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Managed lane strategies are innovative road operation schemes for addressing 

congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that 

provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure 

the successful implementation of managed lanes, the demand on these lanes need to be 

accurately estimated. Among different approaches for predicting this demand, the 

four-step demand forecasting process is most common. Managed lane demand is usually 

estimated at the assignment step. Therefore, the key to reliably estimating the demand is 

the utilization of effective assignment modeling processes.  

Managed lanes are particularly effective when the road is functioning at 

near-capacity. Therefore, capturing variations in demand and network attributes and 

performance is crucial for their modeling, monitoring and operation. As a result, 

traditional modeling approaches, such as those used in static traffic assignment of 

demand forecasting models, fail to correctly predict the managed lane demand and the 

associated system performance. The present study demonstrates the power of the more 
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advanced modeling approach of dynamic traffic assignment (DTA), as well as the 

shortcomings of conventional approaches, when used to model managed lanes in 

congested environments. In addition, the study develops processes to support an effective 

utilization of DTA to model managed lane operations.  

Static and dynamic traffic assignments consist of demand, network, and route 

choice model components that need to be calibrated. These components interact with 

each other, and an iterative method for calibrating them is needed. In this study, an 

effective standalone framework that combines static demand estimation and dynamic 

traffic assignment has been developed to replicate real-world traffic conditions.  

With advances in traffic surveillance technologies collecting, archiving, and 

analyzing traffic data is becoming more accessible and affordable. The present study 

shows how data from multiple sources can be integrated, validated, and best used in 

different stages of modeling and calibration of managed lanes. Extensive and careful 

processing of demand, traffic, and toll data, as well as proper definition of performance 

measures, result in a calibrated and stable model, which closely replicates real-world 

congestion patterns, and can reasonably respond to perturbations in network and demand 

properties. 
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1. INTRODUCTION 

1.1. Background 

With the escalated challenges of congestion and constraints in building new roads, 

such as construction costs and right-of-way limitations, transportation agencies are 

increasingly implementing advanced operational strategies to maximize the performance 

of the existing infrastructure. Demand and access management, incident management, 

smart work zone applications, and advanced traveler information systems are examples of 

the types of strategies that are designed to get the most out of the existing physical 

capacity. Advanced technologies are needed to implement these strategies for the constant 

monitoring of traffic conditions, effective analysis of the traffic data in offline and online 

applications (for planning and operation), and active response to different traffic 

situations.  

Intelligent Transportation Systems (ITS) have provided a solid platform for 

deploying the abovementioned strategies. The advances in ITS technologies and 

strategies have made collecting and archiving traffic data more efficient and affordable. 

This data can be used to closely monitor and analyze traffic conditions, in both real-time 

and offline applications, as well as to correspondingly plan, operate, and manage the 

facility.  

Managed lanes (ML) are increasingly being considered as one of the most 

promising strategies to address transportation system problems. ML has evolved based on 

the notion of actively operating freeway facilities. A managed lane is a lane (lanes) within 

an existing freeway that can be dynamically managed to constantly meet preset criteria, 
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such as acceptable levels of service or minimum speeds. Advanced applications of 

managed lanes involve traffic management centers (TMCs) dynamically adjusting their 

operation parameters via controlling access to the ML, changing eligibility of vehicle 

occupancy, and varying the toll values to regulate the demand and keep the facility in 

optimal operational condition.   

Effective planning and implementation of ML strategies require the utilization of 

advanced modeling methods to allow for a more accurate assessment of the impacts of 

changes in traffic flow conditions and the impact of operation strategies. Macroscopic, 

mesoscopic, and microscopic analyses and simulation have been used in assessing 

managed lane strategies. Mesoscopic simulation modeling has been proposed as a level 

of modeling detail between macroscopic and microscopic modeling since microscopic 

simulation is expensive to apply and calibrate, and macroscopic analysis is not capable of 

capturing the dynamics of traffic flow, particularly under congested conditions with 

breakdown and queue spillback effects. Dynamic Traffic Assignment (DTA), combined 

with mesoscopic simulation and in some cases, microscopic simulation, has been 

increasingly used to evaluate traffic management strategies. Compared to the traditional 

methods that normally utilize Static Traffic Assignment (STA) and simple analytical 

traffic flow equations, simulation-based DTA better captures the dynamics of system 

operations by modeling time variant system measures (including queuing and travel 

times), demand, advanced management strategies, and the associated responses of 

travelers. 

Calibration is a substantial challenge in DTA utilization and significant research 

has addressed this issue during the last three decades. Calibration methods can be divided 
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into three categories: supply calibration, demand calibration, and joint supply-demand 

calibration. Supply calibration, also known as network calibration, identifies traffic flow 

and network parameters that result in replicating real-world measurements such as traffic 

volume, travel time and queue, given that the demand used in the model is highly reliable 

(Kunde, 2002). Demand calibration, also known as demand estimation or time-variant 

origin-destination (OD) matrix estimation, aims at estimating the OD matrices based on 

data from different sources by utilizing different methodologies, assuming that the 

network and traffic flow model is well calibrated (Zhou, 2004; Balakrishna, 2002).  

A well calibrated network and a reliable OD matrix are not usually available 

beforehand. To account for the interrelation between network properties and travel 

demand, joint network-demand calibration procedure has been suggested that iterates 

between these two parts until convergence (Balakrishna, 2005; Gupta, 2005). Advances 

in computation power allow for efficiently estimating of all supply and demand 

parameters together. This approach, known as the simultaneous calibration approach, has 

been modeled either as a stochastic optimization problem or a state-space problem (Vaze, 

2007; Balakrishna, 2007). The drawback of these fully automated methods is that local 

knowledge about the network cannot be easily incorporated in the process of calibration 

(particularly in stochastic optimization). In addition, allowing many parameters to change 

at the same time in the optimization complicates the calibration process significantly 

without assuring of successful implementation in real world. 

The current research develops methodologies to support the development, 

calibration, assessment, and use of DTA in modeling managed lanes, and subsequently 

takes advantage of the presence of the detailed traffic data from ITS implementations.  
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1.2. Problem Statement 

Successful implementation of ML depends on understanding and predicting the 

trip makers’ choice to use these lanes. Agencies want to know what demand ML will 

attract, which can be translated into revenue, as well as congestion relief on the 

competing General Purpose lanes (GPL). They also need to know how the user will 

respond to changes in operation policies, such as changing the toll value or vehicle 

occupancy eligibility. Answers to these questions can be provided using advanced 

modeling techniques combined with effective demand estimation and validation methods.  

In the following discussion and the rest of this dissertation, the reader should 

differentiate between two related terms for demand. The general term of “demand” refers 

to the number of trips that pass through the network as a whole, whereas the term “ML 

demand” refers to the number of trips that prefer to use ML. Initial demands can be 

obtained from a regional demand forecasting model but normally have to be significantly 

improved before using them as inputs to advanced modeling procedures. ML demands, 

on the other hand, are obtained through the modeling and calibration of route choice 

behavior.  

The benefit of ML is most pronounced during rush hours, when trips get longer 

and less predictable due to congestion. Therefore, a good ML modeling framework 

should be time-dependent and sensitive to variation in demand and network properties. 

Although the superiority of DTA over traditional STA for applications such as ML has 

been discussed in the literature, a number of issues hinder the use of DTA in ML 

modeling, such as the data required for modeling and calibration being difficult to obtain. 

This is beginning to change, however, as these data are now becoming available in some 
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regions and will be more accessible and affordable in additional locations in the future. 

Nevertheless, the value of these data has been largely ignored, and there is a need to 

educate agencies on how to make the most out of these data in modeling and calibrating 

of ML applications. Therefore, the present study highlights the potential of data from a 

variety of sources for ML modeling and calibration.   

Transportation modelers are still not sure of the benefits of DTA versus traditional 

STA methods when modeling managed lanes and how best to use DTA combined with 

detailed data and other estimation and calibration techniques for this purpose. There is a 

need to explore of different approaches to model route choice behavior and demand 

estimation and compare the results of the analysis. In addition, there is a need to develop 

and investigate methods to improve calibration accuracy and credibility, and to enhance 

demand estimation. Furthermore, there is a need to explore how different modeling steps 

can be combined to produce an effective modeling framework. 

Below are tasks that need to be conducted to satisfy the above needs. These tasks 

were performed in this study. 

Demand Estimation Procedure: The initial demand taken from regional demand 

forecasting models has to be improved before using it as inputs to ML modeling. A 

process is needed to predict more detailed origin-destination (OD) trip matrices that, 

when loaded onto the network, can better replicate real-world traffic conditions, while 

ensuring that their deviation from the initial OD trips is controlled and justifiable.  

Managed Lane Modeling: There is a need to determine the degree that dynamic 

traffic assignment is better in modeling ML compared to traditional static assignment. 

Once this is established, there is a need to compare two of most common approaches of 
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modeling ML in the assignment step. In the first approach, the toll cost is converted to the 

equivalent travel time and is added to the generalized cost function of the link. In the 

second approach, prior to the traffic assignment, a willingness-to-pay curve is used to 

determine the percentage of travelers who are not willing to pay the toll. In the 

assignment step, this group of users is prohibited from using ML, and the rest of the 

assignment is governed by the user equilibrium principal, based on travel time on ML and 

GPL.  

Calibration Process and Performance Measures: Proper calibration process and 

performance measures are necessary for ensuring the credibility of the result. Demand 

estimation, traffic flow model calibration, and assignment calibration aim at minimizing 

the discrepancy between the simulated network measures and corresponding measures 

based on real-world data. In some studies, this discrepancy has been merely limited to the 

difference between link volume and real-world traffic counts. Particularly in ML 

assignment, in which, the solution highly depends on the difference between travel times 

on ML and GPL, replicating congestion patterns should be considered as important as 

volume replication.  

Solution Convergence: Convergence, stability, and proportionality of the 

assignment solution should also be checked. The problem with a calibrated but unstable 

network is that small perturbations in the network or demand attributes can cause an 

unreasonable response. Despite the emphasis on these criteria in the literature, they have 

not been properly addressed in most relevant studies.  

Data Acquisition, Validation, and Processing: Recent advances in Intelligent 

Transportation System (ITS) technologies allow for collecting, archiving, and utilizing 
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valuable data to calibrate assignment models. Such data include: speed, count, occupancy 

and associated derived measures such as queue length and travel time by point traffic 

detectors, partial origin-destination and travel time data collected using Automatic 

Vehicle Identification (AVI), event data (such as incident and construction data), weather 

data, and recorded video by CCTV cameras. The integration of data from different 

sources may compensate for the limitations of each data source. As these data become 

more efficient to collect and archive, and more affordable to obtain, it becomes 

increasingly important to understand how valuable these data can be for improving the 

calibration quality.  

1.3. Research Goal and Objectives 

The goal of this dissertation is to develop and assess advanced strategies for 

managed lane modeling and calibration. The specific objectives are: 

1) Develop a framework for using and assessing DTA modeling of managed 

lanes. 

2) Develop procedures for calibrating and validating DTA modeling of managed 

lanes, utilizing detailed data from multiple sources.  

3) Demonstrate the application of the developed procedures to real-world ML 

situations.  

1.4. Dissertation Organization 

The remainder of this dissertation is structured as follows: Chapter 2 presents a 

review and assessment of past research related to the objectives of this study. First, a 

review is presented of existing ML modeling frameworks. Second, DTA is introduced as 
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a potential method for ML assignment. Next, current practices and research in supply and 

demand calibration of assignment models are reviewed. Lastly, existing literature on 

model convergence is reviewed, illustrating that achieving a stable and equilibrated 

solution is important for the ML modeling.   

Chapter 3 presents the methodology and tasks that have been accomplished 

throughout this study. This chapter explains the task sequence and the links between 

different tasks.  

Chapter 4 describes the required procedures to prepare the demand and network 

from a regional demand model for DTA applications. There was a unique opportunity in 

this research in terms of accessing the ITS data-rich environment. Removing 

non-representative day and time intervals, removing detector erroneous data, and 

checking spatial and temporal consistency of data are crucial tasks for preprocessing and 

validating this data. 

Chapter 5 describes the procedure for network (supply) calibration. The goal is to 

estimate capacity and traffic flow model parameters for network links. This process starts 

with replicating isolated bottlenecks and is extended gradually to cover a larger network.   

Chapter 6 includes the framework for demand estimation consisting of 

sub-elements that can run sequentially in an ascending level of detail and complexity. In 

this chapter, proper performance measures are set to assure a reliable, reasonable 

estimation of demands.  

Chapter 7 is dedicated to evaluating two approaches for utilizing DTA to assess 

managed lane modeling. The first approach is to incorporate the toll cost as equivalent 

time in the link generalized cost function. The second approach is to divide people to 
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toll-payers and non-toll-payers based on “willingness-to-pay curve” prior to the 

assignment. These approaches have been compared from different points of view. Static 

and dynamic assignments are also compared in terms of replicating real-world travelers’ 

behaviors in choosing ML, as well as model convergence and the stability of the 

assignment solution.   

Chapter 8 summarizes the findings of this research on demand and supply 

calibration, and the assignment module in the context of managed lane modeling. 
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2. LITERATURE REVIEW 

This chapter presents a review and assessment of past research related to the 

objectives and tasks of this study. First, a review is presented of existing ML modeling 

frameworks that were found to vary in their levels of details and complexity. Secondly, a 

brief introduction to DTA concept is provided, demonstrating the benefits and necessity 

of DTA utilizations in applications like ML assignment. Next, current practices and 

research in supply and demand calibration, separately or jointly, are reviewed, leading to 

the selection of an iterative-joint approach to supply and demand calibration for use in 

this dissertation. Lastly, existing literature on convergence are reviewed, illustrating that 

achieving a stable and equilibrated solution is important to ML modeling that requires 

assessing different strategies relative to one another. Without assuring a stable and 

well-converged network, it is not possible to differentiate between differences in 

performances that are due to changes in inputs and policies and those that are due to 

model noise and randomness of the non-converged models.  

2.1. Managed Lane Modeling Frameworks 

A variety of modeling approaches have been proposed to assess managed lane 

implementations. These approaches range from high-level sketch planning tools to 

micro-level modeling of individuals’ behaviors and traffic operations. 

The Federal Highway Administration (FHWA) developed an open source sketch 

planning tool (POET-ML) to perform a quick evaluation of ML functionality and pricing 

policies. The input into this spreadsheet includes eligibility policies such as occupancy 

restrictions; physical characteristic such as lengths and numbers of the lanes, median 
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types, and buffer types; and demand information such as the peak hour volumes on ML 

and GPL facilities. The user can change the current policy according to the results 

produced by the tool, and can also review the potential impacts on travel demand, 

revenue, mobility, and the environment (FHWA, 2008a). 

TRUCE 3.0 and TRUCE-ST are similar tools developed by FHWA that allow the 

user to quantify the impacts of congestion pricing on urban highways at the State level. 

The input includes aggregated traffic data from urban mobility reports (Schrank, and 

Lomax, 2007) and socioeconomic data from census for the desired study area. The tools 

allow for the evaluation of the effect of different congestion pricing policies on traffic 

condition, air quality, and revenue (FHWA, 2008b). 

FITSEVAL is another sketch planning tool developed for the Florida Department 

of Transportation (FDOT) by Florida International University in Miami, Florida, to 

evaluate and assess ITS alternatives within the Florida Standard Urban Transportation 

Model Structure (FSUTMS) framework. This tool evaluates the effects of ITS 

applications including ML, on network performance measures such as Vehicle Mile 

Traveled (VMT) and Vehicle Hour Traveled (VHT), average speed, and fuel 

consumption (Xiao et al., 2010). 

When utilizing the four-step demand forecasting framework to model ML, the 

most straightforward approach is to add a toll term to the generalized path cost in the 

assignment module and assign a dollar value to travel time in the generalized cost 

function. Recently, travel time reliability was also added to the generalized cost function 

of the link. More advanced models apply a binary route choice (toll vs. non-toll routes), 

either within the assignment or externally, tying this binary choice to the assignment in 
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an iterative manner. Recent applications have modeled the travelers’ behaviors in 

choosing ML by utilizing probabilistic approaches, such as using a logit model based on 

a derived utility function or a willingness-to-pay distribution based on traveler surveys. 

An essential component of the managed lane choice, whether implemented in the 

generalized cost function of the assignment process or as a separate logit model, is the 

Value of Time (VOT). VOT is a measure of a driver’s willingness-to-pay for travel time 

savings. VOT is a means of capturing dissimilarities between different classes of drivers 

in route choice; more specifically, either in mode choice, route choice, or within 

assignment. These dissimilarities are caused by several socioeconomic and trip factors. 

Chiu (2012) compared modeling VOT dissimilarity in discrete choice model versus 

multi-class stratified assignment. In the discrete choice model, every traveler makes 

decisions of choice based on a generalized utility function (GPL vs. ML), while in the 

multi-class stratified assignment, predefined classes of travelers (stratified based on VOT 

distributions) are assigned separately. The first approach is time-efficient and easier to 

implement, but difficult to converge. The second approach is more time-consuming, but 

produces a more stable solution; therefore, it is more appropriate for scenario comparison 

applications. The toll choice procedure in the Southeast Regional Planning Model 

(SERPM) is conducted utilizing the standard multimodal logit model, and is conducted 

separately for each trip purpose and each vehicle occupancy category. (FDOT, 2013) 

More comprehensive models consider the toll and VOT (and potentially the value 

of reliability or VOR) in the utility function of the mode split and the impedance function 

in trip distribution. In these cases, linking different steps (assignment, mode split, and/or 

distribution) is essential to ensure consistency between their outputs. After partitioned toll 
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and non-toll trips are calculated and loaded into the network in the assignment module, 

the travel time is skimmed and fed back into the mode choice and trip distribution steps. 

Mutual consistency should exist between different levels. For example, global 

convergence problems were reported for cases where the toll cost is modeled in the 

assignment generalized cost function and in the mode choice, but not in the impedance 

function used in the trip distribution (NCHRP, 2012). 

Boyce et al. (2008) mentioned that the travel time input to trip distribution and 

mode choice should be equal to the travel time (cost) obtained from the equilibrium 

assignment in the next step. The author performed several computational experiments of 

how to incorporate the feedback into demand forecasting models. It was found that the 

direct (naïve) feedback is not efficient, and a type of averaging is needed. In comparing 

different alternatives of what to average and how to average, it was recommended to 

average the trip matrices with fixed weights (e.g., weights do not change by iterations). 

The converged solution will produce a matrix, that when loaded onto the network by the 

assignment module, generates route travel times that if fed back to trip distribution and 

mode choice step, would reproduce the same matrix. The same feedback procedure is 

applied in the enhanced demand forecasting model in Florida to overcome inconsistency 

issues between trip distribution/mode choice and assignment (FDOT, 2013).  

There has been a recent interest in utilizing Activity-Based Models (ABM) in 

managed lane studies. It has been argued that traditional trip-based models are unable to 

respond to pricing policies in trip generation, departure time, and occupancy choices. In 

both approaches (trip-based and activity-based), there is a growing trend of combining 
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mode, occupancy, and binary route choice in a multi-level nested logit model structure 

when modeling ML (Vovsha et al., 2013)  

Recently, a survey was conducted as a partial effort to incorporate toll modeling 

into the existing Phoenix metropolitan area demand model by URS (URS, 2011). This 

survey aimed to identify the best practices of toll modeling. Seventeen agencies 

responded to this survey. Sixteen of these agencies currently use the four-step demand 

forecasting model, with six agencies planning to replace the conventional trip-based 

model with ABM. Nine metropolitan planning organizations (MPOs) incorporate the toll 

cost in the impedance function in the trip distribution step. The Nested Logit model is the 

most commonly used mode choice model.  Nine agencies partition the trip table 

between toll and toll-free users, either in their mode choice or assignment model.  

A majority of agencies responding to the abovementioned survey used a feedback 

loop, from trip assignment to trip distribution, or to mode choice. In almost all cases, the 

assignment method is static user equilibrium. Seven MPOs consider both travel time and 

toll cost to calculate the shortest paths. The route choice model, both as a sub-element of 

the mode choice hierarchy and in the assignment step, has the advantage of sensitivity to 

socioeconomic characteristics. A calibrated logit-type model or willingness-to-pay 

distribution can be used in the assignment module to define the route choice behavior. 

The final prototype proposed by URS was an advanced highway assignment with a 

customized route choice that feeds back to trip distribution and mode choice. The utility 

function takes into account the income levels and bias factors. A bias coefficient accounts 

for unknown factors that affect single occupant vehicle (SOV) decisions, such as 

perceived improved trip reliability, safety, and comfort. 
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A key step in ML design and modeling and predicting the associated demand and 

revenue is to estimate VOT (and potentially VOR) and associated factors that affect a 

traveler’s decision to choose or avoid paying a toll. VOT is generally referred to as the 

monetary toll value divided by the saved time, or equivalent “perceived” benefit for using 

ML. The heterogeneity of travelers is a crucial property to be captured.  The necessary 

level of model detail requested by the National Environmental Policy Act (NEPA) for 

traffic and revenue (T&R) analysis includes: four to five major travel purposes, three to 

four income groups, and three to four time-of-day periods. Vovsha et al. (2013) 

recommended considering the length of trips and congestion levels in VOT estimation. It 

was found that drivers perceive every minute in congestion as 1.5 to 2 minutes of 

free-flow driving.  

Recent findings recommend including travel time reliability as a decision factor in 

the assignment process, and subsequently, VOR was introduced in the generalized 

cost/utility function. Two general approaches are introduced in measuring travel time 

reliability. The first approach relates reliability to variability, meaning the higher 

variability in travel time (measured as trip travel time variance or similar concepts) is 

equivalent to a less reliable trip. The second approach measures reliability as a portion of 

success or failure against pre-established thresholds, such as proportion of trips with a 

delay less than a predefined threshold (Cambridge Systematics, Inc., 2012). 

In order to obtain travel time reliability from stated and revealed preference 

surveys, the Resource Systems Group (2012) associated travel time reliability with travel 

time distribution entropy. It is assumed that travelers will pay to reduce the entropy.  
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The entropy is calculated as a function of the mean and standard deviation of the travel 

time distribution. The value of reliability is in dollar per unit of entropy.  

Minnesota was the first state to implement a fully dynamic pricing algorithm that 

updates the toll based on High Occupancy Toll (HOT) lane density and density 

variability every three minutes, with a goal to keep the level of service at C (Janson and 

Levinson, 2013). By implementing different toll policies and analyzing the flow on the 

ML, a counter-intuitive positive correlation between pricing and ML demand was 

observed. The authors believed this contrary behavior is because drivers perceive the toll 

value as an indication of GPL congestion level. Similar results were observed in Burris et 

al. (2012). The authors performed data analysis on two HOT lane facilities in Minnesota 

and California, which revealed that in Minnesota, SOVs pay up to $116/hour, and in 

California up to $54/hour to use HOT lanes during the afternoon peak, and slightly less 

for the morning peak. The authors interpreted these high values are not only paid toward 

time saving, but also for improvements beyond time saving, such as trip reliability. 

Alvarez’s (2012) research at Florida International University showed that based on 

historical ITS data, people occasionally chose to pay toll during the AM peak, while the 

parallel GPL had a lower travel time. The Resource Systems Group (2012) showed that 

the saved time in ML is overestimated by travelers, by comparing joint stated and 

revealed preference surveys with historical data. 

Much lower values of VOT are used in practice and are recommended for 

modeling as default values (NCHRP, 2012; Vovsha et al., 2013). An Investment Grade 

Traffic and Revenue Study (WilburSmith, 2011) reports a range of $6/hour to $18/hour 

of VOT, with an average of $14.31/hour for the US 36 Corridor in Colorado. Past studies 
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have shown that two groups of factors affect SOV decisions to use ML: 1) Trip-related 

factors such as trip length and purpose, trip time of day, travel time savings, improved 

trip reliability, safety, and comfort; and 2) Socioeconomic factors such as income level, 

age, gender, and household composition. It was found that the income level and trip 

purpose are the most influential factors (Burris et al., 2012).  

For calibration of the ML model within the Florida SouthEast Region Planning 

Model (SERPM) framework a value of time of $1 equal to 5.1 minutes ($11.75/hour) for 

VOT, and a range of $0.00 to $2.99 for VOR are suggested. These values are based on 

stated and revealed preference surveys in fall 2011 (Resource Systems group, 2012). 

Calibrating models based on stated and revealed preference surveys for the Florida 

Turnpike’s tolling framework has resulted in a VOT ranging from $3/hour to 

$13.50/hour, based on trip purpose and income level (Dehghani et al., 2003). Nava et al. 

(2013) selected a VOT of $15.50/hour for SOV and HOV users and a VOT of 

$46.50/hour for commercial trucks. In their methodology, the toll value update 

mechanism is internally implemented within a dynamic user equilibrium framework, 

which implies mutual consistency and convergence between toll value and route choice.  

Choosing ML versus GPL is a learning process for commuters. Studies show that 

the learning process that leads to a high correlation between saved time and ML selection 

takes about 60 days. In other words, it takes 60 days of adjustment prior to choosing ML 

over GPL, based on the saved travel time (Alvarez, 2012). 

Sometimes, constants are also included in the utility functions to account for 

unobserved factors that lead travelers toward ML or away from it. These parameters are 

hard to measure and are estimated through model calibration and fine-tuning tasks. In the 
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SERPM model calibration, bias against the HOT lane choice is inserted in the utility 

function for off-peak periods. For peak periods, a bias toward HOT lane is included to 

replicate the observed volume on the HOT lane. In addition, saved travel time is 

exponentially increased with congestion level to reflect how travelers “perceive” the 

benefit of using HOT versus GPL when the road is heavily congested. This effect was 

revealed in travel surveys and stems from better safety, comfort, and reliability when 

using HOT (FDOT, 2013). 

It should be noted that the revealed VOT for ML might be different from the VOT 

for toll facilities when the entire facility is tolled (e.g. Florida Turnpike). This is because 

with ML, drivers can decide at the last moment which route to take based on dynamically 

changing traffic conditions and tolls. Moreover, with ML, usually a small portion of ML 

capacity can be purchased by SOVs, therefore, only SOVs with relatively high VOT will 

divert compared to toll facility users. 

2.2. Dynamic Traffic Assignment 

The impacts of advanced strategies such as ML are particularly significant when 

the facility is operating near its capacity. Applying these strategies is time-dependent and 

highly sensitive to small changes in traffic and/or demand. Therefore, these applications 

require more advanced and detailed modeling frameworks, compared to the approaches 

used in traditional demand forecasting.  

The use of simulation-based DTA was proposed as an alternative to STA to 

provide more realistic and detailed analyses of ML. Simulation-based DTA tools utilize 

mesoscopic or microscopic simulation to assess traffic performance after each assignment 
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iteration.  Mesoscopic models generate and track individual vehicles, as is the case in 

microscopic simulation, however, the interaction between them is modeled through a 

macroscopic traffic flow model (TFM), rather than a microscopic traffic modeling. 

Microscopic simulations are useful tools for traffic analysis. However, they are extremely 

demanding in the data and time needed for the correct modeling and sound calibration of 

traffic flow model. Such models are not appropriate for regional networks. Macroscopic 

simulations, on the other hand, are too aggregated for operational analysis purposes, and 

many are unable to capture vital features of congested networks like bottlenecks. 

DTA is a modeling approach that captures the dynamic interaction between 

demand and network, and advanced strategies and associated parameters. It models the 

period demand over short-time intervals, with a traffic assignment in each interval, which 

is affected by the network condition resulting from the previous interval assignment. This 

means that for each OD pair, vehicles that depart in different time intervals can use 

different paths and may experience different travel times. The core engine that assigns the 

demand to eligible routes in most static and dynamic assignment tools stems from the 

user equilibrium (UE) concept. Equilibrium means that for each OD pair, the experienced 

travel time on different routes are the same, and no traveler can improve his/her travel 

time by switching the routes. In DTA, dynamic user equilibrium is to be achieved for 

every departure time interval. 

To better understand the difference between STA and DTA, it is necessary to first 

understand the main components of traffic assignment procedures that run sequentially 

and iteratively seeking a convergence. These three main components are: 
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• Shortest path identification (also referred to as tree-building): This includes 

the identification of a set of attractive paths (routes) between each OD pair. In 

DTA, this component is time-dependent and includes updating the set of 

attractive paths given the estimated travel times of the paths during the 

previous assignment process. 

• Assignment of the trip demands to the identified attractive paths: This 

component results in the estimation of link flows by assigning the demands to 

the competing attractive paths. In DTA, the proportions of demands assigned 

to each path are calculated for each assignment time period.  In general, a 

time period of 15-30 minutes is most widely used. 

• Network loading: This component refers to the representation of the 

movement of vehicles on the network as they travel from origins to 

destinations. Network loading allows the estimation of performance measures 

for use in the assignment, such as route travel time between origins and 

destinations. In DTA models, network loading procedures can be classified as 

analytical procedures or simulation procedures. Due the complexity of traffic 

operations, particularly with the presence of congestion and traffic control, 

simulation-based procedures are the most widely used types of procedures at 

the present time (Hadi et al., 2012). 

The discussion above indicates that unlike STA, which defines the shortest paths 

and allocates all of the traffic to these paths at once for the whole peak period, DTA 

conducts the traffic assignment and reaches equilibrium for each time interval far shorter 

than the model period. This is preferred in two aspects, as follows: 1) DTA can model 
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time variant demands, time variant operational strategies (such as those applied in ML), 

associated travelers’ responses, dynamic variations in network performance, and dynamic 

events such as lane blockage incidents; and 2) Simulation-based DTA can model queue 

building and dissipation and queue spillback due to exceeding link capacity or 

downstream link queuing capacity, as it occurs in the real world. Therefore, DTA 

provides a more realistic representation of travelers’ behaviors and traffic conditions, and 

provides a better approach for assigning traffic and estimating travel cost and time, 

resulting in better demand and performance measure forecasting. 

Despite the potential benefits of utilizing DTA, there are some concerns and 

issues hindering its use. The most common concerns identified by modelers and planners 

include 1) the excessive data and time needed to model and calibrate DTA networks, 2) 

the required time and cost for training, and 3) the time required to integrate DTA with 

other transportation analysis tools such as demand forecasting models, multi-resolution 

modeling, and ABM modeling. In particular, integration of DTA with activity-based or 

choice models is difficult to converge. 

In April 2009, the Transportation Research Board (TRB) Network Modeling 

Committee conducted a DTA user survey through the Federal Highway Administration 

(FHWA) Travel Model Improvement Program (TMIP) mail list, which shows that more 

than 70% of the 85 respondents plan to apply DTA tools within two years (Tung and 

Chiu, 2011). On the other hand, the respondents also clearly identified the following top 

five technical and institutional barriers:  

• DTA requires more data than current availability or accessibility (47%)  

• Setting up a DTA model takes too many resources (44%)  
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• Cost/benefit is unclear (45%)  

• DTA tools take too long to run (35%)  

• Modeling approaches are unclear (35%)  

Another survey was conducted in 2010 by the Florida modeling community, 

related to their views of DTA applications and limitations. Forty-seven responses were 

received from private sectors, metropolitan planning organizations (MPOs), and state 

agencies. Thirty-six percent of responders believed that there is a lack of data for DTA 

applications at this stage of development; 24% mentioned lack of experience as an 

obstacle for DTA implementation, 22% were concerned about calibration and validation 

requirements, and 21% named computational time as a DTA drawback compared to the 

traditional regional models. The need for training, complexity of the process, and the cost 

of software were also confirmed as issues when considering implementation of DTA 

(Hadi et al., 2012).  

Convergence of DTA models should also be an important area of consideration by 

modelers. In static user equilibrium, the convergence of the solution is theoretically 

provable. However, in simulation-based DTA tools, the convergence is not theoretically 

guaranteed. Therefore, arbitrary performance measures are introduced as convergence 

criteria, with no agreed-on acceptance levels.  

2.3. Supply/Network Calibration  

Supply calibration includes the estimation of parameters associated with traffic 

operations in the network. These parameters vary depending on the type of the model 

(macroscopic, microscopic, or mesoscopic) and the specific tool under consideration. The 
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parameter used in mesoscopic simulation tools generally include segment capacities, 

free-flow speed, queuing density and/or jam density, and/or other parameters used in the  

macroscopic traffic flow model used to move the vehicles onto highway segments. The 

performance of the system with the selected parameters is evaluated by comparing the 

model results to real-world measures of traffic flow, such as queue formation and 

spillback, density, and travel time on each link. 

2.3.1. Mesoscopic Simulation Supply Calibration 

Kunde (2002) calibrated the network supply of the DynaMIT model through a 

sequential process at increasing levels of aggregation. The process starts at the level of 

separated bottlenecks where capacity is estimated by various methods based on field data. 

The network is gradually extended to connect the bottlenecks, and then model the whole 

corridor. The parameters from the previous steps are fine-tuned, and the supply-demand 

calibration runs iteratively until a desirable convergence is achieved. The most 

disaggregated level is the individual segment level, at which the speed-density 

relationship and capacity are calibrated. At this stage the interactions between adjacent 

segments is ignored. Due to the lack of data and large number of variables, network 

segments were first grouped into 11 representative clusters.  All segments in a cluster 

were set to have the same TFM parameter values. The next stage is to perform calibration 

at the sub-network level where the origin-destination flows can be reasonably estimated 

solely from the sensor counts, because the probability of a second alternative route choice 

between each origin and destination is zero or negligible. This way, the impacts of errors 

in demand estimation on supply calibration are deleted. The last step is the network-wide 
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calibration, which takes into account all of the interactions between various segments and 

any errors due to demand estimation. Stochastic optimization is used to calibrate the 

supply at the whole network level. 

To estimate the macroscopic TFM model parameters in Dynasmart-P with the 

modified Greenshields model as utilized TFM, Mahmassani et al. (2004) rewrote the 

model formula in the natural logarithmic form, whereby the relation between speed and 

density becomes linear. The authors estimated the parameters by performing multiple 

runs of regression analysis. In each run, they set one of the parameters as fixed and 

systematically changed the other parameters within a reasonable range to determine the 

optimum combination that replicates detector data.  

Wang et al. (2009) applied Kalman filtering to continuously estimate the state of 

the traffic based on real-time data. Capacity and TFM parameters were calculated within 

a stochastic nonlinear macroscopic TFM framework by an adaptive estimator. This 

method does not require an initial estimation of the parameters; it automatically adapts to 

changes in the model due to changes in external conditions and can recognize 

interruptions due to incidents. The drawback of this method is that the output cannot be 

related to the theoretical aspects of traffic flow.  

The Highway Capacity Manual (TRB, 2000; TRB, 2010) is used as the 

authoritative source of defining and estimating capacity in the United States. A procedure 

is presented in the HCM that allows estimating freeway capacities based on free-flow 

speed. The procedure allows adjusting the capacity estimates to account for deviations 

from default conditions, considering a limited number of factors. However, many other 

parameters affecting capacity are not considered in the adjustment. Thus, the HCM 
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encourages measuring capacity in the field to consider the differences in geometry and 

driving characteristics between different regions and facilities.  

The remaining subsections of Section 2.3 discuss in more detail the specific 

aspects of the calibration process, including bottleneck identification, free-flow 

estimation, capacity, and TFM parameter estimation. 

2.3.2. Bottleneck Identification 

In a congested network with recurrent bottlenecks, the most crucial part of 

network calibration is to replicate bottlenecks as they happen in the real world, in time 

and space, and correctly estimate the capacity and impacts of the bottleneck.  

A bottleneck is defined as a point upstream of which a queue is formed, with the 

traffic flowing at free-flow speed at downstream locations (Bertini et al, 2008). 

Bottlenecks can be active or hidden. A hidden bottleneck is a potential one that is a result 

of geometric or demand features but cannot be observed because the approaching traffic 

demand is metered by another upstream bottleneck. An active bottleneck is the only 

location where capacity can be measured based on field data. Chen et al. (2004) identified 

bottlenecks based on the speed differences between adjacent detectors, where the speed at 

the upstream detector is below a particular threshold (e.g., 40 mph), and the speed drop is 

above a particular threshold (e.g., 20 mph). The required parameters, including the 

maximum speed threshold, minimum speed difference between adjacent detectors, and 

data aggregation levels were recommended to be site-specific.  Zhang and Levinson 

(2004) identified bottlenecks based on the occupancy differences between adjacent 

detectors. Hall and Agyemang-Duah (1991) used the occupancy-to-flow ratio as a 
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bottleneck identification criterion. Bertini and Myton (2005) used cumulative vehicle 

counts and cumulative occupancy graphs to identify bottleneck activations without the 

need to set speed or occupancy thresholds.  

2.3.3. Free-Flow Speed 

Free-flow speed (FFS) is a crucial parameter in the HCM capacity estimation 

procedure for uninterrupted facilities. The HCM provides a free-flow speed estimation 

procedure that incorporates reduction factors to account for deviations from base 

conditions. Reductions in free-flow speed will implicitly drop the capacity, according to 

the HCM procedure. 

Equations 2-1 and 2-2 show the relationship between the basic and adjusted 

free-flow speed to account for the deviations from basic conditions in the HCM 2000 and 

HCM 2010 respectively.  

ܵܨܨ     = ܵܨܨܤ − ݂ௐ − ݂ − ே݂ − ூ݂                              (2-1) 

BFFS= base free-flow speed (75 mph for rural freeways and 70 mph for urban 

freeways), 

fLW = adjustment factor for lane width (mph), 

fLC = adjustment factor for right shoulder lateral clearance (mph), 

fN = adjustment factor for number of lanes (mph), and 

fID = adjustment factor for interchange density (mph), and 

 

ܵܨܨ      = 75.4 − ݂ௐ − ݂ −  .଼ସ                              (2-2)ܦ3.22ܴܶ

TRD = total ramp density (ramp/mi). 
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The HCM encourages users to measure FFS in the field as the average of all vehicle 

speeds when the volume is less than 1000 pc/ln/hr. Chao et al. (2005) used the average of 

speeds when occupancy is below 10 percent. Dervisoglu et al. (2009) estimated FFS by 

fitting a straight line to the uncongested part of the fundamental diagram. 

2.3.4. Capacity Definition and Estimation 

The HCM defines freeway capacity as the maximum sustained 15-minute flow rate 

that can be accommodated by a uniform freeway segment under prevailing conditions. As 

mentioned earlier, the HCM recommends values of capacity based on free-flow speed, and 

provides a few adjusting factors to account for deviations from prevailing conditions. 

However, there is evidence that these adjustments are not enough to reflect the significant 

differences between locations due to geometry, demand, and driving characteristics 

(Washburn et al., 2010).  Given a determined FFS and weather condition, heavy vehicle 

and driver population are the only factors used to adjust the capacity. The heavy vehicle 

percentage can be obtained by detectors that classify vehicles, or by manually counting 

vehicle classes. However, the driver population, which is the percentage of non-commuters 

that are not familiar with the analyzed highway, is very difficult to estimate.  

To account for site specifications, direct measurements of capacity were 

recommended.  In absence of a recommended method by the HCM, researchers 

proposed a number of approaches for these measurements. Dervisoglu et al. (2009) 

estimated capacity as the maximum observed 5-minute flow rate over several days. Chao 

et al. (2005) estimated the capacity as the maximum hourly flow observed during a 

30-day period. Jia et al. (2010) estimated capacity as the average of the top one percentile 
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of a 15-minute flow rate over several days, which turned out to be similar to values 

estimated by the HCM.  

Van Arem and Van der Vlist (1992) estimated capacity by determining the 

maximum occupancy in the uncongested part of the fundamental traffic flow diagram and 

the associated volume. Bassan and Polus (2010) approximated the capacity by fitting data 

into parabolic speed-flow and flow-occupancy models.  Similarly, Wang et al. (2009) 

used the apex of a flow-density curve as capacity. Rakha and Arafeh (2010) performed an 

automated fitting procedure of a quadratic speed-flow function to loop detector data. This 

function combines the microscopic Pipes car-following model and the single regime 

Greenshields model. The automated model calibration yields an estimated number of key 

parameters, including capacity.  

Researchers have also argued that capacity is not constant, even under identical 

external conditions (Elefteriadou et al., 1995; Minderhoud et al., 1997). These researchers 

recommended a paradigm shift in capacity calculation, from a deterministic value to a 

stochastic value, and proposed statistical methods to measure capacity. In most of these 

studies, capacity is tied to the notion of traffic breakdown. The most common proposed 

values as capacity representatives are queue discharge flow and the maximum flow 

before breakdown. The queue discharge rate is defined as the long-run average of flow 

over the breakdown period. Pre-breakdown flow was measured using different time 

intervals before breakdown, such as 5 minutes and 15 minutes (Elefteriadou and 

Lertworawanich, 2003; Hall, and Agyemang-Duah, 1991).   

Based on a lane-by-lane analysis of breakdown, Dehman (2012) pointed out that 

in some cases, the flow increased after the breakdown and explained that this mainly 
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happened because of lane changing between underutilized and fully utilized lanes. Brilon 

et al. (2005) found that a freeway operates at the highest expected efficiency only if it is 

loaded to 90% of the conventionally estimated capacity. 

There are no guidelines on whether to use pre-breakdown, queue discharge, or a 

weighted combination of both as values representing capacity (Zhang and Levinson, 

2004). It has been reported, however, that queue discharge is lower than the 

pre-breakdown flow by 2 to 26 percent in different studies, mostly due to a change of 

driving behavior to stop and go status (Yeon et al., 2007; Hall, and Agyemang-Duah, 

1991). The HCM 2010 also recognizes this phenomenon; however, it does not consider it 

in its procedures and does not recommend any specific percentage of capacity reduction 

after traffic breakdown. 

 A freeway facility HCM computational engine was developed to implement the 

HCM 2010 Chapter 10 procedure, so as to estimate freeway capacity when queue exists. 

In this engine, called FREEVAL, oversaturated conditions are followed by a user-defined 

drop in capacity, reflecting the queue discharge rate during these conditions. The 

National Cooperative Highway Research Program (NCHRP) project 3-96 also aimed to 

develop methods for the performance assessment and capacity analysis of managed lanes 

compatible with HCM procedures. The result of this project is the development of 

additional features in FREEVAL, resulting in the FREEVAL-ML package that allows 

modeling of the GPL and the parallel ML (Wang et al., 2012).  

In more recent studies, to account for the probabilistic nature of capacity, some 

researchers recommend calculating it as a percentage of the breakdown probability 

distribution.  The most common utilized probability functions are the normal and 
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Weibull distributions (Hall, and Agyemang-Duah, 1991; Elefteriadou and 

Lertworawanich, 2003; Brilon et al., 2005).  Minderhoud et al. (1997), which state that 

given a true distribution of capacity, one can obtain the capacity value by choosing the 

average, median, or 90th percentile of the distribution. This choice so far has been 

arbitrary and supported by the results from testing the local data goodness-of-fit.  There 

is no consensus on which point of the breakdown distribution should be used to estimate 

capacity. Lin (2009) used bi-level linear programming to exclusively calibrate capacity in 

a DTA model. The upper level problem minimizes the deviation of simulated and 

observed occupancy data, and the lower level runs a simulation-based cell transition 

assignment. 

In summary, the HCM is regarded as the most reliable source for estimating 

capacity for different facility types. However, the HCM procedures allow for the use of a 

number of factors to reflect local conditions. In some cases, however, this adjustment 

may not be sufficient, and direct measurement of capacity is needed. A variety of 

surrogate measures have been proposed for capacity measurements. It is worth 

mentioning that in some studies, the measured capacities reported as being lower than 

those estimated by the HCM (Washburn et al., 2010). 

2.3.5. Traffic Flow Model Parameter Estimation 

DTA tools use mesoscopic simulation models to generate and track individual 

vehicles, but move vehicles according to macroscopic relationships that are subject to 

link capacity and link storage limits. Depending on the specific model under 

consideration, the utilized macroscopic relationships could include the Bureau of Public 
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Roads (BPR) relationship, the modified Greenshields model, the Van Aerde model, or the 

Akcelik model. 

BPR is the most common model in traditional STA-based demand forecasting 

applications.  It has also been used in the Cube Avenue DTA tool (Citilabs, 2013). 

Different values have been suggested by practitioners to calibrate the BPR curve 

parameters to better replicate observed performance measures such as speed, volumes, 

total Vehicle Miles Traveled (VMT), and Vehicles Hours Traveled (VHT). In some 

applications, the parameters are set based on facility type and design speed. In more 

advanced applications, a volume/capacity (v/c) threshold is selected to divide the BPR 

curve into two different regions with different coefficients to reflect the difference in 

traffic dynamics between these two regions.  The v/c values of 1, 2, and 4 have been 

used as thresholds in different studies (Spiess, 1990a; Singh, 1995; Dowling, 1997 and 

Hansen, 2005).  

Saberi (2010) compared the results from the HCM empirical speed-density 

curves, BPR formula, and Davidson formula (Davidson, 1966 and 1978) and its 

descendent, the Akcelik formula (2003), and assessed their abilities to replicate the 

observed speed-density curves.  The author recommended the use of the BPR curve for 

v/c <1 and Akcelik formula for v/c >1, since this formula accounts for the presence of 

queue. The author incorporated the probability distribution of capacity into the 

speed-density relationship to account for the stochastic nature of capacity. 

 Huntsinger and Rouphail (2011) improved the accuracy of the BPR, Conical, 

Akcelik and HCM traffic flow models by replacing the volume with the estimated 

demand in these TFMs. The demand is calculated as the summation of volume at 
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capacity and queue at the bottleneck location. The authors optimized the parameters of 

the abovementioned TFMs to fit the demand/capacity versus travel time observations.  

Dervisoglu et al. (2009) presented an automated empirical calibration approach of 

TFM parameters for a cell transmission model. The TFM is formulated as a triangular 

relation between flow and density. Capacity is estimated as the maximum 5-minute flow 

rate over several days.  This value of flow on the flow-density curve is then projected 

horizontally to meet the free-flow speed line (a line from the origin of the diagram with a 

slope equal to free-flow speed) to establish the tip of a triangular fundamental diagram. 

This point corresponds to the critical density, above which the flow is considered to be 

congested.  

Van Aerde and Rakha (1995) performed an automated fitting of a quadratic 

speed-flow function. This function combines the microscopic Pipes car-following model 

(applied in CORSIM) and a macroscopic single regime model (the Greenshields model). 

Speed and volume (and density if available) measurements from detector data were used 

to calibrate four parameters that define the relation between speed and density. 

Chiu et al. (2010) introduced a vehicle-based mesoscopic model called the 

Anisotropic Mesoscopic Model.  Instead of using the conventional TFMs that assume 

the same speed for all vehicles on a link at a given time step, vehicles on a link can travel 

at different speeds. In this model, the speed is affected by the presence of leading 

vehicles within a neighborhood, called the speed influence region (SIR). 

 Loudon (2007) pointed out that the traffic characteristic is quite different in ML, 

compared to GPL. In particular, the observed ML speeds were found to be lower than the 

original estimations, depending on the degree of separation between ML and GPL. This 
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is due to the interaction between ML and its adjacent, more congested GPL lanes. This 

effect is referred to as “side friction,” the degree of which depends on the separation type. 

The most significant effect was observed with marker painting buffers, and the least 

significant was observed with concrete barriers.   

It is not feasible to estimate the capacity for every link when estimating the 

capacity in the field; first, because capacity can only be observed at critical link locations. 

This requires grouping road segments, which significantly reduces the size of the 

parameter estimation. Clustering can simply be based on geographical features such as 

number of lanes, horizontal/ vertical curve, and closeness to ramps (Balakrishna, 2007; 

Kunde, 2002), or through machine learning approaches such as the k-means algorithm. 

2.4. Demand Estimation 

Time-dependent origin-destination matrices are essential input to trip-based DTA 

models. Because of the very high cost of travel surveys, possible errors with these 

surveys, such as misreporting the trips and the need for a fine-grained demand matrix 

covering short-time intervals, methods must be developed to estimate reliable fine 

grained trip origin-destination (OD) matrices based on initial seed OD matrices obtained 

from demand forecasting models.  Although seed OD matrices are very important in the 

estimation process, other sources of data, such as traffic counts and possibly partial OD 

matrices measured using Automatic Vehicle Location (AVL) or Automatic Vehicle 

Identification (AVI) data, are needed to improve the accuracy of the estimated matrices. 

The OD estimation methods can be categorized as assignment-based and 

non-assignment-based. Non-assignment-based methods apply traffic conservation 
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relations between entrance, exit and mainline volumes. These methods are mostly limited 

to road facilities without signals and without any queues. Other sources of information, 

such as AVI, are also difficult to incorporate into the models. 

In general, the problem of OD estimation is underspecified, which means that the 

number of equations based on traffic counts on links are far less than the number of 

unknowns (OD table cells). Thus, different combinations of OD pairs can produce the 

same set of link volumes if loaded onto the network. To circumvent the problem of 

under-determinacy, researchers may aggregate ODs over longer time intervals, compare 

them to surveillance data time intervals, or alternatively, disaggregate the surveillance 

data into shorter time intervals. (Tavana, 2001; Gupta, 2005) 

Assignment-based models utilize traffic assignment to map OD matrices to link 

volumes, allowing for the minimization of the deviation between model outputs and 

observed or estimated measures (such as initial OD matrices and measured traffic 

volumes) (Chi, 2010). Different sources of data are easy to incorporate into 

assignment-based models. In addition, if dynamic assignment is used, queues and signal 

delays are modeled by the DTA simulator. Thus, they are more appropriate to use than 

non-assignment-based estimation. However, the quality of the results of 

assignment-based models depends on the availability of high quality initial OD matrices 

(Lin, 2006). A main interest of this study was the current work being performed on the 

assignment-based OD estimation processes and the factors affecting this estimation.  

Traditionally, assignment-based OD estimation is modeled as an iterative bi-level 

optimization, where the upper level minimizes the deviation between observed and 

simulated quantities, and the DTA simulator at the lower level produces a link-flow 
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proportion matrix as a result of loading the OD over network links. The simplest structure 

for this approach is depicted in Equation 2-3. 

 

ܦ     = argmin_ܿ̂ ∑ ∑ ݂(ܿ(,௧) − ܿ̂(,௧))ଶ௧                                 (2-3) 

s.t. ܿ̂ = ̂ ∗  ܦ

and other sets of constraints, as discussed below. 

In Equation 2-3, D is demand, and c and ĉ are observed and estimated traffic 

counts. The link with the detector measurement is 1, t is the time interval with traffic 

data, and ̂ is link-flow proportion matrix that indicates which portion of each OD pair 

travels on a certain link. This matrix is usually obtained as a result of DTA modeling. The 

objective function is not limited to minimizing the deviation between simulated and 

observed counts. It can be extended to consider the deviation between simulated and 

observed speed, density, queue length, or the distance between an initial set of demands 

(seed OD matrices) and the estimated demands.  Constraints also include, but are not 

limited to, non-negativity constraints, initial values, link capacities, cordon line counts, 

fixed OD flows, and/or production/attraction counts. Even route choice probabilities can 

be used as constraints if these parameters are to be fixed. 

Tavana (2001) modeled the upper level of the OD estimation problem as a 

generalized least square (GLS) optimization to minimize the discrepancy between the 

estimated and measured link volumes. In favor of GLS, Brandiss (2001) pointed out that 

GLS formulation allows the incorporation of information about the reliability of 

measurements in terms of a weighting matrix. Alternatively, maximum likelihood and 
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maximum entropy methods can be used instead of GLS. To incorporate information from 

historical OD matrices, Tavana (2001) included a Bayesian inference that updates 

demand based on the results from the bi-level optimization. Alternatively, the distance 

between the estimated and target OD matrices could be incorporated into the objective 

function, as in Gupta (2005).  

The upper level of the OD matrix estimation problem in Zhou (2004) is a 

weighted minimization of the deviation between the observed and simulated demand and 

link flows. Weights can be used in the upper level optimization function to reflect the 

level of reliability that the user wants to apply on demand or link flow measurements. 

Similar to Zhou (2004), Chi (2010) used adaptive weights on different components of the 

objective function. At the beginning of the estimation, higher weights were assigned to 

traffic measurements such as counts, speeds or travel times, since at the beginning of the 

process, these data are more reliable than the OD matrices from the demand model. As 

the system converges, a better estimation of OD is obtained, and the weight of the 

observed link counts is reduced in the optimization since they are not error-free. The 

adaptive weights can also mitigate the problem of over fitting of the observed counts. The 

optimum value of the weight can be obtained through least square estimation, or the 

model user can arbitrarily set them based on local knowledge. Another issue is that in 

congested networks, the volume is not an incremental function of demand; therefore, Chi 

(2010) proposed detecting congested segments temporally and spatially, and using 

density instead of volume in the objective function for congested segments, which is a 

better representative of traffic conditions.  
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Mahmassani et al. (2004) carried out the supply and demand estimation tasks in a 

sequential manner. They first calibrated the network as described in Section 2.2, and then 

used a bi-level optimization to estimate the OD matrices, similar to Tavana (2001). The 

authors investigated two different alternatives for the optimization part. The first 

approach was a linearly constrained GLS approach that minimizes the deviation between 

the estimated and observed link flows. The second approach was a weighted objective 

function whereby a higher weight was allocated to the links that carried more flow. In 

both approaches, weights were allocated to the objective function components, as 

discussed in Zhou (2004) and Chi (2010). The authors mentioned that using sparse matrix 

structure and decomposing the OD matrices into sequential sub-matrices can alleviate the 

problem of scalability. Fixing the OD cells that have no or little effect on traffic 

conditions and restarting the estimation with fewer variables increased efficiency. 

Other approaches that were used to demand estimation are the Bayesian Inference 

and state-space framework, which are described below.  

A simplified concept of Bayes Theorem is stated as Equation 2-4: 

 

(ܤ|ܣ)	ܲ = (ܤ)ܲ(ܣ|ܤ)ܲ(ܣ)ܲ	 (ܣ|ܤ)	ܲ									ܴܱ						 = (ܣ)ܲ(ܤ|ܣ)ܲ(ܤ)ܲ	 			 
 

Considering A as network conditions and B as travel behaviors, the formula above 

can be interpreted as predicting network (supply) behavior, given the demand (P(A|B)).  

Equivalently, it can be interpreted as predicting demand behavior, given the network 

conditions (P(B|A)).  In the joint supply-demand calibration, the mutual relationship 

(2-4) 
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between supply and travel behavior can be modeled through the Bayesian Inference, as 

shown in Figure 2-1.  

 

  

  

        

           

Figure 2-1 Interaction Between Demand and Supply 

For a linear dynamic system, the state-space framework can be summarized, as 

shown in Equations 2-5 and 2-6 (Chen, 2003): ݔାଵ = ݂ ∗ ݔ ݕ (2-5)																																																											ݓ	+ = ݃ ∗ ݔ  (2-6)																																																													ݒ	+

Equation 2-5 is called a “state or transition formula,” and shows how a state vector (x) 

evolves over time by evaluating P (xh+1| xh), the probability of xh+1, given xh.  The state 

vector can be OD flows, travel behavior parameters, speed-density relation parameters 

and so on.  Equation 2-6 is called the “measurement equation” and maps the observation 

vector (y) to the unobserved state vector (x), or describes the probability P (yh|xh).  The 

model coefficients, f and g, need to be estimated, and w and v are model noises.  The 

detector data, such as volume and speed, are examples of y.  A well-known solution for 

the state-space model is Kalman filtering, in which model noises (w and v terms in 

Equations 2-5 and 2-6 are assumed to be a normal distribution with a mean of zero. 

Ashok and Ben-Akiva (2002) and Lin (2006) modeled the relationship between 

demand and link flow as a state-space formula. It should be noted that in congested areas 
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with capacity constraint, link flows do not represent the demand. Capacity plus queue at 

the link can be used to approximate the demand.  Hu and Chen (2004) estimated OD 

and travel time simultaneously through extended Kalman filtering. Zhou (2004) defined 

the true demand be estimated as a combination of regular pattern, structural deviation 

from the mean pattern, and random fluctuations, and applied Kalman filtering to capture 

these components. Kalman filtering was used as an external controller to inspect the 

adjusted OD before sending the OD estimation output to the DTA simulator. 

The growth of ITS implementation is very promising in collecting full or partial 

trajectory data. With commercialized connected-vehicle devices mounted on cars, more 

trajectory information will be available in the future. Zijpp (1997) and Zhou (2004) were 

able to reduce OD estimation errors by combining AVI and count data. Dixon and Rilett 

(2002) deployed GLS and Kalman filtering to show the benefits of the incorporation of 

origin-destination and travel time information from AVI data.  

Doblas and Benitez (2005) pointed out a practical aspect of OD estimation that 

was ignored in related studies. The preservation of the structure and pattern of initial OD 

should not be sacrificed to replicate traffic counts. Traffic counts reported by detectors 

are not error-free. Moreover, the information in the initial OD (usually from surveys or 

extensive calibration of travel demand forecasting models) is very valuable and 

expensive, and deviation from initial OD structure should be constrained. The authors 

modified the gradient-based algorithm of Spiess (1990b) implemented in commercial 

DTA tools to control the adjustment of the OD matrices by preserving the number of 

production and attraction trips for each zone. To optimally use the available data, Nguyen 
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(1982) incorporated production/attraction data from a historical OD matrix to a maximum 

entropy formulation. 

In summary, the assignment-based OD matrix estimation problem that is of 

interest to this study was formulated using a number of methods, including bi-level 

optimization (utilizing a GLS or maximum likelihood approach), state-space problem, or 

Bayesian inference. The latter two methods can also be used in conjunction with the 

bi-level optimization problem to update the OD matrices based on the results from the 

optimization, in an iterative process. They can also be used as an external controller to 

limit the deviation of the estimated OD matrix from the initial or historical matrix. 

Depending on the source and quality of the initial or historical OD matrix, certain 

features of the matrix may be necessary to keep. For instance, some or all of the attraction 

production rates or some OD pairs might be kept constant during the estimation process. 

2.5. Joint Supply and Demand Calibration 

It is logical to suspect that there is a relationship between the supply calibration 

discussed in Section 2.3 and demand calibration discussed in Section 2.4. Supply 

calibration requires a good estimate of demand, and demand calibration requires a 

well-calibrated network. Doan (1999), Antoniou et al. (2007) and Vaze (2007) showed 

that joint supply-demand calibration is superior to the sole use of calibrating demand. 

There are two main approaches to demand-supply DTA calibration: sequential process 

that can be performed iteratively (Balakrishna, 2002; Mahmassani, 2004), or 

simultaneous estimation of all parameters (Balakrishna, 2007; Vaze, 2007). 
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Antoniou et al., (2007) utilized a nonlinear state-space model to jointly calibrate 

supply and demand in an online framework. Ashok and Ben-Akiva (1993) used the 

deviations of the model parameters from the best estimated parameter instead of the 

parameters themselves, as part of a joint supply-demand calibration process. This way, all 

available information (obtained from estimation in previous steps) would indirectly be 

incorporated into the model structure.  The network was composed of 45 segments of a 

mainline freeway and associated ramps (no route choice behavior was involved). The 

author decomposed the problem and sequentially calibrated supply and demand 

parameters. Segment capacities were estimated according to the HCM methodology, and 

the TFM parameters were found by fitting the modified Greenshields model to sensor 

data for three grouped segments. Utilizing a similar approach, Vaze (2007) calibrated all 

network parameters, route choice parameters, and OD matrix elements in DynaMIT 

through state-space modeling, as well as through stochastic optimization modeling.  

Chi (2010) conducted a weighted bi-level optimization to calibrate the supply 

parameters and estimate OD demands in a freeway system. The network (supply) was 

calibrated once before the OD estimation by fitting observed data to the modified 

Greenshields model, and once afterward to fine-tune the parameters obtained from the 

previous stage. Fine-tuning of the TFM parameters was carried out through bi-level 

optimization. The author also showed that the incorporation of an initial OD estimate can 

improve the overall performance of the estimation.  In absence of historical OD 

estimates, a gravity model was used to produce an initial OD matrix.  This matrix was 

then improved using a static OD estimation module that utilizes a maximum likelihood 

framework.  
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Balakrishna (2007) estimated all parameters of the supply and demand sides 

through stochastic optimization. Following Kunde (2000) and Vaze (2007), he utilized 

Simultaneous Perturbation Stochastic Approximation (SPSA) to simultaneously estimate 

hundreds of parameters on the network. Although this method is theoretically elegant, it 

has not been implemented successfully in real-world applications. 

Interrelation between supply and demand was carried out through sequential and 

simultaneous processes. Simultaneous estimation of all parameters, although asserted to 

be more efficient, complicates the problem and limits the user’s ability to monitor and 

control the change of parameters. Moreover, incorporating local knowledge about the 

network or the demand is difficult in this approach, since a large part of the optimization 

is automated. No successful application of this approach in the real world has been 

reported so far. 

2.6. Convergence 

Another issue that will be explored in this study is the quality of the traffic 

assignment solution, as measured by convergence. By definition, the user equilibrium is 

achieved when travelers cannot improve their travel times by selecting alternate paths, 

given their departure time. This implies that every used path between an origin and 

destination is a minimum cost path and that there are no changes in flow patterns or 

experienced travel times between assignment iterations after the convergence is 

approached. Convergence of the user equilibrium assignment is necessary to ensure the 

integrity of the resulting solution and to ensure that the model can be used in assessing 

alternative designs and operational strategies. 
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A number of approaches were proposed to solve the static and dynamic 

assignment problem. Some of these approaches are heuristic approaches, and others 

involve more rigorous mathematical programming (Ortúzar and Willumsen 2001). The 

mathematical programming approaches express the assignment problem as an objective 

function subject to constraints representing traffic flow properties.  

The mathematical assignment methods generally allow the proof of optimality 

and uniqueness and produce superior solutions to those obtained utilizing the heuristic 

approaches.  However, due to the complexity of the dynamic network loading functions 

required for DTA, the traffic flow models in DTA problems are generally 

non-differentiable. Therefore, heuristic algorithms that do not require derivative 

information are used for simulation-based DTA.  Although with heuristic assignment, 

no formal convergence proof can be given, as is the case with mathematical solutions, 

measures of gap similar to those used in static equilibrium assignments that are based on 

mathematical solutions can be used to assess the quality of a solution. Still, heuristic 

approaches with simulation-based DTA fail to guarantee optimality and convergence.  

Boyce et al. (2002) pointed out that a relative gap of 0.01% (0.0001) is required 

for static assignment so as to ensure sufficient convergence to achieve link-flow stability. 

There is no positive agreement on what represents an acceptable value of the relative gap 

in DTA. It was realized, however, that it is much more difficult to achieve a small 

relative gap in simulation-based DTA compared to static assignment, particularly for 

congested conditions (Chiu et al. 2011). The dynamic nature of traffic flow, particularly 

during congested conditions and the heuristic nature of the UE problem in DTA, makes it 

more difficult to achieve convergence in DTA, compared to STA.  
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A widely used measure for calculating convergence is called the “relative gap,” 

which measures the difference between the current iteration solution and the ideal 

solution. The ideal solution is loading the whole volume on the single shortest path (Chiu 

et al., 2011). This concept was applied with slight differences in the formulation in 

different studies. Link-based measures versus path-based measures have also been 

suggested by researchers, with recent discussions on the subject indicating that 

path-based (also referred to as trip-based) measures might be more meaningful (Chiu and 

Bustillos, 2009). Path-based or trip-based measures exploit disaggregate and tractable 

information of trips instead of aggregated link volumes. In addition, path-based criteria 

provide additional information that allows utilizing heuristics targeting those trips, 

travelers, households, or market segments that have the most impeding convergence to 

achieve better solutions (Resource Systems Group, 2010).  

The relative gap should not be considered an ultimate qualification for the UE 

solution.  A well-known problem of UE is that although it produces a unique set of link 

volumes, there can be multiple route solutions associated with these volumes. This can be 

a serious issue in problems such as select link analysis and subarea analysis. It is possible 

to define the unique desirable UE path set by setting some extra constraints on the 

assignment solution to avoid violating the conditions of stability and proportionality.  

 Bar-Gera et al. (2010) pointed out that even if the link flow reaches 

convergence, a main issue with route flows is that they are not uniquely determined by 

the UE conditions. Reaching path flow convergence is particularly important for 

applications, such as multi-class assignment, select link analysis, estimation of 

origin-destination flows from link flows, derivation of OD flows for a subarea of a 
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region, average travel time and average distance per OD in a generalized cost assignment, 

and so on. It was found that among all possible UE routes, there was just one that 

maximized the entropy, which should be considered the unique solution. It is proven that 

this solution also meets the proportionality condition. The proportionality requirement is 

defined by Bar Gera et al. (2010) in that the proportions of travelers on each of the two 

alternative segments should be the same regardless of their origin or their destination. 

Lack of convergence can also affect the consistency and stability of the resulting 

solutions. Consistency is defined as the contribution of all eligible routes to the UE 

solution. This means that all routes should be included in the UE solution, unless there is 

a good reason for not being considered, like having a high generalized cost. Lu and Ni 

(2010) defined stability as the solution ability to accordingly respond to perturbation, 

meaning that if small changes in the network or demand are made, the model should 

respond to it with reasonable changes. On the other hand, Chiu and Bustillos (2009) and 

Peeta et al. (2011) state that a network is stable when link volume does not fluctuate, and 

a network is consistent when it responds appropriately to small perturbation. 

A small relative gap does not assure a credible dynamic assignment solution. Lu 

and Ni (2010) showed that even with a very small relative gap (10 -12), misleading results 

that look reasonable may be obtained, yet respond unreasonably to small perturbation. 

For instance, a 10% decrease in capacity of a secondary road might cause serious 

congestion in another part of the network. Consistency, proportionality, and stability are 

needed to check for the evaluation of alternative treatments of the transportation system, 

and for applying methods such as select link analysis, select zone analysis, and subarea 

analysis. This is also very important to ensure unique solutions of multi-class 
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assignments, particularly in ML where preferential treatments of some of the classes are 

applied (Boyce et al. 2010). 

2.7. Summary 

Managed lanes are accepted as effective countermeasures against freeway 

congestion. These facilities are proactively operated in response to traffic situations, by 

means of access management, variable toll policies, and vehicle eligibility constraints. 

Assignment is a critical step in ML demand forecasting to determine the effect of pricing 

on drivers’ route choice behaviors. DTA, combined with mesoscopic or microscopic 

simulation is identified as an effective tool for ML assignment. DTA models are more 

sensitive to the level of congestion and temporal demand/network changes, and compared 

to STA, more realistically model the route choice behavior. 

A model can only replicate real-world observations when supply, demand, and 

route choice calibrations are completed. Network or supply calibration entails estimating 

capacity and traffic flow model parameters for each link in the network. These 

parameters affect the travel time, congestion time, queue formation and queue spillback 

when the demand is loaded. Demand calibration is used to estimate a trip table that 

produces observed link counts and congestion patterns when loaded onto the network.  

Route choice calibration involves the selection of the parameters and methods of the 

assignment process. 

Joint calibration of network, demand, and route choice parameters is confirmed to 

be superior to separately calibrating these components. Two different approaches, 

sequential and simultaneous calibration, have been used by researchers and practitioners.  
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Despite the elegance of the mathematical formulations and solutions for simultaneous 

network and demand calibration, their implementations in the real world are not 

straightforward and have not been executed. Once the network, demand, and route choice 

parameters are selected as described above, additional fine-tuning of the parameter may 

be needed to adjust local variables to produce the observed queues and operations 

It should be noted that replicating traffic volumes does not guarantee a 

well-calibrated network. Temporal-spatial congestion patterns should be reasonably 

replicated. Estimated OD matrices should also be consistent with other sources of data, 

such as zonal information from the production/attraction step or from the trip distribution 

step and certain attributes of the historical OD matrices. Simulated queue length and/or 

density are other measures that should be checked against the estimated values from field 

observations when the network is congested and the demand is not easy or possible to 

obtain. In the objective function used to estimate OD matrices, adjustable weights on 

different components can reflect the level of confidence in the data and improve the 

performance of the estimation. These weights can also reflect the importance of 

individual segments of interests, such as bottlenecks or locations with volumes that better 

replicate the changes in demand patterns.  

Ranking links based on their contribution in updating OD routes reduces 

computational time.  Also, OD elements that do not significantly affect the assignment 

can be fixed to reduce the size of the OD estimation problem. OD matrices can be 

aggregated into longer time segments, compared to the observed data time interval, so as 

to alleviate the problem of under-determinacy. Origin-destination survey data is very 

valuable if available, and a structural deviation from it should be avoided. Different logic 
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and reasonableness criteria should be devised into the OD estimation procedure as a 

feedback process to avoid error propagation. 

Different methods of OD estimation should be empirically tested to determine 

which method can better preserve the historical OD pattern, which is the most 

computationally efficient, and which can better replicate congested network conditions.  

Investigating the optimal modeling of the supply-demand joint calibration also requires 

empirical testing. Assignment convergence and joint calibration convergence should be 

properly addressed and checked. Convergence should be checked for each time interval 

and for each OD pairs. 
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3. METHODOLOGY 

This chapter presents an overview of the methodology and tasks implemented 

throughout this study. This chapter also explains the task sequence and the link between 

different tasks. More detailed descriptions can be found in the subsequent chapters.  

 

 

 

 

 
Figure 3-1 shows a schematic summary of these tasks and the interrelations 

between them. Task boxes and feedback loops are color coded for better understanding of 

the relation between different components. The developed ML modeling framework 

starts with acquisition, validation, and the processing of data from multiple sources. 

Initial network and demand data are obtained from the regional demand forecasting 

model. Then, network geometry is updated based on aerial photograph from Google 

Earth. Data are also obtained from microwave detectors, Portable Traffic Monitoring 

Sites (PTMS), Telemetered Traffic Monitoring Sites (TTMS), and managed lane tolling 

systems. . Additional demand information is extracted from a previous microscopic 

simulation study. Data pre-processing procedures are developed and implemented in this 

study, as detailed in Chapter 4. These procedures include the identification of 

representative days (by filtering out incident days, special events, weekends, and 

applying classification techniques for better filtering), data fusion and aggregation, data 

validation and cleaning, and checking detector data for spatial and temporal consistency.   
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Figure 3-1. Methodology Flowchart 
 

The next step is network calibration (also referred to in this study as supply 

calibration). Network calibration consists of estimating link capacity and traffic flow 

model parameters based on data collected at bottleneck locations, adjusting traffic 

management and control parameters, and fine tuning the calibration parameters at other 
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locations of the network to replicate real-world traffic conditions. The network 

calibration sub-tasks such as developing and using methods for bottleneck identification, 

free flow speed and capacity estimation based on field measurement, and traffic flow 

model parameters estimation are describe in detail in Chapter 5. Since detector speed data 

are available for each lane and for intervals as short as one minute, free flow speed can be 

measured in uncongested intervals. The availability of speed and count data also allows 

for the estimation of capacity based on field data. As was described in Chapter 2, 

researchers have proposed different estimations of capacity, either as a deterministic 

value, or a probabilistic distribution. The present study estimated capacity at bottleneck 

based on deterministic definitions, and these values have been compared to HCM 

recommended values. Running assignment models (both static and dynamic) with HCM 

estimated capacity and field estimated capacity demonstrates the significant effect of 

capacity coding on congestion and route choice behavior. At the beginning, the network 

is loaded with the initial demand taken from a regional planning model. After the initial 

estimation of network parameters, an OD (demand) estimation process can be run to 

improve the initial demand 

The purpose of demand estimation is to improve the initial demand extracted from 

the regional model for use in the DTA model. The first task is to distribute the 3-hour 

regional demand over a 15-minute DTA interval based on observed variation in link 

volumes. However, the result of factorization, when loaded onto the network, fails to 

produce real-world traffic measures. Thus, a procedure called static OD estimation is 

performed to estimate new OD trips that, when loaded on the network, can produce 

results that better replicate measures such as link volume and speed. At the same time, 
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the utilized procedure ensures that a significant, unjustifiable deviation from initial trip 

tables is avoided. The static OD matrix estimation process is implemented using the Cube 

Analyst program, a tool that estimates trip matrices based on the maximum likelihood 

technique, coupled with an optimization procedure. The tool utilizes data from different 

sources and considers different levels of confidence or reliability inputted by the user for 

each source of data. Not only can the data include traffic counts and prior (seed) matrices, 

but also partially observed matrices, zonal trip end (generation and attraction) data, 

vehicle routing, travel cost matrices, and even previously calibrated trip cost distribution 

functions.  

Vehicle routing information is a very important input for estimating ODs and is 

produced by the traffic assignment tool. In static OD estimation, as the name implies, the 

utilized traffic assignment is STA. In more advanced dynamic OD estimation however, 

the utilized assignment tool is DTA. The drawback of static OD estimation is that static 

traffic assignment cannot properly capture the congestion and significant delay due to 

queue formation and spillback. Therefore, the result of this procedure tends to 

underestimate ODs. For this reason, dynamic OD estimation was initially tried in this 

study. However, due to software limitations and immaturity, this approach was not used. 

To circumvent the aforementioned problem, queue, as a measure of congestion, is 

calculated on each screenline over time, and is added to the screenline volume that 

Analyst aims to replicate. Further discussion of the demand estimation procedure is 

presented in Chapter 6. This demand should be fed into the previous step of network 

calibration, for a better estimation of network parameter with more accurate demand. 
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The last task, described in detail in Chapter 7, is to model and calibrate the route 

choice behavior in the assignment step. Up to this point, the default parameters of the 

route choice model were used to estimate network properties and OD trips. With a better 

calibrated network and demand, assignment parameters can now be estimated. The result 

of this step, significantly affects demand estimation, and consequently, the network 

calibration. Therefore these procedures need to be carried out another time, and the entire 

procedure shown in Figure 3-1is repeated until desired convergence is achieved.  

Route choice behavior is modeled using two different approaches. In the first 

approach, the toll cost is converted to the equivalent travel time and is added to the link 

generalized cost function. In the second approach, prior to the traffic assignment, a 

willingness-to-pay curve is used to determine the percentage of travelers who are not 

willing to pay the toll. In the assignment step, this group of users is prohibited from using 

ML. The remainder of the assignment is governed by user equilibrium, based on the 

travel time on ML and GPL. In both approaches, the toll is dynamically updated every 15 

minutes, based on the maximum density on ML. Different parameters such as toll 

schedule, value of time, and the willingness-to-pay curve have been calibrated using 

multiple-source data. These two approaches are compared based on different 

performance measures, such as replication of the diversion to ML, convergence, and 

stability of the assignment solution. The effectiveness of DTA versus STA in ML 

modeling is also evaluated on the real-world network. 

For each of the aforementioned tasks, performance measures have been identified 

and evaluated. It is worth emphasizing the necessity and benefits of feedback loops 
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between all tasks. Examples of the role of the feedback are presented in the following 

chapters. 
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4. DATA ACQUISITION AND VALIDATION 

Advanced modeling tools, such as DTA, demand more detailed and higher-quality 

data to ensure that the developed model accurately replicates real-world conditions. 

Compared to STA models, DTA requires more refined network representation and 

additional data details, both temporally and spatially. Moreover, congestion data such as 

queue presence and queue length should be incorporated into DTA calibration, while 

such data is generally not used in STA-based tools. Traffic control and management 

details are also needed if the impacts of traffic control and management are to be 

accurately modeled. 

In this study, the network and an initial estimation of the associated trips were 

extracted from a regional planning model. The performed network editing efforts and 

refinement of the initial demand for use in DTA are discussed in this section. This 

chapter also describes the collection of traffic detector data that provides estimates of 

measures, which are essential to the development and calibration of simulation-based 

DTA tool applications. Detector data requires careful examination and a significant 

amount of time for filtering and processing to exclude and/or correct suspect data.   

4.1. Network and Demand Data Extraction 

4.1.1. Subarea Network and Matrix Extraction 

The study area was extracted as a subarea network from the SERPM model 

validated in 2010, as depicted in Figure 4-1. The subarea boundary can be specified using 

the Cube Polygon feature or a GIS tool. The Cube can then be used to extract the subarea 
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network from the SERPM model network by using this predefined subarea boundary. 

The results of this extraction are a subarea network and associated trip tables for multiple 

users.  

 

Figure 4-1 The Extracted Subarea from the SERPM Model 

The extracted subarea contains new node and zone numbers and the Cube stores 

the association between the old numbers (in the original network) and the numbers in the 

new network (in the subtracted network).  

The network geometry needs to be updated to better represent the existing 

real-world network since the details and accuracy of the network in demand forecasting 

models are not sufficient for DTA applications. The attributes of each link is adjusted in 
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this study based on the Google Earth map. The network geometry update is performed 

following the procedure presented in Figure 4-2. The subarea network is converted into 

the KML format for the Google Earth application and the SHP file format for the ArcGIS 

application.   

 

Figure 4-2 Network Geometry and Distance Update Procedure Flowchart 

 
Imposing the network on the Google Earth map allows correcting the network 

curvatures, connections, and other geometry attributes. The link lengths are accordingly 

modified. The links in the original network file in the demand forecasting model are 

established based on direct node-to-node connections. Therefore, all of the links in the 

demand forecasting model are straight lines. In order to obtain the real-world curvature of 

the links, the network was converted into the SHP file format from the Cube network 

format, allowing the links curvature to be drawn based on the real curvature using the 
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GIS modification tool. All of the links’ lengths were updated based on the identified 

curvatures. Based on prior experience with the DTA tool used in this study (Cube 

Avenue), short links can produce unrealistic congestion. Therefore, it is very important to 

identify these links in the extracted subarea network and properly adjust their lengths to 

prevent the unrealistic congestion from occurring. It was found that in most cases, the 

issue of short links could be addressed by updating the links’ lengths, considering the true 

curvature of the links, and moving the merge/diverge nodes based on their real-world 

location in Google Earth maps. Figure 4-3 shows an example of the network geometry 

adjustment conducted as part of this study. 

Before true shape implementation After true shape implementation 

  

Figure 4-3 Network Curvature Correction 

 
Modifying zones and connectors may also be necessary and should be considered. 

Another important consideration in the cleaning process is checking the consistency of 

the number of lanes between successive links, especially in merge and diverge segments, 

and at intersections with exclusive left- and right-turning lanes.  
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Most of the work conducted in this study was performed on a linear North-South 

corridor shown in Figure 4-1 that represents the I-95, and includes ML, GPL, and 

associated on- and off-ramps. In most segments, the freeway includes four general 

purpose lanes and two managed lanes, which are separated from one another by a soft 

barrier. This corridor contains 57 zones, 303 nodes, 303 links, and a total demand of 

117,541 vehicles for three hour period.  

4.1.2. Demand Data 

In this study, initial trip matrices were extracted from the SERPM regional 

demand model. Regional travel demand models represent an important source of OD trip 

information which is estimated through detailed and approved processes that ensure 

consistent behaviors of travelers in the demand generation, distribution, and mode choice 

steps. However, some issues with these models include lack of detailed model calibration 

at the subarea level and the potential changes in the network and demands since the 

model’s last calibration. Even more critical to DTA modeling is that the regional 

demands are forecast for daily trips or three to four hours of time-of-day model period. 

These demands need to be distributed over shorter time intervals for DTA applications. 

The most common interval study for DTA modeling is 15 minutes.  

4.2. Detector Data Acquisition and Preprocessing 

Detector data collected by the Florida Department of Transportation (FDOT) 

District 6 Traffic Management Center (TMC) is extensively used for the demand 

estimation, model calibration, and validation. The corridor of interest is instrumented 

every 0.3 to 0.5 mile with microwave detectors that report volume, speed, and density 
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measurements in 20-second intervals for each lane. This data were obtained from the 

Statewide Transportation Engineering Warehouse for Archived Regional Data 

(STEWARD). The STEWARD database contains summaries of traffic volumes, speeds, 

occupancies, and travel times aggregated by 5-, 15-, and 60-minute periods, as requested 

by the user. Using a Web-based interface, the user can specify date and time ranges and 

detector locations for which the data are needed. This data is supplemented by 

measurements from PTMS ramp counts from the FDOT Statistics Office. The PTMS data 

include 15-minute ramp counts for two or three days per year. No speed or classification 

data is available. Ramp counts obtained from the PTMS and ramp metering detectors 

represent the total origin and destination demand on the linear network and are very 

useful in the demand estimation process.  

Table 4-1 lists the numbers of the available microwave and PTMS detectors in the 

corridor network and the selected detectors after removing redundant or erroneous 

detectors. 

Table 4-1 Available and Selected Detectors 

 

By imposing the network and detector maps onto Google Earth’s map, it was 

possible to manually associate the detectors in Table 4-1 with network links. If any link is 

associated with more than one detector, only the most reliable one was kept.  

Available Selected
ITS 109 87
     General Purpose Lane 78 56
     Express Lane 31 31
PTMS 150 150
     Mainline 10 10
     Ramps 99 99

No. of Stations
Detecror Station
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Truck percentages are available for ramps from PTMS data. For the mainline, the 

truck percentage was obtained from nearby permanent TTMS stations, also operated by 

the FDOT Statistics Office. These percentages were confirmed by manual counting of 

recorded videos at selected corridor locations.  

4.3. Other Data Sources 

Data from other sources were also obtained and used in this study, as listed 

below: 

• A previously calibrated micro-simulation model of the study area that includes 

traffic demand estimates 

• Real-world ML toll values for each 15-minute interval from FDOT District 6 

TMC 

• Ramp metering data from FDOT District 6 TMC 

• A previously calibrated logit model for ML willingness-to-pay prediction 

along the I-95 corridor 

4.4. Data Preprocessing and Validation 

Data pre-processing procedures include the identification of representative days 

by filtering out incident days, special events, weekends, and applying classification 

techniques for better filtering, data fusion and aggregation, data validation and cleaning, 

and spatial and temporal consistency checking of detector data.   

Demand and congestion patterns vary greatly day by day. The representative days 

for modeling and calibration are considered to be weekdays (Tuesday through Thursday) 
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without incidents or abnormal external conditions such as heavy rain. Non-representative 

days can be filtered out by different methods that exclude days with special events or 

conditions. Also, data mining methods can exclude days with significantly different 

volumes or speed patterns from normal days. 

Between May 2010 and May 2011, 16 days were identified based on detector data 

as ideal days to represent normal day traffic. Among these days, the speed varies with a 

coefficient of variance between 5% to 20% for different detector locations, and the 

volume varies with a coefficient variance between 3% to 7% for different locations. For 

different purposes, a specific day or an average of all representative days may be used for 

calibration. Using the median day may be better than using the averages, since the 

averages do not represent any of the real-world days.   

Inconsistency between consecutive detector counts is a major consideration. 

Sometimes it is not enough to compare just one pair of detectors, and there is a need to 

check several stations upstream and downstream of each location. The addition of 

on-ramp volume and subtraction of off-ramp volume to estimate the expected volume for 

the station can be used as a reference to assess the accuracy of the measurements. In the 

presence of queue, this procedure becomes more complicated, and the capacity 

constraints should be considered. Figure 4-4 is an example of two successive detectors 

with an on-ramp between them, with approximately 190 vehicles per 15-minute intervals. 

The upstream and downstream detectors, however, show the exact number of counts. It 

should be noted that the reported counts are below capacity at all times, therefore, this 

issue is not caused by capacity restrictions. The comparison of detectors with additional 
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upstream and downstream detectors disclosed that the detector located downstream 

(Detector 7) is not reliable. 

 

 

 

Figure 4-4 Volume Inconsistency Between Successive Detectors 
 

Figure 4-5 shows another example of volume inconsistency between successive 

detectors. Selecting the right detector for each segment is only possible by having 

benchmarks, reliable detectors upstream and downstream of the segment, and selecting 

the most reliable detector by calculating the volumes from several upstream/downstream 

detectors, as previously discussed. 

In addition, the number of lanes that the detector covers, which is included as an 

attribute in the detector database, should be checked, because some detector counts 

 
Detector 6 Detector 7 

PTMS~190 veh/hr 
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include mainline and merge/diverge volumes. The consistency between detector count 

and estimated link capacity should also be checked to ensure that the reported count is 

below the segment capacity. 

 

Figure 4-5 Volume Inconsistency Between Successive Detectors 
 

With advances in traffic surveillance technologies, collecting, archiving, and 

analyzing traffic data is becoming more accessible and affordable. Now is the time for 

agencies to make the most out of these data for successful demand estimation, network 

calibration, and consequently, successful operation of managed lane facilities. The 

present study shows how data from multiple sources can be integrated, validated, and 

best used in different stages of modeling and calibrating. Extensive and careful 

processing of demand, traffic, and toll data, as well as proper definition of performance 

measures, resulted in a calibrated and stable model, which closely replicates real-world 

congestion pattern, and can reasonably respond to perturbations in network and demand 

properties. 

Whenever data is available, comparing PTMS and ITS microwave detector count 

data may improve the reliability of the data. In this study, it was found that there is an 
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acceptable match between ITS and PTMS counts on the ramps. On the mainline, 

however, PTMS reported higher volumes, compared to ITS data in the PM peak. Manual 

counts of recorded videos were conducted to validate the data. It was found that the 

manual counts are closer to ITS data than the PTMS. Figure 4-6 to  

Figure 4-8 show the comparison of PTMS and ITS volume data for three days: 

August 9, August 10 and August 11, 2011. 

      

Figure 4-6 Comparison of PTMS vs. ITS Volume Data (August 9, 2011) 
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      Figure 4-7 Comparison of PTMS vs. ITS Volume Data (August 10, 2011) 
 

 

Figure 4-8 Comparison of PTMS vs ITS Volume Data (August 11, 2011) 

 
ITS data normally do not include detectors for the on- and off-ramp locations, 

unless ramp metering exists. The study section includes ramp metering and thus, ramp 

detectors. In terms of ramp metering, there are three types of detectors: upstream (queue) 

detectors that measure the demand, and downstream (arrival and departure) detectors 
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before and after ramp signals. When ramps are equipped with ramp metering, the 

modeler should decide which information to use: either the upstream demand, or the 

volume that passes through the ramp metering. For OD estimation purposes, the former 

should be used.  

Detailed examination of the ITS data may help to identify the reason(s) for the 

congestion, so as to assist in the calibration process. Figure 4-9 and Figure 4-10 show 

lane by lane data of speed and occupancy for one detector at a congested location. This 

detector location was initially defined as an active bottleneck for potential capacity 

measurement. Lane by lane data of speed and occupancy, however, revealed that the 

congestion at this location is caused by a spillback from a downstream off-ramp. 

Therefore, the two left lanes have considerably lower speeds and higher occupancy than 

the other lanes, indicating that this location is not a candidate for use in estimating 

capacity.  

Figure 4-9 Lane by Lane Speed Data 
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Figure 4-10 Lane by Lane Occupancy Data 

During the OD estimation process, it was found that the detector for one of the 

screenlines does not produce correct volumes. It should be noted that this value passed 

through all abovementioned filtering processes. Utilizing this screenline data significantly 

affected the OD estimation process. This example shows that comparing the data from 

multiple sources of information should be a continuous and iterative process throughout 

the modeling and calibration tasks. 

Depending on the network under consideration, there may be a need to 

disaggregate the zones from larger zones used in the regional model to smaller zones. 

There may also be a need to modify the zone connector setting. Careful examination is 

needed to understand how the zones and their connection setup affect the results of the 

modeling.  

4.5. Summary  

With advances in traffic surveillance technologies, collecting, archiving, and 

analyzing traffic data is becoming more efficient and affordable. However, these data 
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have not been effectively used in transportation system modeling. This study collected 

data from different sources to successfully calibrate a complicated route choice model 

with managed lane modeling. The present study integrated, validated, and effectively 

used data from multiple sources in different stages of ML modeling and calibration. 

Extensive effort was dedicated to data validation and pre-processing. 
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5. SUPPLY CALIBRATION 

Supply or network calibration estimates the network parameters such as capacity 

and traffic flow model parameters that define network performance in producing travel 

time, forming queues, and queue spillback. From literature review, a systematic 

multilevel approach of network calibration is adopted in this study, with an increasing 

calibration scope in each level. The process starts at the level of separated bottlenecks 

where capacity is estimated by various methods based on field data. The network is 

gradually extended to connect the bottlenecks and then to the whole corridor and subarea 

coverage.  

The advantage of this approach is twofold: First, critical spots of the network can 

be better identified, analyzed and replicated. Second, a more reliable demand can be 

estimated for the smaller networks that are the focus of this study, which is very 

important in the iterative process of demand-network calibration. Focusing on isolated 

bottleneck locations and the freeway corridor for managed lane assessment enables the 

capturing of the interactions between supply and demand in addressing the causes for 

congestion, which is not tractable in more complicated networks.  

Speed time-space contours are used extensively as part of the methodology of this 

study to identify traffic and bottleneck conditions, and their impacts. Figure 5-1 displays 

speed contours for representative days of low, medium, and high congestion, and an 

average for all selected days. As can be seen in this figure, the traffic patterns and the 

reason for the congestion can vary from day-to-day, even after removing 

non-representative days. 
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Figure 5-1 Speed Contour for Different Classes of Demand 

In this research, initial demand matrices were obtained utilizing the network 

subtraction process from a regional travel demand forecasting model. Regional travel 

demand models represent a very important source of OD information that is consistent 

with the behavior of travelers, as modeled in demand generation, distribution, and mode 

choice steps. 

The regional matrix covers the entire study period of three hours. Acquiring 

time-dependent trip tables at 15-minute intervals that reflect the current demand and 

traffic situations required the use of a sequential scheme that iterates between the supply 

and demand calibrations until convergence. The details of the demand estimation process 

are presented in Chapter 6. 

It should be mentioned here that before the start of the calibration process, 

checking for mistakes in coding was conducted to omit any errors.  In addition, the 
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model “validity” was checked according to FHWA guidance (Sloboden et al., 2012) 

including conducting a series of stress tests and diagnostic testing steps. 

5.1. Bottleneck Identification 

In this study, visualization techniques, in combination with comparisons between 

upstream and downstream measures, were used to identify congested areas and 

bottleneck locations. Based on the speed contours presented in Figure 5-1, Stations 12, 

20, and 28 were initially identified as bottleneck locations in the PM peak period. 

Stations 12 and 20 are located in the on-ramp merging areas after the acceleration lane 

drops. Lane-by-lane data analysis of the ITS detector located at Station 28, however, 

showed that the congestion in this location is definitely caused by a backup from an 

off-ramp exit to a major freeway (the Florida Turnpike), causing low speeds and high 

occupancy in the two left lanes, while the three right lanes have light congestion. Thus, 

the only bottleneck locations that can be used to estimate capacity are those at Stations 12 

and 20. 

5.2. Free-Flow Speed 

In the network under study, based on the Highway Capacity Manual (HCM) 2000, 

assuming a 6-foot lateral clearance, for a lane width of 11 feet and interchange density of 

1.16, the Free-Flow Speed (FFS) is estimated to be 63 mph for segments with three lanes, 

and 64 mph for segments with four lanes. Based on the HCM 2010 analysis, the FFS is 

estimated to be around 66.9 mph for most segments (FFS is not depending on the number 

of lanes in HCM 2010). Based on a combined criterion of volume less than 1000 pc/hr/ln, 
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and occupancy below 10 percent, the FFS values were derived from detector data. 

Estimating FFS as the 85th percentile of speed over several days as suggested in literature 

showed very similar results. This value greatly varies between stations (from 54 mph to 

64 mph), with an average of 59 mph, which is significantly lower than the HCM 2000 

and particularly, the HCM 2010 estimates,  as shown in Figure 4-2. It is worth 

mentioning that the posted speed on all I-95 corridor segment studied is 55 mph.  

A previous study on an adjacent corridor (Florida State Road 826) with the same 

speed limit shows similar differences between the values estimated by the HCM 2000 

and HCM 2010; however, it shows a higher measured FFS compared to the present study 

(Xiao et al., 2010). It is expected that the selected I-95 segment operates differently from 

an average corridor since it passes through a dense urban environment with frequent 

interchanges, has vertical and horizontal alignments that may affect capacity, and 

includes parallel managed lanes that are separated from the general use lanes by soft 

barriers.  

 

Figure 5-2 Variation of the FFS Along the Corridor (I-95 NB) 
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5.3. Capacity Estimation 

This section presents a comparison between the capacity values estimated based 

on different sources and utilizing different methods. HCM is the primary source for 

estimating highway capacity for planning and operation applications. The HCM capacity 

values are expressed in personal car per lane per hour and should be converted to vehicle 

per lane per hour by considering heavy vehicle percentage for comparison with 

real-world measurements. The heavy vehicle percentage was estimated to be around 5%, 

based on recorded video observations.  The HCM provides adjustment factors for 

different weather conditions and the degree of familiarity of the drivers with the road 

(driving population factor). The selected representative days of this study included 

normal weather conditions, and no necessary adjustments. The driver population factor 

has a significant effect on adjusting capacity, but is very difficult to obtain, and there is 

no guideline in the HCM on how to estimate it. The HCM mentions that this value 

usually varies between 0.85 and 1, and recommends using 1, unless there is sufficient 

evidence to reduce it, though a default value of 0.95 is mentioned for urban freeways. As 

is shown in Table 4-1, the values coded in the Southeast Regional Planning Model 

(SERPM) and estimated based on the Florida LOS/QS manual (5,6) corresponds to those 

values estimated by HCM for the 5% for percentage of trucks, and 95% for the familiar 

driver population. 

To reflect site specifications, the capacity was also estimated based on detector 

volume data, aggregated at 15-minute intervals according to the HCM definition of 

capacity. In order to ensure that the only data utilized in estimating capacity at the 
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bottlenecks are for intervals not affected by downstream congestion, an examination of 

speed contours was made so as to identify and exclude intervals in which the capacities 

of the bottlenecks are affected by a spillback from downstream. The difference that 

resulted from the removal of the data from these intervals in capacity measurements for 

some methods is presented in Table 5-1. The results clearly show the need for this step. 

For example, the capacity measurement based on the Rakha method is 1,710 vph without 

removing the spillback intervals and 1,800 vph when the data from these intervals are 

removed. Table 5-1 indicates, based on different methods including the pre-breakdown 

flow method, the Rakha model-based method, and the maximum occupancy method, that 

the capacity before breakdown is about 1,850 vph. The queue discharge rate appears to be 

lower than this value based on the results in Table 5-1. 
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Table 5-1 Estimated Capacity at Active Bottleneck Locations (VPH) 

Method 

Station Station 

Reference     
600561 600711 

HCM  
2,210 2,210 HCM, 2010 

(5% truck, fhv=0.975, fp=0.98) 

HCM 
2,140 2,140 HCM, 2010 

 (5% truck,  fhv=0.975,fp =0.95) 

Rakha 1,730 1,700 Rakha & Arafeh, 2010 

Rakha (Removed spillbacks) 1,800 1,725 Rakha & Arafeh, 2010 

SERPM coded 2,142 2,142 
   Cambridge Systematics, 

2008 

Breakdown flow (15 minutes average 
before breakdown happens) 

1,840 1,810 
Elefteriadou and 

Lertworawanich, 2003 

Queue discharge 1,625 1,630 
Elefteriadou and 

Lertworawanich, 2003 

Queue discharge (Removed 
spillbacks) 

1,710 1,680 
Elefteriadou and 

Lertworawanich, 2003 

Maximum 5 minute interval observed 
(averaged over selected days) 

1,930 1,925 Dervisoglu, 2009 

Maximum 15 minute interval observed 
(averaged over selected days) 

1,845 1,820 Dervisoglu, 2009 

Maximum hourly averaged over 
selected days 

1,745 1,745 Chao et al, 2005 

Top 1% of hourly volume over all 
selected days 

1,775 1,880 Jia et al., 2010 

Volume associated with maximum 
occupancy in fundamental diagram 

1,825 1,810 
Van Arem & Van Der- 

Vlist, 1992 

 
Figure 5-3 illustrates how the Rakha model fits the observed data. The parameters 

that can be estimated based on this model are the capacity (the apex of the fitted model), 

jam density, free-flow speed, and speed at capacity. 
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Figure 5-3 Rakha Model Fitting for Capacity and TFM Parameters 
Estimation 

 

Figure 5-4 shows how the pre-breakdown flow and queue discharge rates were 

identified. In this study, the average of flow rates in three intervals before the speed drops 

due to breakdown is considered as the pre-breakdown flow. 

 

Figure 5-4 Demonstrating Breakdown Flow and Queue Discharge Rate 

Time 
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The capacity values discussed above are for the general purpose lanes of the 

corridor’s cross-section. As stated earlier, I-95 also includes managed lanes that are 

separated from the general purpose lanes by soft barriers. Since congestion is avoided in 

the managed lane (ML) by toll value, there are not enough observations to estimate 

capacity from the real world. Based on literature, 99.5% of observed volume can be used 

as capacity. In this study, this value is almost 1,700 vph. Washburn et al. (2010) mentions 

capacity values ranging from 1,600 vph to 2,100 vph for existing managed lane facilities 

across the country.  

5.4. Coded Capacity Impacts 

The purpose of the discussion in this section is to illustrate the importance of 

coding capacity values estimates based on field measurements as input into dynamic 

traffic assignment (DTA) tools, particularly when there is evidence that the modeled 

corridor capacity is lower than the HCM-based estimates. It also demonstrates the 

shortcomings of utilizing static assignment for assessing managed lane utilization, even 

when the correct capacity values are coded, and subsequently illustrates the need to 

utilize DTA modeling for such assessments. 

To illustrate the difference in the performance of different traffic modeling 

approaches, the volumes on the general purpose lanes and managed lanes were forced, in 

all modeling approaches, to resemble as much as possible real-world measurements based 

on detector data.  For these fixed volumes, this study compared the travel times 

estimated based on the traffic flow models in static assignment with HCM-based 

capacity, static assignment with measured capacity, DTA with HCM-based capacity, and 
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DTA with measured capacity. Figure 5-5 shows the speed contour maps of the modeling 

results. This figure clearly shows that the only model that was able to replicate the 

real-world bottlenecks at Stations 12 and 20 was the DTA with measured capacity.  

 

 

Figure 5-5 Speed Contour Maps for Static and Dynamic Traffic Assignment 
with Different Capacity Values 

 
Figure 5-6 shows the difference in travel time between general purpose lanes and 

the managed lanes for the four modeling approaches. This figure confirms that the only 

model that could show the congestion observed in real-world conditions is the DTA 

model with the measured capacities. In static assignment, no queuing is assessed and the 

travel time is calculated based on a simple BPR curve. The change in the value of the 

capacity in static assignment does not have a significant effect on the modeling results. It 
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is also important to point out that in the DTA tool, when using the regional network 

capacity, no queue is formed; therefore, the results are similar to the static assignment 

tool. 

 

Figure 5-6 Travel Time Difference Between GPL and ML 
 

The findings above are important because the difference in travel time between 

general purpose and managed lanes is used in the modeling process to assess the 

proportions of traffic that utilize the managed lanes, either based on user equilibrium 

assignment, a willingness-to-pay table, or a logit model combined with the assignment. 

This importance is further illustrated by feeding the difference in travel time results from 

Figure 5-6 to a willingness-to-pay table derived in a previous study (Ruegg and Puppala, 

2013), so as to determine the change in the estimated percentages of traffic willing to use 

the managed lane. Assuming a $1 toll for this segment, the percentage of drivers who are 

willing to pay the toll is calculated based on the willingness-to-pay curve. This 

calculation is based on toll value (in cents) divided by the saved travel time (difference 
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between general purpose and managed lane travel times). As is shown in Figure 5-7, the 

only model that was able to produce the expected results is the DTA model with the 

measured capacity. 

 

Figure 5-7 Percentage of Travelers Diverting to ML 

It is worth noticing again that one of the congestion spots in this network is 

caused by a spillback from an off-ramp that causes low speeds in the two left lanes (the 

I-95 Northbound off-ramp to the Turnpike). Since the utilized DTA tool (Cube Avenue) 

does not support lane-by-lane modeling, it is not possible to correctly replicate that 

location, because the queue in the model first fills up the whole segment (including 5 

lanes) before backing up to the upstream link. In the real-world, only the two left lanes 

are blocked. If replicating the congestion at such locations is important to a study, a tool 

that better handle this situation or multi-resolution analysis should be considered.    
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5.5. Other Traffic Flow Model Parameter Estimation 

The Cube static assignment utilizes the widely used BPR traffic flow model to 

estimate the travel times during assignment for the whole analysis period, normally a 

peak period in case of time-of-day demand forecasting. On the other hand, Cube Avenue 

utilizes a mesoscopic simulation model to estimate the system performance at short time 

intervals during the simulation. The model generates individual vehicles and models and 

their interactions based on a TFM, with the performance further assessed using queuing 

analysis. Although the default traffic flow model is the BPR, the Cube script provides the 

flexibility to implement any desirable TFM.  It should be emphasized, however, that in 

Cube Avenue, the TFM only affects travel time calculation when demand is below 

capacity. After queue formation, the delay values are calculated based on queuing 

analyses and can only be affected by adjusting the link capacity and storage parameters 

by the user. In other words, travel time is divided to two parts of moving on the link, and 

waiting at the link entrance gate due to capacity or storage restrictions. TFM affects the 

moving time, but the waiting delay is calculated internally. 

Figure 5-8 shows the effect of implementing different TFMs on travel speed at the 

bottleneck location. Akcelik, Van Aerde, Greenshields and BPR curves are compared in 

the figure. It can be seen that during congestion the travel time for all TFMs is almost the 

same, but before and after breakdown, the travel time is slightly different, with BPR 

producing the lowest value. 
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Figure 5-8 Effect of Implementing Different TFMs on Travel Speed 

In Cube Avenue, it is documented that storage, along with capacity, are two 

constraints that limit the number of vehicles entering a link. The default value used in 

Cube Avenue is 190 veh/h/ln. This value is in the range of jam density rather than 

queuing density. Jam density is different from queuing density. Jam density is the density 

when all vehicles are stopped, while queuing density is the density of a moving queue. 

Coding the storage as jam density produces congestion spots with very low speeds (2 to 3 

mph). ITS data however, shows a higher minimum speed in congested areas.  In other 

words, cars move within queue, with a speed of 12 to 15 mph.  This suggests that the 

storage should not be considered as jam density (completely stopped vehicles in a very 

congested network), but the queuing density should be used.  This density can be 

calculated by dividing the volume by speed at the congested segment. This value is 

almost 3 times smaller than the jam density. By applying this value, the minimum speed 

increases and more closely resembles the observed speed. Queue length also more closely 
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resembles the real world. Figure 5-9 demonstrates the effect of jam density versus 

queuing density in replicating speed contour. 

 

 

 

 

 

 

Figure 5-9 Difference Between Storage and Queuing Density on Travel Speed 
 

The quality of the supply calibration is evaluated based on performance measures.  

Primary performance measures that evaluate how well the network replicates a real-world 

situation are link volume versus observed counts, and link speed versus measured speed. 

Several goodness-of-fit tests were suggested to measure the distance between simulated 

and observed volume. Table 5-2 represents the most common goodness-of-fit measures 

that are used to assess network calibration. 

 

 

 

 

 

 

Storage Density=220 veh /mi/ln                  Queuing Density=55 veh/mi/ln  
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Table 5-2 Goodness-of-Fit Measures 
Goodness of Fit Measures Formula 

Root Mean Square Error (RMSE) ඨ∑ ݕ) − పෝ)ଶݕ ܰ  

Root Mean Square Normalized (RMSN) ඨ∑ ݕ) − పෝ)ଶݕ ∑ ଶݕ  

Percent Root Mean Square Error (% RMSE) ඨ∑ ݕ) − పෝ)ଶݕ ܰ ∗ 100 ∗ పෝݕ∑ܰ  

Mean Absolute Error (MAE) ∑ ݕ| − పෝ|ݕ ܰ  

Scale ඨ∑ݕଶ∑ݕොଶ 

GEH (link-based) ඨ2(ݕ − ݕො)ଶݕ + ොݕ  

 

In formulas above, ݕ is the simulated/estimated volume, and ݕො is the observed 

volume.  Except for GEH, the above goodness-of-fit measures can be used to calculate the 

distance between estimated and observed values of other traffic measures such as speed, 

density, and queue length. GEH is an empirical-driven formula that has been proven 

useful for a variety of traffic analysis purposes, mainly for volume comparison purposes. 

A GEH of less than 5.0 is considered a good match between the modeled and observed 

hourly volumes (flows of longer or shorter durations should be converted to hourly 

equivalents to use these thresholds). According to the Federal Highway Administration 
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(FHWA), 85% of the volumes in a traffic model should have a GEH less than 5.0 

(FHWA, 2007). GEHs in the range of 5.0 to 10.0 may warrant investigation. If the GEH 

is greater than 10.0, there is a high probability that there is a problem with either the 

travel demand model or the data. It should be noted though, that GEH may be misleading 

when used in assessing the accuracy of link volumes that are not in the same range. 

Consider a 3-lane segment, with observed 7,200 vph, and a 1-lane arterial with observed 

800 vph. Assume that the simulated value for abovementioned segments are 5,400 vph 

and 600, respectively. The GEH value can be calculated as 22.7 for the first segment and 

7.5 for the second case.  This large difference cannot be justified given that in both 

cases, the simulated value is 75 percent of the observed value 

In congested networks, volume replication must be coupled with speed or density 

replication. Considering only volume as calibration assessment criteria in such conditions 

can lead to a network that does not reflect the congestion patterns in the real world. It 

should be mentioned that detectors can only measure the served volumes, not the actual 

demands. Once demand exceeds capacity, the served volume starts decreasing with an 

increasing level of congestion and increasing density. This phenomenon cannot be 

captured by solely considering the detector volume. Congestion patterns in the model 

should reflect real-world conditions, spatially and temporally. Speed contour is a strong 

visual inspection tool for comparing congestion patterns of modeled and observed 

situations.  

It is important that speed-volume profiles (temporal speed and volume for each 

link) at bottleneck locations should also be replicated. A comparison between modeled 

and observed speed/volume profiles (similar to Figure 5-4) can be used to evaluate how 
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well the model can replicate the following: starting and ending time of breakdown, speed 

and volume before breakdown, duration of breakdown, average volume and speed during 

breakdown, and covered speed and volume when the breakdown period is over. 

Overall traffic measures such as VMT, VHT, and VMT/VHT can also be used for 

general evaluation of the calibration. It should be noted that abovementioned measures 

should be assessed in a calibrated network with fixed demand (calibrated demand).  

5.6. Summary 

Supply or network calibration in Cube assignment tools entails estimating 

capacity, free-flow, and traffic flow model parameters for each link in the network. A 

systematic, multilevel approach to network calibration is recommended in this study, 

with an increasing calibration scope in each level. The process starts at the level of 

separated bottlenecks, where the capacity is estimated by various methods based on field 

data. The network is gradually extended to connected bottlenecks, and then to the whole 

corridor and subarea coverage. The advantage of this approach is twofold: First, critical 

spots of the network can be better identified, analyzed, and replicated; second, a more 

reliable demand can be estimated for the smaller networks that are the focus of this study, 

which is very important in the iterative process of demand-network calibration. Focusing 

on isolated bottleneck locations and the freeway corridor for managed lane assessment 

enables the capturing of the interactions between supply and demand in addressing the 

causes for congestion. This is not feasible in more complicated networks.  

The supply calibration performed in this study illustrates the importance of coding 

capacity based on detector measurements in DTA tools, particularly when there is 
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evidence that the modeled corridor capacity is lower than the HCM-based estimates. In 

the case explored in this study, it was found that the free-flow speed and, more 

importantly, the capacity were overestimated by the HCM procedures, resulting in 

incorrect travel times and congestion when used in the DTA model.  
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6. ORIGIN-DESTINATION MATRIX ESTIMATION 

Dynamic traffic assignment requires trip matrices specified for short time 

intervals (e.g., 15 minutes or 30 minutes). These matrices are sometimes referred to as 

time-variant or dynamic trip tables. The derivation of these matrices is one of the most 

challenging aspects of dynamic traffic assignments.  

The initial source of demand in this research is a trip (OD) table for a peak period, 

extracted from a regional demand forecasting model. The demand forecasting modeling 

process is a mature and well established process that produces behaviorally consistent 

results among different demand forecasting steps, including trip generation, mode choice, 

trip distribution, and trip assignment steps. These models are well calibrated based on 

real-world data and surveys. Therefore, they constitute a rich source of OD information 

with inherent consistency among trip generation, distribution, and assignment. These trip 

tables should be considered as an important source of demands. However, the trip tables 

need to be updated for operational purposes due to the necessity for shorter time intervals 

demand and the need for more focused validation of the demand for the subarea under 

consideration. The demand calibration or estimation step in this study aims to estimate 

the OD table for short intervals (15-minute intervals in this case) based on an initial 

matrix obtained from the demand forecasting model. The resulting matrices, when loaded 

onto the calibrated network, are able to replicate the observed link volume and congestion 

pattern.  

As mentioned in Chapter 2, the demand estimation procedure can be significantly 

affected by the utilized network parameters, as well as by route choice (assignment) 
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parameters. On the other hand, calibrating network and assignment parameters requires 

correct demands. Thus, an iterative approach is needed for estimating the demands and 

network parameters.  

The first step is to extract an initial OD matrix for the whole peak period from the 

regional model (Three-hour PM peak period from the SERPM model). The subarea 

boundary can be specified using the Cube Polygon feature or a GIS tool. Cube Voyager 

can then be used to extract the subarea network from the statewide model network using 

this predefined subarea boundary. The result of this extraction is a subarea network with 

new node and zone numbers and new trip table associated with this network.  

The next step is to distribute this three-hour matrix over 15-minute intervals. This 

distribution was conducted to be consistent with the variations in observed volumes at 

uncongested locations at the beginning of the corridor, where detector volumes can 

represent actual demands (and not the capacity-restrained served volumes). The 

availability of these initial 15-minute interval matrices (referred to as factorized matrices 

in this study) allowed to start an initial network calibration, as described in Chapter 5, 

based on the 15-minute volume and speed data. 

The next step is to adjust these matrices using the Cube Analyst static matrix 

estimation program. This matrix estimation process performs the estimation by 

considering a number of input parameters based on the static assignment of Cube 

Voyager. This process applies a maximum likelihood approach to estimate the trip tables 

that when assigned to the network paths, produce results that are close to the input data 

such as screenline counts, initial (seed) trip table, available route information, and zonal 

trip generation and attraction. This procedure is framed as bi-level optimization as 
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described in Chapter 2. The upper level formulation aims at estimating new trip tables 

based on maximum likelihood to minimize the difference between model output and the 

real-word or initial measures. In the lower level, the matrix estimated in the upper level is 

loaded on the network by an assignment module (Highway in case of static OD 

estimation) to produce link proportion matrix. This matrix includes the proportion of each 

OD that contributes to a link’s volume. This matrix is then fed back to the upper level 

optimization for new matrix estimation iteration. It should be noted that if the initial OD 

pair is zero, it can never be raised automatically by the estimation process, unless the 

initial matrix is manually adjusted to reflect a non-zero value. The reason is that when the 

matrix with zero OD trip is loaded on the network, its contribution to link volume, and 

the resulting proportion matrix for that specific OD remains zero. Adjustment of OD 

pairs is essential and unavoidable therefore if there is evidence that their value is 

non-zero. This is just one example of the need for adjustments of the OD matrices, in 

addition to the implemented OD estimation model. 

Since the STA runs over a single model period, each 15-minute interval must be 

run separately to estimate the OD matrix for the associated interval. The most important 

issue with STA in this process is its inability to capture queue spillback and make the 

resulting connection between consecutive intervals. This problem in the current study is 

minimized utilizing heuristics to account for queue presence. 

The best approach to overcome STA limitations is to use the DTA instead of the 

STA as part of the least-square optimization to better account for traffic dynamics and 

travelers’ behaviors. Thus, the intended next step was to use the Cube Analyst Drive 

procedure, which includes an OD estimation procedure that derives the time-variant trip 



  

104 

matrices based on minimizing the differences between the measured volumes and the 

volumes produced by the DTA, with consideration of initial trip tables resulting from the 

Cube Analyst estimation based on the STA. However, limitations were identified with the 

existing tool developed for this purpose, and modifications are proposed to improve the 

performance of this approach.  

During the matrix estimation process, several manual adjustments and iterations 

were required. As demand changes, the network calibration may need to be slightly 

changed. The route choice behavior may also need to be adjusted, as is described in 

Chapter 7, as better OD estimates are obtained. Adjustments and fine-tunings are also 

needed to avoid unrealistic deviation from the initial matrix derived from the SERPM 

matrix estimation. These adjustments are iteratively and continuously performed during 

the matrix estimation process. 

6.1. Static OD Estimation 

The factorized 15-minute matrices derived based on 15-minute traffic counts are 

used in some studies as input into DTA models. However, these matrices can be further 

refined by utilizing a matrix estimation procedure based on traffic counts. Such a 

procedure would consider the deviations of the link volumes assigned by the model from 

traffic count measurements.  

The static OD matrix estimation process is implemented using the Cube Analyst 

program, which is provided as an optional tool within the Cube modeling environment. 

Cube Analyst is a tool that estimates trip matrices based on the maximum likelihood 

technique, coupled with an optimization procedure. The tool utilizes data from different 
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sources and considers the different levels of confidence or reliability inputted by the user 

for these different sources. Not only can the data include traffic counts and prior (seed) 

matrices, but also partially observed matrices, zonal trip end (generation and attraction 

rate), vehicle routing, travel cost matrices, and even previously calibrated trip cost 

distribution functions. 

Different sequences of processes for OD estimation were investigated in this 

study to determine how they impact the model’s ability to replicate different measures of 

real-world traffic conditions, required memory and time, and deviation of the estimated 

OD from different sources of data. It was found that the best practice is to start with a 

factorized matrix, calibrating the network (supply), followed by static OD estimation, 

fine-tuning the network calibration, and then fine-tuning the ODs by performing dynamic 

OD estimation. Static matrix estimation was found to be the most essential step that could 

not be skipped. Running the dynamic matrix estimation (matrix estimation based on 

DTA) directly after the factorization step did not produce good results, possibly due to 

the immaturity of the dynamic OD estimation procedure in Cube Analyst. 

Since Cube Analyst is based on static assignment, it deals with only one matrix at 

a time. Thus, it had to be run twelve times to obtain twelve 15-minute matrices in the 

three-hour period. Cube Analyst performs a set of iterative calculations that will 

automatically determine the statistically, most likely matrix for the set of input data 

values provided. The input data to Analyst can include the following: 

• Screenline counts: These are observed link traffic counts at screenline 

locations. In cases that multiple user class matrices are estimated, the 

aggregated link counts should be split accordingly (i.e., each matrix class 
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should be associated with a class of observed counts). Each screenline can 

also be associated with a confidence factor. This feature enables the user to 

define the links that are more important to be replicated, or are associated with 

more reliable traffic counts. In this study, traffic counts for each 15-minute 

interval were obtained from ITS and PTMS detectors.  

• Initial trip tables: One trip table is required for every user class. Each matrix 

can be associated with a confidence matrix, which contains different 

confidence level values for each OD pair. In this study, the initial 15-minute 

trip tables were obtained from the factorization process described earlier.   

• Zonal trip ends: These are the total number of trips originating and 

terminating in each zone. Each zone can be associated with a confidence 

factor, based on the level of reliability or importance of preserving the total 

number of trips.  

• Partial trip table: This optional input enables the user to incorporate any 

partial OD trips that are available from other sources such as Bluetooth 

readers, Electronic Toll Collection System, or OD surveys. 

• Routing information: This information is provided by the assignment module.  

This input contains information of ODs that passed each link. 

• Optimization parameters: These are parameters provided to set convergence 

criteria for optimization, and to set a weight that shows users’ relative 

confidence on initial matrix versus screenlines. Higher weight shows that the 

user prefers not to deviate significantly from the initial matrix, even if the 

screenlines cannot be completely replicated. The appropriate confidence 
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values can be identified as part of the iterative process of the supply/demand 

calibration. These parameters are in a “control file” input to Analyst as a text 

file and the required and optional parameters can be easily edited by the user. 

In this study, four groups of matrices are available from the regional demand 

forecasting model: Drive Alone (DA), Shared Ride of 2 occupants (SRP2), Shared Ride 

of three or more occupants (SRP3), and Truck. The I-95 ML policy does not differentiate 

between DA and SRP2 (e.g., both groups should pay the same toll to access ML). 

Therefore, the DA and SRP2 matrices are grouped together and are referred to as Single 

Occupancy Vehicle (SOV) in the assignment module.  

As is described in Chapter 7, when using the willingness-to-pay approach to 

modeling ML, travelers are divided into two groups: toll payers and non-toll payers, 

based on the ratio of toll cost divided by saved travel time. It is assumed that SRP3 can 

use the ML without any cost or restriction, and trucks are not allowed to use ML. The 

summation of DA and SRP2 is split, based on the willingness-to-pay curve, into two 

groups: SOV_wo_Toll (non-toll payers) and SOV_w_Toll (toll payers).The 

SOV_wo_Toll and trucks are not allowed to use ML, but the other user classes choose 

between GPL and ML, based on the generalized cost function. The routing information is 

saved in binary “intercept” files associated with each user class. As a result, the 

aggregated link counts acquired from detectors were split accordingly into four user 

classes of SOV_w_Toll, SOV_wo_Toll, SRP3, and Trucks.  

In the specific case of ML, which is the main interest of this study, the route 

choice behavior is highly complicated and has several parameters to estimate. Before 

running Analyst, the assignment process should be checked to confirm that it is able to 
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roughly estimate the portion of travelers that divert to the ML. If traffic assignment 

parameters, such as the willingness-to-pay curve, are not calibrated at this stage, the 

results negatively affect the OD estimation process. This creates another challenge, since 

a good assignment calibration requires a good demand estimation and vice versa. The 

network or supply calibration also affects the results. Thus, an iterative process is needed. 

Another major consideration is capacity-constrained demands on congested 

corridors. Analyst is a robust optimization module that aims at replicating screenline 

volumes. However, in congested locations and periods; these volumes are the 

capacity-constrained served volumes. Thus, replicating these volumes based on counts 

will underestimate the demands. Northbound I-95 in the PM peak is a congested corridor, 

and as a result, the static OD estimation failed to produce the correct demands during the 

congested period. This problem can be solved by incorporating traffic measures that 

account for congestion presence, such as speed, density, or queue in the optimization 

tool. Due to the absence of these features in the current version, a method was developed 

to calculate the queue lengths, and it was added to the traffic counts in the screenline file.  

The queue length on each link was estimated based on the level of congestion 

identified from the detector data. This value was added to the screenline volume count, 

and the static OD estimation was run again. The resulting demand was the input to the 

Cube Avenue module, and it was confirmed that it could better replicate real-world 

congestion patterns. Figure 6-1 demonstrates the effect of considering queue on 

congestion pattern replication. As can be seen, if OD estimation is solely based on 

screenline counts and no means of congestion is incorporated in the optimization, the 

estimated OD cannot produce the real-world traffic condition. 
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Figure 6-1. Effect of Incorporating Queue in OD Estimation 
 

Less perfect replication of screenline volume is expected when the result of OD 

estimation (optimization) is manually adjusted.  In this case study, manual adjustment 

increases the RMSE of screenline volume versus model output volume, from 56.8 to 

61.8. 

A new tool called Analyst Drive was recently developed by Citilabs. Analyst 

Drive can be used for estimating OD matrices based on static and dynamic assignment. 

There is a keyword in the control file as “OD TYPE”. Setting this value to zero runs 

static estimation, and setting a value of one runs dynamic assignment. In this study, 

Analyst and Analyst Drive were both run for static OD estimation with the same input 

and with the default parameters. Figure 6-2 displays the demand for a specific OD pair 

over 12 intervals. Figure 6-3 to Figure 6-5 present the real-world replication of mainline 

volumes when utilizing factorization, Analyst and Analyst Drive, respectively. For better 

tracking and visualization, flow rates from different screenlines are color coded in these 

figures. 

Screenline volumes are observed  counts Screenline volumes are counts + queue
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Figure 6-2 Temporal Profile of Initial, Analyst, and Analyst Drive OD 
 

 

Figure 6-3 Screenline Volume Replication by Factored Regional Matrix 

 
 

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

Observed Flow Rate (veh/15 min)

*Each color repressents a screenline

Si
m

ul
at

ed
 F

lo
w

 R
at

e 
(v

eh
/1

5 
m

in
)



  

111 

 
 

Figure 6-4 Screenline Volume Replication by Analyst 
 

 

           Figure 6-5 Screenline Volume Replication by Analyst Drive 
 

Figure 6-6 compares the flows of one specific origin to all destinations, in the 

initial OD matrix and the estimated ones by factorization, Analyst and Analyst Drive. 

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

Observed Flow Rate (veh/15 min)

* Each color represents a screenline

Si
m

ul
at

ed
 F

lo
w

 R
at

e 
(v

eh
/1

5 
m

in
)

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

Observed Flow Rate (veh/15 min)

* Each color represents a screenline

Si
m

ul
at

ed
 F

lo
w

 R
at

e 
 (v

eh
/1

5 
m

in
)



  

112 

This figure shows that Analyst tends to focus on replicating screenline counts, sometimes 

at the expense of deviating significantly from the initial matrix.   

 

Figure 6-6 Comparing Initial and Estimated OD for One Pair 

6.2. Dynamic Matrix Estimation 

The 15-minute matrix estimation that uses Cube Analyst is expected to represent 

significantly better demand estimations than the ones produced from the factorized 

matrices that were used as inputs to the Cube Analyst (in the estimation process). 

However, the Cube Analyst process utilizes demands from the static assignment during 

the optimization process. The most important concern with using the STA in this process 

is its inability to capture queue spillback in space and time. In the current study, this 

problem could only be partially addressed by utilizing heuristics to account for queue 

presence. Thus, this study also investigates the use of the Analyst dynamic OD estimation 

process that utilizes routing information from Cube Avenue in the optimization process. 
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The dynamic OD estimation follows a very similar process, as described in the 

previous section. Instead of running Analyst with Highway assignment module for 12 

consecutive periods of 15-minute intervals, Analyst Drive runs during the whole model 

period, coupled with the Cube Avenue assignment module. In the single Cube Avenue 

run, the model period is divided into 15-minute intervals. This procedure is supposed to 

be superior to static OD estimation, because Cube Avenue models the queues and queue 

spillbacks, and thus can capture the effects of congestion on subsequent time intervals. 

However, without incorporating density or speed, dynamic OD estimation may also 

underestimate the demands under congested conditions. The dynamic OD estimation 

module in Cube package is not as mature as the static matrix estimation module, and has 

the following limitations:  

• Analyst Drive for dynamic OD estimation does not incorporate zonal trip 

ends. Zonal trip ends are usually available from ramp count data and provide 

valuable, reliable data about origin and destination trips. 

• Partial trips cannot be incorporated into the current version of Analyst Drive 

for dynamic OD estimation. 

• The confidence matrix associated with each input matrix cannot be 

incorporated into Analyst Drive for dynamic OD estimation. 

Due to the aforementioned limitations and the results of running dynamic OD 

estimation in this study, it is suggested that the user should use caution when utilizing the 

dynamic OD estimation module in Cube Analyst. 
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6.3. Performance Measures and Matrix Adjustment 

When calibrating simulation, demand, and assignment parameters, a distance 

function between simulation outputs and field measurements is minimized. This function 

can include different measures, such as link volumes, OD demands, link speeds and/or 

densities, etc. Limiting the function to replicating link volumes, as is the case in many 

studies, can be misleading and fail to produce the correct demands or congestion patterns. 

Most OD matrix estimation methods are based on link traffic volumes and initial OD 

matrices. Data on speeds, densities, queue lengths, OD routes, or zonal trip end rates 

should be incorporated into the calibration process to better replicate real-world traffic 

conditions. There are different ways to incorporate this information into the calibration 

process. They can be included in the objective function of the optimization or be a part of 

a manual adjustment or a heuristic procedure outside the optimization tool.  

As mentioned in Chapter 2, demand estimation is an underspecified problem. This 

means that the number of equations (the link counts) is usually much lower than the 

number of unknowns (OD pairs). Hence, different OD estimates may produce the same 

link volumes. It is important, therefore, to manage the estimation process to ensure the 

reasonableness and the correctness of the estimated demands. Regarding the dependency 

between demand estimation and traffic assignment, a wrong estimation of OD pair 

demands can sequentially propagate during the calibration process. In order to limit the 

systematic errors in OD estimation, the consistency and reliability of the adjusted OD 

pairs should be checked against different sources of data, such as trip end rates or specific 
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route volume information. Following is a list of criteria that were identified in this study 

to justify manual adjustments of the estimated demands: 

• Deviation from the initial matrix: It might be helpful to preserve certain 

structure or information that the initial matrix (subtracted from regional 

forecasting model) contains, such as the proportion between the total trips of 

the DA, SRP2, SRP3 and Truck user classes. Another example is to preserve 

the split between two major destinations in the network, such as I-95 and the 

Florida Turnpike northbound in the test network.  

• Route information: There might be reliable information about specific route 

trips, which are necessary to replicate. 

• Zonal trip end: On-ramp and off-ramp counts, in the absence of queues, can 

be reliable sources for origin and destination demand estimation, particularly 

in the case of linear corridor modeling. Thus, replicating these counts justifies 

the manual adjustment of the OD volumes.  

• General temporal uniformity: There are no expectations of seeing 

unrealistically high rises or drops in the volumes of OD pairs in sequential 

intervals. In the Analyst optimization tool that is based on static assignment, 

the temporal variation cannot be controlled. The optimization process can 

achieve totally different local optimal solutions for sequential intervals, since 

the optimization does not guarantee achieving global optimal. To minimize 

the OD matrix variations between sequential intervals, the static OD 

estimations for different intervals were run with an identical initial matrix. 
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After several OD estimation trials and matrix adjustments, one matrix was 

selected as a good initial matrix, and was duplicated over twelve intervals. 

Since the demand estimation is underspecified and may result in a local 

minimum, it may be helpful to force the optimization to start the search from a certain 

point, more specifically, to restrict some of OD pairs from varying during the 

optimization. Manually adjusted values should be inserted in the process again for a new 

run of the OD matrix estimation. Different approaches can be used to combine the 

estimated and adjusted values to control the deviation from the general structure of the 

initial matrix, such as Kalman filtering, Bayesian inference, and MSA. The adjusted and 

combined values will then be fed back into the estimation process. Modifications to the 

existing OD estimation process are recommended so as to allow the user to have the 

flexibility required to incorporate additional factors as limiting criteria in the objective 

function (based on the analyst’s knowledge), to minimize the need for manual 

adjustments.  

6.4. Recommendations for OD Estimation Improvement 

Additional recommended improvements to the OD estimation process are listed as 

follows: 

• Incorporating speed, density, and/or queue length in the objective function of 

the OD estimation process, 

• Allowing the user to specify lower and upper bounds for each OD pair cell 

(there is already a global parameter that is applied to all cells yet cannot be 

varied by cells). 



  

117 

• Allowing the user to better control the temporal variability of the results. 

• Allowing the user to keep the proportionality between specific OD pairs (e.g., 

from all of the trips originated from I-95, with 30% directed to SR 836 and 

30% destined to the Florida Turnpike). 

• Incorporating zonal trip end, partial matrix, partial trips, and confidence 

matrix for dynamic demand estimation. 

6. 5. Summary 

The process of converting regional OD matrices to OD matrices that can be used 

as inputs to DTA is described in this chapter. This process includes a combination of the 

factorization, static OD estimation, and dynamic OD estimation steps. Considering the 

issues with the current state of the available dynamic OD estimation tools, static OD 

estimation was considered the most essential step, in which ODs are estimated in a way 

that, when loaded on the network, produce real-world measures such as link volumes.  

Improved dynamic OD estimation process, however, are expected to produce better 

results than static OD estimation. 

It was found that in congested networks without incorporating measures of 

congestion such as queue, speed, or density, the resulting demands are underestimated 

and cannot produce real-world traffic conditions. To enhance the model for congestion 

pattern replication, queue was estimated and incorporated into the process.  

The estimated OD matrix should be checked to avoid any structural deviation 

from the regional matrix, unless there is strong evidence for a necessary change in 

specific OD pairs. A minimum amount of manual adjustment of the estimated OD table is 
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necessary and inevitable. Manual adjustment can be minimized by automatic methods 

such as successive average, or machine learning approaches. OD estimation results 

should be fed back to the other two steps of the calibration, including network calibration 

and route choice model calibration. Then, the demands can be further adjusted based on 

the results. 
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7. TRAFFIC ASSIGNMENT 

Tests and comparisons of traffic assignment methods, as well as calibration 

results, are presented in this chapter, and they are based on the I-95 linear (corridor) 

network and trip tables that were calibrated as described in Chapters 5 and 6. A 

side-by-side comparison between STA and DTA is conducted with the STA running 

twelve times, once for each of the 15-minute trip tables during the PM peak period. 

Therefore, the output file contains volumes and speeds for twelve time intervals that are 

used in the comparison with real-world data and DTA results. It should be mentioned, 

however, that these runs are independent from each other, and the run for one interval is 

not affected by the results of the previous interval because STA is not capable of 

modeling these interactions between time intervals. Two different approaches for ML 

assignment are discussed and evaluated based on performance measures including 

replication of real-world volume and speed, ML demand, model convergence, and 

stability.  

7.1. Route Choice Behavior Modeling 

Two different approaches are investigated for modeling the route choice behavior. 

The first approach involves adding the toll cost to the generalized utility function of the 

link. In this approach, referred to as “Generalized Cost Function”, selecting the route is 

solely governed by the user equilibrium assignment procedure, based on the generalized 

costs of different paths. In the second approach referred to as the “Willingness-to-Pay 

Curve”, prior to the assignment, travelers are divided into two groups: a group that will 
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not choose to pay the toll and is limited to using GPL; The other group is eligible to use 

ML based on the willingness-to-pay curve, but the final decision to use either the ML or 

GPL depends on its origin and destination points (whether there are proper entry/exit 

points if they take the ML), as well as on the difference in the travel time between ML 

and GPL according to the user equilibrium process. Figure 7-1 demonstrates the 

assignment procedure based on willingness-to-pay curve. 

 

Figure 7-1 Managed Lane Model Based on Willingness-to-Pay Curve 

 
After setting network parameters, the path-building process is performed to obtain 

the impedance values, such as the travel time (min) and cost (cents) for each 

origin-destination pair. These skimming values are used to compute the ratio of toll in 

Model Settings 

Skimming (Time & 
Toll) by each Time 

Toll Diversion Process Willingness-to-Pay 
Curve 

or Logit Model 

Free OD Trips Toll OD Trips 

Assignment by each Time 
Segment 

Update of Toll Cost 

Check Maximum Density 

Toll Cost Look-up Table 
or Exponential Function 
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cents over the time saved between free and toll routes from origin to destination as 

follows:  

 

	Toll	Cents	per
(7-1) 

Next, the toll trip share (%) can be obtained by looking up the willingness-to-pay 

table (see example in Table 7-1). For example, suppose that a driver can travel the free 

road in 25 minutes, while the driver also has an opportunity to use the toll road with a 

travel time of 20.78 minutes by paying $1 as a toll cost. In this case, the toll cents per 

minute saved is 23.7 cents per minute (=100 cents/(25-20.78)min). Thus, the user’s 

probability of using the free road is 85%, based on the willingness-to-pay table, while the 

probability of using the toll road is estimated at 15% (=100%-85%).  

Table 7-1 Initial Not-Willing-to-Pay Proportion for Cost per Time Saved by 
Demand Category 

 
 

1 2 3 4 5 6
0.0 5.0 5.0 5.0 5.0 5.0 5.0
8.0 50.0 50.0 50.0 50.0 50.0 50.0
10.0 60.0 60.0 60.0 60.0 60.0 60.0
16.3 75.0 75.0 75.0 75.0 75.0 75.0
20.0 81.7 81.7 81.7 81.7 81.7 81.7
23.7 85.0 85.0 85.0 85.0 85.0 85.0
31.4 90.5 90.5 90.5 90.5 90.5 90.5
41.7 95.0 95.0 95.0 95.0 95.0 95.0
51.8 96.0 96.0 96.0 96.0 96.0 96.0
58.3 98.0 98.0 98.0 98.0 98.0 98.0
66.7 98.8 98.8 98.8 98.8 98.8 98.8

Toll Cent per 
Minute Saved

Demand Category
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In performing assignment utilizing both of the abovementioned methods, the toll 

is updated for each interval, based on the maximum density of the ML so as to preserve 

the desired level of service in ML. The schedule of the value of toll based on density was 

calibrated based on available charged toll data from the FDOT District 6 traffic 

management center, as well as based on ITS volume and speed data. Other important 

calibration parameters of the assignment are the value of time and the shape of 

willingness-to-pay curve. 

7.2. Derivations from Observed Data 

Implemented toll data, coupled with microwave detector data, is used to calibrate 

the toll-density curve (table). Table 7-2 includes the default toll values, which is a 

simplified version of the table that FDOT District 6 TMC uses to calculate the toll and it 

does not completely replicate the current I-95 toll table.  

Table 7-2 Default Toll Values Based on the ML Maximum Density 

 

It was found that this table overestimates the toll values.  

Figure 7-2 demonstrates the difference between the real-world charged toll and 

the calculated toll values based on the default toll-density in Table 7-2 for May 11, 2010. 

The calculated toll was obtained by estimating the density as the volume over speed ratio. 

Minimum Maximum Minimum Maximum
A 0 11 0.25 0.25
B 12 18 0.5 1.25
C 19 26 1.5 2.75
D 27 35 3 3.75
E 36 45 3.75 6
F 6 7

Toll Cost ($)Road Density

>45

Level of
Service
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The density was calculated at each ITS detector along the managed lane for each of the 

15-minute modeling intervals. The maximum density value along the eight-mile length of 

the managed lane was then used to calculate the toll costs, based on Table 7-2. 

 

Figure 7-2 Comparison Between Implemented and Calculated Toll for a 
Lightly-Congested Day 

 
Error! Reference source not found. and Figure 7-3 demonstrate the same 

comparison for severely congested intervals (not just for one specific day). The values for 

the calculated tolls are derived from Table 7-2. It is clear that the utilized toll table 

overestimates the toll values. 
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Table7-3 Implemented Toll Value for I-95 Northbound 

Day Time 
Toll Rate 

($) 

Maximum 
Density from 

ITS Data 
(veh/mile/lane) 

Calculated Toll 
($) 

6/3/2010 3:41:00 2.50 31.46 3.45 

6/3/2010 3:56:00 2.50 33.21 3.72 

6/3/2010 4:11:00 3.25 37.01 4.31 

6/3/2010 4:26:00 3.75 44.22 5.43 

6/3/2010 4:41:00 4.75 60.84 7.00 

6/3/2010 4:56:00 5.50 59.04 7.00 

6/3/2010 5:11:00 5.00 66.10 7.00 

6/3/2010 5:26:00 4.50 79.53 7.00 

6/3/2010 5:41:00 5.00 77.43 7.00 

6/3/2010 5:56:00 4.50 68.13 7.00 

6/3/2010 6:11:00 4.50 67.29 7.00 

6/3/2010 6:26:00 3.75 60.64 7.00 

6/3/2010 6:41:00 3.25 51.99 6.63 

6/8/2010 3:41:00 1.75 33.51 3.77 

6/8/2010 3:56:00 1.75 31.91 3.52 

6/8/2010 4:11:00 2.00 51.65 6.58 
 

 

Figure 7-3 Comparison Between Implemented and Calculated Toll for 
Highly-Congested Intervals 
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Based on the abovementioned data, a new toll-density relationship was developed 

as shown in Figure 7-4. It should be noted that the toll schedule in real world, is based on 

a more complex lookup table that is difficult to implement. Also, the calibrated density 

value utilized to update the toll values in TMC might be different from the ones 

calculated in this study based on ITS data. To avoid complications, a simplified 

toll-density curve is developed in this study based on calibrating to real-world data. 

Figure 7-5 shows that the toll-density curve developed based on the observed data better 

replicates the real-world diversion to the ML. It should be noted that the results presented 

in Figure 7-5 are for a model with calibrated network, demand and route choice 

parameters. Therefore, the difference between curves is merely due to the toll schedule 

and no other factor. 

 

Figure 7-4 Default and Developed Toll Density Curve 
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Figure 7-5 Comparison of Diverted Volume to ML for Different Toll Curves 

7.3. Calibrating the Value of Time 

This section describes the approach to calibrate the value of time parameter. This 

parameter converts monetary value of toll cost into equivalent time. This equivalent time 

can be then added to the utility function of the ML facility. If the summation of route 

travel time and the added equivalent time is still smaller than the congested time in GPL, 

ML is more attractive to the user. A value of time of $30 per hour means that the user 

will pay $30 to save one hour, or 50 cents for every minute of saved time. As discussed in 

Chapter 2, the value of time parameter might be interpreted as toll value that travelers 

will pay, not solely to save time, but to benefit the improved trip reliability, safety, and 

comfort that the ML facility offers. It was found that for the PM peak period, the average 

toll cost over several days in 2010 (excluding weekends) is between $2 and $3, with an 

average of $2.30, as presented in                  Table 7-4.  
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                 Table 7-4 Implemented Toll Value for I-95 Northbound 
Time 
(PM) 

day 
1 

day 
2 

day 
3 

day 
4 

day 
5 

day 
6 

day 
7 

day 
8 

day 
9 

day 
10 Average 

3:26 1.00 1.50 1.50 1.50 1.75 1.75 1.75 1.75 2.00 1.75 1.63

3:41 2.00 2.50 2.00 2.25 1.50 1.75 2.00 2.75 2.50 2.25 2.15

4:11 1.50 3.25 1.75 1.75 1.75 2.00 2.00 2.00 2.00 2.00 2.00

4:26 1.50 3.25 1.75 1.75 2.00 2.00 2.25 2.00 2.00 2.00 2.05

4:56 1.50 3.00 1.75 1.75 2.00 2.00 2.25 2.25 2.25 2.00 2.07

5:11 1.50 3.00 1.75 1.75 3.00 2.00 2.25 3.25 2.50 2.00 2.30

5:26 1.50 3.00 2.00 2.50 3.00 2.25 2.25 2.75 2.75 2.25 2.42

5:41 1.75 3.50 2.00 3.00 3.50 3.25 2.5 2.75 3.00 3.00 2.82

5:56 1.75 2.50 1.50 3.00 3.75 3.00 3.00 3.25 3.50 3.00 2.82

6:11 1.75 3.75 1.50 3.50 3.50 2.75 2.75 3.25 3.00 2.75 2.85

6:26 1.50 3.75 1.50 2.75 2.75 2.00 2.75 3.00 2.50 2.00 2.45

6:41 1.50 3.00 2.25 2.25 2.25 1.50 2.25 2.25 2.50 2.00 2.17
 

The time saved by motorists based on real-world detector data for non-incident 

days is between 4 to 8 minutes, depending on the congestion level in the GPL for the day 

under consideration. Paying an average toll value of $2.3 implies that travelers’ value of 

time is $17 to $34. This value considers only the saved time and no other attractions of 

ML such as improved trip reliability and safety. The value of time in this study is 

estimated to be $42, compared to the value of $12.6 used in the SERPM model. This 

difference can be interpreted as the perceived benefits of using the ML beyond the 

absolute difference in travel time between ML and GPL.  

 Value of time of $12.6, $18.0, and $31.0, $42, and $50 were used in sensitivity 

analysis. The results are displayed in Figure 7-6. From this figure it appears that values of 

time of $42.00 produce good results. It should be noted again, that in absence of bias 

factors, this value accounts for factors rather than toll and saved time, such as travel time 

reliability, comfort, safety, and the travel time in past days, which include more 

congested days and incident days. 
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Figure 7-6 Comparison of Diverted Volume to ML for Different VOTs 

7.4. Calibrating the Willingness-to-Pay Parameters 

The willingness-to-pay curve defines the proportion of people that are not willing 

to divert to ML, based on the ratio of the toll value (in cents) divided by the saved time 

(in minutes), prior to user equilibrium-based assignment. Non-toll-payers based on 

willingness-to-pay curve, do not access to ML and are limited to use GPL only. Other 

travelers, however, chose their path based on their origin-destination (i.e., if there are 

proper entry/exit points if they select ML), and travel time on each path. 

 Figure 7-7 depicts different willingness-to-pay curves, and Figure 7-8 shows the 

diverted volume to ML. Based on the results in Figure 7-7 and Figure 7-8, Curve I was 

selected as the willingness-to-pay curve that best reflect real-world traffic count on ML. 

As can be seen, the shape of the calibrated willingness-to-pay curve is significantly 

different from the initial curve.   
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Figure 7-7 Different Shapes of Willingness-to-Pay Curve 

 

Figure 7-8 Diverted Volume to ML Associated with Willingness-to-Pay Curves 

 

7.5. Comparing Static and Dynamic Traffic Assignment 

This section demonstrates the difference between STA and DTA abilities to 

replicate the observed route choice behavior. Figure 7-9 and Figure 7-100 demonstrate 
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the difference between STA and DTA in predicting the divergence to the ML for the 

generalized cost function method and the willingness-to-pay curve method, respectively. 

The predicted divergence to the ML is also compared to the observed values derived from 

ITS data. As previously mentioned, the module in the Cube package for static assignment 

is called “Highway,” and the module for dynamic assignment is called “Avenue.”  

Highway module is run for twelve intervals, one for each 15-minute interval. Figure 7-99 

and Figure 7-100 show that both approaches of ML modeling with Avenue produce 

results that are close to real-world measures. However, the Highway module is not able to 

replicate real-world measures. The main reason is that STA cannot model the variation in 

demand, queue formation and spillback, and the associated delays. The difference 

between GPL and ML travel time, and the resulting number of travelers that decide to 

choose the ML, is considerably underestimated by static assignment. 

The figures also show that the generalized cost approach and the 

willingness-to-pay approach produce comparable results. 

 

Figure 7-9 Comparison Between Modeled and Observed ML Volume for        
Generalized Cost Function Method 
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Figure 7-100 Comparison Between Modeled and Observed ML Volume for 
Willingness-to-Pay Curve Method 

7.6. Convergence and Stability 

Figure 7-111 compares the relative gap in the willingness-to-pay approach and in 

the generalized cost function approach. The willingness-to-pay approach shows very poor 

convergence. Figure 7-122 shows the diverted volume to the ML in each iteration for 

both assignment approaches. These figures clearly demonstrate the instability of the 

willingness-to-pay approach, as it applied to DTA in this study. 
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Figure 7-111 Relative Gap for Different Assignment Approaches 

 

Figure 7-122 Diverted Volume to ML for Different Assignment Approaches  

It should be noted that in general, and particularly in the case of managed lane 

modeling, trip-based or route-based measures of convergence are more important to be 

checked, compared to link-based convergence measures. The current versions of 

Highway and Avenue assignment modules report link-based convergence measures and 

do not report trip-based measures. Additional criteria such as the variations in the volume 

utilizing the ML in sequential iterations should be used for checking convergence. The 
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calibration procedure adapted in this study is an iterative process between demand, 

network and assignment parameters. The final iteration is conducted when the assignment 

and route choice behavior is calibrated. Once the assignment parameters are calibrated, 

the OD estimation procedure needs to be run one more time. With the final estimated OD 

trips, the network parameters should be fine-tuned again to replicate real-world 

congestion patterns. This will complete the iterative supply-demand-assignment 

processes.  

7.7. Model Validation and Sensitivity Analysis 

The demand and route choice parameters in this research were calibrated based on 

the volume averaged over representative days. The median day or any other day could 

have been used. In most locations, the volumes vary with a coefficient of variance 

(variance/ mean) of 3% to 7% between days. For validation and sensitivity analyses, 

Cube Avenue was run with different demand values from low to high, to see if it can 

replicate days with lower/higher congestion.   

Figure 7-133 and Figure 7-144 show the speed contours for GPL, resulting from 

the generalized cost function and willingness-to-pay approaches, respectively. Demand is 

slightly changing in each scenario. It can be seen that the generalized cost function 

assignment can reasonably respond to the change in the demand level in terms of 

increased congestion patterns, meaning that the higher demands produce more congested 

networks. Unexpectedly, for the willingness to pay approach, demands that are 96 

percent of the original demands produced a high congestion. The reason is that the 

assignment solution is not stable, as was shown in Figure 7-111 and Figure 7-122.   
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Figure 7-133 Speed Contour for GPL with Different Demand Level in 
Generalized Cost Function Assignment 

 

 

Figure 7-144 Speed Contour for GPL with Different Demand Level in 
Willingness-to Pay Curve Assignment 

 
Figure 7-155 and Figure 7-166 show the trend of VMT and VHT with changing 

demands using the generalized cost approach and willingness-to-pay approach, 

respectively. As expected, in the stable generalized cost approach, VMT and VHT 

increase with increase in demand, but change randomly in the unstable willingness to pay 

approach.  
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Figure 7-155 Changing in VMT and VHT with Changing Demand in 
Generalized Cost Function Assignment 

 

 

Figure 7-166. Changing in VMT and VHT with Changing Demand in Willingness-to 
Pay Curve Assignment 

 
Figure 7-177 demonstrates the effect of using different seed numbers in the 

simulation-based DTA tool. As can be seen, although it is tested on the converged, stable 

generalized cost function assignment, the results of the two runs are not identical. Thus, 

more research is needed to define how many runs are enough to account for the effect of 

randomness in the simulation. 
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Figure 7-177. Effect of Randomness in Simulation-Based DTA Tool 
 

7.8. Assessment of Performance Measures 

During the calibration, extensive use of data visualization was conducted and 

volumes, speeds, and queues were compared to real-world measures by different 

goodness of fit measures. A number of state and FDOT standards were consulted in this 

process including: 

• FSUTMS-Cube Framework Phase II Model Calibration and Validation 

Standards (Cambridge Systematics, Inc., 2008). 

• Ohio RMSE Curve, which offers a target percent root mean squared error by 

volume group (Cambridge Systematics, Inc., 2010). 

 The final results for a converged and calibrated generalized cost function 

assignment are presented below. Figure 7-188 shows the scatter plot of observed versus 

simulated volumes at screenline locations. The coefficient of determination (R2) between 
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the simulated and observed data is high (0.9761), indicating very high correlation with 

about 5% overestimation of the volumes on average as indicated by the 1.0515 

coefficient value. It is interesting to compare this figure, with Figure 7-19, which is 

scatter plot for the same screenlines, for two different representative days. This figure 

demonstrates the day-to-day variation in real-world volume. The coefficient of 

determination between the volume measurements for these two days (0.7715), is lower 

than the one between observed and simulated values. 

 

Figure 7-188 Scatter Plot of Observed vs. Simulated Volume of Screenlines 
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Figure 7-19 Scatter Plot of Observed Volume of Screenlines for Different 
Days 

 
 Figure 7-190 compares the observed and simulated flow rate on ML, which is 

an indicator of good calibration of route choice behavior. 

 

 Figure 7-190 Comparison Between Observed and Simulated Flow on ML 
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Table 7-5 presents calculated goodness of fit measures of volume replication. The 

results in this table indicate an acceptable goodness of fit between the measured and 

simulated volumes. 

Table 7-5 Goodness of Fit Statistics for Volume Replication 
Goodness of Fit Statistics Value 

RMSE 113 
% RMSE 13.6 

MAE 77.0 
R squared 0.976 
GEH <5 87% 

GEH <10 100% 
 
 

Drawing RMSE curve for different ranges of volume showed that the resulting 

RMSE curve is well below the Ohio RMSE curve, which again indicate an acceptable 

volume estimation. 

Figure 7-201 shows speed contour for simulated and one observed representative 

day, indicating a successful replication of real-world congestion pattern. 

 

Figure 7-201 Comparison Between Simulated and Observed Speed Contour 

Figure 7-212 is scatter plot of the simulated speed, versus one observed 

representative day. This figure indicates not a good correlation between the measured and 

simulated speeds, although Figure 7-201 shows that the model was able to model the 
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queues relatively well. Again it is interesting to compare the results in Figure 7-212 with 

those in Figure 7-223, which shows the relationship between the speeds for two different 

representative days. As can be seen, due to the probabilistic nature of traffic breakdown 

and traffic demands, there is a great variation in day-to-day congestion patterns and the 

correlation of speeds between these days is also low. 

 

Figure 7-212 Scatter Plot of Observed vs. Simulated Speed of Screenlines 
 

 

 

Figure 7-223 Scatter Plot of Observed Volume of Screenlines for Different Days 
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7.9. Summary 

This chapter discussed two different approaches for modeling route choice 

behavior and illustrated the calibration procedure for each method for a real-world 

corridor. It was shown how toll schedule data and microwave detector data can be 

integrated and used in calibration. For the “generalized cost function” approach, the value 

of time is the most important parameter to calibrate. In this study, this parameter stands 

for the aggregated perceived benefit of using ML for the paid toll cost. This value was 

estimated to be $42 for the case study corridor. The shape of the “willingness to pay” 

curve is the key parameter in the second approach. The initial curve was taken from 

another corridor, in another state, and it was shown in this study how dramatically the 

calibrated curve is deviated from the initial curve. This interestingly highlights the 

importance of site specific data and calibration processes. 

 

It was found that although both approaches produce similar results in terms of 

predicting the percentage of travelers that use ML, the generalized cost function is more 

straightforward to implement and calibrate, and it also converges better.  

The superiority of DTA over STA to replicate the percentage of ML users and to 

replicate the real-world congestion pattern was clearly illustrated. The quality of 

assignment calibration significantly affects the result of OD estimation and, 

consequently, the result of the network calibration. Incorrect estimation of assignment 

parameters may result in inaccurate ODs, and if the network is loaded with this trip table, 

the network and route choice parameter estimation would be adversely affected as well. It 
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is essential to re-run the OD estimation process and network calibration after the 

assignment is calibrated, and the whole procedure shown in  

 

 

 

 

 
Figure 3-1 should be repeated until convergence is achieved.  
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8. CONCLUSION AND FUTURE STUDY 

Simulation-based dynamic traffic assignment (DTA) has been increasingly 

utilized to evaluate traffic management strategies, including managed lanes (ML). 

Compared to traditional methods that normally utilize static traffic assignment (STA) and 

simple analytical traffic flow equations, simulation-based DTA better captures the 

dynamics of traffic operations by modeling time-variant system measures (including 

queuing and travel times), demand, advanced management strategies, and the associated 

responses of travelers. Although DTA has the potential to better replicate real-world 

conditions, the quality of the result is highly dependent on the quality and resolution of 

the input data and the adequacy of the calibration process. The present study shows how 

data from multiple sources can be integrated, validated, and best used in different stages 

of ML assignment modeling and calibration. Extensively and carefully processing 

demand, traffic, and toll data, as well as properly defining performance measures, 

resulted in a calibrated and stable model, which closely replicates real-world congestion 

patterns and can reasonably respond to perturbations in network and demand properties. 

 The following lessons were learned as a result of the present study: 

• Advanced modeling tools such as DTA require more detailed and higher 

quality data to ensure that the developed model accurately replicates 

real-world conditions. This study successfully utilized detector data collected 

by the regional traffic management center, combined with PTMS ramp counts, 

toll data from traffic management center, and measurements from other 

sources of data to satisfy the DTA data needs. However, significant efforts 
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were required to process, fuse, and validate the data for use in the modeling 

processes. 

• A sequential procedure that iterates between network calibration, demand 

estimation, and route choice parameter estimation is recommended in this 

study. Despite the existence of mathematical formulas and solutions for the 

simultaneous estimation of supply and demand parameters, their 

implementations in the real world are not straightforward and have not been 

executed properly. 

• Supply or network calibration in Cube assignment tools entails estimating 

capacity, free-flow speed, and traffic flow model parameters for each link in 

the network. These parameters affect the travel time, queue formation, and 

queue spillback when the demand is loaded onto the network. A systematic 

multilevel approach to network calibration is recommended in this study, with 

an increasing calibration scope at each level. The process starts at the level of 

separated bottlenecks, where the capacity is estimated by various methods 

based on field data. The network is gradually extended to connected 

bottlenecks, and then to the whole corridor and subarea coverage. The 

advantage of this approach is twofold: First, critical spots of the network can 

be better identified, analyzed and replicated. Second, a more reliable demand 

can be estimated for the smaller network. Focusing on isolated bottleneck 

locations and the freeway corridor for managed lane assessment enables the 

capturing of the interactions between supply and demand and makes it 

feasible to track the causes for congestion.  
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• The supply calibration performed in this study illustrates the importance of 

coding the capacity based on detector measurements in DTA tools, 

particularly when there is evidence that the capacity is lower than the 

HCM-based estimates. In the case explored in this study, it was found that the 

free-flow speed and more importantly, the capacity, were overestimated by the 

HCM procedure, resulting in incorrect travel times and congestion when used 

in the DTA model.  

• One of the important congestion spots in the modeled network is caused by 

spillback from an off-ramp that causes low speeds in the two left lanes of the 

five-lane road segment. Since the utilized DTA tool does not support 

lane-by-lane modeling, it was not possible to correctly replicate that location, 

because the queue in the model first fills up the whole segment (including five 

lanes) before backing up to the upstream link. If replicating the congestion at 

such locations is important to a study, a tool that better handles this situation 

or multi-resolution analysis should be considered.  

• During the matrix estimation process with the currently available tools, 

several manual adjustments and iterations are required to ensure joint 

calibration of demand, supply, and route choice behaviors. Automated 

methods such as the Method of Successive Average (MSA) or a state-space 

framework may reduce the need for manual adjustment. However, as long as 

there is evidence that a specific OD pair needs to be changed, manual 

adjustment remains a necessary component of OD estimation. Adjustments 



  

146 

and fine-tunings are also needed to avoid unrealistic deviation from the initial 

matrix and trip pattern.   

• When calibrating supply, demand, and assignment parameters, a distance 

function between simulation outputs and field measurements is minimized. 

This function should include different measures, such as link volumes, OD 

demands, link speeds and/or densities, etc. Limiting the function to replicating 

link volumes, as is the case in many studies, can be misleading and fail to 

produce the correct demand or congestion pattern. Most OD matrix estimation 

methods are based on link traffic volumes and initial OD matrices. If enough 

data on speeds, densities, queue lengths, OD routes or zonal trips (production 

and attraction rates) are available, they should be incorporated into the 

calibration process to better replicate real-world traffic conditions. This study 

illustrates that for a congested network, if queue or density data is not 

incorporated in the OD estimation process, the resulting trip matrix can 

replicate real-world counts but fail to produce the congestion pattern, because 

it can only replicate the capacity constrained counts, and not the real demand. 

• Dynamic traffic assignment requires trip matrices specified for short time 

intervals (e.g., 15 minutes or 30 minutes). The derivation of these matrices is 

performed in this study using a sequential process that starts from matrix 

factorization based on count data, followed by static assignment-based OD 

matrix estimation (static OD estimation), and finally followed by dynamic 

assignment-based OD matrix estimation (dynamic OD estimation). However, 

identified limitations, tool immaturity, and the results of this study indicate 
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that in its current stage, the dynamic OD estimation process in the utilized tool 

should be used with caution until further enhancements and testing of these 

enhancements are completed so as to confirm that the tool is able to produce 

reliable results. 

• Calibrating the toll curve, value of time, and willingness-to-pay curve 

parameters are important aspects of ML assignment. The quality of the result 

in this step significantly affects demand estimation and network calibration. A 

willingness-to-pay curve with an uncalibrated shape or incorrect value of time 

can distort the result of network calibration and demand estimation. Therefore, 

feedbacks from the assignment step to network calibration and demand 

estimation are necessary.  

• There is evidence that the value of time used in the SERPM model ($12.60 

per hour) is low and that a value of $42 produces better results. 

• The findings from this study highlight the shortcomings of utilizing static 

assignment for assessing managed lanes, even when the measured capacity 

values are coded, illustrating the need to utilize DTA modeling for such 

assessments. The calibrated DTA model was able to produce results that are 

similar to real-world results. However, the Cube static assignment module was 

not able to replicate real-world conditions.  

• For the case study of this research, it was found that the “generalized cost 

function” approach and the “willingness-to-pay” approach produce 

comparable results, although the generalized cost approach is much simpler to 

implement and calibrate, and can converge to a stable solution.   
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There are several limitations in the present study that need to be addressed in 

future research. Time restraints also limited the scope of this study. Some potentially 

interesting topics to explore in future studies include: 

• exploring a dynamic OD estimation process in which DTA is used to assign 

the matrix in the lower-level of the bi-level optimization framework, 

• estimating driver population factors, based on socioeconomic data, and their 

impact on capacity estimation for the case study corridor, 

• using a logit model instead of a willingness-to-pay curve and calibrating it 

based on observed counts on ML, 

• comparing the result of the aforementioned logit model calibration with the 

result of the logit model based on a local stated preference survey,  

• stratifying the value of time and willingness-to-pay curves for different 

markets. This classification can be based on user income, trip purpose, vehicle 

occupancy, or a combination of these variables.  
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