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ABSTRACT OF THE THESIS

STATIC AND DYNAMIC MECHANICAL TESTING OF A POLYMER WITH

POTENTIAL USE AS HEART VALVE MATERIAL

by

Andres Felipe Aguirre

Florida International University, 2003

Miami, Florida

Professor Richard T. Schoephoerster, Major Professor

Synthetic tri-leaflet heart valves generally fail in the long-term use (more than 10

years). Tearing and calcification of the leaflets usually cause failure of these valves as a

consequence of high tensile and bending stresses borne on the material. The primary

purpose of this study was to explore the possibilities of a new polymer composite to be

used as synthetic tri-leaflet heart valve material. This composite was comprised of

polystyrene-polyisobutylene-polystyrene (Quatromer), a proprietary polymer, embedded

with continuous polypropylene (PP) fibers. Quatromer had been found to be less likely

to degrade in vivo than polyurethane. Moreover, it was postulated that a decrease in tears

and perforations might result from fiber-reinforced leaflets reducing high stresses on the

leaflets. The static and dynamic mechanical properties of the Quatromer/PP composite

were compared with those of an implant-approved polyurethane (PU) for cardiovascular

applications. Results show that the reinforcement of Quatromer with PP fibers improves

both its static and dynamic properties as compared to the PU. Hence, this composite has

the potential to be a more suitable material for synthetic tri-leaflet heart valves.
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1. INTRODUCTION

Since the 1960's heart valve prostheses have been efficiently used in helping

patients with heart disease improve their overall quality of life (Edmunds 2001). Not

only have heart valve prostheses extended life, but have also lessened the symptoms due

to valvular heart disease. Nevertheless, as reported by NIH's Working Group on Heart

Valves, 10-year mortality rates range from 30-55%, indicating that advancements in

valve design are still necessary. Moreover, efforts need to be directed toward improving

morbidity and mortality outcomes, and should focus on minimizing structural

degradation and thrombotic potential (Schoephoerster and Chandran 1991).

Currently, there are three kinds of heart valve prostheses: mechanical,

bioprosthetic, and flexible membrane tri-leaflet made from synthetic resinous materials.

Mechanical valves generally show excellent durability, but also require most patients to

receive permanent anticoagulant therapy due to thrombotic reactions (Schoephoerster and

Chandran 1991; Cannegieter, Rosendaal et al. 1995). Bioprosthetic valves exhibit

advantages in hemodynamic properties, producing the central flow characteristic of

natural valves (Chandran, Fatemi et al. 1989). However, they also show leaflet stiffening

due to mineralization, which results in short fatigue life (usually less than 10 years)

(Senthilnathana, Treasurea et al. 1999). Synthetic tri-leaflet valves are fabricated from

biochemically inert synthetic materials, with polyurethane the typical material of choice

(Schoephoerster, Gallocher et al. 2001). These valves present natural hemodynamics

while also having the potential for long-term durability. Unfortunately, they have not

been successful to date due to long-term material degradation. Long-term material
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degradation occurs through a combination of oxidative reactions with blood and the high

dynamic tensile and bending stresses borne by the material. These valves show stress

concentrations in the leaflets (Imamura and Kaye 1977). This, along with the thickness

of the leaflet material, is an important factor limiting the long-term function of polymer

valve prostheses (Reul 1983; Bernacca, O'Connor et al. 2002). Moreover, it was

postulated that a decrease in tears and perforations might result from fiber-reinforced

leaflets reducing high stresses on the leaflets.

The primary purpose of this thesis was to explore the possibilities of a new

polymer composite to be used as a flexible membrane trileaflet heart valve material. This

composite is composed of polystyrene-polyisobutylene-polystyrene (Quatromer), a

proprietary polymer, embedded with continuous 10-0 monofilament (25 m diameter)

polypropylene fibers (Prolene, Ethicon). Quatromer has been found to be less likely to

degrade in vivo than polyurethane (Pinchuk, Khan et al. 1999). Hence, a

Quatromer/polypropylene composite has the potential to become the material of choice

for flexible membrane trileaflet heart valves. Polypropylene fibers have several unique

properties that make them especially suited for use as leaflet reinforcement in a synthetic

tri-leaflet heart valve. In order to determine the feasibility of the

Quatromer/polypropylene composite as heart valve material, its static and dynamic

mechanical properties were compared with those of a polyurethane approved for

cardiovascular applications.
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2. BACKGROUND

This chapter serves as an introduction to the background on heart valves. The

first section is a brief introduction to the cardiovascular system. In this section the heart

is presented along with the heart valves and the diseases it most commonly suffers. The

second section is an introduction to artificial heart valves. The history and evolution of

the different types of heart valves are described as well as advantages and disadvantages

of each type. The third section of this chapter is an introduction to polymers and its

mechanical characterization.

2.1 Cardiovascular System

The cardiovascular system consists of the heart and blood vessels, which work

together to supply blood to all the tissues in the body. The heart pumps blood throughout

the body through the blood vessels. The blood vessels can be subdivided into the

pulmonary circuit and the systemic circuit. The pulmonary circuit carries blood to and

from the gas exchange surfaces of the lung, and the systemic circuit transports blood to

and from the rest of the body.

2.1.1 Heart

The heart is a four-chambered pump approximately the size of a clenched fist and

weights just about one pound. In normal conditions it pumps about 5 liters every minute.

It is located near the anterior chest wall, directly posterior to the sternum (Martini 2001).
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The four chambers of the heart, in order of blood flow, are the right atrium, right

ventricle, left atrium, and left ventricle (Figure 1). The atriums receive blood that is

coming to the heart. The right atrium receives deoxygenated blood from the systemic

circuit, while the left atrium receives blood from the pulmonary circuit that is rich in

oxygen. The ventricles receive blood from the atriums. The right ventricle pumps blood

to the lungs where carbon dioxide is removed and blood is refreshed with oxygen. The

left ventricle pumps oxygenated blood to the body to provide oxygen and nutrients and to

remove waste products.

Anrt Lott

aIt rita imr

s .Aortihc

AI i/ ra

Figure 1. A diagrammatic frontal section of the heart, showing major landmarks and the
path of blood (marked by arrows)

http ://www.cts.usc.edu/hpg-heartvalvesurgery.html
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2.1.2 Heart Valves

There are four valves in the heart, one at the exit of each chamber. In order of

blood flow they are the tricuspid (right atrium), pulmonary (right ventricle), mitral (left

atrium), and aortic (left ventricle) (Figure 1).

The Tricuspid and Mitral valves open during diastole, which is the period of time

when the ventricles are filling with blood. The Pulmonic and Aortic valves open during

systole, when blood is being ejected from the heart. The purpose of the valves is to make

sure that blood flows only in one direction. That is, when the heart squeezes, blood flows

in the proper direction, not backwards. During each heartbeat the heart squeezes and

relaxes. This rises and lowers the pressure in the heart. These changes in pressure open

and close the valves. How well the valves work determines how easily blood flows in

and out of the heart.

The aortic valve along with the mitral valve, are the most affected by disease

because of the higher-pressure gradients in the left ventricle. The material that we tested

in our study was projected to be used in the construction of an artificial valve, which

would mimic the function of the aortic valve. Thus, the structure of the material was

intended to resemble the structure of the natural aortic valve.

The aortic valve contains three leaflets that passively move away or towards each

other in response to the forces imposed by the flow of blood. Even though 90% of the

leaflet is water, it also contains other components, such as connective tissue proteins

collagen and elastin, glycosaminoglycans (GAGs, long chain sugars) and a small

population of cells. Collagen and elastin are the main structural components, which are

mostly responsible for giving the leaflet its unique mechanical properties. In cross-
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section, each leaflet has three distinct layers: the fibrosa, spongiosa, and ventricularis

(Figure 2). Looking down from the aorta the fibrosa is on the top surface of the leaflet

and the ventricularis is on the bottom. The fibrosa is the primary structural layer and

consists mainly of collagen fiber bundles oriented in a circumferential direction, as

shown in Figure 3. Hence, the structure of the leaflet is considerably stiffer in the

circumferential direction as compared to the radial. The collagen bundles are surrounded

by elastin, which helps maintain the valve's microstructure during unloading. The

ventricularis is also mainly composed by collagen and elastin, but it is less stiff than the

fibrosa because the collagen bundles are not oriented in a specific direction. The

spongiosa is primarily water and also contains GAGs and some collagen and elastin that

connect the other two layers together. For a more detailed description of the natural

aortic histology see Kasyanov et al. (1984).

300 -700 pm
thickness

Collagen Fibrosa (-45%)
Elastin

GAGs Spongiosa (-35%)

Collagen/Elastin Ventricularis (-20%)

Figure 2. Structure of the natural valve leaflet.
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-Circumferentiar

Figure 3. Natural valve leaflet. The clear lines are collagen fiber networks.
www.lerner.ccf.org/bme/valve/ images/cusp_25k.jpg

2.1.3 Heart Valve Diseases

The functioning of natural heart valves may be deleteriously affected in several

ways. A person can be born with an abnormal heart valve. Also, a heart valve can

become damaged by infections such as rheumatic fever and infective endocarditis or due

to changes in valve structure as a result of aging. As previously mentioned, the most

commonly affected valves are the mitral and the aortic valve (Martini 2001).

Disease can affect heart valves in two major ways, stenosis and regurgitation.

Stenosis is a condition in which the valve becomes stiff and the aperture is narrowed.

When this occurs to the aortic valve the opening through which the blood must flow may

become too small and the pressure in the ventricle is increased. When this condition is

minor there are no apparent effects, but when this condition is severe it can be life

threatening. A valve can become stenotic due to rheumatic fever disease or by age

related calcification of the previously normal heart valve. This second condition is more
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common in older people, while the first condition is most common in younger people

(Cannegieter, Rosendaal et al. 1995).

Regurgitation is a condition in which the valve allows blood to flow back. When

this occurs the heart has to pump more blood than normal in order to carry the normal

blood flow to the body. Regurgitation may be caused by a number of diseases such as

chronic hypertension that dilates the aortic root, rheumatic valvular disease, chest trauma,

infection of the heart valve (endocarditis), certain congenital disorders, and autoimmune

diseases (Martini 2001). Again, if this condition is mild there are minimal effects on the

overall health of the person. On the other hand, if this condition becomes severe the left

ventricle may enlarge in order to maintain its high pumping volume or cardiac output. If

this enlargement goes too far permanent damage may occur and replacement of the valve

can become necessary (Martini 2001).

2.2 Classification of Artificial Heart Valves

Replacement of diseased natural heart valves with artificial ones has been life

saving. Artificial heart valves have clinically been used for nearly 4 decades. Currently,

in the United States surgical correction of valvular disease accounts for more than 85,000

open-heart operations annually (Sapirstein and Smith 2001). Yet, replacement valves are

never as good as healthy natural valves (Senthilnathana, Treasurea et al. 1999). There are

three major types of prosthetic heart valves: mechanical, bioprosthetic, and synthetic tri-

leaflet. As described below each has its own advantages and disadvantages.
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2.2.1 Mechanical Heart Valves

The primary benefit of mechanical heart valves is that structural failure of

approved valves is almost nonexistent, and valves can reasonably be expected to perform

properly for at least 20 years. The mechanical performance of these valves is excellent

(Sapirstein and Smith 2001). However, the major drawback of using these valves is the

need for anticoagulation therapy. The complications of thrombosis, embolism and

bleeding contribute significantly to morbidity and mortality (Senthilnathana, Treasurea et

al. 1999). The United States Food and Drug Administration (FDA) has approved devices

that represent three mechanical valve designs: caged-ball, tilting-disc, and bileaflet.

The Starr-Edwards valve is an example of a caged-ball prosthesis. It was

designed in the 1950's and first used clinically in the 1960's (Figure 4a). The

fundamental design of this type of valve has not changed over three decades of use. It

consists of an occluding ball that moves in a surrounding cage. The cage and ball of the

Starr-Edwards heart valve were originally made of methacrylate. Later the methacrylate

ball was replaced with a silicone rubber coated nylon ball to reduce valve noise. Alloys

of cobalt, chromium, molybdenum, and nickel were used for the cage; and were proved

to be biocompatible. Even though this valve was proved to do the job, the presence of

the ball in the center of the valve orifice results in considerable turbulent flow and

anticoagulation requirements are somewhat higher than for newer mechanical valves.

Currently, this valve is rarely used (DeWall, Qasim et al. 2000).

9



Figure 4. Five Types Of Prosthetic Heart

Valves:

(a) Starr-Edwards mitral caged ball valve

a b (b) Medtronic Hall tilting disk valve

(c) St. Jude bileaflet valve

(d) Hancock porcine valve

(e) Carpentier-Edwards bovine pericardial

valve
d

http://www.rjmatthewsmd.com/Definitions
/pop/107fig.htm

e

In the 1970's, the Bjork-Shiley tilting-disc valve became available. This valve

consists of a free-floating disc tilting on the edge of an orifice ring (Figure 4b). Two

struts arching across the inflow and outflow sides of valve orifice permitted the disc to

pivot between open and closed positions. The cage of these valves was made of titanium,

while the disc was made of Pyrolyte (DeWall, Qasim et al. 2000). In some instances,

with older models, the strut completely separated from the valve ring, and catastrophic

disc embolization occurred. These older models were withdrawn from the domestic

market in 1988 (DeWall, Qasim et al. 2000).

The most recently approved mechanical heart valve is the St Jude bileaflet valve

(Figure 4c). It contains two semicircular discs of pyrolytic carbon, which open with

10



independent hinge mechanisms. These valves have profiles that facilitate implantation

into small cavities. Opening angles of the leaflets approach 90 degrees, improving valve

hemodynamics. The St Jude bileaflet valve is now the most commonly implanted

mechanical heart valve (DeWall, Qasim et al. 2000).

2.2.2 Bioprosthetic Heart Valves

Tissue valves have been clinically available since the early 1960's when Ross and

Barratt-Boyes first described aortic valve replacement with a homograft (Sapirstein and

Smith 2001). The primary benefit of this kind of valves is the decreased thrombogenicity

compared with a mechanical device. Thus, they do not require long-term anticoagulation

therapy. They have excellent hemodynamics, with nonturbulent flow and low

transvalvular gradients. Also, they function as quietly as a natural valve. Nevertheless,

the major drawback of bioprosthetic valves is the relatively high rate of structural

degradation that almost uniformly occurs. They begin to deteriorate after 5 to 6 years of

implantation (Fann and Miller 1996). Leaflet wear, worsen by calcification, leads to tears

and loss of adequate coaptation. Moreover, they are not suitable for children. Three

types of tissue valves are available: porcine xenograft (with and without stent), bovine

pericardial valve, and aortic homograft.

The Carpentier-Edwards and Hancock standard porcine heterografts have been

available since the 1970's. They have been described as first-generation bioprosthetics.

These aortic valves are fixed in glutaraldehyde at high pressure (Figure 4d).
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The Ionescu-Shiley bovine pericardial valve was designed in the 1970's, but its

implantation was halted because the device showed evidence of accelerated deterioration.

The Carpentier-Edwards Pericardial valve has a better external/internal diameter ratio and

a low resistance, which allows improved hemodynamic performance (Figure 4e). The

construction is independent of the anatomical constraints imposed by the porcine valves.

Homografts and autografts are the closest to natural valves. A homograft is a

graft of tissue obtained from a donor of the same species, but with a different genetic

make-up from, the recipient, as a tissue transplant between two humans. An autograft is

a tissue or organ grafted into a new position in or on the body of the same individual.

Unfortunately, these are technically more difficult to insert, availability is a problem, and

optimum preservation is unknown (Fann and Miller 1996).

2.2.3 Synthetic Tri-leaflet Heart Valves

The search for a durable, non-thrombogenic valve has led to the consideration of

flexible membrane tri-leaflet valves. So far, mechanical valves cannot be matched for

durability, and deterioration is the major problem with tissue valves. This third group of

prosthetic heart valves tries to combine the best of both worlds: the durability of

mechanical heart valves, and the low thrombogenicity and natural flow characteristics of

bioprosthetic heart valves, while overcoming the disadvantages of each of these types of

valves.

Many different materials have been used for this application. One of the first

materials used was silicone rubber, but it was unable to withstand repeated flexions

12



associated with opening and closure (Chetta and Lloyd 1980; Parfeev, Grushetskii et al.

1982). Polytetrafluoroethylene was also used as heart valve material, but it was not able

to resist thrombosis and calcification (Imamura and Kaye 1977). In recent times,

prosthetic valves made of different forms of polyurethane are being tested (Chetta and

Lloyd 1980; Bernacca, Mackay et al. 1995; Bernacca, O'Connor et al. 2002).

Polyurethanes have a relatively good biocompatibility, but there have been problems

associated with long-term implants (more than 10 years), such as material degradation

causing premature failure of devices. Consequently, the development of heart valves

made from these materials has been slower than anticipated (Wheatley, Raco et al. 2000).

Various studies have shown that failure of bioprosthetic and synthetic valves occurs as a

consequence of high tensile and bending stresses acting on the leaflet during opening and

closing (Chetta and Lloyd 1980; Bernacca, Mackay et al. 1995; Fann and Miller 1996;

Bernacca, O'Connor et al. 2002).

In vitro fatigue testing has shown that a polyetherurethane valve may achieve up

to 400 million cycles (Jansen and Reul 1992). This number of cycles represents up to 11

years of fatigue life as number of beats (physiological average of 70 bpm). This type of

valves are still in a testing phase, and not yet commercially available.

2.3 Polymers in Synthetic Tri-leaflet Heart Valves

Polymers are synthetic materials composed of long-chains or network of

molecules called monomers. Polymers are used as biomaterials because of their ease of

manufacturability, processability, low cost, and a wide range of physical and mechanical
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properties. They are classified into thermosets and thermoplastics. Thermosets become

permanently hard and rigid when heated, while thermoplastics become soft when heated.

Polymers can have crystalline, amorphous, or semicrystalline structures. There are four

distinct regions of viscoelastic deformation for polymers. Rigid below the glass

transition temperature (Tg), leathery near the glass transition temperature, rubbery above

the glass transition temperature, and viscous near the melting temperature. Polymers can

be characterized by some of their most significant mechanical properties such as tensile

strength, Young's modulus, toughness, tensile elongation, and the flexural strength

among other mechanical properties. Viscoelastic properties such as stress relaxation and

creep can be modeled using mechanical models of material behavior. One of them is the

Kelvin model that consists of a spring that is connected in parallel with a dashpot

connected to a spring in series. Dynamic mechanical analysis is used to simulate the

cyclic loading conditions that a mechanical part might experience in practice.

Mechanical properties of polymers are dependant on the rate of application, temperature,

and amount of strain. Hooke's law is a good approximation for the relationship between

the stress and strain at only small deformations (Shackelford 1996).

As explained before, in the section concerning synthetic tri-leaflet heart valves, in

recent years polyurethane has gained the attention of many researchers. However,

susceptibility to degradation and mineralization has limited the use of polyurethanes for

long-term implants. While surface modification can assist in reducing thrombogenic and

calcification reactions (Bernacca and Wheatley 1998), the limiting factor is still long-

term biostability of the material itself. Medical uses of polyurethanes have typically been

polyester and polyether based formulations. Polyether urethanes degrade by oxidation of
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the ether linkage by cellular substances, typically superoxide and hydrogen ion releases

from the granules of leukocytes and macrophages (Zhao, McNally et al. 1993), while the

degradation mechanism of polyester urethanes is hydrolysis (Amin, Willie et al. 1993).

The effects of degradation are surface cracking and loss of molecular weight, which

manifests as a loss of tensile strength of the material. The weak link in these materials is

the ester and ether bonds (Pinchuk, Martin et al. 1988). A new class of polycarbonate-

based urethanes was designed without ether linkages to eliminate the first site of

oxidative attack (Pinchuk, Esquivel et al. 1991). However, it is now clear, that over many

years, the next weak links, the urethane and carbonate bonds, slowly degrade by

hydrolysis. These degradation modes suggest that the most oxidative stable molecules

stand a better chance of survival for ultra long-term use in the body. These molecules

must be essentially devoid of heterogeneous linkages in the backbone; they must only

contain carbon-carbon linkages; and they must not have the ability to form double bonds

between the linkages. Solution, Quatromer (Pinchuk, Khan et al. 1999).

We have chosen to test a composite of Quatromer embedded with polypropylene

(PP) fibers. Quatromer is a proprietary polymer that has been found to be less likely to

degrade in vivo than polyurethane. It has also been demonstrated to have physical and

chemical properties between those of silicone rubber and polyurethane (Pinchuk, Khan et

al. 1999). Its ability to withstand boiling concentrated nitric acid suggests that it will

perform well in an oxidative and acidic environments such as those found in the body.

Two-year testing as microporous stent-grafts demonstrate that that the polymer does not

degrade even when implanted next to metal (Pinchuk, Khan et al. 1999).
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Polypropylene fibers have several unique properties that make them especially

suited for use as leaflet reinforcement in a synthetic tri-leaflet heart valve. Polypropylene

is thermoplastic chemically inert and stable in an alkaline environment. It has a relatively

high melting point, and its cost is low. It does not absorb water, due to a hydrophobic

surface. Its specific gravity is 0.91. It is lightest in weight among synthetic fibers, and is

one of the strongest. It has little moisture and water absorption. It has a low heat transfer

rate, and a melting point of 1600 C - 1700 C.
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3. PROBLEM STATEMENT

Heart valve prostheses have been used for almost half a century in helping

individuals with heart valve diseases (Edmunds 2001). Efforts have been directed

towards finding the most suitable design and materials for creating the ideal artificial

heart valve. Nevertheless, up to date, artificial valves are not as reliable and/or durable as

healthy natural ones.

Synthetic tri-leaflet valves are fabricated from biochemically inert synthetic

materials, with polyurethane being the typical material of choice. These valves attempt

to combine the best of the other two available types of artificial valves: the durability of

mechanical valves and the hemodynamic properties of bioprosthetic valves. Although

synthetic tri-leaflet valves present natural hemodynamics and have the potential for long-

term durability, they have not been successful to date due to long-term material

degradation.

It seems reasonable to believe that synthetic tri-leaflet valves might be improved

with a suitable material choice. Moreover, it was postulated that a decrease in tears and

perforations might result from fiber-reinforced leaflets reducing high stresses on the

leaflets. A new material for implant applications, polystyrene-polyisobutylene-

polystyrene (Quatromer) is a certain proprietary polymer that has been found to be less

likely to degrade in vivo than PU (Pinchuk, Khan et al. 1999). The primary purpose of

this study was to explore the possibilities of a new polymer composite to be used as

synthetic tri-leaflet heart valve material. This composite was comprised of Quatromer

embedded with continuous 10-0 monofilament (0.025 mm diameter) polypropylene fibers
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(Prolene, Ethicon). Polypropylene fibers have several unique properties that make them

especially suited for use as leaflet reinforcement in a synthetic tri-leaflet heart valve.

Therefore, a Quatromer/polypropylene composite has the potential to become the

material of choice for flexible membrane trileaflet heart valves.

In order to determine the feasibility of the Quatromer/polypropylene composite as

heart valve material, its static and dynamic mechanical properties were compared with

those of an implant-approved polyurethane.
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4. MATERIALS AND METHODS

This chapter describes the materials used and procedures followed in the present

study. The first section describes the materials that were tested. The second section

describes the procedures followed to prepare the specimens of the different materials for

each test. Section three describes the procedure followed to carry out the static tests,

including the tensile test, Poisson's ratio test, pull-out test, and the creep and relaxation,

tests to determine the viscoelastic properties of the different materials. Section four

describes the different dynamic tests that were performed. Tests described in this section

include the hysteresis test, the tension-tension fatigue test, and the bending fatigue test.

4.1 Materials

Materials tested include Quatromer, a polyurethane approved for cardiovascular

applications (PU), 10-0 monofilament (25 pm diameter) polypropylene fibers (Prolene,

Ethicon) (PP fibers), and a Quatromer/polypropylene (Q/PP) composite.

Quatromer is a triblock composed of a core of polyisobutylene capped on both

ends by a harder block of polystyrene, polystyrene-polyisobutylene-polystyrene

(Pinchuk, Khan et al. 1999). Quatromer was reinforced with PP fibers. This was the

material of choice for our study due to the reasons explained above.

The polyurethane tested in this project was used as a comparative material against

Quatromer and the Q/PP composite. Even thought no synthetic tri-leaflet heart valves are

manufactured with this polyurethane, it is approved for cardiovascular applications. Up

to the date, there are no synthetic tri-leaflet heart valves commercially available.
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4.2 Specimen Preparation

Specimens were fabricated of each of the materials prescribed above. The Q/PP

composite specimens were prepared as follows. A 20% Quatromer and 80% toluene in

weight solution was obtained by mixing the Quatromer pellets in toluene with the help of

a stirring magnet and a stirring plate. The Quatromer pellets were dried for 24 hours at

70°C before mixing. A three-plate assembly was used to mold the solution into

rectangular pieces of the desired thickness with the polypropylene threads embedded

along the mid-section of the specimens. Caution was taken to insure the PP fibers did not

touch each other or cross, and the distance between each other was maintained as

constant as possible. However, it cannot be assumed that the fibers were placed totally

equidistant from each other (Figure 5).

Rectangular specimen
cavity

Plate 3

Plarte Zi 0,3mm brass ga~sket

Polypropylene threadis
Plate 1

Figure 5. Three-plate assembly used to mold rectangular specimen
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The three-plate assembly was composed of a stainless steel base plate, a set of 15

0.3 mm thick brass gaskets (plate 2) with rectangular cavities in the centers, and a set of

15 4 in thick stainless steel plates with rectangular cavities in the centers as depicted in

Figure 5. The brass gaskets were placed on top of plate 1 and the desired number of

fibers was laid out longitudinally on top of the brass gaskets for each row of specimens.

Plate 3 was placed on top after securing the fibers at each end with scotch tape. Six #2-40

hex socket head screws for each cavity were used to tighten up the assembly. Five ml of

Quatromer solution (for 0.3 mm thick specimens) were poured into each cavity and the

whole plate assembly was placed in an oven at 70 *C for four hours. All of the plates

were thoroughly cleaned with toluene to remove any residue after every usage. The

drying process was followed by cutting and inspection processes. A steel cutting die and

a hammer were used to cut the rectangular specimens into dog-bone specimens following

ASTM standard D 638 - 89, Type M-III (see Figure 6). A caliper was used to measure

specimen thickness at three different places on the specimen, each end and the middle.

The average specimen thickness obtained was 0.3 ± 0.01 mm. Specimens that had a

thickness variation along its length of more than 10% were discarded. Figure 7 shows the

transverse section of the Q/PP composite at the gauge length. This composite has 12 PP

fibers embedded in the Quatromer.

Both specimens of Quatromer and PU were prepared following the same

procedure as for the Quatromer/PP composite, with the exception that no fibers were

embedded. Polypropylene fiber specimens consisted of a single fiber. A compliant and

strain-compatible material was used on the end of the specimen to reduce stress

concentrations in the gripped area and thereby promote tensile failure in the gage section.
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3 mm
24 mm

Figure 6. Dimensions of the dog-bone specimen

0.3 mm
PP fiber Quatromer --

Figure 7. Cross-section view of a Q + 12 PP fibers specimen

4.3 Static Tests

The static mechanical properties of Quatromer, PU, 10-0 monofilament (25 pm

diameter) PP fibers, and a Quatromer/PP composite were determined. The Q/PP

composite had 3 or 12 PP fibers embedded in the Quatromer. Four types of static tests
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were performed to each material: a tensile test, to create stress vs. strain data; Poisson's

ratio test, to determine the contraction perpendicular to the extension caused by tensile

stresses; a pull-out strength test, to determine the bonding forces between the fibers and

the matrix; and a test to determine the viscoelastic properties of these materials. The

purpose of these tests was to determine the materials static properties. Tensile tests were

performed using the Electroforce TM (ELF) 3200 materials tester (Enduratec Systems

Corp., Minnetonka, MN), see Figure 8. The ELF 3200 motor uses direct electromagnetic

conversion to apply force. This material tester has a maximum stroke of 12.5 mm, and

features a 225 N motor and has a static to 400 Hz frequency range.

Yv Parlner in
Heat Healm

.. l

Figure 8. ElectroforceTM (ELF) 3200 materials tester
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4.3.1 Tensile Test

Tensile properties of all the materials were performed according to ASTM

standards D 638M - 89 (plastics), D 882 - 88 (thin plastic sheets), D 3039 - 89

(composites). Outcome measures include: Young's Modulus (E), ultimate tensile stress

(UTS), and ultimate strain (US).

The specimen was held in the testing machine by action grips and pulled at a

crosshead speed of 5 mm/min, which was in accordance with ASTM standards. The

specimen was held in a way that slippage relative to the grips was prevented. Grip

surfaces are deeply scored to help prevent specimen slippage. Special care was taken for

the Q/PP composite. These specimens were checked after each test to make sure that the

fibers did not slip relative to the Quatromer at each end. If there was slippage the test

was discarded. To test the polypropylene fibers bond paper was used between the grips

and the fiber when mounted on the testing machine. This paper prevented the fibers from

slipping. Specimens were checked after each test to make sure that the fibers did not slip

relative to the paper. Again, in the case where slippage of the fiber relative to the paper

occurred, the test was discarded. Tests of any material were not valid if failure occurred

at the gripping section. At least five specimens were tested, while taking into

consideration that the standard deviation for each of the tests was less than 10%.

4.3.2 Poisson's Ratio

Measurement of Poisson's ratio for the Quatromer was carried out in order to

determine the contraction perpendicular to the extension caused by tensile stresses. This
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test was performed according to ASTM standard E 132-97. The specimen was held in

the same manner as described above for the static tensile tests. Because of the fragility of

the samples no extensometers were used. Longitudinal and transverse strain

measurements were made as follows.

Four dots (0.03 mm in diameter) were marked with India ink at the center of the

front side of the specimen in symmetry with the horizontal and vertical axis. These dots

formed a square. First a picture of the specimen was taken showing the initial location of

the dots as seen in Figure 9a. Then, the specimen was pulled until it reached 15% strain.

Once it reached its maximum elongation (and before relaxation occurred) a second

picture was taken showing the new location of the dots, see Figure 9b. These pictures

were taken with the same camera at the same location fixed to the ground. A third

picture of a grid, placed on the grips of the tensile machine was taken with the same

camera at the same location as before. This picture was used as a reference for the other

pictures. Spacing of the lines of the grid is 1 mm.

After the pictures were taken they were analyzed with Photoshop® as follows.

The picture of the grid was overlaid on each of the other two pictures. The locations of

the points on each picture were measured with reference to the grid. With this

information the displacement of the dots were measured with respect to the grid. To

reduce measurement errors, a distinguishable location of each dot was used as

measurement reference. Poisson's ratio was calculated as follows:

5(4.1)
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S

India ink dot

India ink dot

1 mm

a) b)
Figure 9. Quatromer specimen mounted on the testing machine showing the location of

the four dots at a) E = 0 mm/mm, and b) E = 0.15 mm/mm

where p is Poisson's ratio, Et is transverse strain, and El is longitudinal strain. Strain (E)

was defined as:

_/ -o (4.2)
to

where if final length, and lo is initial length. The same procedure was followed for each

specimen. At least five specimens were tested, while taking into consideration that the

standard deviation of the results was less than 10%.

4.3.3 Pull-out Strength Test

The pull-out strength test was performed in order to determine the properties of

the fiber/matrix interface. Specimens used for this test were produced in a similar way as
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those used in the tensile test of the Quatromer/PP composite. These specimens were

prepared as follows. First, a Quatromer/PP composite specimen was produced.

Secondly, two cuts, (A) and (B), were made with a scalpel blade using the microscope

(see Figure 10). This cut was made as close as possible to the fiber without damaging it.

Subsequently, the top portion of Quatromer, portion (C) on Figure 10, was carefully

removed without damaging the PP fiber. Then the fiber was cut at a distance L from the

beginning of the Quatromer.

C

tAt
A B

PP fiber

Quatromer

Figure 10. Specimen of Quatromer with 1 PP fiber embedded

Once a portion of the fiber (at least 1 cm long) was liberated from the Quatromer

matrix, it was mounted on the tensile testing machine, see Figure 11. The fiber extended

out of the matrix in one end. Close to the other end the fiber was cut using a scalpel

blade. The distance of the cut made from the first end determined the length of fiber

embedded in the matrix. Caution was taken to cut transversally as less amount of matrix

as possible. Specimens with various embedded lengths (L) were tested, enough to create
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an embedded length vs. debonding force (P) curve. Sufficient amount of data points were

achieved to fit a line with a coefficient of determination (r2) greater than 0.9. In order to

measure the length of the embedded fiber, a picture of the specimen was taken under the

microscope, see Figure 12. A 1 x 1 mm grid was placed on top of the specimen to

determine the correction factor for the measurements. The cut on the specimen caused a

portion of the fiber to debond from the matrix. This portion can be noticed in Figure 12

where a white line beside the fiber (blue line) indicates debonding between the fiber and

the matrix. Only the portion where this white line is not visible is the portion where the

fiber and the matrix are bonded together (L).

F

Grips

Polypropylene Fiber

Quatromer
F

Figure 11. Specimen of Quatromer with 1 PP fiber embedded. The specimen mounted on
the testing machine is shown.
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1 mm

L

Location
of Cut

Figure 12. Fiber embedded length.

4.4 Viscoelastic Properties

Creep and relaxation curves were created in order to determine the viscoelastic

properties between the different materials and compare them. A Kelvin mechanical

model was used to describe the viscoelastic behavior of Quatromer, PP fibers,

Quatromer/PP composite, and PU. This model consists of a spring connected in parallel

to a spring and a dashpot, which are connected in series as seen in Figure 13, where po,

pi, and '11 are constants. U is the elongation of spring with constant po, which is also the

total elongation of the spring and the dashpot (p, and fl1). F is the force applied to the

model. For these tests each specimen was held in the same manner as in the tensile test.
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Fly 11

fu :
U

Figure 13. Kelvin Model o Standard linear solid model

The differential equation relating the force and the displacement is given by (Fung 1993)

F+reF= ER(U+z.u), (4.3)

with initial condition

rF(0)= ERju(O), (4.4)

where

7, = = l 1+ 4 ER = o. (4.5)

TE represents the relaxation time for the viscoelastic Kelvin body under constant strain

conditions, whereas t 0 represents the retardation time for constant stress (Fung 1993).

Equation 4.4 may be simplified to:

F(O) P + Po (4.6)
u (0)
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This equation tells us that the initial response is equal to the sum of the spring constants

in the Kelvin model. These represent the elastic response of the material to the stimulus

applied.

4.4.1 Creep

Creep is the plastic deformation of a material under constant load over a long

period of time (Fung 1993). If equation 4.3 is solved for u(t) when F(t) is a unit-step

function 1(t), the result is the creep function (equation 4.6).

c(t) = 1 1- 1-- e Q l (t), (4.6)
ERz

where the unit-step function 1(t) is defined as

1 when t > 0,

10 = - when t = 0, (4.7)
2

0 when t<0.

It represents the elongation produced by a sudden application at t = 0 sec. of a constant

force of magnitude unity. The creep function is illustrated in Figure 14. The test was

load controlled, the input was a force unit-step force applied at t = 0 sec. Three

specimens of each material were tested. The specimens were stretched to a strain of 0.1
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mm/mm. Since this was a load controlled test, the amount of force needed to stretch the

specimen to E = 0.1 mm/mm was calculated from the stress vs. strain curves. Once the

test was concluded, equation 3.6 was fitted on the data using SPSS® through the

Levenberg-Marquardt nonlinear curve fitting method. The Levenberg-Marquardt method

is a single-shot method, which attempts to find the local fit-statistic minimum nearest to

the starting point. Its principal advantage is that it uses information about the first and

second derivatives of the fit-statistic as a function of the thawed parameter values to

guess the location of the fit-statistic minimum. Thus this method works well (and fast) if

the statistic surface is well-behaved. Its principal disadvantages are that it will not work

as well with pathological statistic surfaces, and there is no guarantee it will find the

global fit-statistic minimum (Press, Teukolsky et al. 1988).

.32
0

E
0

Time

Figure 14. Creep function of a Kelvin Model or Standard linear solid model

4.4.2 Relaxation

Relaxation is the response of a body when it is suddenly strained and then the

strain is maintained constant afterward. This way, the stresses induced in the body
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decrease with time (Fung 1993). If equation 4.3 is solved for F(t) when u(t) is a unit-step

function 1(t), the result is the relaxation function (equation 4.8).

k~t)= E I 1- ee lt).(4.8)

The relaxation function is illustrated in Figure 15. The test was strain controlled, the input

was a strain unit-step function applied at t = 0 sec. Three specimens of each material

were tested. The specimens were stretched to e = 0.1 mm/mm. Once the test was

concluded, equation 3.8 was fitted on the data using SPSS® through the Levenberg-

Marquardt nonlinear regression estimation method.

0

0

Time

Figure 15. Relaxation function of a Kelvin Model o Standard linear solid model

4.4.3 Hysteresis

The phenomenon of hysteresis is present when a body that is subjected to cyclic

loading has a different stress-strain relationship in the loading process than in the

unloading process. The load frequency for this test was 1.25 Hz. This frequency was

based on normal physiological conditions of 75 beats per minute. It was determined
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elsewhere (Liu 2002) that the maximum strain of a Quatromer leaflet under physiological

conditions is 0.15 mm/mm. Based on these results it was decided to strain the specimens

this amount.

4.5 Dynamic Tests

The fatigue properties of a material represent its response to cyclic loading. It is

well recognized that the strength of a material is significantly reduced under cyclic

loading (Mallick 1993). A hysteresis curve was created in order to determine the stress-

strain relationship in the loading and unloading process of the different materials. Two

types of fatigue life analyses were performed: a standard tension-tension fatigue test to

create S/N (stress vs. number of cycles) data, and a unique bending fatigue test to assess

long-term bending effects on material properties. The purpose of these dynamic tests was

to provide fatigue properties of the material under tension and bending conditions. They

will demonstrate that the Quatromer/PP composite has statistically equal or longer fatigue

life than the implant-approved polyurethane. Tension fatigue tests were performed using

the ElectroforceTM (ELF) 3200 materials tester (Enduratec Systems Corp., Minnetonka,

MN). This material tester has a stroke of 12.5 mm, and has a static to 400 Hz frequency

range. Bending tests were performed using the MTS 858 Mini Bionix* system (MTS

Systems Corp., Eden Prairie, MN). This system has a stroke of ±50 mm, and it can be

operated at frequencies up to 30 Hz. It is capable of testing loads up to ±25 kN.
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4.5.1 Tension-Tension Fatigue Test

The tension fatigue properties were assessed according to ASTM standard D

3479M - 96. The specimens were held in the same manner as in the static tensile tests.

This test was load controlled. That is, the specimen was cycled between specified

maximum and minimum loads so that constant load amplitude was maintained. Load

range was defined as ± 10% the mean load. Load amounts used for each specimen were

progressively lowered from the static value until a sufficient amount of data points

existed to create a S/N curve.

The load frequency was 100 Hz. At this frequency, heating of the specimen may

occur. Therefore, the temperature of the specimens was monitored through thermal

infrared imaging techniques to insure it did not exceed 100 *C (glass transition

temperature, Tg = 165 °C). Specimens were tested in air. Cycling was performed for

each polymer until failure. Since there could be significant fatigue damage without

actual fracture, failure was defined as a strain of 0.5 mm/mm. This failure criterion is

based on the knowledge that normal maximum local strains in natural heart valves vary

between 10 - 20%. Above 20% it is not likely to be functional. We decided to test

beyond this limit to fully characterize the material in extreme conditions. Also, this was

the maximum strain that could be reached with the tensile testing machine and the

dimensions of the specimens used. After 350 million cycles without failure the test was

stopped and the material was considered with infinite life for that stress. At this point the

stress applied to the material appeared to be below its endurance limit. This number of

cycles represents up to 10 years of fatigue life as number of beats (physiological average

of 70 bpm).
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4.5.2 Bending Fatigue Test

The investigator is not aware of an ASTM or ISO standard test for bending

fatigue of an elastomeric material. Nevertheless, it is well known that valve leaflets are

subjected to pure bending in normal flow conditions (Bernacca, Mackay et al. 1995).

The effects of cyclic bending on the test materials were assessed as follows. The

specimens were loaded as in the Standard Tension Fatigue configuration, but in buckling

rather than in tension mode. In this case the test was deflection controlled, rather than

load controlled as in the tension fatigue tests.

By image analysis it was determined that the deflection of the specimen produced

a major curvature of 0.296 mm as shown in Figure 16. This is in agreement with

curvatures that have been measured for prosthetic valve leaflets in vitro (Lyengar,

Sugimoto et al. 2001). A polymer with zero residual strain after cyclic loading is

normally thought to be durable and have good fatigue tolerance properties. Therefore, a

stiffness reduction analysis was used. Five groups of specimens were tested. Each group

was formed by 5 specimens of Quatromer and 5 specimens of Q + 12 PP fibers. These

groups were cycled at 12 Hz for 7, 16, 57.5, 79, and 89 million cycles (see Table 1).

After cycling, each specimen was tested (within a one hour lapse) according to the Static

Test Protocols listed above. A change in the material properties indicated impairment

due to fatigue.
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Figure 16. Measurement of the curvatures produced in the bending fatigue test.

Table 1. Number of years equivalent to bending cycles

Group Number of Bending Cycles Equivalent Time at
(million) Physiological Rate (70 bpm)

1 0 0
2 7 65days
3 16 148 days
4 57.5 1.5 years
5 79 2 years
6 89 2.3 years
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5. RESULTS

The first section presents the results of the static mechanical tests. Within this

section, the results of the tensile test, pull-out test, poison's ratio test, and the

determination of the viscoelastic properties for each of the materials studied, are

presented. In the second section the results of the dynamic mechanical tests are

presented, which include the results of the hysteresis, and tension-tension and bending

fatigue tests.

5.1 Static Tests

5.1.1 Tensile Tests

Tensile tests were carried out in order to create a stress vs. strain curve for each

material. Figure 17 shows the stress vs. strain curves for Quatromer, Q + 3 PP fibers,

PU, and Q + 12 PP Fibers. Figure 18 shows the stress vs. strain curve for 1 PP fiber.

As indicated by Figure 17, PU had a significantly higher strength than Quatromer.

Its Young's modulus was almost five times greater than for Quatromer (see Table 2 for

numerical results of the different materials). Young's modulus was measured in the

initial 10% in strain. In Figure 17, Quatromer and PU are shown to have an elongation up

to 0.5 mm/mm. These two materials did not fail at this strain; the tensile machine was

not capable to elongate them any further (because it reached its maximum stroke) so the

test was stopped at this strain. PU showed a higher strength than Quatromer, but once

Quatromer was embedded with PP fibers its strength increased even surpassing the PU.
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Tensile Test
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Figure 17. Stress vs. Strain graph of the different materials
The error bars represent one standard deviation

For Q + 3 PP fibers its strength was in the range of the PU. This composite failed

at a strain of 0.35 mm/mm, when the PP fibers broke. Q + 12 PP fibers showed a much

higher strength than PU, its Young's modulus was more than 2 times greater than for PU.

Q + 12 PP fibers strain at failure was 0.3 mm/mm.
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Tensile Test
Polypropylene Fiber
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Figure 18. Stress vs. Strain graph of polypropylene fibers
The error bars represent one standard deviation.

Table 2. Young's modulus (E), Ultimate Strain (US), Ultimate Tensile Stress (UTS), and
Number of specimens tested (N) of each material

E US UTS
Material E SUSN
Ma(MPa) (mm/mm) (MPa) N

Quatromer (Q) 3.88 ± 0.40 > 0.5 1.43 ± 0.15 22

PP Fiber 6,633.65 ±492 0.43 0.05 1,543.54 124 14

Q + 3 PP Fibers 14.93 ± 2.67 0.34 ± 0.05 3.40 ± 0.55 8

Polyurethane 18.53 1.23 >0.5 5.44 0.41 13

Q + 12 Fibers 45.44 ± 2.85 0.30 ± 0.03 7.92 + 0.87 10
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The properties of the composite, in some way, represent an average of the

properties of the individual components. The rule of mixture identifies the modulus of a

fibrous composite loaded axially as a simple, weighted average of the moduli of its

components. In order to corroborate the results of the Young's modulus of the different

materials, the rule of mixtures was used. The rule of mixtures (Equation 5.1) showed that

the composite's longitudinal Young's modulus was intermediate between the fiber and

matrix moduli (Mallick 1988).

Ec=Ef -vf +E1 -(1-vf) (5.1)

where Ec, Ef, and Em are the longitudinal Young's modulus of composite, fibers, and

matrix, respectively. Vf is the ratio between the area of the fiber (Af), and the area of the

composite (Ac) (see Equation 5.2). Table 3 shows the values of Af, AG, Ef, and Em, which

were used in equation 5.1. These values represent the previously measured mean values.

Table 4 shows the results of Young's modulus calculated with the rule of mixture and the

experimental results.

V = Af (5.2)

Table 3. Values for Af, AC, Ef, and Em

Af(each) A, (Q + 3 PP Fibers) Ac (Q + 12 PP Fibers) Ef Em

(m2) (m2) (m2) (MPa) (MPa)
4.91E-10 9.00E-07 8.40E-07 6,634 3.88
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Table 4. Volume fraction of the fibers (Vf), and theoretical (rule of mixture) and
experimental values of the composite's Young's modulus (E,).

# of Fibers Vf Rule of Mixture Experimental Results

(m2 /m) (MPa) (MPa)

3 1.64E-03 14.73 14.93
12 6.54E-03 50.5 45.44

The load contribution of the fibers to the composite was calculated by the fraction of the

total composite load carried by the axially loaded fibers (Shackelford 1996), (see

Equation 5.3).

P 1-- V (5.3)

where Pf and P , are the fiber and composite loads, respectively. For Q + 3 PP fibers, Pf /

P, = 0.73; that is almost 3 / 4 of the entire uniaxial load was carried by 0.16 vol % of high

modulus fibers, while for the Q + 12 PP fibers composite, Pf / P, = 0.95; that is nearly the

entire uniaxial load was carried by 0.65 vol % of high modulus fibers.

5.1.2 Poisson's Ratio

Poisson's ratio of Quatromer was performed in order to determine the contraction

perpendicular to the extension caused by tensile stresses. This test was performed

following the methods described in Section 4.2.2. Results are presented on Table 5. The

negative sign on the strain indicates the distance between points is decreased, while a
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positive sign indicates the distance between the points is increased. Five specimens were

tested.

Table 5. Strain (s) and Poisson's Ratio measurements of Quatromer (s units are in
mm/mm)

Sample Poisson's Ratio
Horizontal (x) Vertical (y)

1 -0.0614 0.1480 0.415
2 -0.0560 0.1426 0.393
3 -0.0606 0.1481 0.409
4 -0.0654 0.1580 0.414
5 -0.0569 0.1433 0.397

Mean -0.0601 0.1480 0.41
Std. Dev. 0.00378 0.00617 0.01012

5.1.3 Pullout Strength Test

The pull-out strength test was performed in order to determine the properties of

the fiber/matrix interface. This test was performed following the methods described in

section 4.3.3. Figure 19 shows a typical force vs. displacement plot for a single fiber of

the pull-out test. Pull-out tests for all fibers displayed a similar pattern. The following

features are worth noting. First, a linear rise in force (A) is followed by an instantaneous

drop in force. In this initial stage, between 0 and A, the fiber is physically and

chemically locked. Subsequently, a second rise occurs up to a second peak (B). At this

point, between A and B, the fiber becomes physically locked (chemical bonding no

longer exists) since the relaxation of the strain energy in the fiber has caused resumption

of the original diameter (Poisson's ratio effect) and contact between the fiber and matrix

internal surface. The lateral compressive forces resulting from resin shrinkage dictate this
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'static' frictional force; it is, therefore, related to fiber length. Finally, a second sudden

drop occurs followed by a linear fall of force.

Single Fiber Pull-out Test

0.6

A
0.5

0.4

B
0.3

0
L-

0.2

0.1

0
0 0.5 1 1.5 2 2.5 3 3.5

Displacement (mm)

Figure 19. Typical plot of a single fiber pull-out

Figure 20 displays the interface bonding force (P) vs. embedded length of fiber

(L) of the pull-out test. This graph shows a rising portion of the plot followed by a

plateau. The force never exceeds 0.5 N, which is the tensile strength of the PP fiber. The

results were fitted to an exponential function of the form:

L

P= AK -e B (5.4)
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where, A and B are constants. These constants represent the plateau and the time

constant, respectively.

Interface Bonding Force (P) vs. Embedded Length of Fiber (L)
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Figure 20. P vs. L graph for the pull-out test

5.2 Viscoelastic Properties

5.2.1 Creep

Creep tests were performed in order to characterize the plastic deformation of

each of the materials over a long period of time. Figure 21 shows the results of the creep

tests. Figure 21a, shows the strain vs. time, while Figure 21b shows normalized strain vs.

time of the creep curves of the different materials. Three specimens were tested for each

material. Figure 22 shows the initial 10 seconds of each normalized curve. In this figure,

the initial response of each material is shown in more detail. Figure 22 shows that Q and
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Figure 21. Plot of creep tests. a) Strain vs. time, b) normalized strain vs. time
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Figure 22. Normalized stress vs. time creep test results (initial 10 seconds)

Table 6 presents the time it takes for each material to reach 63.2% of the total

strain, as well as measured strain at this time. Q + 12 PP fibers and PU have a short
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Table 6 presents the time it takes for each material to reach 63.2% of the total

strain, as well as measured strain at this time. Q + 12 PP fibers and PU have a short

reaction to the force applied, while 1 PP fiber and Quatromer respond more slowly.

Numerical results for the creep test are summarized in Table 7. Here po, pi, and r9 are

constants used in equation 4.5. R2 is the coefficient of determination. It measures the fit

of equation 4.6 to the experimental data. As a fit becomes more ideal, the R2 values

approach 1.0 (0 represents a complete lack of fit). tE is called the relaxation time for

constant strain, whereas t, is called the relaxation time for constant stress.

Table 6. Numerical summary of the creep test

Material Specimen Strain @ 63.2% Time
mm/mm seconds

1 0.085 4.0
1 PP fiber 2 0.079 3.2

3 0.071 3.1

1 0.050 0.3
PU 2 0.048 0.3

3 0.056 0.4

1 0.059 2.9
Quatromer 2 0.058 2.8

3 0.066 3.7
1 0.088 0.6

Q + 12 PP Fibers 2 0.073 0.4
3 0.070 0.4

A One-way ANOVA was performed on tE and m6, followed by a Tukey post hoc

test. The One-way ANOVA yielded a significant difference between the materials on

both ie and r,, as shown in Table 8. The results of the Tukey test for ie and t are

presented on Tables 9 and 10, respectively.
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As shown in Table 9, Tukey's test for i£ yielded no significant difference between

1 PP fiber and Q. There was also no significant difference for t between for PU and

Quatromer + 12 PP Fibers. There was a significant difference between Q and 1 PP fiber

as compared to PU and Q + 12 PP fibers.

Table 7. Numerical summary of the creep test

Material Ali po p1 R2  i '

Quatromer (Q)
Specimen 1 66.38 10.94 13.57 0.88 4.89 10.96
Specimen 2 69.53 11.17 15.57 0.88 4.47 10.69
Specimen 3 71.86 10.01 11.78 0.88 6.10 13.28
Mean 69.26 10.71 13.64 0.88 5.15 11.64
Std. Dev. 2.75 0.62 1.89 0.00 0.85 1.42

PU
Specimen 1 79.47 12.36 4.07 0.87 19.54 25.97
Specimen 2 68.58 13.35 4.01 0.81 17.12 22.25
Specimen 3 75.47 11.61 3.70 0.89 20.41 26.91
Mean 74.51 12.44 3.92 0.86 19.02 25.05
Std. Dev. 5.51 0.88 0.20 0.04 1.71 2.46

1 PP Fiber
Specimen 1 51.95 7.87 12.05 0.88 4.31 10.91
Specimen 2 46.86 8.48 11.97 0.86 3.92 9.44
Specimen 3 54.94 9.24 9.26 0.85 5.93 11.88
Mean 51.25 8.53 11.09 0.86 4.72 10.74
Std. Dev. 4.09 0.69 1.59 0.02 1.07 1.23

Quatromer + 12 PP Fibers
Specimen 1 63.67 7.31 2.95 0.90 21.58 30.29
Specimen 2 78.42 8.94 3.62 0.86 21.66 30.43
Specimen 3 79.59 9.34 3.75 0.86 21.20 29.73
Mean 73.90 8.53 3.44 0.87 21.48 30.15
Std. Dev. 8.87 1.07 0.43 0.02 0.24 0.37
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Table 8. ANOVA for tE (CSTRAIN) and Ta (CSTRESS)

Sum of
Squares df Mean Square F Sig.

CSTRAIN Between Groups 712.982 3 237.661 197.271 .000
Within Groups 9.638 8 1.205
Total 722.620 11

CSTRESS Between Groups 847.540 3 282.513 115.943 .000
Within Groups 19.493 8 2.437
Total 867.033 11

Table 9. Tukey post hoc test for T1.

Relaxation Time for Constant Strain

Tukay HST

Subset for alpha = .05
MATERIAL N 1 2
1 PP Fiber 3 4.7200
Quatromer (Q) 3 5.1533
PU 3 19.0233
Q + 12 PP Fibers 3 21.4800
Sig. .961 .096

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 3.000.

Tukey's test for T,, indicated no significant difference between 1 PP fiber and Q (see

Table 10. However, unlike for ie, Tukey's test showed a significant difference between

PU and Q + 12 PP fibers.
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Table 10. Tukey post hoc test for T.

Relaxation Time for Constant Stress

Tukey HSCf

Subset for alpha = .05
MATERIAL N 1 2 3
1 PP Fiber 3 10.7433
Quatromer (Q) 3 11.6433
PU 3 25.0433
Q + 12 PP Fibers 3 30.1500
Sig. .892 1.000 1.000

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 3.000.

5.2.2 Relaxation

Relaxation tests were performed in order to characterize the response of a body when it is

suddenly strained and then the strain is maintained constant afterwards. Normalized

results for the complete relaxation test are presented in Figure 23. Three specimens of

each material were tested. Figure 24 shows the initial 20 seconds of the test, where the

initial response is shown clearly. Figure 25 shows the last 80 seconds of the test, where

the final relaxation occurs.

As seen on Figure 23, Quatromer showed the highest decay of stress. PU showed

the lowest decay of stress. Q + 12 PP fibers and 1 PP fiber fall in between. The same

procedures used to analyze the results of the creep test were used to analyze the

relaxation results. It was not possible to fit a single curve to the data so the data were

divided in two parts. The first portion of the curve included the upper 63.2 % of the data

points of the total relaxation (Figure 24). This is where most of the decay of stress occurs

in the less amount of time. The second portion of the cure includes the lower 36.8% of
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the data points of the total relaxation (Figure 25), where the decay of stress is much lower

when compared to the initial part of the curve.

As shown in Figure 24, there was a clear difference between Q + 12 PP fibers and

PU. PU had the lowest decay of stress. The rate of decay of the PP fiber is somewhat in

the ranges of that for PU and Q + 12 PP fibers

In Figure 25, the last 80 seconds of the relaxation test is presented. The four

materials had the same rate of decay at this stage of the test. Quatromer still had the

highest decay of stress, while PU had the lowest decay of stress. Q + 12 PP fibers and the

1 PP fiber fell in between the other two materials.

Relaxation
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Figure 23. Normalized stress relaxation plotted against time

51



Relaxation

- PU 1
1 P U2

0 e -k- yr- r .".__,_,7_____- - "-_'--- ----- - PU3

J I-AA 7- + I1 1 U -- 1PPF1
1PPF2

FA 0.6 d-* r 1PPF3
ss 1+ Q 12PPF1

A - Q+12PPF2
0-4 --- Q+12PPF3

O Q1
Z

- 02

0.2 Q3

0
0 2 4 6 8 10 12 14 16 18 2U

Time (s)

Figure 24. Normalized stress relaxation plotted against time (first 20 seconds)
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Figure 25. Normalized stress relaxation plotted against time (Last 80 seconds)
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Table 11 presents the values of the normalized amount of the upper 63.2% of

decay for each material. It also presents the time required to reach this value. These

results take into account the complete relaxation curve.

Table 11. Numerical summary of the relaxation test

Material Normalized Decay Time of Decay
(63.2%) (sec)

1 PP fiber 0.250 12.0
PU 0.155 5.0

Quatromer 0.311 2.1
Q + 12 PP Fibers 0.267 15.3

Numerical results for the relaxation test are summarized in Table 12. Part a)

shows the results for the upper 63.2% of the curve, while part b) shows the results of the

lower 36.8% of the curve. Here, po, i, and i are constants used in Equation 4.5. R2 is

the coefficient of determination. It measures the fit of equation 4.8 to the experimental

data. As a fit becomes more ideal, the R2 values approach 1.0 (0 represents a complete

lack of fit). TE is called the relaxation time for constant strain, whereas m¢ is called the

relaxation time for constant stress.

A One-way ANOVA was performed on tE and t, followed by a Tukey

post hoc test. The One-way ANOVA yielded a significant difference between the

materials on both i, and t, as shown in Table 13. The results of the Tukey tests for iE

and i6 are presented on tables 14 and 15, respectively.
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Table 12. Numerical summary of the relaxation test a) upper 63.2% of the curve, b) lower
36.8% of the curve.

Material T po j 1 R 2  j T6

.Quatromer
Specimen 1 0.057 0.179 0.093 0.929 0.61 0.93
Specimen 2 0.070 0.179 0.088 0.937 0.80 1.19
Specimen 3 0.052 0.177 0.076 0.926 0.68 0.98
Mean 0.060 0.178 0.086 0.931 0.698 1.032
Std. Dev. 0.009 0.001 0.009 0.006 0.093 0.137

'PU
Specimen 1 0.308 1.137 0.176 0.884 1.75 2.02
Specimen 2 0.366 1.225 0.187 0.955 1.96 2.26
Specimen 3 0.478 1.544 0.255 0.960 1.87 2.18
Mean 0.384 1.302 0.206 0.933 1.860 2.153
Std. Dev. 0.087 0.214 0.043 0.043 0.107 0.123

1 PP Fiber
Specimen 1 0.092 0.151 0.046 0.846 1.99 2.60
Specimen 2 0.059 0.150 0.038 0.811 1.54 1.94
Specimen 3 0.081 0.149 0.038 0.840 2.12 2.66
Mean 0.078 0.150 0.041 0.832 1.882 2.399
Std. Dev. 0.017 0.001 0.005 0.018 0.300 0.400

'Quatromer + 12 PP Fibers
Specimen 1 3.006 1.888 0.600 0.974 5.01 6.61
Specimen 2 2.682 1.740 0.606 0.967 4.43 5.97
Specimen 3 3.160 1.684 0.538 0.929 5.87 7.75
Mean 2.949 1.771 0.581 0.957 5.105 6.774
Std. Dev. 0.244 0.106 0.037 0.024 0.727 0.902

a)
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Material A' 14 p1  R 2  I ta

Quatromer
Specimen 1 1.745 0.128 0.057 0.863 30.62 44.22
Specimen 2 1.766 0.122 0.071 0.856 24.93 39.42
Specimen 3 1.659 0.135 0.059 0.813 28.01 40.33
Mean 1.723 0.128 0.062 0.844 27.852 41.325
Std. Dev. 0.057 0.006 0.007 0.027 2.844 2.551

PU
Specimen 1 6.697 1.055 0.179 0.911 37.51 43.86
Specimen 2 7.647 1.119 0.178 0.918 43.01 49.84
Specimen 3 8.106 1.377 0.234 0.924 34.70 40.58
Mean 7.483 1.183 0.197 0.918 38.403 44.761
Std. Dev. 0.718 0.170 0.032 0.007 4.227 4.694

1 PP Fiber
Specimen 1 2.041 0.114 0.048 0.834 42.18 60.04
Specimen 2 1.941 0.119 0.047 0.821 40.99 57.26
Specimen 3 1.853 0.116 0.051 0.857 36.41 52.34
Mean 1.945 0.117 0.049 0.838 39.860 56.547
Std. Dev. 0.094 0.003 0.002 0.018 3.045 3.899

Quatromer + 12 PP Fibers
Specimen 1 26.364 1.490 0.724 0.957 36.41 54.11
Specimen 2 24.960 1.351 0.681 0.954 36.63 55.10
Specimen 3 23.862 1.341 0.646 0.958 36.93 54.72
Mean 25.062 1.394 0.684 0.957 36.658 54.645
Std. Dev. 1.254 0.083 0.039 0.002 0.257 0.500

b)

Table 13. ANOVA for tE (CSTRAIN) and r, (CSTRESS); a) upper 63.2%, b) lower
36.8% of the curve.

Sum of
Squares df Mean Square F Sig.

TSTRAIN Between Groups 32.301 3 10.767 67.516 .000
Within Groups 1.276 8 .159
Total 33.577 11

TSTRESS Between Groups 57.524 3 19.175 76.204 .000
Within Groups 2.013 8 .252
Total 59.537 11

a)
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Sum of
Squares df Mean Square F Sig.

TSTRAIN Between Groups 261.351 3 87.117 9.864 .005
Within Groups 70.657 8 8.832
Total 332.008 11

TSTRESS Between Groups 495.909 3 165.303 15.028 .001
Within Groups 87.996 8 11.000
Total 583.905 11

b)

In Table 14, Tukey's test for T, showed there was no significant difference

between 1 PP fiber and PU. Quatromer was significantly different than these two

materials as well as Q + 12 PP fibers, which had the highest mean for T1. There was also

no significant difference between t, for PU and Q + 12 PP fibers. Table 15 shows the

same distribution of results for i6 as for t.

Table 14. Tukey post hoc test for tE (upper 63.2% of the curve,). Mean values are shown.

Relaxation Time for Constant Strain

Tukey HSD a

Subset for alpha = .05
TEST N 1 2 3
Quatromer (0) 3 .6967
PU 3 1.8600
1 PP Fiber 3 1.8833
Q + 12 PP Fibers 3 5.1033
Sig. 1.000 1.000 1.000

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 3.000.
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Table 15. Tukey post hoc test for t (upper 63.2% of the curve). Mean values are shown.

Relaxation Time for Constant Stress

Tukey HSD
Subset for alpha= .05

TEST N 1 2 3
Quatromer (Q) 3 1.0333
PU 3 2.1533
1 PP Fiber 3 2.4000
Q + 12 PP Fiber 3 6.7767
Sig. .097 .929 1.000

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 3.000.

5.2.3 Hysteresis

Hysteresis tests were performed in order to present the phenomenon when a body that is

subjected to cyclic loading has a different stress-strain relationship in the loading process

than in the unloading process. Three specimens of each material were tested. Figure 26

shows the results of the hysteresis test for Quatromer, PU, and the Q + 12 PP fibers at

1.25 Hz. Of the three polyurethane specimens one was damaged before the test, only two

specimens were tested. Figure 27 shows the results of the hysteresis test for the PP

fibers. This test is shown in a separate chart due to the large difference in stress levels

involved. The results of the hysteresis tests of all the materials are presented in a

normalized chart as shown in Figure 28.
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Figure 26. Hysteresis test results at 1.25 Hz
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Figure 27. Hysteresis test results at 1.25 Hz
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Figure 28. Normalized hysteresis test results

Figure 28 shows PU had the least amount of hysteresis of all the materials, closely

followed by Quatromer. On the other hand, the Q + 12 PP fibers composite had more

hysteresis and behaved very much as the PP fibers. The PP fiber showed the largest

amount of hysteresis.

Figure 29 shows the dynamic modulus of elasticity (IGI) and the internal damping

(tan 6) vs. logarithm of frequency (o). The quantity tan 6 is a measure of the "internal

friction". The dynamic modulus and the internal friction are constant in the range of

physiological conditions (extreme conditions between 40 to 180 bpm, the frequency (o)

is equivalent to 4.2 to 18.9 rad/sec), see Figure 29.
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Figure 29. The dynamic modulus of elasticity (IGI) and the internal damping (tan 6) vs.
logarithm of frequency (o)

5.3 Dynamic Tests

5.3.1 Tension-Tension Fatigue Test

Tension-tension fatigue tests were performed in order to create a stress vs.

number of cycles curve. Results are presented in Figures 30 and 31. This figure shows

the stress vs. number of cycles for Quatromer, Q + 3 PP fibers, PU, and Q + 12 PP fibers.

Quatromer showed an endurance limit below 0.33 MPa. At this stress level the

specimen failed after 130 million cycles, equivalent to 3.5 years at physiological rate of

70 bpm. Q + 3 PP fibers showed an endurance limit higher than for Quatromer. PU had

a higher endurance limit than the previous two materials, above 1.5 MPa. The specimen

did not fail at this stress level. Q + 12 PP fibers showed an endurance limit above PU, at
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2.5 MPa. After being cycled at this stress level for 350 million cycles the Q + 12 PP

fibers specimen did not fail and appeared to have reached its endurance limit. All the

specimens that reached this number of cycles without failure were considered to have an

infinite life at this stress level. This number of cycles represents up to 10 years of fatigue

life as number of beats (physiological average of 70 bpm). The arrows in Figure 30

indicate the specimen did not fail at this stress level.

Tension-Tension Fatigue Test
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Figure 30. Stress vs. Number of Cycles of the different materials on a semi-log scale.
Arrows indicate the material did not fail after 350 million cycles
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Figure 31. Stress vs. Number of Cycles of the different materials. Arrows indicate the
material did not fail after 350 million cycles

5.3.2 Bending Fatigue Test

Bending fatigue tests were performed in order to determine if bending stresses

affect the mechanical properties of Quatromer and Q + 12 PP fibers. The specimens from

the tensile test formed group 1. These specimens were not cycled and formed the control

group. Groups 2, 3, 4, 5, and 6 were cycles for 7, 16, 57.5, 79, and 89 million cycles,

respectively. As mentioned before, each group contains five specimens of Quatromer,

and five specimens of Q + 12 PP fibers. Results of six groups were compared. Tables

16a and 16b present the results of the tensile test for the Quatromer and Q + 12 PP fibers,

respectively.
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Table 16. Numerical summary of the tensile results of the bending fatigue test a)
Quatromer, b) Q + 12 PP Fibers.

Group N Mean Std. Deviation Std. Error Minimum Maximum

Etre 1 22 3.88 0.405 0.086 3.12 4.60
2 5 4.16 0.262 0.117 3.74 4.39
3 5 4.17 0.070 0.032 4.12 4.29
4 5 4.10 0.145 0.065 3.93 4.25
5 5 4.30 0.105 0.047 4.14 4.42
6 5 4.41 0.275 0.123 4.13 4.86

Total 47 4.06 0.359 0.052 3.12 4.86

Eeng 1 22 3.61 0.376 0.080 2.91 4.28

2 5 3.87 0.245 0.110 3.49 4.09
3 5 3.88 0.068 0.031 3.83 4.00
4 5 3.80 0.138 0.062 3.63 3.93
5 5 4.00 0.098 0.044 3.85 4.11
6 5 4.11 0.252 0.113 3.85 4.52

Total 47 3.78 0.334 0.049 2.91 4.52

UTStrue 1 22 1.43 0.154 0.033 1.20 1.81
2 5 1.73 0.075 0.033 1.60 1.78
3 5 1.70 0.042 0.019 1.64 1.74
4 5 1.71 0.065 0.029 1.62 1.79
5 5 1.77 0.051 0.023 1.71 1.82
6 5 1.76 0.113 0.051 1.63 1.94

Total 47 1.59 0.194 0.028 1.20 1.94

UTSeng 1 22 0.95 0.102 0.022 0.80 1.21

2 5 1.16 0.051 0.023 1.07 1.19
3 5 1.14 0.025 0.011 1.10 1.16
4 5 1.15 0.040 0.018 1.09 1.19
5 5 1.18 0.036 0.016 1.14 1.22
6 5 1.18 0.070 0.031 1.10 1.29

Total 47 1.06 0.130 0.019 0.80 1.29

a)
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N Mean Std. Deviation Std. Error Minimum Maximum

US 1 10 0.30 0.026 0.008 0.25 0.35
2 4 0.32 0.013 0.006 0.31 0.34
3 5 0.34 0.052 0.023 0.28 0.41
4 5 0.34 0.019 0.008 0.31 0.36
5 5 0.34 0.032 0.014 0.30 0.38
6 5 0.34 0.024 0.011 0.30 0.36

Total 34 0.33 0.032 0.005 0.25 0.41

Etre 1 10 42.80 4.856 1.535 35.95 49.18
2 4 44.72 1.950 0.975 42.51 46.68
3 5 41.71 1.698 0.760 40.59 44.68
4 5 41.87 1.523 0.681 40.44 43.91
5 5 44.82 5.311 2.375 40.75 54.01
6 5 45.77 2.806 1.255 42.77 49.21

Total 34 43.46 3.748 0.643 35.95 54.01

Eeng 1 10 39.84 4.519 1.429 33.45 45.77

2 4 41.63 1.819 0.910 39.57 43.46
3 5 38.83 1.572 0.703 37.79 41.58
4 5 38.97 1.420 0.635 37.64 40.87
5 5 41.72 4.941 2.210 37.94 50.27
6 5 42.61 2.613 1.169 39.81 45.81

Total 34 40.46 3.488 0.598 33.45 50.27

UTSrje 1 10 9.74 1.149 0.363 8.18 11.26

2 4 10.22 0.550 0.275 9.54 10.82
3 5 10.24 1.008 0.451 8.81 11.30
4 5 10.08 0.659 0.295 9.45 11.14
5 5 10.73 1.129 0.505 9.53 12.39
6 5 10.74 0.943 0.422 9.41 11.52

Total 34 10.21 0.990 0.170 8.18 12.39

UTSeng 1 10 7.47 0.817 0.259 6.36 8.38

2 4 7.71 0.345 0.172 7.28 8.05
3 5 7.65 0.611 0.273 6.87 8.46
4 5 7.55 0.383 0.171 7.32 8.22
5 5 8.04 0.901 0.403 7.30 9.54
6 5 8.02 0.576 0.257 7.25 8.51

Total 34 7.70 0.669 0.115 6.36 9.54

b)

For Quatromer, a One-way ANOVA was performed to compare differences

between groups in the following parameters: True Young's modulus (Etue), Engineering
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Young's modulus (Eeng), True Ultimate Tensile Stress (UTStre), and Engineering

Ultimate Tensile Stress (UTSeng). Results are presented in Table 17. This table shows

there is a weak significant difference between the groups for Etme and Eeng. On the other

hand, Table 17 shows there was a significant difference between groups for the UTSte

and UTSeng.

A Tukey post hoc test was performed for each of the groups in order to find out

the differences between each group. For Etme and Eeng there was no significant difference

between groups as shown in tables 18 and 19, respectively.

Table 17. One-way ANOVA results for all Quatromer groups

Sum of
Squares df Mean Square F Sig.

ETRUE Between Groups 1.763 5 .353 3.468 .011
Within Groups 4.169 41 .102
Total 5.931 46

EENG Between Groups 1.540 5 .308 3.512 .010
Within Groups 3.596 41 .088
Total 5.136 46

UTSTRUE Between Groups 1.116 5 .223 15.065 .000
Within Groups .607 41 .015
Total 1.723 46

UTSENG Between Groups .514 5 .103 16.010 .000
Within Groups .263 41 .006
Total .778 46

For UTStme and UTSeng Tukey's post hoc test showed there was no significant

difference between groups 2, 3, 4, 5, and 6. However, these groups were all significantly

different from group 1, as shown in Tables 20 and 21.
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Table 18. Tukey post hoc test for the True Young's modulus (Etrue) of Quatromer

ETRUE

Tukey HSDa.b

Subset
for alpha

= .05

TEST N 1
1 22 3.8764
4 5 4.1000
2 5 4.1576
3 5 4.1680
5 5 4.3000
6 5 4.4120
Sig. .070

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 5.739.
b. The group sizes are unequal. The harmonic mean

of the group sizes is used. Type I error levels are
not guaranteed.

Table 19. Tukey post hoc test for the Engineering Young's modulus (Eeng) of Quatromer

EENG

Tukey HSD a _b

Subset
for alpha

=.05
TEST N 1
1 22 3.6002
4 5 3.8040
2 5 3.8747
3 5 3.8820
5 5 4.0020

6 5 4.1100
Sig. .066

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 5.739.
b. The group sizes are unequal. The harmonic mean

of the group sizes is used. Type I error levels are
not guaranteed.
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Table 20. Tukey post hoc test for the True Ultimate Tensile Stress (UTStrue) of Quatromer

UTSTRUE

Tukey HSD a,b

Subset for alpha = .05

TEST N 1 2
1 22 1.4277
3 5 1.7000
4 5 1.7116
2 5 1.7282
6 5 1.7600
5 5 1.7700
Sig. 1.000 .923

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 5.739.
b. The group sizes are unequal. The harmonic mean

of the group sizes is used. Type I error levels are
not guaranteed.

Table 21. Tukey post hoc test for the Engineering Ultimate Tensile Stress (UTSeng) of
Quatromer

UTSENG

Tukey HSD a,b

Subset for alpha= .05
TEST N 1 2
1 22 .9523
3 5 1.1380
4 5 1.1450

2 5 1.1587
6 5 1.1760
5 5 1.1840
Sig. 1.000 .924

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 5.739.
b. The group sizes are unequal. The harmonic mean

of the group sizes is used. Type I error levels are
not guaranteed.

For Q + 12 PP fibers, a One-way ANOVA was performed to compare differences

between groups in the following parameters: Ultimate Strain (US), True Young's
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modulus (Etrue), Engineering Young's modulus (Eeng), True Ultimate Tensile Stress

(UTStrue), and Engineering Ultimate Tensile Stress (UTSeng). Results are presented in

Table 22. This table shows there is no significant difference between groups for each of

the parameters.

A Tukey post hoc test was performed for each of the parameters in order to find

out the differences within each group. There was no significant difference between any of

the groups for the different parameters. Results of the Tukey post hoc test are shown in

Tables 23, 24, 25, 26 and 27. A summary of the bending fatigue test is shown in Table

28, where "W" means there is a weak significant difference between the fatigued

specimens and the control group, "-" means significant different between the fatigued

specimens and the control group, and "N" means there is no significant difference

between the fatigued specimens and the control group.

Table 22. One-way ANOVA results for all Quatromer + 12 PP Fibers groups

Sum of
Squares df Mean Square F Sig.

US Between Groups .008 5 .002 1.812 .143
Within Groups .025 28 .001
Total .033 33

ETRUE Between Groups 74.727 5 14.945 1.077 .395
Within Groups 388.726 28 13.883
Total 463.453 33

UTSTRUE Between Groups 5.095 5 1.019 1.047 .410
Within Groups 27.250 28 .973
Total 32.345 33

EENG Between Groups 64.839 5 12.968 1.079 .394
Within Groups 336.665 28 12.024
Total 401.504 33

UTSENG Between Groups 1.760 5 .352 .757 .588
Within Groups 13.023 28 .465
Total 14.783 33
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Table 23. Ultimate Strain (US) Quatromer + 12 PP Fibers

us
Tukey HSD a _b

Subset
for alpha

=.05

TEST N 1
1 10 .30316
2 4 .32250
5 5 .33600
6 5 .33800
3 5 .33800
4 5 .34000
Sig. .378

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 5.217.
b. The group sizes are unequal. The harmonic mean

of the group sizes is used. Type I error levels are
not guaranteed.

Table 24. True Young's Modulus (Etre) for Quatromer + 12 PP Fibers

ETRUE

Tukey HSD _

Subset
for alpha

= .05

TEST N 1
3 5 41.7080
4 5 41.8660
1 10 42.8038
2 4 44.7225
5 5 44.8180
6 5 45.7740
Sig. .505

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 5.217.

b. The group sizes are unequal. The harmonic mean
of the group sizes is used. Type I error levels are
not guaranteed.
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Table 25. True Ultimate Tensile Stress (UTStrue) for Quatromer + 12 PP Fibers

UTSTRUE

Tukey HSD a,b

Subset
for alpha

=.05

TEST N 1
1 10 9.7357
4 5 10.0800
2 4 10.2175
3 5 10.2400
5 5 10.7300
6 5 10.7400
Sig. .578

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 5.217.

b. The group sizes are unequal. The harmonic mean
of the group sizes is used. Type I error levels are
not guaranteed.

Table 26. True Young's Modulus (Eeng) for Quatromer + 12 PP Fibers

EENG

Tukey HSDab

Subset
for alpha

=.05

TEST N 1
3 5 38.8280
4 5 38.9680
1 10 39.8362
2 4 41.6300
5 5 41.7180
6 5 42.6100
Sig. .505
Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 5.217.

b. The group sizes are unequal. The harmonic mean
of the group sizes is used. Type I error levels are
not guaranteed.
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Table 27. True Ultimate Tensile Stress (UTSeng) for Quatromer + 12 PP Fibers

UTSENG

Tukey HSD a _ _

Subset
for alpha

=.05

TEST N 1
1 10 7.4659
4 5 7.5540
3 5 7.6460
2 4 7.7125
6 5 8.0200
5 5 8.0400
Sig. .750

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 5.217.
b. The group sizes are unequal. The harmonic mean

of the group sizes is used. Type I error levels are
not guaranteed.

Table 28. Summary of the bending fatigue test

Material Parameter Number of Cycles (millions)
7 16 57.5 79 89

Etrue W W W W W

Eeng W W W W W

UTStrue - - -

UTSeng - - - - -

US N N N N N

Etrue N N N N N

Q+ 12 PP fibers Eeng N N N N N

UTStrue N N N N N

UTSeng N N N N N
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6. DISCUSSION

The possibility of using a Quatromer/PP fiber composite as a heart valve material

was explored. The mechanical properties of PU, Quatromer, PP fibers, and a

Quatromer/PP composite were determined and compared. Results of both static and

dynamic mechanical tests on each of the aforementioned materials support the conclusion

that the Quatromer/PP composite is a suitable material for use as a heart valve.

Dynamic tests included tension-tension and bending fatigue tests. It has been

shown that failure of bioprosthetic and synthetic valves occurs as a consequence of high

tensile and bending stresses acting on the leaflet during opening and closing (Chetta and

Lloyd 1980; Bernacca, Mackay et al. 1995; Fann and Miller 1996; Bernacca, O'Connor et

al. 2002).

Results of the tension-tension fatigue test indicate that the Quatromer/PP

composite's fatigue life is statistically greater than that of the PU. PU had a greater

fatigue life than Quatromer at the same stress levels. Our first educated guess was to

reinforce the Quatromer with 3 PP fibers. Tensile tests were performed for this material

followed by a tension-tension fatigue test. When Quatromer was embedded with 3 PP

fibers its fatigue life increased, but was still lower than PU at the same stress levels.

Therefore, we decided to reinforce the Quatromer with 12 PP fibers. This was number of

fibers was estimated from the ultimate tensile force of PU (the material we are comparing

against the Quatromer/PP composite) at 0.5 mm/mm, which was 3.3 N. We would need

11 fibers to reach this amount of force at a strain of 0.1 mm/mm (a force of 0.3 N is

needed to strain 1 PP fiber this amount). In order to simplify the manufacture process, we
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decided to reinforce the Quatromer with 12 PP fibers. It is desired not to strain the fibers

not more than 0.1 mm/mm. So, once Quatromer was embedded with 12 PP fibers this

composite showed a greater fatigue life than PU. Therefore, varying the number of fibers

embedded in the Quatromer may result in reaching the desired dynamic mechanical

properties.

It is worth noting that in vitro fatigue studies have not yet been done with the

Quatromer as a heart valve material. Studies such as those done by (Chetta and Lloyd

1980; Jansen and Reul 1992; Bernacca, Mackay et al. 1995; Bernacca, O'Connor et al.

2002) have tested heart valves made of PU. Jensen et al. (Jansen and Reul 1992) have

found that these heart valves may achieve up to 400 million cycles. This number of

cycles represents up to 11 years of fatigue life as number of beats (physiological average

of 70 bpm). In our tensile fatigue test, the Q + 12 PP fibers composite showed an

endurance limit 66 % greater than PU when tested under the same conditions up to 350

million cycles. This represents 10 years of fatigue life (physiological rate of 70 bpm).

Taking this into consideration we might expect a heart valve made of the same vol % of

the Q + 12 PP fibers composite to have a greater fatigue life than one manufactured of

PU. Recent research (Bernacca, Mackay et al. 1995; Wheatley, Raco et al. 2000) have

found polyurethane heart valves start long term deterioration after 4 years of life due to

biochemical events.

The bending did not significantly affect the Q + 12 PP fibers composite. After the

bending fatigue test was performed on this material its tensile properties (US, Etme, Eeng,

UTSte, and UTSeng) were measured. None of them were significantly affected by the

cyclic bending. Nevertheless, this was not the case for Quatromer. Etrue and Eeng were
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weakly affected by the cyclic bending, while UTStue, and UTSeng were significantly

affected by this test, indicating the material was weakened by the procedure. Thus, once

the Quatromer is embedded with 12 PP fibers it is not affected in the long term by cyclic

bending stresses. It is worth noting the bending fatigue test was performed up to 89

million cycles. This number of cycles represents up to 2.5 years of fatigue life as number

of beats (physiological average of 70 bpm).

Static tests included the tensile test, Poisson's ratio test, pull-out strength test, and

the determination of the viscoelastic properties. Tensile tests show that Q + 12 PP fibers

had higher tensile properties when compared to PU. Even though the tensile properties

of Quatromer by itself are lower than the PU that was tested, it is possible to enhance its

tensile properties with embedded PP fibers. Quatromer embedded with 3 PP fibers had a

Young's modulus in the same range as PU. When Quatromer was reinforced with 12 PP

fibers its Young's modulus was more than two times greater than for the PU. This shows

that varying the number of fibers embedded in the matrix may modify the tensile

properties of the composite. This could prove to be very useful in reaching the desired

static mechanical properties. After showing that the rule of mixture may be applied to the

materials tested, it is now possible and useful to extend it to a different number of fibers

than 3 and 12. Despite the fact that the rule of mixture did not coincide exactly, its values

are in the range of those measured. Possible reasons for this difference are: the area of

the threads was not measured (an average of the value given by the manufacturer was

used), measuring error, and interactions between materials.

The load contribution of the fibers to the composite was very high as compared to

the Quatromer. For Q + 3 PP fibers the load contribution of the fibers was 73 %, while
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for Q + 12 PP fibers it was 95 %. These are very high values when taking into account

that less than 1 vol % is carrying 70 % or more of the entire load. The high modulus and

strength of the fibers are effectively transmitted to the composite as a whole. At the same

time, the ductility of the matrix is available to produce a substantially less brittle material

than PP itself. By using a Quatromer/PP composite it is possible to manufacture a heart

valve with very thin leaflets. This will favor hydrodynamic function.

Results yielded by measurement of Poisson's ratio indicated that the contraction

perpendicular to the extension caused by tensile stresses in the Quatromer are in the range

of other polymers like polyurethane foam (0.44), Acrylonitrile-butadiene-styrene (ABS)

(0.38-0.42).

The pull-out test determined the properties of the fiber/matrix interface. In

accordance to Penn et al. (1989) (Penn 1989) findings, the relationship between

debonding force and embedded length was not linear, but reached a plateau. In our study

a level of maximum force was reached at 0.5 N, where any more contact surface would

not increase the bonding force. It should be noted that the force never exceeds this value

(0.5 N), which is the tensile strength of these fibers at this gauge length (24 mm).

Moreover, our single fiber pull-out test displayed the same pattern of behavior as the one

observed by Marshall et al. (1991) on a 5 m carbon fiber in a simple epoxy based on

DGEBRA resin with an amine curing agent (Marshall and Price 1991).

Results obtained from the viscoelastic tests are difficult to interpret at this point.

One explanation that could account for these results is concerned with the fact that the

fibers embedded in the Quatromer were not as parallel to the surface as expected. During

the preparation of the specimens the fibers had a tendency to sag due to the superficial
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tension created by the Quatromer solution on the fibers as it cured. As a consequence,

during the creep test, once the specimen started to strain the fibers first must align with

the force before they are able to carry the load. This explains why the creep curves had

higher initial strain for the Q + 12 PP fibers than for the PP fibers and the Quatromer by

themselves.

Although this might be the main cause for the misalignment of the fibers, other

factors are worth taking into consideration. The fact that it could not be assured the

fibers were parallel between each other could be related to this condition. This case was

explained in section 4.2. In addition, the creep tests might be indicating that there is

slippage between the PP fibers and the Quatromer. Nevertheless, there is also evidence

that contradicts this hypothesis. First, visual inspection of the specimens under the

microscope indicates that slippage did not occurred. Specimens were inspected in the

extremities and the middle portion. If slippage had occurred the fibers would have

debonded from the matrix. The same procedures used in the pull-out test to identify the

debonded regions in the specimen were used here. No evidence was found supporting the

fact that the fibers had debonded. Secondly, after applying the load to the specimen it

strained to a value in the range of 10%, as expected. If slippage had occurred, the

specimen would have strained much more, see Figure 19a.

If slippage did occur, it could be argued that this might have affected the tensile

tests. However, it is worth taking into consideration the manner the specimens were

strained, as well as the amount of force placed on them by each test. While on the creep

test a force of 3.5 N was suddenly applied in a step waveform, during the tensile test the

specimens were slowly elongated in a ramp waveform at a rate of 5 mm/min. Hence, in
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testing the possibility of slippage the effect of different amounts and rates of loading

forces should be examined.

It may also be possible that although there is no slippage of the Quatromer with

reference to the grips, the fibers may be moving inside the Quatromer relative to the grips

with no slippage involved. If this was the case then the fibers would be carrying less

amount of the tensile load than the normally would, leaving the matrix supporting the

extra load. This would also explain the large strain observed in the creep curves of the Q

+ 12 PP fibers specimen. The fact that no debonding was evidenced supports this idea. As

well, to strain the specimens 10% a 3.5 N load was applied to the Q + 12 PP fibers

specimen, while a 0.27 N load was applied to the Quatromer specimens. This load is

more than 10 times greater. If the fibers moved relative to the grips then the Quatromer

would have mostly supported the load.

The fact that the fibers need to align before they are able to carry any load must

be taken into account in the design of the synthetic heart valve. This situation is similar to

the arrangement of the collagen fibers in the heart valve. In the natural valve the collagen

fibers are tangled and as the load in the aorta increases the collagen bundles align with

the force. It must be considered as a three-dimensional network of fibrils, although the

predominant fiber direction is parallel to the surface.

Relaxation results for Quatromer and the PP fiber are very noisy. This is due to

the fact that the forces measured for these two materials were relatively very low when

compared to those of the other two materials. For Quatromer and the PP fiber forces were

in the order of 0.25 N and 0.20 N respectively. While for Q + 12 PP fibers and PU, the

forces measured were in the orders of 2.7 N and 1.45 N respectively. Still, the path in the
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graph can be seen clearly showing Quatromer had the highest amount of recovery in the

shortest period of time, followed by Q + 12 PP fibers and 1 PP fiber. PU had the least

amount of recovery between these materials.

Hysteresis tests were performed in order to present the phenomenon when a body

that is subjected to cyclic loading has a different stress-strain relationship in the loading

process than in the unloading process. Both PU and Quatromer had the least amount of

hysteresis. Conversely, the Q + 12 PP fibers composite and the PP fibers showed the

largest amount of hysteresis. This suggests that the behavior of the composite is

governed by the PP fibers. It must be noted that the PP fibers might have suffered plastic

deformation. Even though, all the materials were strained 0.15 mm/mm, this amount is 1

/ 2 of the total elongation of the fibers, while it is a smaller fraction of the total elongation

of the Quatromer and the PU.

Based on the results shown in Figure 29, which shows the elastic modulus and the

internal friction of the Quatromer/PP composite are constant in all the frequencies at

physiological range, we can conclude that this composite will behave in a similar fashion

for these frequencies. The response of the Quatromer/PP composite to harmonic

excitation would not vary in these frequencies.

One of the limitations of our study is the small number of cycles of the bending

fatigue test (equivalent to 2.5 years at a physiological rate of 70 bmp). It could be the

case that the Q + 12 PP fibers composite might be significantly affected by tensile and

bending stresses over a longer period of time. Nevertheless, the number of cycles of our

bending test is equivalent to a considerable amount of time. Moreover, the tension-

tension fatigue test was performed for an equivalent of 10 years. In addition, although we
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are at the phase of testing the material, it could be important to take into consideration the

amount of time synthetic tri-leaflet heart valves should be tested. According to the Food

and Drug Administration, mechanical valves should be tested for an equivalent of 15

years (6 x 10 8 cycles), while tissue valves of all kinds should be tested for an equivalent

of five years (2 x 108 cycles), (FDA 1994). However, no statement is made on synthetic

tri-leaflet heart valves.

Regarding the static tests it is worth noting that the values for the pull-out strength

test could have been obtained over a wider range of length. This way, both the rising and

plateau regions might be seen more clearly. This would allow us to compare these two

regions. Moreover, during this test a cut was made to the specimen, which could be

thought to have affected the results of the pull-out test. Nonetheless, it was not possible

to see through the specimen where the cut was made during testing. This leads us to

believe that the cut did not open when testing. Hence, the cut seemed not to have had a

large effect on the pull-out test. More information about the bonding forces between the

Quatromer and the PP fibers is needed, including the microstructure of the fracture.

It cannot be assured that the fibers were always embedded in the Quatromer/PP

composite in an equidistant fashion. However, this did not seem to affect the results of

the static or dynamic tests. The standard deviation of the tensile test was less than 10%,

indicating that there was not much variation among specimens.

The actual tests procedures were carried out in air. It could be argued that results

for these tests would differ if carried out in a saline solution at the body's average core

temperature (98.6 °F). Nevertheless, Quatromer has been proved to resist boiling
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concentrated nitric acid, which suggests that it will perform well in an oxidative and

acidic environments such as those found in the body (Pinchuk, Khan et al. 1999).

In choosing the number of fibers to be embedded in the matrix we took into

account that we could take advantage of the high strength of the fibers and the good

flexibility of the Quatromer. If the material is too stiff then the leaflets would not

perform adequately, as they would not be able to open and close as freely. On the other

hand, if the material is too soft the leaflets would not be able to sustain the pressure

created in the aorta.

Future studies could pursue the optimization of the Quatromer/PP composite by

determining the ideal vol % of fibers in the Quatromer matrix. In order to do so, the

mechanical properties of the materials, which were determined in this study, could be

entered in a Finite Element Analysis computer model. Also, biaxial tests on the leaflets

are necessary to recollect more information about the mechanical properties of the

Quatromer/PP composite and to compare with natural valves. This might prove to be

crucial for the optimal performance of the valve. Once this is achieved, efforts could be

directed towards in vitro fatigue testing of whole heart valves made from the Q/PP

composite, followed by pre-clinical testing in vivo to allow for the effects of biological

factors.
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7. CONCLUSION

In the current state of research on heart valve prostheses it is imperative to find a

material with improved fatigue life, which would result in less surgical interventions and

reduce the risk of death. Up to date, artificial valves are not as reliable and/or durable as

healthy natural ones. Of the two commercially available groups of artificial heart valves,

mechanical valves, generally show excellent durability, but also require most patients to

receive permanent anticoagulant therapy due to thrombotic reactions. While the other

group, bioprosthetic valves, exhibit advantages in hemodynamic properties, producing

the central flow characteristic of natural valves. However, they also show leaflet

stiffening due to mineralization, which results in short fatigue life (usually less than 10

years). A third group, synthetic tri-leaflet valves, is fabricated from biochemically inert

synthetic materials. These valves present natural hemodynamics while also having the

potential for long-term durability. Unfortunately, they have not been successful to date

due to long-term material degradation. Long-term material degradation occurs through a

combination of oxidative reactions with blood and the high dynamic tensile and bending

stresses borne by the material. It seems reasonable to assume that synthetic flexible

membrane trileaflet valves might be improved with a suitable material choice. Moreover,

it was postulated that a decrease in tears and perforations might result from fiber-

reinforced leaflets reducing high stresses on the leaflets.

In our study we explored the possibilities of a new polymer composite to be used

as a synthetic trileaflet heart valve material. This composite was made-up of Quatromer

embedded with continuous polypropylene fibers due to the known properties of each of

81



these two materials. Quatromer has been found to be less likely to degrade in vivo than

polyurethane, while the PP fibers were known to have several unique properties that

make them especially suited for use as leaflet reinforcement in a synthetic tri-leaflet heart

valve. The primary finding of this study was that the Quatromer/PP composite has the

potential to be a more suitable material for use in synthetic tri-leaflet heart valves, as

compared to PU (the current material of choice for synthetic heart valve prostheses). In

order to do so the mechanical properties of the composite were examined and compared

to PU. Results of the tension-tension fatigue test indicate that the Quatromer/PP

composite's fatigue life is statistically greater than that of the PU. The Quatromer/PP

composite had an endurance limit of 2.5 MPa. After being cycled at this stress level for

350 million cycles the Q + 12 PP fibers specimen did not fail (this number of cycles

represents up to 10 years of fatigue life as number of beats at a physiological average of

70 bpm). The endurance for PU was above 1.5 MPa. The bending fatigue test did not

significantly affect the Q + 12 PP fibers composite after being stressed for 89 million

cycles of pure bending (this number of cycles represents up to 2.5 years of fatigue life as

number of beats at a physiological average of 70 bpm). The tensile test shows that even

though the tensile properties of Quatromer by itself are lower than the PU, which was

tested, it is possible to enhance its tensile properties with embedded PP fibers. When

Quatromer was embedded with 12 PP fibers its Young's modulus was 45.44 MPa, more

than two times greater than for the PU, which had a Young's modulus of 18.53 MPa.

The Poisson's ratio measured for the Quatromer was 0.41. In the pull-out test a level of

maximum force was reached at 0.5 N, where any more contact surface would not increase

the bonding force. More than 2 mm of embedded length would not increase the amount
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of bonding force considerably. These results show that the reinforcement of Quatromer

with PP fibers improves both its static and dynamic properties as compared to PU.

Based on this conclusion, we recommend the optimization of the Quatromer/PP

composite by determining the ideal vol % of fibers in the Quatromer matrix. This way it

would be possible to manufacture a heart valve with very thin leaflets that would improve

the hydrodynamic function while being able to sustain the pressure created in the

ventricle. An important next step would involve in vitro testing of synthetic heart valves

made of this composite, as well as pre-clinical in vivo studies. This is required to prove

the fatigue life of the valve under conditions that resemble to a greater extent those in the

heart. Also, it would be necessary to measure the performance of the valve and compare

it with other valves already available in the market.
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