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ABSTRACT OF THE THESIS 

EFFECTS OF INCREASED LEVELS OF PRENATAL MESOTOCIN ON 
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 Oxytocin (OT) plays a key role in the mediation of social and stress behaviors across 

many species; however, the mechanism is still unclear. The present study investigated the 

influence of prenatal levels of mesotocin (MT; avian homologue of OT) on postnatal 

social and stress behavior in Northern bobwhite quail. Experiment one determined 

endogenous levels of MT during prenatal development using an enzyme-linked 

immunoassay kit. Experiment two examined the influence of increased MT during 

prenatal development on chicks' individual recognition ability and stress response to a 

novel environment. Experiment one showed MT levels increased significantly throughout 

embryonic development. Experiment two showed significant differences in stress 

behavior for chicks with increased MT during prenatal development; however, no 

significant differences were found for social behavior. This study suggests MT serves 

different functions depending on the stage of embryonic development and that increasing 

MT levels affects postnatal stress behavior, but not social behavior.  
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I. INTRODUCTION 

 Over the past decade, researchers have focused on the role that the 

neurotransmitter oxytocin (OT) plays in the mediation of social and stress behaviors 

across many species; however, how and to what extent this neurotransmitter is involved 

in these processes is still unclear (Bartz, Zaki, Bolger, & Ochsner, 2011; Ross & Young, 

2009). Because of the growing evidence to support the role of OT in several specific 

disorders such as autism, social anxiety disorders, depression, obsessive-compulsive 

disorder, and schizophrenia, it is important that we are able to effectively characterize 

this system (Gimpl & Fahrenholz, 2001). Researchers working with OT Knockout mice 

have shown that these mice have a significant impairment in social recognition tasks that 

can be reversed through injection of OT (Ferguson, Aldag, Insel, & Young, 2001). 

Another key finding came from Stein, Goldin, Sareen, Zorrilla, and Brown (2002) who 

demonstrated that social avoidance and phobias (i.e., anxiety) increased amygdala 

activity in humans. Stein and colleagues' (2002) finding is significant because we know 

the amygdala contains OT receptors, suggesting that OT may be an underlying 

mechanism reflecting the changes in activity and behavior observed in these disorders. 

Similar activation of the amygdala was found when participants were shown fearful 

stimuli and this activation was significantly depressed by intranasal administration of OT 

(Kirsch, et al., 2005). Additionally, compelling evidence for the role of OT in social 

cognition comes from Hollander and colleagues, 2006 who found facilitation of the 

processing and retention of social information, specifically affective speech, in adults 

diagnosed with Asperger's or Autism after administration of OT. Taken together, these  
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findings suggest a role for OT in the production of the aberrant behaviors characteristic of 

these disorders.  

Research has also revealed a role of OT in stress responses (Lee, Brady, Shapiro, 

Dorsa, & Koenig, 2007). Studies examining the effects of OT on stress have found that 

OT exerts powerful anti-stress effects including decreases in blood pressure, 

corticosterone/cortisone levels, and increases in insulin, all of which may allow for easier 

social interactions among conspecifics (Gimpl & Fahrenholz, 2001). Furthermore, stress-

induced central release of OT can alleviate stress-induced symptoms of anxiety (Gimpl & 

Fahrenholz, 2001). These studies suggest that there is overlap between the effects of OT 

on behaviors related to stress and social interactions. Indeed, in many instances 

characteristics from both domains are present in a given disorder. For example, anxiety 

disorder symptoms can include hyperactivity of the hypothalamic-pituitary-adrenal 

(HPA) axis and decreases in social interaction. 

 In addition, of particular interest for my research, is the substantial body of work 

demonstrating that changes in the prenatal environment can have effects on subsequent 

postnatal behaviors. For example, Bertin, Richard-Yris, Möstl, and Lickliter (2009) 

showed that increasing the amount of prenatal testosterone (T) available to a developing 

quail embryo significantly increased chicks’ postnatal growth rate, stress reactivity, and 

auditory learning ability.  

 Mesotocin (MT) is the avian homologue of OT and differs from OT by only one 

amino acid (Jonaidi, Oloumi, & Denbow, 2003; Gimpl & Fahrenholz, 2001; Bons, 1980) 

and as we will review below, MT in avian species functions similarly to OT in mammals. 

In the current study, Northern bobwhite quail were used to investigate the role of 
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increased levels of MT during prenatal development on postnatal social behavior and 

stress responsiveness. To investigate this, two experiments were carried out. Experiment 

one was designed to determine the endogenous levels of MT throughout embryonic 

development. Experiment two had three aims: (1) to examine the role of increased 

prenatal MT on postnatal social cognition, specifically examining chicks’ ability to 

discriminate between a familiar and unfamiliar conspecific, (2) to examine the role of 

increased prenatal MT on chicks postnatal stress responsiveness as measured by an 

emergence task into a novel environment, and (3) to examine the developmental 

trajectory of the effects of increased prenatal MT on these postnatal behaviors. To our 

knowledge, this is the first study to quantify the amount of MT in the brain of the 

bobwhite quail and to examine the effects of prenatal MT levels on postnatal behaviors.   

II. LITERATURE REVIEW 

Hormones and Behavior 

 Hormones are chemicals produced in the body at one location, which project 

their effects to the activity of another location, referred to as the target tissue. The 

production locations for hormones are specialized glands known as endocrine glands 

(endo from the Greek root word meaning ‘within’ and krinein meaning ‘to release’). 

Hormones are responsible for coordinating the physiology and behavior of an organism 

by regulating, integrating, and directing its bodily functions (Nelson, 2010). Hormones 

are quite similar in function to other chemical transmitters in the body, such as 

neurotransmitters and cytokines, and the division among these chemical mediators is 

mostly a reflection of the need to organize the various biological systems into endocrine, 

nervous, and immune systems (Nelson, 2010). Hormones can be categorized into four 
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groups: (1) peptides or proteins, (2) steroids, (3) monoamines, and (4) lipid-based 

hormones. The divisions of the hormones into their respective groups is based on several 

distinctive characteristics including their mode of release, how they move through the 

blood, the location of their target tissue receptors, and the manner by which the 

interaction of the hormone with its receptor results in a biological response (Nelson, 

2010). Additionally, the endocrine system itself harbors several general features that 

distinguishes it from other bodily systems including (1) endocrine glands are ductless, (2) 

endocrine glands have a rich blood supply, (3) the products of endocrine glands (i.e. 

hormones) are secreted into the bloodstream, (4) hormones in the blood can circulate to 

almost every cell in the body and thus have the potential to interact with any cell 

containing appropriate receptors, (5) hormone receptors are embedded within the 

membrane or located elsewhere on the cell and these receptors are quite specific binding 

sites, only interacting with a particular hormone or class of hormones (Nelson, 2010).  

Historically, there have been two types of mechanisms that have dominated 

research aimed at elucidating the physiological mechanisms of animal behavior - neural 

and hormonal. Until the beginning of the twentieth century, the corresponding systems 

for these two mechanisms, nervous and endocrine, respectively, were thought to be 

disparate. However, findings have led to the understanding that the nervous and 

endocrine systems are significantly integrated (Adkins-Regan & Carter, 2010). For 

example, nerve cells can synthesize and secret hormones, the behavioral effects of 

hormones are mediated by their actions on neurons, and the endocrine system is regulated 

by the brain so that hormone levels associated with behavior respond to both physical and 

social environments (Adkins-Regan & Carter, 2010). Indeed, it is now known that one of 
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the most active endocrine organs and one that produces the most diverse array of 

hormones is the brain (Nelson, 2010). It is also known that many neuro-endocrine 

mechanisms related to behavior and other complex processes are similar among many 

vertebrate species.  

Some of the first evidence of this concept of neurohormones is credited to Henry 

Dale in the early 1900’s when he showed that secretions from the pituitary gland could be 

used to induce labor, first in animal models and later in humans (Dale, 1906 as cited in 

Adkins-Regan & Carter, 2010). Further evidence came from Otto Loewi in 1921 when he 

demonstrated that secretions from the vagus nerve were capable of affecting heart rate (as 

cited in Adkins-Regan & Carter, 2010). Loewi’s work is said to be the first “modern” 

evidence for neurohormones (i.e. the idea that hormones in the periphery can, in fact, 

come from and be regulated by the central nervous system). Together, the work of these 

and many others during this time generated a powerful interest in the relationship 

between hormones and their effects on behavior.  

Building on the understanding of neuroendocrine mechanisms and their influence 

on behavior is the work of Ernst Scharrer. In 1928, Scharrer contributed to understanding 

the role of secretions of the central nervous system in endocrinology by identifying the 

largest cells in the hypothalamus and subsequently naming them ‘magnocellular 

neurons’. He was also the first to articulate the concept of neurosecretion (Adkins-Regan 

& Carter, 2010). However, it was not until 1953-1954 that the chemicals secreted by 

these cells were identified when Vincent du Vigneaud synthesized oxytocin and 

vasopressin (Adkins-Regan & Carter, 2010). The identification of oxytocin and 

vassopressin by du Vigneaud set the stage for advancements in the investigations of 



 6

hormones and understanding that they were not only produced in peripheral endocrine 

glands and the pituitary, but in the nervous system as well.  

Some of the seminal work examining neuroendocrine mechanisms of behavior 

involved the measuring of steroid hormones using bioassays. Advances in these hormone 

measurement techniques have led to an abundance of studies linking the release of 

hormones, particularly steroid hormones, to specific behaviors. With the surge of interest 

in measuring hormones and correlating them with specific behaviors questions began to 

surface as to what evidence would be appropriate in order to establish that a certain 

hormone was, indeed, responsible for the observed change in behavior or that a behavior 

was correlated with a change in hormone concentration. It was established that three 

conditions must be satisfied in order for a causal link to be made between the hormone 

under investigation and the corresponding behavior: (1) the behavior should disappear 

when the source of the hormone is removed or the actions of the hormone are blocked, 

(2) after the behavior is stopped, replacement of the hormone or the hormones source 

should restore the behavior, and (3) hormone concentrations and the behavior should be 

covariant (Nelson, 2010). These guidelines are still utilized in the modern investigation of 

hormones. However, because of the difficulty in maintaining reliable covariant hormone-

behavior measures the first two conditions are typically sufficient to establish a link 

between hormone and behavior (Nelson, 2010). It is likely the complexity of the 

interactions of the multiple hormones as well as other environmental and social factors 

that influence behaviors that accounts for the difficulty of obtaining the third criteria of 

covariant of hormone and behavior. In fact, one of the environmental factors that can 

alter hormone functioning is the laboratory setting. Because of this, it is of particular 
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importance to verify hormone-behavior relationships in natural environments. Although 

there are inherent difficulties associated with examining hormone-behavior relationships 

in the natural environment it is also useful in distinguishing between artifacts of a 

laboratory setting and a true biological response (Nelson, 2010).  

The early work of researchers interested in the study of hormone-behavior 

relationships (i.e., ethologists) focused on the non-physiological mechanisms of behavior, 

such as sensory cues (Adkins-Regan & Carter, 2010). Eventually the underlying 

mechanisms of behavior began to be investigated by figures such as Erich von Holst and 

Ursula von St. Paul, when they electrically stimulated the brains of freely moving 

chickens and observed behaviors such as vocalizations, grooming, feeding, and 

aggressive attack (Adkins-Regan & Carter, 2010). The work Holst and St. Paul, as well 

as many others, marked the beginning of a rich interest in the physiological mechanisms 

of behavior.  

Research continues to flourish with novel discoveries on the nature of the 

hormone-behavior relationship in animals and humans alike. For example, research has 

demonstrated that adrenal steroid hormones are secreted in different amounts according 

to the time of day and in doing so, play an important role in coordinating sleep patterns, 

food seeking behaviors, and processing of information (McEwen, Sakai, & Spencer, 

1993). Studies examining effects of sex hormones have found that postnatal increases in 

testosterone levels are critical for the normal development of the male genitalia and 

reproductive function (Main, Schmidt, & Skakkebaek, 2005). Alexander, Wilcox, and 

Farmer (2012) found that hormonal changes in early postnatal life could predict toy 

preferences in male infants. The 2002 finding of Alexander and colleagues provides a 
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sensitive time period in which the influence of hormones on sex-specific behaviors may 

be of particular interest, similar to that of puberty in early adolescence. While the 

majority of investigations on hormone-behavior relationships have focused on the 

postnatal period, a number of researchers are also inquiring about the role of hormones in 

the prenatal environment.  

Prenatal Hormones 

 It has been well established that during prenatal development hormones influence 

the structure of the brain and determine the basis for behavioral regulation (Worthman, 

2011). Some of the earliest work regarding the theory of how hormones function to 

support organization and regulation of behavior of the organism came from the landmark 

article published in 1959 by Charles Phoenix and colleagues (Phoenix, Goy, Gerall, & 

Young, 1959 as cited in McCarthy, Wright, & Schwarz, 2009; Wade, 2006). The results 

of this article offered two important concepts to the field: (1) It demonstrated that when 

female guinea pigs were exposed to androgens during the prenatal period masculinization 

of sexual behavior occurs and (2) it posited the Organizational/Activational theory of the 

effects of hormones. The theory stated that hormones during the prenatal period have 

“organizational” effects because they produce permanent changes to brain structure and 

the corresponding behavior and “activational” effects are those that occur in the postnatal 

period that produce temporary changes in the brain and behaviors. Since this time, a 

wealth of evidence has accumulated in support of this notion. One of the most widely 

known effects of prenatal hormones is regarding sex differentiation of brain structures 

and the reproductive system. For example, the discovery of sex-specific differences in 

song control nuclei in birds was one of the earliest discoveries of its kind and led directly 
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to the discovery of the sexually dimorphic nucleus of the preoptic area in rodents (Gorski, 

Harlan, Jacobson, Shryne, & Southam, 1980). Following these insights it was soon 

revealed that sex differences existed in the frequency of dendritic spine versus somatic 

synapses in the arcuate nucleus (Matsumoto & Arai, 1980) ventromedial nucleus 

(Matsumoto & Arai, 1986) and amygdala (Nishizuka & Arai, 1981).  

In addition to the abundance of work examining the effects of steroid hormones in 

the prenatal period there has been a growing amount of work investigating 

glucocorticoids. High levels of maternal stress during pregnancy are associated with 

increased levels of glucocorticoids that alter the maternal hypothalamic-pituitary-

adrenocortical axis and placental axis (Davis & Sandman, 2006). Some key findings have 

demonstrated that increased glucocorticoids in the prenatal environment can lead to 

abnormal development of the fetal central nervous system and shorter gestation, both of 

which increase the risk of infants born with cognitive, emotional, and physical 

abnormalities (Davis & Sandman, 2006). For example, prenatal exposure of rats to 

increased glucocorticoids was shown to lead to poorer performance on a spatial memory 

task as adults (Brabham, Phelka, Zimmer, Nash, Lopez, & Vazquez, 2000). Additional 

studies using animal models have demonstrated that increased amounts of prenatal 

glucocorticoids have life-long effects on insulin resistance, blood pressure, hypothalamic-

pituitary-adrenal axis functioning, and the central nervous system (Bakker, van Bel, and 

Heijnen, 2001; Matthews, 2000). These studies not only highlight the importance of 

prenatal hormones and their effects on multiple aspects of postnatal development, but 

they also underscore one of the major difficulties of the mammalian model for examining 

effects of prenatal hormones. When attempting to examine the effects of hormones in the 
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prenatal period there is the constant influence of the mothers’ endocrine state on the 

fetus. Most research examining hormones has utilized a mammalian model and although 

there has been a wealth of insight into the effects of hormones on prenatal development, 

it is difficult to parse apart the effects of the hormone being examined and the many other 

maternal hormones that are affecting the fetus. Because of this, researchers have 

employed another model in the study of the effects of prenatal hormones – the avian 

model. An advantage of using avian species is that all prenatal hormones are deposited 

prior to incubation (i.e. a one-time event at oogenesis). Thus, the avian paradigm allows 

for more precise control of the hormone being investigated, providing a clearer picture of 

what is responsible for the observed alterations in postnatal behavior. Another advantage 

of the avian model is that in comparison to other non-mammalian species, avian eggs are 

quite large and therefore allow for easier sampling and manipulation (Groothuis & 

Engelhardt, 2005). Because of its advantages, the avian model has become an 

increasingly popular model for the investigation of prenatal hormones and their effects on 

behavior.  

Avian Hormones 

 The past decade has shown a surge in studies investigating steroid hormones of 

maternal origin in the avian egg and how these effect offspring development (Groothuis 

& Engelhardt, 2005). Indeed, much of the research investigating hormones in avian 

species has focused on hormones of maternal origin, particularly androgens (Müller, 

Dijkstra, & Groothuis, 2009; Engelhardt, Carere, Dijkstra, & Groothuis, 2006; Müller, et 

al., 2005; Eising, Müller, Dijkstra, & Groothuis, 2003). Hormones of maternal origin that 

have been found in the egg prior to incubation are androgens, estrogen, and 
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corticosterone. These hormones have been shown to have effects on the development of 

the embryo, the phenotype of the adult bird, and the amount and type of egg hormones 

can act as a significant source of developmental plasticity beginning in the embryonic 

stages and continuing throughout postnatal life (Gil, 2003). For example, these hormones 

have been implicated in the mediation of postnatal attributes of the offspring such as 

hatching time, muscular growth, growth of body mass and structural size, early begging 

and competitive behavior, and pre-fledgling survival (Groothuis & Engelhardt, 2005). It 

has also been found that eggs producing male versus female chicks differ in the content 

of maternal hormones (Petrie, Schwabl, Brand-Lavridsen, & Burke, 2001). Specifically, 

eggs hatching males had significantly higher levels of androstenedione, testosterone, 

dihydrotestosterone, and estradiol compared to female hatching eggs. These findings are 

important for understanding the effects of maternal hormones on the development and 

sex differentiation of the embryo as multiple studies have found sexual differentiation of 

brain structures, phenotypes, and behaviors of offspring.  

An advantage for researchers employing the avian model is that there is a large 

volume of behavioral data collected in birds in a naturalistic setting relative to many other 

vertebrate taxa (Groothuis & Carere, 2004). For example, ecologists have extensively 

studied neophobia and exploratory behaviors in birds in relation to ecological plasticity, 

opportunism, or innovative behavior, as these are all potential driving forces behind the 

evolution of many species (Groothuis & Carere, 2004). As psychologists, these behaviors 

are also of particular interest, but for different reasons. For example, examining 

neophobic behavior can shed light on different aspects of many human psychological 

disorders (e.g., anxiety, depression, autism, schizophrenia). To better understand the 
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hormonal mechanisms underlying these concepts researchers have expanded research on 

hormones to experimental modification. By modifying the endogenous levels of 

hormones, researchers are attempting to better isolate hormones of interest and gain 

deeper knowledge regarding their roles in the development of postnatal behaviors and 

how the relationship between hormones and behavior relate to aspects of human 

psychological disorders.  

Modifying Avian Hormones 

The ability to manipulate hormones of interest has afforded researchers the 

opportunity to gain more direct insights into hormonal mechanisms involved in behavior. 

Following the work in mammals, recent research with avian species has focused a 

considerable amount of attention on modifying hormones in the prenatal environment. 

For example, Müller and colleagues (2005) found that increases in prenatal levels of 

testosterone and androstenedione produced negative effects on cell-mediated immunity 

and humoral (i.e. antibody-mediated) immunity in gull chicks. Other research examining 

prenatal exposure to increased testosterone in bobwhite quail embryos found that this 

influenced postnatal growth rates, increased chicks’ emotional reactivity, and facilitated 

auditory learning ability (Bertin, et al., 2009). Taken together these studies suggest that 

elevated prenatal levels of androgens can have significant effects on postnatal 

development and learning. Nordgreen, Janczak, and Bakken (2006) investigated the 

effects of increased corticosterone in the prenatal period on postnatal filial imprinting in 

the domestic chicken. It was found that chicks that were exposed to elevated 

corticosterone did not show a preference for the imprinting stimulus during a 

discrimination task compared to the control group that did show a preference. These 
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studies have provided evidence for the influence of hormones of maternal origin in 

multiple avian species on postnatal behaviors. Because studies investigating prenatal 

hormones in avian species have focused on hormones of maternal origin, almost 

exclusively, it is imperative that this research be extended to other classes of hormones.  

Extending this type of research to other hormones will provide novel insight into 

mechanisms driving multiple aspects of development, including behavior.  

Oxytocin, Social Cognition, and Stress Responsiveness 
 

Oxytocin. Oxytocin (OT) and OT-like peptides are neurohypophysial hormones 

that have been shown to be a key modulator in social behavior across a wide variety of 

species. It was also the first peptide hormone to have its structure determined and the first 

to be chemically synthesized in a biologically active form (Ross & Young, 2009). 

Virtually all vertebrate species possess an OT-like peptide (Gimpl & Fahrenholz, 2001).  

OT, like all neurohypophysial hormones, is a nonapeptide that is constituted with a six 

amino acid cyclic part and a COOH-terminal alpha-amidated three-residue tail. OT is 

synthesized in the magnocellular neurosecretory cells of the supraoptic nucleus (SON) 

and paraventricular nucleus (PVN) of the hypothalamus. It is released from the 

hypothalamus and stored in the Herring Bodies of the axon terminals in the posterior 

pituitary. It is here that OT is bound to its’ transporter protein neurophysin I and released 

into the blood stream when stimulated. Similarly, MT which differs from OT by only one 

amino acid (Jonaidi, Oloumi, & Denbow, 2003; Gimpl & Fahrenholz, 2001; Bons, 1980) 

has been shown to be produced and stored in the same relative brain structures as OT in 

humans and other mammal species (Ross & Young 2009; Tennyson, Nilaver, Hou-Yu, 

Valiquette, & Zimmerman, 1986). Research has also provided support for MT serving 
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similar functional purposes as those of OT (Jonaidi et al., 2003; Milewski, Ivell, 

Grossman, & Ellendorff, 1989; Tennyson et al., 1986; Blähser & Heinrichs, 1982; 

discussed in further detail below).  

In humans, OT has been found in equivalent amounts in the posterior pituitary 

and plasma of both sexes, providing evidence for the notion that OT has other 

physiological functions in addition to its well-known role in reproductive functioning in 

females (Gimpl & Fahrenholz, 2001). For example, stress has been shown to stimulate 

the release of OT from the posterior pituitary into circulation. Studies investigating the 

functional properties of the posterior pituitary have found that stimulating this area only 

causes release of OT into the blood stream, whereas stimulation of the PVN releases OT 

into the blood and the CSF in rats, which is in accord with the finding that the PVN 

contains OT producing projections to the spinal cord (Gimpl & Fahrenholz, 2001).  

Further support comes from studies in which hypophysectomy resulted in the 

disappearance of OT in the blood, but increased OT concentrations in the CSF in rats. It 

is important to note that most of what we know about OT has come from rat studies and 

there is also evidence of species-specific differences.  

Social Cognition. Social cognition can be defined as the encoding, storage, 

retrieval and processing of information in the brain related to conspecifics. Social 

cognition is comprised of many different aspects including attachment, joint attention, 

face recognition, theory of mind, and individual recognition. For example, the capacity to 

discriminate between ones own conspecifics is an important skill for navigating the social 

environment. Indeed, the ability to discriminate between conspecifics is an essential 

component to the survival and reproductive success of any social species, including 



 15

humans. Having the ability to assess and remember others to determine who is an 

appropriate social partner or a potential enemy is beneficial to all social species. It is easy 

to understand why the abilities comprising social cognition are essential to being 

successful in this domain. The capacity to think about what another is thinking, recognize 

and discriminate between familiar and unfamiliar conspecifics, or being able to 

coordinate ones attention with that of a social partner, such as following eye gaze, to 

share an experience related to an object or event can be pivotal to the survival of an 

organism (Mundy, Gwaltney, & Henderson, 2010).  

Researchers have integrated social cognition with research from biology and 

neuroscience. This integration has linked specific biology to specific behaviors in the 

organism by supporting the notion that these behaviors are occurring concurrently with 

neurohormonal systems and brain circuits. The influence of this paradigm shift on the 

investigation of social affiliation remains widely evident today. Thus, there has been a 

surge in the study of physiological mechanisms underlying overt behaviors specifically 

related to social affiliation or cognition (Gweon, Dodell-Feder, Bedny, & Saxe, 2012; 

Haan, Pascalis, & Johnson, 2002). For example, Haan and colleagues (2002) were able to 

show using electroencephalogram (EEG) that when adults were shown pictures of human 

or nonhuman primate faces, and upright or inverted faces, the adults’ face-responsive N-

170 event-related potential (ERP) component showed specificity to the upright human 

faces only. Recently, Gweon and colleagues (2012) used functional magnetic resonance 

imaging (fMRI) to demonstrate that children and adults showed increased activation of 

the right temporo-parietal junction while listening to descriptions of characters’ mental 

states compared to descriptions of physical states. Taken together, these studies provide 
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evidence that certain areas of the brain respond preferentially to species-specific social 

features. A study conducted in human participants in 2007, using eye tracking, found that 

participants administered OT showed an increased number of fixations and total gaze 

time toward the eye region when compared with controls (Guastella, Mitchel, & Dadds, 

2007). This provides evidence that OT increases gaze specifically towards the eye region 

of the human face and suggests the possibility that eye gaze may be a mechanism by 

which emotion recognition, interpersonal communication, and social approach behavior 

is mediated.  

Work with animals has provided insight into other possible neural mechanisms 

supporting social cognition. Much of this animal research has focused on neurohormonal 

mechanisms, particularly the OT system; in fact, some of the pioneering studies 

investigating the role of OT were in relation to social recognition in rats. These studies 

revealed that, in male rats, central injections of low doses of OT enhanced the amount of 

time (i.e., duration) a conspecific was remembered (Benelli, et al., 1995; Popik, Vetulani, 

& van Ree, 1992; Dantzer, Bluthe, Koob, & Le Moal, 1987). Specifically, Benelli and 

colleagues (1995) used a simultaneous choice task in relation to social recognition using 

familiar versus novel conspecifics. Preference (i.e., recognition) of the familiar was 

indicated by more time spent investigating the novel compared to the familiar 

conspecific. Furthermore, studies using OT knockout mice have shown that on social 

recognition tasks, like the one described above, show impairments, indicating that this 

peptide is essential for familiarity recognition (Choleris, Ogawa, Kavaliers, Gustafsson, 

Korach, Muglia, & Pfaff, 2006; Clipperton, Cragg, Wood, Langmo, & Choleris, 2006;  

Ferguson, Young, Hearn, Matzuk, Insel, & Winslow, 2000; and reviewed in Choleris et 
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al., 2009). In addition to the work on underlying mechanisms of social cognition, there is 

a substantial body of work demonstrating that early experiences within the environment 

can have substantial effects on social behaviors.  For example, a study examining visual 

imprinting of species-specific maternal preferences in ducklings found that if exposed to 

a stuffed hen for 30 minutes, ducklings at 24 hours of age would develop a visual 

preference for the familiar mallard over an unfamiliar stuffed hen in a simultaneous 

choice task at 48 and 72 hours, but only if the ducklings were reared under unrestricted 

social interactions with siblings. If ducklings were reared in social isolation, the visual 

preference for the familiar stuffed hen would not occur. This study underscores the 

importance of normal early social experiences on visual imprinting of filial behavior 

(Lickliter & Gottlieb, 1985)  

 The importance of the early environment in the development of social cognition 

extends beyond the perinatal period and into the prenatal environment. Studies have 

examined behaviors such as perceptual learning and emotional reactivity in quail and 

found quite interesting results (Lickliter, 2005). For example, Lickliter (1989) found that 

exposing bobwhite quail embryos to patterned visual stimulation in the period 

immediately prior to hatching interfered with species typical auditory preferences in the 

post-hatch period. In contrast, another study examining the effects of prenatal auditory 

stimulation on bobwhite quail embryos showed enhanced postnatal responsiveness. 

Specifically, enhanced prenatal auditory stimulation produced an accelerated pattern of 

species typical visual responsiveness by 24 hours of age (Lickliter & Stoumbos, 1991). In 

addition, studies examining the effects of prenatal steroid hormones on postnatal 

ontogeny of behaviors found that increasing the amount of prenatal testosterone (T) 
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available to a developing quail embryo significantly increased chicks’ postnatal growth 

rate, stress reactivity, and auditory learning ability (Bertin, et al., 2009). 

Stress. Studies in male and female rats have shown that OT exerts anti-stress 

effects such as decreases in blood pressure and corticosterone levels (Gimpl & 

Fahrenholtz, 2001). For example, immobilization stress has been shown to increase the 

amount of OT mRNA in rats (Jezova, Skultetyova, Tokarev, Bakos, & Vigas, 1995). 

Thus, it is thought that perhaps stimulated release of OT serves to activate the 

hypothalamic-pituitary-adrenal (HPA) axis to increase glucocorticoid release. 

Corticotropin releasing factor (CRF) is produced in the hypothalamus, which serves as a 

precursor to adrenocorticotropic hormone (ACTH). Adrenocorticotropic hormone is 

produced in and secreted by the anterior pituitary and is responsible for stimulating the 

release of glucocorticoids, such as cortisol, from the adrenal gland. The effects of ACTH 

can have both long-term and short-term physiological effects. The release of 

glucocorticoids by the adrenal glands acts as an inhibitory negative feedback mechanism 

to inhibit the release of CRF from the hypothalamus. The connections among the 

elements of this cascade of hormone release are known as the HPA axis. Copious 

amounts of research have shown that the HPA axis is often activated in response to 

biological stress. Cortisol is one of the main stress hormones involved in the HPA axis 

and glucocorticoids, such as cortisol, are known for their anti-inflammatory and 

immunosuppressant effects. Almost every cell contains receptors for glucocorticoids and 

a diurnal cycle (for cortisol in particular) has been observed across several mammalian 

species with levels typically being highest in the morning and lowest at night (Gimpl & 

Fahrenholz, 2001).  
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Other research has shown that stress-induced central release of OT can ameliorate 

stress-associated symptoms, such as anxiety, in rats and mice (Gimpl & Fahrenholz, 

2001). Interestingly, OT has also been shown to act as an anti-depressant in two different 

animal models of depression (Arletti & Bertolini, 1987) and it is possible that these 

effects may be mediated by an influence of OT on the dopaminergic neurotransmission in 

the limbic brain regions from projections of OT neurosecretory neurons from the PVN of 

the hypothalamus (McCarthy, 1995). Some research suggests that these OT-induced 

effects may be explained by the anxiolytic actions of OT (e.g., by reducing the inhibition 

inherent in social encounters; Gimpl & Fahrenholz, 2001). It has also been posited that  

OT may act as an anxiety reducer when animals are experiencing a stress-response to a 

novel environment or unfamiliar conspecific (McCarthy, 1995). 

Mesotocin and The Avian Model 

 As was briefly reviewed above, MT is a homologue of OT. Mesotocin is found in 

birds, lungfish, reptiles, amphibians, and some marsupials (Goodson, Kelly, & Kinsbury, 

2012). Like OT in mammals, MT is synthesized in the parvocellular cells of the 

paraventricular nucleus (PVN) of the hypothalamus (Mikami, Tokado, & Farner, 1978) 

and can also be found in the magnocellular cells of the PVN (Aste, Muhlbauer, & 

Grossmann, 1996). Goodson and colleagues (2012) reported that, similar to mammals, 

MT-immunoreactive fibers in birds have also been found in the nucleus accumbens, 

medial and lateral Bed Nucleus of the Stria terminalis (BNST), medial amygdala, lateral 

septum, habenula, periaqueductal gray, and ventral tegmental area. One of the only 

studies to actually quantify MT in an avian model showed that in chicken embryos peak 

levels of MT in the infundibulum and neural lobe occur between days 17 and 18 and 
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decrease thereafter to amounts similar to those found on the first postnatal day (Nouwen, 

Decuypere, Michels, & Kühn, 1982). In fact, the most widely used avian model has been 

the domestic chicken, however, other avian models are becoming more abundant in the 

study of hormones and behavior including the zebra finch, Japanese quail, and the 

bobwhite quail. Relevant to our research, Charvet and Striedter (2010) compared brain 

development during the prenatal period of domestic chickens with that of bobwhite quail. 

They found that when compared in absolute days of incubation (21 days for chickens vs. 

23 days for quail) neural events occur later in quail than in the chicken; However, when 

compared in percentage of incubation period the timing of neural events overlap between 

the two species.  

 While the study of the MT system in birds has been investigated for quite some 

time, it is only recently that the effects of MT on avian behavior have been examined. For 

example, when examining the effects of an MT antagonist on group size preferences in 

male and female zebra finches, findings revealed that both peripheral and intraventricular 

administration produced a decrease in the percent of time spent near the larger group of 

conspecifics and a concomitant increase in the time spent near the smaller group 

(Goodson, Schrock, Klatt, Kabelik, & Kingsbury, 2009). This effect could then be 

reversed by central administration of MT, indicating that MT plays an important role in 

modulating avian social behavior in relation to group size preference. Additionally, using 

a modified version of the above paradigm where the choices were instead a familiar or 

novel same-sex conspecific, the same investigators examined the effects of peripheral and 

central administration of an MT antagonist and found that both administration routes 

reduced the preference of subjects for the familiar conspecific. As reviewed above, 
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similar results have been shown with rats and mice using this same task (reviewed in 

Choleris, Clipperton-Allen, Phan, & Kavaliers, 2009).   

 While some work on the topic of MT and avian behavior is emerging, the most 

common being social and affiliative behavior, to our knowledge, there has yet to be any 

work examining the relationship between MT and stress reactivity in avian species; 

However, several studies are investigating the relationship between MT and stress using a 

mammalian model (i.e., rats and mice) and have found evidence that MT modulates at 

least some aspects of stress reactivity (see the section titled "Stress"; Lee, Brady, Shapiro, 

Dorsa, & Koenig, 2007; Jezova, et al., 1995; McCarthy, 1995; Arletti & Bertolini, 1987). 

Additionally, there is no research on the relationship between MT during the prenatal 

period and how manipulations of MT during this stage of development may affect 

postnatal behavior. Thus, my study was designed to determine the effects of elevated 

prenatal levels of MT on postnatal social cognition and stress responsiveness in Northern 

bobwhite quail. We intended to (1) Build upon the knowledge of hormones and behavior, 

particularly during the prenatal period, while utilizing the advantages of employing an 

avian model and (2) Extend upon the hormone research within the avian paradigm by 

examining the influence of a hormone that is not of maternal origin (i.e., mesotocin). 

III. HYPOTHESES AND PREDICTIONS 

 The first hypothesis of the proposed experiment regards the characterization of 

the endogenous levels of MT throughout the four embryonic developmental time points. 

On the basis of previous research of Charvet and Striedter (2010), who analyzed the 

embryonic developmental trajectory of brain maturation in the domestic chicken and 

bobwhite quail as well as the research from Nouwen, and colleagues (1982) who 
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quantified MT levels in the embryonic brains of domestic chickens, it was hypothesized 

that the lowest levels of MT would be observed on embryonic day 8 and the highest 

would be observed on embryonic day 16. The second hypothesis concerns the effect of 

prenatally elevated MT on social cognition. Chicks were administered an individual 

recognition task in which a familiar and a novel chick of the same age were placed on 

opposite sides of an open arena. On the basis of the social recognition tasks reviewed 

above, I predicted that chicks with increased levels of MT in the prenatal period would 

show a preference for a familiar conspecific over a novel chick when compared to both 

control groups (Choleris, Clipperton-Allen, Phan, & Kavaliers, 2009; Goodson et al., 

2009; McCarthy, 1995). The third hypothesis concerns chicks' stress response to a novel 

environment. On the basis of the literature reviewed above examining the effects of OT 

on stress responsiveness I predicted that elevated levels of MT in the prenatal period 

would decrease chicks stress response to a novel environment (McCarthy, 1995).  

 IV. EXPERIMENT ONE 

Method 

 Subjects. The brains of 40 quail embryos were collected to determine the average 

endogenous levels of mesotocin present throughout the 23 days of prenatal development 

in Northern bobwhite quail eggs. Eggs were weighed prior to incubation and brain tissue 

was collected and weighed on embryonic days 8, 12, 16, and 20 (Charvet & Striedter, 

2010; Milewski et al., 1989; Tennyson et al., 1986; Blähser & Heinrichs, 1982). An 

additional 13 embryos were used to verify the efficacy of the injection procedure once the 

baseline levels of MT were determined. All eggs were subjected to the same tissue 

collection, tissue preparation, and hormonal assay procedure as outlined here (see the 
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section titled "injections" in the methods section of experiment two for a description of 

the injection procedure). All animal care and work was carried out in accordance with the 

recommended institutional guidelines for animal care and use (Florida International 

University IACUC approval #13-015). 

Procedure 

Tissue Collection. Embryos were euthanized via rapid decapitation (Ubuka, 

Ueno, Ukena, & Tsutsui, 2003; Milewski et al., 1989) and the whole brain was removed 

from the skull with the aid of standard micro-dissection tools and a dissection 

microscope. Tissue was weighed, flash frozen in liquid nitrogen, and stored at -80ºC until 

the time of analysis. 

 Tissue Preparation. MT was extracted from the cells following the extraction 

procedure outlined in the oxytocin enzyme-linked immunoassay kit (ELISA; Abcam) 

with some modifications. An approximate equal volume of 0.1% triflouroacetic acid in 

water (0.1% TFA-H2O) was added to each sample. Tissue was homogenized using 

manual micro tissue homogenizers and centrifuged for 15 minutes at 17,000 x g at 4ºC. 

Supernatant was collected. Five hundred mg C18 SEP-PAK columns were used to 

perform solid phase extraction for each sample. Each column was equilibrated using 2ml 

of acetonitrile followed by 15 ml of 0.1% TFA-H2O. The supernatant was applied to the 

column and washed with 15 ml of 0.1% TFA-H2O. Finally, the column was eluted with 4 

ml of a solution comprised of 40% acetonitrile and 0.1% TFA-H2O. Eluants were 

collected and evaporated to dryness overnight using a centrifugal concentrator under 

vacuum in cold temperature. Dried samples were stored at -20ºC until reconstitution with 

assay buffer at time of analysis.     
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Hormonal Assays. A commercial oxytocin enzyme-linked immunoassay kit was 

used to quantify levels of MT present in the brains of the quail embryos. Cross-reactivity 

between the oxytocin ELISA kit and MT was determined to be 131%. Plates were read at 

405nm. Calculations were performed using the Gen5 software (version 2.00). Briefly, a 

standard curve was made for each plate with OT concentrations of 1000, 500, 250, 125, 

62.5, 31.2, and 15.6 pg/ml. Percent bound versus concentration of OT (pg/ml) for the 

standard curve was plotted and used to determine the concentration of MT in the samples. 

The average amount of MT present for each of the time points was calculated and used to 

determine the amount of MT to inject for experiment two. 

Data Analysis 

 Data were analyzed using the statistical software program Statistical Package for 

the Social Sciences (SPSS). The N is 10 for all four time points in the endogenous group. 

In the injected group Ns for each time point are as follows: day 8, N = 4, day 12, N = 4, 

day 16, N = 3, and day 20, N = 2 (see General Discussion section). The accepted 

significance level was p < 0.05. 

Results 

The requirements for data on the brain weights (weights in milligrams) and MT 

levels (pg/ml) in the brains of chicks during embryonic development were not obtained; 

therefore, Kruskall-Wallis and post-hoc Mann-Whitney U-tests were used for between 

group comparisons with embryonic age (8,12,16, 20) and condition (endogenous vs. 

injected) as the between subjects factors. To examine the effect of MT on brain growth 

during the prenatal period, brain weights were recorded for each subject at the time of 

tissue collection. In the embryos used to determine endogenous amounts of MT, brain 
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weights across the four developmental time points ranged from 109.5 mg to 396.9 mg. 

Average brain weights for each time point were 157.9 mg (SD = 2.43 mg), 120.1 mg (SD 

= 0.59 mg), 232.9 mg (SD = 0.94 mg), and 348.7 mg (SD = 2.13 mg) for 8-, 12-, 16-, and 

20-day-old embryos, respectively. Between group comparisons revealed a significant 

effects of Age on brain weight (Kruskall-Wallis, H = 36.482, p = .000) for these 

embryos. Post hoc Mann-Whitney U-tests revealed significant differences between days 

8 and 12 (U = -3.704, p = .000), 12 and 16 (U = 3.780, p = .000), and 16 and 20 (U = 

3.797, p = .000). In the embryos used to analyze the effects of the injection procedure 

brain weights across the four stages ranged from 100mg to 340mg. Average brain 

weights for each time point were 152.5 mg (SD = 2.99 mg), 115.00 mg (SD = 1.29 mg), 

220.00 mg (SD = 1.00 mg), and 335 mg (SD = .71 mg) for 8-, 12-, 16-, and 20-day-old 

embryos, respectively. Between group comparisons revealed a significant main effect of 

Age (H = 10.119, p = .018); However, post hoc Mann-Whitney U-Tests did not reveal 

significant differences between any age. No significant effect of Condition was found for 

brain weight.     

To address the primary research question of determining the profile of levels of 

MT throughout embryonic development Kruskall-Wallis and Mann-Whitney U-tests 

were conducted. The endogenous levels of MT throughout the four time points were 

lowest at the beginning of embryonic development and increased through embryonic day 

20. The average amount of MT present in the brains of the quail embryo at day 8 was 

43pg/ml (SD = 5.05). Day 12 revealed levels nearly 5 times this amount at 210pg/ml (SD 

= 42.36). From day 12 to day 16 levels of MT increased approximately 10-fold to 

1,961pg/ml (SD = 392.79) and on day 20 levels were measured at another 
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approximate10-fold increase of 3,047pg/ml (SD = 650.19). Between group comparisons 

revealed a main effect of Age (H = 35.700, p = .000). Post-hoc Mann-Whitney U-tests 

revealed significant differences between days 8 and 12 (U = 3.808, p = .000), 12 and 16 

(U = 3.780, p = .000), and 16 and 20 (U = 3.250, p = .000). After injection of synthetic 

MT, levels of MT for the days examined were found to be 42.24pg/ml (SD = 2.02), 

150.22pg/ml (SD = 58.87), 1,414.02pg/ml (SD = 336.90), and 3,192.55pg/ml (SD = 

1,057.03), respectively. Between group comparisons revealed a significant effect of Age 

on MT levels (Kruskall-Wallis, H = 11.207, p = .011). Post hoc Mann-Whitney U-tests 

revealed a significant difference in MT levels between days 8 and 12 (U = 2.323, p = 

.029). No significant effect of Condition was found (See Figures 1 and 2). 

 

Figure 1. Average brain weights of chicks in the Endogenous and Injected conditions for 

the four prenatal development time points.  Standard error bars represent the standard 

error of the mean. 
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Figure 2. Average level of mesotocin of chicks in the Endogenous and Injected 

conditions for the four prenatal development time points.  Standard error bars represent 

the standard error of the mean.   

Discussion 

We are the first to quantify levels of MT in the brain of the quail embryo. The 

dramatic changes in the level of MT across developmental stages suggest that MT may 

play an important role in at least some aspects of prenatal development and that its role 

changes depending on the age of the embryo. For example, between embryonic days 16 

and 20 in the quail we observed a near 10-fold increase in the amount of MT. During the 

equivalent developmental stage in the chicken embryo (time in percent of incubation; 

Charvet & Striedter, 2010) the visual and auditory systems are at peak development and 

further maturation of neurotransmitter systems is occurring (Rogers, 1995). Given the 

data provided by Charvet and Striedter (2010) it is likely that peak development of the 
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occurring between days 16-20 in the bobwhite quail; Thus, our findings may provide 

insight into the role that MT plays in the development of these two key sensory systems. 

This finding is of interest to our work as research has shown abnormal processing of 

auditory and visual stimuli in certain disorders, such as children diagnosed with autism 

spectrum disorders (ASD; see Bahrick and Todd, 2012 for a review). Furthermore, 

abnormal levels of OT have been shown in children with ASD suggesting a possible 

correlation between OT and at least some of the symptoms of ASD associated with the 

auditory and visual systems (Modhal, Green, Fein, Morris, Waterhouse, Feinstein, & 

Levin, 1998).  

 Additionally, I showed that there were no significant differences in the levels of 

MT between conditions (i.e., MT injected vs. no injection). MT levels remaining the 

same between conditions could indicate that increasing the levels of MT pre-incubation 

causes down-regulation of the MT system in the embryo. If the injection did, in fact, 

cause a down-regulation of the endogenous MT system, it is likely that increasing the 

amount of MT available to the developing embryo early in development allowed for a 

compensatory mechanism to adjust for the added amount of the hormone. It would be 

interesting to explore whether or not this would also be the case if the embryos were 

injected later in development. However, one issue with exploring this is the development 

of the blood-brain barrier, which in the chicken, occurs at approximately embryonic day 

14 (Ribatti, Nico, & Bertossi, 1993).  

 Future investigations could utilize a radioactive tracer along with the injected 

hormone which would afford the opportunity to examine where the hormone is 

distributed after injection and for how long it remains there in order to develop better 
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techniques for injecting hormones that are not of maternal origin to more accurately 

mimic the natural introduction of the hormone in the embryo. Another possible line of 

inquiry is to examine the effects of an antagonist for MT at different embryonic stages. 

Further investigation is needed to better understand how the bobwhite quail embryo 

adapts to altered levels of hormones during embryonic development.  

 In addition to experiment 1, we were interested in examining the behavioral 

effects of administering exogenous MT during embryonic development. If MT is 

affecting the visual and auditory systems during prenatal development are we able to 

measure any associated changes in postnatal behavior? Because of the known deficits in 

social cognition and aberrant reactivity of stress systems associated with many 

developmental and psychiatric disorders we explored chicks ability to recognize a 

familiar conspecific in a simultaneous forced choice test between a familiar and novel 

chick and chicks' stress response to a novel environment, at two postnatal ages.  

V. EXPERIMENT TWO 

Method 

 Egg Injections. Fertile, unincubated eggs were selected each week and divided 

into one of the three experimental conditions. Injections were performed prior to 

incubation as described by Bertin et al. (2009). All eggs receiving injections were 

disinfected with 70% ethanol and a hole was bored in the eggshell above the air sac using 

a sterile 25 1/2 -G needle. The solution (20 µl vehicle (Sodium Chloride (NaCl); Sigma 

and MT ((Ile8)-Oxytocin; Bachem, No. H-2505) for M-treated or vehicle only for V-

controls) was delivered using a 100 µl Hamilton syringe mounting 25 1/2 -G sterile 

needle. The injection hole was sealed using the procedure described by Rubolini, 
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Romano, Martinelli, Leoni, and Saino (2006) by gluing a tiny piece of cleaned and 

disinfected eggshell over the hole immediately after injection. After hatching chicks were 

transported to their home-cage where they were housed for the remainder of the study. 

 Subjects. Subjects consisted of 147 incubator-reared Northern bobwhite quail 

chicks. There were three groups of embryos: a mesotocin treated group (M; N = 27), a 

vehicle treated group (V-controls; N = 60), and an untreated group (controls; N = 60).  

Chicks were housed in clear plastic bins (25cm wide x 15 cm high x 45 cm long) placed 

on shelves in a Nuaire Model NU-605-500 Animal Isolator in groups of 12-15 chicks to 

mimic typical brood conditions for the bobwhite quail. Food and water were available ad 

libitum. All animal care and work was carried out in accordance with the recommended 

institutional guidelines for animal care and use (Florida International University IACUC 

approval #13-015).  

 Apparatus. The individual recognition task was conducted in a circular, open 

field arena (diameter = 130 cm, height = 24 cm) located in a sound-attenuated room. Two 

semi-circular areas each corresponding to 5% of the total area of the arena were 

demarcated on opposite sides of the arena. A clear, plexi-glass box (17cm x 15cm x 

15cm) was placed in each area. For testing, a familiar chick (reared with the subject 

chick) and a novel chick (not reared with the subject chick, but of the same age) were 

placed in the plexi-glass boxes. Immediately following, the subject chick was placed in 

the center of the arena to begin testing. Time (seconds) spent investigating the novel 

chick and the familiar chick was recorded.  

For the stress responsiveness task, a small box (25.4 cm x 17.78 cm) was placed 

on the outer edge of the arena. There is a small opening in the front of the box covered by 
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a door that allowed the chick to exit the box. A one-minute acclimation period preceded 

the start of the test before the experimenter opened the door to the box, allowing the 

chick to exit into the arena. Latency to exit the box and time spent in the open arena were 

measured.  

 Chicks were tested at 72 and 96 hours post-hatching. After chicks completed the 

test at 72 hours, they were returned to the home cage for the intervening 24-hour period. 

At 96 hours post-hatching chicks were subsequently tested on the same task. 

Counterbalancing for side-bias took place across all conditions and between age of 

testing (72- versus 96-hours post-hatch). All testing trials lasted 5 minutes and were 

recorded via a video camera that is mounted directly above the testing arena. The chicks 

were tracked using the software program Ethovision. All data were stored within the 

Ethovision software until the data were exported for analysis. 

Data Analysis 
 

 To achieve adequate power for our parametric and non-parametric statistical 

analyses, we have found that an N of approximately 30-40 chicks per experimental 

condition is usually required. Data were analyzed using the statistical software program 

Statistical Package for the Social Sciences (SPSS). The requirements for parametric tests 

were not obtained for these data; therefore, Kruskall-Wallis and post-hoc Mann-Whitney 

U-tests were used for between group comparisons. Due to the non-independence of the 

duration scores for the time spent investigating the novel versus the familiar chick in the 

individual recognition task, duration scores were converted into proportion of total 

duration scores.  
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Between group comparisons were performed on the differences between these scores (i.e. 

familiar minus novel). For the emergence task, latency to emerge into the open arena was 

measured.   

Results 

  Individual Recognition Task. To address the primary research question of 

whether MT injected chicks showed a preference for the novel over the familiar chick 

Kruskall-Wallis tests were performed for the proportion of time spent investigating the 

novel versus the familiar chick.  Within group comparisons (Wilcoxon- signed rank tests) 

were conducted to examine the effect of Age on the duration of time chicks spent 

investigating the novel versus the familiar chick and revealed a marginally non-

significant effect of Age (Z = 1.677, p = .093). The effect of Condition on time spent 

investigating the novel versus familiar chick was not significant (Figure 3).  

 

Figure 3. Mean proportion of time spent near the familiar chick. Standard error bars 

represent the standard error of the mean.  
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 Emergence Task.  To address the primary research question of whether MT 

injected chicks showed a reduced stress response to a novel environment we performed 

analyses on the latency to exit the box into the open arena. Results revealed a significant 

main effect of Condition (Control, Vehicle Control, MT injected) for latency to exit into 

the open arena at 72 hr, H = 10.546, p = .005 and a marginally significant effect at 96 hr, 

H = 5.229, p = .073.  Post-hoc Mann-Whitney U-tests revealed significant differences 

between control chicks and MT injected chicks and between vehicle injected chicks and 

MT injected chicks for latency to exit in to the open arena at 72 hr, U = 126, p = .007 and 

U = 98, p = .001, respectively. No differences were found between the control and 

vehicle control conditions on latency to exit into the open arena at 72 hr. There was no 

significant effect of age (Figure 4; note that in the mesotocin condition at 72 hours the 

average time to emerge is zero, which, in this case is indicating that the chicks in this 

group never emerged).  

 

Figure 4. Mean of the difference scores for latency to emerge into the open arena. 

Standard error bars represent the standard error of the mean.  

0

20

40

60

80

100

Control Vehicle Control Mesotocin InjectedA
ve

ra
ge

 t
im

e 
to

 e
m

er
ge

 
(s

ec
on

d
s)

Condition

Latency to Emerge

72

96



 34

Discussion 

 The results of experiment two provide evidence that injection of MT during 

prenatal development has lasting effects on at least some postnatal behaviors.  At 72 hr of 

age chicks injected with MT during the prenatal period took significantly longer to exit 

the box into the open arena as measured in the emergence task compared to the two 

control groups. Because the emergence task is designed to test stress reactivity to a novel 

environment, we assert that chicks that were injected with MT during prenatal 

development exhibited a greater stress response to a novel environment compared to 

chicks that did not receive MT in the prenatal period. Because reduced levels of MT have 

been shown to increase fear and stress responses it may be possible that the effects of the 

injection procedure continued to have effects on MT levels postnatally, causing a down-

regulation of this system. When chicks were tested again at 96 hr of age, this effect 

disappeared; suggesting that either 1) the system is beginning to compensate for the 

effects of increased levels of MT prenatally, or 2) it may also indicate reduced novelty of 

the environment. Future studies could examine this by testing two separate groups of 

chicks at each age to parse apart possible effects of compensatory mechanism versus 

reduced novelty to further understand the developmental plasticity of the chick MT 

system.  

 No significant results were found for either condition or age for our measure on 

the individual recognition task. This suggests that either 1) our procedure of increasing 

MT does not affect this set of social behaviors in the bobwhite quail or 2) that some 

component of this measure is simply not useful for measuring this type of social behavior 

in bobwhite quail. To address the first possibility, it is possible that the potential down-
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regulation of the MT system caused by the injection is sufficient to impair chicks' ability 

to discriminate between conspecifics, as we know that decreased levels of MT can have 

effects on social recognition tasks (Goodson et al., 2009). If the injected MT is not stable 

enough to last in the system once injected, it may be that the MT is no longer present at a 

critical time when it could have effects on areas of the brain that are involved in social 

behavior. For example, we know that centrally released MT from the PVN to areas of the 

amygdala and forebrain are main pathway by which social behavior is affected (Goodson 

et al., 2012). We also know that approximately embryonic day 8 in chicks is the peak 

time of neuron formation in the forebrain (Rogers, 1995). If MT is no longer available to 

have an effect during this time then we may not see any differences in social behavior. It 

is also possible that at this age the brain systems necessary for this type of social 

discrimination are not developed enough to perform such discriminations between 

conspecifics.  

 To address the second possibility that some component of our task may not be 

useful for measuring this type of social behavior in the quail it is important to consider 

other variables such as age or experience of the animal. For example, we assume that 

because chicks are raised in postnatal groups in separate rearing bins and do not have 

visual stimulation from chicks of other groups that these chicks are novel to one another; 

however this may not be true. We know that chicks rely heavily on their auditory sense 

so it is possible that being exposed to the calls of other chicks in the postnatal rearing 

environment is enough to make a chick familiar. Chicks are able to discriminate between 

familiar and unfamiliar calls as early as 24 hrs post-hatching, which suggests that this 

sense is very important for determining who is familiar and who is not. To elucidating the 
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role of the auditory sense in individual discrimination of familiar and novel chicks it 

would be necessary to raise groups of chicks truly separate from one another. 

Furthermore, because we know that the prenatal environment can have effects on 

postnatal behavior, it would be important to incubate groups of chicks separately as well. 

VI. SUMMARY AND IMPLICATIONS OF THE FINDINGS 

 This was the first study to quantify levels of MT in the developing Northern 

bobwhite quail brain. We found that from embryonic day 8 to embryonic day 20 levels of 

MT increase significantly from an average of 43 pg/ml to an average of 3047 pg/ml, 

respectively. Our results suggest that MT in the brain plays an important role in at least 

some aspects of prenatal development in the bobwhite quail. However, our results 

showed no differences in MT levels between our injected group and control group, 

possibly suggesting a compensatory mechanism of the MT system in early prenatal 

development. Experiment 1 also indicated that changes observed in the levels of MT 

during prenatal development occur around the same time that major developmental 

changes are occurring in the visual and auditory systems. Because research has shown 

abnormal processing of visual and auditory information in disorders such as ASD (see 

Bahrick and Todd, 2012 for a review) and abnormal levels of OT have been shown to be 

associated with the aberrant social and stress reactivity observed in ASD and other 

disorders (Modhal, Green, Fein, Morris, Waterhouse, Feinstein, & Levin, 1998), 

experiment 2 was designed to address the relationship between abnormal levels of MT 

during prenatal development and postnatal social and stress behaviors.  

Experiment 2 showed that chicks that had been injected with MT prenatally 

exhibited an increase in stress reactivity to a novel environment. We would have 
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predicted this result in stress behavior had we observed a decrease in MT levels after the 

injection of MT prenatally, however, the levels remain the same at each of the embryonic 

time points examined. Given these results, it is possible that levels of MT decrease to 

below normal levels later in prenatal development or in early postnatal stages. We did not 

find any significant results on our individual recognition task. This could suggest that MT 

is not affecting this behavior due to its' lack of presence during a critical time for 

development of pathways in the brain associated with social behavior (Goodson et al., 

2012). Further studies should work to elucidate the role of MT in prenatal development 

on postnatal behaviors associated with developmental and psychiatric disorders by 

developing new techniques to inject hormones not of maternal origin and by 

implementing behavioral paradigms to assess the behavioral components associated with 

these disorders.    

VII. LIMITATIONS 

 An important point to address when considering the results for this study is that 

chicks receiving MT injections exhibited an approximate 50% mortality rate. This is the 

main reason for our lower N values for the MT injected birds. Because we do not see any 

difference in brain weight/growth nor in MT levels after injection yet a disruption in early 

development is evident it is possible that having elevated levels of a hormone that is not 

of maternal origin and therefore not typically present pre-incubation may cause too great 

of a disruption for at least half of the chicks to survive. In order to better understand the 

role of MT in the prenatal environment and attempt to correct the 50% mortality rate it 

will be necessary to develop methods to inject later in prenatal development to mimic the 

endogenous rise in MT levels (Viglietti-Panzica, Mura, & Panzica, 2007). 
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