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ABSTRACT OF THE THESIS

DESIGN AND DEVELOPMENT OF AN ENZYME-LINKED BIOSENSOR FOR

DETECTION AND QUANTIFICATION OF PHOSPHATE SPECIES

by

Serkan Akar

Florida International University, 2010

Miami, Florida

Professor Vekalet Tek, Major Professor

The objective of this study is to design and development of an enzyme-linked

biosensor for detection and quantification of phosphate species. Various concentrations

of phosphate species were tested and completed for this study.

Phosphate is one of the vital nutrients for all living organisms. Phosphate

compounds can be found in nature (e.g., water sediments), and they often exist in an-

inorganic form. The amount of phosphates in the environment strongly influences the

operations of living organisms. Excess amount of phosphate in the environment causes

eutrophication which in turn causes oxygen deficit for the other living organisms. Fish

die and degradation of habitat in the water occurs as a result of eutrophication. In

contrast, low phosphate concentration causes death of vegetation since plants utilize the

inorganic phosphate for photosynthesis, respiration, and regulation of enzymes.

Therefore, the phosphate quantity in lakes and rivers must be monitored.

Result demonstrated that phosphate species could be detected in various

organisms via enzyme-linked biosensor in this research.
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1.0 INTRODUCTION

Phosphate is one of the vital nutrients for all living organisms (Schropp 2007). The

phosphate compound is an ion, formed with four oxygen atoms binding to a phosphorus

atom. The central element of phosphate is phosphorus and never found free in the

environment since it is highly reactive (Weiner 2001). Phosphate compound can be found

in nature (e.g., water sediments) (Ragothama 1999), and they often exist in an-inorganic

form. The amount of phosphates in the environment strongly influences the operations of

living organisms. Excess amount of phosphate in the environment causes eutrophication

which in turn causes oxygen deficit for the other living organisms. Fish die and

degradation of habitat in the water occurs as a result of eutrophication (Khan 2002). In

contrast, low phosphate concentration causes death of vegetation since plants utilize the

inorganic phosphate for photosynthesis, respiration, and regulation of enzymes

(Ragothama 1999). Therefore, the phosphate quantity in lakes and rivers must be

monitored continuously (Engblom, The phosphate sensor 1998). Human beings daily

attain approximately 700-1600 mg of phosphates, as a dietary supply, through the food

consumption (Weisinger 1998). In human body, phosphates are found in both the organic

and inorganic forms. About 85 percent of the organic phosphates are stored in human

body in the form of hydroxyapatite (Cal0 (P04)60H2) which is the main component of

bones and teeth (Shiber 2002), (Weisinger 1998). The remaining 15 percent is found in

the backbone of DNA, in the structure of phospholipids (component of cellular

membrane) and in some proteins (Weiner 2001), (Weisinger 1998). Organic phosphate

compounds also play significant roles in metabolic energy conversion in the form of
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adenosine triphosphate (ATP), guanosine triphosphate (GTP), cyclic adenosine

monophosphate (cAMP). In addition, phosphate is found in the red blood cells in the

form of 2,3-bisphosphoglycerates (2,3BPG), which is an essential element to release the

oxygen from hemoglobin in the tissue. On the other hand, phosphate exists in the

inorganic form as H3PO 4 and H2PO4 in the plasma (Weiner 2001). As a result of

phosphate deficiency in vegetation, human phosphate intake reduces significantly. Some

of the phosphate related illnesses are: hyperparathyroidism, vitamin D deficiency,

Fanconi syndrome, etc (Engblom, The phosphate sensor 1998). Since low and the excess

amount of phosphate cause malfunctions in environment and the living organisms, an

accurate and sensitive way of measuring phosphates is required (Engblom, The phosphate

sensor 1998). Enzymatic biosensors for detection of phosphate became very attractive in

last three decades. As the scientists reveal new discoveries about the importance of

phosphate, the design and development of phosphate detection devices gained popularity.

Throughout the years, all these factors mentioned above encouraged scientists to

investigate methods for phosphate detection (Villalba, Bioelectroanalytical determination

of phosphate 2009), (Engblom, The phosphate sensor 1998). Up to now, several sensor

technologies for monitoring phosphate species have been implemented. Among these, a

microfluidic system with a 0.7 ppb detection limit, an autonomous microfluidic system

with a 3pM detection limit, a biosensor based on the pyruvate oxidase modified

conducting polymer for phosphate ion determination with a 3pM detection limit, and a

thick-film phosphate biosensor based hydrogel immobilized pyruvate oxidase with a 5

M detection limit are a few that have drawn particular attention (Akar, Development of

a biosensor for detection of phosphate species in uranium contaminated groundwater and

2



wastewater sediments 2010), (Daykin 1995), (McGraw 2007), (Rahman, The biosensor

based on the pyruvate oxidase modified conducting polymer for phosphate ions

determination 2006), (Mak 2003). Although these sensors have successfully detected the

phosphate, they have peculiar drawbacks. For instance, conventional colorimetric and

potentiometric techniques have disadvantages in sensing. The prominent downside is that

the systems are too complicated for frequent use or low selectivity (Villalba,

Bioelectroanalytical determination of phosphate 2009), (Mozaz 2006 ) and (Allan 2006).

Enzyme-immobilized biosensors are the most applicable ones for the phosphate detection

and quantification because of their substrate specificity and lower detection limits. In

terms of frequent use, the enzyme utilized in the biosensor has to be replaced due to the

descending or limited time of enzyme activity. Although the bio- catalytic sensors have

these types of weaknesses, they offer a quick response and provide very rapid results. The

first enzymatic phosphate biosensor was developed employing double enzymes by

Guilbalut et al. (Engblom, The phosphate sensor 1998) (Guilbalut 1975). As it is

reported, this group utilized both alkaline phosphatase and glucose oxidase for their

biosensor. However, alkaline phosphatase becomes active on the functionalities of

phosphate ester and the derivatives of alcohol by opening the bond between them which

lowers the enzyme specificity to the substrates. Then again, this type of sensing system

could not be used efficiently in the aquatic environment for the lower concentrations of

phosphate detection (Villalba, Bioelectroanalytical determination of phosphate 2009).

Later, Wollenberger et al. attempted to lower the detection limit of the phosphate

concentration by employing three different enzymes simultaneously in their research

(Engblom, The phosphate sensor 1998), (Gavalas 2001). Although this group was able to

3



decrease the detection limit by 10-fold as compared to Guilbalut's design, the response

time of the multiple enzymatic sensors was about three minutes for a single measurement

as opposed to seconds with biosensors. Furthermore, the function of its selectivity

negatively affected the long term stability of the sensor (Rahman, The biosensor based on

the pyruvate oxidase modified conducting polymer for phosphate ions determination

2006), (Gavalas 2001). The single enzymatic method using pyruvate oxidase, first

introduced by Mizutani et al. in 1983, is the most efficient and highly selective to

phosphate (Akyilmaz, Construction of an Amperometric Pyruvate Oxidase Enzyme

Electrode for Determination of Pyruvate and Phosphate 2007). Moreover, the

immobilization of a single enzyme is simpler than the immobilization of double or triple

enzymes to the surface and is more effective. It is reported that the double and the triple

enzyme-immobilized sensor technology has some disadvantages because the enzyme

shelf lives are not harmonious. Also, the conventional pyruvate oxidase method suffered

from storage stability, low reproducibility, and selectivity due to their poor design

(Akyilmaz, Construction of an Amperometric Pyruvate Oxidase Enzyme Electrode for

Determination of Pyruvate and Phosphate 2007), (Kubo 1991), (Akar, Development of a

biosensor for detection of phosphate species in uranium contaminated groundwater and

wastewater sediments 2010). One of the main focuses of this research is to develop an

environmental biosensor for detection of phosphate. United States Department of Energy

(USDOE) has several sites where radio-active nuclear materials (i.e., uranium and

plutonium) have contaminated the ground water throughout the nation. Major source for

drinking water mostly comes from ground water via emerging to the rivers. At many of

these sites, the concentration of uranium exceeds the standards (30pg/L) set by the U.S.

4



Environmental Protection Agency (USEPA 2001). Currently, DOE scientists are focusing

on polyphosphate attachment techniques for immobilizing uranium in the soil. The

stabilization is based on the direct binding of the polyphosphate compounds to uranium

via ionic bonds with a highly positive charged element. Uranium is usually available in

the environment either as a reduced form, U4+, or as the oxidized form, U6+. Uranium +6

has a tendency to bind polyphosphate and oxidize to the +4 state (Akar, Development of

a biosensor for detection of phosphate species in uranium contaminated groundwater and

wastewater sediments 2010), (Merkel 2006), (Zhang 2002) and (Jager 1998). When

polyphosphate is added to the uranium contaminated area, stabilization of the uranium as

apatite and sequestered as autunite is reported by Wellman et al. This research revealed

that the reduced concentrations of phosphate can reduce the uranium stabilization

(Wellman 2005).

The current phosphate detection method used at Hanford is sampling and analysis at the

laboratory which has many disadvantages (i.e., potential cross contamination, longer

turnaround time and high cost). For these reasons, we are developing a new biosensor to

detect phosphate in groundwater by employing advanced materials and nano-materials to

surmount these problems.
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2.0 MATERIALS AND METHODS

2.1 Materials

2.1.1 Chemicals
" HEPES; (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), MW 238 g/mol,

Sigma Aldrich, Catalog number 83264-500ML-F.

" Tris; (hydroxymethyl amino methane), MW 121.14 g/mol, Sigma Aldrich, Catalog

number 252859-500G.

" Pyruvic Acid (2-oxopropanoic acid or a-ketopropionic acid), MW 88.06 g/mol,

Sigma Aldrich, Catalog number 204-824-3.

" Dimethyl Sulfoxide (DMSO; methylsulfinylmethane), MW 78.13 g/mol, Sigma

Aldrich, Catalog number D8418-250ML.

" Dithiobis [succinimidyl propionate] (DSP), MW404.42, Piercenet, Catalog number

22585.

* Flavin Adenine Dinucleotide (FAD), MW829.51g/mol, Sigma Aldrich, Catalog

number F6625-100MG.

* Thiamine Pyrophosphate (TPP), MW460.77g/mol, Sigma Aldrich, Catalog number

C8754-100G.

" Magnesium (Mg2+), MW24.31g/mol, Sigma Aldrich, Catalog number 254118-250G.

" Pyruvate Oxidase (POX) (EC. 1.2.3.3, 100 units mg-l) from aerococcus species,

Sigma Aldrich, Catalog number P4591-100UN.

" Dibasic Hydrogen Phosphate (Na 2HPO 4), MW 141.96, Sigma Aldrich, Catalog

number S7907-100G.
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2.2 Methods

2.2.1 Buffer preparations
For the entire experiment two types of buffers were prepared and used.

1. HEPES BUFFER; 100 ml , 0,5M of pH 7 HEPES buffer as suggested by (Rahman,

The biosensor based on the pyruvate oxidase modified conducting polymer for

phosphate ions determination 2006) was prepared at the lab from the equation and the

procedure below:

Molar Mass=Volume x Molarity x Molecular Weight

Equation 1. Calculation of Molar Mass

Mass = (90ml/1000ml) X (0.5M) X (238g/mol) = 11.915grams of HEPES

11.915 grams of HEPES was dissolved in 90 ml of de-ionized water measuring

18MQ/cm 3 (for purity purposes) obtained from Milli-Q water purifying system in a 100

ml beaker. The solution was stirred for about 5 min at 5000 rpm for complete

homogenous mixture. The pH of the buffer was adjusted to pH 7.0 by titrating with

hydrochloric acid (HCl) while continuously stirring. The entire solution used for this

project was prepared and used at the ambient temperature. The final volume of the buffer

was adjusted to 100 ml with de-ionized water in a 100 ml glass volumetric flask.

2. TRIS BUFFER; 1000 ml, 50 mM, pH 7.5 TRIS buffer as suggested by (Akyilmaz,

Construction of an Amperometric Pyruvate Oxidase Enzyme Electrode for Determination

of Pyruvate and Phosphate 2007) was prepared at the laboratory following the procedure

below:
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6 .057grams of the Tris base, calculated based on the Equation 1, was dissolved in 900 ml

of de-ionized water measuring 18MQ/cm 3 (for purity purposes) obtained from Milli-Q

water purifying system in a 1 L glass beaker. In order to homogenize the mixture, the

solution was stirred for about 5min at 5000rpm. For final volume measuring, it was then

transferred into a 1L glass volumetric flask. The pH of the obtained Tris buffer was

adjusted to pH 7.5 (Rahman, The biosensor based on the pyruvate oxidase modified

conducting polymer for phosphate ions determination 2006) by titrating with 1 mM HCl

solution while stirring with a stir bar. The finally volume of the tris-HCL solution was

completed to 100ml while pH is observed. Solutions were prepared at room temperature.

Pyruvate (CH 3COCOOH): a substrate of pyruvate oxidase essential for enzymatic

reaction to occur and it is a vital compound in production of byproduct H 20 2 . According

to the literature, 0.05pM Pyruvic acid is the optimum concentration for pyruvate oxidase

enzymatic reaction (Akyilmaz, Construction of an Amperometric Pyruvate Oxidase

Enzyme Electrode for Determination of Pyruvate and Phosphate 2007). The 10 ml,

pyruvate solution was prepared as followed:

To attain 10ml, 0.05pM, Pyruvate solution, first 50mM stock solution was prepared and

diluted to 0.05pM. To prepare 50mM stock solution 2.20mg of Pyruvic acid was

dissolved in 50ml de-ionized water measuring 18Mf2/cm 3 (for purity purposes) obtained

from Milli-Q water purifying system. Then, the solution was stirred for about 5min at

5000rpm for complete homogenous mixture.

C1 xVI =C 2 xV 2

Equation 2. Dilution Formula
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Where:

C1 : The concentration of the stock solution,

C2 : The concentration of the final solution,

V1 : The volume of the stock solution,

V2 : The volume of the final solution.

Dimethyl Sulfoxide (DMSO) ((CH 3)2 ): a colorless, liquid organic compound which is a

very necessary polar aprotic solvent. It plays an important role for dissolving both polar

and non polar compounds such as proteins. In our experiment it is utilized during the

protein attachment process to dissolve Dithiobis [succinimidyl propionate] DSP.

Dithiobis [succinimidyl propionate] DSP (C14H16N20 8S2 ): a homo-bi-functional

crosslinker exploited for thiol cleavable and membrane permeable crosslinking. During

crosslinking procedure, DSP undergoes a reaction with any amine-containing molecule.

U
0 0

N S 0
0 S N

0 0
0

DSP
M.W. 404 42

Spacer Arm 12.0 A

Figure 1. Chemical Structure of Dithiobis [succinimidyl propionate] (DSP)

Flavin Adenine Dinucleotide (FAD): a co-enzyme that stabilizes the pyruvate oxidase

while the enzyme catalyzes that reaction to produce H20 2. FAD and Thiamine

Pyrophosphate (TPP), divalent cations, bind to apoenzyme to form inactive binary
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complexes. It is also reported that divalent cations affect quaternary structure and shift

the equilibrium (Risse 1992). 20m1, 1mM FAD solution was prepared and diluted to

0.4pM (Equation 2) according to Rahman et al (Rahman, The biosensor based on the

pyruvate oxidase modified conducting polymer for phosphate ions determination 2006).

For this procedure, Equation 1 was used to calculate the mass to be 16.5mg and by using

Equation 2, FAD diluted to 0.4pM. Same amount of FAD was included in experiments

along with 1ml, 50mM tris-HCl pH 7.5.

Thiamine Pyrophosphate (TPP): as explained above, it is one of the divalent cations that

help to stabilize the pyruvate oxidase activity. 20m1, 1mM TPP solution was prepared

and diluted to 1 pM according to Rahman et al (Rahman, The biosensor based on the

pyruvate oxidase modified conducting polymer for phosphate ions determination 2006).

For this procedure, Equation I was used to calculate the mass to be 9.21mg and by using

Equation 2, TPP diluted to 1p M. Same amount of TPP was included in experiments along

with 1ml, 50mM tris-HCl pH 7.5.

Magnesium (Mg2+): a metal and an oxidizer that plays a significant role in TPP and FAD

to bind to apoenzyme to form inactive binary complexes (Risse 1992). 50m1, 2mM Mg2+

solution was prepared as suggested by Rahman et al (Rahman, The biosensor based on

the pyruvate oxidase modified conducting polymer for phosphate ions determination

2006). For this procedure, Equation lwas used to calculate the mass to be 2.5mg and

same amount of Mg2+ was included in experiments along with 1ml, 50mM tris-HCl pH

7.5.
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The purpose of employing FAD, TPP and Mg is that pyruvate oxidase has poor

functionality under 40°C. To overcome this matter, co-factors (FAD, TPP and Mg) are

utilized to stabilize the enzymatic reaction (Yamamoto 1987).

Dibasic Sodium Hydrogen Phosphate (Na2HPO 4): a water soluble, white colored powder

is a phosphoric acid sodium salt that has a chemical structure seen in Figure 2. In this

experiment, it is applied as a phosphate source to complete the chemical reaction as

shown in Equation 5 and Equation 6. It is explained in depth in the amperometry section.

0
I I

+
HO ONa

O Na
Figure 2. Chemical Structure of Na 2HPO4

2.2.2 Construction of Experimental Cell

An experimental cell had to be custom built due to the unavailability of the commercial

product to accommodate the design. Some of the constraints were: positioning of a non-

disturbing stir bar that simultaneously homogenizes the solution, a placement of an

enzyme linked material directly under the electrode for maximum sensitivity and a

construction of an electrode housing that positions the electrodes perpendicular to the

bottom of the experimental cell as well as 2-3mm directly above to the enzyme linked
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material. These limiting factors made the cell design one of the most challenging and

evolving parts of the entire experiment. Modifications to the cell have been done

throughout the investigation. The volume of the cell had to be rendered in to

specifications to be able to accommodate small sizes of materials and chemicals as well

as relatively larger three electrodes (Working Electrode, Reference Electrode and

Counter Electrode). Electrodes are explained in depth under the "Electrodes" section.

Each electrode has a diameter that must be accounted for during the design. In addition,

available pyruvate oxidase was only 100 units (59mg) which had to last for the full

investigation due to the high cost. After analyzing all the constraints and the standards,

the first design emerged as a trial cell seen on the Figure 3.

2.2.3 Construction of Electrode Housing

As stated above, electrodes have relatively large dimensions and they must be positioned

directly above the enzyme-linked material, perpendicular to the bottom, and locate about

2-3mm above the linked materials. The electrode housing was constructed from the

plexy-glass material and it was able to accommodate working electrode (GCE),

Reference Electrode (Ag/AgCl), and counter electrode (platinum wire). In Figure 8, the

housing dimensions and specifications are displayed. The Preliminary electrochemical

studies were successfully performed with the first stage of the design. Some of the

accomplishments included adjustment of volume, creation of electrode housing and

achievement of place for magnetic stir bar. Although the dimensions of the cell fit to the

specifications, the cell could accommodate one experiment at a time.
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Note: Counter Electrode cannot
Reference Lid to hold be seen due to the angle of the
EgeCo electrodes picture. It is behind the other
(Ag/AgCI) ;Wo electrodes.

Working
Electrode

Carbon)

Plexy-glass
Material

[ j First

Experimental
tCe ll

Figure 3. The First Experimental Cell Made at the Oak Ridge National Lab's
Machine Shop.

Therefore, more cells had to be constructed in order to perform multiple analyses without

cross contamination and frequent sanitization. Subsequently, three extra cells were

assembled in to the system to reduce the cleaning time and to avoid any contamination

possibilities during the current measurements. On the other hand, according to the

chemical Equation 6 indicates that oxygen is an essential element for H20 2 production.

Considering all the rationale, modification to the cell became inevitable which evolved to

the stage shown in Figure 4. Consistent experimental data was obtained via the newly

designed experimental cells with the increased number of oxygen ports. Furthermore, the

by-product of the enzymatic reaction, H20 2 was successfully generated which helped in

troubleshooting to determine the reason of predicament. The new design did not only
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improve the production of H20 2, but it also dramatically shortened the experimental test

time.

Platinum
Housing forWire
electrodes

Cell 4 Cell 3

,Cell 2

Oxygen

Cell 1 Ports

Figure 4. Experimental Cell with Four Compartments and Oxygen Ports.

Conducting a single experiment with the cell shown in Figure 3, took about 80 - 110

minutes from start to finish. In addition, after each test, the cell had to be cleaned to avoid

any possible cross-contamination from previous experiment. This cleaning procedure

took about 15 to 30 minutes. As opposed to the first stage of the cell, the newly designed

cells reduce the number of cleaning steps between each measurement since there are

three more compartments available. Later, the data obtained from the modified cell were

compared with previously obtained data and a spectacular increase in current was

noticed. Eventually, the new data which were obtained by using the novel

electrochemistry cell was compared with related literature data. The consistency was

observed between the obtained data and published data. This observation confirmed that
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the transition of the sufficient amount of oxygen gas, which was critical for fully efficient

enzymatic reaction, was supplied via newly designed oxygen ports (Figure 5).

Electrodes

Cell
N~Comipartmnents

1 ? 3 4

Oxygen
Ports

Figure 5. Increased Amount of Oxygen Ports

Figure 6. Cell from Bottom View
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2.2.4 Solid work design of cell and housing

1%

Housing for
magnetic

Figure 7. Computer Program "Solid Works" Drawings of the Cell.

crrs

Titration Port

Figure 8. Computer Program "Solid Works" Drawing of the Housing for the
Electrodes.
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Top View of the Cell Profile View of the Cell

Oxyger r,;' Housng TO[ Magnetic S. rer

Figure 9. Top and Profile Views of the Cell.

b

a C

Figure 10. (a) Cells with Electrodes, (b) Electrode Housing and (c) Cell with the

Housing.
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2.2.5 Electrochemical Measuring Device

Cyclic voltammetry (CV) and amperometric measurements were performed with the use

of Potentiostat/Galvanostat Epsilon model as an electrochemical measuring instrument.

Figure 11 illustrates the actual view of the electrochemical work station.

3p

B.'.

Figure 11. Epsilon Electrochemical Work Station (Facility 2005).

2.2.6 Electrodes

Working Electrode; according to the literature, there are several types of electrodes

readily available for electrochemical measurements. The most common electrode is the

glassy or the vitreous carbon electrode (GCE). It is very widely used in electrochemical

measurements due to its excellent mechanical and electrical properties, extended

potential range, chemical inertness (solvent resistant) and reproducibility (Instrument

2005). GCE is prepared by heating the material in very small increments in controlled
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environment (inert environment). Slowly, the temperature increment is applied from 300

0C to 1200 "C to eradicate the oxygen, nitrogen, and the hydrogen which might build up

in the process. The GCE has to be polished after each use by polishing cloth and then

rinsed with DI water to obtain a maximum performance. Although few other pretreatment

methods have been proposed in the literature, the most effective treatment was

determined to be the polishing cloth (J. Wang, Analytical Electrochemistry 2000)

(Instrument 2005). In this thesis work, the treatment procedure stated above was followed

before performing a new analysis. Specifications and the picture of a working electrode

are illustrated in Figure 13(a, b).

Reference Electrode - Silver/Silver Chloride (Ag/AgCl); it is a very commonly used

electrode in electrochemical measurements. The reference electrode tests a cathodic

protection corrosion control systems in the aqueous environments. The chemical equation

(Equation 3) undergoes a redox reaction and the electron is detected between silver metal

and the salt which is silver chloride.

Ago(s) + Cl- - AgCl(s) + e

Equation 3. Reference Electrode Chemical Reaction

The electrochemistry device uses this reaction as a reference to determine the analyte

being studied. Specifications and the picture of a reference electrode are demonstrated in

Figure 13 (c and d). The electrode was kept in 3M Potassium Chloride (KCl) solution for

the entire time, as seen in Figure 12, in order to obtain the best results from the reference

electrode.
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Figure 12. Three Molar (3M) Potassium Chloride (KCL)

Counter Electrode - Platinum Wire; platinum is a widely used counter electrode in

conventional three electrode system due to its inertness, resistance to corrosion, high

temperature characteristic and stable electrical properties. Specifications and the picture

of a counter electrode are exemplified in Figure 13 (e and f). Platinum wire was

purchased from Omega Inc. The three inches of wire was folded three times and bounded

together to achieve a uniform conduction throughout the experiments.

2.2.7 Protein-linked polymers and nano structured materials

2.2.7.1 Silica polymer

A 1 inch by 3 inch composite inorganic substrate material with silica as a main ingredient

was purchased from Edmund Scientific Inc. Then gold (Au) was deposited on to silica

via vapor deposition process. The gold and the silica (substrate) were placed inside of a
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chamber. Then, the pressure of the chamber was reduced from the atmospheric pressure

to -5 torr and the gold was heated to its melting point (1337.33 K).

e) (f)

Figure 13. Working Electrode (Glassy Carbon) (a, b), Reference Electrode

(Ag/AgCI) (c, d), Counter Electrode (Platinum Wire) (e, f).

Next, the melted Au was adhered on to the substrate via thermionic vacuum system and

the deposition amount was determined to be 0.1 mm as seen on the Figure 14 below. The

Au deposited substrate was then cut into 10 mm x 10 mm pieces in order to attach equal

amount of protein on the surface area.

GOLD DEP-SITIC)N 1 I,

SILICA

Figure 14. Au Deposited on Silica Substrate
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The amount of pyruvate oxidase enzyme affects the production of H20 2 and one of the

aims of this research is to evaluate the conductivity of the materials. Therefore, the

amount of immobilized protein on gold surfaces must be consistent on all substrates in

order to eliminate the variables. Figure 15 demonstrates the actual polymer with gold

coating.

Figure 15. Actual Picture of the Gold-Coated Silica Polymer

2.2.7.2 Highly Conductive Multi Wall Carbon Nano-Tube (CNT) combined with

Copper (Cu), Chromium (Cr), Nickel (Ni) and Silver (Ag) metal alloys

These materials are composed of CuCrAgNi, metals and CNT were prepared by

employing powder metallurgy techniques based on the metal matrix composite (MMC)

compacts. It is reported that one of the major limiting factors in sensing is the electrical

conductivity in terms of electron transfer (P. Wang 2009), (Liu 2007). In order to

increase the sensitivity towards the measurement of the H20 2 concentration in the

reaction cell, several highly conductive materials were investigated for the role of
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electron transferring materials from the buffer system to the electrodes. The conventional

four probe method was performed to determine the conductivity of the materials;

calculation was executed using the formula below:

(t V

Equation 4. Formula of Conductivity (Munroe 2008)

Where p is the resistivity, V is the voltage, I is the current, s is the spacing between the

probes, and t is the thickness. From the ohms law R = , the resistivity was obtained

(Munroe 2008). Gold was deposited on the surface of CuCrAgNi based alloys with CNT

the same way it is described in Gold-Coated silica from the previous section. Figure 16

shows the real view of the highly conductive nano structured material.

Figure 16. Actual View of the Nano-Structured Highly Conductive Material
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2.2.7.3 Highly Conductive material composed of Copper (Cu), Chromium (Cr) with

Multi Wall Carbon Nano-Tube (MWCNT)

The groundwork of this material is the same as the Highly Conductive Carbon Nano-

Tube (CNT) with Nickel (Ni) and Silver (Ag) (CuCrAgNiCNT) explained in the previous

section. The calculations were executed based on the Equation 4. Same procedure was

followed respectively below for the calculating the conductivity. The actual view of the

material is shown in Figure 18.

-T - - - T
* V S

PELLET

Figure 17. Four Point Probe Resistivity Measurements Sketch

Figure 18. Authentic View of the Highly Conductive Nano Structured MWCNT
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2.2.8 Pyruvate Oxidase Enzyme

Even though researchers have been working on the enzyme-linked biosensors for

decades, these instruments still need to be improved in their sensitivity, durability, and

selectivity. Literature review reveals that there are many different single and multi

enzyme applications utilized to develop enzyme attached biosensors. However, the single

enzyme conjugated sensors have superiority over the multi enzyme dependent sensors

due to their simple application and immobilization (Akar, Development of a biosensor for

detection of phosphate species in uranium contaminated groundwater and wastewater

sediments 2010). Because of the advantages of single enzyme application, Pyruvate

Oxidase (POX) was utilized in this thesis work (Villalba, Bioelectroanalytical

determination of phosphate 2009). Pyruvate Oxidase (POX) (EC. 1.2.3.3, 100 units mg')

from aerococcus species in the form of lyophilized powder was purchased from Sigma

Aldrich and used upon receiving.

As stated above, in order for this thesis to work, Pyruvate Oxidase (POX) was determined

and attached to the metal surface to be employed. Pyruvate Oxidase (POX) (EC. 1.2.3.3,

100 units mg-1) from aerococcus species in the form of lyophilized powder was

purchased from Sigma Aldrich and used upon receiving.

2.2.9 Enzyme de-salting column:

When an enzyme is purchased in the lyophilized form, the supplier provides specific

buffer to revive the enzyme for its longer shelf-life. Since the buffer contains salt, it can

affect the immobilization of the enzyme to the surface of the material. Pyruvate Oxidase
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was de-salted via a salting column to surmount the obstacle. De-salting column kit

(displayed in Figure 19) was purchased from General Electric (GE) Health Care.

Figure 19. De-salting Columns

Lyophilized pyruvate oxidase (POX) enzyme, purchased from the Piercenet, contains

impurities and buffer salts appended in the vial by the supplier. The enzyme must be

extracted from the salts because buffer salts that contain prime amines affect the

immobilization process (Fisher 2008). Desalting columns are used for large variety of

applications such as removal of large biomolecules, removal of low molecular weight
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compounds and buffer exchange. The de-salting process is done via de-salting column

purchased from GE Health Care.

2.2.9.1 De-salting column preparation:

Currently, there are two main protocols available for de-salting of the protein. One of

them is the spin method and the other one is the gravity method. Most suitable technique

for this experiment is the gravity method due to the nature of the pyruvate oxidase (Fisher

2008). The desalting procedure was applied in this research as it is explained below.

1. Desalting Column Preparation:

* First, the top cap was removed from the column.

* The sealed bottom of the column by the manufacturer for

fresh use was cut and discharged.

* The storage solution in the packed column was

discharged.

2. Equilibration of the column:

* The column was equilibrated via passing through the

equilibrium buffer which was purchased from GE Health

Care from the entire packed column.I The process was repeated four times to achieve the

complete equilibrium of the de-salting column.

" The collected equilibrium buffer at the bottom of the

column was discarded.

- Note; The entire 25ml of equilibrium buffer was applied to
the column.
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The protein was then immobilized on the surface of the materials right after the elution

procedure as suggested by the protocol (Care 2007).

3. De-Salting of the Protein (Pyruvate Oxidase):

* The enzyme solution was applied to the pre- equilibrated
column as 2,5 ml at a time.

* It is allowed for the total volume, 2.5m1, of the enzyme

sample pass-through the column and collected.
* The unbound protein and the impurities were washed out

with 2.5ml of de-salting buffer solution.

4. Elution

___ " In order to collect the enzyme from the column matrix, the

elution buffer was loaded to the pre-washed column. The

entire de-salted and purified protein was collected from the

bottom of the column in a clean vial.

" As soon as the protein was eluted from the column, it was

immobilized on top of the materials which we employed

~ according to the protein immobilization procedure (Care
2007).

2.2.10 Enzyme Immobilization on Materials

Pyruvate Oxidase was immobilized on three different material surfaces; polymer (silica)

based, highly conductive CNT with Ag and Ni and highly conductive MWCNT.
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Immobilization procedure was consistent for each substrate. During the procedure,

dimethylsulfoxide (DMSO), enzyme solution (protein), dithiobis (succinimidyl)

propionate (DSP), DI water, HEPES buffer and Tris buffer (all the chemicals are

presented in Figure 20) were utilized.

Protocol:

1. 10mg of DSP was dissolved in 2.5ml of DMSO (The ratio for DSP to DMSO

is 1:4).

2. DSP solution was completely dissolved in the DMSO by stirring.

F U.

Figure 20. Chemicals Used for the Immobilization Process

3. Au-coated Silica Polymer material was incubated in DSP+DMSO solution at

room temperature.
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4. After 30-35 minutes of incubation in DMSO+DSP solution, the material was

gently and thoroughly rinsed twice with DI water.

5. The gold-coated substrate was activated with NHS group for protein coupling

at this step.

6. In a 10 ml beaker, 5 ml, 0.5M HEPES pH 7 and 100pl of protein solution

(this amount was strictly kept consistent for all protein conjugations of all

three materials to ensure the constant amount of enzyme immobilization) was

prepared (enough amount to submerse the material in the mixture).

DMSO+DSP

Gold coated
silica polymer
rnuba1 ted in
DMSO+DSP

Figure 21. Gold Coated Silica Polymer Incubated in DSP+DMSO
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7. The gold substrate was immediately immersed in the HEPES + Protein

mixture for incubation to attain maximum amount of protein binding.

8. In order to achieve the optimum result for protein attachment, the carrier was

incubated in the buffer and protein mixture solution for 5 hours at room

temperature.

9. After 5 hours of incubation, the protein immobilized substrate material was

removed from the solution. It was then rinsed with approximately 3ml tris-

HCl pH7.5. (This step is very crucial to discard any un-conjugated proteins).

2.2.10.1 Immobilization of nano-structured-highly conductive materials

The same conjugation protocol used for gold-coated polymers was applied to the nano-

structured materials. In order to obtain the best results, the immobilized copper-based

materials should immediately be used for the electrochemical measurements after the

crosslinking (Rahman, The biosensor based on the pyruvate oxidase modified conducting

polymer for phosphate ions determination 2006). Highly conductive nano- structured

materials contain copper which leached out over approximately two months time period

in buffer solution. In Figure 22, the nano material was immobilized and kept in tris buffer

for about a month after the experiments completed. The blue color in tris buffer is the

indication of a copper dissolution. Moreover,

Figure 23 reveals the same materials but over a three month period. A darker blue color

was noticed in comparison to the one month of storage. It points out that the conductivity

of the materials deteriorates which also inversely could affect the experimental results.
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Figure 22. POX Immobilized on MWCNT and Kept in Tris Buffer After
Experiments.

r'

Figure 23. Nano Materials Kept in Tris Buffer Over Three Months Period.
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3.0 EXPERIMENTS

Before any experiments were carried out, the entire lab-wares and the supplies were first

washed with tap-water and the phosphate free laboratory detergent. Afterwards, they

were thoroughly rinsed with the de-ionized water. In order to avoid any cross-

contamination, the DI water rinsed supplies were dried for about two hours at 70°C in the

oven. Subsequently, 1 ml of 0.5 m Tris buffer, mini stir bar, and the electrodes were

placed in the experimental cell. The solution was stirred continuously throughout the

recordings. 1 ml, 50mM Tris-HCl pH 7.5 was used as a negative control for the entire

voltammetric and amperometric tests illustrated in Figure 26 and Figure 27, respectively.

3.1 Cyclic Voltammetry (CV)

It is an electroanalytical technique with conventional three electrode method that is used

as a diagnostic tool. The voltammetry provides information about an analyte acquired

from the electrical current applied between the working electrode and the counter

electrode. In other words, cyclic voltammetry observes the redox behavior of analyte over

a wide range of applied potential to the electrodes. CV then scans the analyte between

initial potential and the final potential. The instrument's scan range is adjusted by the

user based on the investigated chemical compound which is recorded as current versus

potential (J. Wang, Analytical Electrochemistry 2000).

The entire experiments were conducted in the experimental cell elucidated in depth in the

material section 2.3.2 and shown in Figure 10. The homogeneity of the solution in the

cell should be maintained throughout the experiment for the preeminent outcome. For

that purpose, a stir bar was positioned on the bottom of the cell, where the housing for
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magnetic stir bar was constructed (illustrated in Figure 10 and Figure 7). Then, the

experimental cell was placed on magnetic stirrer (Figure 24) and tests were conducted

while stirring at 3000 rpm. The electrodes (working electrode, reference electrode and the

counter electrode) were situated perpendicular to the bottom of the cell (see Figure 10)

through the custom constructed electrode housing (Figure 8). The ninety degree angle

and the proper height of the electrodes were ensured.

Magnetic
Stir Bar

Figure 24. Computer Drawing of Experimental Cell and Magnetic Bar Placed in the

Housing.

Detection and quantification of phosphate was performed via electrochemical

measurements such as cyclic voltammogram and chronoamperograms with conventional

three electrode system. The detailed explanation of electrochemical method is in section

3.1 and 3.2

3.2 Amperometry

Amperometry is also known as chronoamperometry. It is commonly used to determine

the diffusion coefficient of electroactive chemical compounds at the surface of the
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working electrode (N. Conrath 1995), (Kwan 2005), (Fumio Mizutani 2000). As opposed

to cyclic voltammetry, a fixed potential is applied and the current change is recorded

versus time (J. Wang, Analytical Electrochemistry 2000). An electrochemical reaction

occurs upon the application of potential which in turn alters the magnitude of the current.

The concentration of the solution is quantified from the magnitude of the current at

indicated time (Christine Mousty 2001), (Engblom, The phosphate sensor 1998), (Fumio

Mizutani 2000), (Gavalas 2001), (Kubo 1991), (Kwan 2005), (Rahman, The biosensor

based on the pyruvate oxidase modified conducting polymer for phosphate ions

determination. 2006), (Villalba, Bioelectroanalytical determination of phosphate 2009).

In this investigation, H20 2 is produced from the enzymatic reaction that takes place on the

enzyme-linked material, directly under the working electrode. The produced H20 2 causes

a current change at a particular time (time only indicates the reaction moment) on the

electrode surface. The magnitude of the current shift determines the concentration of the

produced H20 2 (Christine Mousty 2001), (Gavalas 2001), (Kubo 1991), (N. Conrath

1995), (Villalba, Bioelectroanalytical determination of phosphate 2009).

3.3 Detection of Phosphate Concentration in the Cell

All the electrochemical measurements to detect and quantify the phosphate

concentrations in the fabricated cell were completed with the same amperometric

principles as explained in section 3.2.

Magnetic stirrer, 1ml, 50mM tris-HCl buffer, 20 1, 0.4pM of FAD, 20 1, 1 pM of TPP,20

pl 2mM of Mg2+ and the electrodes were placed in the constructed experimental cell and

stirred continuously at 3000rpm throughout the experiments. Working electrode,
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reference electrode and counter electrode were connected to the Epsilon Electrochemical

Amperometry, respectively. After the electrodes were positioned on the cell as seen in

Figure 10, five various phosphate concentrations were examined (10mM, 1mM, 10pM,

100nM, and lOnM).

Table 1. Test plan for the current obtained from H 20 2 Respect to Different
Materials

Replications

MATERIAL Trial 1 Trial 2 Trial 3

Silica Polymer

CuCrAgNiCNT

CuCrMWCNT

Table 1 outlines the testing procedure. First, the silica polymer, subsequently, the nano-

structured CuCrAgNi metals alloyed with CNT, and finally, the CuCr metals alloyed with

MWCNT were tested with three replications.

All the experiments elucidated in the 3.3 were designed exactly the same way it is

described here.
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4.0 RESULTS AND DISCUSSIONS

4.1 Results

An enzyme-linked phosphate biosensor was developed for this thesis. The response of the

sensor depends on the phosphate concentrations in the cell was investigated via

electrochemical amperometric techniques (described in detail in section 3.2) as reported

in literature (Serge Cosnier 1998), (M. Sanchez-Paniagua L6peza 2009), (Fumio

Mizutani 2000), (Susana Campuzano 2005), (Yaico D. Tanimoto de Albuquerque 2007),

(Christine Mousty 2001), (A.T. Lawal 2009), (Mozaz 2006 ), (N. Conrath 1995), In

addition, cyclic voltammetry (CV) was employed (Figure 25, Figure 26) to assess the

purity (phosphate free) of the chemical solutions and materials utilized in these

experiments (i.e. tris buffer, cells, electrodes and etc.) as well as the system functionality

check. CV is often the primary test that is performed to gain information about the

electroanalytical investigation (J. Wang, Analytical Electrochemistry 2000).
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Figure 25. Cyclic Voltammetry (CV) of Ferricyanide
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Back GroundCV for TRIS Buffer
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Figure 26. CV Recording of Tris Buffer Background

In order to determine the impurities in the buffers, there were a serial of blank tests were

often carried out prior to the actual experiments. The negative control experiments were

distinguished the difference of the background and the measured substance (J. Wang,

Analytical Electrochemistry 2000). Figure 27 depicts a typical amperometric background

test for lml, 50 mM tris-HCl pH 7.5 and the result demonstrates the inexistence of any

analyte in the background buffer (tris-HCl).

On the other hand, currents vs. time for H20 2 in 50 mM tris-HCl pH 7.5 were recorded by

the amperometry and the obtained results were used as positive controls. It is depicted in

the Equation 6 and in Figure 29, the phosphate goes under reaction and produces

hydrogen peroxide. (Akyilmaz, Construction of an Amperometric Pyruvate Oxidase

Enzyme Electrode for Determination of Pyruvate and Phosphate 2007) (Gavalas 2001)

(Kubo 1991). Hydrogen peroxide then goes under another reaction (Equation 5) due to

the applied potential force which causes H20 2 to release two electrons. An amperometric

device captures these released electrons in the form of current change between working
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Figure 27: Amperometric Background Test Recording for iml, 50mM Tris-HCI
pH 7.5

and counter electrodes (Fumio Mizutani 2000), (Serge Cosnier 1998). For this test, two

separate techniques under the same conditions were attempted for comparison purposes.

The first one was the incessant titration of 20 1 , 20% H20 2 in iml, 50mM tris-HCl pH7.5

buffer with lOsecond intervals seen in Figure 28.
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Figure 28. Continuous Titration of 20pl, 20% H202 in iml Tris Buffer
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The second test was one time titration of 20p1, 20% H20 2 iml, 50mM tris-HCl pH7.5

shown in Figure 30.

H202 2H + 2e +02

Equation 5. Electrooxidation of H202 (Engblom, The phosphate sensor 1998),
(Akyilmaz, Construction of an Amperometric Pyruvate Oxidase Enzyme Electrode for
Determination of Pyruvate and Phosphate 2007), (Christine Mousty 2001), (Engblom,
The phosphate sensor 1998), (Fumio Mizutani 2000), (Gavalas 2001), (Kubo 1991),
(Kwan 2005), (N. Conrath 1995), (N. Conrath 1995), (Rahman, The biosensor based on
the pyruvate oxidase modified conducting polymer for phosphate ions determination
2006)

Pvruvate Oxidase
Pyruvate+Phosphate+0 2  * Acetyl Phosphate+C0 2+H20 2

Equation 6. Phosphate Enzymatic Reaction (Akyilmaz, Construction of an
Amperometric Pyruvate Oxidase Enzyme Electrode for Determination of Pyruvate and
Phosphate 2007), (Engblom, The phosphate sensor 1998), (Fumio Mizutani 2000),
(Gavalas 2001), (Guilbalut 1975), (Kubo 1991), (N. Conrath 1995)

tH) V

Hff>C~ P0% CO,

Pyruvate H2  POD=

02 Acetyl 2
phosphate

(B) H202

02

-2e, -2H

Figure 29. Enzymatic Reaction Mechanism of Pyruvate Oxidase (Villalba,
Bioelectroanalytical determination of phosphate 2009)
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After completing the instruments test, proper functioning tests, negative control and

positive control test, the system was prepared for amperometric experiments for H20 2

detection from phosphate solutions (Equation 6 and Figure 29).

33 ---
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Figure 30. Single Titration of 50 mM Tris-HCI with 20p1, 20% H20 2

4.2.1 Amperometric measurements of phosphate

In this method, amperometric responses were obtained as current versus time (i-t curve)

Figure 31 through Figure 56) via the electro-oxidation of H20 2. The current respond of

the biosensor was presented in three separate sections. The first section is where the raw

data was represented from Figure 31 through Figure 35. In the second section, the raw

data was filtered via the computer software program MatLab (described in detail in

sections 4.2.3 and 4.2.4) and displayed in Figure 37 through Figure 41. The third section

is the normalized data part where MatLab codes were used for the normalization process
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(explained further in section 4.2.5). The normalized data were exhibited in Figure 42

through Figure 56.

4.2.2 Raw Data:

In this section, the raw data shown in Figure 31 through Figure 35 was described.

For this project, 15 tests were performed with three different materials by titrating five

different phosphate concentrations. Each experiment was repeated three times and total of

45 experiments were completed, and the replications were averaged. Moreover, silica

polymer (material 1), CuCrAgNi alloyed with CNT (material 2) and CuCr alloyed with

MWCNT (material 3) were investigated in terms of their conductivity. The obtained data

from the experiments are explained in normalized section and the in depth description is

stated in the discussion section.

4.2.2.1 Responses for 10 mM Phosphate Titration

Figure 31 represents the amperometric recordings for the three enzyme-linked materials

(silica polymer, CuCrAgNi alloyed with CNT and CuCr alloyed with MWCNT) by the

titration of 10mM phosphate solution. In the Figure 31, blue line, green line and redline

symbolize the average of the obtained amperometric recordings for the silica polymer,

CuCrAgNi alloyed with CNT, and CuCr alloyed with MWCNT, respectively. The results

are further examined after the normalization of the amperometric recordings obtained

from the Mat-Lab programming (section 4.2.5).

4.2.2.2 Responses for 1 mM Phosphate Titration

Up on successful recording of 10mM phosphate detection, 10 folds lower concentration

(1mM) was tested.
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Figure 31. Amperometric Recordings for Silica Polymer, CuCrNiAg Alloyed with
CNT, CuCr Alloyed with MWCNT by titration of 10mM [P04-] Solution.

Figure 32 depicts the amperometric recordings for the titration of 1mM phosphate

solution. In this part of the investigation, the same procedure in section 4.2.2.1 was

applied for 1mM phosphate solution. All the collected data is discussed in depth in the

discussion section 4.3.

4.2.2.3 Responses for 0.01 mM Phosphate Titration

In this part of the experiment, the concentration level of phosphate was diluted ten folds

from 0.1 mM to 0.01mM (10[M) which is more relative to the previous section and the

amperometric response of the biosensor was examined. The arrangement of the material

testing was exactly in the same order as the sections 4.2.2.1 and 4.2.2.2. The experiments
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were conducted in the order of; silica polymer (material 1), CuCrAgNi alloyed with CNT

(material 2) and CuCr alloyed with MWCNT (material 3).
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Figure 32. Amperometric Recordings for Silica Polymer, CuCrNiAg Alloyed with
CNT, CuCr Alloyed with MWCNT by titration of 1mM [PO-I] Solution.

The attained results are exhibited in Figure 33 and they are further explained in

normalized data section 4.2.5.3.

4.2.2.4 Responses for 0.0001 mM Phosphate Titration

0.0001mM phosphate solution was prepared via diluting the stock solution as explained

in section 2.3.1. Figure 34 depicts the amperometric recordings for the titration of

0.0001mM phosphate solution. In section 4.2.2.1 experiments were repeated for this

phosphate concentration. The further data analysis are elaborated in both normalized data

section 4.2.5.4 and the discussion section 4.3.
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Figure 33. Amperometric Recordings for Silica Polymer, CuCrNiAg Alloyed with
CNT, CuCr Alloyed with MWCNT by titration of 0.01mM P02] Solution.
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Figure 34. Amperometric Recordings for Silica Polymer, CuCrNiAg Alloyed with
CNT, CuCr Alloyed with MWCNT by titration of 0.0001mM [POt] Solution.

45



4.2.2.5 Responses for 0.00001 mM Phosphate Titration

In this part of the experiment, 0.00001mM (1OnM) phosphate solution was titrated as

described in previous sections. The solution was again prepared from the stock solution

described in 2.3.1. Each one of the three materials was investigated in the same

arrangement as section 4.2.2.1. Also, the further data analysis is described in depth in

(Normalized data section) section 4.3.

-I

Figure 35. Amperometric Recordings for Silica Polymer, CuCrNiAg Alloyed with
CNT, CuCr Alloyed with MWCNT by titration of 0.00001mM [P0 ] Solution.

4.2.3 Filtered Data:

Electrical signal noise interference is an inevitable phenomenon that researchers battle

with in their data. Under the optimal conditions, amperometric experiments are

performed in a Faraday Cage (Sigmond 2000). Due to the unavailability of the Faraday
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Cage in our laboratory, the obtained raw data contained noise as seen in Figure 31

through Figure 35. This filtering process is the same analogy used in EKG signals as seen

on Figure 36 (Wu 2009). Figure 36 a, b and c represents the signal with noise, the noise

removed via filtering and normalized data respectively. The same exact approach was

utilized in this thesis to filter and normalize the noise interfered data obtained from

amperometric recordings. Therefore, the results were filtered via the computer software

program MatLab. Specific codes were written for filtering and the normalization process

for this research (Smith 2009). The codes are displayed in section 4.2.3.1. The MatLab

library contains readily available filters which are: Butterworth filter, Notch filter, High

pass filter, Bandpass filter, Lowpass filter, FIR filter, etc. Butterworth filter properties

best suit to this investigation, therefore it was utilized during the filtering and

normalization analysis (Smith 2009).

>. i

b Time i5

7 0! 1 > 2 25 3 4 4.

Ui Time (s)
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Fre Tie :?s5' K.--

Figure 36. ECG Signal, Raw Data (a), Filtered Data (b) and Normalized Data (c),
(Wu 2009)
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4.2.3.1 Written Mat-Lab Codes for Signal Filtering and Normalization

1. [b,a] = butter(5,0.5); % create Buttermorth filter

2. winlen = 10; o length of window. for averaging

3. switch(expcount) % the correct spike position in sample number for trial# 1

4. %o case 4

5. % i=2154:

6. %6 case 5

7. % i 2065,

8. otherwise % otherwise, find the maximum value as peak

9. [c,i] = max(datal(2,:));

10. end

1 H. try % get 60samples before and 160 samples after the peak

12. dl = smooth(datal(2,:),i-60,i+20,winlen).*le9;

13. catch % else, 60 samples before the peak to the end

14. di = smooth(datal (2,:),i-60,length(datal (2,:)),winlen).* I e9;

15. end

16. %%%

17. % Trial 2

18. o O%%

19. switch(expcount) % the correct spike position in sample number tir trial# 2

20. ) case 1

21. % i = 2408:

22. % case

23. , i = 2021:

24. otherwise %, otherwise, find the maximum alue as peak
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25. [c,i] = max(data2(2,:));

26. end

27. d2 = smooth(data2(2,:),i-60,i-61+length(d1),winlen).*1 e9;

28. oO,%

29. % Trial 3 o'o'

30. switch(expcount) 00 the correct spike position in sample number for trial# 3

31. % case 4

32. % i = 2017;

33. % case 6

34. % i = 2409,

35. case 15

36. i= 2155;

37. otherwise % otherw ise, find the maximum v aloe as peak

38. [c,i] = max(data3(2,:));

39. end

40. d3 = smooth(data3(2,:),i-60,i-61 +Iength(d I ),winlen).* 1 e9;

41. %b d3 = iltilt(b,a.d3):

42. t =(0:length(dl)-1).*0.01;

43. gap = zeros(1,3);

44. clf

45. subplot(31 1);plot(datal(1,1 :end-11),

46. smooth(data 1(2,:),11,length(datal(2,:))-II,winlen));

47. title(['! v1p. ' int2str(exp count)'. I rijL I']);

48. grid on; ylabel('( urrCnt (n \)');

49. subplot(312);plot(data2(1,11 :end-11),
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50. smooth(data2(2,:),11,length(data2(2,:))-11 ,winlen));

51. title(['L\Ep. ' int2str(expcount) I n: 2']);

52. grid on; ylabel('( urret (nA)');

53. subplot(313);plot(data3(1,1I :end-1 1),

54. smooth(data3(2,:),11,length(data3(2,:))-11,winlen));

55. title(['l p.' int2str(expcount) '. I i aL- 3']);

56. grid on; ylabel('( urrcnt (nA )');

57. saveas(gcf, ['.. Plots Liltercd Ixperimcnt' int2str(exp count)], 'unt');clf

58. %o figure('PosItIon',get((0 ScreenSize')):

59. subplot(31 I); plot(t,d I); title(['l \p. ' int2str(exp count) '1 u K u- 1']);

60. grid on; ylabel(' iurrcn w n \ );

61. tinit =t;

62. initial = mean(d 1(1:25)).*ones(length(tinit), );

63. tfinal = t(end-25:end);

64. final = mean(d I (end-25:end)).*ones(length(tfinal), );

65. gap(1) = final(l)-initial(1);

66. hold all; line(tfinal,final,'( olor','k');

67. line(tinit,initial,'C lrk)

68. text(mean(tfinal),initial( l)+(gap(l )/2), [num2str(gap(1)) 'n \], '\ eo \ Ki

69. "\ dl',' ori/(en1,J \11ign mcnt ,'I cl');

70. subplot(312); plot(t,d2); title(['LI xp. int2str(expcount) ' I i il']);

71. grid Oin; ylabel('( urrci n \ )');

72. initial = mean(d2(1:25)).*ones(length(tinit), 1);

73. final = mean(d2(end-25:end)).*ones(length(tfinal),1);

74. gap( 2 ) = final(l)-initial(l);
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75. hold all; line(tfinal,final,'t Wor','k');

76. line(tinit,initial,'( olor',Vk);

77. text(mean(tfinal),initial(l)+(gap(2)/2), [num2str(gap(2)) 'u \'], '\ cr icii \limea

78. 'Middk:', 'lori iuj/l \linncnt','1 It');

79. subplot(313); plot(t,d3); title(['l ,1) ' int2str(expcount) '. I i MaI 3']);

80. grid on; ylabel('Crrm (n \ ');

81. initial = mean(d3(1:25)).*ones(length(tinit),1);

82. final = mean(d3(end-25:end)).*ones(length(tfinal),1);

83. gap(3) = final(1)-initial(1);

84. hold all; line(tfinal,final, r,

85. line(tinit,initial,''olor','k');

86. text(mean(tfinal),initial(I)+(gap(3)/2), [num2str(gap(3)) 'n \'], '\ cr ical \ lin m ,

87. '\l iddle', I loriinia \li iiinicnt','1 0 1');

88. saveas(gcf, ['.. Pilots I mal I xprim It ' int2str(expcount)], 'cml');

89. % ax u = (d I+d2+d3)./3:%

90. % davg = diff(avg):

91. % [c.p2] = find(davg(1 05:end)>=0,1): p2=105:

92. % % p2 = p2 + 105;

93. % tinit = :0 initial = mcan(a sg( I:50)).*ones( lenigth(tinit).I ):

94. % tfinal = t(p2+25:end):

95. 110 final = mean(av g( p2+25:end )).*ones(length(tfinal), l):

96. %0 gap = final( I )-in itial( I ): o

97. % 0.° subplot(41 4): plot(tavg): title(['Fxp. ' int2str(expcount) Average'J);

98. % 0, grid on: xlabel('Time (see)'), y label('Current (nA )'):

99. 1 °'. hold all: line(tfinalfinal,'(olor','k'):
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100. % % Al line( tinit,initial,'Color','k');

101. o o text(mean(tfinal),0, [num2str(gap)'nA'], 'VerticalAlignment',...

102. % % 'Middle', '1orizontalAlignment','Left'):

4.2.3.2 Description of Filtered Data

In this section, Figure 37 through Figure 41, the filtered data via Mat-Lab codes

(presented in section 4.2.4) are illustrated. The list of figures and concentrations order

was kept exactly the same with the raw data section for consistency.

4.2.3.2.1 Filtered Data for 10mM Phosphate Titration

The Figure 37 represents the 10mM concentration for three separate enzyme-linked

materials. The data presented in section 4.2.2.1 were filtered via the written MatLab

codes. The filtered results are further analyzed in the normalized data section 4.2.5.1.

Figure 37. Filtered Data for Silica Polymer, CuCrNiAg Alloyed with CNT, CuCr
Alloyed with MWCNT by titration of 10mM [P0 4

3-] Solution.
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4.2.3.2.2 Filtered Data for 1mM Phosphate Titration

ImM amperometric responses after the Mat-Lab filtration process is displayed in, Figure

38. The data illustrated in section 4.2.2.1 was filtered via the written MatLab codes and

the obtained data are further analyzed in normalized data section 4.2.5.2.

. l' mM P7MSp0te rn,.,,oo
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Figure 38. Filtered Data for Silica Polymer, CuCrNiAg Alloyed with CNT, CuCr
Alloyed with MWCNT by titration of 1mM [P02-1 Solution.

4.2.3.2.3 Filtered Data for 0.01mM Phosphate Titration

In this part of the analysis, the Figure 39 exhibits the current magnitude changes in

response for 0.01mM phosphate titration after the filtration process. The further analysis

of data is explained in section 4.2.5.3.

4.2.3.2.4 Filtered Data for 0.0001mM Phosphate Titration
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In this part of the study, 0.0001mM phosphate titration responses after filtration process

are exhibited. This process is depicted in Figure 40 for the for silica polymer, CuCrAgNi

alloyed with CNT and CuCr alloyed with MWCNT by the titration of 0.0001mM

phosphate solution.
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Figure 39. Filtered Data for Silica Polymer, CuCrNiAg Alloyed with CNT, CuCr
Alloyed with MWCNT by titration of 0.01mM [P02] Solution.

4.2.3.2.5 Filtered Data for 0.00001mM Phosphate Titration

The filtered data for 0.00001mM (l0nM) phosphate concentration is obtained and

demonstrated in Figure 41. Further analyses of the final results are explained in section

4.2.5.5.
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4.2.4 Normalized Signal

Normalization process was performed via Mat-Lab software program described in section

4.2.4. During the normalization process the necessary data is magnified in a bigger scale

for better analysis purposes.
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Figure 40. Filtered Data for Silica Polymer, CuCrNiAg Alloyed with CNT, CuCr
Alloyed with MWCNT by titration of 0.0001mM [P04-] Solution.

When data is collected in electrochemical methods, there is a steady state that must be

achieved. The electrochemical recordings up to the steady state are not required for any

data analysis. There were two steady states and a current magnitude change occurred in

the obtained signals. The steady states were achieved before and after the current

magnitude change. (J. Wang, Analytical Electrochemistry 2000). In this thesis, the

normalization process was as followed: The amperometric instrument was adjusted to
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collect data in each 0.05second interval. A complete experiment recording was

approximately between 150 seconds to 200 seconds which is equivalent to 2000 data

points.
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Figure 41. Filtered Data for Silica Polymer, CuCrNiAg Alloyed with CNT, CuCr
Alloyed with MWCNT by titration of 0.00001mM IP04-1 Solution.

About 80 seconds to 100 seconds of the experiment time was allowed for the signal to

reach a steady state (initialization). No titration was performed during this time period.

Once the constant current is attained, titration of phosphate solution was carried out. Due

to the titration, change in current magnitude (peak) occurred in signal recording. This

current change lasted about 30 seconds to 40 seconds (-200 data points). In the

normalization process, the initialization time is discarded and the change in current

magnitude (peak) time was amplified for better analysis purposes. Once the data interval
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is determined to be processed for analysis, that data is then amplified (exposed) via Mat-

Lab (Kim 2002). Figure 42 through Figure 56 represents the normalized data.

4.2.4.1 Normalized signal for 10mM Phosphate Titration Responses

4.2.5.1.1 Silica Polymer Results

Figure 42 depicts the normalized amperometric response as a result of 10mM phosphate

titration of silica polymer material. As seen in the figure, for this experiment the steady

state is achieved between 0 to ~0.6 seconds. Subsequently, the titration was conducted

and in return, a change in current magnitude was observed between 0.6 to 0.7 seconds.

Following the current peak a transition period is shown from 0.7 seconds to 1.5 seconds.

Finally, the steady state is again accomplished with difference between the steady state

baseline and concentration change due to the phosphate titration. The difference was

calculated via Mat-Lab software (previously described in section 4.3). The current

magnitude change for silica polymer was determined to be 27.33nA which caused by the

titration of different phosphate concentration (Christine Mousty 2001), (Fisher 2008), (N.

Conrath 1995).

4.2.4.1.2 Cu Cr Ni Ag Alloyed with CNT Results

Figure 43 demonstrates the normalized data for 10mM phosphate titration by employing

the enzyme linked CuCrNiAg alloyed with CNT material. The experiment was repeated

three times and averaged results are as follows: As seen in the Figure 43 steady state was

achieved between 0 to ~0.575 seconds. Afterward, the titration was conducted which

caused a change in current magnitude between ~0.58 to 0.68 seconds. The transition
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period followed the current peak shown at around 0.7 second to 1.0 second. The current

came to the steady state at 1.0 second and stayed on for the rest of the data collection.

1 -- -fs Exp 1

7

0 02 04 00 00 1z 12 14101

Figure 42. Normalized Data for Silica Polymer by titration of 10mM [PO4
3 -]

Solution

The difference between the steady state baseline and concentration change was attributed

to the phosphate titration (Christine Mousty 2001), (Fisher 2008), (N. Conrath 1995). The

difference was calculated via Mat-Lab software. The current magnitude change was

determined to be 34.44nA.

4.2.4.1.3 CuCr Alloyed with MWCNT Results

This was the last experiment one of the three materials for 10mM phosphate detection.

The normalized data is exhibited in Figure 44 for the titration of the enzyme-linked Cu Cr

alloyed with MWCNT. Under the same conditions experiments were repeated three times
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and averaged. In the Figure 44the steady state was accomplished between 0 to ~0.3

seconds. Later, the phosphate was titrated and a change in current magnitude was

/-------------
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Figure 43. Normalized Data for Cu Cr Ni Ag Alloyed with CNT by titration of
10mM [P03-] Solution.

observed between ~0.59 to 0.7 seconds. The transition period followed the current peak

shown at around 0.7 second to 1.4 seconds. The response signal came to steady state at

1.5 seconds and stayed on for the rest of the data collection. The difference between the

steady state baseline and concentration change was attributed to the phosphate titration

(Christine Mousty 2001), (Fisher 2008), (N. Conrath 1995). The difference was again

calculated via Mat-Lab software. The average current magnitude change was determined

to be 38.54nA.
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Figure 44. Normalized Data for CuCr Alloyed with MWCNT by titration of 10mM
[P04-] Solution.

4.2.4.2 Normalized signal for 1mM Phosphate Titration Responses

4.2.5.2.1 Silica Polymer Results

In this section 1mM phosphate concentration was titrated in Iml of tris-HCl and co-

enzymes (FAD, TPP, Mg). As mentioned previously, three materials were tested for

comparison purposes. In the same order as the other concentration tests, first experiment

was conducted for silica polymer. Figure 45 exhibits the normalized data for silica

polymer as a result of 1mM phosphate titration. In the figure, a steady state is achieved

between 0 to ~0.57 seconds for this material. Subsequently, the phosphate was titrated

and in return, a change in current magnitude is observed between approximately 0.57 to

0.72 seconds. Following the current peak, a transition period is seen from 0.72 seconds to

1.4 seconds. Finally, the steady state is again accomplished with difference between the
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steady state baseline and concentration change. The difference was calculated via Mat-

Lab software, previously described in section 4.2.4 and the current magnitude change

was determined to be 25.71nA. This current difference was caused by the phosphate

concentration change (Christine Mousty 2001), (Fisher 2008), (N. Conrath 1995).
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Figure 45. Normalized Data for Silica Polymer by titration of 1mM [P04] Solution.

4.2.4.2.2 CuCrNiAg Alloyed with CNT

Figure 46 is normalized data for 1mM phosphate titration by employing the enzyme-

linked CuCrNiAg alloyed with CNT. As exhibited in Figure 46, the steady state was

achieved between 0 to ~0.38 seconds. Consequently, the titration was performed and a

change in current magnitude was experienced between ~0.57 to ~0.72 seconds. The

signal then went in to transition period following the current peak shown at around 0.72

second to 1.2 seconds. The current came to the steady state at 1.2 seconds and stayed on
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for the rest of the data collection. Previously literatures report the cause of the difference

between the steady state baseline and concentration change was because of the phosphate

titration (Christine Mousty 2001), (Fisher 2008), (N. Conrath 1995). The difference was

calculated via Mat-Lab software. The current magnitude change was determined to be

26.35nA.

Figure 46. Normalized Data for CuCrNiAg Alloyed with CNT by titration of 1mM

[P0 4
3 ] Solution.

4.2.4.2.3 CuCr Alloyed with MWCNT

The normalized data for CuCr Alloyed with MWCNT titrated by 1mM phosphate

solution is demonstrated in Figure 47. The same conditions were applied for experiments

of all three replications and the average results are obtained. In the figure, the steady state

was accomplished between 0 to -~-0.58 seconds. Later, the phosphate titration was

completed and an observation of change in current magnitude was made between ~0.58

to 0.7 seconds. The transition period followed the current peak shown at around 0.7
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seconds to 1.6 seconds. The final steady state was attained at 1.6 seconds and remained

constant for the rest of the data collection. Mousty et al. described this as the

concentration change due to the phosphate titration which caused an increment on the

steady state baseline. (Christine Mousty 2001) (Fisher 2008) (N. Conrath 1995). Mat-Lab

software was utilized to calculate the current difference and determined to be 26.94nA.

Figure 47. Normalized Data for CuCr Alloyed with MWCNT by titration of 1mM
jPO4 ~] Solution.

4.2.4.3 Normalized signal for 0.01mM Phosphate Titration Responses

4.2.4.3.1 Silica Polymer Results

Figure 48 depicts the normalized data for silica polymer as a result of 0,01mM phosphate

titration. As seen in the figure, the steady state is achieved between 0 to ~0.6 seconds.

Then, the titration was conducted and in return, a change in current magnitude is

observed between 0.6 seconds to 0.9 seconds. Following the current peak a transition

period is shown from 0.9 seconds to 1.6 seconds. After the change in current magnitude,
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the steady state is accomplished with difference between the steady state baseline and

concentration change due to the phosphate titration. The current magnitude change was

determined to be 18.11 nA. This current difference was obtained through the difference of

the phosphate concentration as it is reported (Christine Mousty 2001), (Fisher 2008), (N.

Conrath 1995).

202-
A -iras E- - - - - - - - - y

g 00 I 1 I

Figure 48. Normalized Data for Silica Polymer by titration of 0.01mM [P0 4
3 ]

Solution.

4.2.4.3.2 CuCrNiAg Alloyed with CNT

Figure 49 exhibits the titration of CuCrNiAg alloyed with CNT by 0.01mM phosphate

solution. From this experiment, the steady state was achieved between 0 to ~0.56

seconds. Afterward, the titration change in current magnitude was detected in between

-0.56 to 0.68 seconds. The transition period followed the current peak shown at around

0.68 seconds to 1.5 seconds. At this point, the current came to the steady state at 1.5

seconds and remained constant till the rest of the data collection. The difference between
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the steady state baseline and the concentration change is attributed to the phosphate

titration as it is stated (Christine Mousty 2001), (Fisher 2008), (N. Conrath 1995). The

current change at this point is calculated by using the Mat-Lab software and it is obtained

as 20.72nA.

0 2400 12 14 10 10

Figure 49. Normalized Data for CuCrNiAg Alloyed with CNT by titration of
0.01mM [P021 Solution.

4.2.4.3.3 CuCr Alloyed with MWCNT

In this investigation CuCr alloyed with MWCNT was titrated with 0.01mM phosphate

solution and the normalized data is demonstrated in Figure 50. As indicated in the figure ,

the steady state was accomplished between 0 to ~0.5 seconds. Later, the phosphate was

titrated and a change in current magnitude was observed between ~0.5 to 0.8 seconds.

The transition period followed the current peak shown at around 0.8 second to 0.9

seconds and the response signal came to steady state at 0.9 seconds. The difference

between the steady state baseline and concentration change was attributed to the
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phosphate titration as it is revealed (Christine Mousty 2001), (Fisher 2008), (N. Conrath

1995). The data from this result was calculated via Mat-Lab software and determined to

be 23.10nA.
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Figure 50. Normalized Data for CuCr Alloyed with MWCNT by titration of 0.01mM
[P021] Solution.

4.2.4.4 Normalized signal for 0.0001mM Phosphate Titration Responses

4.2.4.4.1 Silica Polymer Results

Figure 51 exhibits the normalized data as a result for silica polymer by the titration of

0.0001mM phosphate. In addition, the figure shows the steady state between 0 to ~-0.5

seconds. After, the phosphate was titration, a change in current magnitude is observed

between approximately 0.5 to 0.67 seconds. Following the current peak, a transition

period is seen from 0.67 seconds to 1 .2 seconds. The difference was calculated via Mat-

Lab software and it is determined to be 13.O7nA. This current difference was caused by
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the phosphate concentration change as previously reported (Christine Mousty 2001),

(Fisher 2008), (N. Conrath 1995).
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Figure 51. Normalized Data for Silica Polymer by titration of 0.0001mM [P04]
Solution.

4.2.4.4.2 CuCrNiAg Alloyed with CNT

Figure 52 depicts the normalized data for 0.0001mM phosphate titration by employing

the enzyme-linked CuCrNiAg alloyed with CNT. The steady state was achieved between

0 to ~0.58 seconds as it is shown in the figure. Followed by, the titration was performed

at ~0.58 to -0.7 seconds and the transition period was shown at around 0.7 second to 1.3

seconds. Previously literatures report the cause of the difference between the steady state

baseline and concentration change was because of the phosphate titration (Christine

Mousty 2001), (Fisher 2008), (N. Conrath 1995). For this material, the difference was

16.75 from the Mat-Lab software calculations.

67



A .M tN ols Eop 11

4 0 -- - - - - - - - - - - - - - - - -

40 4

0 02 04 06 08 1 1.2 14 16 1.8

Figure 52. Normalized Data for CuCrNiAg Alloyed with CNT by titration of
0.0001mM [P0 4

3 1 Solution.

4.2.4.4.3 CuCr Alloyed with MWCNT

The response of amperometric measurements for 0.0001 mM phosphate titration by

employing CuCr alloyed with MWCNT are filtered and normalized as demonstrated in

Figure 53. As seen in the figure, the steady state was accomplished between 0 to -0.58

seconds and observation of change in current magnitude was made between -0.58 to 0.7

seconds. The transition period followed the current peak shown at around 0.7 seconds to

1.5 seconds and again steady state was attained at 1.5 seconds. Mousty et al. described

this as the concentration change due to the phosphate titration which caused an increment
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on the steady state baseline. (Christine Mousty 2001) (Fisher 2008) (N. Conrath 1995).

Mat-Lab software was used to determine the magnitude change as 16.75nA.
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Figure 53. Normalized Data for CuCr Alloyed with MWCNT by titration of
0.0001mM [P041- Solution.

4.2.4.5 Normalized signal for 0.00001mM Phosphate Titration Responses

4.2.4.5.1 Silica Polymer Results

Figure 54 depicts the normalized amperometric responses for 0,00001mM phosphate

titration. In the figure, the steady state was achieved between 0 to ~0.5 seconds and the

titration was conducted between 0.6 seconds to 0.7 seconds. The transition period is seen

from 0.7 seconds to 1.6 seconds and the steady state was again accomplished. The

difference between the steady state baseline and concentration change due to the

phosphate titration was distinguished. The current magnitude change was determined to
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be 6.57nA. This current difference was due to the phosphate concentration change as

previously reported (Christine Mousty 2001), (Fisher 2008), (N. Conrath 1995).
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Figure 54. Normalized Data for Silica Polymer by titration of 0.00001mM [P0 1
Solution.

4.2.4.5.2 CuCrNiAg Alloyed with CNT

Figure 55 is the normalized data of amperometric recordings for 0.00001mM phosphate

titration via employment of CuCrNiAg Alloyed with CNT. It is shown in figure that the

steady state was achieved between 0 to ~0.55 seconds. Afterward, the titration change in

current magnitude was detected in between -0.55 to 0.68 seconds. At around 0.68

seconds to 0.8 seconds, the transition period took place. The current came to the steady

state at 0.8 seconds and remained the same till the end of the data collection. The

difference between the steady state baseline and concentration change was attributed to
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the phosphate titration (Christine Mousty 2001), (Fisher 2008), (N. Conrath 1995). Mat-

Lab software calculated the difference as 10.64nA.
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Figure 55. Normalized Data for CuCrNiAg Alloyed with CNT by titration of

0.00001mM [P02-] Solution.

4.2.4.5.3 CuCr Alloyed with MWCNT

Figure 56 shows the current responses of 0.00001mM phosphate titrations. The figure

clearly states that the steady state was accomplished between 0 to ~0.54 seconds. The

change in current magnitude was observed between ~0.54 to 0.68 seconds after, the

phosphate was titrated. The transition period followed the current peak shown at around

0.68 second to 1.6 seconds and the response signal came to steady state at 1 .6 seconds. In

the recent studies, the difference between the steady state baseline and concentration

change was attributed to the phosphate titration (Christine Mousty 2001), (Fisher 2008),

71



(N. Conrath 1995). This current magnitude difference was calculated via Mat-Lab

software and determined to be 12.13nA.
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Figure 56. Normalized Data for CuCr Alloyed with MWCNT by titration of
0.0001mM [P0 - Solution.

4.2.5 Current magnitude change obtained from amperometry

Table 2 summarizes the current magnitude changes due to the phosphate concentrations for

all three materials (Silica Polymer- CuCrNiAg alloyed with CNT and CuCr Alloyed with

MWCNT). 10mM phosphate concentration was tested with those materials and each material

was tried three times for comparison reasons. In addition all these three trials were averaged

and standard deviation was calculated.

Table 3 below also summarizes the current magnitude changes due to the phosphate

concentrations for the same three materials (Silica Polymer- CuCrNiAg alloyed with CNT

and CuCr Alloyed with MWCNT). However in this section ImM phosphate concentration

was detected by utilizing those materials. Same as above each material was tried three times
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for comparison reasons. Moreover, all these three trials were averaged and standard deviation

was calculated.

Table 2. Amperometric Magnitude Change in Current (nA) for 10mM PO4
3 - Titration

Trial I Trial II Trial III
Material (nA) (nA (nA) Avg STDV

Ex p# 1: Silica Polymer 29.39 27.96 24.65 27.33 2.43
Exp# 2: CuCrNiAgCNT 36.66 35.55 31.11 34.44 2.93
Exp# 3: CuCrMWCNT 39.05 38.74 37.83 38.54 0.63

Table 3. Amperometric Magnitude Change in Current (nA) for 1mM P0 4
3 -

Titration

Trial I Trial II Trial III
Material (nA) (nA) (nA) Avg STDV

Exp# 4: Silica Polymer 25.92 25.66 25.55 25.71 0.19
Exp# 5: CuCrNiAgCNT 26.85 26.17 26.03 26.35 0.43
Exp# 6: CuCrMWCNT 27.36 26.75 26.72 26.94 0.36

Table 4. Amperometric Magnitude Change in Current (nA) for 0.01mM P0 4
3

Titration

Trial I Trial II Trial III
Material (nA) (nA) (nA) Avg STDV

Exp# 7: Silica Polymer 15.8 14.55 8.87 13.07 3.69

Exp# 8: CuCrNiAgCNT 16.23 16.1 16.05 16.13 0.09
Exp# 9: CuCrMWCNT 17 16.68 16.58 16.75 0.21

Table 5. Amperometric Magnitude Change in Current (nA) for 0.0001mM P04
3 -

Titration

Trial I Trial II Trial III
Material (nA) (nA) (nA Avg STDV

xp# 7: Silica Polymer 18.94 17.91 17.48 18.11 0.75

Exp# 8: CuCrNiAgCNT 21.93 21.06 19.18 20.72 1.40

Ex p# 9: CuCrMWCNT 23.85 23.02 22.42 23.1 0.71
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Since five different phosphate concentrations were investigated, the

Table 4 was used for the summary of the current magnitude changes for the same three

materials (Silica Polymer- CuCrNiAg alloyed with CNT and CuCr Alloyed with MWCNT).

0.01mM concentration was the detection subject in this part of the experiment. The three

trails for each material were kept consistent for comparison reasons. Again, all these three

trials were averaged and standard deviation was calculated as shown in the last column of

Table 4.

Table 5 is the summary of the investigation for 0.0001mM phosphate concentrations. The

current magnitude changes for the same three materials (Silica Polymer- CuCrNiAg alloyed

with CNT and CuCr Alloyed with MWCNT) are listed. The experiments were tested in three

trails for each material. Lastly, average of all these three trials and standard deviation was

calculated as seen in the last column of Table 5.

Table 6 below is the last concentration summary of phosphate concentrations. The current

magnitude changes for the same three 00001 mM materials (Silica Polymer- CuCrNiAg

alloyed with CNT and CuCr Alloyed with MWCNT) were listed in the table. In this section

the concentration of phosphate was 0.00001mM. Each material was again tried three times

for comparison reasons and the averages of those materials as well as the standard deviations

were calculated. In Table 7, those averages current magnitude changes from Table 2

through Table 6 were summarized. The table was designed to indicate the average

differences of all three materials.
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In Table 8 through Table 10, parameters for different materials' average current

magnitude changes versus the concentration were summarized. Based on this table the

calibration curves below were obtained.

Table 6. Amperometric Magnitude Change in Current (nA) for 0.00001mM P04
3

Titration

Trial I Trial II Trial III
Material (nA (nA (nA) Avg STDV

Exp# 7: Silica Polymer N/D N/D N/D N/A N/A

Exp#8: CuCrNiAgCNT 11.08 11.02 9.81 10.64 0.71

Exp# 9: CuCrMWCNT 12.57 12.4 11.41 12.13 0.62

Table 7. Summary of Current Change versus Concentration

MATERIAL [P041 CONCENTRATION

10mM 1mM 0.01mM 0.0001mM 0.00001mM

Silica Polymer 28.23 25.84 16.14 15.62 N/D

CuCrNiAgCNT 34.83 26.10 22.28 15.92 11.07

CuCrMWCNT 38.15 26.53 22.78 18.11 11.68

The conductivity of the materials is listed below for comparison purposes:

Silica Polymer: Not conductive

CuCrNiAgCNT: 5.96E+07

CuCrMWCNT: 8.61E+07

Gold : 45.2E+6
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4.2.6 Calibration Curves

Table 8. Current Magnitude Changes (nA) for Silica Polymer in Various
Concentrations

CONCENTRATION Silica Polymer

10mM 28.23

1mM 25.84

0.01mM 16.14

0.0001mM 15.62

0.00001mM N/D

30

y = 1.36121n(x) + 23.642
25 R2 = 0.8604

y 20

Series 1

-- Log. (Series1)

10 Log. (Seriesi)

5 
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Phophate Concentrations

Figure 57. Phosphate Calibration Curve for Silica Polymer
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Table 9. Current Magnitude Changes (nA) for CuCrAgNi Alloyed CNT in Various
Concentrations

CONCENTRATION (mM) Cu,Cr, Ag,Ni, CNT (nA)

10 34.83

1 26.10

0.01 22.28

0.0001 15.92

0.00001 11.07

40 y = 1.53071n(x) + 29.089

v R2 = 0.9558
35

30

25

204 
Series]

V ~Log. (Series 1)

000 105

0

0.00001 0.0001 0.001 0.01 0.1 I 10

Phosphate Concentrations

Figure 58. Phosphate Calibration Curve for CuCrAgNi Alloyed with CNT
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Table 10. Current Magnitude Changes (nA) for CuCr Alloyed MWCNT in Various
Concentrations

CONCENTRATION (mM) Cu,Cr, MWCNT (nA)

10 38.15

1 26.53

0.01 22.78

0.0001 18.11

0.00001 11.68

45

40 * y = I.60771n(x) + 30.854
3R2 = 0.9065

y ~25 :

20 --- Series I

15 Log. (Series 1)

10

5 -

0

0.00001 0.0001 0.001 0.01 0.1 1 10

Phosphate Concentrations

Figure 59. Phosphate Calibration Curve for CuCr Alloyed with MWCNT
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4.3 Discussions

In this research, three different enzyme-linked materials were employed and the detection

range of titrated phosphate concentration was assessed between 10mM to 0.00001mM

(1 OnM). In order to take advantage of high conductivity properties, both CuCrNiAg-CNT

and CuCr-MWCNT are composed of multi wall carbon nano tubes. Prior to the

conduction of any experiments, a system check was performed. Cyclic voltammetry (CV)

is widely utilized tool for electrochemical tests (Adrian W. Bott 1996). Before the

electrolyte test, the functionality of the instrument components such as electrodes, cyclic

voltammetry, amperometry and the connections must be tested. Ferricyanide scan is one

of the most common electrolytes to test the system functionality (E. D. Moorhead 1980).

4.3.1 CV System and Background Test (Negative Control)

CV scan was recorded between I00mV-500mV (Rahman, The biosensor based on the

pyruvate oxidase modified conducting polymer for phosphate ions determination 2006)

and the result is illustrated in Figure 25. As a result of the scan, a peak potential where

the oxidation occurs was 213mV and the reduction appeared at 338mV. The obtained

results were in the same range with previously reported literature (J. Wang, Analytical

Electrochemistry 2000), (Adrian W. Bott 1996). At this point, proper system functioning

was confirmed. During the actual experiments, as a buffer tris-HCl was used therefore

lml, 50mM tris-HCl (pH 7.5) was placed in the cell for negative control. Figure 26

demonstrates the background current of the buffer solution. The scan range was 0mV to

500mV (Kulakovskaya 2009) and the recording in Figure 26 was attained. The negative

control was observed similar to the Kulakovskaya et al. (Kulakovskaya 2009).
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Purpose of this background test was to ensure that the test cell did not contain any

chemical substance other than tris-HCl solution (to rule any impurities). If any chemical

compound were present in tris-HCl, there would be a redox reaction with voltage peak as

indicated in Figure 25 (Sebastian Buchingera 2010).

4.3.2 Amperometric System and Background (Negative Control) Test

The system was tested for proper functionality by amperometric methods once again. A

background test (negative control) was recorded for lml, 50mM tris buffer and the result

is illustrated in Figure 27. During the experiment, the ions in tris buffer solution get

charged with constantly applied potential of 450mV. Steady state is achieved

approximately at 60th second. There were no observations of change in the current

magnitude noted after the constant current state was reached. This was an indication of

only tris-HCl being present in the cell which was consistent with results reported by

Buchingera et al (Sebastian Buchingera 2010). The modus operandi for H20 2 recording

was as follows:

As demonstrated in Figure 30, approximately at 1 5 0 th second, the charged ions of I ml,

50mM tris-HCl pH 7.5 were at steady state. At that moment, a single titration was

performed and as a result, 500nA of alteration in current magnitude was recorded. The

current stayed constant for about 80 seconds and began to decline which was attributed to

dissipation of hydrogen and oxygen atoms Equation 5 as they electrooxidased.

It is concluded that the single titration technique has more advantages over multiple

titration methods. According to the Equation 6 and Figure 29, H2 0 2 is produced in just

one time.
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Applied potential for the H 20 2 solution was set at 450mV (Rahman, The biosensor based

on the pyruvate oxidase modified conducting polymer for phosphate ions determination

2006). Figure 28 exhibits a change in magnitude of the current which is a clear indication

of concentration change in the solution. Also, observed in the same figure that the

difference in current magnitude decreases with each titration. This decline was attributed

to the H20 2 saturation in Iml, 50mM tris-HCl pH7.5.

4.3.3 Amperometric Results for Phosphate Detection

Results for phosphate detection are illustrated in Figure 31 through Figure 56. As

described in detail in section 4.1, the results are divided in to three sections (raw, filtered

and normalized data). The results were organized in the order of higher concentration

starting with 10mM [P0 4
3 ] to lower concentration with 0.00001mM (lOnM) [P043]. In

this part, only normalized data will be discussed since the raw data and the filtered data

are a process to obtain the normalized data (Wu 2009). In the normalized results section,

only steady state and the current magnitude change were shown (refer to section 4.2.5).

Recordings indicate a current change shortly after the steady state. This current change is

an indication of H20 2 production occurring in the cell as seen in Figure 31 thru Figure 35

(Yuehe Lin 2004), (Christine Mousty 2001), (Akyilmaz, Construction of an

Amperometric Pyruvate Oxidase Enzyme Electrode for Determination of Pyruvate and

Phosphate 2007), (Gavalas 2001), (Gavalas 2001), (Kwan 2005), (Rahman, The

biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ions

determination 2006), (Villalba, Bioelectroanalytical determination of phosphate 2009). In
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the results section, Equation 6 outlines the H2 0 2 production due to the phosphate

addition. The concentration of phosphate was determined based on the increments of

current magnitudes and listed in the Table 2 through Table 6. (Kwan 2005), (Akyilmaz,

Construction of an Amperometric Pyruvate Oxidase Enzyme Electrode for Determination

of Pyruvate and Phosphate 2007), (Christine Mousty 2001), (Rahman, The biosensor

based on the pyruvate oxidase modified conducting polymer for phosphate ions

determination 2006). The results summary is also listed in Table 7. Calibration curves

were determined based on these tables. The curves give a linear line between 0.00001mM

and 0.01mM which is consistent with previously reported by Rahman et al (Rahman, The

biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ions

determination 2006) (Fumio Mizutani 2000). It also showed saturation after the 0.01mM

phosphate concentration. These findings were confirmed with the literature (Masayasu

Suzuki 1998), (Fumio Mizutani 2000), (Christine Mousty 2001).

Response time of the biosensor for phosphate detection was determined from the time

phosphate solution titrated in to the cell and the response signal reached to the steady

state (Christine Mousty 2001). Experiments that utilized silica polymer showed overall

one second of response time, CuCrNiAg with CNT 0.7seconds and CuCr with MWCNT

0.6seconds. A recent study published by Zhang et al. states that the response time of the

sensor was 2-3 seconds (Ming Zhang 2009).

In addition, the detection of the phosphate concentration at 10mM - 100 pM was

relatively unchallenging to measure. On the other hand, obtaining results at the lower

concentrations such as nano level (10-9) was quite complex. The same difficulty for the

low concentration detection of P04 such as 10nM was reported in literature (Villalba,
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Bioelectroanalytical determination of phosphate 2009), (Mozaz 2006 ). This problem was

surmounted by repeating the experiments for the lower phosphate concentrations by

using the phosphate sensor which is developed for this thesis. Moreover, it must be stated

that the conducting nano materials indicated less complexity in lower phosphate

concentrations. A previous conference proceeding done by Akar et al reported the

detection limits of the existing amperometric biosensors (Akar, Development of a

biosensor for detection of phosphate species in uranium contaminated groundwater and

wastewater sediments 2010). The Table 11 below summarizes the latest phosphate

sensors detection methods and their limits.

Furthermore, selectivity of the biosensor is as important as the response time and the

lower detection limit. In this research, pyruvate oxidase enzyme which specifically uses

phosphate was employed to catalyze the reaction indicated in Equation 6. The reaction

occurs only in the presence of phosphate and pyruvate which was consistent with

literature (Akyilmaz, Construction of an Amperometric Pyruvate Oxidase Enzyme

Electrode for Determination of Pyruvate and Phosphate 2007), (Engblom, The phosphate

sensor 1998), (Fumio Mizutani 2000), (Gavalas 2001).

From the results it is concluded that the conductivity plays an important role in electron

transfer (Munroe 2008). Similarly, the nano-structured highly conductive materials have

higher current magnitude change than the non-conductive silica polymer.

Correspondingly, CuCr alloyed MWCNT when compared to the CuCrAgNi alloyed CNT

shows higher magnitude in current. Also Munroe et al. reported a comparison study that

the CuCr alloyed MWCNT has superlative contribution in terms of the sensitivity. These

results obtained in this research are compatible with the previously reported (Munroe
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2008) as a conductivity theory. It is stated that as the conductivity increases, the

sensitivity increases proportionally (Rahman, The biosensor based on the pyruvate

oxidase modified conducting polymer for phosphate ions determination 2006). Based on

the performed experiment for this thesis and the analyzed data as described in detail in

the 2.3.6, the CuCrMWCNT has the highest conductivity. In order to enhance the

biosensor, the further study is suggested.

Table 11. Phosphate Concentration Detection Limits with Different Methods (Akar,

Development of a biosensor for detection of phosphate species in uranium

contaminated groundwater and wastewater sediments 2010)

Method Detection Limit (pM)

FIA-P 100

ISE Molybdate complex 0.06

Amperometric Molybdate complex 0.30

Amperometric POD/02 1.00

Amperometric POD/H202 3.60

Amperometric NP, XOD, AP 0.01

Amperometric MP, MR, GOX, AP 0.01

Ion chromatography 0.10

Capillary electrophoresis 0.10

Luminescent plate Europium-tetracycline 3.00

Fluorescent probe NP, XOD, HRP 0.05

Fluorescent PVC matrix Al-morin ionophore 0.20
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5.0 CONCLUSION

In this thesis, an amperometric enzyme linked phosphate biosensor was successfully

developed. Main focus of this investigation was to design and develop an enzyme linked

biosensor to detect and quantify phosphate species. Pyruvate Oxidase (POX) (EC.

1.2.3.3, 100 units mg-1) enzyme was immobilized on to three different materials to study

their conductivity properties. These materials were; silica polymer, highly conductive

carbon nano-tube (CNT) with nickel (Ni) and silver (Ag) and highly conductive multi

wall carbon nano-tube (MWCNT) with copper (Cu) and chromium (Cr). All these three

materials were evaluated in terms of their electron transfer rate which has an effect on

biosensor's sensitivity, selectivity and response time. The biosensor then tested with

phosphate solution with five various concentrations (10mM, 1mM, 0.01 mM, 0.0001mM

and 0.00001mM). As explained in detail (section 4.3) lower detection limit (sensitivity)

was attained compared to the reported publications. In particular, a noticeable increase

was observed in sensitivity of newly constructed biosensor more with highly conductive

multi wall carbon nano-tube (MWCNT) alloyed copper (Cu) and chromium (Cr).

Although many draw backs issues were noticed with silica polymer at low

concentrations, highly conductive materials (CuCrAgNi with CNT and CuCr MWCNT)

did not encounter these draw back issues.

Additionally, the response time was advanced one to two seconds in comparison to the

recent study (Villalba, Bioelectroanalytical determination of phosphate 2009). In

addition, the selectivity of the sensor was increased when compared to bi-enzyme and the

multi enzyme employed in development of biosensors. It is also important to report that

multi enzyme dependent (P0 4
3 ) sensors have number of difficulties including
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complicated immobilization process, storage predicament due to the life spans of various

enzymes and so forth just to name a few (Villalba, Bioelectroanalytical determination of

phosphate 2009).

From all these observations, it was concluded that the conductivity plays an important

role in sensitivity and the response time of the sensor. The employed enzyme also plays

an important role in the phosphate selectivity of the sensor. In this study, the pyruvate

oxidase (single enzyme) was attached to the gold-coated material's surfaces and stored

over three months of period. A few experiments with stored enzymes were repeated after

a month and in two months period. The results showed slight de-naturation in enzymes

and loss of conductivity in nano materials due to the elemental cupper leaching to the

solution it was stored in. According to these results, the one month storage period after

the enzyme attachment on these nano-materials showed an insignificant effect. However,

a significant amount of decay observed in selectivity and sensitivity on the developed

sensor after the two months of storage period. Therefore, we concluded that, the shelf life

of the developed sensing system was longer than the expected time period but it is limited

between one to two months. Since the longer life span is one of the important aspects of

the advanced bio-sensors, further investigation is needed to be performed to improve the

shelf-life of the developed system.

The results obtained showed that using the developed biosensor, it is possible to detect

lower concentrations of phosphate in ground water, waste water and many other

organisms where phosphate is the major element.
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6.0 FUTURE WORK

The recently produced protein, antibody and enzyme which are utilized for

immobilization on the surface of the novel materials and the artificial bio-materials can

contribute to improve the existing biosensors. Even these materials can be used to

develop numerous new sensors with their high efficiency in terms of their advanced

sensitivity and the selectivity. This contribution to the field of the health and the

environmental detection may be invaluable. Also, field deployabiality of the sensor could

be further studied with the developed experimental cell. Moreover, the sensor may even

be miniaturized and multi channel may be added for multiple species detection.
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