- If there exists only one shortest path then p <- shortest path

- If there is no path, then return NULL

AlgorithmB: The unabbreviated Semantic SQL query (UnAbbSemSQLQuery) and

Semantic Schema (SemanticSchema) are the input parameters for AlgorithmB, which

outputs a set of virtual tables. The pseudo-code for AlgorithmB is given below:

1. VirtualTables <- 0

2. For each category or alias of category, C, in the FROM clause of

UnAbbSemSQLQuery

a. Create a virtual table named C

b. For each attribute m in UnAbbSemSQLQuery

Create a column named m in C if m begins with C (i.e. attribute of

virtual category C)

c. VirtualTables <- VirtualTables u { virtual table C}

3. Return VirtualTables

124

Example 24: For instance, let us consider the following abbreviated Semantic SQL query

posed on the Sem-ODM schema presented in figure 24 of chapter 4.

SELECT first-name, salary, name

FROM EMPLOYEE

The un-abbreviated query is as follows:

SELECT EMPLOYEE.first-name, EMPLOYEE.salary,

EMPLOYEE.works-forname

FROM EMPLOYEE

where EMPLOYEE is the virtual table which is given below:

EMPLOYEE(first-name: String; salary: Number; works-forname: String)

At the end of this step, we obtain an unabbreviated Semantic SQL query (output

of AlgorithmA) and a set of virtual tables (output of AlgorithmB). The set of virtual tables

can be interpreted as a relational schema and the unabbreviated Semantic SQL statement

can be interpreted as a relational query on the relational schema defined by the set of

virtual tables. The interpretation of the original Semantic SQL statement over the

Semantic Schema is equivalent to the interpretation of the un-abbreviated Semantic SQL

statement over the set of virtual tables. Thus, this step has converted the Semantic SQL

query to an equivalent relational SQL query based on a set of virtual tables. This

conversion process enables us to apply the existing relational algorithms/knowledge to

process this query. These aspects are discussed in the following sections.

125

5.2.2 Step 2: Relational Algebra and Logical Optimization

The previous section converted the Semantic SQL statement into an equivalent

SQL query based on the virtual tables. This has enabled us to apply the existing

approaches of SQL query processing to the un-abbreviated query. Similar to query

processing in a relational database, we convert the Semantic SQL statement into an

extended relational algebra expression. We discuss this process briefly for completeness.

Further details of this process can be found in database textbooks (such as [32], [40],

[45], [88], [116] and others).

Firstly, the Semantic SQL query is parsed into a collection of query blocks. A

query block is an SQL query with no nesting and exactly one SELECT clause and one

FROM clause and at most one WHERE clause (in conjunctive form), GROUP BY

clause, HAVING clause and ORDER BY clause.

Secondly, each block is expressed as a relational expression. We consider an

extended set of relational algebra operators (which include DISTINCT, GROUP BY,

HAVING, ORDER BY operators) in addition to the basic relational algebra operators

(i.e. union - "u", intersection - "n", difference - "-", selection - "4-", projection - "n",

product - "x" and joins "><a, ... "). The meanings of extended relational algebra are

similar to the respective clauses of SQL which the name specifies and hence not

explained further. Every SQL query block can be expressed using extended algebra

expression. For instance, let us consider the following query:

126

SELECT al, min(a 2), ... , an

FROM T1, T2, ... , Tn

WHERE Condition 1

GROUP BY g1, g2, --- , gm

HAVING Condition2

ORDER BY sI, s2, ... , sk

This SQL query can be represented by the following extended relational algebra

expression:

ET a1 , min(a 2), ... , an (ORDER BYsl, s2, ... , sk (HAVINGcondition2

(GROUP BY gi, g2, ... , gm ((Conditionl(T1 x T2 X ... x Tn)))))

For instance, the query statement discussed in example 24 can be written directly as:

71 first-name, salary, works-forname(EMPLOYEE)

The relational algebra expression can be used interchangeably as a query execution plan

(QEP) that specifies the operations in obtaining the result of the query.

The next step is to optimize the extended relational algebra expression (i.e. QEP

represented by the relational algebra expression). This is usually processed using pre-

defined rules. Some rules that are applied for optimizing the extended relational algebra

expression include [88]:

Rule 1: Ac1 n c2 A ... en (R) = 6ci (Gc2 (... ((en (R))...)) Cascading selections

Rule 2: 6c1 ((e2 (R)) = 6c2 ((ec (R)) Commutative

Rule 3: Jtal (R) = Tai (la 2 (... (tan(R))...)) Cascading projections

127

Rule 4: R x S- S x R Commutative

Rule 5: R >a S - S >< R Commutative

Rule 6: R x (S x T) - (R x S) x T Associative

Rule 7: R >< (S a< T) - (R D< S) r< T Associative

Rule 8: la (6c (R))= 6c (na (R)) if selection operation

involves only attributes that are retained by the projection

Rule 9: R >ac S - 6c (R x S) Combine

Rule 10: c (R x S) - 6c (R) x S if attributes mentioned in c

appears only in R and not in S

Rule 11: 6c (R >< S) = 6c (R) >< S if attributes mentioned in c

appears only in R and not in S

Rule 12: 7ra (R x S) I rai (R) X na2 (S) where 'al' is the subset of

attributes in 'a' that appear in R, and 'a2' is the subset of attributes in 'a'

that appear in S

Rule 13: Ia (R >ac S) - aI (R) >ac ra2(S) where 'al' is the

subset of attributes in 'a' that appear in R, and 'a2' is the subset of

attributes in 'a' that appear in S

There are many other rules that are not enumerated above that preserve equality (see

database textbooks). These rules can be utilized for optimizing the logical query

execution plan. Rule-based logical query optimization has been extensively discussed in

database textbooks and hence not discussed any further.

128

This section briefly discussed the translation of Semantic SQL queries to

extended relational algebra expressions and logical optimizing using rules. This is the

same approach taken by standard relational query optimizers. The fact that we were able

to convert the Semantic SQL query to an equivalent relational SQL query based on

virtual tables enabled to utilize the existing knowledge and techniques (for relational

databases' SQL query processing) in Semantic SQL query processing.

5.2.3 Step 3: Expanding the Virtual Tables

During optimization in the previous section, we assumed that the virtual table is a

single entity (i.e. one table). We can represent the virtual table as a tree structure where

nodes represent categories in the global Sem-ODM schema and links from parent to child

nodes represent the relations traversed to reach the categories containing attributes in the

virtual table. In such a representation the root node is the starting category (refer chapter

2) of the virtual table. For illustration purposes, we provide the following example.

Example 25: Let us consider following Semantic SQL query statement over the Sem-

ODM schema given in figure 23 of chapter 4:

SELECT name, major last-name

FROM DEPARTMENT

WHERE works-in last-name = 'Kim'

The virtual table, DEPARTMENT for the above query is as follows:

DEPARTMENT (name:String; major last-name:String; works-in last-name:String)

129

We can represent this virtual table as a tree structure as follows (see figure 25). A similar

tree representation of a virtual table used in translating from Semantic SQL queries to

relational SQL queries is discussed in [74].

DEPARTMENT

name

major__ works-in_

STUDENT INSTRUCTOR

last-name last name

Figure 25. Tree Representation of a Virtual Table

Considering each node in the tree as a table, we can replace each link by an

(left/right) outer join operation according to the semantics of extension of a virtual table.

Using this procedure, we replace every instance of virtual table in the optimized extended

relational algebra expression by a set of tables that are joined through outer join

operations. For instance, the query in example 25 is represented as shown below using

relational algebra operators:

7tname, major__last-name (Gworks-in__last-name = 'Kim' (DEPARTMENT))

After replacing the virtual table with outer-joins, the following relational algebra

expression is obtained:

7tDEPARTMENT.name, STUDENT.last-name (6INSTRUCTOR.last-name = 'Kim' ((DEPARTMENT

LOJmajors_ STUDENT) LOJworks-in__ INSTRUCTOR))

where LOJ means left-outer-join and relation names are used as the join conditions.

130

This procedure has further simplified the extended relational algebra expression. Further

optimization on this simplified expression can be performed (using rules) and also

considering outer-join optimization techniques (such as techniques discussed in [67]).

At the end of step 3, we have obtained a simplified, logically optimized extended

relational algebra expression. This expression moreover represents a query execution

plan (QEP) to obtain the results for the global query. However, all of the above-

mentioned optimizations were posed assuming that the global view was a single

centralized database. Next section focuses on the decomposition of this QEP to a set of

subqueries, based on component databases, and efficient integration of subquery results

(postquery processing plans) to generate the results for the global query.

5.2.4 Step 4: Global Query Optimization

Previous sections have discussed the methodologies to include current relational

database query processing techniques to process and optimize QEPs for Semantic SQL

queries. This approach enabled us to exploit existing well-known and tested

methodologies for Semantic SQL query processing. An important consideration during

this optimization phase was that the global view is a centralized database system.

However, this is not the case in Heterogeneous Distributed Database System. In this

section, we focus on query decomposition and the generation of a QEP for postquery

processing of subquery results to acquire the global query result.

131

It is important to comprehend the total cost of processing a global query, before

trying to optimize it. The following equation is generally regarded as the formula for

calculating the cost of processing a global query:

Total Cost of Global Query = X Cost (Subquery;) + Cost(Data Transmission)

+ Cost(Postquery Processing)

That is, the total cost of processing a global query is the sum of the costs of processing

local queries, the costs of transmitting data across different databases, and the costs of

postquery processing.

In order to estimate the cost of each subquery, certain cost parameters of the

component databases are needed. Such information may not be available to the global

system due to autonomy of the component database. This complicates the process of the

global query optimizer which chooses a good strategy for executing a global query. Three

methodologies for obtaining local cost parameters by the global query optimizer have

been outlined in [128]:

" Performing some testing queries to test the black box;

" Guessing necessary information subjectively based on external characteristics of and

previous knowledge about the black box;

" Monitoring the behavior of the black box at run time and dynamically collecting

necessary information.

We can find discussion using the third approach in [73]. Techniques belonging to the first

approach are explained in [38]. In [127], a query sampling method, belonging to the first

group is presented (extended in [128]). For our purposes, we feel that using such

132

techniques outlined in literature and also developing a technique following the second

approach is possible. Currently, our architecture integrates relational and Sem-ODM

component data sources. If the global query optimizer is provided with information about

the type of data source (i.e. relational database or Sem-ODM database), this information

can be exploited for obtaining local cost parameters. Access methods used for Sem-ODB

and relational databases are well-known. Hence, we feel that a technique to acquire local

cost parameters, using the second approach is plausible. However, this is out of scope of

this research, and in our discussion below, we assume that local cost parameters have

already been acquired.

Reducing data transmission and postquery processing costs have been extensively

discussed in distributed database query optimization techniques [124] and multidatabase

query processing techniques. Optimizing through parallel execution of queries [113],

considering schema conflicts of queries [66], optimizing through improved execution

strategies and simplification of operators [24] are some existing methodologies.

Incorporating these optimization techniques is beneficial for Semantic SQL query

processing. However, none of these methodologies try to optimize queries based on

semantic knowledge obtained during integration. To the best of our knowledge, we have

not come across methodologies that use semantic knowledge (such as extents of

constructs) for multidatabase query optimization.

In this section, we discuss some query optimization techniques, based on semantic

knowledge acquired during integration (see chapter 3), for optimizing global Semantic

133

SQL queries. These techniques can be applied for optimizing relational SQL

multidatabase queries without loss of generality.

Technique 1: During the integration process, semantic relations between constructs were

distinguished. This information can be utilized in querying the minimum and most

efficient set of component databases. To illustrate this technique, an example is

presented:

Example 26: Let us consider the following scenario.

Global view: STUDENT(ssn:Integer, name:String)

Component Databases (DB1, DB 2): DBi.PUPIL(ssn:Integer, key; name:String)

DB 2.PERSON(ssn:Integer, key; name:Sting;

isStudent:Bool)

We have the following semantic relations:

STUDENT SEMEQ DB,.PUPIL (i.e. EXT(STUDENT) = EXT(PUPIL))

STUDENT SEMSUB DB 2.PERSON (i.e. EXT(STUDENT) c EXT(PERSON))

Let us assume that category STUDENT is derived from categories DB1 .PUPIL and

DB 2.PERSON (with condition isStudent = TRUE) and attribute STUDENT.name is

derived from DB1 .PUPIL.name and DB 2.PERSON.name. Likewise for attribute ssn.

Let us consider the following query posed on the global view:

134

SELECT name FROM STUDENT

By considering the semantic relations, it is evident that querying either DB 1.PUPIL or

DB 2.PERSON is sufficient to obtain the results for this query (by their extents). Hence,

the more efficient component database is queried.

Assuming that accessing DBI.PUPIL is efficient than DB 2.PERSON (estimated

through local cost parameters), the above query is transformed into the following

subquery to obtain the result for the global query:

SELECT DB 1 .PUPIL.name FROM DB I.PUPIL

However, if we do not consider the semantic relations (similar to previous approaches), it

is not possible to determine if all objects of STUDENT are in DB1.PUPIL or

DB 2.PERSON. Hence, the query decomposition algorithm queries both component

databases. The query execution plan not considering semantic relations is shown in figure

26.

7name

OJQI.ssn = Q2.ssn

Q1 Q2

SELECT ssn, name SELECT ssn, name
FROM DB1 .PUPIL FROM DB 2.PERSON

WHERE IsStudent = TRUE

Figure 26. Query Execution Plan Without Considering Semantic Relations

135

In the above QEP, the subqueries obtaining information from component databases, DBI

and DB2 , are shown as Q1 and Q2 respectively. At the next level, the common objects

are eliminated using an outer-join operation. Finally (at the root), the attribute name is

projected.

It is obvious that the improvement in query processing execution is significant

due to the consideration of semantic relations. The above-example is a simple case. These

improvements are applicable directly to the more general and complex queries. The fact

that semantic relations provide information as to what objects of the global schema are

present in which component databases allows intelligent decisions as to which

information sources to query. A minimal and most efficient number of component data

sources are queried. Another advantage is that the quality of the query results is

improved. If the global query processor is unable to provide complete answers to global

queries (say due to some component data sources withdrawing from participating in the

global database system), it is possible to specify the missing data utilizing semantic

relations and boundary conditions. This is not the case with other approaches.

Technique 2: In this technique, we transform complicated operations (such as NOT IN,

EXIST, ALL, ANY, SOME, etc.) into simpler operations utilizing semantic knowledge.

We illustrate transformation of NOT IN operation in the following example.

Example 27: Let us consider the following scenario.

Global schema: STUDENT(ssn:Number, key; name:String)

GRAD_STUDENT(ssn:Number, key)

136

Component database (DB1): DB1 .PUPIL(ssn:Number, key; name:String)

DBi.UNDERGRAD(subcategory of DBI.PUPIL

DB L.GRAD() subcategory of DB I.PUPIL

Assume the following semantic relations:

STUDENT SEMEQ DBI.PUPIL

GRADSTUDENT SEMEQ DBI.GRAD

DB I.GRAD SEMSUB DB1 .PUPIL (by subcategory relation)

DBI.UNDERGRAD SEM_SUB DBI.PUPIL (by subcategory relation)

Assume the following boundary conditions (where all objects of PUPIL are either objects

of UNDERGRAD or GRAD):

Boundary condition 1: DB1 .PUPIL - DB 1.GRAD: is represented by DB1 .UNDERGRAD

in the Knowledge Base

Boundary condition2: DBI.PUPIL - DB 1.UNDERGRAD: is represented by DBI.GRAD

in the Knowledge Base

Let us consider the following global query:

SELECT name

FROM STUDENT

WHERE ssn NOT IN (SELECT ssn FROM GRAD)

Direct conversion of this query (without considering boundary conditions) will result in

the following subquery:

SELECT name

FROM DBI.PUPIL

137

WHERE ssn NOT IN (SELECT ssn FROM DB1.GRAD)

Considering the boundary conditions, we can obtain the same result by the following

subquery:

SELECT name FROM DB1.UNDERGRAD

This was possible because the global query aims to obtain the names of STUDENTs who

are not GRAD_STUDENTs. These objects are represented by boundary condition 1. It is

well known that processing operator NOT IN is significantly less efficient than

processing a projection. Hence, the second option is a superior solution.

Technique 3: This technique optimizes processing of aggregate functions (in a

multidatabase environment) utilizing semantic knowledge. The following example

demonstrates the processing of count aggregate function. This methodology can be

directly applied for other aggregate functions such as avg, min, max, sum etc.

Example 28: Let us consider the following scenario.

Global schema: STUDENT(StID:Number, key; name:String; GPA:Number)

GRADUATE(ThesisTitle:String) subcategory of STUDENT

UNDERGRADO) subcategory of STUDENT

Component databases (DB 1, DB 2):

DB1.GRAD_STUDENT(StID:Number, key; name:String;

GPA:Number; ThesisTitle:String)

DB 2.UNDERGRADUATE(StID:Number, key; name:String;

GPA:Number)

Assume the following semantic relations:

138

I DB 1.GRAD_STUDENT SEMSUB STUDENT

II. DB 2.UNDERGRADUATE SEMSUB STUDENT

III. DB 1.GRAD_STUDENT SEMDIS DB 2.UNDERGRADUATE

Let us assume that there exists an INTEGRATED META OBJECT in the knowledge base,

which contains the union of objects of DB 1.GRAD_STUDENT and

DB2.UNDERGRADUATE, called X. Also, assume that STUDENT SEMEQ X.

Let us assume that

(i.) STUDENT - {DB.GRADSTUDENT, DB 2 .UNDERGRADUATE}

(ii.) GRADUATE *- {DB 1 .GRADSTUDENT}

(iii.) UNDERGRAD *- { DB2.UNDERGRADUATE }

where F- means "is derived from".

Now, we will consider the following global query:

SELECT count(last-name)

FROM STUDENT

If we directly translate this query, without considering semantic relations above, we

obtain the following QEP (see figure 27):

139

Rcount(last-name)

OJQ1.StID = Q2.StID

Q1 Q2
SELECT last-name, StID SELECT last-name, StID
FROM DBI.GRADSTUDENT FROM DB 2 .UNDERGRADUATE

Figure 27. Query Execution Plan Without Considering Semantic Relations

Considering the semantic relations, we obtain the following QEP:

Ql +Q2

Ql Q2

SELECT count(last-name) SELECT count(last-name)
FROM DB 1.GRADSTUDENT FROM DB 2 .UNDERGRADUATE

Figure 28. Query Execution Plan Considering Semantic Relations

Note that by considering that semantic relation III, it is provided that there are no

common objects between DBI.GRAD_STUDENT and DB2.UNDERGRADUATE. This

enables us to directly add the result of Ql and Q2. This methodology has significantly

reduced the postquery processing efforts and reduced cost of data transmission. This

140

method can be applied for other aggregate operators (such as SUM, AVG, MIN, MAX)

without loss of generality.

The use of semantic knowledge for query optimizing in a multidatabase

environment has significant potential for improving query performance. This aspect is not

exploited in current multidatabase systems. It is possible to generate more optimization

strategies for global queries in a multidatabase environment using semantic knowledge

discussed in chapter 3. However, in this section we do not enumerate all the possible

techniques, but will consider these factors in our future work. The next section discusses

the query decomposition and creation of subqueries.

5.2.5 Step 5: Generating Subqueries

The final step in global query processing is to generate the subqueries in Semantic

SQL from the query execution plan. The previous step obtained an optimized query

execution plan (as an extended relational algebra expression) for the global query based

on the component database constructs. The leaves of QEP refer to categories of the

component database schema. The simplest methodology is to obtain the tables from

database via select statements and allow the processing of the query at the Subquery

Processor (see chapter 2). However, it is more efficient to incorporate the maximal

number of operations into a single query of a component database which will be executed

by the local query processor in the database engine (as this will allow physical

optimization of queries according to internal representations and access paths by the local

query optimizer) and process inter-database operations at the Subquery Processor. In

141

order to achieve this goal, we obtain the largest sub-tree in the QEP which references

only categories in one component database and try to generate Semantic SQL

statement(s) equivalent to the operations specified in the subtree (similar to the reverse of

translation from SQL to algebra). It is possible that the subtree may not be converted to

exactly one Semantic SQL query in which case a QEP to combine the results of the set of

subqueries is generated. A minimal number of Semantic SQL queries are obtained for the

QEP subtree. These queries along with the QEP for the subtree are combined into a single

transaction before transmitting to the Subquery Processor of the component site. QEPs

passed to the component sites may contain interdatabase operations which are processed

by the Subquery Processor module of the component site. A goal in generating the

subqueries is to place as many operations within one component database into Semantic

SQL queries so as to minimize the postquery processing of the query results from a single

component database at the Subquery Processor.

5.3 Summary

In this chapter, we first discussed some of the existing work in SQL query

processing in a centralized database, query processing and optimizing in distributed

databases, and existing work on query optimizing in multidatabase systems. Secondly, we

discussed the different steps taken to process and optimize Semantic SQL queries. In the

first step (section 5.2.1), the Semantic SQL query based on a global Sem-ODM schema

was translated into an SQL statement over a set of virtual tables. This transformation

allowed applying the existing approaches for SQL query processing to process and

optimize Semantic SQL queries. In section 5.2.2, similar to SQL query processing in a

142

centralized relational DBMS, we first decompose the query statement into blocks. Next,

each block is transformed into an extended relational algebra expression which is then

optimized using well known logical rule-based optimizing techniques. In section 5.2.3,

the virtual tables in the relational expression are further simplified. This allows further

logical optimization. The optimized relational algebra expression (which corresponds to a

QEP as well) still assumes the global view as a centralized database. The next step

(section 5.2.4) is to decompose the query using derivation information in the Knowledge

Base. Multiple query execution paths are possible. Hence, the application of the existing

optimization strategies to select the optimal QEP is incorporated. An important aspect is

the acquisition of cost parameters for component databases. Existing approaches and a

proposal of a new approach for obtaining cost parameters in our architecture is suggested.

The existing optimization techniques for multidatabases do not consider exploiting

semantic knowledge for query optimizing. Techniques using semantic knowledge for

multidatabase query optimizing are presented. Finally, generation of subqueries along

with QEP for Subquery Processor module are discussed. Proposed future work includes

investigating into techniques for obtaining cost parameters for component databases and

enumerating all possible query optimization techniques based on semantic knowledge.

143

6. A FRAMEWORK FOR THE INTELLIGENT WEB

In this chapter, we will consider a framework for Internet computing and

communication. This framework applies some of the concepts developed in the previous

chapters into a Web environment. Some discussions into techniques and technologies

presented in this chapter require further research for incorporating into the framework.

We decided to discuss this framework as a separate chapter rather than integrate it to the

concluding chapter due to the significant impact the framework has on the issue of

intelligent information access on the Internet. It is clear that the Web (note that we use

the terms Web, Net and Internet interchangeably) is influencing every aspect of society

and deploying the framework presented aims at achieving the Intelligent Web - providing

ubiquitous, intelligent access to information and services on the Web - a highly coveted

and desirable goal.

Internet has become the chief medium of communication and interaction in the

new economy. The Internet has driven all aspects of society to communicate and share

information through its medium. We have seen business applications (e-commerce),

communication channels (e-mail, newsgroups, etc.) and various other information and

services moving on-line. The fact that it is accessible to a wide range of people

worldwide and a convenient and cheaper means for communication have driven its

exponential growth. It is quite probable that the Internet will affect almost all aspects of

society worldwide in the near future.

144

Internet provides access to large amounts of heterogeneous information sources.

Traditionally, large amounts of data and information have been stored in database

systems and accessed via query languages in either centralized DBMSs or distributed

environments (distributed databases and multidatabases). The Internet also provides

access to large amounts of heterogeneous data. Hence, it is logical for database

researchers to investigate into approaches to store and access this information. There are

some significant differences between data stored in database systems (whether

centralized or distributed) from data and information present on the Internet:

1. Structured vs. Unstructured: In general, databases systems provide a schema in a

single data model. The schema describes the data content in a database. Also, it

provides a structure to the stored data and information so as to easily access this

information. In the Internet environment, no such schema exists. The information

present in the Internet is not known. There exists little or no structure at all for

information on the Web. Data and information are loosely coupled, distributed via

links and change dynamically without prior notification.

2. Access methods: In database systems, data is stored in a certain format and structure

with indexes for fast retrieval. Also, easy-to-use query languages (such as SQL) are

provided to the user to access data and information easily and efficiently. For

information of the Web, there does not exist any query language and the only means

of access is with the use of Web addresses (also called Uniform Resource Locators -

URLs for short). Data is accessed either through links or directly inputting the

address.

145

3. Homogeneous vs. Heterogeneous: Data and information in a database system is

uniform according to specification of the schema. That is, in general, data types,

either system generated or user generated, are specified and query results conform to

these types. Internet is a heterogeneous environment. Information is presented in

different languages, formats, and contexts without any relations between them.

4. Centralized vs. distributed: In database systems, there is some point of centralized

control, either global site (in distributed and multidatabase systems) or system

catalogs (in centralized databases), which contain schema and relevant information.

The Web is a truly distributed environment. There is no centralized control.

Intelligent ubiquitous access to data, information and services on the Web is a

highly desirable goal. Recently, we have seen a number of approaches, addressing the

issues mentioned above, in database and information retrieval community. We discuss

some of the proposed approaches in section 6.1 including their benefits and limitations.

In section 6.2, we discuss our approach. A framework that provides ubiquitous intelligent

access to data and information on the Net is proposed. The advantages of the framework

from proposed approaches are illustrated. A look into the future Internet applications

based on this framework is provided. In section 6.2.3, we investigate into some future

research issues and areas that need to be focused to achieve ubiquitous intelligent access

to information sources on the Internet in the context of the framework presented.

6.1 Related Work

Recently, we have seen a surge of efforts in trying to access information and data

146

from the Web. From these efforts, we have classified three major approaches which are

detailed below:

1. Wrapper Approach: This approach was introduced with the TSIMMIS project ([23]

[44], [49], [86]) at Stanford University. In this approach, wrappers are built over data

sources to provide structure to the data sources (in TSIMMIS the structure obtained is

a schema in Object Exchange Model - OEM). Mediators are used to query different

data sources via wrappers (in TSIMMIS, OEM-QL is a query language used to query

the OEM schema). Many efforts following a similar approach, proposing either

manual ([8], [48]) or semi-automated/fully automated ([3], [5], [43], [60], [108])

wrapper generation has been discussed in literature.

2. Query System Approach: This approach tries to provide high-level declarative query

facilities to the Web. Adoption of SQL-like query language, with extension, for Web-

based queries is presented in [57]. Other efforts include [47], [61], [77], [78] and

others.

3. Keyword Searching: This is the most popular approach to retrieving information on

the Web. Users use keywords as input parameters to search relevant items on the web.

Search engines (such as Altavista [4], Lycos [75] and others) facilitate searches

through maintaining indexes of interesting keywords. Usually, the indexes are

constructed and maintained by robots that occasionally scan the Web.

Some major issues that must be addressed by every approach for intelligent

information retrieval and communication on the Web include: (i.) extendibility; (ii.)

147

flexibility; (iii.) ability to handle dynamically changing data sources; (iv.) provide easy-

to-use query facility; and (v.) provide, preferably, semantically enhanced intelligent

information extraction mechanisms.

The first approach (i.e. Wrapper Approach) tries to provide a well-known

database interface with a schema and query language to the Internet. Although, this

would be a favorable goal, there are certain drawbacks of this architecture in a Web

environment. Firstly, the wrapper approach is most certainly faces the limitations on the

extendibility issue. Wrapping every Web data source, which is loosely structured, is

impossible and impractical. Also, in most cases the data sources change dynamically

which requires in some cases changes in wrappers' mapping. Although certain

methodologies that automate these processes have been described in literature, we feel

that wrapper-based approach is not feasible as a general solution for providing ubiquitous

intelligent access to any Web source available; rather, used in integrating and querying

certain types of known Web data sources.

The second approach (i.e. Query System Approach) has an advantage where the

data sources need not be wrapped. Dynamic changes of Web pages are handled easily.

Hence, arbitrary queries can be programmed on any Web page. However, a major

limitation of this approach is that a "starting point" (and complex programming) is

usually required. For instance, given that the user needs information about company A

and (s)he knows the company's web address (i.e. URL), the user can program a query to

obtain the required information from the Web site of the company. However, this

148

approach lags in the fourth aspect (i.e. semantically enhanced intelligent information

extraction mechanisms - semantic heterogeneity resolution), which means to find the

initial Web page of the company (i.e. starting point) (such as which company's sell

product P, rather than find the products sold by company A given the homepage of

company A). Thus, we feel that this approach also has limited scope in providing

ubiquitous intelligent access to information on the Internet.

The third approach (i.e. Keyword Searching) is the most promising and widely

used approach for information extraction on the Internet today. However, it is well

known that this approach is still naive in terms of semantic and intelligent means of

retrieving information from the Web. In this chapter, we provide a framework for

ubiquitous, intelligent information extraction from the Web by applying some of

techniques developed in the previous chapters.

6.2 Our Work

In order to provide ubiquitous intelligent access to information and services on the

Internet, we propose a framework for the Web. This framework extends the current

architecture of the Internet providing intelligent means of access to data and information.

We discovered the problem of semantic heterogeneity recurring impeding intelligent

access to heterogeneous data sources on the Web similar to integration of heterogeneous

databases. Our proposal considers methods discussed previously in chapter 3, to the Web

environment. The proposed framework is discussed in section 6.2.1. In addition, a

communications paradigm (for e-commerce applications) using the framework is

149

illustrated in this section. A retrospective look into future applications using our

framework is presented in section 6.2.2. Finally, some future research issues to enable the

proposed Intelligent Web are discussed in section 6.2.3.

6.2.1 Framework for the Internet

In this section, we present a framework for the Internet that enables intelligent

ubiquitous data access on the Web. We try to extend the third approach (i.e. Keyword

Searching) to provide intelligent access to data on the Web. This is because we feel that

this approach is the only solution, among the three approaches, that can successfully

overcome the extendibility problem. The overall view of the proposed framework is

presented in figure 29. It is important to note that in this framework, the search engines

are extended to become Information Brokers (IB) rather than just searching keywords.

We apply our approach to resolving semantic heterogeneity (discussed in chapter 3) for

storage of information at the Information Broker nodes. A Knowledge Base with the use

of domain specific ontologies is proposed as a means of storing information. The

keywords are mapped on to the ontologies. Of course, it is unreasonable to expect all

information of the Web to be mapped into a single ontology. Hence, sets of Information

Brokers considering different application domains for information on the Internet are

proposed. Note that there may be overlap between different application domains. Thus,

IBs collaborate within themselves to provide ubiquitous intelligent access to data and

information. The architecture is extendable with the addition of different information

brokers and domain ontologies. Also, the semantic heterogeneity is resolved through the

use of ontologies. Robots, similar to indexing in a search engine scan and map

150

Enterprise

INTERNET

End User

Information Information
Broker Broker

Information
Broker

Information

Broker

Information

Broker

End User ||I|| || -

Enterprise

End User

Figure 29. Overall View of Proposed Framework for the Internet

information to the ontology. Humans may also intervene in the process. Also,

information extraction methodologies [29] are used in populating the Knowledge Base

and instance mappings of the ontology. An important aspect is that enterprises map their

services to the ontology of the Information Brokers by themselves. Enterprises (such as

governments', companies, etc.), which define the services they provide, would like to

publish the existence of their services on the Web. Hence, a very desirable place to

151

publish their services would be Information Brokers where most of traffic on the Web is

directed. This relieves the Information Brokers from the enormous task of mapping

services to the ontology. These ontologies with their mappings provide a great resource

for all users of the Internet. All information needs can be passed through these nodes

providing intelligent data access. In the next part of this section, we propose a model for

e-commerce applications using the framework described before.

We define e-commerce applications broadly where a user requests for some

service on the Internet. By service, we mean a well-defined requirement such as buying

an airline ticket, transferring the title of car, renewing a passport, etc. rather than a

general searching such as search on "cars" keyword. The model for specifying and

fulfilling services is provided in figure 30. The user's request is translated into an

Information

Information Broker

Broker request directed to

request for service
User

request directed to

/\' service providers

Service Provider
reply for
service Service Provider

Figure 30. A Model for E-Commerce Applications on the Web

ontological form of request (via the browser or client program at the user's computer) and

transmitted to an Information Broker. The Information Broker searches the ontology for

relevant matches. The matched service providers are informed of the request, which in

152

turn replies to the user of their service along with specifications for fulfilling the request.

In addition, the Information Broker forwards the request to other Information Brokers

that it feels contains relevant service provider information for the request.

Now let us consider a simple example of an e-commerce application in this

framework.

Example 29: A user would like to buy an airline ticket to fly from 'Miami' to 'Los

Angeles' on 'July 14, 2000'. This request is converted to the appropriate format and

transmitted to an Information Broker. The Information Broker contains services from

different airlines that sell tickets within the US, say 'American Airlines' and 'United

Airlines' in this example. The request to buy the ticket from 'Miami' to 'Los Angeles' on

'July 14, 2000' is forwarded to American Airlines and United Airlines Web sites. Also,

this request may be forwarded to other Information Brokers as deemed required. The

American Airlines service provider and United Airlines service provider (i.e. Web sites)

replies to the request to the user's site. The reply may include the fares, flight numbers,

information needed to buy the ticket such as (credit card etc.), encryption information

(such as encryption keys for security purposes etc.) and other relevant information to the

request. The users next can choose his/her preference to which airline (s)he would prefer

and buy the airline ticket. Next, the user's selected response is (if needed encrypted as

specified) and transmitted to the service provider to purchase the ticket. If the user is a

frequent flyer and purchases tickets frequently, (s)he can store the service provider

information at the client so that the next time, (s)he needs a ticket, a request to the

Information Broker can be avoided by directly contacting the Airline Service Provider.

153

The above example is a simple e-commerce application, however, provides some

significant insights into the framework and model proposed. This example illustrates the

issue of (i.) extensibility - through the use of multiple Information Brokers; (ii.)

flexibility - different service providers may require different customized responses to

certain services (such as American Airlines requiring social-security number for ticket

purchasing while this information is not required by United Airlines). These aspects are

incorporated the response agents of every service provider enabling flexibility; (iii.)

handle dynamic changes. For instance, a change of the service is easily incorporated at

the service site, transparent to the user or IBs; (iv.) intelligent access - through the use of

ontologies and their mappings; and (iv.) easier query facility. This is an area for future

research, where techniques providing easier means to specify a user's request and

services in an ontological form are needed.

In the general case, this framework has significant implications on intelligent

access to services and information on the Web. The next section looks at a hypothetical

scenario, which illustrates the model's implications on future Internet applications.

6.2.2 A Futuristic View of E-Commerce Applications

In this section, we describe an extended example of a scenario of future web

applications on the Internet. Let us consider our Web Application (which may be an

enhanced Web browser). The user has the following requests:

154

1. Register for courses at Florida International University (FIU). The URL of FIU is

known.

2. Buy an airline ticket to travel from Miami to Seattle. This is a general request where

the user tries to obtain the cheapest ticket.

3. Renew the tag of user's vehicle from Florida Department of Motor Vehicle (FDMV).

The user does not know URL of Florida Department of Motor Vehicle.

4. Buy automobile insurance for six months from AAA Auto Club South.

The user specifies his/her requests using the Web Application, which translates the

requests in terms of ontological format and transmits the request as described below.

Each of the requests are integrated into a mobile agent and transmitted to the appropriate

destinations.

" Request 1: In request 1, the URL of FIU is known. Hence, the agent for request 1 will

travel to the FIU's web site. The service provider of FIU matches the request with the

appropriate service which in turn spawns a reply agent that specifies the required

information for registering to courses at FIU (such as student id, course reference

numbers, pin of student, encryption information - keys etc.) and transmits it to the

user. The user next inputs all the required information (in a pre-defined form of the

reply agent) and re-transmits the agent to register for the courses.

* Request 2: The second request agent is transmitted to an Information Broker (as this

is a general request without prior knowledge by the user about airlines he/she prefers

etc.). The request and its response will be directed to the Information Brokers similar

to the method described in example 29.

155

" Request 3: In this request the URL of the Florida Department of Motor Vehicle is not

known but the user is aware that the service is provided by FDMV. This request is

firstly transmitted to the Information Broker (to find the web site of FDMV) which

either directs the request to FDMV's web site or to another Information Broker

capable of finding the FDMV web site. At the web site, the service provider of

FDMV matches the request with the service required. Similar to request 1, the reply

agent containing the necessary information (such as a form which requires VIN# of

vehicle, payment information, etc.) to renew the tag is sent to the user. The user next

fills the necessary information required for tag renewal and retransmits an agent to

FDMV service provider to renew the user's tag.

" Request 4: Due to the fact that the user does not know URL of AAA Auto Club

South, similar to request 3, the request agent is transmitted to an Information Broker.

A similar communication and transmission pattern to request 3 occurs in fulfilling

request 4.

Note that once the requests are satisfied with responses, the user fills the required

information and an agent is transmitted to the service provider directly to fulfill users

requirements. The user is capable of saving the service information for later use (so as to

not re-apply the effort in finding the services).

The communication and transmission of requests and reply agents is transparent

to the user, which is performed in an automated way (a highly desirable goal since many

users' spend much time and effort surfing the Web to find the required information and

services manually in the current framework on the Internet. Usually, it is by serendipity

156

that the user finds the required information). The proposed framework is an extension of

the current search engines of the Internet, thus providing a smooth transition to the

Information Broker framework. The framework and model for e-commerce applications

is flexible, extendable and fulfills the requirements of intelligent ubiquitous information

access and computing on the Internet. In summary, this proposal is a transition from the

current Web to the Intelligent Web. As with any endeavor, there are certain technical

hurdles to overcome, in order to achieve the Intelligent Web. However, we feel that if the

focus of research and technology directions aims in achieving this goal (i.e. this

framework), Intelligent Web is a near possibility. These research issues and technology

directions are discussed briefly in the next section.

6.2.3 Future Research Issues and Technology Directions

A significant challenge to developing Information Brokers is to consider design

and development of ontologies for general-domains on the Internet. We have seen a

project named WebKB ([30], [121]) at Carnegie Mellon University which aims at

developing such ontologies. However, we feel that further research projects and efforts

are required in this direction. Methodologies to easily translate any user request into an

ontological form are needed. Research into linguistics considers this issue.

Standardization of interfaces among Information Brokers and between Service Providers

needs to be evolved. Currently industry standards such as Extensible Markup Language

(XML) for data transmitting, CORBA for distributed application development, agent

communication languages (such as Knowledge Interchange Format - KIF and

Knowledge Query Manipulation Language - KQML) and Java as a preferable language

157

for application development on the Web are emerging technologies that can be utilized in

implementing the framework. These technologies need to be investigated in the context

of the framework presented. In terms of technological advances supporting e-commerce

applications, we have seen many directions: (i.) the concept of e-money for transactions

of the Internet is being pursued in the industry; (ii.) new encryption and security

mechanisms of transmission of data over the Net is a very active research area; (iii.)

electronic signatures for e-commerce transactions have been legalized in the US recently;

(iv.) emergence of XML-based frameworks such as eCo [114] for e-commerce; and

others. We feel that it is important to view and utilize these emerging technologies and

techniques within the context of the framework discussed in order to provide intelligent

computing and communication paradigm over the Internet. This is certainly a fruitful

endeavor for the future research projects.

6.3 Summary

A highly desirable goal of the Internet today is to have intelligent access to

information and services on the Net. The currently proposed and existing approaches in

the database area in terms of query languages and wrappers fail to accomplish ubiquitous,

intelligent access to information on the Internet in certain areas such as extendibility and

intelligent access. The most widely used approach for information access on the Web is

keyword searching. This methodology is criticized for their failure to provide intelligent

access to information. Hence, in this chapter, we extended the current Internet framework

consisting of centralized search engines to a set of collaborating Information Brokers.

Information Brokers contain a Knowledge Base and domain specific ontologies.

158

Information and services on the Web are mapped to the ontologies. This brings about

intelligent access to information on the Web. The service providers on the Internet map

their services into the Information Brokers as a means of publishing the existence of their

services. A model for e-commerce applications is proposed which utilizes the proposed

framework. This method is flexible, extendable and provides intelligent access to

information and services. A futuristic view of e-commerce applications using this model

was described. Also, some research issues and technology directions that can be

incorporated to achieve the goal of an Intelligent Web were briefly discussed.

159

7. CONCLUSION

In this chapter, we summarize the contributions of this thesis, including some

future work. At the end of each chapter, a summary of contributions and future work has

been discussed in detailed. Hence, in this chapter, we briefly mention the contributions

and the chapters that discuss these areas. It is recommended for the reader to refer to the

summary at the end of each chapter for detail discussion.

The main contributions of this thesis work include:

1. Architecture for multidatabase systems: A flexible, scalable, extendable and easy-to-

develop architecture for developing a multidatabase system, utilizing Semantic

Binary Object-oriented Data Model (Sem-ODM) and Semantic SQL query language

was presented in chapter 2. The use of Sem-ODM for accessing heterogeneous data

sources provided expressive data modeling capabilities to heterogeneous distributed

data sources capturing the meaning of the information integrated. Semantic SQL

query language provided an easier well-known query facility for heterogeneous data

access.

" Semantic heterogeneity resolution methodology: A major impediment for the

ubiquitous use of multidatabase technology is the difficulty in resolving semantic

heterogeneity between data sources. Previous approaches to semantic heterogeneity

based on heuristic approaches leads to incorrect integration and querying. A semi-

automated complete, correct and unambiguous methodology based on extents of

meta-data constructs to resolve semantic heterogeneity of heterogeneous information

systems was presented in chapter 3.

160

" Schematic heterogeneity resolution techniques: In resolving schema-level conflicts

(see chapter 4), we provided the following contributions: (i.) developed a language

called SemOSQL/M to define global Sem-ODM views over component schemas; (ii.)

enumerated of all possible schema-level conflicts and their resolutions in defining

global Sem-ODM views; (iii.) designed Knowledge Bases to store and retrieve

semantic knowledge and meta-data; and (iv.) developed a tool that assists in creating

global views.

" A superior integration methodology: The integration methodology incorporates

semantic knowledge used for semantic heterogeneity resolution with schema-level

conflict resolutions. This approach has the following advantages: (i.) ideal solution to

heterogeneous data access problem by providing global views for users' accessing

multiple heterogeneous data sources in an expressive data model and query language

(similar to centralized database systems); (ii.) avoids the overhead in maintaining a

single global schema; (iii.) completeness and correctness of the queries is preserved

through non-heuristic approaches to semantic heterogeneity resolution; (iv.)

automated semantic heterogeneity resolution and easier global view definition. This is

a significant improvement from existing approaches; (v.) a step-wise process to

acquire semantic knowledge rather than at the beginning of integration cycle and (vi.)

ability to handle dynamic changes of the underlying data sources. This integration

methodology is discussed in chapters 3 and 4.

* Query processing and optimization: The plethora of well-defined existing

methodologies to process and optimize relational SQL queries were exploited by

transforming the Semantic SQL query based on Sem-ODM schema to a SQL query

161

based on virtual tables (discussed in section 5.2.1). A strategy to obtain local cost

parameters from component data sources is suggested. Techniques for optimizing

Semantic SQL queries exploiting semantic knowledge acquired during integration

were presented. Query processing and optimizing of Semantic SQL queries in a

multidatabase environment are discussed in chapter 5.

* A framework for intelligent computing and communication on the Web: A highly

desirable goal of the current Web-based environment is intelligent access to

information and services on the Web. A framework applying the semantic

heterogeneity resolution techniques (developed in chapter 3) to provide a framework

for the Internet in achieving intelligent ubiquitous computing and communication was

presented in chapter 6.

Future areas of work include: (i.) ontology development for general problem

domains and application in heterogeneous database environments; (ii.) extended rules for

identification of semantic relations; (iii.) deployment of query optimizing techniques

based on semantic knowledge in multidatabase environments and empirical testing on

performance gains; (iv.) investigation of different innovative techniques for query

optimizing using semantic knowledge; (v.) research into ontological based service-

specification and query techniques on the Internet; (vi.) investigation of application of

current technologies in the framework proposed for intelligent access to information on

the Web; and (vii.) development of easier human-computer interaction modes for easy

specification of user's requests (as well as services) in ontological formats - that is,

capturing the meaning (semantics) of the user's request in a flexible and easier manner.

162

LIST OF REFERENCES

[1] Abiteboul S. and Bonner A., "Objects and Views". In Proceedings of the ACM
International Conference of Management of Data (SIGMOD'91), 1991, pp.238-
247.

[2] Access web site: http://www.microsoft.com/office/access/default.htm

[3] Adelberg B., "NoDoSE - A Tool for Semi-automatically Extracting Structured
and Semistructured Data from Text Documents". In Proceedings of the ACM
International Conference of Management of Data (SIGMOD'98), 1998, pp.283-
294.

[4] Altavista Search Engine: http://www.altavista.com

[5] Ashish N. and Knoblock C., "Wrapper Generation for Semi-structured Internet
Sources". In SIGMOD Record, Vol. 26, No. 4, 1997, pp. 8 - 15 .

[6] Aslan G. and McLeod D., "Semantic Heterogeneity Resolution in Federated
Databases by Metadata Implantation and Stepwise Evolution". In VLDB Journal,
Vol. 8, No. 2, 1999, pp. 12 0 - 132 .

[7] Athauda R., "Heterogeneity Resolution in MSemODB", Technical Report 2000-
02, School of Computer Science, Florida International University, 2000.

[8] Atzeni P. and Mecca G., "Cut and Paste". In Proceedings of the Symposium on

Principles of Database Systems (PODS '97), 1997, pp. 14 4 - 15 3 .

[9] Batini C., Lenzerini M. and Navathe S.B., "A Comparative Analysis of
Methodologies for Database Schema Integration". In ACM Computing Surveys,
Vol.18, No.4, 1986, pp. 3 2 3 -3 64 .

[10] Bayardo R.J., Bohrer W., Brice R., Cichocki A., Fowler J., Helal A., Kashyap V.,
Ksiezyk T., Martin G., Nodine M., Rashid M., Rusinkiewicz M., Shea R.,
Unnikrishnan C., Unruh A. and Woelk D., "InfoSleuth: Agent-Based Semantic

Integration of Information in Open Dynamic Environments". In Proceedings of
the ACM International Conference on Management of Data (SIGMOD '97),
1997, pp. 19 5 -2 0 6 .

[11] Bernstein P.A., Goodman N., Wong E., Reeve C.L. and Rothnie J.B., "Query
Processing in a System for Distributed Databases (SDD-1)". In ACM
Transactions on Database Systems (TODS), Vol. 6, No. 4, 1981, pp.6 0 2 -6 2 5 .

[12] Beryoza D., "Dynamic Data Retrieval on the World Wide Web". Unpublished
Ph.D. Thesis, School of Computer Science, Florida International University.

163

[13] Blakeley J., "OQL[C++]: Extending C++ with an Object Query Capability". In
Modern Database Systems: The Object Model, Interoperability, and Beyond,
1995, ACM Press, pp.69-88.

[14] Bouzeghoub M. and Metais E., "Semantic Modeling of Object Oriented
Databases". In Proceedings of the International Conference on Very Large Data
Bases (VLDB '91), 1991, pp.3-14.

[15] Breitbart Y. and Reyes T., "Overview of ADDS System". In Modern Database
Systems: The Object Model, Interoperability and Beyond, ACM Press, 1995,
pp.683-701.

[16] Breitbart Y. and Tieman L., "ADDS - Heterogeneous Distributed Database
System". In Proceedings of the International Seminar on Distributed Data
Sharing Systems, 1984, pp.7 -2 4 .

[17] Breitbart Y., Olson P. and Thompson G., "Database Integration in a Distributed
Heterogeneous Database System". In Proceedings of the IEEE International
Conference on Data Engineering (ICDE '86), 1986, pp.3 0 1-3 10 .

[18] Bright M.W., Hurson A.R. and Pakzad S., "Automated Resolution of Semantic
Heterogeneity in Multidatabases". In ACM Transactions on Database Systems
(TODS), Vol. 19, No. 2, 1994, pp.2 12 -2 5 3 .

[19] Brill D., Templeton M. and Yu C.T., "Distributed Query Processing Strategies in
Mermaid, A Frontend to Data Management Systems". In Proceeding of the IEEE
International Conference on Data Engineering (ICDE '84), 1984, pp. 2 1 1-218.

[20] Brown P., "Implementing the Spirit of SQL-99". In Proceedings of the ACM
International Conference of Management of Data (SIGMOD '99), 1999, pp.5 15-

518.

[21] Bunge M. A., Treatise on Basic Philosophy: Vol. 3: Ontology I: The Furniture of
the World, Reidel, Boston, 1977.

[22] Bunge M.A., Treatise on Basic Philosphy: Vol. 4: Ontology II: A World of
Systems, Reidel, Biston, 1979.

[23] Chawathe S., Garcia-Molina H., Hammer J., Ireland K., Papakonstantinou Y.,
Ullman J. and Widom J., "The TSIMMIS Project: Integration of Heterogeneous
Information Sources". In Proceedings of IPSJ Conference, 1994, pp.7 - 18.

164

[24] Chen A.L.P., "Outerjoin Optimization in Multidatabase Systems". In Proceedings
of the International Symposium on Databases in Parallel and Distributed Systems
(DPDS '90), 19 9 0, pp.2 11-218.

[25] Chung C.W., "DATAPLEX: An Access to Heterogeneous Distributed
Databases". In Communications of the ACM (CACM), Vol. 33, No. 1, 1990,
pp.70-80.

[26] Codd E.F., "A Relational Data Model for Large Shared Data Banks". In
Communications of the ACM (CA CM), Vol. 13, No. 6, 1970, pp. 37 7 - 3 87 .

[27] Codd E.F., "Extending the Database Relational Model to Capture More
Meaning". In ACM Transactions on Database Systems (TODS), Vol. 4, No. 4,
1979, pp.397-434.

[28] Collet C., Huhns M.N. and Shen W.-M., "Resource Integration Using a Large
Knowledge Base in Carnot". In IEEE Computer, Vol. 24, No. 12, 1991, pp.5 5- 6 2 .

[29] Cowie J. and Lehnert W., "Information Extraction". In Communications of the
ACM (CA CM), Vol. 39, No. 1, 1996, pp.8 0 -9 1.

[30] Craven M., DiPasquo D., Freitag D., McCallum A., Mitchell T., Nigam K. and
Slattery S., "Learning to Extract Symbolic Knowledge from the World Wide
Web". In Technical Report, CMU-CS-98-122, School of Computer Science,
Carnegie Mellon University, 1998.

[31] Czejdo B., Rusinkiewicz M. and Embley D., "An Approach to Schema
Integration and Query Formulation in Federated Database Systems". In
Proceedings of the IEEE International Conference on Data Engineering (ICDE
'87), 1987, pp.4 7 7 -4 84 .

[32] Date C. J., An Introduction to Database Systems, 7th edition, Addison-Wesley,
1999.

[33] Dayal U and Hwang H., "View Definition and Generalization for Database
Integration in a Multidatabase System". In IEEE Transactions on Software

Engineering (TSE), Vol. 10, No. 6, pp.6 2 8-6 4 5 .

[34] Dayal U., "Processing Queries Over Generalization Hierarchies in a
Multidatabase System". In Proceedings of the International Conference on Very
Large Data Bases (VLDB '83), 1983, pp. 34 2 -3 5 3 .

[35] Dayal U., "Query Processing in Multidatabase System". In Query Processing in
Database Systems, Springer, 1985, pp.8 1-108.

165

[36] Dogac A., Dengu C., Kilic E., Ozhan G., Ozcan F., Nural S., Evrendilek C.,
Halici U., Arpinar B., Koksal P., Kesim N. and Mancuhan S., "METU
Interoperable Database System". In SIGMOD Record, Vol. 24, No. 3, 1995,
pp.56-61.

[37] Dogac A., Halici U., Kilic E., Ozhan G., Ozcan F., Nural S., Dengu C., Mancuhan
S., Arpinar B., Koksal and Evrendilek C., "METU Interoperable Database
System". In Proceedings of the ACM International Conference on Management of
Data (SIGMOD '96), 1995, pp.5 5 2 -5 5 2 .

[38] Du W., Krishnamurthy R. and Shan M.-C., "Query Optimization in
Heterogeneous DBMS". In Proceedings of the International Conference on Very
Large Databases (VLDB '92), 1992, pp.277-291.

[39] Egyhazy C.J., Triantis K. P. and Bhasker B., "A Query Processing Algorithm for
a System of Heterogeneous Distributed Databases". In Distributed and Parallel
Databases, Vol. 4, No. 1, 1996, pp.4 9 -7 9 .

[40] Elmasri R. and Navathe S. B., Fundamentals of Database Systems, 2nd edition,
Addison-Wesley, 1994.

[41] Elmasri R. and Navathe, "Object Integration in Logical Database Design". In
Proceedings of the IEEE International Conference on Data Engineering (ICDE
'84), 1984, pp.4 2 6 -4 3 3 .

[42] Elmasri R., Hevner A. and Weeldreyer, "The Category Concept: An Extension to
the Entity-Relationship Model". In Data and Knowledge Engineering (DKE),
Vol.1, No.1, 1985, pp.7 5 - 1 16.

[43] Embley D.W., Campbell D.M., Jiang Y. S., Liddle S.W., Ng Y.-K., Quass D. and
Smith R.D., "Conceptual-Model-Based Data Extraction from Multiple-Record
Web Pages". In Data and Knowledge Engineering (DKE), Vol. 31, No. 3, 1999,
pp.227-251.

[44] Garcia-Molina H., Hammer J., Ireland K., Papakonstantinou Y., Ullman J., and
Widom J., "Integrating and Accessing Heterogeneous Information Sources in
TSIMMIS". In Proceedings of the AAAI Symposium on Information Gathering,
1995, pp. 6 1-64 .

[45] Garcia-Molina H., Ullman J. D. and Widom J., Database System Implementation,
Prentice-Hall, 1999.

166

[46] Gu H., Perl Y., Geller J., Halper M., Liu L.-M. and Cimino J.J., "Representing the
UMLS as an Object-oriented Database: Modeling Issues and Advantages". In
Journal of the American Medical Informatics Association (JAMIA), Vol. 7, No. 1,
2000, pp.66-80.

[47] Guan T., Liu M. and Saxton L.V., "Structure-Based Queries over the World Wide
Web". In Proceedings of the International Conference on Conceptual Modeling
(ER '98), 1998, pp.107-120.

[48] Gupta A., Harinarayan V. and Rajaraman A., "Virtual Database Technology". In
SIGMOD Record, Vol. 26, No. 4, 1997, pp. 57 -6 1 .

[49] Hammer J., Garcia-Molina H., Ireland K., Papakonstantinou Y., Ullman J., and
Widom J., "Information Translation, Mediation, and Mosaic-Based Browsing in
the TSIMMIS System". In Proceedings of the ACM International Conference on
Management of Data (SIGMOD '95), 1995, pp.4 8 3 - 483.

[50] Hayne S. and Ram S., "Multi-User View Integration System (MUVIS): An Expert
System for View Integration". In Proceedings of the IEEE International
Conference on Data Engineering (ICDE '88), 1988, pp.4 02 -4 0 9 .

[51] Kashyap V. and Sheth A., "Semantic and Schematic Similarities Between
Database Objects: A Context-Based Approach". In VLDB Journal, Vol. 5, No. 4,
1996, pp.2 7 6 -3 0 4 .

[52] Kelley W., Gala S., Kim W., Reyes T. and Graham B., "Schema Architecture of
the UniQSLIM Multidatabase System". In Modern Database Systems: The Object
Model, Interoperability and Beyond, ACM Press, 1995, pp.6 2 1-6 4 8 .

[53] Kent W., "Solving Domain Mismatch and Schema Mismatch Problems with an
Object-Oriented Database Programming Language". In Proceedings of the
International Conference on Very Large Data Bases (VLDB '91), 1991, pp.147-
160.

[54] Kim W. and Seu J., "Classifying Schematic and Data Heterogeneity in
Multidatabase Systems". In IEEE Computer, Vol. 24, No. 12, 1991, pp. 12 - 18 .

[55] Kim W., Choi I., Gala S.K., Scheevel M., "On Resolving Schematic
Heterogeneity in Multidatabase Systems". In Distributed and Parallel Databases,
Vol.1, No. 3, 1993, pp.2 5 1-2 7 9 .

[56] Koh, J.L. and Chen L.P., "Integration of Heterogeneous Object Schemas". In
Proceedings of the International Conference on Entity Relationship Approach
(ER '93), 1993, pp.297-314.

167

[57] Konopnicki D. and Shmueli O., "W3QS: A Query System for the World-Wide
Web". In Proceedings of the International Conference on Very Large Databases
(VLDB '95), 1995, pp.54 -6 5 .

[58] Krieger D., T. Andrews, "C++ Bindings to an Object Database". In Modern
Database Systems: The Object Model, Interoperability, and Beyond, 1995, ACM
Press, pp.89-107.

[59] Krishnamurthy R., Litwin W. and Kent W., "Languages Features for
Interoperable Databases with Schematic Discrepancies". In Proceedings of the
ACM International Conference on Management of Data (SIGMOD '91), 1991,
pp.40-49.

[60] Kushmerick N., Weld D.S. and Doorenbos R.B., "Wrapper Induction for
Information Extraction". In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI '97), Vol. 1, 1997, pp.7 2 9 -7 3 7 .

[61] Lakshmanan L.V.S., Sadri F. and Subramanian I.N., "A Declarative Language for
Querying and Restructuring the Web". In Proceedings of the International
Workshop on Research Issues in Data Engineering (RIDE '96), 1996, pp. 12-21.

[62] Lakshmanan L.V.S., Sadri F. and Subramanian I.N., "SchemaSQL - A Language
for Interoperability in Relational Multi-database Systems". In Proceedings of the
International Conference on Very Large Databases (VLDB '96), 1996, pp.239-
250.

[63] Landers T. and Rosenberg R., "An Overview of Multibase". In Proceedings of the
International Symposium on Distributed Data Bases, 1982, pp. 1 53-184.

[64] Larson J.A., "Bridging the Gap Between Network and Relational Database

Management Systems". In IEEE Computer, Vol. 16, No. 9, 1983, pp. 82-92.

[65] Larson J.A., Navathe S.B. and Elmasri R., "A Theory of Attribute Equivalence in
Databases with Application to Schema Integration". In IEEE Transactions on
Software Engineering (TSE), Vol. 15, No. 4, 1989, pp.4 4 9 -4 6 3 .

[66] Lee C. and Chen C.-J., "Query Optimization in Multidatabase Systems
Considering Schema Conflicts". In IEEE Transactions on Knowledge and Data

Engineering (TKDE), Vol. 9, No. 6, 1997, pp.9 4 1-9 5 5 .

[67] Legaria C.G. and Rosenthal A., "Outerjoin Simplification and Reordering for
Query Optimization". In ACM Transactions on Database Systems (TODS), Vol.
22, No. 1, 1997, pp.4 3 -74 .

168

[68] Levy A.Y., "Obtaining Complete Answers from Incomplete Databases". In
Proceedings of the International Conference on Very Large Data Bases (VLDB
'96), 1996, pp.402-412.

[69] Levy A.Y., Rajaraman A., Ordille J.J., "Querying Heterogeneous Information
Sources Using Source Descriptions". In Proceedings of the International
Conference on Very Large Databases (VLDB '96), 1996, pp.2 5 1-2 62 .

[70] Li W.-S. and Clifton C., "Semantic Integration in Heterogeneous Databases Using
Neural Networks". In Proceedings of the International Conference on Very Large
Data Bases (VLDB '94), 1994, pp.1- 12.

[71] Litwin W. and Abdellatif A., "Multidatabase Interoperability". In IEEE
Computer, Vol. 19, No. 12, 1986, pp. 10 - 18 .

[72] Litwin W., Mark L. and Roussopoulos N., "Interoperability of Multiple
Autonomous Databases". In ACM Computing Surveys, Vol.22, No.3, 1990,
pp.267-293.

[73] Lu H., Ooi B.-C. and Goh C.-H., "On Global Multidatabase Query Optimization".
In SIGMOD Record, Vol. 21, No. 4, 1992, pp.6 - 1 1.

[74] Lu X., "A Semantic Wrapper Used in Heterogeneous Database Systems".
Master's Thesis, School of Computer Science, Florida International University,
2000.

[75] Lycos Search Engine: http://www.lycos.com

[76] McLoed D. and Si A., "The Design and Experimental Evaluation of an
Information Discovery Mechanism for Networks of Autonomous Database
Systems". In Proceedings of the IEEE International Conference in Data

Engineering (ICDE '95), 1995, pp. 15 -24 .

[77] Mendelzon A.O. and Milo T., "Formal Model of Web Queries". In Proceedings
of the Symposium on Principles of Database Systems (PODS '97), 1997, pp. 134-
143.

[78] Mendelzon A.O., Mihaila G.A. and Milo T., "Querying the World Wide Web". In
Proceedings of the International Conference on Parallel and Distributed

Information Systems (PDIS '96), 1996, pp.8 0 -9 1.

[79] Meng W. and Yu C., "Query Processing in Multidatabase Systems". In Modern

Database Systems: The Object Model, Interoperability and Beyond, ACM Press,
1995, pp.5 5 1-5 7 2 .

169

[80] Meng W., Yu C.T. and Kim W., "A Theory of Translation From Relational
Queries to Hierarchical Queries". In IEEE Transactions on Knowledge and Data
Engineering (TKDE), Vol. 7, No. 2, 1995, pp.2 2 8 -2 4 5 .

[81] Microsoft ODBC 2.0 Programmer's Reference and SDK Guide, Microsoft Press,
1994.

[82] Motro A., "Integrity = Validity + Completeness". In ACM Transactions on
Database Systems (TODS), Vol. 14, No. 4, 1989, pp.4 80 -5 0 2 .

[83] Navathe S., Elmasri R. and Larson J., "Integrating User Views in Database
Design". In IEEE Computer, Vol.19, No. 1, 1986, pp.5 0 -6 2 .

[84] OMG's web site: http://www.omg.org/

[85] Oracle database web site: http://www.oracle.com/database/

[86] Papakonstantinou Y., Garcia-Molina H. and Widom J., "Object Exchange Across
Heterogeneous Information Sources". In Proceedings of the IEEE International
Conference on Data Engineering (ICDE '95), 1995, pp.2 5 1-2 6 0 .

[87] Quillian M.R., "Semantic Memory". In Semantic Information Processing, ed. by,
Marvin Minsky, MIT Press, 1968, pp.2 27 -2 7 0 .

[88] Ramakrishnan R. and Gehrke J., Database Management Systems, Second Edition,
McGraw-Hill, 2000.

[89] Rishe N., "A File Structure for Semantic Databases". In Information Systems, Vol.
16, 1991, pp. 37 5 -3 8 5 .

[90] Rishe N., "A Methodology and Tool for Top-down Relational Database Design".
In Data and Knowledge Engineering (DKE), Vol. 10, pp.259-291, 1993.

[91] Rishe N., "Interval-based approach to lexicographic representation and
compression of numeric data". In Data and Knowledge Engineering (DKE), Vol.
8, 1992, pp. 3 3 9 -3 5 1.

[92] Rishe N., A. Vaschillo, D. Vasilevsky, A. Shaposhnikov, S.-C. Chen, "A
Benchmarking Technique for DBMS's with Advanced Data Models". To appear
in the Symposium on Advances in Databases and Information Systems (ADBIS-
DASFAA 2000), September 5-8, 2000.

170

[93] Rishe N., Athauda R., Yuan J. and Chen S.C., "Knowledge Management for
Database Interoperability". Submitted to the International Conference on
Information Reuse and Integration (IRI 2000), November 1 - 3, 2000.

[94] Rishe N., Database Design: The Semantic Modeling Approach, McGraw-Hill,
1992.

[95] Rishe N., Sun W., Barton D., Deng Y., Orji C., Alexopoulos M., Loureiro L.,
Ordonez C., Sanchez M. and Shaposhnikov A., "Florida International University
High Performance Database Research Center". In SIGMOD Record, Vol. 24, No.
3, 19 9 5 , pp.71-76.

[96] Rishe N., Yuan J., Athauda R., Lu X. and Ma X., "SemWrap: A Semantic
Wrapper over Relational Databases, with Substantial Size Reduction of User's
SQL Queries". In Proceedings of the International Conference on Extending
Database Technology - Software Demonstrations Track (EDBT 2000), 2000,
pp.13-14.

[97] Rishe N., Yuan J., Athauda R., Lu X., Ma X., Vaschillo A., Shaposhnikov A.,
Vasilevsky D. and Chen S.C., "SemanticAccess: Semantic Interface for Querying
Databases . To appear in the International Conference on Very Large Databases
(VLDB 2000), September 10-14, 2000.

[98] Rishe N., "Semantic SQL". Internal Document, High-performance Database
Research Center, School of Computer Science, Florida International University,
1998.

[99] Roantree M., Murphy J. and Hasselbring W., "The OASIS Multidatabase
Prototype". In SIGMOD Record, Vol. 28, No. 1, 1999, pp.9 7 - 10 3 .

[100] Roth M.T., Arya M., Haas L., Carey M., Cody W., Fagin R., Schwarz P., Thomas
J. and Wimmers E., "The Garlic Project". In Proceedings of the ACM
International Conference on Management of Data (SIGMOD '96), 1996, pp.557-

557.

[101] Sciore E., Siegel M. and Rosenthal A., "Using Semantic Values to Facilitate
Interoperability Among Heterogeneous Information Systems". In ACM
Transactions of Database Systems (TODS), Vol. 19, No. 2, 1994, pp. 2 54 -2 90 .

[102] Shan M., "Pegasus Architecture and Design Principles". In Proceedings of the
ACM International Conference on Management of Data (SIGMOD '93), 1993,
pp.4 2 2 -4 2 5 .

171

[103] Shan M.-C., Ahmed R., Davis J., Du W. and Kent W., "Pegasus: A
Heterogeneous Information Management System". In Modern Database Systems:
The Object Model, Interoperability and Beyond, ACM Press, 1995, pp.6 64 -6 8 2 .

[104] Shaposhnikov A., "Algorithms for Efficient Transaction Management and
Consistent Queries in Client-Server Semantic Object-oriented Parallel
Databases". Ph.D. Thesis, School of Computer Science, Florida International
University, 1998.

[105] Sheth A.P. and Larson J.A., "Federated Database Systems for Managing
Heterogeneous and Autonomous Databases". In ACM Computing Surveys, Vol.
22, No. 3, 1990, pp.183-236.

[106] Sheth A.P., Larson J.A. Cornelio A. and Navathe S., "A Tool for Integrating
Conceptual Schemas and User Views". In Proceedings of the IEEE International
Conference on Data Engineering (ICDE '88), 1988, pp. 17 6 -18 3 .

[107] Shipman D. W., "The Functional Data Model and the Data Language DAPLEX".
In ACM Transactions on Database Systems (TODS), Vol. 6, No. 1, 1981, pp.140-
173.

[108] Soderland S., "Learning to Extract Text-Based Information from the World Wide
Web". In Proceedings of the International Conference on Knowledge Discovery
and Data Mining (KDD '97), 1997, pp.2 5 1-2 5 4 .

[109] SQL Server web site: http://www.microsoft.com/sql/default.htm

[110] SQL-92. ANSI Standard SQL language, 1992.

[111] Storey V.C., Chiang R.H.L., Dey D., Goldstein R.D. and Sundaresan S.,
"Database Design with Common Sense Business Reasoning and Learning". In
ACM Transactions on Database Systems (TODS), Vol. 22, No. 4, 1997, pp.4 7 1-
512.

[112] Storey V.C., Ullrich H. and Sundaresan S., "An Ontology for Database Design
Automation". In Proceedings of the International Conference on Conceptual
Modeling (ER '97), 1997, pp. 2 - 15 .

[113] Subramanian D.K. and Subramanian K., "Query Optimization in Multidatabase
Systems". In Distributed and Parallel Databases, Vol. 6, No. 2, 1998, pp.183-
210.

[114] Tanenbaum J., Chowdhry T. and Hughes K., "eCo System: An Internet
Commerce Architecture". In IEEE Computer, Vol. 30, No. 5, 1997, pp.4 8 -5 5 .

172

[115] Tseng F.S.C., Chen A.L.P. and Yang W.-P., "Answering Heterogeneous Database
Queries with Degrees of Uncertainty". In Distributed and Parallel Databases,
Vol. 1, No. 3, 1993, pp.281-302.

[116] Ullman J. D. and Widom J., A First Course in Database Systems, Prentice-Hall,
1997.

[117] Vaschillo A., "A Semantic Paradigm for Intelligent Data Access". Ph.D. Thesis,
School of Computer Science, Florida International University, 2000.

[118] Wand Y. and Storey V., "An Ontological Analysis of the Relationship Construct
in Conceptual Modeling". In ACM Transactions on Database Systems (TODS),
Vol. 24, No. 4, 1999, pp.494-528.

[119] Wand Y. and Wang R., "Anchoring Data Quality Dimensions in Ontological
Foundations". In Communications of the ACM (CA CM), Vol. 39, No. 11, 1996,
pp.86-95.

[120] Wand Y. and Weber R., "An Ontological Model of an Information System". In
IEEE Transactions on Software Engineering (TSE), Vol. 16, No. 11, 1990,
pp.1282-1292.

[121] WebKB project's homepage: http://www.cs.cmu.edu/-WebKB/

[122] Weeldreyer, "Structural Aspects of the Entity-Category-Relationship Model". In
Technical Report HR-80-250, Honeywell Computer Sciences Center, 1980,
pp.17-38.

[123] Winston P.H., Artificial Intelligence, Second Edition, Addison-Wesley, 1984.

[124] Yu C.T. and Chang C.C., "Distributed Query Processing". In ACM Computing
Surveys, Vol.16, No.4, 1984, pp.3 9 9 -4 3 3 .

[125] Yu C.T., Chang C.C., Templeton M., Brill D. and Lund E., "Query Processing in
a Fragmented Relational Distributed System: Mermaid". In IEEE Transactions on

Software Engineering (TSE), Vol.11, No. 8, 1985, pp.7 9 5 -8 10 .

[126] Yu C.T., Zhang Y., Meng W., Kim W., Wang G., Pham T. and Dao S.,
"Translation of Object-Oriented Queries to Relational Queries". In Proceedings of
the IEEE International Conference on Data Engineering (ICDE '95), 1995,
pp.90-97.

[127] Zhu Q. and Larson P.A., "A Query Sampling Method for Estimating Local Cost
Parameters in a Multidatabase System". In Proceedings of the IEEE International
Conference on Data Engineering (ICDE '94), 1994, pp. 14 4 -15 3 .

173

[128] Zhu Q. and Larson P.-A., "Solving Local Cost Estimation Problem for Global
Query Optimization in Multidatabase Systems". In Distributed and Parallel
Databases, Vol. 6, No. 4, 1998, pp. 37 3 -4 2 0 .

174

APPENDIX 1

META OBJECT

comment:String

RELA TION CATEGORY

name: String total range > name: String total

cardinality: String(:,ta)

total: Boolean

do ain;

(m: 1, tal)
1 \
1 ,

KEY RELATION ABSTRACT CONCRETE

CATEGORY CATEGORY

->subcategory (m: m)->

NUMBRS RNGESTRINGS RANGE ENUMERATED BNR
TYPE

allowed-characters:String
minimum:SNumber reguoString permitted-value:String

emax-length: String
discrete-step: Number mime-type: String

Subschema representing Sem-ODM Meta-Schema

META-OBJECT - category (A catalog of meta objects)

175

comment - attribute of META-OBJECT, range: String (m:]) (Comment about meta

object)

RELATION - subcategory of META-OBJECT (A catalog of relations)

name - attribute of RELATION, range: String (m:1,total) (Name of relation)

cardinality - attribute of RELATION, range: String (m:]) (Cardinality of relation)

total - attribute of RELATION, range: Boolean (m:1) (Totality of relation)

CATEGORY - subcategory of META-OBJECT (A catalog of categories)

name - attribute of CATEGORY, range: String (m:J,total) (Name of category)

ABSTRACT-CATEGORY - subcategory of CATEGORY

KEY-RELATION - subcategory of RELATION (A catalog of key relations)

CONCRETE-CATEGORY - subcategory of CATEGORY (A catalog of concrete

categories)

STRINGS-RANGE - subcategory of CONCRETE-CATEGORY (A catalog of strings)

allowed-characters - attribute of STRINGS-RANGE, range: String (m:1) (Allowed

characters of the strings range)

regular-expression - attribute of STRINGS-RANGE, range: String (m:1) (Regular

expression)

max-length - attribute of STRINGS-RANGE, range: String (m:1) (Maximum length of

strings range)

mime-type - attribute of STRINGS-RANGE, range: String (m:1) (Mime type)

NUMBERS-RANGE - subcategory of CONCRETE-CATEGORY (A catalog of number

ranges)

minimum - attribute of NUMBERS-RANGE, range: Number (m:1) (Minimum of

176

numbers range)

maximum - attribute of NUMBERS-RANGE, range: Number (m:]) (Maximum of

numbers range)

discrete-step - attribute of NUMBERS-RANGE, range: Number (m:]) (Discrete step in

numbers range)

ENUMERATED-TYPE - subcategory of CONCRETE-CATEGORY (A catalog of

enumerated types)

permitted-value - attribute of ENUMERATED-TYPE, range: String (m:]) (Permitted

value)

BINARY- subcategory of CONCRETE-CATEGORY (A catalog of binary types)

subcategory - relation from ABSTRACT-CATEGORY to ABSTRACT-CATEGORY

(m:im) (Subcategory relation)

domain - relation from RELATION to ABSTRACT-CATEGORY (m:J,total) (Domain of

relation)

range - relation from RELATION to CATEGORY (m: I,total) (Range of relation)

177

APPENDIX 2

COMPONENT
META OBJECT

comment: String

TABLE FIELD DATATYPE

name: String total belongstring total has type:String I:J,total

PRIMARY KEY FOREIGN KEY

FIELD refers to FIELD

(m: 1, total)

Subschema representing relational meta-schema

COMPONENT-META-OBJECT - category (A catalog on component meta objects)

comment - attribute of COMPONENT-META-OBJECT, range: String (m:1) (Comment

on component meta object)

TABLE - subcategory of COMPONENT-META-OBJECT (A catalog of tables)

name - attribute of TABLE, range: String (m:1, total) (Name of table)

FIELD - subcategory of COMPONENT-META-OBJECT (A catalog of fields)

name -- attribute of FIELD, range: String (m:1, total) (Name of field)

178

DATATYPE - subcategory of COMPONENT-META-OBJECT (A catalog of datatypes)

type - attribute of DA TA TYPE, range: String (1:1,total) (Type of datatype)

PRIMARY-KEY-FIELD - subcategory of FIELD (A catalog of primary key fields)

FOREIGN-KEY-FIELD - subcategory of FIELD (A catalog of foreign key fields)

belongs-to - relation from FIELD to TABLE (m:1,total) (Field belongs to a table)

has - relation from FIELD to DATATYPE (m:J,total) (Field has a datatype)

refers-to - relation from FOREIGN-KEY-FIELD to PRIMARY-KEY-FIELD (m:J,total)

(Foreign key field refers to primary key field)

179

APPENDIX 3

META OBJECT

comment:String

is deriv d from
(m:m total)

VIEW META
OBJECT

->range (m:J)->
->domain (m: 1)->

COMPONENT VIEW
META OBJECT . SPECIFICATIONis based on

(m:m,total)

VIRTUAL VIRTUAL VIRTUAL
CATEGORY RELATION A ITE

hasATTRIBUTE
from:String total ->next (m:1)-> (m:1)

where: String domain-tbl-attributes: String spec:String total

group-by:String range-tbl-attributes:String type:String total

having:String

Subschema representing mapping between Sem-ODM and relational schemas

META-OBJECT - category (A catalog of meta objects)

comment - attribute of META-OBJECT, range: String (m:1) (Comment about meta

180

objects)

VIEW-META-OBJECT - category (A catalog of view-meta-objects)

COMPONENT-META-OBJECT - subcategory of VIEW-META-OBJECT (A catalog

of component meta objects)

VIEW-SPECIFICATION - subcategory of VIEW-META-OBJECT (A catalog of view

specifications)

VIRTUAL-CATEGORY - subcategory of VIEW-SPECIFICATION (A catalog of

virtual categories)

from - attribute of VIRTUAL-CATEGORY, range: String (m:],total) (A catalog of from

clauses)

where - attribute of VIRTUAL-CATEGORY, range: String (m:1) (A catalog of where

clauses)

group-by - attribute of VIRTUAL-CATEGORY, range: String (m:1) (A catalog of group

by clauses)

having - attribute of VIRTUAL-CATEGORY, range: String (m:1) (A catalog of having

clauses)

VIRTUAL-RELATION - subcategory of VIEW-SPECIFICATION (A catalog of

virtual relations)

domain-tbl-attributes - attribute of VIRTUAL-RELATION, range: String (m:1) (A

catalog of domain attributes (of join condition))

range-tbl-attributes - attribute of VIRTUAL-RELATION, range: String (m:1) (A

catalog of range attributes (of join condition))

VIRTUAL-ATTRIBUTE - subcategory of VIEW-SPECIFICATION (A catalog of

181

virtual attributes)

spec - attribute of VIRTUAL-ATTRIBUTE, range: String (m:1,total) (A catalog of

specifications for attributes)

type - attribute of VIRTUAL-ATTRIBUTE, range: String (m:1,total) (A catalog of types

of specifications)

range - relation from VIEW-META-OBJECT to VIEW-META-OBJECT (m:1) (Range of

view meta object)

domain - relation from VIEW-META-OBJECT to VIEW-META-OBJECT (m:1)

(Domain of view meta object)

next - relation from VIRTUAL-RELATION to VIRTUAL-RELATION (m:1)

is-derived-from - relation from META-OBJECT to VIEW-META-OBJECT (m:m,total)

(Meta object is derived from view meta object)

is-based-on - relation from VIEW-SPECIFICATION to COMPONENT-META -OBJECT

(m:m, total) (View specification is based on component meta objects)

has - relation from VIRTUAL-ATTRIBUTE to VIRTUAL-RELATION (m:1) (Virtual

attribute may have a join condition (e.g. specifying multi-valued attributes))

182

APPENDIX 4

PROPERTY META OBJECT
FUNCTION

FUNCIONis defined by
comment:String

->restricted-by (m:m)-> (m:J)

primar mapping
(m:1, tal)

META CONCEPT ONTOLOGY

comment: String is composed of name:String key
(n: n) application-domain: String I: m

domain

RELATIONSHIP (m:J) CONCEPT

name: String key
range semantics:String
(m:1)

ISA AKO OTHER

name:String total

semantics: String

cardinality: String

Sub-schema representing ontologies and mapping to Sem-ODM schema

META-OBJECT - category (A catalog of meta objects)

comment - attribute of META-OBJECT, range: String (m:) (Comment about meta

object)

PROPERTY-FUNCTION - category

183

META-CONCEPT - category (A catalog of meta concepts)

comment - attribute of META-CONCEPT, range: String (m:]) (Comment of meta

concept)

CONCEPT - subcategory of META-CONCEPT

name - attribute of CONCEPT, range: String (key) (Name of concept)

semantics - attribute of CONCEPT, range: String (m:]) (Meaning of concept in

English)

RELATIONSHIP - subcategory of META-CONCEPT (A catalog of relationships)

domain - relation from RELATIONSHIP to CONCEPT (m:, total) (A relationship has

a domain concept)

range - relation from RELATIONSHIP to CONCEPT (m:1, total) (A relationship has a

range concept)

ISA - subcategory of RELATIONSHIP (A catalog of ISA relationships)

AKO - subcategory of RELATIONSHIP (A catalog of a-kind-of relationships)

OTHER - subcategory of RELATIONSHIP (A catalog of other (not ISA or AKO)

relationships)

name - attribute of OTHER, range: String (m:],total) (Name of relationship)

semantics - attribute of OTHER, range: String (m: 1) (Meaning of relationship)

cardinality - attribute of OTHER, range: String (m:1) (Cardinality of relationship)

ONTOLOGY - category (A catalog of ontologes)

name - attribute of ONTOLOGY, range: String (key) (Name of ontology)

application-domain - attribute of ONTOLOGY, range: String (1:im) (Application

domains of ontology)

184

restricted-by - relation from PROPERTY-FUNCTION to PROPERTY-FUNCTION

(m:m) (Property function may have restrictions specified by other property functions)

is-defined-by - relation from META-OBJECT to PROPERTY-FUNCTION (m: 1) (Meta

object is defined by property functions)

primary-mapping - relation from PROPERTY-FUNCTION to META-CONCEPT

(m:1,total) (Property function has a primary mapping to a meta concept)

is-composed-of - relation from ONTOLOGY to META-CONCEPT (m:m) (Ontology is

composed of a set of meta-concepts)

185

APPENDIX 5

INTEGRATED related by (1:1) SEMANTIC
META OBJECT RELATION

->is-derived-from (m:m)-> SEM EQ
related to

(]:],total)

bou dary \,

j'repre ented by (:m) SMOE

META OBJECT
1 ,

1 BOUNDARY object q by

CONDITION (1:) SEM SUB(m rea) prEIICted N byBJECTSMVE

META OBJECTUVALENT__PATH

bIelongsMPoNENT

GLOBALDATABASE

Subschema of knowledge base at global site

INTEGRATED-META-OBJECT - category (A catalog of integrated meta objects)

META-OBJECT -- subcategory of INTEGRA TED-META-OBJECT (A catalog of meta

objects (global view or component database))

VIEW-SPECIFICATION - subcategory of INTEGRATED-META-OBJECT (A

catalog of view specifications)

186

SEMANTIC-RELATION - category (A catalog of semantic relations)

COMPONENT-DATABASE - subcategory of VIEW (A catalog of compoent

databases)

SEM-EQ - subcategory of SEMANTIC-RELATION (A catalog of semantically

equivalent relations)

SEM-OVER - subcategory of SEMANTIC-RELATION (A catalog of semantically

overlapping relations)

SEM-SUB - subcategory of SEMANTIC-RELATION (A catalog of semantically subset

relations)

BOUNDARY-CONDITION - category (A catalog of boundary conditions)

OBJECT-EQUIVALENT-PATH - category (A catalog of object equivalent paths)

VIEW - category (A catalog of views)

GLOBAL - subcategory of VIEW (A catalog of global views)

related-by - relation from INTEGRATED-META-OBJECT to SEMANTIC-RELATION

(1:1) (Integrated meta object is related by semantic relation)

related-to - relation from SEMANTIC-RELATION to INTEGRATED-META-OBJECT

(1:1,total) (Semantic relation is related to an integrated meta object)

boundary - relation from SEMANTIC-RELATION to BOUNDARY-CONDITION (1:m)

(Semantic relation contains boundary conditions)

represented-by - relation from BOUNDARY-CONDITION to INTEGRATED-META-

OBJECT (m:1) (Boundary condition is represented by an integrated meta object)

object-eq-by - relation from SEMANTIC-RELATION to OBJECT-EQUIVALENT-

PATH (J:m) (Semantic relation contains object equivalent paths)

187

is-derived-from - relation from INTEGRATED-META-OBJECT to INTEGRATED-

META-OBJECT (m:m) (Integrated meta object is derived from another integrated

meta object)

belongs-to - relation from META-OBJECT to VIEW (m:m, total) (Meta object belongs

to a global or component view)

188

VITA

RUKSHAN INDIKA ATHAUDA

April 24, 1978 Born, Colombo, Sri Lanka

1994 Diploma in Computer Science
Institute of Technological Studies
Colombo, Sri Lanka

1996 B.S., Computer Science
Florida International University
Miami, Florida

1998 M.S., Computer Science
Florida International University
Miami, Florida

2000 Doctorate in Computer Science
Florida International University
Miami, Florida

1996-2000 Undergraduate Research Assistant
Department of Physics
Florida International University
Miami, Florida

1996-1999 Lab Instructor
School of Computer Science
Florida International University
Miami, Florida

1996-2000 Graduate Research Assistant
High-performance Database Research Center

School of Computer Science
Florida International University
Miami, Florida

2000 Graduate Teaching Certificate
The Academy for the Art of Teaching
Florida International University
Miami, Florida

189

CONFERENCE PUBLICATIONS

Rishe N., Athauda R., Yuan J. and Chen S.C., "Knowledge Management for Database
Interoperability". Submitted to the International Conference on Information Reuse and
Integration, Honolulu, Hawaii, November 1 - 3, 2000.

Rishe N., Athauda R.I., Yuan J. and Chen S.C., "Semantic relations: The key to
integrating and query processing in heterogeneous databases". To appear in The 4th
World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida, July
23 -26,2000.

Rishe N., Yuan J., Athauda R., Lu X., Ma X., Vaschillo A., Shaposhnikov A., Vasilevsky
D. and Chen S.C., "SemanticAccess: Semantic Interface for Querying Databases . To
appear in The International Conference on Very Large Data Bases (VLDB 2000),
September 10-14, 2000.

Rishe N., Yuan J., Athauda R., Lu X. and Ma X., "SemWrap: A semantic wrapper over
relational databases, with substantial size reduction of user's SQL queries". In the
Proceedings of the 7 h Extending Database Technology (EDBT 2000) - Software
Demonstrations Track, March 27-31, 2000.

Athauda R., "Heterogeneity Resolution in MSemODB", Technical Report 2000-02,
School of Computer Science, Florida International University, 2000.

Rishe N., Barton B., Prabakaran N., Gutierrez M., Martinez M., Athauda R., Gonzalez
A. and Graham S., "Landsat Viewer: A Tool to create Color Composite Images of
Landsat Thematic Mapper Data". In Proceedings of the International Conference on
Geospatial Information in Agriculture and Forestry, June 1-3, 1998.

Rishe N., Barton D., Prabakaran N., Gutierrez M., Alvarez E., Athauda R., Rodriguez J.,
Gonzalez A., "Landsat Data Visualizing via the Internet". In Proceedings of the
International Symposium on Spectral Sensing Research, December 13-19, 1997.

Prabakaran N., Rishe N. and Athauda R., "Tracking Hurricane Paths". In Proceedings of
Image Registration Workshop, NASA GFSC, November 20-12, 1997.

JOURNAL PUBLICATIONS

Branly R.M., Athauda R.I., Fillingim M.O. and Van Hamme W.,"Light Curve Solutions
for Eclipsing Binaries in NGC 188". In Astrophysics and Space Science 235 (1): 149-160,
January 1996.

190

	Florida International University
	FIU Digital Commons
	7-5-2000

	Integration and querying of heterogeneous, autonomous, distributed database systems
	Rukshan Indika Athauda
	Recommended Citation

	tmp.1410442392.pdf.6uX1O

