
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-26-2009

Formal verification and testing of software architectural models Formal verification and testing of software architectural models

Gonzalo Argote Garcia
Florida International University

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Argote Garcia, Gonzalo, "Formal verification and testing of software architectural models" (2009). FIU
Electronic Theses and Dissertations. 1308.
https://digitalcommons.fiu.edu/etd/1308

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fetd%2F1308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1308?utm_source=digitalcommons.fiu.edu%2Fetd%2F1308&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

FORMAL VERIFICATION AND TESTING OF SOFTWARE

ARCHITECTURAL MODELS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Gonzalo Argote Garcia

2009

To: Dean Amir Miriniran
College of Engineering and Computing

This dissertation, written by Gonzalo Argote Garcia, and entitled Formal Verification

and Testing of Software Architectural Models, having been approved in respect to

style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Yi Deng

Peter . Clarke

Ronald NJ. Lee

/.ksoyk SK'dijidi

Xudong He, Major Professor

Date of Defense: March 26, 2009

The dissertation of Gonzalo Argote Garcia is approved.

Dean Amir Mirmiran

College of Engineering and Computing

J Dean George Walker
University Graduate School

Florida International University, 2009

ii

@ Copyright 2009 by Gonzalo Argote Garcia

All rights reserved.

iii

DEDICATION

I dedicate this dissertation to my parents, wife and son.

iv

ACKNOWLEDGMENTS

First of all, I would like to extend my infinite gratitude to Prof. Xudong He, my

advisor. He has been supportive, both academically and financially, throughout all

these years pursuing my Ph.D. at Florida International University (FIU). His wisdom

and advice have helped to shape a better person and professional in me. I am deeply

thankful for all that he has done.

Dr. Peter J. Clarke also deserves lots of gratitude, it has been a pleasure to work

on research papers with him, his drive to excel and enthusiasm are great motivators.

He encouraged me repetitive times to complete my Ph.D. work and gave me advice

when I needed. I would also like to thank all the members in my committee, to Dr.

Ronald M. Lee for giving time to this dissertation in his busy schedule, to Dr. Yi

Deng for being a great guidance in all these years at FIU and to Dr. S. Masoud

Sadjadi for sharing his enthusiasm and knowledge with me on several occasions.

My wife, Ivanka C. Medrano, and son, Joshua G. Argote, deserve special thanks

for their understanding when I had to spend my time at work and doing my

dissertation and, as a result, not being available for them. They were the pillars for

giving the final push to my work.

I would also like to thank all the members in the University Graduate School

(UGS) at FIU. Special thanks to Mrs. Graciela Laforest and her family, great friends

whatsoever. I could not forget Mr. Ruben Jaen, former vice-dean of the UGS, who

willingly accepted me as a Graduate Assistant during my first semesters at FIU. I can

not name all the people that one way or another have influenced me at FIU, Mr.

Louis Farnsworth, Dr. Douglas Wartzok, it was a great pleasure to work with you. To

all the members of the Graduate Admissions Office and the Undergraduate

Admissions Office who received me with open heart, thank you for being so kind to

my family and me.

v

My friends and peers in the School of Computing and Information Sciences

deserve special consideration. Especially Richard Whittaker who has been such a

great support in classroom and outside of it, he is in all aspects a true friend. Ariel

Cary helped me a lot in the final stages of my dissertation, coordinating with Ricardo

Koller and dealing with the logistics of the dissertation while I was away. To the

members of the CADSE group, the ones that already finished, Drs. Yujian Fu,

Zhijiang Dong, Weixiang Sun and Tianjun Shi, the ones that are still there, Lily

Chang, among others, thank you for your fruitful discussions and friendship.

My brothers and sisters, Dunia, Gustavo, Gilda, Yuri and Nelo who have

influenced me since I was a kid, this achievement is theirs too. I would like to thank

my sister Dunia Sanzetenea and her family for hosting me at their home when I first

came to the United States to pursue my graduate studies.

To my parents, Vicente Argote Covarrubias and Rosario Garcia Zambrana, there

are no words to express what I feel, this achievement is yours.

In summary, I want to thank all the people who directly or indirectly were

responsible for the completion of my graduate studies. I know that I am leaving FIU

with a treasure which is all of them.

This dissertation research was partially supported by the NSF awards HDR-

0317692 and IIP-0534428.

vi

ABSTRACT OF THE DISSERTATION

FORMAL VERIFICATION AND TESTING OF SOFTWARE

ARCHITECTURAL MODELS

by

Gonzalo Argote Garcia

Florida International University, 2009

Miami, Florida

Professor Xudong He, Major Professor

Ensuring the correctness of software has been the major motivation in software

research, constituting a Grand Challenge. Due to its impact in the final implemen-

tation, one critical aspect of software is its architectural design. By guaranteeing a

correct architectural design, major and costly flaws can be caught early on in the

development cycle. Software architecture design has received a lot of attention in the

past years, with several methods, techniques and tools developed. However, there is

still more to be done, such as providing adequate formal analysis of software archi-

tectures. On these regards, a framework to ensure system dependability from design

to implementation has been developed at FIU (Florida International University). This

framework is based on SAM (Software Architecture Model), an ADL (Architecture

Description Language), that allows hierarchical compositions of components and

connectors, defines an architectural modeling language for the behavior of

components and connectors, and provides a specification language for the behavioral

properties. The behavioral model of a SAM model is expressed in the form of Petri

nets and the properties in first order linear temporal logic.

This dissertation presents a formal verification and testing approach to guarantee

the correctness of Software Architectures. The Software Architectures studied are

expressed in SAM. For the formal verification approach, the technique applied was

vii

model checking and the model checker of choice was Spin. As part of the approach,

a SAM model is formally translated to a model in the input language of Spin and

verified for its correctness with respect to temporal properties. In terms of testing, a

testing approach for SAM architectures was defined which includes the evaluation of

test cases based on Petri net testing theory to be used in the testing process at the

design level. Additionally, the information at the design level is used to derive test

cases for the implementation level. Finally, a modeling and analysis tool (SAM tool)

was implemented to help support the design and analysis of SAM models. The

results show the applicability of the approach to testing and verification of SAM

models with the aid of the SAM tool.

viii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION 1
1.1 Motivation . 4
1.2 Research Problems . 5

1.3 Approach Proposed . 7
1.4 Contributions . 7

1.5 Scope and Limitations . 8

1.6 Outline of the Dissertation . 8

2 LITERATURE REVIEW . 9
2.1 Background . 9
2.1.1 SAM (Software Architecture Model) Framework 9
2.1.2 Software Verification . 16
2.1.3 Software Testing . 19
2.2 Related Work . 22
2.2.1 Model Checking and Software Architecture 22

2.2.2 Model Checking and Petri nets . 22
2.2.3 Test Case Generation . 23

2.2.4 Property Oriented Testing . 24

3 VERIFICATION AND TESTING FRAMEWORK 26
3.1 Verification . 27
3.2 Testing . 28
3.3 Tool support . 28

4 VERIFICATION OF ARCHITECTURAL MODELS 30
4.1 Restricted SAM and PrT net models . 31

4.2 Translation to SPIN . 35
4.3 Translation Correctness . 45

4.4 Automatic Translation . 48

4.5 Discussion . 50

4.6 Sum m ary . 52

5 TESTING OF ARCHITECTURAL MODELS 53
5.1 Concepts . 56

5.1.1 Test Cases and Petri nets . 56

5.1.2 Coverage and Adequacy Criteria for PrT nets 61

5.1.3 Test Cases and SAM models . 66

5.1.4 Coverage and Adequacy Criteria for SAM models 67

5.2 Levels of Testing for a SAM model . 67
5.2.1 Top Level Testing . 68

ix

5.2.2 Composition Testing 69

5.2.3 Component Testing 70

5.3 Design Testing . 70
5.4 Implementation Testing . 72

5.5 Sum m ary . 74

6 TOOL ENVIRONMENT . 75
6.1 Editor Window . 77
6.2 Formula Editor . 78

7 CASE STUDIES . 83
7.1 Resource Provider . 84

7.2 Other Case Studies . 105
7.3 Summary . 108

8 CONCLUSIONS . 109
8.1 Conclusions . 109
8.2 Summary of Contributions . 110
8.3 Future Work . 110

BIBLIOGRAPHY . 112

APPENDICES . 118

V IT A . 153

x

LIST OF FIGURES

FIGURE PAGE

1.1 Framework to Ensure Dependability from Design to Implementation. . . 3

2.1 SAM Software Architecture. 11

2.2 PrT net for the five dining philosopher problem. 14

3.1 The verification and testing approach. 26

4.1 Verification of SAM models. 31

4.2 Flattening a SAM Model . 36

4.3 Overview of the sections in the PROMELA code 44

4.4 A simple outline of the translation process. 45

5.1 Design and Implementation based testing of SAM models.. 53

5.2 Testing Levels of SAM models. 68

5.3 Test case generation overview. 73

5.4 Test case generation with model checking 73

6.1 SAM Tool elem ents. 76

6.2 SAM Environment Editor - Showing a composition. 77

6.3 SAM Environment elements - Showing a Petri net. 78

6.4 FOL Editor. 79

6.5 FO-LTL Editor. 80

7.1 Resource Provider example . 84

7.2 Resource Provider SAM Architecture. 85

7.3 PrT net model for Consumer component. 86

xi

7.4 Flattened SAM model of the Resource Provider. 86

7.5 Component RequestHandler PrT model. 87

7.6 System steps during simulation. 100

7.7 Transitions hit count per component for complete coverage. 101

7.8 Spin system steps for partial coverage . 101

7.9 Transitions hit count per component for partial coverage. 102

7.10 Number of test cases to measure transition coverage 103

7.11 U C M system . 106

7.12 Alternating Bit Protocol. 106

7.13 Section of the PrT net model for the ABP. 107

B.1 Top level Resource Provider. 142

B.2 Consumer component . 142

B.3 SystemResources component. 143

B.4 RequestHandler component. 143

B.5 Cache com ponent. 144

B.6 Locator component. 145

D .1 FO L Parsing. 150

D.2 Logic syntactic tree. 152

xii

CHAPTER 1

INTRODUCTION

Ensuring software correctness "has long been the goal in Computer Science" ([42]

and [41]). As software systems become more complex and are integrated into almost

every aspect of people's lives, there is an urgent need to guarantee their correctness.

Moreover, there are software systems that are "mission and safety critical and thus

need to be highly dependable" [36]. Even though people have learned to live with

failures in software systems [62], there is the need to ensure they do not happen.

Since software involves a construction process, it needs to be guaranteed that

from requirements to implementation the software meets the required specifications.

Getting closer to a correct software allows to have better confidence that the software

program performs as expected, hence increasing its dependability. Deciding that soft-

ware in general is correct, is unfeasible; nevertheless, several approaches have been

defined to provide approximations to this ideal situation.

In order to guide the transformation of software from the user requirements to the

final implementation, different Software Development Processes have been proposed.

Each one embracing some methodology, methods, techniques and tools that will guide

and help the developer produce different software products. One way of guaranteeing

that such processes lead to correct software is to make the different steps and iterations

and the different products produced as precise as possible. Formal methods have come

in our way to help solve this problem. Formal methods, as stated by Wing [67], are

mathematically based techniques that can be used for the systematically specification,

construction and verification of software systems.

1

Formal methods can be applied in different situations throughout the development

of a software program. Usually, some of the most critical parts of a system will make

use of some formal methods technique. One area in formal methods that has been

heavily studied in the last years is Software Design. Since design is usually at a higher

level of abstraction and since its impact in the final implementation is big, it is ideal

for formal modeling and analysis. In conclusion, Software Architecture plays a major

role in Software Development.

Software Architecture Research has been one of the most active areas in software

research and several ADLs (Architecture Description Languages) and tools have been

proposed [55]. Yet, there is still a lot to be done, for there have been several weak-

nesses detected in software architecture research such as "inadequate formal analysis

of architecture designs and the lack of assurance of correct implementations of archi-

tecture designs" [36]. A formal approach to architectural design and its realization

to an implementation will help achieve the goal of correct software. Formal methods

analysis techniques such as Model Checking ([44] and [19]) suffer from the state ex-

plosion problem, as a result, they can be complemented with Testing and Runtime

Verification techniques.

Other important aspect to help devise the correct software is by making use of

modeling and analysis tools and environments. For ADLs, several support tools have

been developed, such as the tool environment for Acme, an ADL, from Carnegie

Mellon University ([29]), among other efforts. Tools can automatically detect in-

consistencies in the model, they can be used to generate intermediate models or

implementation skeletons, they can also help translate a model in one language to

another model in a different language, and they can provide analysis features.

2

By looking at all these past results, Hoare et. al. ([42] and [41]) presented the

idea of the Grand Challenge, a program verifier that would do an automatic "check of

the correctness of the programs submitted to it" [42]. This program checker will also

be supported by other programs for constructing and analyzing software. The idea is

to use all the achievements in terms of techniques, tools and theory that have been

studied and that are being studied, and embark in this visionary project. Modeling

and analysis tools and environments will play an important role in this vision.

Along these lines, He et. al. have proposed a "Framework to ensure system de-

pendability in SAM' [36]. The Software Architecture Model (SAM) is a software

architecture model based on Petri nets and Temporal Logic [37]. The elements in

the framework can be seen in Figure 1.1 ([36]). This dissertation incorporates an ap-

proach for combining verification and testing, and a tool component for the modeling

and analysis of Software Architectures in SAM.

Testing Refinement

Translation~
Verification

/Program (Java)

Run-Time
Verification

Figure 1.1: Framework to Ensure Dependability from Design to Implementation.

The framework based in SAM includes, first the modeling of an architectural de-

sign, and next its refinement, testing, formal verification, translation to other models

3

(e.g. Java code) and run-time verification. Two critical aspects of a framework are

whether the framework is able to provide the elements to model a software system,

and whether the artifacts developed within the framework are able to be analyzed.

The framework in SAM contains those attributes. An architectural model in SAM

consists of components and connectors organized in hierarchies, i.e. a connector or

component can be refined into another layer of components and connectors. The

behavior of a component or connector is expressed in Petri Nets and properties are

defined in First Order Linear Temporal Logic. These elements do not only allow a

SAM architecture to be precisely defined but they also lend it to be formally analyzed.

1.1 Motivation

As it was previously discussed, software correctness is a major challenge in software

development. One critical aspect in software development is software architecture de-

sign, because it has a profound impact in the final software product. As defined in [8]

Software Architecture encompasses the structure or structures of a system, containing

software elements that are related and exhibit external visible properties. The goal

is then to assure that those software elements are correctly defined and exhibit the

desired properties and are in concordance with the specification of the software. One

way to achieve this is by defining a formal architecture of the system and proving

its correctness with respect to desired properties. SAM is an ADL that enables the

formal definition of software architectures and allows it to be analyzed by various

techniques. SAM exhibits a dynamic behavior, defined by the underlying Petri nets,

and this dynamic behavior lends itself to the verification and testing processes.

In addition, the implementation of a system depends on the architectural design,

and usually the implementation of the system is tested for potential bugs. Thus, it is

4

important to relate the architecture of the system to the implementation so that the

information at the design level can be used in the testing process at the implementa-

tion level.

On another hand, there are several well-known proven techniques for the analysis

of software products. One such technique is model checking. Model checking explores

the state space of a finite state transition system and verifies the model against prop-

erties of interest expressed in Linear Temporal Logic. Spin ([44]) is one example of a

tool that implements the model checking technique and it is widely used. As a result,

one important aspect in software research is the integration of such techniques and

tools into the software architecture research.

Finally, tools and environments for modeling and analysis of software products

have proven useful in software development. Hence, for software architectures spec-

ified in a given ADL, the availability of support tools not only helps in the ease of

design and analysis of an architecture but also in the adoption of the tool and the

ADL as useful instruments for software development.

1.2 Research Problems

There has been extensive work in Software Architecture, both in terms of model-

ing and analysis. ADLs have been proposed and tools for supporting them have been

implemented.

The main problems investigated in this dissertation are the formal verification and

testing of architectural models. More specifically, the formal verification and testing

of SAM models:

5

" Verification of SAM models. There have been studies done in the verification

of SAM models and other studies in the verification of Petri nets ([70], [37]

and [40]). But there is yet an approach to formally analyze SAM architectures

using model checking in terms of the model checker Spin, this includes how to

formally prove the translation from SAM to a model in the model checker, and

how to deal with first order LTL when the model checker supports propositional

LTL.

* Testing of SAM models. There has also been studies done in the testing of

SAM and PrT net models ([72] and [16]). Most of that work set the theoret-

ical grounds for future testing approaches for PrT nets. However, a practical

approach to select and measure the adequacy criteria of test cases for complex

systems is still missing. Finally, there is yet work to be done in deriving test

cases for the implementation based on the verification and testing procedures

at the design level in a SAM model. This is an important aspect of software

development, given the high impact of design in the final implementation.

Other problem investigated in this dissertation is related to support tools for the

modeling and analysis of SAM models. One important element is the reuse of proven

technologies not only at the theoretical level, but also at the practical one. For the

purposes of a tool support for SAM, there is no graphical interface that allowed the

modeling and analysis of architectures in SAM. Most of the modeling in SAM was

done by hand in text files and the generation or translation to other models was also

manually performed. As models become more complex, they become unmanageable

and keeping the consistency between different elements becomes harder. Hence, the

chances of getting the wrong design increase.

6

1.3 Approach Proposed

This dissertation proposes an integrated Formal Verification and Testing approach

for Software Architectures defined in SAM. SAM can use any kind of Petri Net, and for

this work Predicate Transition Nets (PrT nets) are used. For the Formal Verification

of SAM Architectures, the approach translates a SAM model to the input language

of the model checker Spin. For the testing approach a procedure to test SAM models

and to evaluate the adequacy of test cases at the design level is defined.

1.4 Contributions

The integrated approach combining formal verification and testing has the follow-

ing contributions:

" The verification of SAM models using model checking. As part of this compo-

nent, a formal approach for translating a SAM model to a PROMELA program,

the input for Spin, was defined.

" A testing approach for testing a SAM model at the Component, Integration and

System Level. The testing approach focuses on evaluating the adequacy of test

cases in transition oriented and state oriented testing for PrT nets. Additionally,

a test case generation based on model checking and on test cases at the design

level were studied and defined.

" A modeling and analysis tool to design and analyze SAM models. This tool

includes facilities for syntactic verification of First Order Logic formulas and also

contains a semiautomatic translation module from a SAM model to PROMELA

code. Manual intervention is necessary for the translation of some complex

properties.

7

1.5 Scope and Limitations

There are several formalisms for describing software architectures. In this disser-

tation the software architectures are limited to architectural models defined within

the SAM framework.

Given that a SAM model can have an infinite state space, for the formal verifi-

cation approach, the SAM models to be analyzed are restricted to finite states ones.

This is important since model checking can not handle infinite state space systems.

The kinds of properties dealt with in verification are safety as well as liveness; how-

ever, for a semiautomatic translation the kinds of properties are also restricted to

simple forms. Additionally, the First Order Temporal Logic formulas that define the

properties for SAM models are also reduced to propositional ones in the verification

process.

1.6 Outline of the Dissertation

The rest of the dissertation is organized as follows. First, the background and

related work are discussed on Chapter 2. Chapter 3 presents the verification and

testing framework briefly, showing the main elements in the approach and how they

relate. Then on Chapter 4, the verification approach is explained in detail, with

emphasis in the translation procedure from a SAM model to a PROMELA program.

Next on Chapter 5, the testing approach is presented and several concepts are defined

for the testing procedure; and also testing at the design and at the implementation

level are discussed. On Chapter 6 the most relevant parts of the tool environment are

presented. Case studies are detailed on Chapter 7. Finally, the dissertation concludes

in Chapter 8 where the conclusions and future work are stated.

8

CHAPTER 2

LITERATURE REVIEW

The background and the related work are provided in this Chapter. The back-

ground introduces three main subjects: architectural design in SAM, formal verifica-

tion in Spin and testing theory of high level Petri nets. Meanwhile, the related work

introduces research that has been done and that is being performed in the areas of

testing and verification of architectural models and Petri nets.

2.1 Background

2.1.1 SAM (Software Architecture Model) Framework

This section is based on "A Framework for Ensuring System Dependability from

Design to Implementation" presented in [36] and "A Framework for Developing and

Analyzing Software Architecture Specifications in SAM" presented in [37].

SAM is a software architecture framework for specifying and analyzing software

architectures. Petri Nets ([57],[59]) and Temporal Logic ([51]) are the underlying

formalisms that provide the foundations for SAM. Petri nets are used to describe the

behavioral models of components and connectors, while first order temporal logic is

used to specify system properties of components and connectors. There are different

kinds of Petri nets, from low level to high level Petri nets. These different kinds of

Petri Nets can be used as the underlying behavioral model for a SAM architecture. In

this dissertation Predicate Transitions Nets (PrT nets) are the kind of Petri nets used.

There are several ADLs proposed in the literature. In [55], Medvidovic e.t al.,

a study on different ADLs is presented, showing the basics characteristics an ADL

9

should posses. An ADL needs to present at least three elements in its definition, the

notions of Components, Connectors and Ports. SAM is an ADL that defines those

elements as part of its specification.

Briefly, a SAM architecture model is defined as a set of compositions, representing

different design levels. Each composition is comprised of a set of components, con-

nectors and composition constraints, and each component (or connector) is composed

of two elements, a behavior model and a property specification. A component or a

connector can be further refined by defining a mapping relation to a composition.

Some of these aspects can be observed in Figure 2.1 which shows a graphical view of

a simple SAM architecture model. Predicate Transition nets (PrT nets) are used to

define the behavior of components and connectors and Linear Temporal Logic (LTL)

is used to specify properties for components and connectors ([37] and [40]). The next

paragraphs describe SAM and the underlying formalisms in more detail.

SAM model. A SAM model consists of a set of compositions C = {C 1, C 2 , ... , Ck}

with a top level composition Cl E C representing the top level design. Each com-

position Ci = (Cmi, Cni, Csi) consists of a set of Cmi components, a set Cni of

connectors, and a set Csi of composition constraints. A component or connector

Cij E Cmi U Cni is non-elementary if it is refined by a lower level composition in C;

otherwise, it is elementary. Each Cij = (Sij, Bij) has a property specification Sij and

a behavior model Bij. First Order Linear Temporal Logic and Predicate Transition

Nets are used to define the properties and the behavior respectively. The property

specification and behavior model for a non-elementary Cij is obtained by merging the

behaviors and specifications of the components and connectors of the composition

mapped to it (see [37]). In the verification approach followed in this dissertation, each

non-elementary component/connector is replaced by the corresponding components

10

Environmental Component
constraints C1 constraints 02

A3

B1 '42

A3 B3

Component constraints C3
(inherited from 02)

Figure 2.1: SAM Software Architecture.

and connectors in the composition it maps to; as a result, the top level composition

will only contain elementary components and connectors.

Predicate Transition Nets (PrT Nets). A PrT Net ([30] and [35]) consists of

a net structure (P, T, F), an algebraic specification (S, Op, Eq) and a net inscription

(p, L, R, Mo). The most important aspects to note are that each p E P, where P is

the set of predicates (places), is mapped to a sort s E S (ap(p) = s) and contains

tokens that are ground terms of its corresponding sort s. T is the set of transitions

and R defines for each transition t E T its precondition and postcondition expressed

as first order logic formulas. The arcs in F connect places and transitions, and have

labels defined by L which are used in the pre and post conditions in transitions. A

transition is enabled if there is a substitution for the variables in the incoming arcs

that satisfies its precondition. The substitution is achieved by assigning tokens in

11

the corresponding place to each variable. A transition is fired if it is enabled, and

the postcondition is then satisfied. Finally Mo represent the initial marking, i.e. the

initial tokens contained in the places. In the next paragraphs, PrT nets are formally

explained.

Formally, a PrT net consists of: a finite net structure (P, T, F), an algebraic

specification SPEC, and a net inscription (p, L, R, Mo). P and T are the set of pred-

icates and transitions, respectively, where P n T = 0. F is the flow relation where

F C P x T U T x P. SPEC is a meta-language to define the tokens, labels, and

constraints of a PrT net. The underlying specification SPEC = (S, OP, Eq) consists

of a signature E = (S, OP) and a set Eq of E-equations. S is a set of sorts and

OP is a family of sorted operations. Tokens of a PrT net are ground terms of the

signature E, written MCONs. The set of labels is denoted by Labels(X), where X

is the set of sorted variables disjoint with OP. Each label can be a multiset expres-

sion of the form {kixi, ... , knxn}. Constraints of a PrT net are a subset of first order

logic formulas containing the S-terms of sort bool over X, denoted as Termop, boor (X).

The net inscription (p, L, R, Mo) associates each graphical symbol of the net struc-

ture (P, T, F) with an entity in the underlying SPEC, defining the static seman-

tics of a PrT net. Each predicate (place) in a PrT net is a data structure and a

component of the overall system state. Mapping p : P --+ p(S) assigns a subset

of sorts to each predicate p in P, which defines its valid values, i.e. proper to-

kens. Mapping L : F -* Labels(X) is a sort-respecting labeling of flows. Mapping

R : T -+ Termop, boo(X) associates each transition t in T with a constraint expressed

in a first order logic formula in the underlying algebraic specification. The constraints

define pre-conditions and post-conditions for transitions. The pre-condition specifies

12

the constraints on the incoming arcs and the post-conditions specify the relationships

between the variables of the incoming arcs and label variables of the outgoing arcs.

A marking m of a PrT net is a mapping P -- MCONs from the set of predi-

cates to multi-sets of tokens. MO is the initial marking. A transition is enabled if

its pre-set contains enough tokens and its constraint is satisfied with an occurrence

mode. The pre-set ('t) for a transition are the set of input places for that transi-

tion. Similarly, the post-set (t') for a transition are the set of output places for that

transition. The firing of an enabled transition consumes the tokens in the pre-set and

produces tokens in the post-set. Two transitions (including the same transition with

two different occurrence modes) fire concurrently if they are not in conflict; however,

in this dissertation, interleaving semantics is assumed. Conflicts are resolved non-

deterministically. The firing of an enabled transition is atomic. The behavior of a

PrT net is defined as the set of all possible execution sequences E.

Each execution sequence e E E represents reachable markings from the initial

marking, in which a successor marking is obtained through a step (firing of some

enabled transitions) from the predecessor marking. An execution is denoted as:

e :mo 4 +mi l+ m2 -- >+...-) mk a ...

Where ni is a set of transitions, MO is the initial marking, m2, i = 1, 2, ... , are

markings such that mi is obtained from mi_ 1 by firing transition set ni. The execution

sequence e is said to be flat if all the ni's are singletons, otherwise e is said to be non-

flat. A flat execution sequence can be obtained from a non-flat execution sequence

by interleaving the transitions in the non-singleton ni's. In this dissertation the

interleaving flat form of this execution is adopted.

13

In [72], Zhu and He define Mo not as the initial marking, but rather as the set of

initial markings. This provides useful for testing purposes in their work. However, in

this dissertation, Mo is considered as the initial marking for a PrT net unless stated

otherwise.

Figure 2.2 shows the major elements of the PrT net model for the "five dining

philosopher problem".

Thinking Pickup Chopstick

0, 1, ph ch 1=ph A {ch1l,ch2} 0, 1,

2 ,3, ch2=phV1 2, 4,

ph

Eating {chl,ch2}
ph

ph

chl=ph n

ch2=ph®1

Putdown

Figure 2.2: PrT net for the five dining philosopher problem.

The model in figure 2.2 consists of three predicates - Thinking, Eating and Chop-

sticks, and two transitions - Pickup and Putdown. The flow relation includes vari-

ables ph, identifying a philosopher, and variables chl and ch2, identifying chopsticks.

Operator (defines the modulus 5 operator. The precondition for Pickup and the

postcondition for Putdown are shown in the figure. The ground terms for the sorts

of predicates Thinking, Eating and Chopstick are integer numbers in the range [0..4].

When transition Pickup fires, one token from Thinking and two tokens from Chop-

stick are consumed, and one token representing the philosopher is placed in predicate

Eating. When Putdown fires, one token is consumed and three tokens, one going to

14

predicate Thinking and two going to predicate Chopstick are produced. An alterna-

tive way of defining the sort of predicate Eating is by declaring it as a structured

sort, so that tuples of the form < ph, chl, ch2 > can be stored in Eating (each tuple

representing the philosopher and the chopsticks being used while eating).

Linear Temporal Logic (LTL). LTL [51] has been widely used to specify prop-

erties for software systems. Within the SAM framework, property specifications for

components and connectors, and constraints for compositions, are defined in first

order LTL. A first order LTL formula contains predicates as terms and can contain

universal quantifiers. Due to the fact that the model checker Spin verifies proper-

ties defined in propositional LTL, in the approach presented in this dissertation the

properties and constraints for SAM models are modified so that the LTL verification

power of Spin can be applied to them.

LTL is applied to PrT nets and Petri net concepts are included in its definition.

A standard linear time temporal logic (LTL), is a function that maps each time point

into the set of propositions that hold at that point. Classic linear temporal logic

provides, in addition to the propositional logic operators, the temporal operators Q

(always), o(eventually), U (until) and o (next). A LTL formula, D(p -+ oq) means

that the situation that p is true implies eventually q is true, always holds. The

semantics of temporal logic is defined on behaviors (infinite sequences of states). The

behaviors are obtained from the execution sequences of Petri nets where the last

marking of a finite execution sequence is repeated infinitely many times at the end of

execution sequence. For example, for an execution sequence Mo, ... , M,, the following

behavior o =< Mo, ... , M,, Mn, ... is obtained, where Mi, i E [O..n], is a marking

of the Petri net.

15

Let o- =< Mo, M 1 , ... be the behavior. The semantics of a temporal formula p

in behavior a and position j is denoted by (-, j) p:

* For a state formula p, (9, j) p Mj p;

" (a,j) = -Ip (a, j)-- zp;

* (a, j) p V q - (a, j) |-- p or (a, j) q;

" (a, j) - p a(a, i) p for alli> j;

" (a, j) op (a, i) 1 p for some i > j;

" (o-, j) pUqs= -3i> j : (a,i) & q, andVj <k<i,(a,k) - p.

2.1.2 Software Verification

The goal of Software Verification is to examine whether a software system sat-

isfies the specified functional requirements. There are two fundamental approaches

to verification: Testing and Formal Verification. Software testing alone cannot prove

that a system does not have a certain defect (nor the opposite). Only Formal Verifi-

cation can prove that a system does not have a certain defect or does have a certain

property. One of the most widely used techniques in formal verification is Model

Checking. Model checking has the benefit that it can be automated, and this gives it

an advantage over Theorem Proving, other formal verification technique, for practical

purposes ([33]). However there has been work in combining these two approaches,

such as the works in [66] and [10].

A technique that lies in-between testing and formal verification is runtime verifi-

cation ([15], [34]). It is considered as a light-weight formal method. The difference

with respect to testing is that in runtime verification monitoring facilities are added

16

to the program to observe its behavior during normal operations. During the program

execution faults are detected and actions are taken to mitigate those faults. In [18]

runtime verification techniques were applied to the SAM framework.

Model Checking Model checking is a method for formally verifying finite-state

concurrent systems. Specifications about the system are expressed as temporal logic

formulas, and algorithms are used to traverse state space of the model defined by

the system and check if the specification holds or not. In [19] states that extremely

large state-spaces can often be traversed in minutes during model checking; hence, it

provides a good choice for the analysis of concurrent systems.

Model checking techniques face a combinatorial blown up of the state-space, com-

monly known as the state explosion problem. There are several approaches to cope

with this problem, they include symbolic model checking ([12], [54] which makes

use of binary decision diagrams ([11]), partial order reduction ([58]) and abstraction.

Usually, the models to verify using model checking are hardware designs, but finite

state software models are also suitable for model checking. If the state space is too

big or infinite, abstraction can be used in order to reduce that state space and make

the model checking feasible.

Formally, the model checking problem is stated as follows: given a desired prop-

erty, expressed as a temporal logic formula p, and a model M, decide if M - p. If

M is finite model checking reduces to a graph search.

One of the most widely used model checking tools is Spin Model checker [44], and

it is the tool of choice for this dissertation.

17

Spin model checker. Spin ([44] and [43]) is a model checking tool to formally

analyze the logical consistency of distributed systems, which are expressed using the

language PROMELA. Spin has three basic roles: (1) As an exhaustive state space

analyzer for rigorously proving the validity of user-specified correctness requirements.

(2) As a system simulator for rapid prototyping. (3) As a bit-state space analyzer

that can validate large protocol systems.

PROMELA is the modeling language for Spin. It has a C programming language

style. A PROMELA program consists of processes, message channels, and variables.

Processes are global objects. Message channels and variables can be declared either

globally or locally within a process. Processes specify behavior, channels and global

variables define the environment in which processes run. Spin is used in the verifica-

tion stage as well as the simulation stage in this dissertation. Spin has a simulation

capability that is used to drive the coverage evaluation of test cases for PrT nets.

Spin offers three options for performing simulation these include: (1) random, (2)

interactive, and (3) guided. The simulation mode in Spin is intended primarily for

the debugging of a model. The random simulation option allows a user to monitor

the behavior of a model by printing any output produced by the model to the console.

Interactive simulation allows a user to resolve non-deterministic choices during the

simulation of the model by selecting an option during the simulation process. If

there is only one option then Spin selects that option and continues the simulation.

Guided simulation uses a specially encoded trail file generated by the verifier, after a

correctness violation, to guide the search. The execution sequence stored in the trail

file represents the events leading up to the error. This dissertation makes use of the

simulation capability of Spin for coverage measurement in the testing of PrT nets.

18

2.1.3 Software Testing

There are several studies done in Software Testing ([7] and [47]). The main differ-

ence between software testing and model checking is that software testing is selective

(it will select specific execution paths); whereas, model checking is exhaustive (it will

explore the whole state space). This is the reason why model checking is more ex-

pensive than testing.

One aspect of testing is measuring the coverage and adequacy of a test set. Beizer

[9] defines test coverage as any metric of completeness with respect to a test selection

criterion; meanwhile, Zhu et al. [71] explain the notion of test data adequacy criteria

by providing three definitions of test data adequacy criteria: (1) test data adequacy

as stopping rules, (2) test data adequacy criteria as measurements, and (3) test data

adequacy criteria as generators. In [72] they define an observational schema for test-

ing high-level Petri nets. This dissertation is based on this last work.

Testing PrT nets. PrT nets can play two different roles in the development

of concurrent systems: as a formal specification, and as an executable model ([72]).

These two roles provide the developer with the opportunity to combine both verifi-

cation and testing of the PrT net model, providing a higher level of confidence in the

correctness of the system. The properties of a PrT net allow the application of both

specification-based and program-based testing techniques.

In [72] a methodology of testing high-level PrT nets was developed. Four classes

of testing strategies were identified: transition-oriented testing, state-oriented test-

ing, flow-oriented testing, and specification-oriented testing. For each strategy, a set

of schemes to observe and record testing results and a set of coverage criteria to

19

measure test adequacy were defined. The concept of an observational scheme for a

concurrent system p was defined as the ordered pair < B, p > where B is the set of

partial orders of events generated by p, and p represents the mapping from a test set

to a non-empty consistent subset of all partial orders for p. Due to non-determinism

and concurrency, two or more partial orders may be generated by the same test input

for a given p. Unlike test data adequacy criteria (used to measure the adequacy of

a test set), an observation scheme determines how to observe and record a system's

dynamic behavior during test executions. This dissertation considers State and Tran-

sition Oriented Testing which are discussed below.

Transition coverage (Transition-oriented testing) It is the ratio of transitions fired

during an execution of a PrT net to the total number of transitions.

U Firing(e)
TransitionCoverage(N, E) =

|TN

Where Firing(e) = Uz-,n, e = mo n. ml n m2 -2+... - mk -n>..., and n,

are non-empty subsets of transitions that are not in conflict with each other. TN is the

set of transitions of N. Note that a Trace of an execution e is defined as Trace(e) =

< no, ni, ... nk, ... >. For this dissertation the flattened execution sequence is assumed.

K-concurrency length-L trace coverage over a collection of executions E of a PrT

net is defined as the existence of at least one e E E covered by the transition trace

q with length less than or equal to L and concurrency degree less than or equal to

K (K and L are natural numbers greater than zero). The concurrency degree of a

transition trace is the maximum number of transitions that may fire between any

successive markings in that trace.

20

Interleaving length-L transition sequence coverage over a collection of executions

E of a PrT net is defined as: given any feasible transition sequence q with length less

than or equal to L there is at least one e E E the logically covers q. A execution e

logically covers sequence q if a flattening of e contains q as a consecutive subsequence

of transition firings. To obtain the best results it is better to chose the longest pos-

sible feasible transition sequence q since the longer sequence coverage subsumes the

shorter sequence coverage.

All transition trace coverage requires that there is at least on e E E that covers

any feasible transition trace q. In general, achieving all transition trace coverage is

unfeasible.

State coverage (State-oriented testing) It is the ratio of of the reachable markings

associated with abstract states during an execution to the finite set of abstract states

for the PrT net. An abstract state (AS) is one of a finite set of states that is reachable

in a PrT net given an initial marking:

StateN U Markings(e)

StateCoverage(N, E) = e EE

ASN

Where StateN : Mark(N) -+ ASN defines how markings are associated with states.

ASN is a finite set of abstract states of N.

State transition coverage over a collection E of test executions is satisfied, if for

all feasible state transitions < si, s2 > there is at least one execution e in E such that

e covers that state transition.

21

State transition path coverage. State transition path coverage, more specifically

length-k state transition path coverage, is defined over a set of execution E and is

satisfied, if and only if for any feasible state transition path q of length less than or

equal to k there is an execution e in E such that e covers path q. Assume k is a natural

number greater than 1. A state transition path of length k is defined as a sequence of

states < si, s2, ..., sk >. In general, it is not practical to handle state transition path

coverage, however, the restriction of specifying a length of the path makes it more

practical.

2.2 Related Work

2.2.1 Model Checking and Software Architecture

The advantage of model checking over theorem proving is that the former can

be automated while the latter needs manual intervention ([3]). There have been

some previous works in applying model checking to software specification, such as

the "system for alert and collision avoidance system for air traffic control" ([14]).

In order to accomplish such effort, abstraction had to be used. Within the SAM

framework, a formal approach to analyze software architectures and the application

of symbolic model checking was presented in [38]. Other effort at applying model

checking to large systems is the work by Wing et. al. [68] which depicts a case study

of the application of the model checking technique to software systems using the SMV

([52]) model checker.

2.2.2 Model Checking and Petri nets

There has been work done in model checking low level Petri Nets [21] mainly

using the unfolding technique developed by McMillan ([53]). Also, there has been

some work done in model checking high level Petri nets as the work by Schroter et.

22

al. [60] for parallel model checking based on unfoldings. In [26], Spin was used to

model check low level Petri nets. Other efforts in model checking Petri nets include the

work in [49] for model checking modular Petri nets and [48] for model checking high

level Petri nets. In [32] Spin is integrated into the PEP (Programming Environment

based on Petri nets [31]) tool for the verification of Petri net models.

2.2.3 Test Case Generation

Several studies for the generation of test cases have been undertaken. To generate

inputs for test cases, even for complex systems, is straight-forward, but the oracles

are the elements that pose challenges [3]. One major goal in testing is the automatic

generation of test cases.

Test generation based on temporal properties has been a subject of research in

the past years ([20], [45] and [24]). Model Checkers have been used in the generation

of test cases, because counterexamples from model checkers are potential useful test

cases. For example, Ammann et.al. ([3], [2] and [4]) use the model checker SMV to

generate test cases following a mutation analysis approach. Other research works us-

ing model checking include the efforts by Gargantini et. al. [27], where model checkers

are used to generate tests from requirements specifications, and [28], where the model

checker Spin is applied to the generation of test cases for ASM specifications. More

recently the generation of test requirements for aspectual use cases based on aspect

oriented Petri nets was studied in [69]. SMV performs a breadth first exploration of

the state space, producing counterexamples that tend to be short ([3]).

In addition, there is work in combining Runtime Verification and test case gen-

eration, as is the work in [6]. In this work, the authors present a framework for the

23

automatic generation of test input and properties and the runtime verification of each

of the properties on each of the inputs. Test input is generated based on the structure

of the input and the input pre-conditions. Automatic generation of test input and

properties are tailored specifically to the application to be studied. Once the input

and the properties are defined (generated), the input is fed into the program to be

verified, the program executes generating an execution trace. This execution trace

is checked against the set of properties for that input. The first step, generating the

input and properties is called the test case generation, and the second step is the

runtime verification of each of the test cases and the properties relevant to it.

2.2.4 Property Oriented Testing

There is work done in property coverage criteria in software testing. For example

the work by Tan et. al. [64]. That work was inspired the in initial work done in

CTL property coverage in [2]. In [64], they realized that a property defined in LTL

needs to hold in all possible paths, with the number of paths possibly infinite and

each path also being an infinite sequence. They define a mutation testing approach

to property in which, a property is mutated to another one and then test cases that

identify these mutations as undesired behaviors are taken into account and provide

the required coverage on the property being tested. In their work, Li Tan et. al.

consider black-box and white-box testing, whereas in this dissertation only white box

testing is defined. Another work, [45] uses a temporal approach for the generation of

test cases. Other relevant works combining testing and temporal logic properties can

be found in [23], [50].

Ammann and Black ([2]) concentrate on specifications, mutants of these specifica-

tions and test cases that cover them. Computational Tree Logic, CTL ([56]), is used

24

in their work. The system's transition relation is encoded in CTL and test cases de-

rived from them are encoded in finite state machines that when executed will provide

a measure of the coverage of the CTL formula mutants. In a more concrete manner,

given an SMV model of the system, the transition relations in SMV are used to gen-

erate CTL formulas that express the given relations. This is called by the authors

reflection, in the sense that the CTL formulas reflect the logic of the transitions rela-

tions. Applying diverse techniques and heuristics, mutants can be constructed out of

this specification. Given a set of test cases (that can be automatically generated from

the specification), those are encoded as constrained finite state machine (CFSM). The

final step is when the test cases are executed (the CFMs are executed) and then they

are measured in whether they were able to cover (satisfy or falsify) the mutants for

the specification.

25

CHAPTER 3

VERIFICATION AND TESTING FRAMEWORK

This chapter introduces the Verification and Testing Approach for Architectural

Models in SAM. Figure 3.1 shows the major components of the approach. Given a

SAM model, a Verification process is applied to it, as well as a Testing one. Based

on the information at the design level, both in terms of Verification and Testing, a

Test Case Generation process produces test cases for the implementation level. In

addition, Tool Support aids in the modeling and analysis of the SAM model.

SVerification

SAM Model

Testing

Test Case
Generation

Support

Implementation

Figure 3.1: The verification and testing approach.

At the design level, the architecture of the system is expressed as a SAM model.

A SAM model has a dynamic behavior, which results from the aggregation of the

underlying behavioral models of its components and connectors. The behavioral

models are defined in Petri nets and for the purposes of this dissertation the kind of

Petri nets used are Predicate Transition Nets or PrT nets ([30] and [39]).

26

On one hand, for the verification process, a model checking approach is applied at

the design level. In order to accomplish that, a restricted finite state form of a SAM

model is defined. On the other hand, a PrT net is an executable model, and hence

it can be tested as programs. As part of this dissertation, a testing approach at the

design level is detailed with emphasis on the evaluation of test cases for PrT nets.

The design is related to the implementation by the generation of test cases based

on the information at the design level resulting from the verification and testing pro-

cesses. This last step is important in software development, since there is the need

to reflect properties from the design into the implementation.

As systems become more complex, the need of modeling and analysis tools applied

to their construction grows. For this dissertation, a modeling and analysis tool for

SAM models was implemented and the case studies presented in this document were

created and analyzed with the aid of the tool.

3.1 Verification

At the design level, a formal verification process is applied to a SAM model. This

verification process translates a SAM model to a PROMELA program, and then uses

Spin to verify properties of interest (PROMELA is the input language for Spin [44]).

In order to accomplish the translation from a SAM model to a PROMELA program,

the SAM model is restricted in terms of the state space of its underlying behavioral

model. This behavioral model is expressed in PrT nets, and as such the PrT nets are

restricted to be bounded and the sorts for the predicates (places) are also restricted

to contain only finite number of ground terms. The properties for the SAM model

are converted from first order linear temporal logic formulas to propositional linear

27

temporal logic formulas. This is required since the model checker Spin handles propo-

sitional linear temporal logic formulas.

With this approach, the support tool implements an automatic translation of the

SAM model to a PROMELA program, except for the properties. The properties are

semi-automatically translated and parts of them need to be handcrafted.

3.2 Testing

Testing at the design level involves the evaluation of the tests sets which are

based on the initial marking of the PrT nets expressing the behavioral aspect of a

SAM model. This evaluation is based on the theory of testing high level Petri nets

in [72] and includes transition and state oriented testing.

Once test cases are evaluated, they can be used for testing the design itself, or

for deriving test cases for the implementation level. In the last scenario, since the

implementation has more detailed information, the test cases at the design level serve

as abstract test cases, that need to be mapped to specific constructs in the imple-

mentation level. Besides test cases based on the initial marking of PrT nets, positive

test cases are generated by model checking the negation of properties of interest.

In addition to testing the behavior itself, an approach to test the SAM model at

the system, integration and unit levels is also introduced.

3.3 Tool support

In order to design and analyze complex scenarios, a tool support is required. This

dissertation includes a tool support for the modeling and analysis of SAM models.

28

One of the main features of the tool is the automatic translation of a SAM model

into a program written PROMELA, the input language of the model checker Spin.

The tool provides several modeling facilities. Two useful elements are the editors

for transition constraints in the underlying PrT net models and for properties defined

in first order linear temporal logic. With the aid of the editors, a syntactic check of

the formulas can be done, leveraging the work of the designer.

In the next chapters, the verification approach, the testing approach and the tool

support are detailed. Case studies showing the applicability of the framework and

the tool are presented as well.

29

CHAPTER 4

VERIFICATION OF ARCHITECTURAL MODELS

Verifying that a Software Architecture complies with properties of interest is of

primary importance. In this chapter the approach at formally verifying architectural

models in SAM [37] using modeling checking [19] is detailed. The model checker

of choice is Spin [44]. Predicate Transition Nets [39] (PrT nets) are used to define

the underlying behavioral models of the SAM architecture. Hence, in order to apply

model checking, restrictions are imposed to the kind of SAM and PrT net models

and the properties to verify: SAM and PrT nets models have finite state spaces and

properties in first order logic form are reduced to propositional ones. This approach

corresponds to the Verification component of the "Verification and Testing Frame-

work" proposed in Chapter 3.

To verify a SAM model, first the SAM model is translated to a program in

PROMELA, the input language of Spin. Next, the PROMELA program is loaded

in Spin and executed. If Spin finds any errors it generates counterexamples that are

traced back to the original SAM model in order to detect design flaws. See Figure 4.1.

The main piece in the verification of SAM models relies in the formal translation

of a SAM model to a program in PROMELA. The translation takes as input a SAM

model and generates as output a PROMELA program. The translated PROMELA

program needs to reflect all the elements in the SAM model (complete) and it has to

preserve the semantics of the SAM model (consistent) for the translation approach

to be considered correct. The completeness and consistency of the translation are

shown here. Some of these aspects are discussed in [5].

30

SAM (PrT net)

model

Translate

Feedback PROMELA
program

J Verify (Spin)

Counter examples

Figure 4.1: Verification of SAM models.

In the next sections, first the restrictions on SAM and PrT net models are de-

tailed (4.1). These restrictions allow providing a sound translation approach . Next,

the translation approach is defined and the mapping between elements in the SAM

model and the PROMELA program (4.2) is detailed. In addition, a discussion on the

correctness of the translation is also provided (4.3). A brief discussion describes alter-

native translation approaches to the one provided here (4.5). Finally, the summary

of the chapter is presented (4.6).

4.1 Restricted SAM and PrT net models

There are some restrictions placed on the SAM and PrT net models in order to

make them suitable to be analyzed by a model checker. The most important one

is to define a finite state space SAM model, so as to make it feasible to convert it

to a finite state PROMELA model without relying on abstraction. Additionally, the

kinds of properties that can be verified are restricted. These restrictions also allow

a semiautomatic translation of a SAM model to PROMELA and the corresponding

verification process in Spin.

31

Restrictions on ports. A port can be mapped to multiple ports in the lower layers

within the hierarchical composition view of a SAM model. A one to one mapping

needs to be established and as a result the following restriction is defined:

One-to-one port mapping between compositions: Given two compositions Ci and

Ck, where Ck is the refinement of one component or connector Cji in Ci, a port in

Cji can only be mapped to one port in Ck.

The state space of a SAM model is defined by its behavioral model, a PrT net

model; hence, the PrT net model needs to have a finite state space. Not only do the

sorts are restricted but also the number of tokens each predicate (place) in the PrT

net can have is set to have a limit. First the restrictions on sorts are discussed.

Restrictions on Sorts. There are four aspects to consider: (1) Finite number

of ground terms, (2) real numbers, (3) strings and (4) derived sorts. Each one is

elaborated in some detail below.

(1) Finite number of ground terms. The basic sorts available for the restricted

version of PrT Nets are defined by:

sbasic ::= string bit bool byte short lint unsigned

One requirement is that the number of ground terms for each basic type be

finite. Each basic type is restricted to be the same as its PROMELA counter-

part, except for type string. Sort string is mapped to a short integer type in

PROMELA.

32

(2) Real numbers. Even though type double was not included as a basic sort, to

work with finite real numbers they have to be mapped to integer values. It is

assumed that this mapping is done explicitly in the model built.

(3) Strings. Sort string, which represents any string of finite length, is reduced to

represent a limited number of strings. Type string in SAM is mapped to type

short in PROMELA, and in the translation process each string ground term is

mapped to a unique integer number in a sequential fashion (the strings encod-

ing). The only operations available on strings are assignment and comparison,

which can be realized in the mapped integer values. Other operations such

as concatenation and sub strings, are not available (given that the encodings

become cumbersome). Finally, this restriction also means that all the string

constants in the model need to be defined explicitly; otherwise, they are not

encoded.

(4) Derived sorts. The derived sorts are the Cross Product and the Powerset, so

derived sorts of the form si x s2... x s, and p(s), with s, sl, ... , s, being sorts, are

defined. Since the underlying basic sorts have finite ground terms, the resulting

cross products and powersets are also finite. However, the number of ground

terms might explode. For instance, for sort short, there are 65536 possible

values for a variable of that type (if the size of an element of that type is 2

bytes). If the powerset is considered p(short), now that accounts for 265536

possible ground terms for that new type. This means that a limit needs to be

set to the number of elements each subset can contain.

The set S of sorts for a PrT Net contains elements defined by:

s ::= sbasics(Xs)'1P(s)

33

Bounded Nets. Each p E P, with P being the set of places in the behavioral model,

is bounded.

If a designer builds an infinite state space SAM model, in order for the approach

to work, it is assumed that prior to the translation to PROMELA the designer makes

the explicit mapping to a finite state space by using abstraction and by directly defin-

ing bounded values for all the places in the behavioral model and mapping the basic

sorts to basic PROMELA types.

Property Specification. The studies are restricted to a finite set of properties.

" Liveness properties. In order to specify properties of the form Vx - (D(F1(x) -+

oP2(x))), the SAM model does not have to contain cycles that may lead to an

infinite sequence of repetitive states.

" FOL-LTL formulas. First Order Logic properties are instantiated, according

to the initial marking, into Propositional Logic ones. So a formula of the style

Vx - (E(P1(x) -+ oP2(x))), where P1 and P2 are two predicates and (Pl) =

p(P2) = short x short, and where the initial marking is Mo(Pl) = {< 1, 1 >

, < 2, 2 >} and Mo(P2) = {} yield the set of properties: {E(P1(< 1, 1 >) -+

oP2(< 1,1 >)), Z(P1(< 2, 2 >) -+ oP2(< 2, 2 >))}.

The properties studied in this dissertation were three liveness and one safety:

" Forward: Vx - (L(P1(x) -+ oP2(x))). A system that needs to forward a request

can define this kind of property. If there is a token in P1 (the request arrives

at P1) then eventually it will show up at P2 (the request will arrive at P2).

" Transformational forward Vx-3y (L(P1(x) --+ o(P2(y) A y[l] = x[1]))). This is

more generic than the previous one. If there is a request that suffers transfor-

34

mations, the first element in the tuple can be marked as the id of the request,

so that it is always known which request is being handled.

" Transformational free form: Vx3y - (r(Pl(x) --* o(P2(y) A R1(x, y)))), where

R1(x, y) is a relation between x and y. This is even more generic, in that for

a token at some place, there is another one in another place, and there is a

relation known before hand that relates the latter to the former.

" Safety: Vx - (L((P1(x) -- R1(x)))). This safety property states that if a given

token is at a place P1 it complies with some restriction R1. In safety properties,

usually, instead of wanting to observe the property is being satisfied, the desire

is to observe it is not being complied with. For example, a token c that is in

place P1 and where R1(c) evaluates to false.

The set of SAM models is defined SAM. And the set of restricted SAM models

is defined as R-SAM: RSAM C SAM.

4.2 Translation to SPIN

In this section, the approach at translating the restricted version of a SAM model

to a PROMELA model is explained in detail. The first step is to create a flattened

version of the SAM model, and the second one is to translate the flattened SAM

model to a PROMELA program.

Flattened version of a SAM Model . Given a SAM Model with a set of com-

positions C = {C 1 , C2, ... , Ck}, set C is reduced to a set C' = {Cl} containing only

one composition. This is achieved by replacing each component or connector that

is refined with the components and connectors in the composition refining it (a re-

fined component or connector is called non-elementary component or connector re-

35

spectively). This means that given a non-elementary component or connector Cyj in

composition Ci, which is refined by a composition Ck, the following steps are followed;

(1) Chi is replaced by the components and connectors Cmk and Cnk in Ck.

(2) The property specification S 2 for Cji is added to the set of constraints Csi for

composition Ci.

(3) The set of constraints Csk in Ck is added to the set of constraints Csi for

composition Ci.

In Figure 4.2, an example on the flattening of a SAM model can be seen.

C1

S C11 s C21 5---> C3,

C2C

CL 0 3 C22 C21 - C

C2Flatten y C13 C23

C___________ 14 024

C3 C4

C13 C23 C1 >- C24

Figure 4.2: Flattening a SAM Model.

Having the flattened version of a SAM model, its integrated behavioral model is

extracted next.

Integrated Behavioral Model. Given a SAM model consisting of only one com-

position Ci = (Cmi, Cni, Csi), its integrated behavioral model Bi is created by com-

bining the behavioral models of each Cji E Cmi U Cni with Cji = (Bji, Sji):

Bi = UBjj

36

Once the flattened version of a SAM model is obtained, the actual translation

process (mapping of elements in SAM to elements in PROMELA) is described next.

The translation is divided in two parts, one called Composition Translation that takes

into consideration all the elements except the behavioral models for components and

connectors, and the other part referred to as Behavior Translation that considers the

behavioral models (PrT nets). In the translated PROMELA program, the embedded

C code feature of PROMELA ([44]) is used to define functions implementing various

notions in the SAM model. For example, a function that adds tokens to a place and

another function that fires a transition are defined.

Composition Translation

The composition translation is straightforward, a component is translated into

a proctype. A component's specification is translated into a never claim with some

restrictions. Also, the constraints for the top level composition is translated into a

never claim. Later in this section, it is explained how the never claims are constructed.

Behavior Translation

A PrT Net consists of three elements: a finite net structure (P, T, F), an algebraic

specification (S, Op, Eq) and a net inscription (p, L, R, Mo). All of them need to be

reflected in the target PROMELA code. The three elements are closely related, for

example, when a reference to a predicate p E P, means that there is the notion of

its sort (p(p) E S), and its initial marking (Mo(p)) among others. The behavior

translation process is divided in three parts: sort translation, place translation and

transition translation.

37

(a) Sort Translation. Sorts in a SAM model are defined the following way:

S ::= Sbasicls(Xs)+P(s)

Sbasic ::= string bit bool byte short int unsigned

Basic sorts. Each basic sort, except sort string, has a PROMELA counter-

part. The operations for those sorts are the ones available for any integer type

and boolean type. Sort string is mapped to type short in PROMELA. For

string sort only comparison and assignment operations are allowed, as it was

discussed earlier in the chapter.

Cross product. A cross product sort s = si X s2... X sn is translated as:

typedef s{

sl field1;

s2 field2;

sn fieldn;

Equality and assignment operations are defined for this sort using the PROMELA

embedded C code feature. The prototypes for the functions are:

int is.equal-s (s *left , s *right){...}

void assign-s (s *left , s *right) { ... }

Powerset. A powerset sort s = p(s1) is translated as a structure containing a

fixed-length array of objects of type si and the number of elements in the array

being used:

typedef s{

int num;

sl set [max-n

38

Constant maxn is the maximum number that a set belonging to the powerset

can have. The operations defined for this sort are the usual set operations,

plus equality and assignment. These operations are implemented using the

embedded C code feature in PROMELA. For example, some of the prototypes

of the functions implementing the operations are:

int isequals(s *left , s *right){...}

void assign s (s *left , s *right) { ... }

int counts(sl *pval, s *pset){...}

int in.set _s (sl *pval , s *pset){...}

s setunions(s *left , s *right){...}

(b) Place Translation. Given a place p E P the following are defined in PROMELA:

Bounded Values. A symbol for the bound value for p:

#define BOUNDIIp maxval

Where maxval is the maximum number of tokens for that place. By default it

is set to 10 (maxvalis10).

Tokens Storage. Let s = p(p) be the sort of place p. Two variables for

dealing with the tokens at p are defined:

s vp [BOUNDp] ;

short nump;

Array vp contains the tokens. The maximum number of tokens is given by

bound p. And num-p is the current number of elements to be considered in the

array, i.e. the number of tokens at place p (0 < nump < BOUND-p).

Initial Marking. The initial marking Mo (p) is defined by creating a series

of expressions in PROMELA language to assign values to each token and each

39

field the token has. For example, assuming that <p(p) is a cross product of m

basic sorts and the initial marking for p has n elements, the code generated is:

nump = n;

vp [0]. fieldl = val_1 ;

vp [nump-1]. fieldm = val-nm;

Add and Remove Tokens. Two helper functions are implemented, one to

add a token and the other to remove a token from place p:

void addp(short *num-p, s *v-p, s * tok)

void removep (short *num-p, s *v-p, short -idx)

Query Tokens in Place. A function to test whether a token is in a place or

not is also defined:

int in-p (short nump, s *v-p, s * _tok)

(c) Transition Translation. An overview of the two basic procedures for a tran-

sition, testing the enabledness and firing, is presented. Given a transition t E T,

the following constructs are defined in PROMELA:

Enabledness. Testing the enabledness of a transition t involves a substitution

on all the variables in the incoming arcs with the corresponding tokens in the

incoming places, and then testing the precondition on t. In other words, given

*t, the set of incoming arcs for t, testing the enabledness of transition t involves

for each pi E *t a substitution on the variables in L(pi, t) with tokens in pi

and the testing the precondition in R(t) with those substitutions. A function is

written such that given the preset for transition t, it either returns 1 if there is

a substitution that satisfies its precondition, or 0 otherwise:

int is-enabledt (presett)

40

Firing. When t fires, tokens are removed from 't and tokens are added to t'.

The following function prototype is defined and implements the firing notion in

C language:

void firet (preset_t , postsett)

Universal Quantifiers. Functions are added to test the truth value of uni-

versally quantified terms whenever R(t), for transition t, includes them. These

functions are used in testing the enabledness of transition t. Their prototypes

are as follows:

int for allt (params)

int existst (params)

These functions return either 1, if the term evaluates to true, or 0 if not. The

parameters params for these functions are lists of all the entities involved in

evaluating the term.

Property and Constraint Translation. The set of constraints Csi for compo-

sition C, and the property specification Sji for each component/connector Cii E Ci,

are expressed in first order LTL. Some aspects on how an LTL formula is translated

to PROMELA code are briefly mentioned. Given an first order logic LTL formula

f, all predicates (places) are instantiated, each predicate term Pi in f generates a

macro:

#define Pi cexpr{TokenAtPi()}

The body of function TokenAtPi() reflects an instantiation of the predicate to a

propositional formula. It returns an integer value of 1 or 0, depending on whether

a specific token or set of tokens can be found there, this is defined by the person

verifying the model. There are a few approaches on how to select the ground terms

for instantiating the predicate, the approach selected in this dissertation considers the

41

tokens in the initial marking as the base values. Next, the never claim is generated

by making use of the property automaton generator facility available in Spin. For

instance, for liveness property Vx - (1(P1(x) -+ oP2(x))) the following is generated:

#define P1 cexpr{TokenAtPl()}

#define P2 cexpr{TokenAtP2()}

never { /* !([](P1->o P2)) *7

TO An it:

if

(! ((P2)) && (P1)) -> goto acceptS4

(1) -> goto TOinit

fi;

acceptS4:

if

:: (! ((P2))) -> goto acceptS4

fi ;

}

For this example, if function TokenAtPl() evaluates whether a token c is at place

P1 or not, then function TokenAtP2() has to evaluate whether the same token c is

at place P2. If the property holds, these two functions will return 1 at different times

(first TokenAtPl() and next TokenAtP2()).

PROMELA model for a SAM Model. The previous paragraphs described

how each part in a SAM model is translated to a PROMELA construct, but did

not mention how they combine together. A brief explanation on how the different

parts are combined by looking at the structure of the resulting PROMELA program

is presented. Below, each number represents a section in the PROMELA code and

the order in which its appears:

(1) Defines all the constant symbols identifying the bounded values for places.

42

(2) Defines the structured sorts, i.e. cross product and powerset types.

(3) Sorts operations are defined for structured types in embedded C code sections.

(4) The port places variable are defined next. They have to be defined globally,

since two components that communicate share the same place at the specified

port, and they need access to it.

(5) A synchronization global variable is also defined to keep track of the number

of component processes that are initialized. Each process updates this synchro-

nization variable whenever it has finished setting up the initial marking of its

corresponding PrT net. Only when all the components have defined the initial

markings of their corresponding PrT nets, the firing of transitions can begin.

(6) Embedded C code with functions to add tokens to places and to remove tokens

from places.

(7) The transitions embedded C code for testing their enabledness and executing

the firing are defined.

(8) The proctype definition for each component is defined. This proctype defines

the variables for the places of its behavioral model that are not related to ports.

The places related to ports are defined globally. Next, code for setting the

initial marking is added, and then a synchronization point is established to

wait until all the other processes have established their initial marking. At last,

an infinite loop is created that tests for the enabledness of its transitions and

fires transitions that are enabled.

(9) An init process available in PROMELA is implemented, the initial marking for

places related to ports is established there. It also starts executing all the other

processes (the components processes).

43

(10) Finally, the never claim for the desired property to check is defined. It includes

the automaton code generated for the property of interest by the Spin.

In table in 4.3 a summary of the translation is shown. For each section a PROMELA

code outline sample and its corresponding relation to a SAM model are presented.

Section PROMELA code example Relation to SAM

1 #define BOUND_P1 maxP1 Bound value for place P1.

typedef PSET{

2 string set[max]; Definition of powerset sort PSET
short num; to be used to define sets of strings.

};
c_code{

int isequal_PSET(PSET I, PSET *r){ Operations on sorts. Here, equality
3 // return 1 if equal, 0 otherwise testing for two elements of type

} PSET is defined.
}

4 PSET v_Port1 [BOUND_Porti] Porti is a place related to a port.
short numPort1

5 int _proc num; The number of processes that have
already been initialized.

c code{ Add/remove tokens to/from P1
6 void addP1(...){ ... } when a transition having P1 as part

v r of its pre/post set fires.

c_code{

7 int is_enabled_T1(...){ ... } Testing the enabledness and firing
void fire_T1(...){ ... } a transition Ti.

}

proctype Comp{
// initial marking Component Comp. Initial marking:
// wait for the other procs to initialize Comp process initializes its state,

8 do waits for the other processes to
atomic{ cexpr{isenabledT1(...)} initialize. Behavior execution: after

->ccode{fireT1(...)}} initialization, Comp fires its
od transitions if they are enabled.

}

init{
/initial marking for port places Initial marking: sets the initial
// initialize synchronization constants marking for places acting as ports.

9 atomic{ Executes the Component processes
run Comp(); for them to start the execution of

the Petri nets.
}

#define P1 cexpr{TokenAtP1()}

10 /LTL automaton definition The property to be verified.

}

Figure 4.3: Overview of the sections in the PROMELA code.

A graphical example of the translation approach showing some of these aspects

can be seen in Figure 4.4.

44

#define BOUNDportP1 MAXportP1
#define BOUND P2 MAXP2
typedef SHORT2{

short field1;
short field2 };

short numportPl;
Pp 1 i 3 SHORT v_portP1[BOUNDportP1];

proctype procCij{
short numP2;

^HORT2 v_P2[BOUNDportP2];
rasat /initial marking

// wait until all other Cij's are initialized
do

enabled_ti - fire_t1;
enabled_t2 -+firet2;

X[1]!= 2 y=X[1]+X[2] od

pot1 {} {} P x y init{
atomic{

run procCij);
<p(portP1)=short x short }

}

Figure 4.4: A simple outline of the translation process.

4.3 Translation Correctness

This section provides a discussion on the correctness of the translation approach

from SAM to PROMELA. It does so by demonstrating the completeness and the

consistency of the translation.

Interleaving semantics Both for the Behavioral model in SAM and for the

translated PROMELA model, the interleaving execution semantics is chosen.

Since there is no true concurrency in PROMELA, this is an important observa-

tion that will allow the two models to be compared. For an interesting discussion on

interleaving semantics w.r.t true concurrency refer to [44].

Claim 1 (Flattened version correctness) The flattened version of a SAM model

respects the original model's behavior and specification.

Proof Follows directly from the flattening procedure.

45

The different compositions can be thought as being different ways of partition-

ing a system. In the end all those partitions are for the same underlying behavioral

model, and the partitioning that is picked is one with a flat structure, i.e. with a

single composition.

Completeness

Claim 2 (Completeness of the translation) Given a restricted SAM Model,

there exists a corresponding PROMELA model that defines all of its elements.

Proof Follows directly from the mappings.

In the translation process, each of the elements in the SAM model is translated

into a PROMELA construct. Two elements to pay special attention to, are the prop-

erty specification and the initial marking. For the first one, it was mentioned how

to convert a predicate into a proposition so that properties can be verified in Spin.

For the second one, it was explained how to define a series of expressions to build

the initial marking for each component/connector and how all the components/con-

nectors are synchronized before actually executing the related code for testing the

enabledness and firing of transitions.

Consistency

Claim 3 (Initial Marking consistency) Given a restricted SAM model sam and

its translated PROMELA program prom, the initial marking in the underlying behav-

ioral models in sam is consistent with the state prom is previous to the point where

the processes test and fire the translated transitions relations.

46

Proof In SAM model sam, the initial marking of its components and connectors is

defined as part of the model itself. In PROMELA program prom, there is a series

of steps that make the variables related to the places take the initial values, and no

process executes the enabledness testing and firing of transitions before every other

one has initialized its variables. In prom, there is a synchronization step before the

do::...::od main loop in each process. This synchronization step waits for a global

variable to reach the number of processes that have been initialized:

(initprocs == numprocs)

Hence, the initial marking in sam corresponds to the state in prom previous to which

each component/connector process starts to execute the enabledness testing and firing

of transitions.

A single step in a PrT net execution can correspond to multiple ones in the trans-

lated PROMELA program. For instance, when firing a transition, there are multiple

instructions that need to be combined to realize it. This dissertation introduces the

notion of abstract execution of a translated PROMELA program.

Translated PROMELA program abstract execution sequence After ini-

tialization, when the initial marking of the model is set, the only executable instruc-

tions in the processes are the ones within the do..od construct:

proctype proc-ij (){

do

:atomic{is -enabledt1 -> firetl}

atom ic{isenabled -t2 -> fire -t }

:atomic{isenabled~tn -> firetn }

od

}

47

An abstract execution is a sequence o-ofireitiu-1fire-t2 ... , where a change of state oc-

curs only when an executable statement firet E {fire-ti, fire-t2, ... , firet} to the

right of the arrow is executed.

The enabledness testing and firing of transitions in the translated PROMELA

program are atomic constructs; as a result, the firing of transitions in the PROMELA

program has the same meaning as the firing of transitions in the PrT model.

Claim 4 (Semantic Consistency between a SAM model and its translated

PROMELA program) A SAM model sam is semantically consistent with its trans-

lated PROMELA program prom, iff for every execution sequence in sam there is a

corresponding abstract execution in prom.

Proof Follows directly from the definition of abstract execution for a PROAELA

program.

Since in the translated PROMELA program there is a finer granularity, for in-

stance, when firing a transition there are multiple instructions that need to be com-

bined to realize it, this dissertation works on the abstract version of an execution

sequence in PROMELA. This abstract sequence contains atomic aggregates of sub

steps that correspond to single steps in the PrT net model. When firing a transition

the sub steps are part of an aggregate atomic construct, they are uninterrupted and

hence can be seen as a single step.

4.4 Automatic Translation

The preciseness of the translation approach from SAM to PROMELA allowed

the implementation of a semiautomatic translation procedure as part of the SAM

48

modeling and analysis tool depicted in Chapter 6. One part that can not be directly

automated is the property specification. The kinds of properties that have been stud-

ied are safety and liveness (from those guarantee ones are considered), which have

general skeletons in terms of the verification automata in Spin. The translation pro-

cedure in the tool starts by encoding the internal SAM object structure to XML

format. Then the XML structure is translated to PROMELA code. In the tool, class

SAM2SpinTranslator implements this translation, the top level code of the trans-

lation is outlined below:

public class SAM2SpinTranslator {

... // other definitions

public String translate (SAMML model){

// Get the XML version of the SAM model

XMLExport export = new XMLExport (model);
String origXml = export . getXML (;

// Reduce the XML version of the SAM model to a unique composition.

SAMXMLTransformer t ran s = new SAMXMLTransformer () ;

Document doc = trans . reduceToSingleComposition2 (origXml);

Node nodeSAM = doc. getFirstChild ();

// Create the PROMELAModel object

PROMELAModel prom = new PROMELAModel (;

/7 Now proceed to transform it .

/7 Generate the constants

generateCons (nodeSAM,prom);

// Generate the sorts

generateSorts (nodeSAM, prom);

// Generate the operations on complex sorts (assignment , equality)

generateSortsOps (nodeSAM, prom);

// Generate the global ports

generatePorts (nodeSAM, prom);

49

// Generate the global vars

generateGlob (nodeSAM,prom);

// Generate the transitions

generateTrans (nodeSAM,prom);

// Generate the components/connectors processes

generateProcs (nodeSAM,prom);

// Generate the initial process

generateInitProc (nodeSAM, prom);

//generate the Property

generateProp (nodeSAM,prom);

return prom. toString (;

}

... // other definitions

}

4.5 Discussion

A SAM model encompasses three aspects: Structure represented by components

and connectors within compositions, Behavior described by PrT nets and Properties

expressed in first order Linear Temporal Logic. The translation mapping presented

in this Chapter describes how each of those aspects are translated to PROMELA

constructs. This subsection provides some of the alternative ways of doing this trans-

lation. It also discusses some aspects of the verification of FO-LTL properties in Spin.

Non-flattened Composition Translation. A non-flattened SAM model m, con-

sists of multiple levels of compositions. One way to translate m to PROMELA is to

define each component/connector as a process, preserving the hierarchical structure.

A consequence of this is that the process for a refined component will contain other

50

processes, the processes for the components and connectors in the refining composi-

tion. As a result, a flattened version is preferred.

Single integrated behavioral model. An integrated behavioral model for a SAM

model can be defined. This leads to another approach in which a single process is

defined for the whole system, and the places (and ports) are globally visible. The

notion of components and connectors disappear at this level. This can provide useful

if there is a need to measure transition coverage and state coverage for the whole

system in terms of testing. For purposes of proving the correctness of this translation

approach, a similar methodology as explained in this Chapter can be followed.

Transition as process. Each transition in the PrT net model can be defined as a

process. Given that interleaving semantics for the execution of the PROMELA code

is assumed, the same effect is obtained as if the transition code is part of a process.

If the transition is picked to be fired, it will fire without interruption (atomic con-

struct). One reason for not choosing this alternative is that Spin limits the number of

processes that can be run, so if there is a model with several transitions, the available

processes might get exhausted.

Transition enabling and firing construction. Two important aspects of the

translation procedure are how to compute the enabledness and to execute the firing

for a transition. When testing the enabledness of a transition t, another approach

is to compute all the substitutions for the variables in the incoming arcs. Next the

substitutions that enable the transition can be computed and from these enabling

substitutions, one transition can be randomly chosen for the actual firing. For each

p c 't, a matrix of indexes with |L(p, t)I number of columns and p_ number

of rows is created. Finally, a random selection process is executed on the matrices

51

corresponding to the incoming places for a transition. Experiments regarding this

approach were not performed.

First Order LTL Expansion. A formula can be expanded to include all possible

substitutions for the predicates involved in it. For example, given a formula Vx

(ZP1(x) -+ oP2(x)), where Pl and P2 are two predicates and p(P1) = (P2) =

short x short, the complete enumeration is obtained:

QP1(< 0, 0 >) -+ oP2(< 0, 0 >)) A ... A EP1(< 0, n >) -+ oP2(< 0, n >))

LP1(< n, 0 >) -+ oP2(< n, 0 >)) A ... A LP1(< n, n >) -+ oP2(< n, n >))

Where n is the number of constants in short type. Overall there are n 2 formulas in

the enumeration. The bigger the domain the bigger the formula enumeration. This

provides impractical for model checking.

4.6 Summary

This chapter presented a formal approach for verifying that an architectural model

in SAM satisfies properties defined in First Order Linear Temporal Logic. To that

end, first restrictions on the kinds of SAM models that the approach can be applied

to were presented. Next, a translation procedure was detailed in which elements

in a SAM model map to elements (constructs) in a PROMELA program. For the

translation to be considered correct, the resulting PROMELA code has to reflect every

element in the SAM model (completeness) and it has to preserve the semantics of the

model (consistency). A proof discussion on the consistency and the completeness of

the translation was provided. A quick introduction to the automatic translation of

a SAM model to PROMELA was also presented. Finally some alternatives to the

translation part of the approach were discussed.

52

CHAPTER 5

TESTING OF ARCHITECTURAL MODELS

An architectural model that exhibits a dynamic behavior can be analyzed in terms

of testing. A SAM architecture defines the behavior of a system in terms of PrT nets.

The main focus of this chapter is to introduce the testing process for an architectural

SAM model, i.e. design testing. Additionally, it discusses how the design itself is

used to guide the testing of the implementation, i.e. implementation testing. Figure

5.1 shows these two kinds of testing.

In design testing, the SAM model is translated to an ArchJava program, which

is executed and tested (see [1] for ArchJava details). One interest is how to select

test cases based on the design for the implementation. At the implementation level,

the design has a corresponding more detailed implementation written in a high level

programming language, such as C# and Java, among others. This implementation

can be executed and tested based on the information obtained from the design.

Design Testing

ArchJava
SAM

model Test Case

Evaluation

Implementation Testing

Java, C#
program

Figure 5.1: Design and Implementation based testing of SAM models.

53

One aspect of the testing process is the definition of test cases and coverage and

adequacy criteria [62]. This dissertation introduces the notions of test cases and cov-

erage and adequacy criteria for design and implementation based testing. In addition,

there are levels of testing: unit testing, integration testing and system testing. Those

levels are detailed in this chapter as well.

Design Testing

In order to be tested, the element under test has to exhibit a dynamic behavior,

so that it can be executed and evaluated. This means that for testing the design of

a system, the design needs to include a dynamic behavior resulting from a behav-

ioral model. A SAM design model includes such a behavioral model. The underlying

behavioral model of a SAM model is the result of the behavioral model of its compo-

nents. Each component's behavioral model is expressed as a PrT net. One goal is to

test this underlying behavioral model.

There are two elements related to testing the design in SAM, (1) test case selec-

tion, and (2) execution and testing of the design itself.

One on hand, for test case selection the interest is in measuring the adequacy of

test sets that can be used to test the design and also that can be used at the imple-

mentation level. Since the behavioral aspect of SAM designs relies in PrT nets, then

it is of primary interest the application of the testing theories presented in [72].

On the other hand, testing of the SAM model itself is achieved by translating

the model to an ArchJava program and executing it under a test scenario. ArchJava

54

includes architectural concepts that makes it amenable for the implementation of ar-

chitectures. There are previous works at translating a SAM model to ArchJava (see

[25]); in consequence, the translation itself is not elaborated in this dissertation. A

testing approach for SAM models is critical, specially in cases where model checking

is not possible or presents too many restrictions. In addition, a SAM model that

was model checked, can be still tested by loosening the restrictions enforced upon it,

and the results in the model checking stage can be applied to drive the testing process.

Implementation Testing

A SAM model represents the architecture of the system. The final implementation

of the system, which can be done in any high level programming language such as

Java, C# or C++, needs to reflect the properties of the architecture. To this end,

the interest is in generating test cases based on the architecture that can be applied

at the implementation level. Note that there is a difference in the ArchJava program

and the final implementation of the system: the final implementation of the system

contains much more implementation details than the one provided in the ArchJava

program for the SAM model.

In this work, the derivation of test cases for the implementation based on the

design is achieved by using: (1) model checking, and (2) the test cases at the design

level. In the first case, Model checking is applied to negated properties at the design

level, this generates counterexamples (execution sequences) representing desired be-

haviors that the testing phase in the implementation is interested in observing. In

the second case, test cases used at the design level can be reused by translating them

to test cases in the implementation.

55

Before dwelling into the details of the testing approach for architectural models

in SAM, some important concepts are discussed in the next section.

5.1 Concepts

This section describes definitions introduced as part of this dissertation. It also

incorporates previously defined concepts, specially the ones related to testing coverage

for PrT nets in [72].

5.1.1 Test Cases and Petri nets

A Predicate Transition Net (PrT net) is an executable model and as such it can

be executed and tested as programs ([72]). In addition, a PrT net can serve as the

model for an implementation and it can be used in the testing process for the imple-

mentation. Towards a theory of testing PrT nets, in [72] Zhu and He devised a theory

for observing the dynamic behavior during testing and evaluating test cases for PrT

nets. They defined MO as a set of initial markings instead of a single marking, mainly

because they have the complete input domain explicitly ([72]); hence, each marking

in Mo constitutes a test case. Given the non-deterministic nature of Petri nets, a test

case can be applied multiple times leading to different observations and coverage, so

they also define a test set as a multiset of test cases.

This dissertation not only uses the initial marking but also the execution sequences

to define test cases for PrT nets. The initial marking is used when the testing process

is based upon random executions of the PrT net. Meanwhile, the execution sequences,

which include firing sequences, are used when desired paths need to be observed and

when the testing process can control the execution of the system under test. The

next paragraphs discuss these aspects.

56

Random execution of a PrT net (non-guided execution)

For testing involving the random execution of a PrT net, the same initial marking

can lead to different execution sequences when applied multiple times. Petri nets

are concurrent by nature and the execution paths can not be predicted before hand.

Following on the notion that M 0 is the initial marking of a PrT net, rather than a

set of initial markings (as defined in [72]), MO can be seen in two ways:

" As the test input: the initial marking is a test case.

" As the input domain: test cases can be derived by selecting tokens in the initial

marking.

Although the semantics of concurrent programs cannot be defined as a partial

function from inputs to outputs ([72] and [73]), it is still possible to introduce the

notion of input and output for a test case in the testing process for PrT nets. The

test input is defined as the initial marking or a subset of it, this also marks the point

from where the testing process starts, and the output is defined as the set of final

markings where the testing process ends. This yields the generic form of a test case

for a PrT net:

Definition 5.1.1. (PrT net test case) Given a PrT net model N, a test case tc for

N is a tuple:

tc = (Mo, tcinput, tc0otput)

Where MO is the initial marking for N, tcinput is the input for the test case and tcoutput

is its output. If Mo is the input domain, then tcinpt C Mo; otherwise, tcinput = Mo.

The output tcoutput is the set of markings reachable from Mo up to where the behavior

of the system under test is observed.

57

When testing the implementation of a PrT net, if the input tcinput is a subset of

Mo, Mo - tcinput defines the set of tokens that are not part of the execution and that

can be removed. Since the execution of a PrT net under testing can be stopped at

different times, the output tcputput is defined as a set of markings reachable from the

initial one and marks the points up to where the PrT net was executed under the

test case.

The following definition of a test set for Petri nets (definition 5.1.2) corresponds

to the notion of test set that introduced in [72]:

Definition 5.1.2. (PrT net test set) Given a PrT net model N, a test set is defined

as the multiset:

ts = {(tc, n)}

Where tc is a test case and n E N is the number of times the test case is executed in

the testing procedure.

Controlled execution of a PrT net (guided execution)

Two challenges in testing concurrent systems are (1) observing the dynamic be-

havior of the system during testing and more importantly (2) replaying scenarios of

interest, as mentioned by Carver and Tai ([13]). In unit testing, the element being

tested is executed under a controlled scenario, and as part of the controlled scenario,

a replaying facility can be introduced in the module being tested. For Petri nets,

the replaying facility translates to being able to control the firing of transitions, as

opposed to the original non-deterministic transition firing.

58

This is of particular interest when testing the implementation of a Petri net against

temporal logic properties. At the design level, model checking can be used to generate

execution sequences that lead to desired behaviors, e.g. comply with liveness prop-

erties. These execution sequences are abstract execution sequences from the point of

view of the implementation (a mapping relation between the executions in the im-

plementation and executions in the design is defined). Next, at the implementation

level, the component can be guided to execute following those abstract execution se-

quences. If during the execution, after each step (transition firing), the resulting state

in the implementation maps to the corresponding abstract state in the design, then

it can be concluded that the component satisfies the property for the specific scenario.

To this end, a test case that includes information on what input is required and

what output is expected at every step, is required. This dissertation defines a test

case with execution sequence for that matter:

Definition 5.1.3. (PrT net test case with sequence) Given a PrT net model N, a

test case tc for N is a tuple:

tc = (MO, tCinput tCoutp ut)

Where MO is the initial marking for N, and tcinput and tcoutput are the test case input

and test case output respectively. The test case input tcinput contains a finite sequence

of n transitions (tseq) and a finite sequence of n substitutions (aseq):

tCinput ~ (tseq, aseq)

tseq t 1 , t 2 , ... , t

aseq ~ a1, a2, ... , an

59

The test case output (oracle) tcoutput contains a finite sequence of n markings:

tCoutput = M 1 , M2 , ... , Mn

The initial marking Mo and the elements in tcinput and tcoutput combine so that

Mo [ti/al) Ml [t 2/a 2) M 2 ... [tnan) Mn is a valid execution sequence of N.

In the next paragraphs the relationships among these elements are explained in

more detail.

Initial State: The initial marking Mo defines the initial state of the system. For

testing purposes, not all the information contained in the initial marking may be used.

As mentioned before, Mo can serve both as part of a test case or as the whole input do-

main. For this specific controlled scenario it is assumed to be the whole input domain.

Test input: The test input is given by the transition sequence tseq and the sub-

stitution sequence aseq. The transition sequence consists of consecutive transitions

that fire one after the other, i.e., given sequence tseq = ti, t 2 , ... , tn, transition ti+1 fires

after ti (ti c [1..n]). Each transition ti in tseq is enabled under substitution ai in aseq

and marking Mi_1 . Each ai instantiates typed label variables in L(p, ti) where p E* t.

Test output: The oracle values are represented by the markings in the sequence

tcoutput. Each Mi in tcoutput results from the firing of transition ti under substitution

ai and marking Mi_1 (i E [1..n]). It is concluded that Mi is reachable from Mo.

This definition of test case is used later in this chapter when deriving test cases

from design to implementation.

60

5.1.2 Coverage and Adequacy Criteria for PrT nets

In their paper "A methodology of testing high-level Petri nets", Zhu and He ([72])

described a process for testing high-level Petri nets. They applied the work in [73]

and investigated testing strategies by using various test adequacy criteria and behav-

ior observation schemes. Two of the strategies and test adequacy criteria described

in that work are applied in this dissertation: transition oriented testing (transition

coverage) and state-oriented testing (state coverage). In addition to using two of the

already defined techniques for testing PrT nets, this dissertation extends the previous

works by discussing Property Oriented Testing applied to PrT nets.

The notion of execution sequence, which is the base for a behavior observation

scheme, is introduced:

Execution sequence: Given a PrT net N, its initial marking Mo and its set of

transitions T, an execution sequence is:

e : MO A MI ... Mn ...

With ti E T. This is known as interleaving execution sequence of a PrT net.

Transition Oriented Testing

In transition oriented testing, transitions are observed and recorded during the

execution of the PrT net. With the transitions that fired recorded, the adequacy

of the test is evaluated according to the transitions covered during its execution.

Transition coverage is defined next.

61

Transition Coverage. Given a PrT net N, the set T of transitions for N, the set

of executions E of N, Firing(e) the set of transitions in T that were observed during

execution e (e E E being an execution):

U Firing(e)

TransitionCoverage(N, E) = e'E
|T|

TransitionCoverage(N, E) equals 1 when all the transitions are observed (cov-

ered) during the executions in E. More details on transition coverage and other

transition-related coverage can be found in [72].

State Oriented Testing

In state oriented testing, states are observed during execution and the test ad-

equacy is evaluated according to states covered. For testing purposes, instead of

working with markings as states, abstract states are defined. For example, in the

dining philosophers problem, instead of tracing whether each specific philosopher is

eating or thinking, two abstract states can be defined to trace whether any philoso-

pher is eating or nobody is eating. Next, state coverage is defined.

State Coverage. Given a PrT net N, the set of abstract states ASN for N, the

relation StateN (m) that maps marking m in the reachable markings of N from Mo

to an abstract state ASi E ASN and the relation Markings(e) that defines the set of

markings observed during execution e E E:

StateN (Y Markinrs(e)

StateCoverage(N, E) = eSEN

ASN

62

Similarly to transition coverage metric, the value of 1 for state coverage means

that all abstract states where observed during the executions in E. A More detailed

discussion on state coverage is available in [72].

Property Oriented Testing

Two kinds of properties are dealt with in this dissertation: liveness and safety

(refer to Chapter 4 for a discussion on the form of the properties studied). In gen-

eral, for safety properties the interest is in finding sequences that lead to undesired

behavior; meanwhile, for liveness properties the interest is in finding desired execu-

tion sequences. Transition Oriented Testing and State Oriented Testing are more

suitable for safety properties, in which the intention is to cover the transitions and

states while still satisfying given properties. However, for liveness properties, those

coverage criteria do not provide suitable: transitions and states might be covered but

that does not necessarily mean that the property has been satisfied. In this section

property oriented testing is discussed and its applicability to SAM models and PrT

nets is explored as well.

A property for a PrT net is defined as a FO-LTL (First Order LTL) formula; thus,

for testing, the expansion of the formula to propositional LTL ones is required. The

expansion of a FOL-LTL formula F is defined as:

Expansion(F) = A Fi, (Fi being an instantiation of F)
i=1..n

Each F is a propositional LTL with the variables substituted by the corresponding

values in their domains. Depending on the domain of the variables in F, the expansion

can lead to an infinite number of elements n -+ oo for infinite state space systems.

63

The set of expanded terms is:

Expanded(F) = {FiFi is an instantiated form of F.}

In testing, only part of the whole behavior of a system is observed, and as such,

the possibly infinite property expansion is reduced to a finite one. In general terms,

to achieve this expansion is a combinatorial process. Nevertheless, in practical terms,

the expansion is highly controlled by the domain of the variables, the sorts of the

predicates in the PrT net and the initial marking. For example, for the five dining

philosopher problem, the property that eventually every philosopher who is thinking

gets a chance to eat, is expanded as:

A L(Thinking(i) -+ oEating(i))
i=1..5

There has been work related to Property Oriented Testing, both in generation of

test cases based on temporal properties (e.g. [50] and [22]) and testing of the property

itself (e.g. [64] and [2]). Their work is basically focused on propositional LTLs, and

it can be applied to the propositional formulas resulting from the expansion of a first

order LTL.

There is a difference in how safety and liveness properties are handled in terms of

testing, and this is something that needs to be explored.

Safety Properties. Given the following safety property for the five dining philoso-

pher problem "two adjacent philosophers can not be eating at the same time":

Vi - o (-, (Eating(i) A Eating(i (1)))

64

The formula is expanded as:

0 (-, (Eating(0) A Eating(1))) A

I (- (Eating(1) A Eating(2))) A

Q (- (Eating(4) A Eating(0)))

In testing, the interest is looking for a state in which any pair (Eating(i),Eating(iB

1)) for i E [1..4] is true, hence violating the property. There are several approaches on

how to evaluate test cases, especially based on program mutants. In this dissertation,

there is not an elaboration on specific techniques for testing safety properties. Given

a test case for transition or state oriented testing, the test cases are executed and

the expanded formula is evaluated at each time. One alternative looked at was the

testing of the negation of the safety property which results in a liveness property.

Liveness Properties. A liveness property is one which the testing procedure needs

to comply with, i.e. every execution in the testing process needs to satisfy the prop-

erty. The form of the liveness properties that was handled is: Vx.- (P1(x) -+ oP2(x)).

For example, in the previous sections, a liveness property for the five dining

philosopher problem was detailed, as well as its expansion. Obtaining a test set

that observes all the propositional properties in the expanded formula can provide

unfeasible. As a result, the testing process needs to look at a specific subset of

the expansion or at individual terms instead. For example, there might be the

need to observe that philosopher 1 while thinking eventually gets the chance to eat:

L (Thinking(1) -+ oEating(1)).

65

In order to observe this, there has to be a sequence of states leading from the

philosopher thinking to the philosopher eating. It can be observed that the basic

sequence involves three abstract states: So = -Thinking(1), S = Thinking(1) and

S2 = -Eating(1). Thus, with the markings in the five dining philosopher problem

mapped to those three abstract states, an adequate test set needs to observe the state

sequence S = SOS 1S 2 . In [72], they define a test coverage criteria for state transition

path coverage that could be applied here.

Following on the previous example, for each formula f E Expanded(F) for PrT

net N, a set of abstract states ASfN and the sequence ASeqfN satisfying it are de-

fined during the testing process. An execution trace MarkingTrace(e), containing

the sequence of markings in e, maps to a sequence of states in ASfN. If the sequence

is the same as ASeqfN then the trace satisfies the property (MarkingTrace(e) k f).

Introducing a new coverage criteria based on the previous observation is not possi-

ble, because the search for an execution path that satisfies a property is undecidable.

5.1.3 Test Cases and SAM models

At the composition level, a SAM model consists of components and connectors

sharing ports. So whenever, a token is observed at an input/output port, the related

components/connectors are said to be interacting. The testing effort at the compo-

sition level relies in observing the interactions between different components. A test

case for a composition is defined by the tokens at the input places and tokens at

output places. Since a port maps to a place in the underlying behavioral model, each

state for a component is an abstract state which is defined by the input and output

ports (places) it is related to.

66

5.1.4 Coverage and Adequacy Criteria for SAM models

Because ports are mapped to predicates (places) in the petri nets, state coverage

can be applied at this level.

Port Coverage. For a composition C a test set E needs to observe tokens at all

the ports. This coverage is just an be extension to the state coverage defined for PrT

nets, the abstract states are defined based on the tokens available at the ports.

Property coverage can be studied at this level, given that ports directly relate

to properties of the component and the model itself. Refer to 5.1.1 for a detailed

discussion on property coverage for PrT nets.

5.2 Levels of Testing for a SAM model

The hierarchical structure of a SAM model lends it to be tested at different levels,

namely: (1) unit testing, (2) integration testing and (3) system testing. These levels

of testing are applied at both the design and the implementation.

Figure 5.2 shows the three levels of testing for a SAM model. First, unit testing

corresponds to testing an elementary component (one that is not refined further).

Next, integration testing is applied to compositions (composed of elementary compo-

nents and refined components). Finally, system testing encompasses testing the top

level composition.

The procedure defined for testing a SAM model is bottom up:

unit testing -+ integration testing -+ system testing

67

Top level System
Composition Testing

Comp3 Comp4

Reieet Comp4_1 Comp4_3Ref inement Integration
Composition Testing

Comp4_2

P2
Elementary t
Component Unit

P1 Testing

Figure 5.2: Testing Levels of SAM models.

This follows the "V" model for software testing [62]. For each level of testing the

coverage and adequacy criteria are defined below.

5.2.1 Top Level Testing

Top level testing, i.e. system testing, is from the point of view of the user of the

system. It involves how the SAM model behaves with respect to the environment

(environmental constraints); therefore, input ports (input to the system) and envi-

ronment output ports (output of the system) together the properties are the elements

of interest when testing. The testing procedure reduces to check whether for given

tokens at input ports there are tokens at output ports. The different configurations of

input and output ports are mapped to abstract states in the behavioral model. The

test cases selected for exercising the system are ones that are adequate according to

certain coverage criteria, in this case state coverage criterion. Given that ports are

68

related to properties, one important aspect relates to property oriented testing. Refer

to section 5.1.4 for a discussion on property coverage.

System testing implies that an integration testing of the top level composition was

done (see next section 5.2.2). There is still work to be done in how to integrate the

results of previous phases (unit and integration testing) into the top level implemen-

tation. The top level composition is a composition, so an integration phase is also

defined for it. This is discussed in the next section.

5.2.2 Composition Testing

Testing a composition corresponds to integration testing. Since a composition

contains components, first those components need to be individually tested:

Given a composition Ci, each component/connector Cji E Cmi U Cni

is tested. If Cji is an elementary component or connector, then it is

tested using unit testing techniques; otherwise, Cji has a refinement

composition Ch that is tested using integration testing techniques.

Each composition defines a set of constraints, which is basically a set of property

specifications involving different components. Also, if the composition is a refinement

of a component then the set of component properties are taken into account.

Coverage Criterion. Similarly to system testing, the coverage criterion used is

port coverage which maps to state oriented coverage in the behavioral model.

Property oriented testing is also of interest here (refer to 5.1.4 for details on

property coverage).

69

5.2.3 Component Testing

This section deals with testing elementary components, if the component to be

tested has a refinement composition, then it is tested using Integration Testing (5.2.2).

An elementary component has a behavioral model (PrT net) as well as a property

specification (FO-LTL formula). Both elements are used to define the coverage cri-

teria that needs to be applied at this stage. As presented before, in [72] Zhu and He

proposed different metrics for testing coverage and adequacy criteria for Petri Nets;

also, in [17] and [16] Ding et. al. defined a procedure to measure the adequacy criteria

of High Level Petri nets using Spin.

Coverage Criteria. the criteria used at this level to select test cases are (refer to

5.1.4 for a detailed discussion on them):

" Transition coverage.

" State coverage.

Given that an integrated behavioral model can be obtained for a non-elementary

component and connector and ultimately for the whole system, then for any level of

the testing process the test cases can be selected based on transition and coverage

criteria for PrT nets.

5.3 Design Testing

There are two parts in design testing, one is the selection of test cases (the ones

that are adequate with respect to certain coverage criteria) and the other is the testing

of the design itself.

70

Test set evaluation

The test set evaluation is related to the test case selection, i.e. based on the

evaluation a test set can be chosen for actually testing the model in question. This is

largely driven by the initial markings for the PrT nets in the behavioral model. Given

a set of test cases, they are measured with respect to transition and state coverage

criteria. In [16] the simulation capability of Spin was used in determining the coverage

of test cases for the Alternation Bit Protocol. In that work the PrT net is translated

to a form in which there is no possibility of using embedded C code, such as in the

translation approach in this dissertation. The simulation capability of Spin can not

interpret embedded C code for embedded C code is only available in verification mode.

An alternative approach is to use an instrumented version of the ArchJava pro-

gram corresponding to the model and perform the random executions on inputs and

measure the adequacy of the tests.

In any case, there are three aspects that are taken into account:

" What to observe. depending on the coverage criteria, either transitions or mark-

ings are observed and recorded. During the test execution markings are trans-

lated into abstract states.

" How to record. Online monitoring, for on-the-fly analysis, or a log file for later

analysis can be used.

" When to stop. As defined in [16], the conditions for stopping the testing process

are: the program terminates, the test criterion is satisfied, the program enters

a deadlock state, and the program runs for a predefined amount of time.

71

Testing the design

For testing the design, the SAM model is translated to an ArchJava program, for

this translation the work by Fu et.al. is applied at this point ([25]). One element

in the translation is critical, the properties. Properties can be translated two ways:

(1) as aspects as in AOP, and (2) as a state automaton code within the test driver

program. This is for purposes of monitoring if the property holds (safety) or if it can

be satisfied (liveness).

The testing process at this level can be non-guided; however, depending on the

information contained in the test cases, it can be guided as well. The ArchJava

program can be instrumented to observe any interesting behavior and potentially to

evaluate the adequacy of test sets.

5.4 Implementation Testing

On important part for the implementation testing, is deriving the test cases based

on the design. In this case, the interest is in deriving test cases based on the infor-

mation of the SAM model. Figure 5.3 shows the basic approach for generating test

cases based on the design.

There are two possible scenarios. First, test cases for the design can be reused and

translated for the implementation. Second, the information contained in the design

can be used to derive test cases.

For the generation of test cases based on the design, the approach adopted is

property oriented, i.e. the design makes use of Model Checking to generate test cases

72

for liveness properties to test at the implementation stage. The basic idea for the

generation of test cases using model checking is shown in Figure 5.4.

Coverage
Criteria

Design generate Test ases

generate translate

Implementation
Test cases

Figure 5.3: Test case generation overview.

SAM model

Translate SPIN Translate
PrT net-

Property Negated PROMELA Counter Test Cases
Property Program Examples

Figure 5.4: Test case generation with model checking.

The procedure to generate test cases using model checking starts by negating the

properties of interest and following the model checking approach depicted in Chapter

4. As a result, paths that satisfy the property are encountered. The tests cases

produced by this approach correspond to PrT net test cases with sequences defined

in 5.1.1. Once the test cases are defined they are translated to specific methods or

functions in the implementation and abstract states in the test set are mapped to

concrete states in the implementation level.

73

5.5 Summary

This chapter provided the foundations for testing a SAM model, at the design stage

as well as at the implementation one. It started presenting the overall picture of the

testing procedure. Next, important concepts for testing PrT nets and SAM models

were introduced. Since it serves as the foundation of the behavioral model for a

SAM model, testing of PrT nets was discussed in detail. Finally the design and the

implementation testing procedures for SAM models were presented.

74

CHAPTER 6

TOOL ENVIRONMENT

This Chapter introduces the environment tool for the modeling and analysis of

SAM models: the SAM tool.

There are tools available to support different methods and techniques in software

development. For example, for Petri nets the following tools are available:

" CPN Tools [46]: it is used for editing, simulating and analyzing Coloured Petri

Nets. It provides several modeling and visual facilities: such as zoom. It con-

tains a syntax checker and code generator. It has powerful analysis modules.

" PEP tool [31]: PEP (Programming Environment based on Petri Nets) provides

similar modeling capabilities as the previous one. It allows to model low-level

and high-level Petri nets. It contains components for doing reachability analysis

among others. It provides interfaces to SMV and Spin, taking advantage of the

latter's model checking capability.

In terms of ADL environments, two prominent examples are:

* Acme: AcmeStudio (Carnegie Mellon University) is a modeling environment

for software architecture designs written in the Acme architectural description

language. Similarly to the tool we are developing, AcmeStudio is available as a

plugin for the Eclipse Environment, which allows creating extensions to it.

* Rapide toolset: developed at Stanford University, supports component-based

development of large systems. The modeling process in Rapide starts by defining

75

a system architecture using a graphical tool, then Rapide's simulator produces

an executable that when executed produces a causal event simulation output.

This output can be analyzed by various tools.

In this dissertation, a tool to be used in the design and analysis of SAM mod-

els was implemented based on the Eclipse GEF Framework ([65]). Some elements

of the tool were already available, including the main window with the composition

and Petri net views. This dissertation, completed and extended the tool to its final

form. The tool elements are depicted in Figure 6.1. This dissertation touched on

the Modeling, Design Analysis and Data Model components (showed in gray in the

figure); the Prototype implementation was implemented separately.

Modeling Design Analysis

Graphical Editor Logic Editor Model Checking

hs- q)fic -,t))rx) SPIN
Translator (PROMELA)

Property Constraint

1_ Logic Parsers I Simulation
Testing

Consistency Checker

% Data Model
Prototype Implementation (XML)

Java SAM Component
ArchJava Hierarchy

SAM Translator AspectJ
High-Level

Maude Petri Net

Figure 6.1: SAM Tool elements.

The SAM tool allows the definition of all the elements present in a SAM model,

including the behavioral models expressed in PrT nets (only PrT nets are supported).

76

The formal approach at translating a SAM model to PROMELA made it possible to

implement a module to generate PROMELA code automatically (semi automatically

for the properties) from a SAM model in the tool. Once the code is generated, Spin

can be used to perform the model checking process.

6.1 Editor Window

In Figure 6.2, the editor window displaying a composition can be seen. To the

left, the hierarchical structure of the composition is displayed and component Comp2

is further decomposed into other components. To the right, the palette that allows to

add components/connectors and to add ports and connections between them is visible.

File Edit Tools indow He ip

Outline ,5IF

Composition Palette

:LJ CComp2 Select
I- ~Composition L SAM El.

O Comp21 * Comp
E Conn22 connection

] Conn [Component'
Compi Connector

Somp2 =t on + Compi _E <>I< PetriNets Port in

P [}+Port out

®ti

' P 2

P3 !<>

J Properties ,i

Property Value

Constraints <constraints> cformula name ='Form1 type='ftLTL" ><LogicSent
Nlame Composition

Figure 6.2: SAM Environment Editor - Showing a composition.

77

In Figure 6.3 the editor shows the behavioral model (i.e. Petri net) for component

Compl. To the right, the editor provides with the tools to add places, transitions

and arcs to the Petri net model in question.

File Edit Tools window Help

Outline a 8

S Composition Palette
G L Comp2 Select

Composition F Marquee

17i Comp21 Peti Nets
0 Conn22 =

O Conn PArc

C Comp 1 * Place

- og o PetriIets Transition
P2

P1

0*P2
*0P3 _ _ _ _ _ _ _

Properties I

Property Value

Constraints <LogicSentence><BinLogicOp><And> <Left><QuantLogicOp> <F

Name ti

Figure 6.3: SAM Environment elements - Showing a Petri net.

6.2 Formula Editor

One prominent component of the tool is the formula editor which allows the user

to edit First Order Logic formulas (FOL) for transition constraints in the behavioral

model, as well as First Order LTL (FO-LTL) for properties of components and con-

nectors. It also includes an analyzer to detect syntactically incorrect formulas. There

are two formula editors, one for FOL and another for FO-LTL.

78

FOL Editor

Java-CUP LALR parser ([61]) was used as the engine to parse the First Order

Logic (FOL) formulas for transition constraints in the PrT net models. The guard for

a transition is stored in XML format, which is parsed into the grammar recognized

by Java-CUP, and then the formula can be displayed in the formula editor as seen

in Figure 6.4. One aspect to note is that the FOL editor is written in Java-Swing

and does not make use of the Eclipse GEF Framework. Eventually the Java-Swing

code needs to be ported to the GEF Framework, since the current implementation

explicitly needs to provide an interface from Eclipse to Java-Swing.

Vx. (x>3)A-Ey. (y= 6)
Logical Symbols: A V

Relational Symbols

Arithmetic Symbols: +..

First Order Symbols: [
S e t S y m b o l s : . _ _ [U _j _ . .I -

Ok

Figure 6.4: FOL Editor.

FO-LTL Editor

Java-CUP LALR parser was also used for parsing FO-LTL (First Order Linear

Temporal Logic) formulas. For example in Figure 6.5, one response property, "for

every request there is a response", relating two components can be seen.

79

Formulae
Formula Name LTL___ Ty_____

Propi IffLTL Add Formula
P ro p2 U__ ____fL j --

Delete Formula

Predicates in Selected Formula
Predicate Name Port Name Markin Has Variable ---

-__~_~ Add Predicate

_____ ___ __________________Delete Predicate

!fx. ([1(P1(x)--+0P2(x)))

Logical Symbols:.A V

Relational Symbols: . _J

Arithmetic Symbols:

First Order Symbols:

Set Symbols: I j 4

Future LTL Symbols: Vv

Past LTL Symbols: E 3

Other LTL Symbols:

Ok Cancel Check

Figure 6.5: FO-LTL Editor.

Grammar Definition

A left recursive grammar was defined for each FO-LTL and FOL in BNF form.

This grammar defines the production rules to build terms and expressions as well as

the terminal symbols for the tokens. For FOL relational, arithmetic and set operators

were included.

Additionally, the tool implemented its own true type font to specifically support

the temporal operators. The font encodes each character in Unicode 16 bits format.

80

A formula is then encoded as a 16 bit character string and it can then be passed to

the parser for lexical analysis.

Parser Generation

Java CUP is used for the generation of the basic code for the FOL and FO-LTL

formula parsers. Java CUP generates LALR parsers whose code is implemented in

Java. For the parser generation, first, the lexical symbols to be used by a scanner using

JLex (also part of Java CUP) are defined. For example, given \uFA60 representing

the always operator, the scanner is instructed to return a symbol FLTLALWAYS

which is later used in the grammar rules. Next, the grammar itself is expressed in

Java CUP format by specifying the terminal symbols, non terminal symbols, prece-

dence of the operators and the production rules. A hierarchy of classes to be used in

the abstract syntax tree construction was defined. The root class is LogicSentence,

and thus, when a parse tree is built, its root is represented with an instance of this

class. The classes available support the different logic constructs such as binary logic

operations, arithmetic operations, temporal logic operations, among others. See Ap-

pendix D for more details.

Syntax checking

The syntax correctness is ensured by the FOL and FO-LTL parsers. If there is

an invalid token, the token analyzer will report it and if there is a syntactic error,

the parser will stop and report the corresponding error. For example, given the

(syntactically incorrect) formula:

W - a

81

It has valid characters, and as such, valid tokens, so the lexical symbol construc-

tion poses no problem. But in the syntax tree construction, the grammar rules define

that after each V a variable or variable list should appear. This is not the case, and

a syntactic error is reported.

Type checking

Type checking is accomplished by relying on the Sorts defined for the PrT net,

where each variable and predicate name has an associated sort and hence the for-

mula can be checked for invalid type constructs. For example, given the expression

x[1] + y, x[1] and y need to be numbers and not other elements such as sets. This

semantic check is critical in the translation procedures from SAM to PROMELA and

to Java/ArchJava.

82

CHAPTER 7

CASE STUDIES

This Chapter presents experimental results from the application of the approaches

for formal verification and testing of software architectural models in SAM proposed

in this dissertation. Three examples are given: the Resource Provider, the User-

Centric Communication Middleware and the Alternating Bit Protocol. The Resource

Provider example defines an scenario found in distributed and concurrent systems

where components request access to resources and a provider handles those requests

asynchronously. The User-Centric Communication Middleware defines a middleware

that abstracts the heterogeneity of the different communication protocols, separating

the logic of the communication from the network. Finally, the Alternating Bit Pro-

tocol defines a communications protocol in which messages can get lost but accepted

messages are guaranteed to be delivered only once and in order.

All three examples were designed in the SAM tool environment (refer to Chapter

6 for details on the tool environment). Each example made use of the design and

analysis features, as well as the code generation facility for model checking, available

in the tool. Using the tool environment made it possible to design models that com-

plied with the SAM framework itself, since the graphical composition of the different

elements already assured restrictions imposed by the framework. For example, it

was enforced that only input ports can connect to output ports and vice versa. The

tool also allowed the detection of syntactic errors in formulas for preconditions and

postconditions for transitions in the corresponding PrT nets describing the behavior

of the system. In addition, the semiautomatic translation from SAM to PROMELA

was useful in detecting design flaws; for example, the translation did not succeed if a

formula referred a non-existing Predicate in the model.

83

7.1 Resource Provider

The Resource Provider scenario is defined as follow:

There is a provider component A that needs to serve other client components

C1, ..C. with resources from component S (see figure 7.1). The interactions among

the different components can be synchronous or asynchronous. For example, for the

asynchronous case, C 1 submits requests to A and does not wait but returns to con-

tinue what it is doing. When A loads the required resources, it notifies C1 in order for

it to access the loaded resources. For a synchronous situation, C, requests resources

to A at different times, but waits for A to deliver them. In general, component A

needs to handle the requests from the clients, needs to get the responses from S and

deliver them to the clients and, depending on the kind of resources being served, A

can cache them for reuse.

Client(C1) Provider(A)

Requests Responses Resources(S)

Cache

Client(Cr,)

Figure 7.1: Resource Provider example.

These scenarios manifest at different levels in concurrent and distributed where

different elements need access to resources. One example is a print server that needs

to give the printers available to clients waiting to print within a network environment.

Another example is a graphics multithreaded simulation application that has separate

threads accessing images representing the objects to be rendered on the screen.

84

The asynchronous version of the Resource Provider scenario is studied in this sec-

tion. The top level SAM architecture of the asynchronous Resource Provider example

is portrayed in diagram 7.2. The architecture consists of three main components:

the Consumer (representing the clients), the ResourceProvider (representing the

provider) and the SystemResources (representing the resources to load and access).

Req Sysin Sysin

ResourceProvider SystemResources

Resp SysOut 4
----- Sys-ut

Req

Resp

Consumer

Figure 7.2: Resource Provider SAM Architecture.

The main component that is of interest is ResourceProvider; nevertheless, the

interactions between ResourceProvider and the other components Consumer and

SystemResources are explicitly modeled. There are two connections between com-

ponent ResourceProvider and each one of the other components depending whether

the flow is from or to ResourceProvider.

Each component has a PrT net describing its behavior. For example, Figure

7.3 shows the PrT net diagram for the Consumer component. The consumer is

simplified in that it shows the requests being sent and the responses being received:

every request that is sent out is kept in a Pending place until a response comes back

which is kept in LocalRes place. Component Consumer can have a more complex

behavior; for example, if the response received res states that the resource requested

is not available or that it does not exist, then Consumer can try again. This is not

85

an issue, since in the current model the initial marking can contain sufficient number

of requests to simulate this behavior.

.eq2send eq -eq Req

Pending

LocalRes es a " es Resp

Figure 7.3: PrT net model for Consumer component.

Flattened SAM model. For the analysis part, a flattened version of the SAM

model for the asynchronous Resource Provider shown in Figure 7.2 is needed. This

flattened version of the SAM model can be seen in Figure 7.4. It exposes the sub

components of the main component ResourceProvider which consists of three ele-

mentary components: RequestHandler, Locator and Cache.

Locn Locin Sysin SyIn

RequestHandler LocOut Locator SystemResources
Req CacheOut --- LocOut SysOut

A Resp Cacheln % I AddCache

Req \ \CacheOut I

Resp
Cacheln AddCache

Consumer Cache

Figure 7.4: Flattened SAM model of the Resource Provider.

In the SAM tool, the flattened version of the SAM model is automatically gener-

ated before the model is translated to PROMELA in the formal verification process.

86

The behavioral models of the different components in the flattened SAM model are

expressed in PrT nets. Table 7.1 defines the sorts for the PrT models in the Resource

Provider example. Sorts string and int are basic sorts, and the other structured sorts

(powerset and cross product sorts) are based on them. The mechanism for identifying

a request and a response to that request is by using a integer id field that serves as

the identifier for the request.

Sort name Definition

NAME string
ID int
IDRES int
REQT ID x NAME
RESPT REQT x IDA{ES
PREQT p(REQT)
RESOURT NAME x IDRES
PRESOURT p(RESOURT)

Table 7.1: RequestHandler PrT net model sorts definition.

The specification for component RequestHandler is detailed next. Figure 7.5

shows the PrT net model for component RequestHandler.

Req -" 1
ToLoc

TLocTut

T T

Resp r T

r " F -- 1 LQdnt

Cacheln atce~uk

Figure 7.5: Component RequestHandler PrT model.

87

Given the sorts definition in Table 7.1, the sorts for the predicates (places) in the

PrT net model for component RequestHandler are:

p(Req) = o(Cacheln) = W(LocIn) = REQT

W(Resp) = W(CacheOut) = W(LocOut) = RESPT

p(T oLoc) = PREQT

With respect to the initial marking Mo, predicate (place) ToLoc contains one

token, an empty set, which gets populated as requests arrive:

Mo(ToLoc) = {{}}

All other predicates do not have tokens initially. However, for testing purposes

the initial marking can vary depending on the testing procedure. The constraints for

the transitions are defined next:

R(checkcache) : (L1 = L U r)

R(incache) : (r[2]! = 0 A (3x E L - (r[1] = x))) A (L1 = L - {r[1]})

R(notincache) : (r[2] = 0) A (r = r[1])

R(loadresp) : (3x E T - (r[1] = x)) A (T1 = T - {r[1]})

One of the properties defined for this component is a liveness one (for every request

that arrives at this component, eventually there will be a reply for it):

V'xy - E(Req(x) -+ o(Resp(y) A y[1] = x))

This is the most important property for component ResourceProvider since it

needs to give a feedback to any request coming from component Consumer.

88

In the remaining of this section, the following procedures are presented:

" Model Checking: the model was translated to PROMELA with the help of the

SAM tool and properties were verified. The results are discussed.

" Testing: given test cases, they were measured according to Transition and State

Coverage Criteria for PrT nets.

" Test Case Generation: using model checking on the negation of a property, test

cases are generated to be used at the implementation level.

Model Checking. Model checking was applied at the top design level following the

procedure explained in Chapter 4. The main property verified was a liveness one:

Vbxy - (E(Req(x) -+ o(Resp(y) A x = y[l]))). The expanded formula yielded the

following propositional LTLs:

L(Req(< 1," resourcel" >) -+ oResp(<< 1," resourcel" >, cl >)A

E(Req(< 2," resource2" >) -+ oResp(<< 2," resource2" >, c2 >)A

L(Req(< 3," resource3" >) -+ oResp(<< 3," resource3" >, c3 >)

The expansion is based on the initial marking of the requests coming from the

Consumer component. Constants cl, c2, c3 are of type int and are not taken into

consideration when computing the truth value for the property. For each sub formula

an automaton is defined in PROMELA.

The automatic code generation using the SAM tool, generated approximately 1700

lines of code that accounted for 49KB of size in disk. In the next paragraphs, the

listing of the code generated for component RequestHandler can be seen.

89

proctype Request Handler(){

/*Net places and initial marking. */

PRFQT vToLoc [10];

short num.ToLoc;

numToLoc=1;

v-ToLoc [0] .num=0;

/*Increment the counter and wait for the other processes to start. */

_procinit++;

(.procinit = _procnum);

/* Test enabledness and fire . */

do

atomic{cexpr{isenabledcheckcache(now.num.Req, now.v.Req,

PRequest Handler->numToLoc ,

PRequestlHandler->vToLoc) } ->

c.code{firecheckcache(&(now.numReq), now.vReq,

&(PRequestHandler-->num.ToLoc),

PRequestHandler->vToLoc, &(now. num.CacheIn),

now. vCacheIn);}}

atomic{cexpr{isenabledin-cache (PRequestHandler->numToLoc,

PRequest Handler ->v.ToLoc , now. numCacheOut ,

now. vCacheOut) } ->

c.code{ fireincache (&(PRequestHandler->num.ToLoc)

PRequestHandler->v.ToLoc , &(now. num..CacheOut),

now. vCacheOut , &(now. numResp), now. vResp); } }

atomic{c..expr{ isenablednotin.cache (now. numCacheOut,

now. vCacheOut) } ->

c-code{fire-not..incache(&(now.numCacheOut), now.vCacheOut,

&(now. numLocIn), now. vLocIn); } }

atomic{cexpr{ is._enabled.locresp (PRequestHandler->num.ToLoc,

PRequest Handler ->vToLoc , now. numLocOut ,

now.vLocOut)} ->

ccode{fire.loc..resp(&(PRequestHandler->num.ToLoc),

PRequestHandler->vToLoc, &(now. numLocOut),

now. vLocOut, &(now. num-Resp), now. vResp) ;} }

od

}

A generic form of the formula describing the liveness property was generated in

PROMELA with the help of the automaton generator in Spin. This generic form is

90

reused across the different propositional LTL formulas to verify. The listing of the

code generated is shown next.

#define req c-expr{TokenAtReq()}

#define resp c-expr{TokenAtResp()}

never { /* !([] (req -> <> resp)) */

TO-init

if

: (! ((req)) && (resp)) -> goto acceptS4

(1) -> goto TO.init

fi ;

acceptS4:

if

:: (! ((resp))) -> goto acceptS4

fi ;

}

Expressions TokenAtReq and TokenAtResp are two embedded C functions that

compute whether the token of interest is at the respective place. For formula:

L(Req(< 1," resourcel" >) -+ <Resp(<< 1," resourcel" >, cl >)

Expressions TokenAtReq and TokenAtResp are defined as:

ccode {

int TokenAtReq(){

/* Returns 1 if token <1,"resource"> is at place Req, 0 otherwise*/

struct REQT _tok ;

_tok. field1 = 1;

_tok. field2 = 0;/*0 is the encoding for "resourcel ",

we can see this from the initial marking*/

return(in-placeReq (now.numReq,now. vReq,& tok));

}

int TokenAtResp(){

/* Returns 1 if token «1,"resource">,cl> is at place Resp, 0 otherwise*/

struct REQT _tok ;

_tok. fieldl . fieldl = 1;

91

-tok. fieldl . field2 = 0;/*0 is the encoding for "resourcel

we can see this from the initial marking*/

/*Since we do not want to compare with the second field in _tok then

we do the iteration rather than calling inplace-Resp*/

int -i ;

for (_i=0;_i<numResp; _i++){

if ((v.Resp[{i]. fieldl . field1-= _tok. fieldl . fieldi)

&& (vResp[_i]. field .field2= _tok. fieldl. field2))

return 1;

}

return 0;

}

}

Similar code was generated for the other properties of interest with the only vari-

ation being what tokens to account for at each predicate.

Testing. At the design level, the interest was to measure and evaluate the coverage

of test cases with respect to Transition and State Coverage criteria for PrT nets.

The PrT net model of the flattened SAM model was studied. This procedure was

based on the evaluation of test adequacy coverage of high level Petri nets in Spin

explained in [16]. In the testing process, the simulation capability of Spin was used.

This implied to manually change the code obtained for the verification stage to not

use any embedded C code construct in PROMELA (in simulation mode Spin can not

interpret the C code expressions). The procedure for testing was as follows:

1. Translate the behavioral model to PROMELA without embedded C code.

2. Add code for recording the transitions and states.

3. Add code for evaluating the coverage.

4. Define the stop conditions.

92

For the translation to PROMELA code without embedded C code, one important

part was translating operations for sets. In the translation process a set is translated

into a bounded array. Tokens can be sets and there was a need to query them for

finding out the existence of a specific item. For each sort an inline macro was defined.

For example, for sort REQT the inline code was:

/* Checks whether _elemto-find is in _array of type REQT*/

inline checkelemin-array-REQT (_array , _arraysize , _elemtojfind ,

-index-found , -found){

-found = 0;

_index-found = 0;
do

(-index-found < _arraysize) ->

{

if

: compareREQT(_array [index-found] elem.to-find) ->

-found = 1; break;

else -indexfound++;

fi ;

}

else -> break;

od

}

Where compareREQT is another inline construct to compare two elements of sort

REQT. This inline code was then reused at several places in the code simplifying it.

Another inline construct is one removing elements from a set, which meant removing

elements from the array representing it. For example, for arrays containing elements

of sort REQT, the following code was defined:

/*Removes element at -index in -array of type REQT*/

int _array-index;

inline remove-elemarrayREQT (_array ,.arraynum ,_index){

array-index = -index;

do

93

(-arrayindex+1 < -arraynum) ->

assignREQT(-array [array-index] , -array [_arrayindex+1]);

-array index++;

else -> break;

od;

-array-num-

}

Expression assignREQT assigns an element of type REQT to another one of

the same type.

The code for testing the enabledness and firing a transition makes use of the above

defined macros. For example, for transition recvoresp in component Consumer, the

code was:

/* Transition : recvresp*/

/*To keep the token to be removed from Resp*/

RESPT _recv..respresp ;

inline precondrecvresp(){

/* check in Pending[_indexl] whether there is one element complying*/

/*_indexl will be 0 for this example*/

checkeleminarrayREQT (vPending [0]. set , vPending [0].num,

vResp [_index0]. field 1 , _index2, _transbEnabled)

}

inline is-enabledrecvresp (){

transbEnabled = 0;

_index0 = 0;

_indexl = 0;

index2 = 0;

7*loop to iterate through the tokens at the places*/

do

S(_index0 < numResp && _transbEnabled != 1) ->

{

_indexl = 0;

94

do

(_indexl < numPending) ->

{

/*compute the guard with the current substitution.*/

precond-recvresp (;

if

_transbEnabled - 1 -> -index0--;break;

else -> _indexl++;

fi ;

}

else -> break;

od

}

_index0 ++;

:: else -> break;

od

}

inline fire recvresp ({

/*These variables contain the indexes of the tokens in the places

to use for firing*/

/*-index0(v-Resp), _indexl (v-Pending),

_index2 (v-Pending [0]) */

/*Remove the element from v.Resp*/

/*Store req token since it is going away*/

assignRESPT (_recvresp-resp , vResp [_index0]);

removeelemarray.RESPT (vResp , numResp, -index0) ;

/*Remove the element from vPending [0]*/

/*No need to store the token being removed*/

/*_recv-respil is 0*/

/* _recvrespi2 contains the element that is to be removed from the set*7

removeelemarrayREQT(v-Pending [0]. set ,vPending [0] .num, _index2);

/7 Add the element to LocalRes*/

assignRESPT (vLocalRes [numLocalRes] , _recvrespresp);

numLocalRes++

}

95

Some of the variables set when testing the enabledness of the transition are used

at firing it. Since the enabledness and possible firing of a transition are done within

an atomic construct, there is no possibility of getting the wrong indexes when firing

the transition.

The code for checking the enabledness and firing a transition is within a do..od

construct in the component process to which the transition belongs. For example, for

component Consumer, the loop defining the firing of its transition was defined as:

do

atomic{tran = 0 -> is enabled-recv-resp ()

if

: _transbEnabled -> fire-recvresp ();

track-trans (Consumer.trans ,CONSUMERCTTRANS, tran);

: else -> skip ;

fi ;

select-tran(tran ,trann);

}

atomic{tran = 1 -> is-enabled-send req (;

if

: _transbEnabled -> firesend.req ();

track trans (Consumer-trans ,CONSUMERCTTRANS, tran);

: else -> skip ;

fi;

selecttran(tran , trann);

}

od

Whenever transition recvresp is enabled, it fires and the following sequence in

the code takes place: isenabled-recvrespo ; _transbEnabled -+ fire-recvrespo.

Variable _transbEnabled is computed in isenabled-recv_resp() and represents the

precondition result of the transition. The code for recording the transitions and

states, as well as for evaluating the coverage, is done in track-trans (this is explained

96

in the next paragraphs). Another aspect is to control the selection of which transition

to fire in simulation mode in Spin (refer to [16] for a discussion on this). Variables

tran, trann and inline construct select-tran take care of that (select-tran sets vari-

able tran to an integer representing a transition to be fired based on the number of

transitions tran-n).

For recording the transitions and states covered, first, for each process, an integer

array representing the number of times its transitions have been fired is defined. For

example for component Consumer:

/*Define the array to track the number of times a transition fires

in a process.*/

#define DEFARRAY(_array , -size) int -array [-size]

#define CONSUMERLCr-TRANS 2 /*Number of transitions at Consumer*/

DEFARRAY(Consumer _trans , CONSUMERCTTRANS) ;

In relation to abstract states, a unique array defining whether the state was covered

is defined. This is a feature of the system or component as a whole, not of an individual

process. In the studies several abstract states were defined, one of them is:

/*State coverage*/

/*Several abstract states can be defined. The one chosen here involves

the caching of resources: State1(NOT-CACHED), State2(CACHED)*/

#define STATE-CT 2 /*Number of states*/

DEF.ARRAY(State-array ,STATE-CT); /*array of states */

With these definitions, track-trans is:

/* Track the transition firing. */

inline track-trans (process.trans , -size , _tranindex){

/*Record the transitions fired*/

if

(_tran-index < -size && .tranindex >= 0) ->

97

-process-trans [_tran-index]++;

: else -> skip

fi;

/*Record the states covered*/

if

(v-ResCache [0] num > 0) -> State-array [1] = 1;

else -> Statearray [0] = 1

fi ;

/* Evaluate depending what kind of coverage was chosen*/

if

TRANS1TIONCOVERAGE -> evaluate.trans-coverage (;

else -> evaluate-state-coverage ()

fi

}

This code records the transitions and states covered in a run. The coverage eval-

uation was done after each transition firing. When TRANSITION.COVERAGE

constant is defined as 1, it determines the evaluation of transition coverage, otherwise

state coverage evaluation is performed. In the experiments this value was changed in

the code before executing the simulations. The code for evaluating transition coverage

is defined as:

/* Evaluates the transition coverage*/

inline evaluate-trans-array (.trans-array ,size , .covered){

.index0 = 0;

do

(-index0 < -size && .covered - 1) ->

{
if

(_transarray [-index0]==0) -> -covered=0; break;

else -> .index0-+

fi

}

else -> break

od

}

bool trcovered ;

98

inline evaluate-trans-coverage (){

/*Arrays for evaluating:

- Consumer-trans (CONSUMER-CTTRANS)

- SystemResources-trans (SYSRESCT.TRANS)

- RequestHandler.trans (REQHIANDLERICTTRANS)

- Cache.trans (CACHECTTRANS)

- Locator-trans (LOCATOR-CTTRANS)

*7
tr-covered = 1;

evaluate transarray (Consumer.trans , CONSUMER.CT.TRANS, trcovered);

evaluate-trans-array (SystemResources.trans , SYS.ES-CT-TRANS, tr-covered);

evaluate.trans-array (RequestHandlertrans , REQHANDLERCTTRANS, trcovered);

evaluate-trans-array (Cache.trans , CACHE.CT-TRANS, trcovered);

evaluate.trans..array (Locator-trans , LOCATORCTTRANS, tr.covered);

/*stop simulation if covered*/

assert (tr-covered != 1)

}

Finally, the code for evaluating state coverage is straightforward:

inline evaluate-state-coverage (){

/* If the number of elements in the cache is 0 state NOT-CACHED is covered.*/

/* Otherwise state CACHED is covered.*/

assert (vResCache.num>0); /*there has to be a cache*/

assert (State-array [0] = 0 11 State.array [1] = 0)

}

Refer to the Appendix A for a complete listing of the code for evaluating the tests

cases. When the code is compiled, all inline calls are replaced with the body of the

inline constructs code. The original code was around 1,500 lines of text (~43KB in

disk), and the actual C code generated in the pre-processing stage in Spin was around

12,500 lines (~340KB in disk).

Full transition and state coverage. In the testing process, full transition and state

coverage was achieved. The following test case set accomplished that (only the mark-

99

ing for predicate Req2Send is shown): MO(Req2Send) = {< 1," resource2" >, <

2 ," resourcel" >, < 3," resource3" >, < 4," resourcex" >, < 5," resource2" >}

The initial markings for the other elements remained the same as for the verifica-

tion part. Refer to Appendix B for details on the models.

Test setup:

" Test cases were run with different seeds in random simulation mode in Spin.

" Tokens arriving at places were handled on a first in first out basis.

Seed value of 0 for the simulation allowed full coverage, whereas a seed of 1 did

not. For this specific configuration, when all requests have been responded (received

at Consumer component) there is no point in waiting for anything to happen in the

net, and the simulation is halted, unless there is some internal transition that for

example is trying to add an element to the cache. Figure 7.6 shows the system steps

performed by each process before reaching the full coverage when seed 0 was selected.

1200 -

1000 - -

d 800 ---- -----
0

~ 600 - -....

400z
200

:init Consumer System Request Cache Locator
Resources Handler

Ste ps 29 795 582 1122 682 613

Figure 7.6: System steps during simulation.

100

Figure 7.7 shows the number of times each transition was fired (covered) during

the execution of the tests.

Cache RequestHandler
s- -Count QCount

-s-------- -

40 -- -.. z- 1

exists not_exists add_cache add_cache fall 0 - -

check cache In cache notincache loc_resp

Locator Consumer SystemResources
Count - - ~- - Count

4 - - - - - - - - - 4 - - - - - - - - -4- - ~~ -

o - -- -- ,--. - 2

loc_req ioc_ok I0cfad recresp sendreq reqok req_fal

Figure 7.7: Transitions hit count per component for complete coverage.

For partial coverage with the same initial marking, a seed of 1 was used for the

simulation and the results can be seen in Figure 7.8 (the number of systems steps

performed per each process) and Figure 7.9 (the number of times a transition was

fired during the test executions).

1600 -

1400 --

1200
0.

1000 V-----
S800 -

£ 600
400

200

ISystem Request
.init Consumer "e .ur CsHache Locator

'OSteps 29 1102 8i 1477 1050 914

Figure 7.8: Spin system steps for partial coverage.

101

Caunt RequestHandler Con5 Count Cout

1 -- -- --- - - -

exists not exists adcce adccefi
check_cache in cache not_in cache loc_resp

Locator Consumer SystemResources

locreq locok loc_fail recvresp sendreq reqok req fail

Figure 7.9: Transitions hit count per component for partial coverage.

A quick comparison shows that by choosing different seeds for the random simu-

lation, the coverage of the transitions changes. This does not happen to the states

coverage, which the experiments showed 100% coverage. For transition coverage with

a seed value of 0, the coverage is 100% (15 out of 15 transitions); whereas with a seed

value of 1, the coverage is 73% (11 out of 15 transitions).

For the non full coverage situation, it can be seen that the transitions not covered

were the ones related to querying for the existence of an item in the cache made by

the RequestHandler. This means that requests, going from the Consumer to the

Locator, were processed before the replies came back (this situation can be verified

by looking at the output in the sequence chart from Spin).

Other observation is that when the Consumer's transitions were hit 5 times, which

means that 5 requests were sent and 5 responses were received, the simulation process

was stopped.

102

This showed the importance of testing with different seeds in Spin. Experiments

were made in which different test cases were picked and run several times with different

seeds. Each test set was a subset of the test cases defined above. The seeds used were

0, 1 and 2. The results can be seen in Figure 7.10. The higher the size of the test set

the better the coverage.

100% --

90%

80% _

m 70%

a 50%
Mm

c 40%

30% {r
20%C --

10%

0%
1 2 3 4 5

Number of test cases

Figure 7.10: Number of test cases to measure transition coverage.

One error in the design not captured at the verification stage was captured at the

testing phase. It involved component Cache which originally did not have a tran-

sition for failing to add elements to the cache. The failing scenario involves adding

resources already in the cache.

The results showed the usefulness of the combination between formal verification

and testing techniques. With formal verification certain specific properties are veri-

fied, but it is likely that not all the "code" is exercised (covered). Testing comes into

aid in that transitions and states can be exercised given a set of test cases. The set of

test cases can then be used at the implementation level to aid assure the correctness

of the software.

103

Test case generation. The design model is used to generate test cases for the imple-

mentation. Property based generation and Coverage based generation were applied.

Property based generation In this dissertation, test cases for liveness properties

were derived. Given the following property for the RequestHandler component:

Vx y- L(Req(x) -+ o(Resp(y) Ay[1] = x)). The negation of one of its expanded terms

was fed into the model checker, e.g. -,(L(Req(< 1,"resourcel" >) -+ o(Resp(<<

1," resource1" >,1001 >))). This property did not hold and the model checker gen-

erated a sequence of transitions firings along the substitutions used. The PROMELA

code was modified to print the state after each firing along the substitutions. This se-

quence defines the abstract execution sequence for the implementation, and abstract

test cases are then generated. This sequence is then converted to the specific method

calls at the implementation level in the programming language of choice. The execu-

tion of the program was controlled by this sequence.

This is the approach chosen for unit testing. For integration testing and system

testing the same approach is followed, the only difference is that the properties to look

at relate different components, i.e. the ports that appear in the FO-LTL formulas

belong to different components.

Transition/State Coverage based generation The test cases used in the design level

are mapped to test cases at the implementation level. Since those test cases provided

adequate coverage (transition or state), then based on that information they are said

to be adequate for testing the implementation. For this test, random execution at

the implementation level was chosen.

104

7.2 Other Case Studies

The User-Centric Communications Middleware and the Alternating Bit Protocol ex-

amples are discussed in terms of model checking.

User-Centric Communications Middleware (UCM)

The UCM abstracts away the complexities of the underlying network protocols.

For more details, refer to [63] for the UCM and Chapter 4 and [5] for the model

checking approach.

The UCM modeled in SAM consisted of 6 top level components from which two

were UCMs at different sites (Figure 7.11). One of the UCMs was refined into 5

components. One of the components, the UCMM (UCM manager), was of special in-

terest, and some properties were verified for it. The integrated behavioral model (PrT

net) consisted of 63 places, 140 transitions and 476 arcs. The size of the verification

code generated for this case study was around 10,000 lines of code (400KB). One

of the critical components of the system is the SIP Manager, and several properties

were verified for it.

Alternating Bit Protocol

Alternating Bit Protocol (ABP) is a protocol that consists of a sender, a receiver,

and two channels. The transmission on the channels may get corrupted, but no

duplication is guaranteed. If there is a corrupted message/acknowledgment, detected

by the channels, then the message/acknowledgment is resent([16]). The ABP SAM

model design is shown in Figure 7.12.

105

Application 1 Application2

UAPIResp UCMReq UAPIResp UCM eq

SAgA-Rec v SigMSend

UCM RUCU C S i _hi S e n d US e r v e r , " S i gN - Re c

MediaTransRecv MediaTransRecv T
MediaTrans_Send MediaTrans_Send

Network

Figure 7.11: UCM system.

Delivery

Accept DataOut DataOut Dataln Dataln

Sender Channel Receiver

Ackln clAckin AckOut AckOut

Figure 7.12: Alternating Bit Protocol.

Part of an initial design of the ABP can be seen in Figure 7.13. The specification

for its places and transitions is defined next:

p(Dataln) = DATA

4(AckOut) = short

R(acorrupted) = (c[1] = 2)

R(resendAck) = (d[1] = 2)

DATA := short x MSG

MSG := string x ID

ID := short

106

Dataln

AckOut

Figure 7.13: Section of the PrT net model for the ABP.

One design flaw was detected with the model checking approach when verifying

liveness properties on the initial design of the ABP. It involved part of the PrT net

specification of the ABP (see Figure 7.13) and a sequence: acorrupted, resendAck,

acorrupted, resendAck..., which could go ad infinitum. Once the model was cor-

rected, properties were verified for the model.

The main property that was verified was a liveness property of the form: Vx-

(L(Send(x) --+ oRecv(x))). The formula was instantiated to propositional formulas

based on the tokens available in the initial marking. For example, given the ini-

tial marking for Send, Mo(Send) = { "first", "second" }, first a formula of the form

Q(Send("first") -+ oRecv("first")) was verified, and next another formula of the

form L (Send("second") -+ oRecv("second")).

One observation, resulting from the experiments performed, is that for a non-

satisfiable liveness property, Spin would not directly state that it was not satisfiable;

rather it would report an acceptance cycle. Hence, when verifying a liveness property,

the flag for acceptance cycles in the Spin verification environment has to be selected.

107

7.3 Summary

In this Chapter case studies showing the applicability of the approach were presented.

One of the examples, the resource provider, is found in distributed and concurrent

systems; a second one is used to define the architecture of a user centric communica-

tions middleware and the last one is the alternating bit protocol example. The model

checking facility provided useful in determining the correctness of the models and

the testing performed determined the adequacy of a test set with respect to different

coverage criteria, and also allowed the generation of test cases for testing the imple-

mentation. Additionally, the tool environment developed as part of this dissertation

was used for the modeling and helped detecting errors in the models.

108

CHAPTER 8

CONCLUSIONS

The conclusions, a summary of the contributions and the future work are presented

in the following sections.

8.1 Conclusions

The dissertation presented in this document has addressed the problem of verifi-

cation and testing of SAM model designs. The results have shown the applicability

of the approach. Case studies were defined in which model checking was successfully

applied to liveness properties. The properties verified were the Propositional version

of the original First Order temporal properties. The testing approach defined proce-

dures for the design as well as for the implementation. For testing the design, test

cases were measured with respect to coverage criteria. The case studies were executed

to show the coverage of different test cases for PrT nets based on the initial marking.

Also test cases were generated from the counterexamples for use at the implementa-

tion level.

Finally, this dissertation has addressed the need of a modeling and analysis tool

for the SAM framework by implementing parts of one and by providing different

modules for syntactic verification of the model and for semi automatic generation of

code from a SAM model to a PROMELA program. The tool was used to model and

to generate the PROMELA code for the case studies in this document. It was also

used for detecting design flaws, such as incorrect formulas for properties. The tool

provided useful in the long sought goal of the correct software.

109

8.2 Summary of Contributions

There are three main contributions as part of the integrated approach combining

formal verification and testing.

First (Verification of SAM models), a formal approach for translating a SAM

model to a PROMELA program was defined, this allowed the formal verification of

SAM models using the model checker Spin.

Second (Testing of SAM models), the testing approach for SAM models, defined

the testing at the component, integration and system level. Within the testing ap-

proach, a procedure to evaluate the adequacy of test sets with respect to transition

and state coverage for PrT nets was presented. Also, the testing approach defined

means to generate test cases from the design by using model checking on the negation

of the properties the system needs to comply with.

Third (Tool Environment for SAM), a modeling and analysis tool was imple-

mented which included facilities for syntactic verification of First Order Logic formu-

las and that also contained a semiautomatic translation module from a SAM model

to PROMELA code.

8.3 Future Work

There are three lines of work for the future. First, the incorporation of property

oriented testing in test selection and test adequacy criteria. There has been work

done in property oriented testing, but there is a need to do more within the SAM

framework. Second, other line of work is related to Aspect Oriented system design

based on SAM and PrT nets. In this area, the problem of test case generation and

110

evaluation for Aspect Oriented Systems is of interest. Finally the third line of work

is to integrate Spin into the SAM tool, so that the SAM tool can interact with Spin

and less manual intervention is required. This is of special interest for automatic test

case generation, since results in Spin could be directly translated to the SAM tool for

visual display and analysis.

111

BIBLIOGRAPHY

[1] Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: connecting
software architecture to implementation. ICSE '02: Proceedings of the 24th
International Conference on Software Engineering, pages 187-197, 2002.

[2] Paul Ammann and Paul E. Black. A specification-based coverage metric to
evaluate test sets. In HASE, pages 239-248. IEEE Computer Society, 1999.

[3] Paul Ammann, Paul E. Black, and Wei Ding. Model checkers in software
testing. Technical Report NIST-IR 6777, National Institute of Standards and
Technology, 2002.

[4] Paul E. Ammann, Paul E. Black, and William Majurski. Using model checking
to generate tests from specifications. In In Proceedings of the Second IEEE
International Conference on Formal Engineering Methods (ICFEM98, pages
46-54. IEEE Computer Society, 1998.

[5] Gonzalo Argote-Garcia, Peter J. Clarke, Xudong He, Yujian Fu, and Leyuan
Shi. A formal approach for translating a SAM architecture to PROMELA. In

SEKE, pages 440-447. Knowledge Systems Institute Graduate School, 2008.

[6] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sarfraz
Khurshid, Michael R. Lowry, Corina S. Pasareanu, Grigore Rosu, Koushik Sen,
Willem Visser, and Richard Washington. Combining test case generation and

runtime verification. Theor. Comput. Sci., 336(2-3):209-234, 2005.

[7] Luciano Baresi and Mauro Pezze. An introduction to software testing.

Electronic Notes in Theoretical Computer Science, 148(1):89-111, February
2006.

[8] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice,
Second Edition. Addison-Wesley Professional, April 2003.

[9] Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York,
NY, 1990.

[10] Sergey Berezin. Model Checking and Theorem Proving: a Unified Framework.

PhD thesis, Carnegie Mellon University, January 2002.

[11] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35:677-691, 1986.

[12] J. R. Burch, E. M. Clarke, K. L. Mcmillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. In Logic in Computer

Science, 1990. LICS '90, Proceedings., Fifth Annual IEEE Symposium on e,
pages 428-439, 1990.

112

[13] Richard H. Carver and Kuo-Chung Tai. Replay and testing for concurrent
programs. IEEE Software, 8(2):66-74, 1991.

[14] William Chan, Richard J. Anderson, Paul Beame, Steve Burns, Francesmary
Modugno, David Notkin, and Jon Damon Reese. Model checking large software
specifications. IEEE Trans. Software Eng., 24(7):498-520, 1998.

[15] Feng Chen and Grigore Rosu. Mop: an efficient and generic runtime
verification framework. In Richard P. Gabriel, David F. Bacon, Cristina Videira
Lopes, and Guy L. Steele Jr., editors, OOPSLA, pages 569-588. ACM, 2007.

[16] Junhua Ding, Gonzalo Argote-Garcia, Peter J. Clarke, and Xudong He.
Evaluating test adequacy coverage of high level petri nets using Spin. In AST
'08: Proceedings of the 3rd international workshop on Automation of software
test, pages 71-78, New York, NY, USA, 2008. ACM.

[17] Junhua Ding, Peter J. Clarke, Gonzalo Argote-Garcia, and Xudong He.
Evaluating test adequacy coverage of high level petri nets using spin. Technical
Report FIU-SCIS-2006-05-02, FIU, May 2006.

[18] Zhijiang Dong, Yujian Fu, Yue Fu, and Xudong He. Automated runtime
validation of software architecture design. In Goutam Chakraborty, editor,
ICDCIT, volume 3816 of Lecture Notes in Computer Science, pages 446-457.
Springer, 2005.

[19] Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 1999.

[20] Jon Edvardsson. A survey on automatic test data generation. In Proceedings of

the Second Conference on Computer Science and Engineering in Linkping,
pages 21-28. ECSEL, October 1999.

[21] Javier Esparza and Keijo Heljanko. Implementing LTL model checking with
net unfoldings. In Matthew B. Dwyer, editor, SPIN, volume 2057 of Lecture
Notes in Computer Science, pages 37-56. Springer, 2001.

[22] Jean-Claude Fernandez, Laurent Mounier, and Cyril Pachon. Property oriented

test case generation. In Alexandre Petrenko and Andreas Ulrich, editors,
FATES, volume 2931 of Lecture Notes in Computer Science, pages 147-163.
Springer, 2003.

[23] Gordon Fraser and Paul Ammann. Reachability and propagation for LTL
requirements testing. In Hong Zhu, editor, QSIC, pages 189-198. IEEE
Computer Society, 2008.

[24] Gordon Fraser and Franz Wotawa. Using model-checkers to generate and
analyze property relevant test-cases. Software Quality Journal, 16(2):161-183,
2008.

113

[25] Yujian Fu, Zhijiang Dong, and Xudong He. A method for realizing software
architecture design. In QSIC, pages 57-64. IEEE Computer Society, 2006.

[26] Gerald C. Gannod and Sunil Gupta. An automated tool for analyzing Petri
nets using Spin. ASE, 00:404, 2001.

[27] Angelo Gargantini and Constance L. Heitmeyer. Using model checking to
generate tests from requirements specifications. In Oscar Nierstrasz and Michel
Lemoine, editors, ESEC / SIGSOFT FSE, volume 1687 of Lecture Notes in
Computer Science, pages 146-162. Springer, 1999.

[28] Angelo Gargantini, Elvinia Riccobene, and Salvatore Rinzivillo. Using Spin to
generate tests from ASM specifications. In Egon B6rger, Angelo Gargantini,
and Elvinia Riccobene, editors, Abstract State Machines, volume 2589 of
Lecture Notes in Computer Science, pages 263-277. Springer, 2003.

[29] David Garlan, Robert T. Monroe, and David Wile. Acme: an architecture
description interchange language. In J. Howard Johnson, editor, CASCON,
page 7. IBM, 1997.

[30] Hartmann J. Genrich. Predicate/transition nets. In Wilfried Brauer, Wolfgang
Reisig, and Grzegorz Rozenberg, editors, Advances in Petri Nets, volume 254 of
Lecture Notes in Computer Science, pages 207-247. Springer, 1986.

[31] Bernd Grahlmann and Eike Best. PEP - more than a Petri net tool. In TA CAs
'96: Proceedings of the Second International Workshop on Tools and
Algorithms for Construction and Analysis of Systems, pages 397-401, London,
UK, 1996. Springer-Verlag.

[32] Bernd Grahlmann and Carola Pohl. Profiting from Spin in PEP. In SPIN'98
Workshop, 1998.

[33] Joseph Y. Halpern and Moshe Y. Vardi. Model checking vs. theorem proving:
A manifesto, 1991.

[34] Klaus Havelund, Manuel Nunez, Grigore Rosu, and Burkhart Wolff, editors.
Formal Approaches to Software Testing and Runtime Verification, First
Combined International Workshops, FATES 2006 and RV 2006, Seattle, WA,
USA, August 15-16, 2006, Revised Selected Papers, volume 4262 of Lecture
Notes in Computer Science. Springer, 2006.

[35] X. He and T. Murata. High-Level Petri Nets - Extensions, Analysis, and
Applications. Electrical Engineering Handbook (ed. Wai-Kai Chen). Elsevier
Academic Press, 2005.

[36] Xudong He. A framework for ensuring system dependability from design to
implementation. In Ulrich Ultes-Nitsche, Juan Carlos Augusto, and Joseph
Barjis, editors, MSVVEIS. INSTICC Press INSTICC Press, 2005.

114

[37] Xudong He and Yi Deng. A framework for developing and analyzing software
architecture specifications in SAM. Comput. J., 45(1):111-128, 2002.

[38] Xudong He, Junhua Ding, and Yi Deng. Model checking software architecture
specifications in SAM. In SEKE '02: Proceedings of the 14th international
conference on Software engineering and knowledge engineering, pages 271-274,
New York, NY, USA, 2002. ACM.

[39] Xudong He and John A. N. Lee. A methodology for constructing predicate
transition net specifications. Softw., Pract. Exper., 21(8):845-875, 1991.

[40] Xudong He, Huiqun Yu, Tianjun Shi, Junhua Ding, and Yi Deng. Formally
analyzing software architectural specifications using SAM. Journal of Systems
and Software, 71(1-2):11-29, 2004.

[41] Tony Hoare. The ideal of program correctness: Third Computer Journal

lecture. Comput. J., 50(3):254-260, 2007.

[42] Tony Hoare and Jay Misra. Verified software: Theories, tools, experiments

vision of a grand challenge project. Verified Software: Theories, Tools,
Experiments: First IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich,
Switzerland, October 10-13, 2005, Revised Selected Papers and Discussions,
pages 1-18, 2008.

[43] Gerard J. Holzmann. The model checker SPIN. IEEE Trans. Softw. Eng.,
23(5):279-295, 1997.

[44] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley Professional, sixth edition, September 2004.

[45] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural. A temporal
logic based theory of test coverage and generation. In Joost-Pieter Katoen and

Perdita Stevens, editors, TA CAS, volume 2280 of Lecture Notes in Computer

Science, pages 327-341. Springer, 2002.

[46] Kurt Jensen, Lars Kristensen, and Lisa Wells. Coloured Petri nets and CPN

tools for modeling and validation of concurrent systems. International Journal

on Software Tools for Technology Transfer (STTT), 9(3):213-254, June 2007.

[47] Cem Kaner, Hung Q. Nguyen, and Jack L. Falk. Testing Computer Software.

John Wiley & Sons, Inc., New York, NY, USA, 1993.

[48] Timo Latvala. Model checking LTL properties of high-level Petri nets with
fairness constraints. In Jose Manuel Colom and Maciej Koutny, editors,
ICATPN, volume 2075 of Lecture Notes in Computer Science, pages 242-262.
Springer, 2001.

115

[49] Timo Latvala and Marko Makela. LTL model checking for modular Petri nets.
In Jordi Cortadella and Wolfgang Reisig, editors, ICATPN, volume 3099 of
Lecture Notes in Computer Science, pages 298-311. Springer, 2004.

[50] Patricia D. L. Machado, Daniel A. Silva, and Alexandre Mota. Towards
property oriented testing. Electr. Notes Theor. Comput. Sci., 184:3-19, 2007.

[51] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, 1992.

[52] Ken Mcmillan. Getting started with SMV, 1999.

[53] Kenneth L. McMillan. A technique of state space search based on unfolding.
Formal Methods in System Design, 6(1):45-65, 1995.

[54] Kenneth Lauchlin McMillan. Symbolic model checking: an approach to the state
explosion problem. PhD thesis, Carnegie Mellon University, Pittsburgh, PA,
USA, 1992.

[55] Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Trans.
Software Eng., 26(1):70-93, 2000.

[56] Faron Moller and Alexander Rabinovich. On the expressive power of CTL. In
In Proc. 14th IEEE Symp. Logic in Computer Science (LICS'99, pages
360-369. IEEE Computer Science Press, 1999.

[57] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541-580, 1989.

[58] Doron Peled. Combining partial order reductions with on-the-fly
model-checking. In CAV '94: Proceedings of the 6th International Conference

on Computer Aided Verification, pages 377-390, London, UK, 1994.
Springer-Verlag.

[59] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut fur
instrumentelle Mathematik, Bonn, 1962.

[60] Claus Schrbter and Victor Khomenko. Parallel LTL-X model checking of
high-level Petri nets based on unfoldings. In Rajeev Alur and Doron Peled,
editors, CAV, volume 3114 of Lecture Notes in Computer Science, pages
109-121. Springer, 2004.

[61] Scott Hudson, Georgia Tech. LALR Parser Generator in Java (Java-CUP),
2006. http://www2.cs.tum.edu/projects/cup/.

[62] Ian Sommerville. Software Engineering. Addison-Wesley, sixth edition, 2001.

116

[63] Weixiang Sun, Tianjun Shi, Gonzalo Argote-Garcia, Yi Deng, and Xudong He.
Achieving a better middleware design through formal modeling and analysis. In
Kang Zhang, George Spanoudakis, and Giuseppe Visaggio, editors, SEKE,
pages 463-468, 2006.

[64] Li Tan, Oleg Sokolsky, and Insup Lee. Specification-based testing with linear
temporal logic. In Du Zhang, Eric Gregoire, and Doug DeGroot, editors, IRI,
pages 493-498. IEEE Systems, Man, and Cybernetics Society, 2004.

[65] The Eclipse Foundation. Graphical Editing Framework (GEF), 2007.
http://www.eclipse.org/gef/.

[66] Toms E. Uribe. Combinations of model checking and theorem proving. In
Proceedings of the Third Intl. Workshop on Frontiers of Combining Systems,
volume 1794 of LNCS, pages 151-170. Springer-Verlag, 2000.

[67] Jeannette M. Wing. A specifier's introduction to formal methods. IEEE
Computer, 23(9):8-24, 1990.

[68] Jeannette M. Wing and Mandana Vaziri. A case study in model checking
software systems. Sci. Comput. Program., 28(2-3):273-299, 1997.

[69] Weifeng Xu and Dianxiang Xu. A model-based approach to test generation for

aspect-oriented programs. First Workshop on Testing Aspect-Oriented

Programs (WTAOP'05), 2005.

[70] Huiqun Yu, Xudong He, Yi Deng, and Lian Mo. A formal method for analyzing
software architecture models in SAM. In COMPSA C, pages 645-652. IEEE
Computer Society, 2002.

[71] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit testing coverage and
adequacy. ACM Computing Surveys, 29(4):366-427, December 1997.

[72] Hong Zhu and Xudong He. A methodology of testing high-level Petri nets.
Information & Software Technology, 44(8):473-489, 2002.

[73] Hong Zhu and Xudong He. A theory of behavior observation in software

testing. Technical Report CMS-TR-99-05, School of Computing and
Mathematical Sciences, Oxford Brookes University, September 1999.

117

APPENDIX A

SOURCE CODE LISTINGS

The PROMELA code for the Resource Provider example used in the testing pro-

cedure is listed below.
*

ResourceProvider. pml
Author: Gonzalo Argote Garcia
Date : March 2009
School of Computing and Information Sciences
Florida International University
Miami FL

*/

/*Bounded values for the places*/
#d e f i n e DEFAULTBOUNDPLACE 5
#d e f i n e BOUNDReq DEFAULTBOUND-PLACE
#d e f i n e BOUNDResp DEFAULTBOUNDPLACE
#d e fi n e BOUNDPending DEFAULTBOUNDPLACE
#d e fi n e BOUNDLocalRes DEFAULTIBOUND-PLACE
#d e f i n e BOUNDReq2Send DEFAULTJBOUNDPLACE
#d e f i n e BOUNDSys~n DEFAULTBOUNDPLACE
#d e f i n e BOUNDSysOut DEFAULTBOUNDPLACE
#d e fine BOU ND-Resources DEFAULTBOUNDPLACE
#d e f i n e BOUND-ToLoc DEFAULTBOUND-PLACE
#d e f i n e BOUNDCacheln DEFAULTBOUNDPLACE
#d e f i n e BOUNDCacheOut DEFAULT BOUNDPLACE
#d e f i n e BOUNDLocIn DEFAULTBOUNDPLACE
#d e f i n e BOUND-LocOut DEFAULTBOUND-PLACE
#d e f i n e BOUNDAddCache DEFAULTBOUNDPLACE
#d e f i n e BOUNDResCache DEFAULTJBOUNDPLACE

#d e f i n e DEFAULTBOUNDPSET 5
/* Types defined in the original SAM model*/

/*
NAME ::= string

ID ::= int
IDRES ::= int

REQT ::= ID s NAME
RESPT ::= REQT x ID.RES
PREQT :: P(REQT)
RESOURT ::= NAME x IDRES
PRESOURT ::= P(RE-OURT)

*/

/*Type request*/
/*field2 is a short identifying the string*/

typedef REQP{
int field 1;
short field2;

Type response/

typedef RESPT{
REQr field;
int field2;

};

f/*Type powerset request*/
typedef PREQF{

int inm ;

118

RE r s e t [DEFAULTJ3OUNDPSIP]

* Type resource*/
field1 is a short identifying the name of the resource

typedef RESOURT{
short field ; /*name*/
int field2; /*id*/

};

*Type powerset resource/
t y p e d e f PRESOURT{
int nuns;
RESOURT set [DEFAULTBOUNDPSET] ;

};

/*Ports places definitions*/
REQT vJReq [BOUND Req] ;
short numReq;

RESPT vResp [BOUND-Resp] ;
short numnResp;

REQT v SysIn [BOUNDSysln] ;
short nunmSysln ;

RESPT vSysOut [BOUNDSysOut];
short numSysOut ;

BEQT vCacheIn [BOUND.CacheIn];
short numCacheln ;

RESPT v.CacheOut [BOUNDCacheOut] ;
short numCacheOut ;

REQT vLocIn [BOUNDLocIn] ;
short numrLocIn ;

RESPT vLocOut [BOUNDLocOut] ;
short numLocOut ;

RESOURT vAdd Cache [BOUND-AddCache] ;
short numAddCache;

/* Places in Consumer component*/

PREQT v Pending [BOUNDPending] ;
short numPending;

RESPT v.LocalRes [BOUNDLocalRes] ;
short numLocalRes;

REQT vReq2Send [BOUNDReq2Send] ;
short numReq2Send;

/* Places in SystemResources component*/

PRESOURT vR esources [BOUNDResources];

short numResources;

/* Places in RequestHandler component*/

PREQI vToLoc [BOUNDToLoc] ;
short numToLoc ;

/* Places in Cache component*/
pRESOURT vResCache [BOUNDResCache] ;
short nuniResCache;

119

* Variables to coordinate the execution of the processes*/
int _proc-init ;
int -procnum;

* ** *********/

* Variables to loop and to state whether a given transition is enabled
or not*/

int _index0; /*variable used for iteration*/
int _indexl; /* variable used for iteration*/
int _index2; /* variable used for iteration*/
bool Atrans-bErnabled; /*whether a given transition is enabled or not*/

* Utility macros*/

* Assigns -right to -left of REQT instances*/
inline assignREQT(-left , _right){
-left . field1 = -right . fieldl ;
-left . field2 = -right . field2

}

/*Compares two REQT instances*/
inline compareREQT (e1 , _e2){

(_eI . field1 = _e2. field 1 && -el . field2 = _e2. field2)
}

/*Removes element at -index in -array of type REQTs/
int -array-index ;
inline removeelemarrayREQT (array _arraynum ,_index){

_array-index = _index;
do

(_arrayindex+1 < _arraynum) ->
assignREQT (_array [_arrayindex] , -array [.array-index +1]);
_array index-+-+;
else -> break;

od;
_array_num--

}

/*Checks whether _elemto-find is in -array of type REQTs/
inline checkeleminarrayREQT (_array _arraysize , _elemtofind _indexefound _found){
_found = 0;
index-found = 0;

do
(_index-found < _arraysize) ->

{
if

compareREQT(array (index-found] elem-to-find) ->

_found = 1; break:
else _indexfound+--+:

fi ;
}

: else -> break;
od

}

/* Assigns -right to -left of type RESPT*/

inline assignRESPT(-left, _right){
assignREQT(-left . fieldl , right . field1);
-left . field2 = -right . field2

}

Compares two RESPT instances/
in line conpareRESPT (_e1 , _e 2){

(compareREQT(_el . field1 ,e2. field 1) && e1 field2 _e2. field2)
}

120

Removes element at -index in _array of type RESPT/
in lin e remove-eleinarray-RESPT (_array , _arraynum , index){
_array _index = _index;
do

(arrayindex+1 < _arraynun) ->
assignRESPT (array [_arrayindex] , -array [_arrayindex + 1]);
-array _in dex++;
else -> break;

od ;
_arraynum--

}

*Assigns -right to -left of type RESOURT/
inline assignRESOURT(_left _right){
-left. field1 = -right. fieldl ;
-left . field 2 = -right. field2

}

/*Removes element at -index in -array of type RESOURT*/
inline removeelemarrayRESOURT (-array , _arraynum -index) {

_arraydindex = -index;
do

(_arraydindex+1 < _array.num) ->
assignRESOURT(-array [-arrayindex] ,array [arrayindex+1]);
-arraydindex+±+;
else -> break;

od;
_arraynum-

}

/*Compares the names of two RESOURT instances*/
i n 1 i n e comparenameRESOURT (_e 1 , e 2) {

(_e1 . field1 -- _e2 . field 1)
}

/*Checks whether _elem-tofind has a name in -array of type RESOURT*/
inline checkelemnameinarrayRESOURT(array , _arraysize , _elen_tofind ,

-indexfound , found){
-found = 0;
-index.found = 0;
do

(_index-found < _arraysize) ->

{
if

comparenameRESOURT(_array [-index-found] , elem-to-find) ->

-found = 1; break;
else _indexfound++;

fi ;
}

else -> break;
od

}

Macros and utilities for testing coverage/

#define TRANSITION-COVERAGE 1 /*For transition coverage*/
#define TRANSITIONCOVERAGE 0 For state coverage/

* Transition coverage*/
* Define the array to track the number of times a transition fires
in a process. */

#define DEFARRAY(_array , -size) int -array [-size]
* Arrays are defined to keep track of the transitions fired at a given process.*

#define CONSUIERPCTTRANS 2 /*Number of transitions at Consumer*/

121

DEFARRAY (Cons u mer t r an s , CONSUN\IERCT TRANS) :

#define SYS_RESCTTRANS 2 /*Number of transitions at SystemResources*/
DEF.ARRAY(Syst etResources-trans ,SYSESCTTRANS)

#define REQHANDLERCTTRANS 4 /*Number of tronsitions at RequestHandler*/
DEFARRAY(RequestHandler-trans ,REQ_HANDLERCT'TRANS); /*array of transitions*/

#define CACHECTTRANS 4 /*Number of transitions at Cache*/
DEFAR RAY(Cache-trans CACHECT-RANS); /*array of transitions*/

#define LOCATORCT.TRANS 3 /*Number of transitions at Locator*/
DEFARRAY(Locatortrans ,LOCATORCLTRANS); /*array of transitions*/

/*Used in the testing process to select a transition.*/
inline select-tran (_tr ,_mod){

-tr = (_tr+1) % mod

}

/* Initialize the array of transition fired counters. */

inline initarray (-array _size){
int _idx = 0;
do

(_idx < -size) -> _array [_idx]=0;
_idx++;

else -> break;
od

}

/* Evaluates the transition coverage*/
/* This is specific to this model since we need to know how many processes are*,
inline evaluate-transsarray (transarray , -size , -covered){

_index0 = 0;
do

(_index0 < -size && -covered - 1) ->

{
if

(_transarray [_index0]==0) -> _covered=0; break;
else -> _index04+

fi
}

else -> break
od

}
bool trcovered ;
inline evaluate-trans-coverage (){
/* Arrays for evaluating:

- Consumer-trans (CONSUMER-CTTRANS)
- SystemResources-trans (SYSRES&CTTRANS)
- RequestHandlertrans (REQHANDLER-CT TRANS)
- Cache-trans (CACHE-CT-TRANS)
- Locator-trans (LOCATORCTTRANS)

*/
trcovered = 1;
evaluatet rans-array (Consumertrans , CONSUIER.CTTRANS, trcovered);
evaluate-trans-array (SystemResources_trans , SYSJRESCTTRANS, trcovered):
evaluate-trans-array (RequestHandlertrans , REQANDLERCTTRANS, t rcovered ;
evaluate-trans-array (Cache-trans , CACHEC7TTRANS, trcovered);
evaluate-trans-array (Locator-trans , LOCATORCTTRANS, trcovered)

* stop simulation if covered*/

assert(trcovered != 1)

}

inline evaluatestatecoverage(){
If the number of elements in the cache is 0 state NOTCACHED zs covered./

122

/* Otherwise state CACHED is cohered.*/
assert (vResCache. nurn>0); /* there has to be a cache*/
assert (State-array [0] = 0 11 State-array [1] = 0)

}

* State coverage*/
7* Several abstract states can be defined. The one chosen here involves
the caching of resources: State1(NOTCACHED), State2(CACHED)*/
#define STATELCT 2 /*Nuvrber of states*/
DEFARRAY(Statearray ,STATECT); /*array of states*/

/* Track the transition firing */
inline track-trans (process trans , -size , _tran_index){
/*Record the transitions fired*/
if

:: (_tran-index < -size && _tranindex >= 0) ->
-process-trans [_tranindex]++;

: else -> skip
fi;
/*Record the states covered*/
if

(vResCache[0].num > 0) -> State-array [1] = 1;
else -> State-array [0] = 1

fi ;
/* Evaluate depending what kind of coverage was chosen*/
if

TRANSITIONCOVERAGE -> evaluate-trans-coverage (;
else -> evaluate.state-coverage ()

fi;

/* Special situation: if all requests have been sent out and
Consumer component has received the responses back STOP.
This is only for this specific test .*/
assert (numLocalRes!=5); /*CHECK this value !*/

}

/* Transitions enabledness testing and firing for Consumer*/

/* Transition: recv-resp*/

/*To keep the token to be removed from Resp*/
RESPT _recvrespresp ;

inline precondrecvresp (){
/* check in Pending _index1 I whether there is one element complying*/
/* _index1 will be 0 for this example*/
checkelemin-arrayREQT(vPending [0]. set ,v.Pending [0] .num,

v-Resp [_index0]. field 1 , _index2 , _transbEnabled)
}

inline isenabledrecvresp (){
_transbEnabled = 0;
index0 = 0;
indexl = 0;
index2 = 0;
* loop to iterate through the tokens at the places*/

do
: _index0 < numResp && _trans bEnabled != 1) ->

{
_indexl = 0;
do

(_index1 < nunPending) ->

{
compute the guard with the current substitution./

precondrecvr'esp ();

123

if
Strans-bEnabled = 1 -> _index0--:break;

:: else -> _indexl-++:
fi ;

}
else -> break:

od

}
_index0++:

: else -> break;
od

}

inline firerecvresp (){
/* These variables contain the indexes of the tokens in the places

to use for firing*/
7* index0 (vResp), _indexi (v-Pending)

_index2 (v-Pending /0])*/

/*Remove the element from vResp*/
/*Store req token since it is going away*/
assignRESPT (_recv-resp-resp , v_Resp [Aindex0 });
removeelemarravRESPT (v.Resp , numResp, -index0);

/*Remove the element from v-Pending[0]*/
/*No need to store the token being removed*/
/* _recvresp-il is 0*/
/7_recv-respi2 contains the element that is to be removed from the set*
removeelemarray-REQT(vPending [0. set vPending [0] num, _index2);

/*Add the element to LocalRes*/
assignRESPT v-LocalRes [numLocalRes] , _recv-respresp);
numLocalRes++ /*check limits*/

}

/* Transition: send-req*/

/*To keep the token to be removed from Reg2Send*/

REQT _sendreqreq;

inline precond-sendreq(){ /*The guard*/
-trans-bEnabled = 1

}

inline isenabledsendreq ({
-trans~bEnabled = 0:
_index0 = 0;
-index1 = 0:
/* loop to iterate through the tokens at the places*/

do
: -indexo < numReq2Send && _transbEnabled != 1) ->

{
_indexl 0;
do

(_index1 < numPending) ->

{
compute th(guard with the current substitution./

precond-sendreq):
if

: transbEnabled = 1 -> _index0--:break;
else -> _irdex 1 ++:

fi ;

}
else -> break:

ad
}

124

- index0++;
:: else -> break;

od

}

inline fire-sendreq (){
7* These two variables contain the indexes of the tokens in the places

to use for firing*/
-sendreq-i0(Req2Send), _send-reqi1(Pending)/

7*Remove the element from Req2Send*/
7*Store req token since it is going away*/
assignREQT (-sendreqreq , v_Req2Send [_index0]) ;
remove-elemarrayREQT (vReq2Send , numReq2Send, _index0);

/*Add the element to the first token in Pending and to Req*/
/*-send-reqil is 0*/
assignREQT(vPending [0]. set [vPending [0].num] _sendreq.req);
vPending [0] .num++; /*check limits*/
assignREQT(vReq[nunReq] , _send _req-req);
numReq++ /* check limits*/

}

/**/

/* Transitions enabledness testing and firing for SystemResources*/

/* Transition: reqok*/

/*To keep the token to be removed from Sysln*/
REQT _reqok-req;
RESOURT _reqokresource;

inline precondreqok(){
/* check in Resources / indexi] whether there is one element complying*/
/*_indexl will be 0 for this example*/

_req.ok-resource . field 1 = vSysIn [_index0]. field2 ;
check-eleminameinarrayRESOURT (vResources [0]. set

vResources [0] .num, _reqokresource , _index2 , _transbEnabled)

}

inline is-enabledreqok ({
_transbEnabled = 0;
index0 = 0;

_indexl = 0;
index2 = 0;

/*loop to iterate through the tokens at the places*/

do
(Aindex0 < numrSysIn && _trans-bEnabled != 1) ->

{
_indexl = 0;
do

(_indexi < numResources) ->

{
/*compute the guard with the current substitution. */

precondreqok ();
if

_transbEnabled - 1 -> _index0--; break;
else -> _indexl++;

fi ;
}

else -> break;
od;

}
index0++;

else -> break;

125

od
}

inline fire-reqok (){
7* These variables contain the indexes of the tokens in the places

to use for firing*/
7* -index0 (vSysIn), _index1 (vResources)

-index2 (vResources [0]) */

7*Remove the element from v-Sysln*/
Store req token since it is going away/

assignREQT(-reqok-req vSysIn [_index0]) ;
removeelemarrayREQT (vSysIn , numSysln , _index0);

7* Nothing to remove from v-Resource [Q]*/

7*Add the response to v-SysOut*/
assignREQT (v-SysOut [numrSysOut]. field 1 , _reqokreqg);
v-SysOut {numSysOut]. field2 = vResources [0]. set [_index2]. field2 ;
numSysOut++ /* check limits */

}

/* Transition : reqjfail*/

/*To keep the token to be removed from Sysln*/
REQT _req fail-req ;
RESOURT _reqjfail resource

inline precondreq-fail (){
/* Check in Resources [indexl] whether there is one element complying*/
/*_indexl will be 0 for this example*/
/*_index0 is the token to test for*/

-reqfailresource. field1 = vSysIn [_index0]. field2;
checkelemname-in-arrayRESOURT (vResources [0]. set ,
v.Resources [0].num, _reqfailresource ,_index2 _trans_bEnabled

/* If _tranbEnabled is true the element is in the set, otherwise it is not*
/*Change from false to true and vice versa*/
_trans~bEnabled = !_transbEnabled

}

inline isenabled req~fail (){
_transbEnabled = 0;
_index0 = 0;
_indexl = 0;
_index2 = 0;
/*loop to iterate through the tokens at the places*/
do

(-index0 < numSysIn &k _transbEnabled != 1) ->

{
_indexl = 0;
do

:: (indexl < numResources) ->

{
/*compute the guard with the current. substitution .*/
precond _reqfail ();
if

_trans~bEnabled = 1 -> _index0--; break;
else -> _indexl++;

fi ;

}
else -> break;

od

}
_index0++-

else --; break;

126

od
}

inline fire-req fail (){
* These variables contain the indexes of the tokens in the places

to use for firing*/
/*index(vSysIn), _indexl (vResources)*/

/*Remove the element from Sysln*/
7*Store req token since it is going away*/
assignREQT(_reqfailreq vSysIn [_index0]);
removeelem-arrayREQT (v_SysIn , numrSysIn , _index0);

/* Nothing to remove from vResource [O]*/

/*Add the response to v-SysOut*/
assignREQT (vSysOut [numSysOut]. field1 , _reqjfail-req
vSysOut [numSysOut } . field2 = 0; /*no resource !*/
numSysOut++ /*check limits*/

}

/* Transitions enabledness testing and firing for RequestHandler*/

/* Transition: -check-cache */

/*To keep the token to be removed from Req*/

REQT -checkcacher;

inline precondcheckcache(){
_transbEnabled = 1

}

inline is-enabled-check-cache (){
_transbEnabled = 0;
_index0 = 0;
_indexl = 0;
/*loop to iterate through the tokens at the places*/

do
(_index0 < numReq && _transbEnabled != 1) ->

{
_indexl = 0;
do

:: (indexl < numToLoc) ->

{
/*compute the guard with the current substitution. */

precondcheckcache ();
if

_transbEnabled - 1 -> _index0--; break;
else -> _indexl+-+;

fi ;
}

else -> break;
od

}
_index0 +;

: else -> break;
od

}

inline fire-checkcache (){
/* These variables contain the indexes of the tokens in the places

to use for firing*/
/* _inder0(v-SysIn), -index (v-Resources 9*

/*Remove the element from v-Req*/

127

Store r token since it is going away/
assign-REQT (-checkcacher ,,vReq[_index0);
removeelemarrayREQT (vReq ,numReq, _index0):

Add the element to vToLoc[/indexl 1/
-index1 is 0 for this example/

assignREQT(vToLoc [o]. set [vToLoc [0].num] , _checkcacher);
vToLoc [0].num++; /*check limits*/

Add the element to v-Cacheln/
assignREQT (vCacheln [numCacheIn] , _checkcacher);
numCacheln++ /*check limits*/

}

/* Transition: incache*/

/*To keep the token to be removed from CacheOut*/
RESPT _incache-r ;

inline precond-in _cache({
/*First field of v-CacheOutfindexO] has to be different to 0*/
if

(vCacheOut [_indexO] . field2 != 0) ->
{
/*Check in ToLoc[/indexlj whether there is one element complying*/
/*_indexl will be 0 for this example*/
/*-index0 is the token to test for*/
/*_index2 will contain the index for the matching token in the set*7
checkelem-inarrayREQT (vToLoc [0]. set , v_ToLoc [0] .nun,
v.CacheOut [_index0]. field1 , _index2, _trans~bEnabled ;

}
:: else -> trans-bEnabled = 0;

fi
}

inline is-enabled-in-cache(){
-trans-bEnabled = 0;
_index0 = 0;
_indexl = 0:
_index2 = 0;
/*loop to iterate through the tokens at the places*/
do

(_index0 < numCacheOut) ->

{
_indexi = 0;
do

(indexl < numToLoc && trans-bEnabled != 1) ->

{
/*compute the guard with the current substitution.*/
precondincache ();
if

: trans-bEnabled = 1 -> _index0---; break;
else -> _indexl++;

fi ;
}

else -> break;
od

}

_index0 +;
: else -> break;

od
}
inline fire incache (){

* These variables contain the indexes of the tokens in the places
to use for firing*/

*jndex0(vCacheOut), _indexi (vToLoc),

128

lindex2(7,ToLoc [0])*/

* Remove the element from v-CacheOut*/
/*Store r token since it is going away*/
assignRESPT(_in_cache-r ,vCacheOut [_index0);
remove-elem array RESPT (vCacheOut , numCacheOut , _index0);

* Remove the element from v-ToLoc [-index 1 */
-index1 is 0 for this example/

7*-index2 is the element to remove at v-ToLoc[_index */
removeelemarrayREQT (vToLoc [0]. set vToLoc [0]. num, _index2);

/*Add the element to vResp*/
assignRESPT (vResp [numResp] , _incacher);
numResp-+ * check limits */

}

/* Transition : not-in-cache*/

/*To keep the token to be removed from CacheOut*/
RESPT _notincacher ;

inline precondnot-incache(){
/* Test for first field of v-CacheOut[_index0]*/
if

(vCacheOut [_index0]. field2 = 0) -> _transbEnabled = 1;
else -> _transbEnabled = 0;

fi
}

inline is-enabled-notlin-cache(){
_transbEnabled = 0;
_index0 = 0;
_indexl = 0:
_index2 = 0;
/*loop to iterate through the tokens at the places*/
do

(_index0 < numCacheOut && _transbEnabled != 1) ->

{
_indexl = 0:
do

(indexl < numToLoc) ->

{
/*compute the guard with the current substitution. */
precondnotincache ();
if

transbEnabled = 1 -> _index0--; break;
else -> _indexl++;

fi ;
}

else -> break;
od

}
_index0++;

: else -> break;
od

}

inline firenotincache ({
* These variables contain the indexes of the tokens in the places

to use for firing*/
* ind ex0 (vCacheOut) */

* Remove the element from v-CacheOut*/

Store r token since it is going away/

assigriRESPT(tnot _irncacher , vCacheOut [_index0]);

129

remove_elem_array_RESPT (vCacheOut , nuniCacheOut , _index0)

*Add the element to vLocIns/
assign-REQT (vLocln [numLocln] , _not _in _cac her. field1
numLocn-+ /* check limits*/

}

* Transition: loc~resp*/

7*To keep the token to be removed from LocOut*/
RESPT _locrespr;

inline precondlocresp (){
/* Check in ToLoc/indexi] whether there is one element complying*/

/*-indexl will be 0 for this example*/
/*-index0 is the token to test for LocOut[hindex0]*/
/*_index2 will contain the index for the matching token in the set*
checkeleminarrayREQT (vToLoc [0]. set vToLoc [0].num,
vLocOut [_index0]. field 1 , _index2 , _trans~bEnabled)

}

inline isenabledlocresp (){
_transbEnabled = 0;
index0 = 0;

_indexl = 0;
index2 = 0;

/*loop to iterate through the tokens at the places*/

do
(_index0 < numLocOut && JtransbEnabled != 1) ->

{
_indexl = 0;
do

:: (indexl < numToLoc) ->

{
/*compute the guard with the current substitution.*/

precondlocresp (;
if

_transbEnabled - 1 -> _index0--; break;
else -> _indexl++;

fi
}

else -> break;
od

}
index0++;
: else -> break:

od
}

inline firelocresp (){
* These variables contain the zndexes of the tokens in the places

to use for firing*/
/*index0(v.LocOut), _index1 (v-ToLoc),

_index2 (v-ToLoc 0]) */

*Remove the element from u-CacheOut*7
*Store r token since it is going aways/

assignRESPT(_Iocrespr , v_LocOut [_indexO]):
removeelem-array _RESPT (vLocOut , numLocOut , _index0);

Remove the element from vJToLoc[_indexl]
sondexl is 0 for this examples/
* index2 is the element to remove at vToLocjindex 1*/

removeelemarray,_REQT (viToLoc [01. set , v_ToLoc [0] .nun, _index2)

130

/*Add the element to vResp*/
assignRESPT(v.Resp [nunResp] , Alocrespr
numnResp++ /* check limits */

}

******** *** ***********/

7* Transitions enabledness testing and firing for Cache*/

7* Transition : exists*/

7*To keep the token to be removed from Cacheln*/
REQT _exists_r ;
RESOURT -existsres;

inline precondexists(){
/*Check in ResCache[_indexi] whether there is one element complying*/
/*_indexl will be 0 for this example*/
/*-index0 is the token to test for*/
/*_index2 will contain the index for the matching token in the set*/
_existsres . field1 = vCacheIn [_index0]. field2;
check-elemnameinarrayRESOURT(vResCache [0]. set,
v_ResCache [0].num, _existsres , _index2, _trans bEnabled)

}

inline is-enabled exists (){
_transbEnabled = 0;
index0 = 0;

_indexl = 0;
_index2 = 0;
/*loop to iterate through the tokens at the places*/
do

: (_index0 < numCacheIn && _transbEnabled != 1) ->

{
_indexl = 0;
do

(_index1 < numResCache) ->

{
/*compute the guard with the current substitution.*/
precondexists ();
if

transbEnabled - 1 -> _index0--; break;
: else -> _indexl+-+;

fi ;

}
else -> break;

od
}
index0+±+;

:: else -> break;
od

}

inline fire-exists ({
* These variables contain the indexes of the tokens in the places

to use for firing*/
* _index0 (vCacheln) , _indexi (v-ResCache),

_index2 (vResCache 0]) */

Remove the element from vCacheln/
7*Store r token since it is going away*/
assignREQT(existsr , v_CacheIn [_index0]);
remuveelemariayREQT (vCacheIn ,numCacheln , _indexO);

v-ResCache [index] is left untouched/

Add the element (rl) to mCacheOut/

131

assignREQT (vJCacheOut [nunCacheOut . field1 , exists _r);
vCacheOut nunCacheOut]. field 2 = vResCache [0]. set [_index2].field2;
numCacheOut++ /*check limits*/

}

/* Transition: _notexists*/

/*To keep the token to be removed from Cacheln*/
REQT _not-existsr ;
RESOURT -not-exists-res;

inline precond-not exists ({
7*Check in ResCache [_indexl] whether there is one element complying*/
/*index1 will be 0 for this example*/
/*index0 is the token to test for*/
-notexists-res . field1 = vCacheln [_index0]. field2 ;

check elemnnamein-arrayRESOURT (vResCache [0]. set ,
vjResCache [0]. num, _notexists-res , _index2 , _transbEnabled);

/* If _tranbEnabled is true the element is in the set , otherwise it is not*
/*Change from false to true and vice versa*/
transbEnabled = ! _transbEnabled

}

inline is-enabled-not exists (){
_transbEnabled = 0;
Jindex0 = 0;
_indexl = 0;
/*loop to iterate through the tokens at the places*/
do

(_index0 < numCacheln && _transbEnabled = 1) ->

{
_indexl = 0;
do

:: (-indexI < numResCache) ->

{
/*compute the guard with the current substitution .*/
precond not exists (
if

_transbEnabled - 1 -> _index0--; break;
else -> -indexl++;

fi ;
}

else -> break;
od

}
_index0+ +;

: else -> break;
od

}

inline fire-not-exists (){
/* These variables contain the indexes of the tokens in the places

to use for firing*/

* _index0 (v-Cacheln) _indexl (v-ResCache)*/

/* Remove the element from v-Cacheln*
/* Store r token since it is going away*/
assignREQT (-riot _exists _r , vCacheln [_indexO });
removeelermlarrayREQT (v-CacheIn , nurm _Cacheln , _index0);

v.ResCache _index1] is left untouched/

5 Add the element (r1) to vlCacheOut*
assign-REQT (viCacheOut jnumCacheOut I. fiel dl ,not _exists _r
vCacheOut [InumiCacheOut]. field2 = 0;/* is not in the cache*

132

numCacheOut++ /*check limits*/

* Transition.: _addcache*/

To keep the token to be removed from AddCache/
RESOURT _addcachec;

inline precond-addcache(){
7*Add only if there is not already a resource with the same name cached.*

* -index0 (vAddCache). */
-index is always 0./

check-elemnameinarrayRESOURT(v.ResCache [0] . set ,
vResCache [0]. num, vAddCache [_index0] , _index2 , _transbEnabled ;
transbEnabled = ! _transibEnabled

}

inline is-enabled-add cache(){
_transbEnabled = 0;
_index0 = 0;
_indexl = 0;
/*loop to iterate through the tokens at the places*/
do

(_index0 < num.AddCache && _trans-bEnabled != 1) ->
{

_indexl = 0;
do

(_indexl < nunResCache) ->

{
/*compute the guard with the current substitution. */
precond-add cache (;
if

_transbEnabled = 1 -> Aindex0--; break;
else -> _indexl++;

fi ;
}

else -> break:
od

}
_index0 +;

: else -> break;
od

}

inline fire-add-cache (){
/* These variables contain the indexes of the tokens in the places

to use for firing*/
/* _index0 (vAddCache)*/

/*Remove the element from vAddCache*/

/* Store c token since it is going away*/
assigniRESOURT(_addcache-c ,vAddCache [_index0]);
removeelemarray_RESOURT (v AddCache , numAddCache, _index0);

v_ResCache /-indexri] is left untouched/

* Add the element (rl) to v-Res Cache [0]*/
assignRESOIRT (v_ResCache [0]. set [vResCache [0]. num] _addcachec
vResCache [0].num++ /* check limits*/

}

* Transition: _addcachefails/

* To keep the token to be removed from AddCache*/

REOIRT -addcachefail c;

133

inline precondadd cache fail (){
7*Add only if there is not already a resource with the same name cached.*
7* indexO (vAddCache).*/
7* indexl is always 0. */
check elemname_ in arrayRESOURT (vResCache [0]. set,
vResCache [0] .num, vAddCache [_index0] , _index2 , _transbEnabled)

}

inline is_ enabled addcachefail(){
trans-bEnabled = 0;

-index0 = 0;
-index1 = 0;
7*loop to iterate through the tokens at the places*/
do

(_index0 < nunAddCache && _trans-bEnabled != 1) ->
{
_indexl = 0;
do

(-indexl < numResCache) ->
{
/*compute the guard with the current substitution.*/
precond-add cache (;
if

_transbEnabled - 1 -> _index0--; break;
else -> _indexl++;

fi ;

}
else -> break;

od

}
_index0++;
:: else -> break;

od
}

inline fireaddcachefail (){
/* These variables contain the indexes of the tokens in the places

to use for firing*/

/* index0 (v.AddCache)*/

/*Remove the element from vAddCache*/
/*Store c token since it is going away*/
assignRESOURT(_addcachefail_c vAddCache[_index0]);
removeelemarrayRESOURT (vAddCache ,numAddCache, _index0);

/*vResCache [index 1] is left untouched*/

/*The element is lost , no need to add if it is already there*/

}

**/

/* Transitions enabledness testing and firing for Locator*/

/* Transition: loc-req/

/*To keep the token to be removed from Locn*/

REQT _locreqr ;

inline precondlocreq(){
transbEnabled = 1

}

inline is-enabledlocreq (){
-transbEnabled = 0;

_index0 = 0;
loop to iterate through the tokens at the places/

134

do
(index0 < numLocIn) ->

{

*compute the guard with the current substitution *
precond-locreq ();
if

_transbEnabled = 1 -> break;
else -> _index0++;

fi ;
}

else -> break;
od

}

inline firelocreq ({
7* These variables contain the indexes of the tokens in the places

to use for firing*7

7* index0 (v-Locln)*/

7*Remove the element from vLocln*/
7* Store r token since it is going away*/
assignREQT(_loc-reqr vLocIn [_index0]);
rem ove-elemarrayREQT (v-Locln , numrLocln , -index0);

/*Add the element (r) to v-Sysln*/
assignREQT(v-SysIn [numSysln] ,_ocreqr);
numSysln++ 7*check limits*/

}

/* Transition: locok*/

/*To keep the token to be removed from SysOut*/
RESPT _locokr ;

inline precondilocok(){
if

(vSysOut [_index0]. field2 != 0) -> trans.bEnabled = 1;
else -> _transbEnabled = 0;

fi
}

inline is-enabled-loc~ok (){
transbEnabled = 0;

_index0 = 0;
7*loop to iterate through the tokens at the places*/
do

:: (_index0 < numSysOut) ->

{
7*compute the guard with the current substitution.*/
precondloc~ok ();
if

_transbEnabled = 1 -> break;
else -> _index0++;

fi ;
}

: else -> break;
od

}

inline fire-locok (){
*These variables contain the indexes of the tokens in the places

to use for firing*/
* index0 (v-SysOut)*/

Rernove the element from o-SysOut/
Store r token since it is going away/

135

assignRESPT(_Iocokr ,vSysOut [_index0]);
remove-ele n array _RESPT (vSysOut, numSysOut , _index0)

/*.Add the element (r) to vLocOut*/
assignRESPT(vLocOut [numiLocOut] I ocokr);num-LocOut++; /*check limits *7

* Add the resource to the cache*/
v-AddCache[nun]AddCache]. field1 = _loc-okr. field. field2;
vAddCache[nuimAddCache]. field2 = _locokr . field2 ;
numAddCache++ * che ck limits*/

}

7* Transition : locfail*/

7*To keep the token to be removed from SysOut*/
RESPT Alocfailr ;

inline precondloc fail(){
/* If the resource id is 0, then failed*/
if

(vSysOut [_index0]. field2 = 0) -> _transbEnabled = 1;
else -> -trans-bEnabled = 0;

fi

}

inline is-enabledilocfail (){
trans-bEnabled = 0;

_index0 = 0;
/*loop to iterate through the tokens at the places*/
do

(_index0 < numSysOut) ->

{
/*compute the guard with the current substitution. */
precondlocfail ();
if

_transbEnabled = 1 -> break;
else -> _index0++;

fi ;

}
else -> break:

od
}

inline firelocfail ({
/*These variables contain the indexes of the tokens in the places

to use for firing*/
/* _index0 (v-SysOut)*/

/*Remove the element from v-SysOut*/
/* Store r token since it is going away*/
assignRESPT(_loc _fail_r ,vSysOut [_index0]);
removeelemnarrayRESPT (v-SysOut , numSysOut , _index0);

/*Add the element (r) to v-LocOut*/
assignRESPT (vLocOut [numLocOut] , lo c _ fail _r
num-LocOut+-l+ /*check limits*/

}

* ***

Consumer process/
* Original SAM spec:

Type (Regq2Send) = REQT

Type(Pendzng) = PREQT

Type(LocolRes) = RESPT

Type (Resp) = R1PT

136

Type(Req) REQT
A0(Req2Send) = {<1,"resourcel ">,<2,"resource2">,<3,"resource3">}
MO(Pending) _ {{}}
MAO(LocalRes) = {}
MO(Resp) = {}
MO(Req) = {}
R(send-req)=(true) \and (R1=R \union {req})
R(recvresp) = (\ exists r \in R \dot (resp[1][1]=r[1j \and resp[1][2]=r[2))

\and (res=resp \and (Ri=R \union { resp [1J}))
*7
proctype Consumer () {

* Define the variables for testing. */
byte tran = 0;
byte tra nn = CONSUMERLCT TRANS:
init array (Consumer-trans ,CONSUMERCI'TRANS);
7*Net places and initial marking.*/
numPending=1;
v-Pending [0] .num=0;
numLocalRes=0;
numReq2Send=5;
vReq2Send [0]. field1 =1;
vReq2Send [0]. field2=1; /*"resource2"*/
vReq2Send [1]. field1=2;
v-Req2Send [1]. field2=0; /*"resourcel"*/
v.Req2Send[2]. field1=3;
vReq2Send [2]. field2=2; /*"resource3"*/
vReq2Send [3]. field1=4;
vReq2Send [3]. field2=10; /*"resourcex"*/
vReq2Send [4]. fieldl=5;
vReq2Send (4]. field2=1; /* "resource2 "*/
/*Increment the counter and wait for the other processes to start. */
_procinit++;
(.procdinit = _procnum);
/* Test enabledness and fire. */
do

atomic{tran = 0 -> isenabledrecvresp ();
if

.: _transbEnabled -> fire-recv-resp (;
tracktrans (Consumer trans ,CONSUMERCTTRANS, tran);

:: else -> skip;

fi ;

selecttran (tran ,trann);

}
atomic{tran = 1 -> isenabledsendreq (;

if
. _transbEnabled -> fire-sendreq ();

tracktrans (Consumertrans ,CONSUMERCTTRANS, tran);
else -> skip ;

fi ;
selecttran (tran , trann);

}
od

}

********************* ******* ************ **************************/

/*SystemResources process*/
/* Original SAM spec:

Type(SysIn) = REQT
Type(SysOut) = RESPT

Type(Resources) = PRESOURT

MO(SysIn) = {}
M0(SysOut) = {}
MO(Resources) = {{<"resource2",1002>,<"resource3 ",1003>,<"resourcel ",1001>}}

R(reqok)= (\ exists r \in R \dot (req[2]=r/11))
\and (\exists r \in R \dot (req/2]=r[1] \and resp[1]= req \and resp[2]=r[2j))

R(req-fail)= (\ notexists r \in R \dot (req/2/=r[1j))

137

\and (resp /1=req \and resp[2f=0)
*7
proctype SystemResources (){

Define the variables for testing./
byte tran = 0;
byte tran-n = SYSRESCTTRANS:
init array (SystemResourcestrans ,SYS RESCTTRANS):
Net places and initial marking./

num-Resources=1;
v-Resources [0]. set [0]. field l=1;
vResources [0]. set [0]. field2=1002;
vResources [0]. set [1]. field 1 =2;
vResources [0]. set [1] field 2=1003;
vResources [0]. set [2]. field1=3;
v.Resources [0] set [2]. field2=1004;
vResources [0].num=3;
7*Increment the counter and wait for the other processes to start.*/
_proc init ++;
(-procinit = _procnum
7* Test enabledness and fire. */
do

atomic{tran = 0 -> isenabled-req-ok ();
if

:: trans-bEnabled -> fire-reqok ();
track trans (SystemResourcestrans SYS_RES_CT_TRANStran);
: else -> skip ;

fi ;
selecttran (tran , trann

}
atomic{tran - 1 -> isenabled-reqfail ();

if
:: _transbEnabled -> fire-reqfail ();
track trans(SystemResourcestrans ,SYS-ESCTTRANS, tran);

else -> skip;
fi ;
selecttran (tran , tran-n);

}
od

}

* RequestHandler process*/
/* Original SAM spec:

Type(Req) = REQT
Type(Resp) = RESPT
Type(Cacheln) = REQT
Type(CacheOut) = RESPT
Type(LocIn) = REQT
Type(LocOut) = RESPT
Type(ToLoc) = PREQT
MO(Req) = {}
MO(Resp) = {}
MO(Cacheln) = {}
MO(CacheOut) = { }
MO(Locln) = {}
MO(LocOut) = {}
MO(ToLoc) = {{}}
R(checkcache) = true \and (LI=L \union {r})
R(incache) = (r[2] \nequal 0 \and (\ exists x \in L \dot ((r[1][1]=r[1])

\and(r/1]f2j=x[2)))) \and (L1=L \minus {r[1!})
R(not-in-cache)=(r[2/=0) \and (rl=r /1])
R(lo-resp)= (\ exists x in T dot ((r 1I1 =x/I) and (r 1!/ 1=/2=)))

and (T=T riniius { r[l})
*/

proctype RequestHandlerO({
7*Define the variables for testing.*/

138

byte tran = 0;
byte trann = 4
init -array (Request Handler-trans ,REQAANDLERCT-TRANS);
Net places and initial marking./

nun-ToLoc=1;
v_ToLoc [0] . num=0;
7*Increment the counter and wait for the other processes to start.*/
-proc-init++;

(-proc-init _procnum);
7* Test enabledness and fire . */
do

atomic{tran = 0 -> is-enabled-check cache ();
if

:: _trans-bEnabled -> fire-check-cache (;
track trans (RequestfHandler-trans ,REQHANDLER.CTTRANS, tran);

else -> skip ;
fi ;
select-tran (tran , trann);

}
atomic{tran = 1 -> is-enabled-in-cache (;

if
:: _trans-bEnabled -> fire-in-cache ();

tracktrans (Request H andler-trans ,REQJHANDLERCTTRANS, tran);
else -> skip ;

fi ;
select _tran (tran trann

}
atomic{tran = 2 -> is-enabled not in cache (;

if
:: -trans-bEnabled -> fire-not-in-cache (;

track-trans (RequestHandlertrans ,REQHANDLERCTTRANS, tran);
: else -> skip ;

fi ;
select-tran (tran tran-n)

}
atomic{tran = 3 -> isenabled-locresp (;

if
:: -trans-bEnabled -> fire-locresp (;
track-trans (Request Handler trans ,REQHANDLERCT TRANS, tran);
: else -> skip ;

fi ;
select-tran (tran ,trann);

}

od
}

**/
/*Cache process*/

/* Original SAM spec:
Type(CacheIn) = REQT
Type(CacheOut) = RESPT
Type(ResCache) = PRESOURT

Type (AddCache) = RESOURT

MO(Cacheln) = {}
MO(CacheOut) = {}
MO(ResCache) = {{}}
MO(AddCache) = {}
R(exists)=(\exists c \in C \dot (r[2]=c[1]))

\and (\ exists c \in C \dot (r/2]=c[1]) \and (r/1]=r) \and (r/2J=c[21))
R(not-exists)=(\notexists c \in C \dot (r[2]=c/1]))

\and (r[1]=r \and r[2j=0)

R(add-cache)= (\notexists .r \in C \dot (x[1]=c/1] \and x[_]=c[2]))

\and (Cl=(\union { c})
R(add-cache-fail)= (\ exists x \in C \dot (x[1]=c[1] \and :r[2]=c[2j))

*/

proctype Cache ({

139

*Define the variables for testing */
byte tran = 0;
byte tran-n = CACHECTTRANS;
init-array (Cachetrans ,CACHE-CTTBANS):

Net places and initial marking./
numrResCache =1;
v-ResCache [0].num=0;
Increment the counter and wait for the other processes to start.

-proc-init++:
-proc-init -_proc-num

* Test enabledness and fire */
do

atomic{tran = 0 -> is-enabled-exists ();
if

:: _transbEnabled -> fire-exists ();
tracktrans (Cache trans ,CACHE_CTTRANS, tran);

: else -> skip;
fi ;
select-tran (tran , trann

}
atomic{tran = 1 -> is-enabled-not _exists ()

if
: -trans-bEnabled -> fire-not-exists(;
tracktrans (Cache-trans ,CACHECTTRANS, tran);
: else -> skip ;

fi ;
selecttran (tra , trann);

}
atomic{tran = 2 -> isenabled add cache (;

if
: -trans-bEnabled -> fire-add-cache (;
track-trans (Cache trans ,CACHE-CT-TRANS, tran);
: else -> skip ;

fi ;
selecttran (tran , tran-n);

}
atomic{tran = 3 -> is-enabledadd-cachefail (;

if
: -trans-bEnabled -> fire-addcachefail ();
track _trans (Cache-trans ,CACHECTTRANS, tran);
: else -> skip ;

fi;
select-tran (tran , tran-n);

}
od

}

/ ** *

/*Locator process*/
/* Original SAM spec:

Type(Locln) = REQT
Type(LocOut) = RESPT

Type(SysIn) = REQT

Type(SysOut) = RESPT
Type(AddCache) = RESOURT
AIO(Locln) = {}
MO(LocOut) = {}
MO(Sysln) = {}
Mo(SysOut) = {}
A!O(AddCache) = {}
R(loc-ok)= (r[21 \ notequal 0)\and (c/1/=r[1![2/ \and c/2]=r[2])
R(loc_fail)= (7,[2] = 0)

R(loc-req)= true

*/

proctype Locator ({
*Define the rariabIes for testn9g.*7

140

byte tran = 0;
byte t i a i- = LOCATORCTTRANS ;
init array (Locator _trans LOCATORCI'TRANS);
Net places and initial marking./
Increment the counter and wait for the other processes to start.

-proc-init ++;
(procinit == _procnum);

* Test enabledness and fire. */
do

:: atomic{tran 0 -> isenabledlocreq ();
if

:: _transbEnabled -> firelocreq ();
track trans (Locator trans ,LOCATORCT-TRANS, tran);
: else -> skip ;

fi ;
select-tran (tran , trann);

}
: atomic{tran = 1 -> isenabled-locok ();

if
:: _transbEnabled -> fireiloc.ok (;
track trans (Locator-trans ,LOCATOBCTTRANS, tran);

:: else -> skip ;
fi ;
selecttran(tran ,trann);

}
atomic{tran = 2 -> isenabledlocjfail ();

if
: _transbEnabled -> firelocfail ();
track trans (Locator-trans ,LOCATORCT-TRANS, tran);
: else -> skip;

fi ;
selecttran (tran , trann);

}
od

}

/* init process*/
init{
/*For testing initialize the state array*/
initarray (State-array ,STATE-CT);

accept-init :
/* Initialize the port places*/
atomic {
num.Req=0;
numResp=0;
num SysIn=0;
numSysOut=0;
num-Cacheln=0;
numCacheOut=0;
numaLocOn =0;
num-LocOut=O;

numAddCache=0;

.procnum = 5;
proc-init = 0;

}

atomic {
run Consumer () ;
run System Resources ();
run RequestHandler ();
run Cache () ;
run Locator ()

}
}

141

APPENDIX B

PRT NET MODELS

Figure B.1 shows the top level view of the flattened SAML model for the resource
provider.

ILoci iLodne SysIn

RequestHandler LocOu Locator SystemResources

Req CacheOut LocOut SysOut --- Sysout

Resp Cacheln\ %% / AddCache

Req % \ CacheOut

cacheln AddCache

Consumer Cache

Figure B.1: Top level Resource Provider.

Figure B.2 shows the Consumer component PrT net model.

eq eaa

Figure B.2: Consumer component.

The specification for Consumer component is:

(p(Req2Send) = REQT

(Pending) = PREQT
(p(LocalRcs) = RESPT

p(Resp) = RESPT
tp(Req) = REQT
MO(Req2Send) = {< 1, "resourcel" >, < 2, "resource2- >, < 3, 'resource3" >}

MO(Pendirng) = {{}}
M0(LocalRes) = {}
MO(Resp) {}
MO(Req) = {}
R(sendreq) (true) A (R1 = R U {req})
R(recresp) (3r E R (resp[1][1] = r[1] A resp[1][2] = r[2]))

A(res = resp A (R1 = R U {resp[1]}))

142

Figure B.3 shows the SystemnsResources component PrT net model.

Figure B.3: SystemResources component.

The specification for SytemResources component is:

p(Sysln) = REQT
p(SysOut) = RESPT
yo(Resources) = PRESOURT

MO(Sysln) = {}
AM(SysOut) = {}
MO(Resources) = {{< "resource2", 1002 >, < "resource3", 1003 >, < "resource4", 1004 >}}
R(reqok) (3r e R - (req[2] = r[1]))
A(3r E R - (req[2] = r[1] A resp[1] = req A 7resp[2] = r[2]))
R(reqf ail) = (-Er E R - (req[2] = r[1]))
A(resp[1] = req A resp[2] = 0)

Figure B.4 shows RequestHandler component PrT net model.

Figure B.4: RequestHandler component.

143

The specification for RequestHandler component is:

-p(Req) - REQT
yp(Resp) = RESPT
p(Cache n) = REQT
^(CacheOut) = RESPT
p (Locln) = REQT
p(LocOut) = RESPT
p(ToLoc) = PREQT
AI0(Req) = {}
MO(Resp) = {}
AIO(Cacheln) = {}
AIO(CacheOut) = {}
AIO(LocIn) = {}
AlMO(LocOut) = {}
AIO(ToLoc) = {{}}
R(checkcache) = true A (L1 = L U {r})
R(incache) = (r[2] $ 0 A (]x e L - ((r[1][1] = x[1]) A (r[1][2] = x[
A(L1 = L - {r[1]})
R(notin-cache) = (r[2] = 0) A (ri = r[1])
R(locresp) = (3x E T - ((r[1][1] = x[1]) A (r[1][2] = x[2])))
A(T1 = T - {r[1]})

Figure B.5 shows Cache component PrT net model.

Figure B.5: Cache component.

144

The specification for Cache component is:

yp(CacheIn) = REQT
(CacheOut) = RESPT

yo(ResCache) = PRESOURT
(p(AddCache) = RESOURT
MO(CacheIn) = {}
MO(CacheOut) = {}
AIO(ResCache) = {{}}
AIO(AddCache) = {}
R(exists) = (3c E C - (7r[2] = c[1]))
A(3c E C - (r[2] = c[1]) A (r[1] = r) A (r[2] = c[2]))
R(notexists) = (-Ic E C. (r[2] = c[1]))
A(r[1] = r A r[2] = 0)
R(addcache) = (-3x E C- (x[1] = c[1] A x[2] = c[2]))
A(C1 = C U c)

R(addeache fail) = (3x E C - (x[1] = c[1] A x[2] = c[2]))

Figure B.6 shows Locator component PrT net model.

LiOCQUT

f-

Figure B.6: Locator component.

145

The specification for Locator component is:

p(LocIn) = REQT
(LocOut) = RESPT

y(SysIn) = REQT
(SysOut) = RESPT

p(AddCache) = RESOU RT
XI(Locbn) = {}
MO(LocOut) = {}
MO(Sysln) = {}
AI0(SysOut) = {}
MIO(AddCache) = {}
R(locok) = (r[2] 0) A (c[1] = r[1][2] A c[2] = r[2])
R(locfail) = (r[2] = 0)
R(locreq) = true

146

APPENDIX C

PROMELA LANGUAGE

The grammar of the PROMELA language is provided below.

Grammar Rules

spec : module [module] *

module : proctype /* proctype declaration *7
init /* init process/
never /* never claim */

I trace /* event trace */
utype /* user defined types */

I mtype /* mtype declaration *7
decllst /* global vars , chans */

proctype: [active] PROCTYPE name '([decllst ')
[priority] [enabler] '{' sequence '}'

init INIT [priority] '{' sequence '}'

never NEVER '{' sequence '}

trace TRACE '{' sequence '}

utype TYPEDEF name '{' decllst '}

mtype : TYPE [] '{ ' name [','name] * '}

decl_lst : onedecl [';' onedecl] *

onedecl: [visible] typename ivar [' , ' ivar] *

typename: BIT I BOOL I BYTE I SHORT I INT | MTYPE I CHAN
I uname /* user defined type names (see utype) */

active ACTIVE ['[' const ']'] /* instantiation */

priority: PRIORITY const /* simulation priority */

enabler : PROVIDED '(' expr ')' /* execution constraint *

visible HIDDEN SHOW

sequence: step [' step] *

step stmnt [UNLESS stmnt]
decl_lst

XR varref [',' varref] *

147

XS varref [', varref] *

ivar name [[const] } [anyexpr = chinit

ch-init const '] OF { typename [typename] * }

varref name ' '[' anyexpr ']'] ['.' varref]

send : varref '! ' send-args /* normal fifo send/

I varref '!' '!' sendargs /* sorted send */

receive : varref '?' recv-args /* normal receive */
| varref '? ' recvargs /* random receive */
I varref '<' recvargs '>' /* poll with side-effect */
I varref 7' ?' '<' recvargs '>' /* ditto */

poll : varref ' [' recvargs ']' /* poll without side-effect
I varref '?' 7' '[' recvargs ']' /* ditto *7

send_ args: argIst I anyexpr (arglst ')

arg 1st : any-expr [',' anyexpr] *

recvargs: recvarg [',' recv_arg] * I recv~arg '(' recv-args

recvarg varref | EVAL '(' varref ')' ['-'] const

assign : varref '=' any-expr /* standard assignment *7
varref '+' '+' /* increment *7
varref '-' '-' /* decrement *7

stmnt : IF options FI /* selection */
I DO options OD /* iteration */

ATO\IIC '{ sequence '} /* atomic sequence *7
SDSTEP { sequence '} /* deterministic atomic *7

{' sequence '} /* normal sequence *7
send

receive

assign

I ELSE /* used inside options *7
BREAK /* used inside iterations *7
GOTO name
name ': stmnt /* labeled statement *7
PRINT '(string [',' arglst] ')'
ASSERT expr
expr /* condition *7
c code { } /* embedded C code *7
c expr { }

c(Idl { } '
ctrack '{ }

c_st ate '{ }

148

options : sequence [: ' ' sequence] *

andor : & & 'I

binarop - I%' ' '&' I ' ' I

andor

unarop :

any-expr: (anyexpr ')
any-expr binarop any-expr
unarop any-expr

'(' any-expr '-' '>' any-expr ':' anyexpr ')
LEN '(' varref ')' /* nr of messages in chan */
poll
varref

const

ITIMEOUT
NP. /* non-progress system state */
ENABLED '(' anyexpr ')' /* refers to a pid */
PCVALUE '(' anyexpr ')' /* refers to a pid *7
name '[' any-expr '] ' 'A' name /* refers to a pid */
RUN name '(' [arglst] ')' [priority]

expr : any-expr

'(' expr ')'
expr andor expr
chanpoll '(' varref ')' 7* may not be negated *7

chanpoll : FULL I EM\IY I NFULL I NEMPTY

string : '" ' [any-ascii-char] *

uname name

name : alpha [alpha (number] *

const : TRUE I FALSE I SKIP I number [number] *

alpha : 'a' I 'b' ('c' ('d' I 'e' I 'f' I 'g' 'h' 'i '

k ' ' ' 'in' I 'n ' I 'o ' I 'p ' ('q ' I 'r ' I 's ' I 't '

'u' 'v' I 'W ' I 'x' I 'y' I 'Z'
'A' 'B' I 'C' I 'D' I 'E' 'F' I 'G' I 'H' 'I' 'J
'K' I 'L' I 'M ' I 'N ' I ' ' 'P' 'Q' I 'R' ('S' I 'T'
'U' 'V' 'W 'X' i 'Y' I '

num ber : '0' I '1' I '2' I '3' I '4' '5' | '6 ' I '7' I '8 ' '9'

149

APPENDIX D

LOGIC PARSER

Parser for Transition Constraints and Property Specification Formulas

For high level Petri nets, and more specifically for Predicate Transition Nets (PrT
nets), transition constraints are defined in first order logic (FOL). In addition to the
usual logic operators, we include set, arithmetic and relational operators to be used
as part of expressions in the logic. On the other hand, properties specifications are
written in first order linear temporal logic (FO-LTL). A FO-LTL bears a similar form
as the FOL for transition constraints, except that it includes temporal operators and
that predicates (places) in the behavioral model can be part of a formula defining
the property. For example, predicate (place) P in the corresponding Petri net can be
used to define a term P(x) which evaluates to true if x is a token available at P or

false otherwise.

For each of the logics FOL and FO-LTL, we defined a grammar and we used the

well known Java CUP parser generator to create a parser for each one. The user

inputs the formula through a panel, then the parser checks whether it is syntactically

correct; if so, it creates the XML representation based on the resulting parse tree (see

Figure D.1).

Formula Parse Parse XML XML

(FOL, FO-LTL) Tree Generation' Format

Figure D.1: FOL Parsing.

Grammar Definition

A left recursive grammar was defined for each FO LTL and FOL in BNF form.

This grammar defines the production rules to build terms and expressions as well as

the terminal symbols for the lexical tokens. For FOL we included relational, arith-

metic and set operators. Set operations were included given that data flowing within

a high level Petri net include sets.

Also, we implemented our own true type font to specifically support the temporal

operators symbols. The font encodes each character in Unicode 16 bits format. A

formula is then encoded as a 16 bit character string and it can then be passed to the

parser for lexical and syntax analysis.

150

Parser Generation

Java CUP is used for the generation of the basic code for our FOL and FO-LTL
formula parsers. Java CUP generates LALR, parsers implemented in Java, allowing an
easy integration with existing Java code. For the parser generation we first defined
the lexical symbols to be used by a scanner defined using JLex (also part of Java
CUP). For example, given "\uFA60" representing the always operator, we instruct
the scanner to return a symbol FLTL-ALWAYS which is later used in the grammar
rules.

Next, the grammar itself is expressed in Java CUP format by specifying the termi-
nal symbols, non terminal symbols, precedence of the operators and the production
rules. We implemented a hierarchy of classes to be used in the abstract syntax tree
construction. The root class is LogicSentence, and when a parse tree is built, it is
represented with an instance of this class. The classes available support the different
logic constructs such as binary logic operations, arithmetic operations, temporal logic
operations, among others.

Syntax checking. The syntax correctness is ensured by the FOL and FO-LTL

parsers. If there is an invalid character, the token analyzer will report it and if there
is a syntactic error, the parser will stop and report the error. For example, given the

formula: W-la

It has valid characters, and as such, valid tokens, so the lexical symbol construc-

tion poses no problem. But in the syntax tree construction, the grammar rules define

that after each V a variable list should appear. This is not the case, and a syntactic

error is reported.

Type checking. Type checking is accomplished by relying on the Sorts defined
for the PrT net, where each variable and predicate name has an associated sort and

hence the formula can be checked for invalid type constructs. For example given

x[1] + y, x[1] and y need to be numbers and not other elements such as sets. This

semantic check is critical when we translate our models to PROMELA and to Java

implementations.

XML representation. The abstract syntax tree can be easily translated into

XML format and vice versa. Each node in the tree will have a corresponding tag in

the XML format.

Example. The following liveness formula states that whenever a token x is at

port0. eventually a token y will show up at place port2, and y's third component will

be the same as x's one.

151

Vx (-ly (D(port0(x) -+ o(port2(y)(x[3] = y[3])))))
In this example the third components for x and y act as the identifier for a request,

stating that y is the result of x. This formula is translated into an internal Unicode
16 bits format of the form:

\uFA40 x \uFA43 (\uFA41 y \uFA43 (\uFA60 (port0(x) .

In the lexical analysis, the token construction yields something like:

FORALL ID(x) SCOPE LPAREN EXISTS ID(y) SCOPE LPAREN FLTL . ..

After the lexical analysis is done the parse tree has the form shown in Figure D.2:

LogicSentence

QuantLogicOp

type id QuantLogicOp

for all x type id ..

exists y

Figure D.2: Logic syntactic tree.

And the final XML is of this form:

<Formula name="" type="ftLTL">

<LogicSentence>
<QuantLogicOp><ForAll>

<VarList><
VarListElem><Variable >x</Variable ></VarListElem>

</VarList>
<QuantLogicOp><Exists>

<VarList>
<VarListElem><Variable>y</Variable ></VarListElem>

</VarList>
<UnLogicOp><FLTLAlways>... </ FLTLAlways></UnLogicOp>

</Exists ></QuantLogicOp>
</For All ></QuantLogicOp>

</LogicSentence>
</Formula>

152

VITA

GONZALO ARGOTE GARCIA

1997 B.S., Systems Engineering

Bolivian Catholic University

Cochabamba, BOLIVIA

1997-2002 Researcher and Instructor

Bolivian Catholic University

Cochabamba, BOLIVIA

2006 M.Sc. Computer Science

Florida International University

Miami, Florida

2003-2008 Graduate Assistant and Research Assistant

Florida International University

Miami, Florida

2008- Software Development Engineer

Microsoft Corp.

Redmond, Washington

2009 Doctoral Candidate in Computer Science

Florida International University

Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Gonzalo Argote-Garcia, Peter J. Clarke, Xudong He, Yujian Fu, Leyuan Shi: A For-

mal Approach for Translating a SAM Architecture to PROMELA. SEKE 2008.

Junhua Ding, Gonzalo Argote-Garcia, Peter J. Clarke, Xudong He: Evaluating Test

Adequacy Coverage of High Level Petri Nets Using Spin. AST 2008.

Richard Whittaker, Gonzalo Argote-Garcia, Peter J. Clarke, Raimund K. Ege: De-

centralized mediation security. IPDPS 2008: 1-6

Richard Whittaker, Gonzalo Argote-Garcia, Peter J. Clarke, Raimund K. Ege: Optimizing

Secure Collaboration Transactions for Modern Information Systems. ICONS 2008:

62-68.

153

Yujian Fu, Zhijiang Dong, Gonzalo Argote-Garcia, Leyuan Shi, Xudong He: An Ap-
proach to Validating Translation Correctness From SAM to Jaa. SENE 2007.

Richard Whittaker, Gonzalo Argote-Garcia, Peter J. Clarke, Raimund K. Ege: Col-
laboration Security for Modern Information Systems. SECRYPT 2006: 363-370

Weixiang Sun, Tianjun Shi, Gonzalo Argote-Garcia, Yi Deng and Xudong He: Achiev-
ing a Better Middleware Design through Formal Modeling and Analysis. SEKE 2006.

Oscar Antezana, Gonzalo Argote G.: Desarrollo de Aplicaciones C++ Modificables o
Extensibles en Tiempo de Ejecucidn (Developing C++ Applications that will be mod-
ified or extended at runtime) ACTA NOVA 2001.

Davor A. Pavisic, Gonzalo Argote G., Soraya Ordonez, Oscar Antezana, Ariel Cary,
Erick Antezana, Reynaldo Vargas: Avances en protedmica (Advances in Proteomics)
ACTA NOVA 2000.

Reynaldo Vargas A., Gonzalo Argote G., Ron D. Appel, Denis Hochstrasser, Chris-
tian Pellegrini: Clasificacidn Automdtica de Imdgenes de Geles de Electroforesis Bidi-
mensional Mediante la Clasificacin Heuristica (Two-dimensional electrophoresis gels
images automatic classification using Heuristic Clustering) Science and Technology
Simposium Memories 1998.

Gonzalo Argote G.: Sirnulacion Grdfica por Computadora de Fendmenos Fisicos
Bdsicos (Computer graphics simulation of basic physics phenomena); B.S. Thesis
1997.

154

	Formal verification and testing of software architectural models
	Recommended Citation

	tmp.1400685793.pdf.2ss0I

