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ABSTRACT OF THE DISSERTATION

PROTON FORM FACTOR PUZZLE AND THE CEBAF LARGE ACCEPTANCE

SPECTROMETER (CLAS) TWO-PHOTON EXCHANGE EXPERIMENT

by

Dipak Rimal

Florida International University, 2014

Miami, Florida

Professor Brian A. Raue, Major Professor

The electromagnetic form factors are the most fundamental observables that encode

information about the internal structure of the nucleon. The electric (GE) and the

magnetic (GM) form factors contain information about the spatial distribution of

the charge and magnetization inside the nucleon. A significant discrepancy exists

between the Rosenbluth and the polarization transfer measurements of the electro-

magnetic form factors of the proton. One possible explanation for the discrepancy

is the contributions of two-photon exchange (TPE) effects. Theoretical calculations

estimating the magnitude of the TPE effect are highly model dependent, and limited

experimental evidence for such effects exists. Experimentally, the TPE effect can be

measured by comparing the ratio of positron-proton elastic scattering cross section to

that of the electron-proton (R = σ(e+p)
σ(e−p)

). The ratio R was measured over a wide range

of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continu-

ous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation

explored dependence of R on kinematic variables such as squared four-momentum

transfer (Q2) and the virtual photon polarization parameter (ε).

A mixed electron-positron beam was produced from the primary electron beam in

experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH2)

target. Both the scattered lepton and the recoil proton were detected by the CEBAF

vii



Large Acceptance Spectrometer (CLAS). The elastic events were then identified by

using elastic scattering kinematics.

This work extracted the Q2 dependence of R at high ε (ε > 0.8) and the ε dependence

of R at 〈Q2〉 ≈ 0.85 GeV2. In these kinematics, our data confirm the validity of the

hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This

hadronic TPE effect, with additional corrections contributed by higher excitations of

the intermediate state nucleon, largely reconciles the Rosenbluth and the polarization

transfer measurements of the electromagnetic form factors.
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Chapter 1

Introduction

1.1 Overview

The fundamental goal of nuclear and particle physics is to understand the structure

and behavior of the strongly interacting particles in terms of their building blocks.

An important step towards the goal is the description of the internal structure of the

proton and the neutron, collectively known as nucleons. Understanding the structure

and dynamics of the nucleons has been the primary focus of many scientific efforts

for almost a century now. The first hint about the composite nature of the nucleons

was given by the discovery of the anomalous magnetic moment of the proton by O.

Stern in 1933 [1]. The measurement showed that the magnetic moment of the proton

was surprisingly different from the expected value for a point-like Dirac particle with

spin 1/2. Robert Hofstadter et al. in 1953 confirmed the composite nature of the

nucleon by measuring the form factors in an electron scattering experiment [2], for

which he was awarded the Nobel Prize in Physics in 1961. The pioneering work laid

the foundation for the modern day picture of the nucleon.

In the standard model of the elementary particle physics, the nucleons are composed

of quarks and the gluons. The quarks in the nucleons are bound together by the

strong interaction, which is mediated by the exchange of vector gauge bosons known

as gluons. Unlike the leptons, which carry only the electric charges, the quarks carry

color charges and generate color forces. The strong interaction between the quarks

and gluons is governed by theory of Quantum Chromodynamics (QCD). The quarks

are elementary fermions and come in six different flavors, namely ‘u’ (up), ‘d’ (down),

‘c’ (charm), ‘s’ (strange), ‘t’ (top) and ‘b’ (bottom). The quarks can be grouped into

1



three families in order of increasing mass as summarized in Table 1.1.

Table 1.1: Properties of quarks

Generation Flavor Symbol Charge

First up u +2
3
e

down d −1
3
e

Second charm c +2
3
e

strange s −1
3
e

Third top t +2
3
e

bottom b −1
3
e

In QCD, the quarks are confined, meaning the strong force between the quarks in-

creases with distance. Because of the confinement property, a free quark has never

been experimentally observed. The quarks always occur in bound states of colorless

combinations into two families of particles, namely, the mesons and the baryons. The

mesons are the bound states of a quark and anti-quark pair, while the baryons are the

bound state of three valence quarks. The mesons and baryons form a larger family of

particles called hadrons. The proton is a bound state of two up quarks and a down

quark and the neutron is a bound state of one up quark and two down quarks. The

valence quark composition of the proton and neutron are shown in Fig. 1.1. The pro-

ton and the neutron form an isospin doublet, meaning that the proton and neutrons

are different quantum states of a single entity, the nucleon. The quarks move around

inside the nucleon, so the nucleon has a charge distributed over its volume. This

leads to the generation of an electric current, which in turn induces a magnetic field

inside the nucleon. In addition, quarks and gluons both have spin, which contribute

to the nucleon magnetic moment. The combination of the total magnetic field and

the magnetic moment is called magnetization.

The electromagnetic interaction provides a basic tool to study the internal structure

of the nucleons [3, 4, 5]. Experimentally, elastic electron-proton scattering, p(e, e′)p is

one way to extract information about the internal structure of the proton. Elastic ep
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Figure 1.1: Quark composition of proton (left) and neutron (right)

scattering is the process in which the kinetic energy and momentum of the electron

and proton is conserved and the proton remains intact after the collision. The cross

section for the process can be described in terms of the electric (GE) and magnetic

(GM) form factors. The form factors parameterize the deviation of the proton from

a point-like particle and provide information about the composite nature of the pro-

ton. At low momentum transfer, they are related to the charge and magnetization

distributions inside the proton. However, at high momentum transfer, they provide

important information about the quark distributions within the nucleons as well as

the nature of the strong force at moderate inter-quark separation [6]. The precise

measurement of the electromagnetic form factors is key to our understanding of the

internal structure of the proton. More discussion on this will be given in Chapter 2.

Over the past several decades, a large number of experiments have measured the

electron-proton elastic scattering cross sections to extract the electric (GE) and the

magnetic (GM) form factors of the proton using the Rosenbluth separation tech-

nique [8]. The ratio of the electric to magnetic form factors (R = µpGE

GM
) measured

by the Rosenbluth technique are consistent with an approximate form-factor scaling

of R ≈ 1 [6, 8, 9, 10, 11]. Here, µp is the magnetic dipole moment of the proton.
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Figure 1.2: Comparison between Rosenbluth and polarization transfer results. The
Rosenbluth results are shown in red and polarization transfer results are shown in
blue. Figure adopted from Ref. [7]

The results indicate that the charge and the magnetization distribution inside the

proton are similar. In contrast, the results from recent polarization transfer measure-

ments [12, 13, 14, 15], using a polarized electron beam to measure the polarization

of the recoil proton shows an approximately linear drop of the ratio from unity with

increasing Q2. The results from both techniques are shown in Fig. 1.2. Here, Q2 is

the four-momentum transferred by the incident electron to the proton. More details

on the experimental measurement of the form factors can be found in Chapter 2.

Clearly, the two results have a significant discrepancy that increases with Q2. In the

Born approximation, both methods assume the exchange of a single virtual photon

between the electron and the nucleon during the scattering process. Many theoretical

calculations suggest that higher-order contributions beyond the Born approximation,

for example the contributions from the exchange of two virtual photons, may explain

the discrepancy between the two methods [7, 16].
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Calculations have shown that the two-photon exchange effects (TPE) can directly

be extracted in a model-independent way by measuring the ratio of positron-proton

(e+p) to electron-proton (e−p) elastic scattering cross sections [7, 16]. One such

measurement was performed at experimental Hall B of Jefferson Lab using a combined

electron-positron beam. The mixed electron-positron beam was created from the

primary electron beam provided by CEBAF. The mixed beam was scattered off a

liquid hydrogen target and the scattered particles were detected in CLAS. The main

focus of this dissertation is the detailed description of the CLAS TPE experiment

and its results.

The rest of this dissertation is organized as follows. Chapter 2 will lay the foundation

for this dissertation discussing the basics of the form factors and their measurements,

the discrepancy between the different methods of form factor measurements, possible

resolution of the discrepancy, existing experimental evidence, and the theoretical

calculations. The Chapter 3 will discuss the details of the experimental apparatus

used during the measurement, data collection, and detector calibrations. The details

of the data analysis procedures will be discussed in Chapter 4. The final results for

the e+p and e−p cross-section ratio, including the systematic uncertainties, will be

presented in Chapter 5.
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Chapter 2

An Overview of the Proton Form Factors

The form factors measure the deviation of a nucleon from a point-like particle. Hence

they provide information about the composite nature of the nucleon. The electro-

magnetic form factors are the most basic observables that contain information about

the spatial distribution of charge and magnetism inside the nucleon. In this disser-

tation, we will focus on the elastic electromagnetic form factors of the proton. This

chapter will discuss the details of the proton’s electromagnetic form factors and their

measurements.

2.1 Elastic Electromagnetic Form Factors

2.1.1 Kinematic Variables

Elastic electron-nucleon scattering is a powerful experimental tool in the study of the

internal structure of the nucleons. The electron being a structureless point charge,

its magnetic moment is determined solely by its spin. Hence, the electromagnetic

interactions of electrons with the nucleons are easy to understand within the frame-

work of Quantum Electrodynamics (QED). Thus, electron scattering is an ideal probe

in studying the internal structure of the nucleons and the electromagnetic form fac-

tors [3, 4, 5]. The elastic electron-proton scattering process can be illustrated by

the Feynman diagram shown in Fig. 2.1. In the Born approximation, the interaction

takes place via the exchange of a single virtual photon1. The elastic ep scattering

process can be represented in following nuclear reaction:

1An exchange particle of the electromagnetic interaction that transfers momentum from the
electron to the proton
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Figure 2.1: Feynman diagram showing elastic ep scattering process. The quantities
in the brackets represent the four-momentum of the particle. q is the four-momentum
of the exchanged virtual photon.

e(lµ) + p(Pµ)→ e(l′µ) + p(P ′µ). (2.1)

Here, e and p refer to electron and the proton. In the lab frame:

• lµ = (E,Eẑ) is the four-momentum of the incoming electron.

• Pµ = (M, 0) is the four-momentum of the target proton at rest.

• l′µ = (E ′,p′e) is the four-momentum of the scattered electron with momentum

p′e and energy E ′.

• P ′µ = (E ′p,p
′
p) is the four-momentum of the scattered proton with momentum

p′p and energy E ′p.
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This dissertation will employ the so-called “natural units” used in particle physics.

In the natural unit, the reduced Planck’s constant (h̄) and the speed of light (c) are

taken as 1 i.e. h̄ = c = 1. We will also assume that the mass of the electron is

negligible (me ≈ 0) in comparison to the energies of the experiment. A four-vector

will be denoted by italic type letter (e.g. Aµ) and a three-vector will be denoted by

boldface letter (e.g. A). For example, the four-momentum (pµ) of a particle with

energy E and three-momentum p will be written as,

pµ = (E,p), pµ = (E,−p) (2.2)

and their inner product,

p · p = pµgµνp
ν = pµpν (2.3)

= E2 − |p|2, (2.4)

gives the mass of the particle and is invariant under Lorentz transformation. The

four-momentum of the exchanged virtual photon i.e., the four-momentum transfered

by electron to the proton is given by:

qµ = lµ − l′µ = P ′µ − Pµ (2.5)

= (ν,q), (2.6)

where ν and q are the energy and the three-momentum of the virtual photon. The

four-momentum squared of the virtual photon is a Lorentz invariant quantity, which

measures the resolution of the virtual photon and is given by:

Q2 = −q2 = 2EE ′(1− cos θ), (2.7)
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where θ is the scattering angle of the electron in the lab frame, E is the energy of

the incident electron and E ′ is the energy of the scattered electron. For the elastic

scattering E ′ is given as,

E ′ =
EM

1 + E(1− cos θ)
, (2.8)

where M is the proton mass. In Breit frame kinematics, where the energy transfer is

always zero (ν = 0), Eq. 2.7 yields,

Q2 = −q2. (2.9)

We can also define another Lorentz invariant quantity,

s = W 2 = M2 + 2νM −Q2, (2.10)

which gives the invariant mass squared of the photon-proton final states. In elastic

scattering, W 2 = M2.

Additionally, we can define two dimensionless variables τ and ε, which are equivalent

to Q2 and the scattering angle θ,

τ =
Q2

4M2
, ε =

ν2 − τ(1 + τ)

ν2 + τ(1 + τ)
. (2.11)

The variable ε is the measure of the longitudinal polarization of the virtual photon.

In the target rest frame, ε is given by,

ε =

(
1 + 2(1 + τ) tan2

(
θ

2

))−1

. (2.12)

9



2.1.2 Nucleon Form Factors: Basics

Otto Stern et al. precisely measured the magnetic moment of the proton in the early

1930s [1]. The measured value was ∼ 2.8 times higher than the expected value for

a spin 1
2

Dirac particle. The value suggested that proton cannot simply be a point

charge and point magnetic moment but that it must have some internal structure. A

measurement by Hofstadter et al. confirmed the composite nature of the proton by

measuring its form factors [2]. The earliest model treated the proton as a neutron

core embedded in a cloud of charged meson. The model described the form factors

in terms of reduced charge and magnetic moments felt by the high-energy electrons

while penetrating the mesonic cloud [8].

Hofstadter et al. measured the phenomenological form factor squared as the deviation

of the measured e−p elastic scattering cross section from the Mott cross section [2],

|F (q2)|2 =

(
dσ
dΩ

)
exp(

dσ
dΩ

)
Mott

. (2.13)

The Mott cross section is the cross section for scattering of a spin 1
2

electron from a

point-like spinless particle, and is given as,

(
dσ

dΩ

)
Mott

=
( α

2E

)2
(

cos2 θ
2

sin4 θ
2

)
E ′

E
, (2.14)

where α ≈ 1
137

is the fine structure constant. In the non-relativistic limit, the form

factor F (q2) can be written as the Fourier transform of the charge density distribution

function as:

F (Q2) =

∫
V

ρch(r)eiq·rd3r. (2.15)
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The elastic electromagnetic form factors contain all the details about the spatial

distribution of the charge and magnetization inside the proton. The next section will

set up a general formalism for the electromagnetic form factors associated with elastic

electron-proton scattering.

2.1.3 Elastic Electromagnetic Form Factors Formalism

According to the Feynman rules for QED, the invariant amplitude for elastic electron-

proton scattering (See Fig. 2.1) in the leading order approximation is given as [17],

M1γ = −ie
2

q2
jγµJ

µ
γ , (2.16)

where e is the electronic charge, jγµ and Jµγ are the matrix elements of the lepton

and fermion current operators. These can be written in terms of lepton (ue) and

fermion(up) spinors as,

jγµ = ūe(l
′
µ)γµue(lµ), Jµγ = ūp(P

′
µ)Γµ(q)up(Pµ). (2.17)

The Lorentz invariant fermion current operator Γµ is defined in terms of Dirac (F1)

and Pauli (F2) form factors as,

Γµ = F1(Q2)γµ + i
κσµνqν

2M
F2(Q2), (2.18)

where, σµν = i
2

[γµ, γν ] and κ is the anomalous magnetic moment measured to be 1.79

nuclear magneton [18]. The differential Born cross section is,

(
dσ

dΩ

)
exp

=

(
α

4MQ2

E ′

E

)2

|Mγ|2. (2.19)
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Upon solving Eq. 2.19,

(
dσ

dΩ

)
exp

=

(
dσ

dΩ

)
Mott

[
(F 2

1 + κ2 Q2

4M2
F 2

2 ) +
Q2

2M2
(F1 + κF2)2 tan2 θ

2

]
. (2.20)

The Sach’s electric (GE) and magnetic (GM) form factors can be defined as the linear

combinations of F1 and F2 as [19, 20],

GE(Q2) = F1(Q2)− κτF2(Q2), GM(Q2) = F1(Q2) + κF2(Q2). (2.21)

The form factors are normalized in such a way that at Q2 = 0, the electric and

magnetic form factors give,

GE = 1, GM = µp, (2.22)

where µp = 2.793 is the anomalous magnetic moment of the proton. Substituting

Eq. 2.21 into Eq. 2.20 yields,

(
dσ

dΩ

)
exp

=

(
dσ

dΩ

)
Mott

[
G2
E(Q2) + τG2

M(Q2)

1 + τ
+ 2τG2

M(Q2) tan2 θ

2

]
. (2.23)

Eq. 2.23 is called the Rosenbluth or the Longitudinal-Transverse (LT) separation

formula. In the non-relativistic limit (Q2 << M2), the proton recoil and the energy

transfer (ν) are negligible. Hence, we can take q = (0,q) and Q2 = |q|2. The

Rosenbluth formula in Eq. 2.23 then reduces to,

(
dσ

dΩ

)
exp

=

(
dσ

dΩ

)
Mott

G2
E(Q2). (2.24)
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Comparing Eq. 2.13, Eq. 2.15, and Eq. 2.24, GE(Q2) and GM(Q2) can be written as

the Fourier transform of the proton’s charge and magnetization distributions:

GE(Q2) =

∫
V

ρch(r)eiq·rd3r (2.25)

GM(Q2) =

∫
V

ρM(r)eiq·rd3r. (2.26)

Here, the integration is over all the volume. Expanding Eq. 2.26 in powers of q:

GE(Q2) =

∞∫
0

ρch(r)

(
1 + iq · r− (q · r)2

2
+ ...

)
d3r (2.27)

= 2π

∞∫
0

ρch(r)r2dr

π∫
0

sin θdθ

(
1 + i|q|r cos θ − q2r2 cos2 θ

2
+ ...

)
(2.28)

GE(Q2) = 4π

∞∫
0

ρch(r)r2dr

(
1− q2r2

6

)
+ ... (2.29)

GE(Q2) = 1− 1

6
q2〈r2〉+ ... (2.30)

where, 〈r2〉 = 4π
∞∫
0

r2ρ(r)r2dr is the root mean square (RMS) charge radius of the

proton. Differentiating GE with respect to Q2 in the limit Q2 → 0,

dGE(Q2)

dQ2
|Q2→0 = −1

6
〈r2〉. (2.31)

Hence, the RMS charge radius of the proton is given as

〈r2
E〉 = −6

dGE(Q2)

dQ2
|Q2→0. (2.32)
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A similar treatment of the magnetic form factor leads to the RMS magnetic radius

given by,

〈r2
M〉 = −6

dGM(Q2)

dQ2
|Q2→0. (2.33)

The RMS charge and magnetic radius of the proton have been determined to be 〈rE〉=

0.879 ± 0.0008 fm and 〈rm〉 = 0.777 ± 0.00017 fm respectively, by analyzing data from

electron scattering experiments [21]. The RMS charge radius of the proton determined

from the Lamb shift in muonic hydrogen atom yields 0.84184 ± 0.00067 fm [22],

which differs from the CODATA10 [23] value of 0.8775 ± 0.00051 fm. The apparent

difference has led to the so called “proton radius puzzle” and several activities are

going on in order to understand and resolve the puzzle. It has been suggested that the

two-photon exchange effect, which is the subject of the dissertation, can have a large

impact on the extraction of charge and magnetic radius from the form factors [24].

2.2 Measurements of Electromagnetic Form Factors in the

Born Approximation

Over the past several decades the standard method to extract the proton’s electric and

magnetic form factors has been the Rosenbluth, or L-T separation method [6, 8, 9, 10].

The method involves extracting the electric and magnetic form factors from the Born

cross section by varying the incident electron energy and the detection angle for the

scattered electron at fixed Q2. More recent methods employ polarization degrees of

freedom. In these methods, the electric to magnetic form factor ratio is determined

by measuring the longitudinal and transverse polarization transferred to the proton

by the polarized electron beam [12, 13, 14, 15]. Both of these methods assume an

exchange of a single virtual photon in the scattering process. This section gives more

insight into the details of these two methods.
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Figure 2.2: Extraction of electric and magnetic form factor by the Rosenbluth sep-
aration method. Solid line is a linear fit to the data points. The data are from
Ref. [25]

2.2.1 Rosenbluth Separation Method

The Rosenbluth separation technique has been the standard method of extracting

the form factors for several decades. Rearranging the terms in Eq. 2.23, the reduced

cross section (σR) can be written as,

σR =
[
εG2

E(Q2) + τG2
M(Q2)

]
, (2.34)

where

σR =

(
dσ

dΩ

)
exp

ε(1 + τ)/

(
dσ

dΩ

)
Mott

. (2.35)

Since Born level cross sections are functions of Q2 only, it is obvious from Eq. 2.34

that the reduced elastic scattering cross section is linearly dependent on ε at fixed

Q2.
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Experimentally, the reduced cross section is measured at fixed Q2 while varying ε by

varying the electron scattering angle and the energy of the incident electron. Fig. 2.2

shows a plot of σR as the function of ε at fixed Q2 = 2.64 GeV2 from a Jefferson Lab

measurement using the Rosenbluth separation method [11]. The straight line is the

best fit to the experimental data. The electric (GE) and magnetic (GM) form factors

are then obtained from the slope and the intercept of the ε-dependence of σR after

correcting for the radiative processes described in the next section.

The electric and the magnetic form factors have been extracted up to Q2 of several

GeV2 by the Rosenbluth separations. It can be observed from Eq. 2.34 that both GM

and GE terms contribute to the cross section except when ε = 0. GM is the only term

that contributes to the cross section when ε = 0. Since τ ∝ Q2 and ε ∝ 1
Q2 , it is clear

from Eq. 2.34 that the contribution of GE and GM to σR is purely dependent on the

value of Q2. At low Q2, the contribution from G2
E is dominant over the contribution

from G2
M . However, at high Q2, the contribution from G2

M dominates over G2
E making

the precise measurement of G2
E difficult.

The extracted GE and GM from different experiments using Rosenbluth separation

methods are shown in Fig. 2.3. Both GE and GM are scaled by the dipole form factor

GD given by,

GD =
1

(1 +Q2/0.71)2
. (2.36)

Fig. 2.3 illustrates that GE follows dipole scaling up to Q2 ≈ 1 GeV2, which is not

apparent at higher Q2. However, GM shows internal consistency up to Q2 of several

GeV2.
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Figure 2.3: Extracted electric (GE) and magnetic (GM) form factors from from dif-
ferent experiments using Rosenbluth separation method. The form factor have been
scaled by the dipole form factor (GD). Figure adopted from Ref. [4].

2.2.2 Polarization Transfer (PT) Method

More recent methods of the form factor measurements, known as the “polarization

transfer methods”, utilize polarization degrees of freedom in p(~e, e′)~p scattering to

measure the electric to magnetic form factor ratio (R = µpGE

GM
). In the method, longi-

tudinally polarized electrons are scattered from an unpolarized proton target. In the

one-photon exchange approximation, the longitudinal and transverse components of

the polarization transfered to the struck proton are measured. The ratio of transverse

to longitudinal components of the polarization vector are given by [26]:

Pt
Pl

= −µp
2M

E + E ′
GE

GM

1

tan
(
θ
2

) (2.37)

which yields,

µpGE

GM

= −E + E ′

2M
tan

(
θ

2

)
Pt
Pl

(2.38)
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A number of recent experiments at Jefferson Lab and MIT-Bates [12, 13, 14, 15, 27, 28]

have measured the proton form factor ratio R up to Q2 = 8.5 GeV2. The results from

both the polarization transfer and the Rosenbluth separation methods are presented

in Fig. 2.4. It is clear that the polarization results show a linear decrease of R with

Q2 while the results from the Rosenbluth methods show R ≈ 1 over the full range of

Q2, though with larger uncertainties at higher Q2. The discrepancy between the two

methods increases with Q2. The contrasting results from the two methods led to the

“Proton Form Factor Puzzle.” The next sections will discuss the details of the puzzle

along with attempts to reconcile the results from the two methods.

2.3 Proton Form Factor Puzzle

Even though both the Rosenbluth separation and the polarization transfer methods

rely on the Born approximation, the ratio of form factors (R = µpGE

GM
) measured by

the two methods are in serious disagreement, especially at large Q2. In the Born

approximation, the cross section is calculated by considering only a single virtual

photon exchanged between the lepton and the proton. There is a sharp disagreement

between the results from the two methods as shown in Fig. 2.4, even after applying

the standard radiative corrections [29]. This apparent discrepancy between the two

measurements casts a serious doubt on our understanding of the nucleon structure.

Our knowledge of the charge and magnetization distribution inside proton will not be

complete until the cause of this discrepancy is fully understood. Hence, the discovery

of the “form factor puzzle” in the late 1990’s led to significant scientific activity

intended to better understand and resolve the cause of this discrepancy.

Early on the cause of the discrepancy was thought to be related to the large sys-

tematic errors associated with the Rosenbluth measurements at higher Q2. Improved

Rosenbluth measurements were made at Jefferson Lab with a precision comparable

to that of the polarization transfer methods [11, 25]. These results confirmed earlier
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Figure 2.4: Comparison between Rosenbluth and polarization transfer results. The
Rosenbluth results are shown in red and polarization transfer results are shown in
blue. Figure adopted from Ref. [30]

Rosenbluth measurements indicating some fundamental cause for the discrepancy. In

the mean time, a global reanalysis of the available cross section data was performed

by Arrington [7]. The relative normalization of different datasets used in previous

form factor extractions were modified and the radiative corrections for some measure-

ments were updated. The extracted form factor ratios µpGE

GM
were still in significant

disagreement with the polarization transfer measurements. The analysis did not find

any serious inconsistency in the previous Rosenbluth extractions. It confirmed that

the discrepancy was indeed real and suggested that there should be some fundamental

reason behind the discrepancy [7].

A very small error in the cross section measurement can have a significant impact

on the form factor extraction by the Rosenbluth method. Roughly, an error of 5-

10 % at Q2 > 2-3 GeV2 in the cross section measurement would be sufficient to

explain the discrepancy [7]. Fig. 2.5 shows the slope of the reduced cross section as
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Figure 2.5: The ε dependence of the reduced cross section as measured in high pre-
cision Rosenbluth measurement (Blue circles). Blue solid line is the best fit to the
data. The red dashed line is the slope expected from the polarization transfer mea-
surements. Figure adopted from Ref. [30]

measured by the Jefferson Lab high-precision Rosenbluth experiment [11] and also

the slope expected from the polarization transfer measurements in the one-photon

exchange approximation. If the polarization transfer measurements represent the

correct form factors, then the dashed line would represent the actual slope with the

correct contribution from the electric form factor [7]. The difference between the slope

of the Rosenbluth data and the slope suggested by the polarization transfer data may

possibly be a result of effects beyond Born approximation.
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2.4 Possible Resolution of the Puzzle: Two Photon Exchange

Effects

As soon as the form factor discrepancy was verified, focus then turned to find the

cause of this discrepancy and the methods to reconcile the results. After a global

analysis of the previous cross section data did not find any inconsistencies in the

datasets [7], the higher order effects beyond the Born approximation were considered

as the explanation for the discrepancy. The two-photon exchange effects usually

ignored in the standard treatment of radiative corrections [29, 31] were suggested as

the likeliest explanation for the discrepancy [16, 32, 33].

The higher order QED radiative corrections shown in Fig. 2.6 modify the reduced

Born level elastic scattering cross sections as:

σ = σR(1 + δ), (2.39)

The correction term δ can be written as,

δ = δvirt + δbrem, (2.40)

where δvirt includes contribution from the exchange of another virtual photon (dia-

grams (a), (b), (e), (f), and (g)) while δbrem includes contributions from the inelastic

bremsstrahlung processes (diagrams (c), (d), and (h)). Usually the contributions

from all the diagrams except for the TPE effects (diagrams (e) and (f)) are accounted

for in the standard radiative corrections. The TPE effects are generally neglected in

these corrections as the calculation of these effects require the knowledge of overall

response of the nucleon to the virtual photon. The contribution from the inelastic

bremsstrahlung corrections δbrem are also included as a correction to the experimental
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Figure 2.6: Feynman diagrams showing QED radiative corrections for elastic e−p
scattering process. Here, the top-most diagram shows the Born term, diagrams (a)
and (g) show the vertex renormalization terms for the electron and the proton re-
spectively, diagram (b) shows the loop diagram for vacuum polarization, diagrams
(c) and (d) show the electron bremsstrahlung terms, and diagram (h) shows pro-
ton bremsstrahlung term. The diagrams (e) and (f) show the two-photon exchange
terms that are usually neglected in the standard radiative corrections for elastic e−p
scattering.

cross section.

The form-factor discrepancy has been interpreted as the failure of the one photon

exchange approximation [32]. Hence, the higher order corrections to the Born level

cross section such as the exchange of two or more hard photons between the lepton

and the proton was considered. Previous calculations of such higher order corrections

were found to be very small, typically below 1% of the Born cross section [34, 35].

These calculations were based on nucleon and resonance intermediate states and are

valid only at lower Q2 and are unknown at higher Q2 [32]. Precise understanding of

the ε dependence of these radiative corrections is required at higher Q2. A number of

theoretical calculations were performed in order to estimate the size of the corrections
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necessary to resolve the discrepancy [16, 32, 33]. The next section will discuss different

theoretical calculations of the TPE corrections.

2.5 Theoretical Calculations of TPE

Beyond the one photon exchange approximation, the response of the proton to the

exchanged virtual photon is not well understood. Hence, the calculations of the

two-photon exchange box and crossed diagrams shown in Fig. 2.6 (diagrams (e) and

(f)), become extremely complicated as these calculations require knowledge of all

the excited states of the proton. As a result, several theoretical models have been

incorporated to compute the two-photon exchange diagrams. These calculations are

mostly model-dependent and yield significantly different results for the extracted form

factors.

2.5.1 Guichon and Vanderhaeghen Calculation

Guichon and Vanderhaeghen investigated the TPE effect by using the full e−p elastic

scattering amplitude rather than approximating it to the Born level [32]. Beyond the

Born approximation, the full amplitude M for elastic scattering of an electron from

a proton can be described in terms of three generalized form factors, F̃1, F̃2 and F̃3,

as [32],

M = −i e
2

Q2
ū(k′)γµu(k)ū(p′)

[
F̃1γ

µ + F̃2
iσµνqν

2M
+ F̃3

γ.KP µ

M2

]
u(p), (2.41)

where K = k+k′

2
and P = p+p′

2
. F̃1, F̃2, and F̃3 are generalized form factors, and are

complex functions of ν = K · P and Q2. In the Born approximation, the general-

ized form factors F̃1 and F̃2 must reduce to Dirac and Pauli form factors, and the
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generalized form factor F̃3 must vanish, i.e

F̃1
Born

(ν,Q2) → F1(Q2) (2.42)

F̃2
Born

(ν,Q2) → F2(Q2) (2.43)

F̃3
Born

(ν,Q2) → 0. (2.44)

The Sach’s electric (G̃E) and magnetic (G̃M) form factors are modified from the Born

level form factors, i.e

G̃E = GE + ∆GE (2.45)

G̃M = GM + ∆GM (2.46)

The generalized form factors are not observables and hence they do not have any

intrinsic physical meaning. Their magnitude and the ε dependence depend upon the

choice of parametrization [36]. Considering only up to the order α2, the reduced cross

section can be written as [32],

σR ≈

[
τ + ε

|G̃E|2

|G̃M |2
+ 2ε

(
τ +
|G̃E|
|G̃M |

)
Re

(
νF̃3

M2|G̃M |

)]
, (2.47)

and the polarization transfer ratio modifies to [32]:

Pt
Pl
≈ −

√
2ε

τ(1 + τ)

[
|G̃E|
|G̃M |

+

(
1− 2ε

1 + ε

|G̃E|
|G̃M |

)
Re

(
νF̃3

M2|G̃M |

)]
. (2.48)

The dimensionless quantity,

Y2γ(ν,Q
2) = Re

(
νF̃3

M2|G̃M |

)
, (2.49)
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Figure 2.7: The ratio Y2γ as a function of ε for different values of Q2. Figure adopted
from Ref. [32]

measures the size of the two-photon exchange effect. Comparing the modified Rosen-

bluth Eq. 2.47 with the Born level Rosenbluth Eq. 2.34, we can immediately see that

the experimentally measured ratio using the Rosenbluth method is actually,

(Rexp
Rosenbluth)

2 =
|G̃E|2

|G̃M |2
+ 2

(
τ +
|G̃E|
|G̃M |

)
Y2γ. (2.50)

Similarly comparing the modified polarization transfer ratio with the Born level po-

larization transfer ratio, it is clear that the experimentally measured ratio is,

(Rexp
polarization) =

|G̃E|
|G̃M |

+

(
1− 2ε

1 + ε

|G̃E|
|G̃M |

)
Y2γ. (2.51)

Eq. 2.50 and Eq. 2.51 were solved numerically by fitting the experimental data [9] with

a polynomial function neglecting the effect of error bars. The solution of Eq. 2.50 and

Eq. 2.51 for the ratio Y exp
2γ as a function of ε for different Q2 are shown in Fig. 2.7. The

ratios are on the order of a few percent in magnitude and are roughly independent of

ε. With these corrections, the Rosenbluth and the polarization method both yield the

25



Figure 2.8: Form factor ratios deduced from Guichon and Vanderhaeghen analysis
compared to experimental fits to the Rosenbluth and polarization transfer data. Fig-
ure adopted from Ref. [32]

same value for the modified form factor ratio |G̃E |
|G̃M |

. Fig. 2.8 shows the comparison of

fits to the experimental form factor ratios measured by Rosenbluth and polarization

transfer with that to the modified ratio. It illustrates that the form factor ratio

modified by the two-photon exchange term is closer to the ratio measured by the

polarization method in the one-photon exchange approximation.

2.5.2 BMT Calculation

In an attempt to reconcile the Rosenbluth and polarization transfer results, Blunden,

Melnitchouk, and Tjon evaluated the TPE box and crossed diagrams shown in Fig. 2.6

(diagrams (e) and (f)) using a hadronic intermediate state model [37]. They wrote

the amplitude for the one-loop virtual corrections M1 as the sum of a factorizable

term that is proportional to the Born amplitudeM0 and a non-factorizable term M̄1
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i.e.

M1 = f(Q2, ε)M0 + M̄1. (2.52)

The factorizable part, parameterized by f(Q2, ε) contains hadron-structure indepen-

dent terms. However, the non-factorizable term M̄1 depends upon the hadron struc-

ture. From Eq. 2.39, the ratio of the full to the Born level cross section is,

1 + δ =
σ

σ0

=
|M0 +M1|2

|M0|2
. (2.53)

To first order in α, the total correction δ is given by,

δ ≈ 2f(Q2, ε) + 2
Re{M0M̄1}
|M0|2

. (2.54)

Most of the corrections due to hadron-structure independent terms (f(Q2, ε)) are

generally included in the standard radiative corrections of Mo and Tsai [29, 31] leaving

out the hadron structure dependent terms. The BMT model considered the hadron-

structure dependent corrections such as two-photon exchange and the finite proton

vertex correction and are included in M̄1. The finite proton vertex correction does not

contribute to the form factor discrepancy because it was found to be less than 0.5%

at Q2 < 6 GeV2 and was largely independent of the ε. The only contribution to M1

with a significant ε dependence, and thus contributes to the form-factor discrepancy,

is the two-photon exchange correction [37], which is given as,

δ2γ ≡ Re{M0M2γ}
|M0|2

, (2.55)

where M2γ includes all the intermediate states of the proton. The total two-photon

exchange amplitude is given as the sum of the contributions from the TPE box and
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crossed diagrams in Fig. 2.6 ((e) and (f) respectively) as,

M2γ = e4

∫
d4k

(2π)4

[
Nbox

Dbox

+
N×−box
D×−box

]
, (2.56)

where Nbox and N×−box are the respective matrix elements for box and crossed-box

TPE diagrams. Dbox and D×−box are the respective propagators [37].

Assuming the proton propagates as a Dirac particle, they considered only the elastic

contribution to the full response function. Using phenomenological form factors at the

γp vertices, they calculated the full IR divergent TPE contribution to the scattering

amplitude from the box and crossed TPE diagrams [37]:

δIR = −2
α

π
ln

(
E

E ′

)
ln

(
Q2

λ2

)
, (2.57)

where λ is an infinitesimal photon mass required to regulate the IR divergences in

the photon propagator. E and E ′ are the energies of the incident and the scattered

electron. The IR divergences occur when the four-momentum transfer carried by one

photon is dominant over the four-momentum transfer carried by the other photon.

Fig. 2.9 (left panel) shows the difference between IR divergent contributions from the

BMT, and the standard Mo and Tsai (MT) calculations [29] plotted as a function of ε

at different Q2. It is clear that the difference between two methods can lead to about

a 1% change in cross section at the lowest ε and only a minimal change at higher ε.

This effect alone gives a reduction of the order of 3% and 7% at Q2 = 3 GeV2 and

Q2 = 7 GeV2 in the form factor ratio R = µpGE

GM
[37].

They also calculated the full TPE corrections (δfull) including both the model depen-

dent and the IR divergent terms, which contribute to the form factor discrepancy. In

Figure 2.9 (right panel), the difference between the full TPE corrections and the IR

divergent corrections is plotted as the function of ε at different Q2. The difference is
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Figure 2.9: The ε dependence of the difference between the model-independent and
Mo and Tsai [29] IR divergent contributions at different Q2 (left) and the difference
between the full two-photon exchange correction and the the model independent IR
divergence contributions at different Q2 (right). Figure adopted from [37].

the largest at lower ε and decreases at higher ε. The difference between the left and

the right panel in Fig. 2.9 gives ∆ = δfull − δMT . The IR contributions cancel in the

difference leaving only the contribution from the finite part of the difference. Hence,

the finite part of the TPE amplitude shows a significant ε dependence that slightly

increases with Q2.

They calculated the effect on the ratio R in the Rosenbluth data assuming the mod-

ified cross section is approximately linear in ε and has the form

σ = (aA)τGM(Q2)[a+ (BR̃2 + b)ε], (2.58)

where B = 1/µ2
pτ , R̃ is the corrected ratio, a and b are the parameters of the linear

fit function, and A is a constant. The corrected ratio then becomes,

R̃2 = R2 − b/B, (2.59)
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Figure 2.10: The form factor ratio measured by the Rosenbluth method(hollow
squares) and polarization transfer method (hollow circles) as the function of Q2.
The filled squares are the BMT corrected Rosenbluth data. The dotted and the solid
lines represent the global fit to the uncorrected and the BMT corrected data. Figure
adopted from Ref. [37].

As shown in Fig. 2.10, the corrected ratio R significantly brings down the Rosenbluth

results towards the polarization transfer results. Using the hadronic model, the BMT

calculation demonstrated that the two photon exchange correction has the sign and

magnitude required to partially resolve the form factor discrepancy. In addition to

these nucleon contributions, the contributions from the ∆ and other heavier reso-

nances were also added to the TPE calculation [38, 39]. These additions improve the

agreement between the Rosenbluth and polarization transfer results.

2.5.3 Generalized Parton Distribution (GPD) Model

In the GPD model, Afanasev et.al calculated the TPE amplitude by relating it to

generalized parton distributions [33]. Assuming the electron scatters from quarks

inside the proton, they calculated the two-photon exchange part of the scattering
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Figure 2.11: The handbag diagram for elastic lepton-quark scattering model. Figure
adopted from [33]

amplitude for the partonic subprocess. The real and the imaginary part of the hard

(Q2 >> M2) and the soft part of the amplitude were separately calculated. At the

partonic level, the TPE correction term to the electron-quark elastic cross section was

calculated as [33]:

δ2γ =
e2

4π2

{
2 ln

(
λ2

Q2

)
ln
∣∣∣ ŝ
û

∣∣∣+
(ŝ− û)Q2

2(ŝ2 + û2)

[
ln2
∣∣∣ ŝ
Q2

∣∣∣+ ln2
∣∣∣ û
Q2

∣∣∣+ π2

]
(2.60)

+
Q4

ŝ2 + û2
+

[
û

Q2
ln
∣∣∣ ŝ
Q2

∣∣∣− ŝ

Q2
ln
∣∣∣ û
Q2

∣∣∣] },
where ŝ = (k + pq)

2 and û = (k − p′q)2 are Lorentz invariant Mandelstam variables

for the handbag diagram in Fig. 2.11. Then the partonic handbag formalism was

extended to calculate the hard two-photon exchange contribution using a Gaussian-

valence model and modified a Regge model for the GPDs. It is clear from Fig. 2.12

that the correction brings the Rosenbluth data into better agreement with the po-

larization data at Q2 up to 2-3 GeV2. However, at higher Q2, the correction only

partially reconciles the discrepancy.
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Figure 2.12: Form factor ratio before and after applying partonic TPE corrections to
Rosenbluth data. The Rosenbluth data (hollow triangles) are from Ref. [9] and the
polarization transfer data are from Ref. [12, 14]. The filled squares are the Rosenbluth
data after partonic TPE corrections. Figure adopted from Ref. [33]

2.5.4 Summary of the Theoretical Calculations of TPE

In addition to the theoretical models discussed above, several other theoretical calcu-

lations yield TPE contributions that can resolve a large part of the discrepancy [40,

41, 42, 43, 44, 45, 46]. The details of these calculations and related issues can be found

in recent review papers [30, 47]. A model independent measurement of the TPE effect

can be obtained by the ratio of positron-proton elastic scattering cross section to that

of the electron-proton. The BMT calculation, based on the hadronic model, predicts

that e+p to e−p cross section ratio is larger than 1 at lower ε and falls close to 1

at higher ε [37]. However, the calculations that use GPDs predict that the ratio is

suppressed below one at large ε and moderate Q2 [33, 48]. However, at low ε and Q2
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of a few GeV2, the ratio is predicted to differ from one by as much as 10-15% [41].

Hence, to constrain the theoretical models and to make a definitive test of the TPE

mechanism, a significantly precise measurement of the ratio of positron-proton elastic

scattering cross section to that of electron-proton is required.

2.6 Experimental Measurement of Two-Photon Exchange Ef-

fect

From QED, the total amplitude for elastic lepton-proton scattering can be written

as [49],

Mtotal = qlqp[M1γ + q2
lMl.vertex + q2

pMp.vertex + q2
lMloop + qlqpM2γ], (2.61)

where ql and qp are the charge of the lepton and proton, M1γ represents the Born

amplitude,Ml.vertex andMp.vertex describe the lepton and proton vertex corrections,

Mloop describes the loop corrections andM2γ represents the two-photon corrections.

Note that the contributions from the lepton and proton bremsstrahlung terms have

been left out in the above equation. Squaring the total amplitude and keeping the

terms up to the order α, we get,

|Mtotal|2 ' e4[M2
1γ + 2e2M1γ Re(Mloop+vertex) + 2qlqpM1γ Re(M2γ)], (2.62)

Here, q2
l and q2

p are replaced by e2. We know the scattering cross section is propor-

tional to the square of the amplitude (σ ∝ |Mtotal|2). Hence, the dominant contri-

bution to the cross section comes from the Born term (M1γ) as it is real and larger

than other terms in Eq. 2.62. The contribution from the imaginary part ofM2γ being

small and negligible, only the real part of M2γ is kept in Eq. 2.62. It is clear from

Eq. 2.62 that only the interference between the one and two-photon exchange term

depends on the sign of the lepton charge.
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It is necessary to include lepton and proton bremsstrahlung contributions in Eq. 2.62

as we cannot separate true elastic events (ep) from events with a radiated photon

in the final state (epγ). The lepton and proton bremsstrahlung terms add another

lepton-charge sign-dependent term to the final cross section,

|Mtotal|2 ' e4[M2
1γ + 2e2(Ceven) + 2qlqp(M1γ Re(M2γ) + Re(M∗

e.br.Mp.br.)], (2.63)

where Ceven is the sum of the charge-even part of the radiative contributions, including

both the loop and vertex diagrams and the charge-even contributions from the lepton

and proton bremsstrahlung terms. The only charge odd terms are the interference

between lepton and proton bremsstrahlung terms and the interference between one

and two photon exchange terms. Eq. 2.63 can be expressed as the Born term plus

additional corrections from the charge-even and charge-odd corrections i.e.

σ = σborn(1 + δeven + qlqpδ2γ + qlqpδe.p.br.), (2.64)

where δeven = 2e2Ceven/M2
1γ is the contribution from the charge-even terms, δ2γ is the

the contribution from the interference between one and two photon exchange term,

and δe.p.br. is the contribution from the lepton and proton bremsstrahlung interference

term. The infrared divergences of both of these terms cancel in the sum of the two

contributions. It is obvious that the last two terms of Eq. 2.64 depend upon the sign

of the charge and thus contribute to the charge asymmetry in elastic e±p scattering.

Taking the ratio of e+p to e−p elastic scattering cross sections as:

σ(e+p)

σ(e−p)
' 1 + δeven − δ2γ − δe.p.br.

1 + δeven + δ2γ + δe.p.br.
(2.65)

' 1− 2(δ2γ + δe.p.br.)

(1 + δeven)
. (2.66)
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Here, the sign of δ2γ and δe.p.br. are chosen in such a way that the corrections are

additive for e−p scattering. The TPE effect can be isolated from the above equation

if we apply a correction for δe.p.br.. The ep bremsstrahlung interference corrected ratio

then becomes:

R2γ = 1− 2δ2γ

1 + δeven
. (2.67)

It is to be noted that most of the previous extractions neglect the charge even con-

tributions coming from the (1 + δeven) term in the denominator. δeven being a small

negative correction, (1 + δeven) in the denominator always becomes smaller than 1.

Hence, the ratio is reduced because of this charge-even correction and R2γ is system-

atically underestimated by approximately 1%. However, Eq. 2.66 shows that TPE

effects can directly be measured by comparing the ratio cross sections for positron-

proton to electron-proton elastic scattering with proper radiative corrections for δe.p.br.

and δeven.

2.7 Existing Data for the Cross Section Ratio

The e+p and e−p cross section ratio has been measured by several experiments to

investigate the TPE effect. The measured cross section ratio from these experiments

are shown in Fig. 2.13 as a function of Q2 (left) and ε (right).

As can be seen in the left panel of Fig. 2.13, there is no clear indication of a Q2

dependence of the cross section ratio. The right panel of Fig. 2.13 indicates a slight

ε dependence of the cross section ratio. The linear fit to this ε dependence yields

≈ 6% slope implying approximately a 3% contribution from TPE to the e−p elastic

scattering cross section [30], which is about half of the size required to explain the

discrepancy at higher Q2. However, because of the limited statistics, the results are

not very precise at low ε and high Q2 where the discrepancy is large. Hence, these data
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Figure 2.13: The ratio of e+p to e−p elastic scattering cross section as the function of
Q2 (left) and ε (right). The solid line is a linear fit to the data. Figure adopted from
Ref. [30]

are not sufficient to draw any strong conclusion about the size of the TPE effects. In

light of this discrepancy, several collaborations have completed their data collection to

measure the ratio in an effort to shed light on the form factor discrepancy [50, 51, 52].

The data analyses from the new generation of the TPE experiments are in progress in

order to obtain the TPE effects by comparing the ratio of e+p to e−p elastic scattering

cross sections. One of the experiments was conducted at the Hall B of the Jefferson

Lab using CLAS. The focus of the remainder of this dissertation is the description of

the CLAS TPE experiment, its data analysis procedure, and the results.
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Chapter 3

Experimental Apparatus

3.1 Overview

The TPE experiment collected data from December, 2010 through February, 2011

in experimental Hall B at Jefferson Lab, in Newport News, Virginia. A Mixed

electron-positron beam was produced from the primary electron beam provided by

the Continuous Electron Beam Accelerator Facility (CEBAF).The mixed beam was

then incident on a liquid hydrogen target placed at the center of a 4π hermetic spec-

trometer known as CEBAF Large Acceptance Spectrometer (CLAS). The scattered

particles were then detected by CLAS. Unlike other CLAS experiments, this exper-

iment required simultaneous and identical electron-positron beams. Thus, several

modifications to the existing Hall B beamline were required for this experiment. This

Chapter discusses the experimental setup in detail, including the accelerator facility,

CLAS detector components, and the TPE experimental beamline modifications.

3.2 CEBAF

CEBAF at the Jefferson Lab is a continuous wave, superconducting radio frequency

(SRF) accelerator. The accelerator consists of two Linear Accelerators (LinAcs) con-

nected by two re-circulating arcs to form a 1.4 km underground racetrack [53]. A

schematic diagram of the accelerator’s racetrack layout is shown in Fig. 3.1. Each

LinAc contains twenty cryomodules, each containing eight SRF cavities made of Nio-

bium [53]. Niobium is a superconductor below its transition temperature (≈ 9 K)

and is widely used in SRF technologies.

CEBAF can simultaneously deliver 499 MHz electron beams to the three experimen-

tal halls A, B and C. The electron injector produces three interlaced electron beams
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Figure 3.1: Schematic design of Jefferson lab accelerator

by optically illuminating a Gallium Arsenide (GaAs) photocathode [53]. The electron

beams are then accelerated around the racetrack where they gain energy up to 1.125

GeV in each circulation. At the end of the second LinAc the beam can either be

extracted to the experimental halls or further steered through a second 180◦ recircu-

lation arc for further acceleration. The beams can be recirculated up to five times, to

a maximum energy of 5.625 GeV. In every 2.004 ns, the electron bunches are deliv-

ered to an experimental hall. Jefferson Lab is currently upgrading its accelerator and

other facilities to attain a maximum electron beam energy of 12 GeV [54]. Another

experimental hall, Hall D is also being constructed.

3.3 Hall B and CLAS Detector

Experimental Hall B houses a spherical, large-acceptance spectrometer, CLAS, at

the center of the hall and a photon tagging system, which produces real photons by
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Bremsstrahlung radiation1. CLAS is a multi-layered spherical detector with nearly

4π acceptance. It is divided into six sectors by superconducting coils that produce

a toroidal magnetic field. The magnetic field bends the scattered particles towards

(inbenders) or away (outbenders) from the beamline depending upon its polarity.

Each sector of CLAS consists of three regions of drift chambers (DC) to determine

charge particle trajectories, a Čerenkov counter (CC) to separate electrons from pions,

an electromagnetic calorimeter (EC) for energy measurements of charged and neutral

particles, and time-of-flight (TOF) counters for timing measurements. The CC and

EC cover only the forward region of CLAS (8◦ < θ < 45◦). Fig. 3.2 shows an

exploded view showing different elements of CLAS. Each sector of CLAS serves as

an independent spectrometer with a common target, trigger, and data acquisition

(DAQ) system [55]. The CLAS experiments generally use data from the CC and EC

for particle identification purposes. However, this experiment did not use either the

CC or the EC. The CC was not used because it is optimized for inbending particles.

It would have different responses for inbenders versus outbenders and would create

an asymmetry in particle detection. Similarly, the EC was not used because it wasn’t

necessary for particle identification and energy measurements for this experiment. It

could only reduce the acceptance and add another layer of possible charge asymmetry

in particle detection. In the following sections, each of the components of CLAS,

which were used in this experiment, will be described in detail.

3.3.1 Torus Magnet

CLAS is constructed around six superconducting, kidney-shaped coils. Each coil

consists of four layers of 54 turns of NbTi/Cu conductor [55]. Liquid helium is

1The electromagnetic radiation produced by decelerating energetic electrons in the presence of
the nucleus of a high atomic mass atom
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Figure 3.2: An exploded view of CLAS. Torus magnet (yellow), electromagnetic
calorimeter (blue), drift chambers (light red), Čerenkov Counters, and the TOF scin-
tillators (pink) are clearly visible. The mini-torus magnet is not visible. The straight
line is along direction of the beam from lower right to upper left.

circulated around the coils through the cooling tubes to keep them at 4.5 K. The coils

generate a toroidal magnetic field around the beamline. Fig. 3.3 shows the contours

of the magnetic field produced by the CLAS torus magnet. The field is maximum at

small polar angles. The toroidal magnetic field bends particles towards or away from

the beamline depending upon the charge of the particle. For positive (negative) torus,

the negatively charged particles are bent towards (away from) the beamline, while

the positively charged particles are bent away from (towards) the beamline. The

momentum of the charged particles are reconstructed from their curvatures in the

magnetic field. At the designed maximum current (3860 A), the integral of magnetic

field (
∫

B · dl) reaches up to 2.5 T·m in the forward region, but drops to 0.6 T·m at a

scattering angle of 90◦ [55]. CLAS routinely operates at a maximum current of 3375

A to keep the internal mechanical stresses of the torus magnets at a safe level [55].

During the TPE run period the torus magnet current was at ± 1500 A.
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Figure 3.3: (A) Contours of the magnetic field produced by the CLAS torus in the
mid-plane between two coils (B) Magnetic field vectors for the toroid transverse to
the beam in a plane centered on the target
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3.3.2 Mini-Torus Magnet

In addition to the main torus magnet, this experiment utilized a non-superconducting

mini-torus magnet, which surrounded the target. The mini-torus prevents low mo-

mentum particles from reaching the innermost drift chambers by bending them to-

wards the beamline. These low momentum particles are produced via Møller scat-

tering in the target during electron beam experiments so the mini-torus is used only

during electron beam experiments. The current of the mini-torus magnet during the

TPE production run was fixed at 4000 A.

3.3.3 Drift Chamber (DC)

The drift chambers in CLAS are used for tracking of charged particles and reconstruc-

tion of their momentum as they traverse through the CLAS toroidal magnetic field.

The schematics of the CLAS DC system is shown in Fig. 3.4. The CLAS drift cham-

ber system consists of 18 separate drift chambers located at three radial locations in

each sector. These radial locations are known as “Regions”. The “Region One” (R1)

chambers are in the field-free region of CLAS and surround the target. They provide

initial direction of the charged-particle track. The “Region Two” (R2) chambers are

located between the torus coils in the high magnetic field. The track curvature is

maximum in this region. The “Region Three” (R3) chambers are located just outside

the torus coils. They provide the final direction of the track as they emerge out of

the toroidal magnetic field. All three regions of the drift chambers share the same

basic design elements. Wires are strung between two end plates, each parallel to its

neighboring coil plane. To keep the wire direction approximately perpendicular to

the bend-plane of the curved trajectories, the end-plates are tilted at 60◦ with re-

spect to each other. This configuration provides maximum sensitivity to the track
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Figure 3.4: A vertical cut of the CLAS drift chambers through the target position.
All the superlayers are shown.

curvature [56]. In order to improve the tracking resolution, the wire layers in each

region are grouped into two “superlayers”. One super layer is axial to the magnetic

field and the other is at a 6◦ stereo angle to provide azimuthal-angle information [56].

Each super-layer consists of six layers of drift cells. Each sense wire is surrounded by

six field wires forming a hexagonal beehive structure as shown in Fig.3.5. In CLAS,

the charged particles enter the chamber at widely varying angles. Ideally, the circular

drift cells are desired because the drift time to drift distance relation in the cell is

independent of the incident angle of the track. The hexagonal drift cells are a very

close approximation to circular cells.

Each sense wire is a 20 µm-diameter gold-plated tungsten, while each field wire is

a 140 µm-diameter gold-plated aluminum. The sense and the field wires are kept

at positive and negative potential, respectively, by a high voltage system. Each of

the 18 chambers is filled with a mixture of 90% Argon and 10% CO2 [56]. When
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Figure 3.5: A portion of region 3 drift chamber showing hexagonal drift cells. The
sense wires are at the center of the hexagon and field wires are at the vertices. The
highlighted drift cells represent a charged-particle track. The Čerenkov counter is
also visible on the top right corner.

traversing through the drift chamber volume, a charged particle ionizes the chamber

gas into electron-ion pairs. The ionized electron drifts towards the sense wire with an

approximately constant drift velocity. Near the sense wire, a high electric field causes

the drifting electron to create multiple electron-ion pairs to produce a detectable signal

on the sense wire. The signal is readout by a single-channel differential pre-amplifier

mounted on a printed circuit board (PCB) attached to the chamber endplate. The

outputs from each group of pre-amplifiers are sent to amplifier and discriminator

board (ADB) to digitize the output pulses. The digitized output pulses are then

transfered to TDCs to determine signal timing information, which is used to determine

drift distances as described in Sect. 3.9.1.
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3.3.4 Time of Flight (TOF) Counters

The CLAS TOF system is used to measure the time of flight of a charged particle from

target to the TOF counters. The measured timing information is used for triggering

purposes, and determination of particle speed, which is used in conjunction with the

momentum information for particle identification. The TOF system in each CLAS

sector consists of 57 scintillating paddles made up of Bicron BC-408 plastic, which

has a fast response time. The thickness of each paddle is 5.08 cm and has a length

that varies from 32 to 445 cm. The angular coverage of the scintillators ranges from

8◦ to 142◦ in polar angle (θ) and almost covers the entire range in the azimuthal

angle (φ). The scintillator paddles numbered 1 through 23 are mounted together in

“panel 1” and are identified as “forward angle” counters. Panel 1 corresponds to the

polar angles from 8◦ to 45◦. Paddles 24 though 34 are mounted in “panel 2”, paddles

35 through 45 are mounted in “panel 3”, and paddles 46 through 57 are mounted in

“panel 4”. Panels 2, 3 and 4 are referred as the “large angle” counters and correspond

to the polar angles greater than 45◦. Each scintillator paddle is coupled to a PMT at

each end. In order to reduce the number of electronic channels, the last 18 scintillator

paddles are grouped together electronically in pairs and are treated as single, double

width paddles [57]. The width of each forward angle paddle is 15 cm and the width

of the large angle paddles is 22 cm.

As a charged particle passes through the scintillator, the atoms in the scintillator

material become excited. The atomic excitation results in the emission of photons,

which are then directed towards the photomultiplier tube (PMT) through the light

guides via total internal reflection. The photons are incident on the photocathode of

the PMTs and release electrons through the photoelectric effect. The resulting elec-

trons then cause multiple secondary electrons to be emitted in a series of accelerating
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Figure 3.6: View of TOF counters in one of CLAS sectors showing the grouping into
four panels. The beam direction is shown by the arrow.

electrodes, called dynodes, in the PMTs. This electron multiplication chain inside

the PMT converts the optical light signal to a detectable electric pulse with a large

amplification. These pulses generated by the TOF counters are then used for CLAS

trigger electronics as well as for pulse-height and timing analysis [57].

The TOF trigger is set when a track passes through the scintillator with deposited

energy greater than some pre-selected threshold value. A pre-trigger circuit divides

the PMT dynode pulses into two signals, one of which is sent to the CLAS Level

I trigger, and the other one is used for pulse height and timing analysis. The time

of the event is determined by LeCroy 1872A FASTBUS TDC triggered by a LeCroy

2313 discriminator set at low threshold for precise timing [57].

3.3.5 Electromagnetic Calorimeter (EC)

The forward electromagnetic calorimeter in CLAS covers the polar angle in the range

8
◦
< θ < 45

◦
. In normal CLAS operation, the EC is used for triggering, electron

pion separation, neutral particle identification, and total energy measurements. For

this experiment, the EC was used only to trigger the data acquisition system as
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Figure 3.7: Exploded view of the Electromagnetic Calorimeter module in a CLAS
sector. The U, V, and W planes are clearly visible.

discussed in Sect. 3.6. The EC modules in each sector are located just outside the

TOF counters, in the forward region of CLAS. Each EC module has the shape of an

equilateral triangle and consists of alternating layers of 2.2-mm-thick lead sheets, and

10-mm-thick strips of plastic scintillator. The total thickness of each module is 16

radiation-lengths 2 (RL). Each scintillator layer is made up of 36 strips, parallel to

one side of the equilateral triangle. The strips in each successive layer are rotated by

120◦ forming three orientations that are labeled as U, V, and W. These orientations

provide stereo location of energy deposition. Each orientation contains 13 layers of

a lead-scintillator sandwich, which are subdivided into an inner stack (5 layers) and

the outer stack (8 layers). These stacks provide longitudinal sampling of the shower

for improved electron/hadron separation [58]. The exploded view of one of the EC

2The characteristics length of matter related to the energy lost by a high-energy particle when
traversing through it and is usually measured in g cm−2. It is: a) the mean distance over which a
high-energy electron loses all but 1/e of its energy by bremsstrahlung b) 7/9 of the mean free path
for pair production by a high-energy photon [18]
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Figure 3.8: Schematic diagram of the TPE beamline

module is shown in Fig. 3.7. The signal through each module is read out by using

36 (strips)× 3 (orientations) × 2 (stacks) = 216 PMTs. The scintillator light is

transmitted to the PMTs by using fiber-optic light-readout units. All 1296 PMT

channels are read out with LeCroy 1881M ADC and LeCroy 1872 TDC boards. The

timing signals to the TDCs are provided by LeCroy 2313 leading edge discriminators.

The details of the electronics system used in EC can be found in Ref. [58].

3.4 TPE Beamline Components

To produce a simultaneous mixed electron-positron beam required for the experi-

ment, several modifications to the existing Hall B beamline were required. Modified

components of the beamline included a converter, a series of dipole magnets known

as the “chicane”, beam profile monitors and a beam profile calorimeter. A schematic

diagram of the beamline components of the TPE experiment is shown in Fig. 3.8.

Bremsstrahlung photons were produced by striking a gold radiator with a 100- to

120-nA 5.6-GeV primary electron beam provided by the CEBAF accelerator. The

electrons were diverted into the Hall B tagger dump by using the tagger magnet. The

resulting photon beam then passed through a 12.7-mm-diameter nickel collimator

and struck a 0.09 RL gold converter to produce electron-positron pairs. The mixed

electron, positron, and photon beam then entered the 3-dipole chicane that separated
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Figure 3.9: Schematic diagram of the three dipole chicane

electron and positron in the horizontal plane and stopped the photon. This section

will discuss the modified beamline components in detail.

3.4.1 Chicane

A series of three dipole magnets known as the chicane, was employed to separate the

photon beam from the mixed lepton beam. Fig. 3.9 shows the schematic diagram of

the TPE chicane. The first and the third dipoles in this setting were the so-called

Italian dipoles (ID), and the second magnet was the pair spectrometer (PS). As

the mixed beam entered the first dipole, the electron and positron beams separated

spatially in the horizontal plane since they bend in the opposite directions in a given

magnetic field. The photon beam continued to traverse along the beamline, and

was stopped by a 4-cm-wide and 35-cm-long tungsten photon blocker placed at the

upstream face of the second dipole. The magnetic field was set in such a way that

the electron and positron beams converge as they emerge out of the second magnet.

A mixed electron-positron beam emerged out of the third dipole, and traversed along

the beamline. In the reversed chicane polarity, the electron and positron beams switch

their spatial positions. Ideally, there would not be any left-right spatial asymmetry

between electron and positron beams as the three dipoles are left-right symmetric.
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Even if the chicane was not perfectly symmetric, periodically reversing the chicane

polarities should cancel any spatial asymmetries. This is discussed further in Sect. 4.5

and Sect. 5.2.3.

Either of the diverging lepton beams could be stopped at the exit face of the first

dipole by inserting one of the two “beam blockers” in their path. These lepton

beam blockers are standard-sized lead bricks (2”×4”×8”) and were used to block

individual lepton beams during beam position measurements and chicane-magnetic

field optimization. The lepton beam blockers were not used during normal production

data taking.

3.4.2 Sparse Fiber Monitor

The position of the mixed beam was monitored throughout the experiment using a

scintillating fiber monitor, hereby referred to as the sparse fiber monitor (SFM). This

device was designed and built for the previous version of this experiment [59] and

was rebuilt by the author at FIU for this experiment. The schematic diagram for the

device is shown in Fig. 3.10. It contains 32, 1 × 1 mm multiclad Bicron (BCF-12)

fibers, supported by 6”× 6” aluminum frame. 16 fibers are laid along the x-axis

parallel to each other, while the other 16 fibers are laid along the y-axis, parallel to

each other, creating a grid mesh structure for two-dimensional readout. Consecutive

fibers are 5 mm apart. Each set of 16 fibers are optically glued to a multi-pixel

Hamamatsu PMT for light collection and amplification.

The SFM was installed upstream of the TPE target to monitor the position of the

beam. When the beam traverses through the SFM, the scintillation light emitted by

the fibers is collected by two PMTs, which provide SFM coordinates of the beam.

Fig. 3.11 shows typical beam distributions along horizontal (x) and vertical (y) fibers
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Figure 3.10: Schematic diagram of the TPE sparse fiber monitor. The beam direction
is into the plane.

at the SFM during production data taking. Both distributions were fitted with Gaus-

sian functions. The centroids of these fits represent the beam center. The chicane

magnetic field was optimized in such a way that the beam centroids of both lep-

ton beams lie around the 8th fiber in both x and y orientations for both beams.

The chicane magnetic field was optimized during commissioning of the experiment as

described in the following section.
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Figure 3.11: Beam position distribution along horizontal fibers (top) and along ver-
tical fibers (bottom). The solid line is a Gaussian fit to the respective distributions.

Chicane Magnetic Field optimization

In order to find the optimum magnetic field to operate the chicane, the centroid

position of each lepton beam was measured at various Italian dipole currents, while

keeping the PS dipole current fixed. The other lepton beam was blocked by the lepton

blocker. The beam centroid position moved to the left or to the right depending upon

the ID current and lepton type. Fig. 3.12 shows the results. The ID current when the

centroid positions of the left (electron) and the right (positron) beam intersect gives
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the optimum ID current when the beam centroid positions of both beams are the same.

The optimum ID current from Fig. 3.12 was found to be 327.55 A and was set at that

value throughout the experiment. Since any fluctuation in the chicane magnetic field

can cause beam offsets, the position of the mixed beam was continuously monitored

for stability throughout data taking.

Figure 3.12: The position of the beam centroid along x as the function of chicane
current. The blue squares are for the left beam (electron), red squares are for the
right beam (positron) when the other beam is blocked. The straight line is a fit to
the data points. The ID current setting where two straight lines intersects gives the
optimum chicane current.

3.4.3 Target

The mixed beam interacted with the target located approximately 4-m downstream

of the SFM. The target used in this experiment was a cylindrical 30-cm-long, 6-cm

internal diameter, and 127-micron-thick Kapton cell filled with liquid hydrogen (LH2).

The center of the target was located at 30 cm upstream of the CLAS center. The

target was cooled to a temperature of 20◦ K by circulating liquid helium in the heat
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Figure 3.13: Photograph of the actual TPE target cell

Figure 3.14: Engineering assembly drawing of the TPE Target. The dimensions are
given in mm.

exchanger attached to the cell. The target was thermally insulated with five layers

of super-insulation each with 3-PLY CEREX and aluminized Mylar. The average

pressure inside the cell was maintained at approximately 1100 mbar and the target

density was 0.0708 g/cm3. Fig. 3.13 shows a photograph of the actual target cell

used in this experiment and the Fig. 3.14 shows the engineering assembly drawing

of the target used in this experiment. The target was enclosed in a 75-micron thick

aluminum scattering chamber.
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3.4.4 Downstream Beam Profile System

A downstream beam profile system was used to monitor the profiles of the lepton

beams for their stability before and after each chicane field reversal. The system

consisted of a Dense Fiber Monitor (DFM) and a TPE electromagnetic calorimeter

(TPECal). The DFM consisted of a packed array of 2 mm × 2 mm scintillating

fibers in a grid mesh structure with 64 fibers in each plane. The TPECal was an

electromagnetic shower calorimeter that consisted of 30 identical shashlik modules.

The DFM was mounted at the front face of the TPE calorimeter (TPECal) and the

combined system was capable of moving left and right of the beam with a stepping

motor. The DFM-TPECal system was moved into the beam only during beam profile

measurements before and after each chicane flip. In this section we will discuss the

details of the TPECal.

TPE Calorimeter

The TPCal was used to measure the beam energy distributions of both lepton beams

and to check whether the energy profiles of both beams are identical. Each TPECal

module consists of alternating layers of 1 mm lead and 2 mm plastic scintillator.

Each module is 45 cm long, with a square front face of dimension 3.82× 3.82 cm2.

The calorimeter modules are arranged in five rows inside an aluminum box. Each

row contains 6 calorimeter modules. The light from an individual scintillator layer in

each module is collected by 16 wavelength-shifting fibers of 1.5-mm diameter. The

fibers are 7.7 mm apart and are coupled to a 25-mm diameter Hamamatsu R3998-02

PMT placed in a plastic housing. The PMTs are wrapped with sheet of mu-metal 3

to protect them from static magnetic fields (Fig. 3.15).

3An alloy of nickel and iron and has a very high magnetic permeability
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Figure 3.15: Top: Side view of a calorimeter module, showing the 45-cm length and
the plastic housing for the PMT on the right side; Middle: End view of a shashlik
module, showing the four bolts fastening it together and the ends of the 16 wavelength
shifting fibers; Bottom: Close-up of a module showing the alternating plastic and lead
layers.

The signal from each TpeCal module was split, and sent to a discriminator and, after

a delay, to an analog to digital converter ADC. The signals from each discriminator

were ORed to form the TpeCal trigger, the ADC gate, and the TDC common stop.

The other output of each discriminator was sent to a TDC for digitization. The
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Figure 3.16: End view of the partially assembled TPE calorimeter showing 23 of the
30 shashlik modules and 18 of the PMT housings. The 16 wavelength shifting fibers
(green dots) can be seen clearly.

TpeCal was mounted on the forward carriage just downstream of the CLAS EC

with the ends of the shashlik modules pointed towards the target (upstream) and

the PMTs pointed away from the target (downstream). A helium-bag beamline was

placed between target vacuum and DFM.

During normal production data taking, the TpeCal/DFM system was kept out of the

beam. However, to measure the individual beam profile, the TpeCal/DFM assembly

was moved into the beam line. During such measurements, the target was emptied to

reduce multiple scattering, one of the two beams (electron or positron) was blocked

at the chicane by a lepton blocker, the beam intensity was reduced by a factor of

about 104 to allow counting of incident leptons [60].

3.5 Background Control

Since a tertiary electron-positron beam was produced from the high-current primary

electron beam, excessive background was a great concern ever since the experiment

was first proposed in May, 2004. Several short test runs, as well as a full scale test run,

coupled with extensive computer simulations were performed to identify the major
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Figure 3.17: Final design of the nominal shielding components along the TPE beam-
line

sources of background and eliminate them [59, 61]. Based on the knowledge gathered

from these engineering test runs, several shielding configurations were designed and

simulated in order to find the best shielding configuration for background reduction.

The designed nominal shielding configuration along the TPE beamline is shown in

Fig. 3.17.

Prior to running the TPE experiment, all the components of the simulated shield-

ing configuration were installed along the beamline. Installation of all the shielding

components was an extensive task but was completed with effort from the Hall B

engineering staff, collaborators from ODU and FIU. The major shielding components

are:
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1. The tagger vacuum box was covered with 0.25′′ of lead sheets.

2. The tagger beam dump area, which was identified as one of the major sources

of background, was covered with concrete and lead blocks.

3. The helium bag beamline, connecting each end of the PS magnet to the ID

mangets, was hermetically shielded. The shielding consisted of 4′′ of lead, 8′′ of

concrete, and a few inches of borated polyethylene.

4. A 4.5′′-thick lead wall with steel cladding was placed just downstream of the

second ID magnet.

5. A tungsten collimator with 1.75′′ internal diameter was used at the aperture of

the lead wall.

6. A 1′′-thick, 152′′ high carbon-steel shield-wall was placed downstream of the

lead-wall.

7. A plastic shield surrounding the target chamber, known as a Møller shield, was

used in order to reduce low-energy Møller/Bhabha leptons.

Fig. 3.18 shows photographs of some of the shielded areas along the beamline.

3.6 Trigger and Data Acquisition System

In CLAS, the events of interest are acquired by implementing a two level hierarchal

trigger system. If the trigger condition is met, the data acquisition system takes an

electronic snapshot of all the information from the detectors, constituting an “event.”

The CLAS level 1 trigger orders the data acquisition to process all the PMT prompt

signals within 90 ns through a memory look up [55]. These signals include information

about the location of the hit in the TOF scintillator, and the energy deposited in the

EC, etc. The level 1 trigger uses information from the PMTs to determine whether a
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Figure 3.18: Photographs taken after the completion of beamline shielding work.
Top left: tagger vacuum box shielding with lead sheet. Top right: Tagger bunker
shield. Middle left: Shielded tagger vacuum box and beam dump area. Middle right:
The region between the first Italian dipole and the PS dipole. Bottom left: photon
collimator shielding area. Bottom right: protective shielding for electronic devices.
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desired event has occurred. For fast response, the bit patterns from these detectors

are compared to the preloaded patterns in the memory tables [55]. The level 1 trigger

condition is occasionally set by undesired accidental events, which lack matching drift

chamber trajectories. In order to reject these events, level 2 triggers are employed.

The primary trigger for the TPE experiment required a hit in the TOF panel 1 (θ <

45◦) and the EC in the same CLAS sector, in coincidence with a TOF hit anywhere

in the opposite sector. This experiment did not implement a level 2 trigger. The

data from the various detector components of CLAS were digitized in 24 FASTBUS

and VME crates and collected by VME Readout Controllers (ROCs). The arrays

of the digitized outputs were combined to build an event by using the simple event

builder (SEB) system. Once a complete event is built, the Event Recorder was used

to write the event information directly to the RAID disks [55]. Then, the data

from these disks were transfered to the computer center, where they were stored and

accessed for physics analysis. The events were recorded in the units called “runs”

with approximately 20 million trigger events in each run.

3.7 Data Collection

During the alloted run period, the TPE experiment collected nearly 1000 runs, which

had approximately 12 billion trigger events in the standard experimental condition.

Table 3.1 summarizes those experimental conditions.

The data were collected with both positive and negative torus magnet polarities in

order to minimize systematic uncertainties arising from lepton acceptance differences.

The lepton acceptance difference can arise from the detector imperfections such as

holes in the drift chamber, bad TOF, bad EC regions, etc., that are seen differently

for inbending and outbending leptons. Data were also collected for both positive and

negative chicane magnet polarities in order to account for any left-right asymmetry

in the electron/positron beam. The magnet polarities were periodically reversed, and

61



Table 3.1: TPE standard experimental conditions

Component Value

Primary Beam Current 100 < I < 120 nA
Primary Beam Energy 5.6 GeV

Radiator 0.009 RL
Converter 0.09 RL

Pair Spectromer (PS) ± 676.5 A
Italian Dipole (ID) ± 327.7 A

Tagger Current 1927 A
Torus Current ±1500 A

Mini-Torus Current 4000 A

a roughly equal number of events were collected in each magnet cycle. A complete

magnet cycle includes runs from all the possible combinations of torus and chicane

magnet polarity.

The data were collected for four complete cycles of the chicane and the torus magnet

polarity reversals. Table 3.2 shows the summary of the collected data and the magnet

polarities reversals during the course of the experiment. TPE calorimeter runs were

taken before and after each chicane polarity reversals to check stability of the lepton

flux/energy.

Table 3.2: Summary of the collected data

Magnet Cycle Date Torus Polarity PS Polarity Runs Total Events (in millions)

12/08/2010 - - 66228 - 66322 494
12/13/2010 - + 66323 - 66377 507

1 12/16/2010 + + 66381 - 66490 949
12/20/2010 + - 66517 - 66540 265

01/06/2011 + - 66567 - 66646 794
01/11/2011 - - 66651 - 66700 688

2 01/14/2011 - + 66718 - 66773 741
01/18/2011 + + 66778 - 66850 723

01/23/2011 + - 66873 - 66939 764
01/29/2011 - - 66944 - 66995 739

3 02/02/2011 - + 66999 - 67041 768
02/04/2011 + + 67043 - 67092 748

02/08/2011 + - 67106 - 67152 793
02/11/2011 - - 67155 - 67218 954

4 02/15/2011 - + 67252 - 67298 392
02/18/2011 + + 67290 - 67329 821
02/22/2011 - + 67343 - 67383 198
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3.8 Event Reconstruction

The data on the disk contains information about the recorded events in the form of

digital output signals from TDCs and ADCs. The raw data were reconstructed into

meaningful physical quantities by a process known as “data cooking.” The data were

cooked using the CLAS REConstruction and AnalySIS (RECSIS) software package.

The event reconstruction process starts with the drift chamber hit-based tracking. In

hit-based tracking, information about the position of wires with a hit in a given sector

is gathered. The adjacent hits in each drift chamber super-layer are then grouped

into hit clusters. The hit clusters are then linked across the three regions of the DCs

to produce a viable hit-based track. The sign and magnitude of the curvature of

this track upon traversing through the R2 drift chamber gives the charge, and the

magnitude of the momentum of the track [56].

In the second step, known as time-based tracking, the hit-based tracks are extrap-

olated to find a viable hit in the corresponding TOF panel. If a hit is found, the

timing measurement is used to set an upper limit on the times of the drift chamber

hits associated with that track. The hit clusters without viable timing information

are removed. The track is then re-fit using only the remaining clusters. This process

is repeated a few times to refine the momentum measurements as well as the mea-

surement of the event vertex, which is determined by the distance of closest approach

of the track to the beamline. After the track parameters are well defined in the time-

based tracking, the track is extrapolated to the rest of the CLAS components. If the

corresponding hits are recorded in those components, the information is added to the

track description in the corresponding data bank [56]. The software then writes the

output information in a BOS file format, which is then converted into ROOT4 format

for physics analysis.

4An Object-Oriented data analysis framework [62]
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3.9 Detector Calibrations

Each detector component of CLAS is generally calibrated for each experimental run

period. The purpose of the calibration is to optimize the momentum and energy

information using the collected data. The different components of CLAS were cal-

ibrated prior to“cooking” the data. This section will discuss the details of the DC

calibration performed by this author.

3.9.1 Drift Chamber Calibrations

When a charged particle traverses through CLAS drift chambers, on average 30 out

of the 34 layers of the sense wires are hit. The track of the the charged particle is

obtained by least square fitting the positions of these hits [56]. The distance of this

fitted track from the sense wire is known as the Fitted Distance of Closest Approach

(FITDOCA). Additionally, the distance of the track from the sense wire can also

be calculated from the drift time of the particle using a drift distance function and

is known as the Calculated Distance of Closest Approach (CALCDOCA). The drift

distance function gives a relation between the drift distance and the drift time (t) [56].

For a given track entrance angle, the drift distance function follows a form given by

Eq. 3.1 in the R3 drift chambers:

x(t) = v0t+ η

(
t

tmax

)p
+ κ

(
t

tmax

)q
, (3.1)

where v0 is the drift velocity at t = 0, tmax is the maximum drift time for every sector

and every superlayer, and the parameters η, κ, p, and q are determined by fitting the

time to distance correlation in each superlayer in each sector [56]. Similarly, the drift

distance function follows a polynomial form given by Eq. 3.2 in the R1 and R2 drift
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chambers [56].

x(t̂) = a · t̂+ b · t̂2 + c · t̂3 + d · t̂4 + (cc− a− b− c− d) · t̂5, (3.2)

where a, b, c, d, and cc are determined by a fit to the drift time to drift distance

correlation. t̂ is the normalized time given by t̂ = t
tmax

.

The difference between FITDOCA and CALCDOCA is called the time residual

(RESI), which measures the resolution of the drift chamber.

RESI = FITDOCA - CALCDOCA. (3.3)

The goal of the drift chamber calibration was to minimize this residual by finding

an optimum set of parameters in the drift distance function for each superlayer in

each sector. The drift chamber calibration was an iterative process and started with

copying over parameters from the previous CLAS experiment as initial parameters for

the drift distance function. A portion of the data were cooked with those parameters.

Then, a new set of parameters was obtained by re-fitting the drift distance function

with the newly cooked data. The process was repeated until the fit parameters

converged. The parameters were finally adjusted by fitting the residual distributions

for each super layer in each sector with a double-Gaussian function. The centroid

and the width of this fit represents the DC mean and sigma. Fig. 3.19 shows the

distribution of the residual in sector 1 superlayer 1 (S1SL1). The quality of the DC

calibration was monitored by plotting the position of DC mean and sigma of this fit

against the run number. Fig. 3.20 and Fig. 3.21 show the stability of the DC mean

and sigma over the TPE run period. The vertical lines on the plots show the magnet

polarity reversals. As has been discussed earlier, this experiment had to deal with

significant number of background related hits in the DC. As a results, the chambers
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Figure 3.19: Distribution of the residual in S1SL1. The black curve is the double-
Gaussian fit to the residual distribution.

were significantly nosier than usual CLAS experiments. However, the fluctuation of

the DC mean and sigma were still within the CLAS tolerance [56].

3.10 Kinematic Corrections

A charge particle traversing through CLAS loses energy along its track via interaction

with the detector elements. In order to account for the energy loss, the reconstructed

energies are usually corrected. In order to account for inadequate knowledge of the

magnetic field and for drift chamber dislocations, the reconstructed momentum of

the charged particle are also corrected. This section will discuss the energy loss and

the momentum corrections performed for this experiment.

66



Figure 3.20: DC mean vs. run number

Figure 3.21: DC sigma vs. run number
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Figure 3.22: Energy loss correction for the proton tracks

3.10.1 Energy Loss Corrections

The CLAS reconstruction software gives an effective momentum between Region 1

and Region 3 drift chambers, without accounting for the energy loss by the charged

particle along its track. The energy loss is significant for the low momentum protons.

In order to correct for this loss, the standard CLAS ELOSS package [63] was used.

ELOSS corrects for the energy loss of the charged particle as it traverses from the

event vertex through the target volume, the target cell walls, insulation, chamber win-

dows etc. The ELOSS package uses the Bethe-Bloch equation to relate the material

characteristics and path length to the energy loss [18]. Fig. 3.22 shows the energy loss

correction (∆E) versus the momentum reconstructed by RECSIS (precsis) for protons.

The low momentum protons have higher corrections while the corrections are smaller

for higher momentum protons.
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3.10.2 Momentum Corrections

This section describes the method employed to correct the measured lepton and pro-

ton momenta reconstructed by RECSIS. This method closely follows the momentum

corrections method employed by the CLAS e6 run group [64]. Because of inadequate

knowledge of the magnetic field and drift chamber positions, the momenta recon-

structed in CLAS show some systematic deviations. This is evidenced by shifted and

broadened peaks in missing mass and invariant mass distributions. For example (see

Fig. 3.23) the centroid of the W distribution of the p(e, e′) elastic peak is shifted from

its known value W = Mp =0.938 GeV and is broad.

In order to correct for these deviations, the reconstructed particle momenta and angles

need to be corrected. To calculate these corrections, we need a precise calculation of

the invariant mass W , which requires precise knowledge of the incident lepton energy.

As already discussed, The TPE production data were collected with a tertiary e+/e−

beam with a continuous distribution of energies from 0.5 to 5 GeV. Hence for the

calibration purpose, we took special runs with a primary electron beam energy of

2258 MeV. We determined the momentum corrections for this set of data, and then

applied these corrections directly to the TPE production data.

In order to calculate the required correction we employ the kinematics of elastic

electron scattering. For this, we compare the measured momentum (pmeas) of the

electron with the momentum calculated (pcalc) by using Eq. 2.8. Fig. 3.24 shows

the fractional deviation of the measured electron momentum from the calculated

momentum ( ∆p
pmeas

) with ∆p = pmeas − pcalc, as a function of the azimuthal angle.

The deviation clearly depends on the azimuthal angle of the scattered electron in

each CLAS sectors. We also need to correct the angle (θ) of the scattered particle.

We assume that the azimuthal angles (φ) of the scattered particles are correctly
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Figure 3.23: Invariant mass distribution, W , for all CLAS sectors before applying
momentum corrections. Red curve is the actual distribution and the black curve is
a Gaussian fit to the distribution. The vertical line shows the proton mass (0.938
GeV).

determined since we found that the lepton-proton elastic events were coplanar (i.e.

φl − φp ≈ 180◦). Following Ref. [64] , the correction required for the polar angle

(∆θ) and the momentum (∆p) are parametrized in terms of the effect of the DC

dislocations on each track as,

∆θ = (A+Bφ)
cos θ

cosφ
+ (C +Dφ) sin θ, (3.4)
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Figure 3.24: φ versus ∆pp
p

distribution in each CLAS sector before before applying
momentum corrections.

and,

∆p

p
=

(
(E + Fφ)

cos θ

cosφ
+ (G+Hφ) sin θ

)
p

qBtorus

. (3.5)

where:

• q is the charge of the particle.

• p is the reconstructed momentum in GeV.

• θ is the reconstructed polar angle.
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• φ ∈ [−π
6
, π

6
] is the reconstructed azimuthal angle relative to the mid-plane of

the sector.

• The quantity Btorus gives the integral
∫

Btrans ·dl along the track path in GeV.

The ratio qBtorus

p
in Eq. 3.5 is proportional to the curvature of the track and quanti-

fies the effect of drift chamber misalignment. The simplest parameterization of this

integral is given as:

Btorus = 0.76
Itorus sin2 4θ

Imaxθ
if θ <

π

8
, (3.6)

and

Btorus = 0.76
Itorus
Imaxθ

if θ >=
π

8
, (3.7)

where Itorus is the CLAS torus current and Imax = 3375 A is the maximum allowed

torus current.

In equations 3.4 and 3.5, the parameters A through F account for the effects due

to misalignment of the drift chambers in different directions. Parameters A and E

describe the radially outward displacement of the chambers, which primarily affect

particles in the forward direction. Parameters B and F describe the φ-dependent

radial displacements, C and G describe displacement along the beam axis, which

primarily affects the particles at back angles, and parameters D and F correspond to

a rotation around the radial direction.

It should be noted that the momentum correction in Eq. 3.5 depends on the particle

charge, the magnitude of the CLAS magnetic field, and the track momentum itself.

In addition to the angle and momentum corrections due to misaligned drift chambers,

we used the parametrization given in Ref.[64] to account for the effect of incorrect
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magnetic field mapping.

f(θ) = (J cos θ +K sin θ + L sin 2θ) + (M cos θ +N sin θ +O sin 2θ)φ (3.8)

The corrections given by Eq. 3.8 are independent of the particle’s charge, its momen-

tum, and torus field strength. Hence, this correction is different from that given by

Eq. 3.5 under the reversal of charge and magnetic field polarity. In order to cover

a wide range of CLAS kinematics, it is important to use data samples with both

in-bending and out-bending particles with a wide range of kinematics.

We determine the parameters A−O by selecting exclusive events where all the par-

ticles in the final state are detected. We then employ four-momentum conservation

to extract a “goodness of fit” (χ2) like variable that we optimize for all the events.

Event Selection for Fitting

For fitting, we selected exclusive events, where all the particles in the final state are

detected. We selected p(e, e′p) elastic events as the primary sample. To cover lower

proton momenta as well as back angle leptons, we choose p(e, e′pπ+π−) exclusive

events by placing cuts on missing energy and momenta. We choose runs from positive

and negative torus polarity to include both in-bending and out-bending particles. For

all the events the usual fiducial and target vertex cuts (discussed in Chapter 4) have

been used. Once we have selected the exclusive events, all the 14 parameters for each

sector are optimized by fitting in a ROOT-based fitting routine. The output of the

code is an optimized set of 84 parameters, 14 for each sector.
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Figure 3.25: φ versus ∆pp
p

distribution in each CLAS sector after applying momentum
corrections.

Fitting Procedure

We started our fitting procedure with the momentum corrections based on the CLAS

e6 [64] parameters, applied energy loss corrections and calculated the missing four

momentum. With the missing energy and the components of the missing three-

momentum, we added squares of these components normalized to a reasonable reso-

lution, to get an overall χ2 of the fit,

∆χ2 =
E2
miss + (P z

miss)
2

(0.020 GeV )2
+

(P x
miss)

2 + (P y
miss)

2

(0.014 GeV )2
(3.9)
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Figure 3.26: Comparison of the invariant mass distributions before and after applying
momentum correction in CLAS sector 5 (left) and sector 6 (right). Black and red
curves are the distributions before and after the momentum correction, respectively.
The vertical line shows the proton mass (0.938 GeV)

After looping over all the selected events, 84 more terms, one for each of the 16

parameters, were added to the total χ2.

∆χ2 =
i=84∑
i=1

a2
i

σ2
i (ai)

, (3.10)

where ai’s are the parameters of the fit. Once we obtained the optimized set of 84

parameters, we used Eq. 3.4, Eq. 3.5 and Eq. 3.8 to correct for the angle and momen-

tum of each track and to recalculate the invariant mass distributions. Fig. 3.25 shows

that φ-dependence of the difference between the measured and calculated momenta

disappears after our momentum correction. Also, Fig. 3.26 shows that the invariant

mass distribution of elastic electron-proton scattering scattering shifts to the correct

position as well and becomes slightly narrower.
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Chapter 4

Data Analysis

In order to analyze the data from this experiment, the novel analysis technique devel-

oped by Moteabbed et al. [49] was employed with some modifications. As discussed

in Ref. [49], this analysis presented us with some unique challenges that are rare in

other CLAS experiments. While precise energy of the incident beam is known in other

CLAS experiments, the incident energy of the tertiary lepton beam particles in this

experiment was unknown. However, the incident energy of the elastically scattered

lepton can be reconstructed using elastic scattering kinematics. The usual CLAS

charged particle identification schemes were not used in this analysis as the scheme

generally requires data from the CC and EC in order to identify leptons. As already

discussed, the CC and EC were not used in this experiment. Additionally, a lepton-

charge independent analysis algorithm was required. To overcome these challenges,

we required simultaneous detection of both the leptons (e±) and the protons (p) in

each event and measured both the momenta and scattering angles of the leptons and

the protons. We employed this over-constrained kinematics to identify the elastic

lepton-proton pair. This chapter will discuss the important steps involved in the data

analysis.

4.1 Elastic Event Selection

The elastically scattered e+p and e−p events were the events of interest for this exper-

iment. However, the collected trigger events contained not only the elastic events, but

also a significant amount of inelastic background and accidental events. The elastic

events were selected by making a series of cuts to remove the background events. We

started the event selection process by skimming the data to keep only the events with
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at least two time-based tracks in the DC in opposite CLAS sectors. This skim got

rid of significant amount of junk events from the data, reducing the data size by ap-

proximately 30%. Ideally, the events with only two tracks should be taken. However,

the event triggered by accidental hits could have more than two tracks per event. In

that case, all possible combinations of the viable track pairs were formed by looping

over all the time-based tracks in the event. The track pair was flagged as a viable

pair if it satisfied the following preliminary cuts:

Good detector status: Both the tracks in the pair were required to have a detec-

tor hit in the drift chamber and the TOF paddle. Each track was also required to

have a positive DC status (dc stat> 0), to select only the time-based tracks. Good

charged pair: For the track pair to be a viable pair, one of the tracks must either

be positive or negative (e±) while the other must be positive (p).

Good vertex: To ensure that both tracks in the pair originate at the target, the re-

constructed Z-vertex for both the tracks were required to be within the target length

(-45 cm < Vz < -15 cm). Fig. 4.1 shows a typical reconstructed target vertex distri-

bution for the lepton candidate and the proton candidate in the pair. The vertical

lines show the extent of the target vertex cut. Fig. 4.2 shows a two-dimensional dis-

tribution of the azimuthal angle versus Z-vertex distributions of electron candidates

in the viable −+ pair with both tracks having a good detector status.

The pairs that did not satisfy the above mentioned criteria were discarded. If none

of the pairs of an event satisfied those criteria, the entire event was discarded to

start over with the next event. The pair that satisfied above criteria was flagged as

a possible elastic pair. Additional tests, based on kinematic cuts, were performed in

order to decide whether the trial pair was indeed an elastic pair. If the pair is elastic,

we can correctly identify the lepton and proton in the trial pair. Fig. 4.3 shows the

analysis flow chart to identify the lepton and the proton in the trial pair.
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Figure 4.1: Reconstructed target vertex distribution for the electron candidate (left)
and the proton candidate (right) in the −+ pair (dc stat> 0). The vertical lines show
the extent of the vertex cut.

Figure 4.2: Azimuthal angle (φ) vs. z-vertex (vz) distribution for the electron candi-
date in the −+ pair. The vertical lines show the extent of the vertex cut.

The trial pair with a negatively-charged track and a positively-charged track was

straightforward to analyze. The negatively-charged track represented an electron

candidate while the positively charged track represented a proton candidate. The
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Figure 4.3: Analysis flow chart

energy loss and momentum corrections were applied accordingly. If the pair passed

the elastic kinematic cuts described in the next section, it was flagged as the good

elastic e−p pair. If the pair failed the elastic kinematic cuts, it was discarded from

the analysis.
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Trial pairs with two positively charged tracks proved to be more complicated. To

identify the positron and proton in a pair, we started with an assumption that one

track in the pair represented a positron candidate while the other track represented

a proton candidate. We then applied energy loss and momentum corrections accord-

ingly. Next we checked whether the orientation passes the elastic kinematic cuts.

Furthermore, we swapped the particle identities, applied energy loss and momentum

corrections and checked whether the swapped orientation also passes the kinematic

cuts. The lepton and the proton identities were then assigned based on which orienta-

tion passed the elastic kinematic cuts. If both orientations passed the kinematic cuts,

the positron and proton identities were assigned based on which orientation yielded

the minimum timing difference between the lepton and the proton candidates (∆t =

proton time - lepton time). It is to be noted that only a negligible fraction of events

(∼ 10−5) had more than one pair passing all the kinematic cuts.

4.1.1 Elastic Kinematic Cuts

We employed over-constrained elastic scattering kinematics to cleanly select the elas-

tic events and unambiguously identify the lepton and the proton in an event. Based

on the elastic scattering kinematics, we chose to apply cuts on four different kinematic

variables, which will be discussed in this section. To determine the width of the cut

on each variable, the distribution (after applying cuts on the other three variables)

was fitted with a Gaussian function. The cut width was then taken to be 3.5 standard

deviations away from the mean on each side of the peak. We found that the mean and

the standard deviation of the fits of each of these distributions slightly vary with the

kinematic bins (discussed in section 4.3) and sectors. Hence, bin-wise and sector-wise

cuts were applied to each of these distributions.
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Co-planarity Cut

Two elastically scattered particles were required to emerge back to back in the az-

imuthal direction. As shown in Fig. 4.4, the azimuthal angle difference between the

lepton and the proton (∆φ = φl − φp) was peaked around 180◦.

Figure 4.4: Distributions of the azimuthal angle difference between lepton and proton
(∆φ) in a kinematic bin (0.8 < ε < 0.945 and 0.30 < Q2 ≤ 0.38) for event type and
torus polarity as indicated. The lepton was detected in CLAS sector 1. The black
histogram is the data before applying any kinematic cuts and the red histogram is
the data after applying all other kinematic cuts.
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Lepton Energy Difference Cut

The unknown beam energy of the incident tertiary electron-positron beam was re-

constructed by using scattering angles of the lepton and the proton as,

Eangles
beam = M

(
1

tan( θl
2

) tan θp
− 1

)
, (4.1)

where θl and θp are the lepton and proton scattering angles in the lab frame, respec-

tively. Additionally, the incident lepton energy can also be reconstructed using both

the scattering angles and the momenta of the lepton and the proton as,

Emom
beam = pl cos θl + pp cos θp, (4.2)

where pl and pp are the lepton and the proton momenta. For ideal momentum and

angle reconstruction, the two methods yield the same result. Hence, the difference

between the incident energies calculated by using two methods sharply peaks around

zero i.e.

∆Ebeam = Eangles
beam − E

mom
beam ≈ 0. (4.3)

We expect the Eangles
beam to be more precise than Emom

beam because the angle reconstruction

in CLAS has a better relative precision than the momentum reconstruction. In later

calculations of kinematic quantities which involve beam energy, including Q2 and ε,

we use Eangles
beam .

Using elastic scattering kinematics, the energy of the scattered lepton can be calcu-
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Figure 4.5: ∆Ebeam vs. ∆E ′ distributions for +− pairs (left) and ++ pairs (right).

lated using the relation

E ′calc =
Eangles

beam M

1 + Eangles
beam (1− cos θl)

. (4.4)

For ideal elastic scattering, the difference between the measured and the calculated

momentum of the lepton,

∆E ′ = E ′meas − E ′calc (4.5)

is distributed around zero. Fig. 4.5 shows that ∆Ebeam and ∆E ′ are linearly corre-

lated. We introduced a new set of cut variables on the basis of the correlation,

∆Ebeam + ∆E ′, ∆Ebeam −∆E ′. (4.6)

Fig. 4.6 and Fig. 4.7 show the distributions of ∆Ebeam + ∆E ′ and ∆Ebeam −∆E ′ in

83



Figure 4.6: Distribution of ∆Ebeam + ∆E ′ in a kinematic bin (0.8 < ε < 0.945 and
0.30 < Q2 ≤ 0.38) for event type and torus polarity as indicated. The lepton was
detected in CLAS sector 1. The black histogram is the data before applying any
kinematic cuts and the red histogram is the data after applying all other kinematic
cuts.

CLAS sector 1 and one of our kinematic bins. As expected, both of these distributions

are sharply peaked at zero.

Proton Momentum Difference Cut

The momentum of the recoil proton was calculated from the scattering angles of

the lepton and the proton using Eq. 4.7. This was compared with the measured
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Figure 4.7: Distributions of ∆Ebeam −∆E ′ in a kinematic bin (0.8 < ε < 0.945 and
0.30 < Q2 ≤ 0.38) for event type and torus polarity as indicated. The lepton was
detected in CLAS sector 1. The black histogram is the data before applying any
kinematic cuts and the red histogram is the data after applying all other kinematic
cuts.

momentum of the proton pmeas
p :

pcalc
p =

pl sin θl
sin θp

, ∆pp = pmeas
p − pcalc

p . (4.7)

Fig. 4.8 shows the distribution for the difference between the measured and calculated

momenta of the proton in one CLAS sector for one of our kinematic bins. As expected,

the distribution is sharply peaked at around zero.
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Figure 4.8: Distributions of ∆pp in a kinematic bin (0.8 < ε < 0.945 and 0.30 <
Q2 ≤ 0.38) for event type and torus polarity as indicated. The lepton was detected
in CLAS sector 1. The black histogram is the data before applying any kinematic
cuts and the red histogram is the data after applying all other kinematic cuts.

Fiducial Cuts

It was crucial for this experiment to have the same geometrical acceptances for both

in-bending and out-bending particles for both torus magnet polarities. In order to

select the regions of CLAS with uniform detection efficiency for both lepton species,

momentum and angle dependent fiducial cuts were applied. Any region of CLAS

where the particle detection efficiency changes rapidly were removed by applying the

fiducial cuts. In order to determine the optimum fiducial cuts, the momenta of the
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〈θ〉 = 0.3875
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〈θ〉 = 0.4625

Figure 4.9: The azimuthal angle (φ) distributions at 〈θ〉 = 0.3875 (left) and 〈θ〉 =
0.4625 for the bin where 0.2 < p < 0.3 GeV/c. The red vertical lines show the applied
cuts.

reconstructed tracks were divided into several bins. In the given momentum bin,

different slices of scattering angles (θ) were projected into one-dimensional azimuthal

angle (φ) distributions. Fig. 4.9 shows representative φ-distributions in two θ-bins

where 0.2 < p < 0.3 GeV/c. A cut indicated by red vertical lines was applied to

remove the region of φ where the distribution was rapidly varying. We then used

functional forms of the fiducial cuts applied by the CLAS g13 collaboration [65]

with the fit parameters adjusted using our data. Fig. 4.10 and Fig. 4.11 show two

dimensional θ - φ distributions for in-bending and out-bending tracks respectively

at several momentum slices. The fiducial cuts are drawn in black. Data from all

CLAS sectors are combined to produce these plots. Fig. 4.10 shows that the angular

acceptance of in-benders are momentum-dependent at small θ. Hence, we added a

momentum dependent θ-shift to the original θ for the in-bending tracks, i.e, θ′ = θ+θ-

shift with,

θ-shift = 0.1913 +
0.2012 GeV

(p+ 0.2997 GeV)
. (4.8)

This value of θ′ is then used in Eq.(4.9) and (4.10). See Fig. 4.12. The fiducial

cuts used for in-bending and out-bending tracks are |φ| < φmax where, for in-bending
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Figure 4.10: The distribution of reconstructed electron tracks as a function of θ and
φ for positive torus (in-bending tracks) for all sectors for momentum bins indicated
on the top of each plot. Fiducial cuts are drawn in black.

Figure 4.11: The distribution of reconstructed electron tracks as a function of θ and
φ for negative torus (out-bending tracks) for all sectors for momentum bins indicated
on the top of each plot. Fiducial cuts are drawn in black.
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Figure 4.12: θ-shift versus momentum of reconstructed electrons for positive torus
magnet setting (in-bending tracks). The fit to this distribution was used for deter-
mining the shift of fiducial cuts for in-bending tracks.

tracks (with φmax in radians),

φmax =


0.38(1− e−6.5θ′+1.0), 0.237 < θ′ < 1.7 rad

− 0.4θ′2 + 1.07θ′ − 0.674, θ′ > 1.7 rad

 (4.9)

and for out-bending tracks,

φmax =


0.39(1− e−6.5θ′+0.6), 0.187 < θ′ < 1.92 rad

− 0.44θ′2 + 1.07θ′ − 0.042384, θ′ > 1.92 rad

 (4.10)

Fig. 4.10 and Fig. 4.11 show that the fiducial cuts are within the regions of uniform

acceptance for both in-bending and out-bending leptons.
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Eangles
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Figure 4.13: Reconstructed incident beam energy distributions of elastically scattered
events using scattering angles (Eangles

beam ) for positive (left) and negative (right) chicane
magnet polarity. The area of the histograms are normalized to unity.

4.1.2 Beam Energy Distribution

Fig. 4.13 shows the incident energy distributions for both lepton species for both

positive and negative chicane polarities. The incident energy in these distributions

were calculated using the scattering angles of the lepton and the proton. Furthermore,

it shows that the distributions are slightly different for different chicane polarities due

to a left-right asymmetry in the chicane. This observation is consistent with the lepton

incident energy as measured in the TPECal as discussed in section 4.6. However, the

incident energy distribution for e−p events in one chicane polarity is similar to the

incident energy distribution for e+p events in the opposite chicane polarity and vice

versa. As seen in Fig. 4.14, the incident energy distributions for both e+p and e−p

events are similar when data from both chicane polarities are combined. This clearly

demonstrates the benefits of taking data in both chicane polarities in order to cancel

any chicane-dependent asymmetries. This will be discussed further in Sect. 4.5. To

avoid very low energy leptons, the incident energy was required to be greater than

0.85 GeV.
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beam [GeV]

Figure 4.14: Reconstructed incident beam energy distributions of elastically scattered
events using scattering angles (Eangles

beam ). The vertical line shows the applied beam
energy cut. The histograms are normalized to unity.

4.2 Dead Detector Corrections

Dead and inefficient detector components could create a false asymmetry and their

effect needs to be considered. To account for this effect, the following two procedures

were implemented.

4.2.1 Inefficient Detector Removal

The inefficient detector channels are defined to be either dead, broken, or inefficient

detector components. For example, the forward region (8◦ < θ < 45◦) in the sector

three drift chamber and EC had many such regions. To minimize any systematic bias

because of such regions, any event with either a lepton or proton going forward in

sector three was discarded in all torus and chicane configurations. Similarly, some

91



TOF scintillator paddles also had significantly fewer counts than their neighboring

paddles. The paddles that had significantly fewer counts for the entire momentum

range were marked as inefficient. To minimize any systematic bias in lepton detec-

tion efficiency due to the defective paddles, they were completely removed from the

analysis. Table 4.1 lists the identified bad paddles in each sector.

Table 4.1: Summary of the Bad TOF paddles

Sector TOF paddle

1 23, 34
2 26
3 16, 23
4 16, 23, 29
5 8, 12, 23, 30
6 29

4.2.2 Swimming Corrections

This experiment relies on the fact that the electron and the positron acceptances are

exactly the same. The acceptances of the two lepton species were matched by imple-

menting a “swimming” algorithm, which can trace the particle trajectories through

the CLAS geometry and magnetic field. Taking the vertex position of the particle and

the three components (px, py, pz) of three-momentum (p) as an input, the algorithm

predicts the hit positions on the detector planes. These hit positions can be converted

into sectors and paddle numbers as required. For the given lepton in an event, the

algorithm generates a conjugate lepton at the same vertex with the same momentum

and scattering angle as the original lepton.

Fig. 4.15 shows a pictorial display of the swimming algorithm. For each elastic e−p

(e+p) event detected in CLAS, the swimming algorithm generates a conjugate e+ (e−)

event with the same momentum and vertex. Both the lepton and its conjugate are
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Figure 4.15: Swimming of the detected event through CLAS

then swum through the CLAS geometry and magnetic field to predict the sector and

paddle hit by the lepton and its conjugate. The event is accepted as long as both the

lepton and its conjugate are within the fiducial acceptance region of CLAS and both

hit a good scintillator paddle. Otherwise, the event was rejected. The swimming

algorithm takes into account the effect of the CLAS mini-torus, whose polarity was

fixed throughout the experiment.

4.3 Kinematic Coverage and Bin Selection

Fig. 4.16 shows the kinematic coverage of the experiment in the Q2 versus ε distri-

bution for the events that pass all the above mentioned cuts. Since the distributions

were the same for both positive and negative chicane polarities, the data from both

polarities were combined to produce these plots. The holes in the kinematic coverage

at around ε ≈ 0.6 shown by red triangles are the trigger holes. These occur because

we required at least one particle to hit the forward TOF panel (θ < 45◦) and EC on

93



  

Figure 4.16: Q2 vs. ε distributions. Top-left: Positive torus e−p events; Top-right:
Positive torus e+p events; Bottom-left: Negative torus e−p events; Bottom-right:
Negative torus e+p. The red hollow triangles show the trigger holes. Note that data
from all CLAS sectors are combined.

the same sector. For a certain range of kinematics that depend on the torus polarity,

both the lepton and the proton miss the forward angle TOF panel. It is clear that the

trigger hole is the most prominent for e+p events in positive CLAS torus polarity. It

can also be seen that the elastically scattered events are largely concentrated at low

Q2 and high ε as expected since the cross section drops rapidly with Q2 (σ ∝ 1
Q4 ).

Fig. 4.17 shows the data binning schemes adopted in the data analysis. The bins

are overlaid on the Q2 versus ε distribution of e+p events in positive torus polarity.

The bins shown in the top two plots are the main focus of this dissertation while

the bins shown in bottom two plots were analyzed by another collaborator [66]. The
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Figure 4.17: Binning schemes adopted in data analysis. Top-left: 6 bins in high ε;
Top-right: 4 bins in low Q2 , Bottom-left: 5 bins in high Q2; Bottom-right: 5 bins in
low ε. The bins in the top-left and top-right are the main focus of this dissertation.
The bins are overlaid on Q2 versus ε distributions for the e+p events in positive torus
polarity where the trigger hole is most prominent.

binning scheme avoids kinematic holes and the edges of the distributions where the

acceptance changes rapidly. The results presented in this dissertation cover 6 bins

in Q2 at high ε (ε > 0.8) and 4 bins in ε at 〈Q2〉 = 0.85 GeV2). The primary goal

of adopting such binning was to investigate the Q2 dependence of the TPE effect at

high ε (ε > 0.8) and the ε dependence of the effect at low Q2. The average values of

Q2 and ε for these bins are summarized in Table 4.2.

4.4 Background Subtraction

Even after applying all the event selection cuts discussed in the previous sections,

background can still remain in some bins. Fig. 4.18 demonstrates that the background
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Table 4.2: Average 〈Q2〉 and 〈ε〉 for the binned data

bin 〈Q2〉 (GeV2) 〈ε〉

1 0.232 0.915
2 0.336 0.887

High ε 3 0.449 0.886
4 0.632 0.885
5 0.893 0.882
6 1.415 0.874

1 0.389 0.844
2 0.511 0.859

Low Q2 3 0.831 0.849
4 0.908 0.852

is negligible at high ε bins. However, a small background still remains at the lower

ε bins (see Fig. 4.19). Any charge asymmetric background under the peaks for e+p

and e−p events can introduce a false cross-section asymmetry. In order to precisely

determine the cross-section ratio, it is crucial to correctly determine the background

and subtract it from the signal.

We performed an in-depth analysis of the background in the bins, where the back-

ground was significant [60]. We found that the background can be correctly sampled

by fitting the tails of the ∆φ(= φl − φp) distribution, for the events that pass the

other three kinematic cuts, with a Gaussian function. We implemented the same

algorithm to sample the background in the bins. We fitted the ∆φ tail in the range

160◦ -172◦ to the left of the peak and 188◦-200◦ to the right of the peak to sample the

background at low Q2 and low ε bins. We then subtracted the sampled background

from the raw signal to obtain the background subtracted yield. Background for both

positive and negative torus polarities were found to be very similar. Even though

there was a negligibly small background at high ε bins, the same algorithm was used

to subtract the background to remain consistent in our analysis.
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Figure 4.18: ∆φ distribution at high ε and lowQ2 bin where 〈ε〉 ≈ 0.9 and 〈Q2〉 = 0.85
GeV2 for the events that pass all other cuts. Top left: Negative torus e−p events;
Top right: Negative torus e+p events; Bottom left: Positive torus e−p events; Bottom
right: Positive torus e+p events. There are no visible tails in these distributions in
comparison to the peak, which indicates that the background is negligible

4.5 The Cross Section Ratio

The elastic scattering cross section can be measured experimentally by using Eq. 4.11.

σ ∝ N

LAδ
, (4.11)

where, N is the number of detected elastic events, L is the integrated luminosity, A

is the detector acceptance and δ is the radiative correction. To calculate the ratio

R = σ(e+p)
σ(e−+p)

, we must ensure the same detector acceptances for both event types. We

first calculate a raw ratio of e+p and e−p elastic events for a given torus and chicane
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Figure 4.19: ∆φ distribution at 〈ε〉 ≈ 0.39 and 〈Q2〉 = 0.85 GeV2 for the events that
pass all other cuts. Top left: Negative torus e−p events; Top right: Negative torus
e+p events; Bottom left: Positive torus e−p events; Bottom right: Positive torus e+p
events. There are visible tails in these distributions in comparison to the peak, which
indicates that the background is not negligible

polarity as,

RC
T =

(
N e+p

N e−p

)C

T

, (4.12)

and the associated statistical uncertainty,

dRC
T = RC

T

√
1

N e+p
+

1

N e−p
, (4.13)
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Figure 4.20: Background subtraction for e−p events (left) and e+p events (right).
Tails of the ∆φ distribution to the left of 172◦ and to the right of 188◦ (shown by
vertical lines) gives the background and was fitted with a Gaussian function. The red
curve is the fit to the background.

where the superscript C indicates the chicane polarity and the subscript T indicates

the torus polarity. The proton acceptances for both event types in the given kine-

matics in the given torus polarity are the same and cancel in the ratio. However,

the acceptances for electron and positron differ as one bends towards the beamline

and other bends away from it in the magnetic field. As discussed earlier, we carefully

studied the lepton acceptance differences and minimized the difference by applying

the fiducial cuts, the dead-detector cuts, and the swimming algorithm. Fig. 4.21

shows the single ratios in different torus and chicane polarities as a function of 〈Q2〉

for high ε (ε > 0.8) bins. To remove any remaining torus-polarity-related acceptance

differences, we measured RC
T in both torus polarities to form a double ratio RC

d . For

the given chicane polarity, the torus-polarity-independent ratio can be obtained by

taking the square root of the product of two single-polarity ratios RC
+ and RC

− for the

positive and negative torus polarity [49],

RC
d =

√
(RC

+R
C
−) =

√(
N e+p

N e−p

)C
+

(
N e+p

N e−p

)C
−
, (4.14)
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Figure 4.21: The ratio of the number of elastic e+p events to the e−p events for
negative chicane polarity (left) and positive chicane polarity (right) as a function of
〈Q2〉 at 〈ε〉 ≈ 0.88. The filled (red) circles are the single ratios for the positive torus
polarity and the filled squares (blue) are the ratios from the negative torus polarity.

with the associated uncertainty,

dRC
d =

RC
d

2

√(
dRC

+

RC
+

)2

+

(
dRC
−

RC
−

)2

. (4.15)

Any e+ and e− beam-related asymmetries are removed in the quadruple ratio Rmeas,

formed by taking a square root of the product of the torus-double ratios dR+
d and

dR−d for the positive and the negative chicane, i.e.,

Rmeas =
√
R+
d R
−
d = 4

√
R+

+R
+
−R
−
+R
−
−, (4.16)

with the associated uncertainty,

dRmeas =
Rq

2

√(
dR+

d

R+
d

)2

+

(
dR−d
R−d

)2

. (4.17)

Fig. 4.22 shows the double ratios in positive and negative chicane polarities, and also
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Figure 4.22: Double ratio as a function of 〈Q2〉 at 〈ε〉 ≈ 0.88 for negative chicane
polarity (blue squares) and positive chicane polarity (red squares). The black squares
show the quadruple ratio.

the quadruple ratio as a function of 〈Q2〉 for high ε (ε > 0.8) bins.

4.6 Results from the Analysis of TPECal Data

As discussed in Sect. 3.4.4, we took special data using the TPE Calorimeter. The data

were used to measure the beam-energy profiles of the individual lepton beams and to

measure the extent to which they are identical. To collect TPECal data in a given

chicane polarity, one lepton beam was stopped by the lepton blocker and the energy

distribution of the other lepton beam was measured in the TPECal and vice versa.

We measured the energy distribution of each beam again after reversing the chicane

polarity. The collected calorimeter data were analyzed by our collaborators at ODU.

Fig. 4.23 shows the the ratio of positron energy to the electron energy as a function

of lepton energy when leptons are passing through the left side of the chicane, the

same ratio when leptons are passing through the right side of the chicane, and their

double ratio given by the square root of their products. It was found that the double

ratio of positrons to electrons passing to the left and right side of the chicane was

unity and flat, indicating that the left-right asymmetry of the beam cancels in the

double ratio [60].
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Figure 4.23: The ratio of positron energy to the electron energy as a function of
the incident energy (measured in ADC channels where channel 1000 corresponds to
an energy of ≈ 370 MeV). Top row: Leptons passing from the right of the chicane;
Middle: leptons passing from the left of the chicane; Bottom: Square root of the
product of the two single ratios. The figures on the left panel are when the calorimeter
is centered on the beam (nominal position) and the figures on the right are when the
calorimeter is offset by 2 cm from the nominal position. The statistics box shows the
parameter of a constant fit to the data.
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Chapter 5

Results and Discussions

The main focus of this analysis is to investigate the Q2-dependence of the ratio at

high ε (ε > 0.8) region as well as the ε-dependence of the ratio at low Q2 (〈Q2〉 ≈

0.85 GeV2) region. The results from this analysis are presented in this chapter.

Table 5.1 summarizes measured quadruple ratios with respective statistical uncer-

tainties. Fig. 5.1 shows the quadruple ratio as a function of Q2 at 〈ε〉 ≈ 0.88 and

Fig. 5.2 shows the quadruple ratio as a function of ε at 〈Q2〉 ≈ 0.85 GeV2. These

results have not been corrected for radiative effects. The acceptance related effects

due to detector inefficiencies and imperfections largely cancel in the quadruple ra-

tio. Remaining acceptance-related effects lead to a systematic uncertainty that is

estimated by studying the CLAS sector-dependence of Rmeas. Any electron/positron

luminosity-related differences lead to additional systematic uncertainties. The pro-

cess for estimating these and other systematic uncertainties, and for making radiative

corrections are discussed in this chapter.

5.1 Radiative Corrections

In addition to the leading order Born approximation, the higher order QED radiative

processes shown in Fig. 2.6 also contribute to the lepton-nucleon elastic scattering

cross section. These contributions, except the TPE diagrams, are usually taken into

account as a part of the standard radiative corrections to the measured lepton-nucleon

cross section [29, 31]. Some of these radiative corrections are independent of the lepton

charge while others depend on it.

It is clear from Eq. 2.64 that there are two major lepton-charge dependent corrections

to the measured cross section ratio. One is the contribution from the highly model-
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Table 5.1: Measured cross section ratio at high ε bins before applying radiative
corrections

kinematics Bin 〈Q2〉 〈ε〉 Rmeas δRstat

1 0.232 0.915 0.995 0.0023
2 0.336 0.887 0.994 0.0026
3 0.449 0.886 1.004 0.0026

High ε 4 0.632 0.885 1.013 0.0035
5 0.893 0.882 1.024 0.0046
6 1.415 0.874 1.015 0.0083

1 0.844 0.389 1.0268 0.0142
2 0.859 0.522 1.0057 0.0128

Low Q2 3 0.849 0.831 1.0226 0.0081
4 0.852 0.908 1.0074 0.0067

Figure 5.1: Ratio of e+p to e−p yields at high ε (ε > 0.8), before radiative corrections.

dependent two-photon exchange effects and the other is the contributions from the

interference between the electron and proton bremsstrahlung. Our goal is to isolate

the two photon exchange effects in a model-independent way. Hence, the measured

cross section ratio needs to be corrected for the contribution from the charge-odd

electron and proton bremsstrahlung interference, scaled by the charge-even contribu-

tions.
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Figure 5.2: Ratio of e+p to e−p yields at low 〈Q2〉 ≈ 0.85 GeV2, before radiative
corrections.

The radiative effects were determined following the general framework given in Ref. [67],

taking the ‘extended peaking approximation’ approach. The radiated photons were

generated in the direction of the charged particles and both the incoming and scat-

tered lepton and the struck proton were allowed to radiate. We applied a cut on

the effective invariant mass squared (W 2) determined from the our elastic kinematic

cuts to select elastic events. Following the formalism given in Ref. [67], the radiative

corrections were calculated for e−p scattering. By reversing the sign of the lepton

charge in the bremsstrahlung term, we again calculated the corrections. The average

of these two corrections yields the charge-even bremsstrahlung contribution (δeven)

while the ratio of these two yields the charge-asymmetric contributions, correspond-

ing to the no-TPE limit R2γ = 1− 2(δe.p.br)/(1 + δeven) [60]. We finally obtain the

radiative-corrected cross section ratio by dividing the measured cross ratio with the

calculated ratio of the radiated e+p cross section to the radiated e−p cross sections.

The cross section ratio before and after applying these radiative corrections are shown

in Fig. 5.3 and Fig. 5.4.
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Figure 5.3: Ratio of e+p to e−p elastic scattering cross section as a function of Q2.
The black points are before radiative corrections and the red points are after applying
radiative corrections.

Figure 5.4: Ratio of e+p to e−p elastic scattering cross section as the function of ε.
The black points are before radiative corrections and the red points are after applying
radiative corrections.
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5.2 Systematic Uncertainties

The ratio R = σ(e+p)
σ(e−p)

is expected to be within a few percent of unity. Hence, in order

to be able to precisely measure the ratio, the systematic uncertainty has to be well

under control. To minimize the systematic effects, several strategies were investigated

and implemented during planning and commissioning of this experiment. In addition

to periodically flipping the torus and chicane magnet polarities to cancel any false

asymmetries, TPE calorimeter data were taken before and after each chicane flip to

ensure that the luminosity differences between lepton beams are stable and symmetric

so that they cancel in the quadruple ratio (Rmeas). Despite our efforts to minimize

these effects, some systematic effects still persist, which are required to be estimated

and accounted for in the final results. The total systematic uncertainty is estimated

by adding contributions from individual sources in a quadrature. We will discuss the

most important sources of the systematic uncertainties in this Section.

5.2.1 Effects of Event Selection Cuts

The systematic effects due to our event selection cuts were studied in detail. The

widths of the event selection cuts were varied from their nominal value. The difference

between Rmeas with the nominal and the varied cut was estimated as the systematic

uncertainty. The following cut related systematic effects were taken into account.

Effect of Fiducial Cuts

The fiducial cuts that define the good acceptance region for both in-bending and out-

bending particles were varied from their nominal values by 2 degrees. The difference

between Rmeas with the nominal and the varied fiducial cut was assigned as the

systematic uncertainty associated with the fiducial cut.
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Effect of Vertex Cut

The effect of the Z-vertex cut on Rmeas was studied by reducing the width of the

vertex cut from the nominal value (-15 cm < Vz < -45 cm) by 2 cm and 3 cm on

each side. The average of the difference between the measured ratio Rmeas with the

nominal and the varied vertex cuts was estimated to be the systematic uncertainty

associated with the vertex cut.

Effect of Elastic Kinematic Cuts

To study the systematic effects due to the elastic kinematic cuts, the width of each

kinematic cut was changed from the nominal ±3.5σ to ±3.0σ and ±4.0σ respectively.

The average of the difference between Rmeas with the nominal cut and the varied

cuts was assigned as the systematic uncertainty due to that cut. The systematic

uncertainties due to the four kinematic cuts were then added in a quadrature to

obtain the overall systematic uncertainty associated with the elastic kinematic cuts.

5.2.2 Effect of Ratio Variation with Sectors

Any remaining CLAS imperfections and detector inefficiencies appear in the variation

of the ratio as measured by the six CLAS sectors. Fig. 5.5 shows Rmeas as a function

of Q2 as measured by different CLAS sectors. As mentioned in the previous chapter,

events with either a proton or a lepton in the forward region (θ < 45◦) of CLAS

sector three were removed from the analysis. Removing sector three from the high ε

(small θ) data is equivalent to removing sector six from the low ε (large θ) data since

lepton and proton are required to be detected in opposite CLAS sectors (co-planarity).

There is a notable variation in the Rmeas measured by different sectors, which is used

to estimate the acceptance-related systematic uncertainty. We estimated the total
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Figure 5.5: Quadruple ratio as a function of Q2 as measured by CLAS sectors. The
average ε is 0.88. The filled circles, filled squares, filled inverted triangles, hollow cir-
cles, and hollow squares are the data from CLAS sectors 1, 2, 4, 5, and 6 respectively.
The blue filled circles are the combined data from these sectors. The sector 3 data is
missing because it was removed from the analysis at high ε.

uncertainty due to the variation in the quadruple ratio measured in different CLAS

sectors as:

δ2
total =

1

N − 1

n∑
i=1

(
Ri −Rmeas

δi

)2

, (5.1)

where Ri and δi are the quadruple ratio and its statistical uncertainty in each CLAS

sector and N is the number of sectors. Eq. 5.1 actually gives a combined statistical

and systematic uncertainty. The systematic uncertainty is then obtained as,

δsys =
√
δ2
total − δ2

stat, (5.2)

where δstat is the statistical uncertainty in the overall quadruple ratio Rmeas.
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5.2.3 Effect of e+e− Luminosity Differences

This experiment relied on the following pieces of information in order to ensure iden-

tical electron and positron luminosity:

• It is known that electron-positron pair production is inherently charge-symmetric.

• It is also known that at energies over 100 MeV, which is well below the incident

lepton energy threshold of 0.85 GeV for this experiment, the electron and the

positron interaction through matter are identical [18] and the difference between

Moller and Bhabha scattering cross section is negligible.

• GEANT4 simulations of the beam line show that the electron and positron

beams passing on one side of the beamline chicane (e.g., the electron beam

passing through the negative chicane and the positron beam passing through

the positive chicane) are identical, even though the chicane is not left-right

symmetric [59, 61].

• As is clear from the discussion in Sect. 4.6, the flux for e+-left is the same as

e−-left, even though the chicane is not perfectly symmetric. Hence periodically

flipping the chicane leads to symmetric luminosities for e+ and e− beams.

As discussed in the previous chapter, any luminosity-related asymmetries must can-

cel in the measured final ratio. The systematic uncertainties due to any remaining

luminosity differences were estimated by measuring the variation in the quadruple

ratio with different magnet cycles.

Fig: 5.6 shows Rmeas as a function of average Q2 for each of the four magnet cycles.

It is clear that Rmeas for magnet cycle 2 is significantly different from Rmeas in the

rest of the cycles. In an effort to further investigate this in more detail, the double
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Figure 5.6: Quadruple ratio as a function of Q2 for different cycles. The average ε is
0.88.

ratios for each chicane polarity for each cycle were also plotted. Fig. 5.7 shows the

torus polarity independent double ratios for positive and negative chicane polarity

in different magnet cycles. The double ratios for the positive chicane polarity are

consistent in all magnet cycles while the double the double ratio for cycle two nega-

tive chicane polarity is significantly different from rest of the magnet cycles. These

variations were also seen in the cycle dependence of the the calorimeter data [60].

Hence the data from the cycle 2 negative chicane were not used in calculating our

final results.

To estimate luminosity-related systematic effects, the systematic uncertainty in the

torus-polarity-independent double ratios for each magnet cycle were first calculated.

The systematic uncertainty was then propagated to the final measured ratio. For

this purpose, double ratios in a given chicane polarity were calculated by taking the

square root of the product of the single ratio for positive (negative) torus polarity in a

magnet cycle (e.g. cycle 1) with the single ratio for negative (positive) torus polarity
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Figure 5.7: Torus polarity independent double ratio as the function of Q2 for different
magnet cycles for the positive (top) and negative (bottom) chicane polarity

in rest of the magnet cycles (e.g. cycle 2, 3, and 4). A total of 12 possible double

ratios were obtained with the data from three complete magnet cycles (cycles 1, 3,

and 4) and the positive chicane data from magnet cycle 2. For a given chicane polarity

(C), the total uncertainty in the double ratio due to the magnet cycle dependence is

given as,

δ2
total(C) =

1

N − 1

n∑
i=1

(
Ri(C)−Roverall(C)

δi(C)

)2

, (5.3)
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where Ri(C) and δi(C) are the double ratio and the statistical uncertainty for each

magnet cycle in the given chicane setting, Roverall(C) is the double ratio calculated

by combining the data from all the magnet cycles in the given chicane setting, and N

is the number of complete magnet cycles used. Eq. 5.3 includes both the statistical

and systematic uncertainties. Hence, systematic uncertainty can be separated as,

δsys(C) =
√
δ2
total(C)− δ2

stat(C), (5.4)

where δstat(C) is the statistical uncertainty of the overall double ratio Roverall(C).

Once the systematic uncertainty in each chicane setting is calculated, the systematic

uncertainties are then propagated to the quadruple ratio as follows:

δsyst =
Rq

2

√(
δsyst(+)

R(+)

)2

+

(
δsyst(−)

R(−)

)2

, (5.5)

where the + and the − sign represent the chicane polarity and Rq and the R are the

quadruple ratio and the double ratio.

5.2.4 Effect of Background Subtraction

The systematic effect of the background subtraction was estimated by varying the

fitting regions in the tail of the ∆φ distribution from the nominal value. As mentioned

earlier the nominal range of background fitting was 160◦-172◦ to the left of the peak

and 188◦-200◦ to the right of the peak. We calculated Rmeas by varying the fitting

range by -2◦ (R1 = 160◦-170◦: 190◦:200◦) and by +2◦ (R2 = 160◦-174◦:186◦-200◦).

The difference between Rmeas with the nominal and the varied fitting ranges were

averaged to get the systematic effects due to background subtraction.
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Table 5.2: Estimated systematic uncertainties due to various sources. The - in the
δRfid column represents negligible uncertainty.

kinematics Bin 〈Q2〉 〈ε〉 δRvz δRkin δRsector δRfid δRbkgsub δRcycle δRsys
total

1 0.232 0.915 0.00027 0.0012 0.0013 0.0079 0.0028 0.0029 0.0093
2 0.336 0.887 0.00019 0.0005 0.0006 0.0020 0.0005 0.0022 0.0040

High ε 3 0.449 0.886 0.00023 0.0007 0.0002 0.0028 0.0010 0.0015 0.0043
4 0.632 0.885 0.00058 0.0011 0.0005 0.0032 0.0052 0.000 0.0071
5 0.893 0.882 0.00084 0.0017 0.0011 0.0046 0.0032 0.0014 0.0077
6 1.415 0.874 0.00160 0.0016 0.0041 0.0024 0.0022 0.0092 0.0136

1 0.844 0.389 0.0075 0.00925 0.0288 - 0.0054 0.0168 0.0354
Low Q2 2 0.859 0.511 0.0112 0.00221 0.0095 - 0.0010 0.0149 0.0165

3 0.849 0.831 0.0027 0.00313 0.0135 - 0.0030 0.0078 0.0162
4 0.852 0.908 0.0005 0.00041 0.0010 - 0.0024 0.0010 0.0015

5.2.5 Total Systematic Uncertainties

The total estimated systematic uncertainty is then obtained by adding the contribu-

tions from individual sources in a quadrature i.e.

δRtot =
√

(δRvz)2 + (δRkin)2 + (δRfid)2 + (δRsector)2 + (δRbkgsub)2 + (δRcycle)2 (5.6)

The estimated systematic errors from different sources are presented in Table 5.2 for

different data bins. The total systematic uncertainties for the data at high ε varies

from 0.004 to 0.0136. Similarly, the total systematic uncertainties for the low Q2 data

varies from 0.0015 to 0.0354.

5.3 Comparison to the World Data and Theoretical Calcula-

tions

Table 5.3 summarizes our final results for the ratio of positron-proton to electron-

proton elastic scattering cross section along with their associated statistical and sys-

tematic uncertainties. In Fig. 5.8, we compare our cross section ratio at high ε with

the currently available world data in a similar ε range. Our measurements are consis-

tent with the other measurements of the ratio but with a significantly better precision.

The blue curve in Fig. 5.8 is the theoretical cross section ratio necessary to resolve the
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Table 5.3: Final cross section ratio and the associated statistical (δRstat) and sys-
tematic uncertainties (δRsys. The column labeled Rmeas is the measured ratio before
radiative corrections.

kinematics Bin 〈Q2〉 〈ε〉 Rmeas R δRstat δRsys

1 0.232 0.915 0.995 0.991 0.0023 0.009
2 0.336 0.887 0.994 0.987 0.0026 0.0031
3 0.449 0.886 1.004 0.997 0.0026 0.0034

High ε 4 0.632 0.885 1.013 1.003 0.0035 0.0062
5 0.893 0.882 1.024 1.012 0.0046 0.0062
6 1.415 0.874 1.015 1.000 0.0083 0.0108
1 0.844 0.389 1.0268 1.008 0.0142 0.0354
2 0.859 0.522 1.0057 0.988 0.0128 0.0149

Low Q2 3 0.849 0.831 1.0226 1.009 0.0081 0.0162
4 0.852 0.908 1.0074 0.997 0.0067 0.0015

form factor discrepancy based on the hadronic intermediate state model by Blunden,

Melnithouk, and Tjon [36]. Our results indicate a slight Q2 dependence of the ratio

at high ε. Even though the two-photon exchange contribution is expected to be small

at these kinematics, our results appear to confirm the validity of BMT calculations

of the ratio.

Fig. 5.9 displays the ε-dependence of our cross section ratio at 〈Q2〉 ≈ 0.85 GeV2

overlaid with the existing world data at similar Q2. The blue curve is the expected

ratio from the BMT calculation. Our measurements are consistent with the previous

measurements at similar Q2 but with a significantly better precision. Our data at

these kinematics are still insufficient to make any strong conclusion about the size

of the TPE effects. However, our results appear to confirm the validity of BMT

calculation at these kinematics.

Fig. 5.10 shows other results from the same experiment at 〈Q2〉 ≈ 1.45 GeV2. These

data were analyzed by another collaborator [66]. Our data are overlaid with the exist-

ing world data at similar Q2 [70]. The blue curve is the expected ratio from the BMT

calculation. Our results have a significantly better precision than currently available
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Figure 5.8: e+p to e−p cross section ratio overlaid on the world data. The red
diamonds are from this experiment at 〈ε〉 ≈ 0.88, the inner error bars represent
statistical uncertainty and the outer error bars represent the total uncertainty. Black
filled circles are the world data [68] in a similar 〈ε〉 range, the aqua filled square is
the preliminary data from VEPP-3 Novosibirsk experiment at 〈ε〉 = 0.95 [69], and
the blue curve is the BMT calculation [36] at 〈ε〉 = 0.88 [36].

world data at the similar Q2. These results are also consistent with the preliminary

Novosibirsk data point at similar kinematics [69] and the BMT calculations.

5.4 Conclusions and Future Outlook

The CLAS TPE experiment measured the elastic scattering cross section ratio of e+p

to e−p (R = σ(e+p)
σ(e−p

) over a wide range of kinematics. This dissertation particularly

investigated the Q2-dependence of R at high ε as well as the ε dependence at low

Q2. The data presented in this dissertation have significantly better precision than

currently available world data on R at similar kinematics. All of our results seem

to confirm the validity of BMT calculations at the kinematics achieved by the TPE

experiment. The BMT calculations, with an additional phenomenological term to in-

clude higher excitations of the intermediate nucleon, largely reconciles the Rosenbluth

and polarization transfer measurements of the form factor ratio. These measurements
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Figure 5.9: e+p to e−p elastic scattering cross section ratio overlaid on the world data.
The red diamonds are the data from this experiment at 〈Q2〉 ≈ 0.85 GeV2 [70]. The
inner error bars represent statistical uncertainty and the outer error bars represent
the total uncertainty. The black filled circles are the world data in a similar Q2 range
and the blue curve is the BMT calculation at 〈Q2〉 = 0.85 GeV2 [36].

Figure 5.10: e+p to e−p elastic scattering cross section ratio overlaid on the world data.
The red filled circles are the data from this experiment at 〈Q2〉 ≈ 1.45 GeV2. The
inner error bars represent statistical uncertainty and the outer error bars represent
the total uncertainty. The hollow circles are the world data in a similar Q2 range [70],
the black filled square is the preliminary Novosibirsk data point, and the blue curve
is the BMT calculation at 〈Q2〉 = 1.45 GeV2 [36].
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are expected to have a significant impact in placing experimental constraints on the

largely diverse theoretical models attempting to explain the form factor discrepancy

in terms of the two-photon exchange effects.

Currently, two other experiments are also analyzing data to measure the ratio R

to determine the TPE effect. Some preliminary data points from the Novosibirsk

group [69] are available, and are consistent with our measurements as discussed earlier.

The OLYMPUS Collaboration completed data taking in 2012 at a fixed lepton beam

energy corresponding to Q2 < 2.5 GeV2 [51]. All of these experiments measure the

cross section ratio at Q2 < 2.5 GeV2, where the discrepancy between the Rosenbluth

and polarization transfer method is small. The precise measurement of the cross

section ratio at significantly higher Q2 are necessary to completely resolve the proton

form factor puzzle.

Even though the proton has been studied for the past several decades via elastic elec-

tron scattering, the discrepancy between the Rosenbluth and polarization transfer

measurements of the electromagnetic form factors of the proton revealed our incom-

plete understanding of the internal structure of proton including the charge and mag-

netization distribution. The results from the CLAS TPE experiment along with the

results from other two experiments will provide significant information that is cru-

cial in understanding the elastic electron-nucleon scattering process and the internal

structure of the nucleon.
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