
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

4-7-2003

Management of remote field instrumentation via
the Internet
Victor A. Acuña
Florida International University

DOI: 10.25148/etd.FI13101524
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Electrical and Computer Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Acuña, Victor A., "Management of remote field instrumentation via the Internet" (2003). FIU Electronic Theses and Dissertations. 1134.
https://digitalcommons.fiu.edu/etd/1134

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.fiu.edu%2Fetd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1134?utm_source=digitalcommons.fiu.edu%2Fetd%2F1134&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

MANAGEMENT OF REMOTE FIELD INSTRUMENTATION VIA THE INTERNET

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

by

Victor A. Acua

2003



To: Dean Vish Prasad
College of Engineering

This thesis, written by Victor A. Acufa, and entitled Management of Remote Field
Instrumentation via the Internet, having been approved in respect to style and intellectual
content, is referred to you for judgment.

We have read this thesis and recommend that it be approved.

Armando B. Barreto

M. Ali Ebadian

Jean A ri 9, Major Professor

Date of Defense: April 7, 2003

The thesis of Victor A. Acuia is approved.

Dean Vish Prasad
College of Enginepig

15ean Vduglas Wartzok
University Graduate School

Florida International University, 2003

ii



DEDICATION

I would like to dedicate this thesis to my parents, Blanca L. Alfaro and Victor M.

Acuna, for their support and dedication towards the fulfillment of my education and goals

in life. To my lovely wife, Roxana Acuia and my future son/daughter, for their love,

support, and understanding in completion of my graduate coursework and this

manuscript.

"Imagination is more important than intelligence." Albert Einstein

iii



ACKNOWLEDGMENTS

I wish to thank first and for most God, for the gift of life and academic discipline.

I want to thank the Hemispheric Center for Environmental Technology and Dr. Ali

Ebadian for providing the economic resources and laboratory equipment to complete this

thesis. A special thanks for the guidance and example of Jose Varona, Celso Duran,

Leonel Lagos, Sarkis Shahin, and the rest of the Engineering and Technology Group.

I also want to extend my gratitude to my committee members, Dr. Armando

Barreto and Dr. Jean Andrian, for their academic example and encouragement. My

parents, Victor & Blanca, my lovely family, Roxana & baby, and my friends. Lastly, to

all the great scholars of our time for their example and refusal to believe that nothing is

impossible.

iv



ABSTRACT OF THE THESIS

MANAGEMENT OF REMOTE FIELD INSTRUMENTATION VIA THE INTERNET

by

Victor A. Acufa

Florida International University, 2003

Miami, Florida

Professor Jean Andrian, Major Professor

Supervisory Control & Data Acquisition (SCADA) systems are used by many

industries because of their ability to manage sensors and control external hardware. The

problem with commercially available systems is that they are restricted to a local network

of users that use proprietary software. There was no Internet development guide to give

remote users out of the network, control and access to SCADA data and external

hardware through simple user interfaces.

To solve this problem a server/client paradigm was implemented to make

SCADAs available via the Internet. Two methods were applied and studied: polling of a

text file as a low-end technology solution and implementing a Transmission Control

Protocol (TCP/IP) socket connection.

Users were allowed to login to a website and control remotely a network of

pumps and valves interfaced to a SCADA. This enabled them to sample the water quality

of different reservoir wells. The results were based on real time performance, stability

and ease of use of the remote interface and its programming. These indicated that the

most feasible server to implement is the TCP/IP connection. For the user interface, Java

applets and Active X controls provide the same real time access.

v



TABLE OF CONTENTS

CHAPTER PAGE

I. IN TRO D U CTION ................................................................................................... 1
A . Research Problem ................................................................................................. 1

B . Experim ental Setup and constraints..................................................................... 3
C . Theory of O peration............................................................................................. 5

D . Literature Review ................................................................................................. 8

II. EM BED D ED SY STEM S........................................................................................ 12
A . Program m ing of em bedded system s ................................................................... 13
B . Interfacing the SCA D A w ith external hardw are................................................. 16

III. SERIA L CO M M U N ICA TION S............................................................................ 20
A . M ain program .......................................................................... 21
B . Server program m ing .......................................................................................... 26

1. Text file server ............................................................................................... 28
2. TCP/IP server................................................................................................. 30

IV. INTERNET PROGRAMMING FOR TEXT FILE SERVER ............................... 34
A . Client & Server Scripting...................................................................................... 35

1. Fram e 1 - rem ote0.asp................................................................................... 37
2. Fram e 2 - realtim e1.asp ................................................................................. 40
3. Fram e 3 - float.asp........................................................................................ 44
4. Fram e 4 - w ebcam .htm ................................................................................. 45

B. Security ................................................................................................................. 45

V. INTERNET PROGRAMMING FOR TCP/IP SERVER....................................... 49
A. Active X controls .................................................................................................. 50
B . Java A pplets........................................................................................................ 51
C . Security ...................................................................................................... .. 52

V I. R ESU LTS A N D O B SERV A TION S..................................................................... 54
A . Future w ork and recom m endations................................................................... 56

V II. CO N CLU SION .......................................................................................... ...... 59

LIST O F REFEREN CES.............................................................................................. 62

APPENDICES .................................................................................................................. 64

vi



LIST OF FIGURES

FIGURE PAGE

1. Schematic of bench test setup................................................................................... 3

2. Close up view of pump and valve network ............................................................. 4

3. Thesis development timeline...................................................... 7

4. Program 1 (triggers sensors when told to do so) ...................................................... 14

5. Program 2 (sends status data back to host computer)................................................ 15

6. CRIOX and driver circuit. (courtesy of HCET E&T)............................................ 17

7. RS232 (DB9) pin out and transmission scheme ..................................................... 20

8. Snapshot of local/main control panel .................................................................... 22

9. Client-server paradigm .......................................................................................... 27

10. TCP segment format............................................................................................... 32

11. Representation of clients and servers connected by the Internet............................ 35

12. Central control console (CCC) for remote users, (cpanel.asp).............................. 36

13. Frameset layout and code for cpanel.asp................................................................ 38

14. Confirmation of data entry...................................................................................... 43

15. Login screen for a remote user .............................................................................. 46

16. Active X control for CCC..................................................................................... 51

17. Java Applet for CCC............................................................................................... 53

18. frmCpanel ................................................................................................................. 70

19. frmDialog.......................................................................................................... .. 75

20. frmServer................................................................................................. ............ 76

vii



LIST OF ACRONYMS

API: Application Program Interface

ARPANET: Advanced Research Thesis Agency Network

ASCII: American Standard Code for Information Interchange

ASP: Active Server Pages

CCC: Central Control Console

CGI: Common Gateway Interface

COM: Communication ports

CSV: Comma separated values

DOE: Department of Energy

E&T: Engineering and Technology group

FIU: Florida International University

GPIB: General Purpose Interface Bus

GUI: Graphical User Interface

HCET: Hemispheric Center for Environmental Technology

HTML: Hypertext Markup Language

I/O: Input/Output

IE: Internet Explorer

IRQ: Interrupt request line

JSP: Java Server Pages

LAN: Local Area Network

OCTOPUS: Laboratory setup (network of pumps, valves and sensor array)

ORP: Reduction-Oxidation

viii



PDA: Personal Digital Assistant

PHP: Pearl Helper Pages

RAM: Random Access Memory

ROM: Read Only Memory

RPC: Remote Procedure Call

SCADA: Supervisory Controlled & Data Acquisition

SQL: Standard Query Language

SRS: Savannah River Site

TCE: Trichloroethylene

TCP/IP: Transmission Control Protocol/Internet Protocol

VB: Visual basic

ix



CHAPTER I

I. INTRODUCTION

Supervisory Control & Data Acquisition (SCADA) systems are used by many

industries because of their ability to manage sensors and control external hardware. The

problem with commercially available SCADAs or data loggers is that they are restricted

to a local network of users that use proprietary software. There was no Internet

development guide to give remote users out of the network, control and access to

SCADA systems.

A. Research Problem

The thesis is derived from current work at the Hemispheric Center for

Environmental Technology (HCET), a research and development center located at the

Florida International University (FIU) Engineering Center. The main client is a

Department of Energy (DOE) facility called Savannah River Site (SRS) located in South

Carolina. This site was opened in the early 1950s to produce the basic supplies for

nuclear weapons. At SRS there is a network of groundwater wells located throughout

the site that must be constantly monitored for Trichloroethylene (TCE), a hazardous

contaminant and carcinogen that is used as a solvent to degrease metal parts. This

monitoring is done to confirm that high doses are not present in the water supplies.

Usually, extraction of water samples is taken manually and processed at chemical and

analytical labs offsite. This causes delay in data gathering and exposes workers to be

working around the area of possible contamination. A proposed solution to this problem

is to use a network of pumps to extract water from a certain well and take it to a cluster of

sensors to detect different water quality parameters in near real time. There is not a

1



single sensor commercially available to detect TCE accurately and at regulatory levels.

Many of them are still undergoing research at various universities and national labs.

Thus, it was decided to measure indicative parameters of TCE such as pH, reduction-

oxidation (ORP), dissolved oxygen, nitrate ions, chloride ions, specific conductance and

salinity. All these are the environmental issues, but apart from these requirements users

should be able to operate the network of pumps and valves from a remote location, via

the Internet, and gather data on demand.

To provide an interface to drive the pumps, valves and sensors, a SCADA made

by Campbell Scientific was used: the CRIOX. Currently Campbell does not provide

support for making web interfaces to this data logger. All software and connectivity has

to be customized to this particular model and setup. Making the system available on the

web brings forth many complexities and programming issues. One must understand the

hardware or SCADA, learn how to program it and configure it to receive and transmit

data. Software programming must be done to communicate with the hardware in an

efficient manner. Internet programming needs to be used to create a user interface to run

the experiment. Lastly, there must exist a link between the computer that is connected to

the SCADA and an Internet application. Most of the time was spent in understanding and

learning how to program the hardware and software and making the two work together.

The purpose of having access to this setup via the web is to widen the research

audience and provide real time access to gather data and make an experiment. This will

also lower the number of site visits, lowering costs and exposure to possible

contaminated sites.

2



B. Experimental Setup and constraints

A small setup with five tanks to simulate wells, a transfer tank, a network of

valves and a driver circuit was developed. These enabled a user to extract water from a

certain tank and route it to a sensor array to sample water quality parameters. The

network of pumps and valves is connected to the SCADA via a driver circuit. The

SCADA communicates wirelessly to a web/application server that serves requests from

different clients. The overview of the whole system is shown in Figure 1.

RF LINK

LIUX/
MICROSOFT
WEB/APPLICATION
SERVER

Deployed PUMPS AND Serial interface to
SCADA VALVES SCADA base station

w/Sensors

W w w USERS/
E E E CLIENTS
L L L
L L L
S S S

Figure 1. Schematic of bench test setup.

Figure 2 shows a close up view of the transfer tank and how water is routed to the

sensors or the drain tank by the selection of valves. To perform the experiment a user

will first select a tank/well to extract water from, pump it into the transfer tank until it is

full, then proceed to rinse it out by opening valve #1. A second volume is extracted into

3



the transfer tank and then drained inside the sensors by opening valve #2, where a sample

of data is taken. This water is then taken out by opening valve #3 and the sensors rinsed

with fresh tap water. The process is then repeated for each different well/tank and data

crosscheck to make sure that each one has different parameter readings.

Inside the transfer tank there are two level switch sensors that indicate when it is

full or empty. This is used to provide the user the water level status of the tank. When

the high level switch turns on and indicates that the transfer tank is full, the driver circuit

disables all pumps. This feature ensures that there won't be an overflow of the transfer

tank. For simplicity in writing, the network of pumps, valves and sensors will be referred

to as Octopus.

Transfer tank

Tanks/Wells V1 2
with corres- Hydrolab instrument
ponding pump Sensors chamber

V

vl-valve#1 - drains water
from transfer tank to

Drain tank drain tank
v2 - valve#2 - floods
sensors chamber
v3 - valve#3 - drains
sensors chamber

Figure 2. Close up view of pump and valve network.

The following constraints are applied to the thesis development:

1) The setup is in house because the pumps require 1 lOVAC, thus power is provided

continuously by electrical outlets (even though the setup is in house, the final

4



destination will be a remote field; this has to be kept in mind to allow the designs

to be easily migrated towards a deployment implementation).

2) The system communicates by a wireless link, but power to the SCADA unit is

provided by a power supply.

3) The development of custom software and the web interface correspond to this

unique setup and the CR10X.

C. Theory of Operation

To make the experiment available via the Internet a client-server paradigm [1]

was used. This is a term used in network computing to describe the state of

communication of two computers. The pattern consists in one machine waiting passively

for contact from another machine. The system that waits is called the server and the one

that establishes contact is called the client. The transport medium used by these to

communicate may be a Local Area Network (LAN) or the Internet. There are two

methods studied in this thesis to permit a client-server configuration: the use of a text file

as a low-end technology solution and the implementation of a transport protocol socket

connection. By studying their advantages and disadvantages a final design solution will

be proposed. The main parameters of interest are:

1) Performance: Can nearly real time full duplex communication be established

between the laboratory experiment and a remote client?

2) Stability: Is the communication between client-server stable and reliable?

3) Client interface programming: What are the possible programming options

for a web interface? Are they portable (i.e. cross browser compatible)?

5



The first method entails the use of a text file or database located at the web server

as a global variable. In this application a text file was chosen because of its simplicity; it

can be accessed fairly quickly and it takes much less memory than a database file. Not to

mention that a String Query Language (SQL) server is not needed, which would be the

case if a database file was used. Internet server scripting can have access to this file as

well as a software applications running on the same machine. Data can be interchanged

between the web server and the local application creating a transparent link between a

remote user and the laboratory experiment. The local application will have a server

module that has a direct or wireless connection with the SCADA unit and polls the text

file for accepted commands. This is the same concept of accessing a public variable in a

computer program. If it finds a command that it understands it will execute the desired

function, otherwise it will be ignored.

The second method uses a transport protocol socket connection between the

server and the client. The two protocols considered were the Transmission Control

Protocol (TCP) and the User Datagram Protocol (UDP). Each one has advantages and

disadvantages, but can provide communication between the client and the server. The

transport protocol server is setup to listen or wait at a specific port on the web server for a

connection request. When the client creates an authorized socket connection at the same

port that the server is listening to, a link is created and data can be interchanged between

the two machines. The client then passes commands to the server. The server passes the

commands to the main program. If a command is recognized it will be executed,

otherwise it will be ignored.

6



There are three stages of programming for these two methods: the actual

hardware, the remote server and the website. In order to explain how this was

accomplished, different issues will be discussed, those include embedded systems, serial

communications, and Internet programming. Instead of introducing each concept and

explaining the overall system at the end, the actual timeline of development (results and

observations) will be migrated in the discussion of each chapter. The first prototype will

be tested with the experimental setup.

The stages of development are outlined in Figure 3:

PHASE I PHASE II

Embedded system Host application with
(SCADA) local graphical user

programming interface (GUI) and
and debugging web server integration

PHASE III

Internet
Users Remote GUI

Figure 3. Thesis development timeline.

7



D. Literature Review

To provide a solution for remote access via the web a literature and web search

was done. The results were that a complex web site equipped with management

capabilities of the CRIOX SCADA systems is not available. Thus to do this, a process

must be developed and all software platforms would have to be programmed and

customized for the desired application.

Many researchers have embarked in the field of remote control of laboratory

experiments via the Internet. They all use different processes and technology, but none

are for the CR1OX and most of them are used for learning/educational experiments [2, 3,

4, 5 and 6] instead of a deployable solution for a remote site, much like SRS. There have

also been a relative small number of real time experiments and much focus on non real

time virtual laboratories [7].

Remlab [2] is a remote measurement laboratory for educational experiments. The

processes used in [2] are not interactive or dynamic. They use Visual C++ to create an

application program that communicates with the hardware and sends Hyper Text Markup

Language (HTML) back to the user via the Common Gate Way (CGI) interface method.

When a client initiates a request, a C program is executed that performs the function and

then returns the result to the browser (i.e. Netscape or Internet Explorer (IE)).

Peter Hoo [8] worked in the area of Internet sharing of General Purpose Interface

Buses (GPIB). GPIB is used to handle data acquisition hardware to make measurements.

He was able to excite sensors and gather data to make it available through a web page.

He uses the same method as [2]. The problem with this kind of method is that it works

well for a page that has a couple of lines, but for complex sites that require large amounts

8



of code to manage hardware and process data, this is not a feasible solution because it

makes the maintenance of the website cumbersome. This also means that the website is

not interactive and independent from the host programs that access the hardware. Status

of the system is done by user requests because the devices are not smart enough to

transmit data back constantly like a SCADA.

[3, 4, 5 and 6] are more advanced remote laboratories where client-server

paradigms are implemented via transport protocols, mainly TCP/IP. In their

implementations, the client software creates a socket connection to the server and uses a

client Graphical User Interface (GUI) to perform experiments. The use of this method is

innovative, but requires the client to download client software and install it in the remote

machine. It is desired that the client-server communication be established through a web

browser (i.e. Netscape or Internet Explorer) because they are easily accessible in all

operating systems. Access methods via a browser makes it easier for remote users to

access the experiments and collect data from any computer in the world, without the need

of downloading and running client software.

An ideal way for remote communication with hardware is to develop a set of

functions so that a developer can create an interactive web site that communicates with

the hardware without the need of knowing the background intimacies of the program that

controls the hardware. The "Remote Laboratory" introduced in [9] made a significant

change in the design of remote control experiments. A socket connection was used to

communicate with the server via a client implemented in a Java applet. Applets are small

container programs that are downloaded and executed inside a web browser. This

eliminates the use of a separate client software package. Although [9] uses Java applets,

9



they did not venture into using Active X controls. Active X are like applets, they execute

inside a web browser and can be programmed to provide advanced features to the client.

Some SCADA systems provide LAN based configurations so that they can be

accessed via a network. [10] Used LAN based control of SCADAs to monitor load

shedding in power systems. This is acceptable for systems that are not field deployable.

The initial work on this thesis is for an in house experiment. But the final destination of

the experiment is to be a remote location, where a LAN may not be accessible, only serial

communications via a wireless modem.

The demand to have user access to remote devices via the web did not become

popular until recent years [11] and that is why there is not a definite development

platform to get this done. Not to mention that every application is different and that is

why many solutions have to be studied before proposing a final implementation. None of

the authors considered the polling method of a text file as a low-end solution. The work

in this thesis proved that this could also be a viable solution when there are not enough

programming resources available.

Campbell Scientific does not provide Internet applications support, only data

management for online display [12]. This becomes more of an issue of displaying a

database of values on a web page. That is why all software platforms and client

integration had to be customized.

This review demonstrates the efforts of remote control of instrumentation mainly

for learning experiments at different universities and institutes. Some lack portability and

others contain full web deployment capabilities. Although none of them work with a

10



SCADA similar to a CR1OX, different methods can be used to provide a solution to make

this system available via the Internet.

11



CHAPTER II

II. EMBEDDED SYSTEMS

The first issue before going live on the web is to understand the final link in the

connection setup, the hardware.

Embedded systems are basically tiny computers with microprocessors built for a

specific purpose. They are found in many of today's electrical equipment, such as

cameras, Personal Digital Assistants (PDA), cars, consumer electronics, etc. They differ

from a full-blown computer in that they are small, requiring small amounts of power and

that they load programs from Read Only Memory (ROM) instead of Random Access

Memory (RAM) as workstations do. SCADAs are essentially embedded systems or

micro controllers composed of internal memory, a microprocessor, I/O ports and a

transmission media. Their purpose is to manage sensors, data and external hardware.

Selection of this type of hardware depends on certain factors:

1) Capabilities: what can they do? Including computing power, I/O ports quantity

and remote deployment flexibility.

2) Data management: some rely on proprietary database structures like SQL and

others manage data as Comma Separated Value (CSV) text files.

3) Adaptation to custom software.

The data-logger chosen for this application was a Campbell Scientific CR1 OX for the

following reasons:

1) Data can be extracted as CSV values that can be displayed in any type of data

management software like Microsoft Excel or Lotus Qpro. CSV files also tend to

12



be small in size since they are made up of plain American Standard Code for

Information Interchange (ASCII) characters.

2) Small programs can be written and uploaded to the unit to perform a vast amount

of functions and commands.

3) It contains several digital and analog I/O ports, as well as SDI-12 interfaces to

handle different types of sensors.

4) It only requires 12Volts DC of battery power and can also be operated by a solar

panel.

5) The adaptation of custom software to communicate with it can be easily

accomplished since is all done via serial communications.

A. Programming of embedded systems

Embedded systems programming is usually done with a type of assembly

language developed for the specific device. The language of the CR10X is a set of

instruction codes that perform several high level language functions such as if, then, loop,

goto, store, delete, compare, etc. There are a total of 123 instructions: 49 for

input/output, 39 for processing, 22 for program control and 13 for output. They can be

used to automate the SCADA or to give it some user interaction. All the instruction

codes and their functions are found in the operations manual. To understand the system,

this manual was studied thoroughly to explore all the capabilities of the system, and the

different ways it can achieve a certain function.

The CR10X has three tables that can hold program code. Table one and table two

run programs at certain scan intervals, meaning that the sequential code will be executed

after the time that was specified at the beginning of the program. Two main programs

13



were developed to make the system interactive. Program one runs every minute and

checks for a status flag. A flag is just a value stored in a memory location that is used as

a qualifier. If it is set to true then it proceeds to trigger the sensors and obtain a data

string from them, putting them in intermediate storage for program two to process.

Program two runs every ten seconds and sends a serial ASCII dump to the host computer.

This string of characters contains the parameters read by the sensors and the status of the

level switches located inside the transfer tank. These two programs were sufficient to

make the system interactive with a remote user. The program flow is shown in Figures 4

and 5.

Program 1 - Start

False Cek True
status flag 1

Trigger array
of sensors and

obtain data

End - start again
in 1 min

Figure 4. Program 1 (triggers sensors when told to do so).

14



Program 2 - Start

System status:

collect data

from sensors

and level

switches

Send ASCII
dump of data to
serial port of host
computer

End - start again
in 10 seconds

Figure 5. Program 2 (sends status data back to host computer).

15



B. Interfacing the SCADA with external hardware

The CRIOX has 8 digital I/O ports that can be used to access external hardware

when configured as outputs, they can be set high (output 5V), set low (output OV) and

apply a voltage pulse. This gives the flexibility of driving digital circuits perfect for this

experiment. Since there are a total of 5 pumps, 3 valves, 2 float level switches and 1

SDI-12 sensor array in the laboratory setup, there wasn't enough room to accommodate

all the hardware. The device cannot handle high levels of currents either, which was

needed because the pumps are 1 lOVAC. To overcome this problem, a 3-8-decoder driver

circuit was designed to drive all the peripherals one at a time. The decoder would be

driven by the CR1OX and will only require 3 I/O ports. Two other I/O ports will be used

for the low and high level switches to indicate when the transfer tank is empty, full or

with water. The last I/O port is used for the SDI-12 interface to the sensors. SDI-12 is a

serial communication standard for transducers that requires a single data channel for a

cluster of sensors. In this setup, an instrument called the Hydrolab DataSonde 4 was

used, it is equipped with several sensors to read pH, ORP, salinity, temperature, dissolved

oxygen, nitrate and chloride. The SDI-12 permits all data from these sensors to be sent

by a single data string through one channel, thus a data set per sensor is not required

saving the use of many I/O ports. Figure 6 shows how the SCADA is interfaced and

Table 1 provides an outline of the ports and their functions.

The CRIOX set of instructions is a series of numbers that consist of a main

instruction number followed by sub parameters that behave as different properties of that

particular instruction. For example, to write a line of code that tells the CRIOX to make

16



.
.VAC.

u. 
f4

ri 
a

V, w v >a

0
_ y

n

Fr " ,, A = ;

72r r i
uX

C a

1:10 AZLMS - ' 
a a

L,

e

s,
9v 5v dn

4. z
T l --F-- -Fr-- jLl

,IV UV

F H

IT 11

I'

Figure 6. CR10X and driver circuit (courtesy of HCET E&T).

17



Table 1. CRiOX port assignment.

Ports

C4 C5 C6 Function (turns on) 0 means low (OV)
0 0 0 Pump #1 1 means high (5V)
0 0 1 Pump #2

0 1 0 Pump #3 C2 monitors the high

0 1 1 Pump #4 level switch
1 0 0 Pump #5 C3 monitors the low
1 0 1 Valve #1 level switch
1 1 0 Valve #2 C7 enables or
1 1 1 Valve #3 disables the decoder

one of its digital I/O ports high, the following code is implemented:

P86: /This commands means DO

1: 45 /This means make port 5 high

Some functions can also be executed through the serial port of the computer by

sending special commands. For example, the above code can be implemented by sending

the terminal command 9105:1:0372U via the serial port. The operating system running

on the device can handle these type of instructions on demand, making it a powerful

interface for the application in study. Control ports C4, C5, C6 of the CR10X control the

decoder. Port C7 is connected to a high enable line to turn on or off the driver circuit. In

order to control ports C4, C5, C6 and C7 terminal commands will be used via a custom

software package programmed specifically for this application using the terminal code

shown before.

The float sensors are located inside the transfer tank, when it is empty a digital

high (5V) is applied at port C3 and when it is full a digital high (5V) is applied at port

C2. A program running inside the SCADA checks for the status of this ports, when one

goes high it sends a signal stating which specific ports went high. This is implemented in

18



the program flow of Figure 5 in the data section. It was necessary to know the status of

the transfer tank because the user needs to know if it is empty or full to proceed with the

next step in the lab experiment. To accomplish this, instruction 25 was used to check the

status of the ports. When this instruction is used, it creates a mask of the specified port.

For example to check port C3, the eight ports are treated as an eight bit binary number

from C8.....C1, where C8 is the most significant bit and C1 the least significant bit. By

masking decimal 4, where the binary equivalent is 0000 0100, the CR10X checks this

port only (C3), if the port is high it writes the number 4 in the input location specified, if

is low, it writes a zero. The code to do this looks like this:

1: Read Ports (P25)
1: 0004 Mask (0..255)
2: 23 Loc [ LOWLVLSW ]

2: Read Ports (P25)
1: 0002 Mask (0..255)
2: 24 Loc [ HIGHLVLSW ]

These two values are then appended to the data of the sensors and the status of the

level switches can be read. If a 4 is transmitted it means that port C3 is high or the

transfer tank is full, if a 2 is transmitted it means that port C2 is high or the transfer tank

is empty, and if a 0 is transmitted per sensor, then there is water present in the transfer

tank. There are only 3 states allowed, so if one port is high the other one must be low.

At this point the assembly programs were kept simple since the objectives of the

bench test was to obtain real time data when the experiment was in progress and to

determine if the transfer tank is empty or full to rinse water volumes through it. This was

also the only data necessary for the web interface.

19



CHAPTER III

III. SERIAL COMMUNICATIONS

Communications with hardware in a computer system can occur through different

ports provided in the main board. In this thesis the port of main interest is the serial port,

since most SCADA systems provide a means of serial communications. A typical layout

of a serial (RS232) and its data transfer signals is shown in Figure 7.

1 2 3 4 5

G G

6 7 8 9
Pin Signal Pin Sianal
1 Data Carrier Detect 6 Data Set Read
? Receved Data 7 Recliesi lo Send
3 Transmitted Data 8 Clear to Sena
4 Data Terminal Readv 9 Ring Indicator
5 Signal Ground

Figure 7. RS232 (DB9) pin out and transmission scheme.

The COM ports in a computer can access serial interfaces and a unique IRQ is

assigned to it so that any device attached does not conflict with any other COM ports.

Devices connected to the serial port follow unique protocols that understand the character

set sent between it and the user interface. Access to the COM ports can be done with

any high level language with native methods (Visual basic, Java, C, C++, etc).

20



A. Main program

Before going live on the web and programming the web interface, one has to

know what functions or commands the hardware will understand. The server is a

module added to the main program used to control the hardware setup and the SCADA.

When the server module is enabled, Internet users will have access to the hardware setup.

Visual basic (VB) was used to create a local GUI for the operator to control

Octopus. VB has functions to access the serial port to send and receive data. What the

main program does is tell the SCADA which ports to turn on or off and enable the driver

circuit decoder, which enables a pump or valve. This was illustrated in Table 1. The

circuit was designed to allow only one device to be active at a time, thus the nature of the

decoder.

The local GUI was kept as simple as possible for the user, it is shown in Figure 8.

Control buttons are on the left and real time data is on the right. Data is refreshed every

minute. Every button that turns a device on or off, calls a public function called

"send(data)." This function sends data to the serial port, which is opened at execution

time. Data is sent to the CRIOX as ASCII character strings followed by a carriage return

or character 13. An ASCII character is the 7 bit representation of each character in a

computer keyboard, for example the carriage return is character 13 in decimal notation

and OD in hexadecimal.

A user can record data by clicking on the button "Record Data" and check the

status of the water levels of the transfer tank. The two big white windows are mainly for

debugging, but in the snapshot of Figure 8 it can be seen how raw data is transmitted

between the CRIOX and the main program. There is also a button called "Server Mode,"

21



when clicked it will start the web server so that a remote user can have access to the

experiment.

'i.t Control PanelX

MANUAL CONTROL PANEL

CONTROL STATUS

PUMP #1 ON OFF

PUMP #2 ON OFF DATA RETRIEVED
YEAR 2003

PUMP #3 ON OFF DAY of YEAR 68

TIME 1220

PUMP #4 ON OFF WATER TEMP 21.17

pH 7.88
PUMP #5 ON OFF

Specific Cond .082

Drain Transfer Tank ON OFF DO % 103.5
Valve #1 ORP 580

Flood Sensors ON OFF Sal .129
Valve #2

NO3- 100
Drain Sensors ON OFF
Valve #3 CHLORIDE 156.9

SERVER MASTER 111.2003,68,1154,21.16,7.91,.082,103.6,578,.129,100,164
MODE CUT OFF EXIT .7,4,0

WATER LEVEL STATUS, will only Record Data ou must wait at least 5 mins

alarm if the transfer tank is empty or valid data
full. When full, all pumps will be
disabledll

COM port ON COM port OFF COM Port is ON

Figure 8. Snapshot of local/main control panel.

Another issue encountered is that the CR1OX goes to sleep mode after 40 seconds

if the ring line of the serial port is not high. This line is set high by an external device

connected to the other end of the serial cable when it initiates a call. Before any

22



commands can be sent to the SCADA, it must be awaken. To do this, several carriage

returns need to be sent so that the baud rate and communication protocol is established

between the pc host and the instrument. When is ready for communications, it returns an

asterisk "*." This was a problem that had to be fixed, otherwise serial commands would

be lost in transmission simply because the CR 1OX was not ready for them. A checking

algorithm was implemented every time the "send(data)" function was called:

Public Sub send(data)

1. Do
2. 'DoEvents, wait for response of "*" from crl0x to continue
3. frmCpanel.MSComml.Output = data + Chr(13)
4. 'implement delay
5. For i = 1 To 1000000
6. Next i
7. frmCpanel.MSComml.Output = Chr(13)
8. buffer$ = frmCpanel.MSComml.Input 'Buffer$ & MSComml.Input
9. Loop Until InStr(buffer$, "*" )

The following discussion refers to the program code above. The first step is to

send data out the serial port, this is done in line 3 by invoking the "MSComm 1 .Output"

object. "Data" is a string passed to the send function. It is convenient to send always a

"send(chr(13))" so that two carriage returns are sent to the CRIOX. After these

commands have left, a small delay, approximately 300ms, is implemented with the for

loop in lines 5 and 6. Next, an extra carriage return is sent; by this time the baud rate and

communication protocols should have been set. To check this, line 8 catches any return

string with the "MSComm 1.Input" object and stores it in the buffer. The buffer is a

temporary memory location that the serial port uses to store incoming strings. The buffer

was set to receive only a byte at a time, this type of programming ensures that each

incoming character is checked one at a time. Line 9 checks to see if the buffer has an

"*," if it doesn't it returns back to line 1 to start the loop and send carriage returns to get

23



the SCADA out of sleep mode. If it does find an "*," it proceeds to the next set of

instructions. An example of how this algorithm checks for communication stability, is

shown by following the sequence of turning pump 1 on:

1. send (chr (13) )
2. send ("9104:0:0370U")
3. send ("9105:0:0371U")
4. send ("9106:0:0372U")

Before any commands are sent, a carriage return (chr(13)) has to be transmitted to

wake up the SCADA. The program waits for confirmation that it is ready to receive

additional commands. If the previous algorithm had not been implemented, the string of

data would have been sent one after the other and some of them might gotten executed

and some perhaps not. When confirmation is received that the CRIOX is ready to

communicate, the second command in line 2 is sent. This turns port C4 low, the delay is

implemented and the main program waits for another "*" meaning that the command was

sent successfully. Then the other two commands are sent one at a time. All ports C4, C5

and C6 should be low at this time enabling pump #1. The algorithm assures that each

command is executed one at a time to avoid any undesired function.

Another problem in programming the local software was that data strings were

being lost because of data transmission speeds. Strings of data received by the local

program started to fill up the buffer and write on the previous data before this one was

processed and displayed. In order to avoid this, the buffer length was limited to a byte or

one character and the following algorithm checked the incoming strings to make sure

they were correct.

1. Private Sub MSComm1_OnComm()
2. Dim strDataRaw As String
3. 'store incoming data
4. strDataRaw = frmCpanel.MSComm1.Input

24



5. If headcount = 3 Then
6. If strDataRaw = Chr$(10) Then
7. 'split comma separated values to get individual values
8. strTempdata = Split(indat, ",")

9. If UBound(strTempdata) = 13 Then
10. headcount = 696

11. Else
12. indat =

13. headcount = 0
14. End If

15. End If
16. indat = indat & strDataRaw
17. End If

18. If strDataRaw <> "1" And headcount>O And headcount < 3 Then
19. headcount = 0
20. End If
21. If strDataRaw = "1" And headcount < 3 Then
22. headcount = headcount + 1
23. End If
24. 'debugging windows
25. txtData.text = txtData.text & strDataRaw
26. 'data must be filtered before writing
27. If headcount = 696 Then
28. "Program Code Continues here"

The CR10X was configured to send a string of characters similar to this:

111,2003,64,2115,24.42,7.05,.304,103.9,683,.134,6.6,5.21,0,0. The order of this data and

the meaning of its contents is outlined by table 2:

Table 2. Data order and outline.

Order Parameter Value

1 Year 111
2 Date 2003
3 Julian day 64
4 Military time 2115
5 Temperature 24.42
6 pH 7.05
7 Specific conductance 0.304
8 DO% 103.9
9 ORP 683
10 Salinity 0.134
11 Nitrate 6.6
12 Chloride 5.21
13 Low level switch status 0
14 High level switch status 0

25



Data is sent in this fashion by the CR10X every 10 seconds to have a constant

string available by the main program and so that the delay of an event would be small.

The algorithm checks the starting set "111" that represents the memory location of the

CRlOX, then it builds the string until a line feed is attached at the end of transmission. It

then checks to make sure is made up of 14 elements, then it will extract the data for

display and process the status of the float level switches to determine if the transfer tank

is full, empty or in between. To accomplish this every byte that comes in is first

compared with the number "1", line 21 checks for a "1" and line 22 increments the

variable "headcount" by one. When "headcount" is 3, meaning that "111" has been

received, it then starts to build the string of data. If a line feed, ASCII character 10, is

received the built string is compared to the corresponding size of elements, in this case

14. If it is true then this data is taken for processing, otherwise it is ignored.

This type of processing is very important because the real time data and status of

the system must be available without errors. Once the main program is working ok,

meaning that data transmission works fluently, then the server can be designed.

B. Server programming

The client-server paradigm is used to create server modules to communicate with

a remote client. The client and server are involved in a state of communication [1]. The

server waits for the client to initiate contact. When communication is established, data

can be interchanged between both services. Figure 9 illustrates the concept.

The client application has the following characteristics:

1) Becomes a client temporarily when remote access is needed.

2) Runs on the client's computer.

26



SERVER CLIENT

INTERNET

Figure 9. Client-server paradigm

3) It can be executed in different operating systems.

4) It is initiated by the remote user

The server application has the following characteristics:

1) Waits for contact from a remote client.

2) It usually resides in a more sophisticated computer with greater resources than

the client.

3) It is dedicated to provide one service, but can serve multiple clients.

The Internet was not originally designed for controlling remote hardware, but

more for the sharing of information, text, audio and video. During the years though,

enhancements in Internet technology and the need for remote management h ave m ade

this a popular area of research [11]. There are three reasons why this is so:

1) The Internet is platform independent, meaning that viewers can see the same

web page no matter what operating system they are using (i.e. Linux or

Windows).

27



2) All workstations contain a browser (a program to access web pages on the

Internet, like Internet Explorer or Netscape) installed. This makes the sharing of

information and small programs attractive because users don't need to be running

specific third party software to access web sites and see their content.

3) When all devices are connected, a virtual component network [11] is created

and all devices share common resources.

1. Text file server

The text file server module is a timer subroutine that polls a text file every second.

It reads lines found in it sequentially, if it finds a command that the function understands

it passes it for processing to the "turnActionO" function, otherwise it does nothing. To

accomplish this a timer event function was created. This subroutine executes every

second:

1. Private Sub Timerl_Timer()

2. Open "e:/downloads/rms_srs/rms_srs_local/server.vtc" For Input As

#1
3. Dim text As String

4. Do Until EOF(1)

5. Line Input #1, text

6. If text = And EOF (1) = True Then

7. Close #1
8. Exit Sub

9. Else
10. lstStatus.Addltem text

11. turnAction (text)

12. End If

13. Loop

14. Close #1

15. Open "e:/downloads/rms_srs/rms_srs_local/server.vtc" For Output
As #1

16. Print #1, vbNullString
17. Close #1

18. End Sub

28



Line 2 opens the file "server.vtc" for reading; this file should reside in the same

directory of the web site. If it finds a blank line and is at the end of the file it exits the

function and remains idle until the next second, this is done in line 6. If it finds a

command, it is passed to the function "turnAction(text)" in line 11. This function checks

to see if the text written matches with one of the authorized commands. If the command

is authorized it is executed, otherwise it is ignored. When the processing of the function

is done the text file is closed. A piece of the function "turnActionO" shows that if it finds

the string "000" it will send commands to the SCADA to turn ports C4, C5 and C6 low

via the "send(data)" function.

1. Public Sub turnAction(strCmdl As String)

2. Case "000" ' select decoder
3. send ("9104:0:0370U")

4. send ("9105:0:0371U")

5. send ("9106:0:0372U")

6. Case Else
7. Exit Sub

When the timer function finishes reading from "server.vtc," it deletes all lines and

writes a blank character, so that when it is not in use, it remains idle waiting for another

command.

The uniqueness about this method is that it separates the website from the

hardware conflicts. The functions can be given to a web developer so that he knows what

commands to write to the text file to perform a specific function, but he won't have to

deal with all the issues of serial communications, programming the SCADA and the main

program. This also permits flexibility in maintaining a web site without interfering in

program o peration. A ny m ain p rogram that is used to access a serial device can be

setup to go to server mode and use the original functions to handle requests from an

29



outside source. When in server mode, a local user cannot access Octopus, and vice versa,

when in local mode a remote user cannot have access. This avoids problems with many

users trying to access the setup at one time.

It is secured because the commands sent between a web browser and the server

are codenames that have nothing to do with the actual execution codes that the CR10X

understands. This means that if a hacker intercepts transmissions, all they will see is

codes like 000, 111 or OK, which don't mean anything useful.

2. TCP/IP server

The transport protocol server uses TCP/IP to make a connection with a client.

TCP/IP is a connection-oriented protocol. This means that the server must wait for

contact by the client. When it accepts the request, a socket connection is created between

the two. The TCP/IP server module designed serves only one request at a time. This is

done intentionally so that there is only one user accessing the setup at a time.

Implementing a TCP server is advantageous because it provides stability and

reliability [1]. The service offered by TCP has the following major features:

1) Connection Orientation. A client must request a connection first before any

data can be transferred.

2) Point to point communication. There are only two endpoints in a

communication link.

3) Complete reliability. TCP guarantees that the data sent will be received without

errors.

30



4) Full duplex communication. Data can flow in either way without affecting

incoming or outgoing commands. It uses input and output buffers to maintain a

continuous flow of data.

5) Stream interface. TCP sends streams of octets across a network, where they

will be build up at the destination to form the original message.

6) Reliable connection startup. The client and server must agree on a connection

per session. Whatever happened in the last session is forgotten.

7) Graceful connection shutdown. Data is guaranteed to arrive at its destination

before a request for closing the connection is sent.

All messages involved in a TCP communication follow a particular segment

format [1] as illustrated in Figure 10. When the client sends a message, it is partitioned

in different segments or packets. The server receives all these packets and must

reconstruct the original message. The different parameters are crosschecked by the

receiving application t o make sure it understands what the client is requesting. Every

segment contains the following information:

1) Source port. The port number of the client.

2) Destination port. The port number of the remote server.

3) Sequence number. This specifies the sequence of the data sent in this particular

segment.

4) Acknowledgement number. Specifies the sequence number of the data

received.

5) Window. Specifies how much buffer space is available for data.

6) Checksum. The checksum that covers the header and data.

31



Communication is established via the use of socket communications. Sockets were

originally part of the Unix IO, and they follow a open-read-write-close paradigm. Many

details must be specified before creating a socket connection, these include: the transport

protocol, host address of remote machine, port number and specify if the application is a

client or server.

C UC PDR GET A O P

LE_ NCT UCE CUDE L SOW N

SE 7N G F DAT A

Figure 10. TCP segment format.

Before a client application can connect, the server must be listening or waiting at

a specific p ort for a c onnection request. Different software platforms offer the socket

Application Program Interface (API). To build the TCP/IP server, VB offers the

Winsock control socket API. Since the application is a server, it must be set to listen at a

particular host name and port number. The host name is "tdid-4argf.hcet.fiu.edu" and

the port used is "1001." The port was chosen arbitrarily, as long as it is not any of the

reserve ports of the server computer (i.e. port 80 handles the HTML requests). When the

server is started it must be set to listen by invoking the "TCPServer.listen" method (see

Appendix II, TCP server).

32



There are four major components of the Winsock control that handle all

communications:

1) TCPServer_DataArrival (ByVal bytesTotal As Long): handles incoming data.

2) TCPServer.senddata: sends data.

3) TCPServer_ConnectionRequest (ByVal requestID As Long): accepts incoming

connection requests. If the host and port fields are correct (i.e. host: tdid-

4argf.hcet.fiu.edu, port: 1001) the connection is accepted.

4) TCPServer.close: closes the socket connection.

The TCP server receives data from the client and passes it to the "turnActionO"

public function. This function verifies if the command is correct to initiate hardware

communication. Status of the lab setup is sent by the TCP server via the

"TCPserver.senddata" method. The client receives this data and processes it for display

purposes. When the remote user finishes with the experiment, the "TCPserver.close"

method is called to close the socket connection and the server returns to listening mode.

This method is also secured because the commands sent between a web browser

and the server are codenames that have nothing to do with the actual execution codes that

the CR10X understands. This feature was observed in the text file server.

33



CHAPTER IV

IV. INTERNET PROGRAMMING FOR TEXT FILE SERVER

The Internet, which means internetworking of computers, has become almost a

necessary tool in everyday life. Its uses range from seeing real time stock data from Wall

Street, to checking emails, reading news and using web cams for teleconfering. It began

as a research program hosted by the US government and the military to make information

easily accessible throughout different computing platforms. The first beta came to be

known as ARPANET and it evolved into what is now known as the Internet or World

Wide Web.

As mentioned in the previous chapter, the Internet was not designed to control

hardware or do any of the sophisticated things that are now possible. The demand for

remote management and real time data has driven the rise of new programming

techniques that make the Web what it is today. There are many languages used for

programming sites among the most popular are VBScript, JavaScript, HTML and Java.

HTML is the base language for displaying websites; it is considered a static language

because it writes to the browser one time only. VBScript and JavaScript are dynamic

languages; meaning that they can respond to user events on a form, handle images,

change colors and text on demand without the need of refreshing a web page. These are

close to regular Basic, Java and C languages; functions can be written on a web page and

executed depending on different user events like clicking a button or passing the mouse

over an image.

In order to access a website, a web server must be running to respond to clients or

users who connect to it. The server processes requests and sends back the user the

34



information that was called for. This introduces the concept of client and server

scripting. Figure 11 represents the flow diagram between client and server via the

Internet.

WEB CLIENTS

SERVER INTERNET 4 (client
CR10X (Server scripting)

Scripting)

Figure 11. Representation of clients and servers connected by the Internet.

A. Client & Server Scripting

Server scripting is code that is executed at the server. Such code can be written in

various languages like Active Server Pages (ASP), Java Server Pages (JSP), Pearl Helper

Pages (PHP) or Common Gateway Interface (CGI). Each language is different and runs

on a particular server. For example, ASP runs on Microsoft servers, JSP requires the

Java scripting engine and can run in either Microsoft or Linux servers and PHP runs on

Apache servers which can be mounted under Windows or Linux. The important thing

about these languages is that they run on the server, so they can access databases, text

files and the server's resources. When a client calls a server page, it is executed at the

server and the results are sent back to the client's browser page. The web server used in

this setup is a Microsoft Internet Information Services that runs ASP pages.

Client scripting runs on the web browser at the client's computer. It can be a

combination of JavaScript and VBScript. They are very powerful scripting languages

because they form the basis of all dynamic content on the web. This was important

35



because the control panel of the remote user had to emulate the one for the local main

program and be able to change colors of images and change text boxes with different

values. The remote GUI, also called Central Control Console (CCC) is illustrated in

Figure 12.

Central ontrol Console - Microsoft Internet Explorer.J

-F HCET Herispneric Certer to Environmental Technology Real-time Data View
Ir ' en 1 ) mer t . ,e /y 6IoIra ' , le , t oi,,

Note: Data is refreshed every 5 minutes.

Central Control Console
Parameter Value Parameter Value

Note: Devices can only be activated one at a time. Year 2003 Water Temp 21.17 C

Julian Day 68 pH 7.89 units

Time (Military) 1216 Specific Cond. .082 mS/cm
Status: ORP 579 mV DO% 103.6

Pump #1 ON System OFF OK Sal .129 ppt
Pump #2 ON Device No and a OK NO3- 100 mg/-N

Pump 3 ON should appear above, this Chloride 159.8 mg/
means the command was

Pump 54 ON sent sucessfully. Save Data Tank # and sample#
Enter tank # and sample # above save with data.

Pump #5 ON s Download .dat files (CSV)

Drain tank sN C IUSER SAVED DATA (custom.csv)
Draintank ON ICalibration date: 2/20/03

Flood sensors ONj.
Drain sensors ON

Master off: OFF 0

Sign Off
Webcam Vier 
Help: Instructions and info
Test loo oprocedure &

I.

Transfer tari status Transfer tark is EMPTY

Close Window

Figure 12. Central control console (CCC) for remote users, (cpanel.asp).

The CCC was kept as simple as possible and it looks like the main control panel

of Figure 8. Command buttons are on the left and real time data is on the right. The

CCC needs to able to handle four different tasks at the same time:

1) Handle user events when the command buttons are clicked

2) Check the status of the transfer tank constantly

36



3) Display real time data every 30 seconds

4) Manage the web cam viewer

All these functions could have been integrated in a single web page, but this

would have caused a problem because all four events happen at different time intervals

and perform different functions. To solve this issue, four pages where created:

remote0.asp, realtimel.asp, webcam.htm and float.asp. The benefit of this is that the

whole CCC is broken down into smaller manageable modules or pages. Instead of

having four different web pages in a single user session, it was decided to integrate them

in a single page because it provides a better presentation and manageability. To do this a

useful tool of Internet programming called frame handling was used. Frames are used to

embed several web pages into a single one. A page called "cpanel.asp" handles the

creation of the four frames. A layout of this page and the program code is shown in

Figure 13. Each frame is independent and does not interfere with the function of the

other.

1. Frame 1 - remote0.asp

This page handles the part of the Internet GUI that has the buttons to turn pumps

and valves on and off. When a button is hit, it calls a function written in JavaScript that

makes a call to an ASP page to write to the text file. Every time an ASP page is called is

executed at the server and the results are sent to the client. This procedure is not

dynamic, the state of the previous page is lost and a new page is loaded. This was a

problem because when a button is hit, a variable at the client side should retain the status

of which device is active. If this page was to be reloaded, the current active device will

37



Frame 1 Frame 2
Source = "remoteO.asp" Source="realtime 1.asp"
Timing interval = 0 sec Timing interval = 30 sec

Frame 3 Frame 4
Source = "float.asp" Source = "webcam.htm"

Timing interval = 30 sec Video stream provided by yahoo.com

<frameset framespacing="O" border="O" cols="160,200" frameborder="QO">
<frameset rows=11610, *i>

<frame name="cpanel" target="main" src=remote0.asp
scrolling="no" noresize>

<frame name="float" src="float.asp" scrolling="no"
noresize>

</frameset>
<frameset rows="'380,*"I>

<frame name="realtimedata" src="realtimel.asp"
scrolling="no" noresize>

<frame name="webcam" src="webcam.htm" scrolling="no"
noresize>

</frameset>

Figure 13. Frameset layout and code for cpanel.asp.

be unknown. To avoid this a technology called remote scripting was used. This type of

scripting consists of a set of functions that permits a JavaScript or VBScript function at

the client's side to invoke a server page and wait for data without the need of reloading

the page. Remote scripting is a form of remote procedure call (RPC), a term that

describes the exchange of data between remote computer systems. It opens a socket

connection between a remote client and the server to communicate seamlessly as if they

had a full duplex link between one another. Data can be transmitted back and forth

between the client and the server without ever needing to reload or rewrite the page at the

client side. This is known as the User Datagram Protocol (UDP) or connectionless

protocol because once the data is sent the two services are not connected to each other.

38



They are only connected at the instant that the client writes to the server and vice versa.

The remote scripting functions are provided by Microsoft and are designed for

Internet Explorer. These tools enable the creation of an ASP page that handles the

writing of commands to the text file and returning a response to the interactive page at the

client side. The following lines of code shows how a user who pressed, say button 1 to

turn pump 1 on, can see if this was actually written at the server.

1. function btnONl_onclick() {
2. cmd="000";
3. write(cmd);
4. ledoff () ;
5. document.statusl.src=imgon;
6. document . status10 . src=pumpon; }
7. function write(cmd){
8. strResults=RSExecute("Remotex.asp", "writefile",cmd);

Button 1 points to the function in line 1, "btnONl _onclick()," so it is executed.

The string "000" is assigned to the variable "cmd" and is passed to the function "writeO"

in line 3. Lines 4, 5 and 6 change the color of the image to red to indicate that the device

is on, and to gray for the devices that are off. Line 7 shows the start of the function

"writeO," the RSExecute method in line 8 calls the function "writefile(" located in the

ASP page "remotex.asp." At this file the following code is executed:

10. function writefile(cmd)
11. whichFN1=server. mappath ( "server . vtc ")
12. dim fstemp, filetempl
13. Set fstemp = server.CreateObject ("Scripting.FileSystemObject")
14. const forappending =8
15. set filetempl=fstemp.OpentextFile(whichFN1, forappending)
16. filetempl.writeline(cmd)
17. filetempl.close

Line 11 tells the code to use file "server.vtc", line 15 opens it for appending and

line 16 writes whatever was passed by line 8, in this case "000." Finally, line 17 closes

39



the file. Program control is then resumed by "remote0.asp" and remains idle until

another button is pressed.

Programming in this way separates the Internet GUI from the main program and

permits flexibility in design. A web developer only needs to know what function codes

to write (i.e. 000, 001, off, etc.), to turn a device on or off. Issues with serial

communications and programming of SCADA are irrelevant to the developer. The server

is in charge of reading from the text file "server.vtc" and executing all the hardware

communication. Table 3 summarizes the available codes and their function.

Table 3. Available commands for web development.

Command Function
written in achieved
"server.vtc"

000 Pump #1 on Note: only one
device can be

001 Pump #2 on activated at one
010 Pump #3 on time. When a
011 Pump #4 on particular device
100 Pump #5 on is turned on, all
101 Valve #1 on others will be

110 Valve #2 on turned off!

111 Valve #3 on

off All systems off

2. Frame 2 - realtimeJ.asp

This file handles the display of real time data. As mentioned in chapter III, the

main program is constantly obtaining data from the CR1OX every 10seconds. This data

is displayed in the local GUI with the corresponding labeling (i.e. year, date, time, pH,

etc.). Every time it is displayed, the main program writes this data to another text file

called "datalog.vtc," so that the web server can have access to it. The new data string

replaces the old one, so that the newest one is always available. But how to display real

40



time data on the web that changes dynamically? An algorithm to display data at the

client side was developed, much like the one at the main program. The following piece

of code from "realtime l .asp" shows the algorithm:

1. function start(){
2. var strFunction;
3. var cmdl="document.realtime.txtPar";
4. var cmd2=" .value=strDataCSV[";
5. var cmd3="] ";
6. //stored by server
7. strFunction=RSExecute ("remotex.asp", "extractdata");
8. strTempData=strFunction.return value;
9. //strData is a CSV string that must separated
10. var strDataCSV=extract(strTempData);
11. //send individual data strings to each corresponding text box
12. for (i=1;i<12;i++)
13. {
14. cmd=cmdl+i+cmd2+i+cmd3;//builds string with final instruction
15. eval(cmd);//evaluates the instruction cmd to send data to ALL
input boxes
16. 1
17. timer = setTimeout("start() ",30000)
18. }

The first issue was to have the script repeat over a period of time. When the web

page loads it executes the function "startO" for the first time. When this function is

finished processing at line 17, the timer function waits for 30000ms or 30sec and then it

executes the function start() again. Line 7 enables remote scripting via the RSExecute

method and executes the function "extractdataO" located in the file "remotex.asp":

19. function extractdata()
20. whichFN2=server.mappath("datalog.vtc")
21. dim fstemp2, filetemp2
22. Set fstemp2 = server.CreateObject ("Scripting.FileSystemObject")
23. const forreading =1
24. set filetemp2=fstemp2.OpentextFile(whichFN2,1)
25. extractdata= filetemp2.readline
26. filetemp2.close

Line 20 maps the file "datalog.vtc," line 24 opens it for reading and the data that

resides in the first line is stored in the variable "extractdata" in line 25. The contents of

41



this variable are then passed to "strDataCSV" in line 10. Lines 12-16 parse the data and

extract the corresponding values as outlined in table 2 and displayed in the corresponding

labels. Line 17 is reached again, and after 30 seconds the whole process is repeated.

This algorithm provides real time data to the user. Active controls or java applets can be

used to setup pictures or gauges that move according to the value of the data. For

example a control of a thermometer can be added, if desired, to catch the temperature

data and present a visual representation of the current temperature. The most important

thing though, is to have all the data available to the web page. On a technical note, even

though data is refreshed every 30seconds, the data of the sensors from the Hydrolab will

not change until one minute has passed.

The client has the option to record a data string to a CSV file located at the server.

This is done by pressing the "Save Data" button located in the CCC (please refer to

Figure 12) page which calls the function "save()." Referring to the following code the

sequence of steps can be followed:

1. function save(){
2. var comment, writecustom;
3. comment=document . realtime. txtComment .value;
4. comment=strTempData+", "+comment;
5. //call remote scripting
6. writecustom=RSExecute ("remotex.asp", "writecustom",comment);
7. comment=writecustom.return_value;
8. comment=comment+" has been appended to 'custom.dat' !"
9. alert(comment);
10. document. realtime. txtComment .value="";
11. document.realtime.txtComment.focus (;
12. }

Line 4 stores the data string and any user comment on a variable conveniently

called "comment." Line 6 creates the RSExecute object to enable remote scripting and

call the function "writecustom()":

42



13. function writecustom(comment)
14. whichFN3=server.mappath("custom.csv")
15. dim fstemp3, filetemp3
16. ' first, create the file system object
17. Set fstemp3 = server.CreateObject ("Scripting.FileSystemObject")
18. ' Now open the file
19. const forappending =8
20. set filetemp3=fstemp3.OpentextFile(whichFN3, forappending)
21. filetemp3.writeline(comment)
22. filetemp3.close

23. set filetemp3=nothing
24. set fstemp3=nothing
25. writecustom=comment
26. end function

Line 14 points to the file "custom.csv", line 20 opens the file for appending and

line 21 writes the data to the file. Line 22 closes the file and the data is passed to the

variable "writecustom" in line 25. Program control is returned in line 7 and a message

box pops up indicating that the information was read successfully and stored in

"custom.csv," like Figure 14 illustrates. After an experiment is over, the client can

download this file and prepare the data for archiving and presentation.

Microsoft Internet Explorer jpg2K

111,2003,714,23.73,5.75, .018,102.6,726,. 127,5.74,4.71,Tank #1 and sample#1 has been appended to 'customdat'!

OK

Figure 14. Confirmation of data entry.

These first two pages, "remote0.asp" and "realtimel.asp" were the ones that took

more time in programming and making them work. Many codes and algorithms had to

be implemented for the application of interest. One is in charge of controlling the lab

setup and the other one in acquiring the data. This permits a user to run the experiment

from a remote location that has a web browser and an Internet connection.

43



3. Frame 3 -float.asp

The main program also stores in a file called "levels.vtc" the status of the float

level sensors. There are three states to the values of the level switches. The main

program deciphers the states and writes an "EMPTY", "FULL" or "E/F" in the text file

"levels.vtc." The polling method is now reversed, "float.asp" checks the text file every

30 seconds and writes the status of the transfer tank to the CCC:

1. <meta HTTP-EQUIV="refresh" CONTENT="30;url="1float.asp">
2. <%
3. 'Read float status file
4. dim FileHndl, fileobject, valvestate
5. Floatfile = server.mappath("levels.vtc")
6. set fileobject =

server. CreateObject ("Scripting. FileSystemObject")
7. set FileHndl = fileobject.OpentextFile(Floatfile,l)
8. valvestate = FileHndl.readline
9. FileHndl.close

10. Response.Write "<font color=red>Transfer tank status: Transfer
tank is " & valvestate & "</font>"

11. %>

Line 1 specifies that this file should be executed at the server every 30 seconds.

Line 7 opens the file "levels.vtc" and reads the status that the main program wrote. Line 8

stores this value in "valvestate" and line 10 writes the corresponding state of the transfer

tank. Thirty seconds was arbitrarily chosen, less time could have been set for the refresh,

depending on the urgency of the parameter of interest. For this application, this timing

does not affect the overall experiment because if the transfer tank is full, the hardware

stops all pumps immediately so that there is not an overflow. This method is useful for

the display of control data that is required to appear in a specific interval of time.

44



4. Frame 4 - webcam.htm

This file is just an active X control that streams real time video of the remote

location via a Yahoo video stream server. A video server can also be installed, if a

developer does not want to use Yahoo, which is free; or this page can be omitted at all.

For remote deployment a camera might not be available. That is why it is important that

the status of the experiment is known. Appendix III has the full code to embed the web

cam images to the HTML page.

B. Security

The last step is to implement two security measures: prevent unauthorized users

from accessing the CCC and permit authorized users to access the CCC one at a time.

There are many ways to accomplish security in a web server. The restricted pages can be

placed inside a password-protected folder and let the web server handle security.

Another possibility is to create an ASP login script that checks if the user has entered the

correct login name and password, if true it continues to write the web page, otherwise it

redirects the user to the login page. Both methods are rather similar and can be chosen

depending on the developer. The ASP method was used in this thesis for simplicity.

Figure 15 shows the typical login page that is presented to a remote user before accessing

the CCC. This page is handled by "login.asp" and it follows the following code:

1. <%

2. 'if the form was filled out, set the session variables

3. if not Request.Form("username") = "" then
4. Session("user") = Request.Form("username")
5. Session("pass") = Request.Form("password")
6. end if
7. 'if the session variable do not match the username/password combo,

show the log in form
8. if not (Session("user") = "srs" and Session("pass") = "srs@hcet")

then

45



File Edit View Favorites Tools Help

.- Back * - J j k 4search JFavorites atMedia a-- iJ

Address [kJ http://tdid-4argf/rmssrs/login.asp d ?Go Links jRemote Monitoring System 0JCustomize Links

- HCET Hemispheric Center for Environmental Technology
environmnent - energy , information terhnoogy

Home Welcome to Remote Access
Realtime Data
lim D Instructions and guidelines:Login

UCET . Only one user is allowed to control setup
. Please avoid opening other windows since it may cause system
failure
. Once you are finished, sign out and all systems will be shut down
. Your browser must support frames and have the Java plugin installed
. Once authorized two windows will pop up, one with the intrumentation
panel and another with a live web cam
. If you are asked to download the yahoo activex control please do so
. You must be able to install software in your machine, any problems
contact your system administrator to download the plugin and active X
control
. Refer to instruction sheet for help in using the instrumentation panel
. Click "Remote Access" to begin:

Please Log In

Username:

Password:

Remote Access Reset

.. Local intranet

Figure 15. Login screen for a remote user

9. %>
10. <LOGIN FORM HERE>

11. <% else %>
12. <!-- Log in succeeded -- >
13. <SCRIPT ID=clientEventHandlersJS LANGUAGE=javascript>

14. window.open('cpanel.asp','wini','width=860,height=675');
15. </SCRIPT>

16. <% end if %>

Lines 3-5 extract the username and password from the fields in Figure 12. Line 8

checks to see if they are equal to the username and password noted. If the two fields

match then the script proceeds to line 14 and opens the CCC; if they don't line 10 starts

the login session again.

46



To restrict multiple users from opening the CCC, session variables were used.

These type of variables are handled by the web server every time a session is active. A

session is created every time a user requests to see the CCC after a successful login. The

server keeps count of the amount of sessions active. If there is more than one, then

subsequent sessions after the first one are denied access. When the first user logs out, the

application variable resets to zero, so that when a new user logs in, it is set to one and a

piece of code checks to see if this is true giving access to that user. The "global.asa" file

located in the root directory of the web server handles all this. Below is the piece of code

that handles the session variable when a session starts:

1. Sub Session OnStart
2. ' Change Session Timeout to x minutes
3. Session.Timeout = 30
4. ' Set a Session Start Time
5. This is to start the session
6. Session("Start") = Now
7. ' Increase the active visitors count when a session starts
8. Application.Lock
9. Application("ActiveUsers") = Application("ActiveUsers") + 1
10. Application.UnLock
11. End Sub

Line 6 starts the session and line 9 increments the amount of active sessions.

There is another piece of code located at the CCC page "cpanel.asp" that checks the

status of the application variable "ActiveUsers" and resets it when prompted:

1. <% 'check to see if there is another user logged in, if true

display content
2. if Application("ActiveUsers") = 1 then

3. %>
4. <CONTENT in HTML>

5. <%else

6. response.write("<b><FONT COLOR=#CC0000>Sorry this feature is being
accessed by someone else, try again later!</FONT></b>")

7. end if%>

Line 2 checks if the application variable is one, if is true it proceeds to line 4, this

is where the code of the frames goes and is shown in appendix III. If there is more than

47



one user trying to access the site, line 4 is skipped and the message in line 6 is written.

When a user logs out the session variable "activeusers" is reset to zero to give other

clients access.

48



CHAPTER V

V. INTERNET PROGRAMMING FOR TCP/IP SERVER

Programming of the client interface for the TCP server is different than for the

text file method. A client application can be created [3, 4, 5 and 6] that communicates

with the TCP server. When creating client applications like these, they don't run inside a

browser but are meant to be downloaded and installed in the client machine. If the user

decides to switch computers, then the software must be installed in the new machine. A

more practical approach is for the client application to be available via a web browser so

that portability and accessibility are maximized. There were two web applications

considered for this thesis work that can be executed in a web browser: Active X controls

and Java applets. These can be programmed in different languages and compiled to

execute inside a container, in this case a web browser. When the client requests these

pages, the programs are downloaded in the client's computer and executed. This type of

network uses the client's resources to communicate with the server, thus liberating the

server of resource utilization and processing.

Client programming must follow the client-server paradigm. Before any data can

be shared between the client and the server, the client must attempt to connect. It must

initiate communication at the same host name: "tdid-4argf.hcet.fiu.ed" and port

number:"1001," in order for the sever to accept a request. Once the server has accepted

to communicate with the client, then data can be exchanged. When the client has

finished, it must send a disconnect signal to the server to close the connection. At this

time, the server goes back to listening mode to wait for future connection requests.

49



A. Active X controls

Active X are supported by Microsoft. They can be programmed in various

languages like Visual Basic or Visual C++. After the control is created, it is packaged in

a Internet cabinet file to be distributed to clients. When the client requests the control, all

the necessary run time files and libraries are downloaded and installed at the client.

These controls are mainly accessible through Windows Internet Explorer.

The adaptation of building controls from already designed projects makes them

very popular. Take for example the TCP client designed for this application. Since VB

was used as the main programming language, the TCP client is also programmed in VB.

Figure 16 illustrates the control for the CCC as viewed by a client through a web

browser. It resembles the main GUI in Figure 8 because it was derived from the same

form. In other words, the GUI of the main local programmed was modified for Internet

use. This process permits developers to create Active X controls to be used in the

Internet quickly and efficiently.

Some modifications had to be done to the form. Since this is a TCP client, first a

connect method was added to it. Second, when the buttons are clicked, they send data to

the server via the Internet TCP instead of sending to the serial port. Lastly, the client

must disconnect so that the sever goes back to listening mode to wait for another

connection.

To connect to the server, the TCPclient is given the corresponding host and port

number. The next step is to invoke the "TCPclient.connect" method and wait for the

server to accept the request. When the communication link is created, data can be sent

via the "TCPclient.senddata" method and data is received via the "TCPclient

50



dataarrival()" method. When the user has finished communicating with the server, a data

string with the word "disconnect" is sent to the server, then the "TCPclient.close" is

invoked to close the connection. When the server receives the word "disconnect," it

closes itself and then calls the "TCPserver.listen" method to wait for future requests.

File Edit View Favorites Tools Help

REMOTE CONTROL PANEL

CONTROL STATUS DATA RETRIEVED
YEAR 2003

PUMP #1 ON OFF
DAY of YEAR 8

PUMP #2 ON OFF TIME 1233

WATER TEMP 21.3

PUMP #3 ON OFF pH 101.5

Specific Cond .188
PUMP #4 ON OFF DO % 104 3

PUMP #5 ON OFF ORP 7.95

Sal 292 Close Window
Drain Transfer Tank ON OFF N03-
Valve #1

CHLORIDE
Flood Sensors ON OFF
Valve #2

Drain Sensors ON OFF
Valve #3

Connected to remote host

DISCONNECT AT OFF Connection Status

WATER LEVEL STATUS, will only Client Time and Date

alarm Il the transfer tank is empty or E/F 12:34:20 PM
full When ful, all pumps will be
disabled!l

WHEN YOU SIGN OFF THE CURRENT SESSION p/25/2003

MIlbN 61i WILL BE TERMINATEDI YOU WOULD NEED TO
START A NEW SESSION!

- - -- Internet

Figure 16. Active X control for CCC.

B. Java Applets

Applets are the counterpart of Active X controls. They are created with the Java

programming language. Once compiled as an applet, it can be made available for access

via a web browser. In order to run applets, the java runtime engine must be installed in

the client's computer. Applets can be executed in various browsers instead of IE, like

51



Netscape and Opera. Event though they are more portable, their programming is not as

straightforward as an Active X control.

The applet created for this application follows the same client-server paradigm

because it is a TCP client. The difference falls in the programming language code. To

initiate connection, the "java.net" [13] library of functions is used. The following

methods are used to create a communication link with the server:

1) Socket (string host, int port). Opens a socket. As in the Active X control, the

proper hostname and port number must be passed so that the communication

link can be created.

2) InputStream getlnputStream(). Once communication is established, this method

is used to receive data from the server.

3) OutputStream getOutputStream(). This method is used by the client to send data

to the server.

4) Synchronized void close(). This method is used to close the client connection.

The applet sends a "disconnect" before closing. The server receives the

"disconnect" and the server closes the connection and returns to listening mode.

Figure 17 illustrates a version of the TCP client embedded in a Java applet.

C. Security

Security is implemented the same way as in the text file client, but new methods

can be applied. The pages that contain the Active X control or the Java applets can be

protected by the same ASP login page used for the text file client. Another method that

can be used, is to create an authentication script inside the server, so that when the client

attempts to connect, a username and password would have to be provided before a

52



connection can be made. Both methods previously described, send command codes to

the server (i.e. 000,111, off). These special codes are only understood by the server; if a

code that is not recognized is received, it will be ignored. An extra layer of security can

be implemented by using Secure Socket Layer connections that encrypt the data before

transmission.

File Edit View Favorites Tools Help

Start Connection

Pump #1

Pump #2

Pump #3

Pump #4
Pump #4I

Valve #1

Valve #2

Valve #3
Close Window

Disconnect

4 Applet SocketApplet started * Internet

Figure 17. Java Applet for CCC.

The web site is currently hosted by HCET at the following url:

http://tdid-4argf.hcet.fiu.edu/rmssrs

53



CHAPTER VI

VI. RESULTS AND OBSERVATIONS

The bench test proved to be successful by letting users control the setup from a

remote location without the need of being physically present. The procedure works well

and can be implemented in other platforms and software to control hardware. This

depends upon the developer. One of the most important aspects is to have a fast server

running and for it to be debugged of software issues. Custom software must be

programmed per different application as each one is unique. In this thesis, 3

programming tasks had to be completed efficiently:

1. The actual hardware (SCADA) had to be setup to "listen" to incoming

requests and perform certain actions. It was also programmed to "talk" (i.e. when the

transfer tank is full it sends a message indicating so). Having these small programs run

on the device, productivity and speed are increased.

2. The remote server must be able to communicate effectively with the SCADA

unit. One of the issues encountered was the loss of data in the buffer of the serial port

due to fast transmission sequences. Implementing a small delay (at least 300ms) when

transmitting and receiving in order to obtain complete data strings solved this problem.

Also an algorithm that checks for valid data ensured better transmission.

3. The website interface must be dynamic and easy to use, but also foolproof.

Writing to the server can be done in JSP or ASP. The client side is a combination of

JavaScript, VBScript and HTML. Active X controls and Java applets are another option

of contacting the server if the TCP method is used. The objective was to emulate a

working GUI, as the one the main program uses to control the remote hardware.

54



Security was programmed by using a login script that checks and makes sure that

only authorized users access the site, it should also check and permit only one

session/user at a time.

The text file method was compared to the TCP server method. Users were

allowed to log in to the site and control the experiment. The results of the observations

were based on real time performance, stability and ease of use. Table 4 enumerates the

results observed:

Table 4. Results.

Results and Observations for client-server

Parameter Text file method TCP method
Real time Provides near real time Provides near real time
performance performance performance

Provides better stability due the

Stabilit Not very stable due to opening TCP protocol and because the
and closing of text files web server handles all socket

communications and interrupts
All functions can be embedded

User friendly GUI can be easily in one Active X control or Java
programmed by using simple applet. Different programming

Ease of use and HTML forms, server and client techniques more advanced than
programming scripting. Requires program- sec ient advere

ming different web pages to simple client and server
cogns rnt eb p s t scripting must be used to embed
construct one GUI. this controls.

The major concern for this work was to have a stable server and to embed all

remote GUI functions in a single page. Based on Table 1, the TCP server is best to

employ for remote access hardware. Even though the text file method can be used as a

low-end technology solution.

55



A. Future work and recommendations

In making the system more robust several options come to mind. Having a

Microsoft server costs money and requires a decent workstation. This implementation

used a 600mhz Pentium III processor with 128MB of RAM running Windows 2000

Internet Information Services. Faster processors mean faster productivity but cost more.

One solution is to program the server in an embedded microcomputer that costs a few

hundred dollars. Linux can be used in this system because it does not load as many

resources as windows, but is powerful enough to control the hardware on board, run

different applications and a web server with less computing power. Linux is also open

source software and is free. This would reduce cost dramatically and make the system

smaller, more portable and secure.

The remote scripting code used was produced by Microsoft and only works well

with their Internet Explorer software. The setup was accessed via the latest version of

Netscape and it failed to work. One solution to this problem, is to use Java remote

scripting which is supported in various browsers. Bromberg [14] provides an article of

different remote scripting techniques that can be cross browser compatible. The web

pages also need to be coded with a different version of JavaScript that is supported by

other browsers.

The actual SCADAs can be redesigned to embed all packages in a single black

box. In the current setup, the CR10X communicates half duplex, when a command is

sent to it, data transmission is interrupted while it servers the request, then it is resumed.

This causes delay in the transmission of real time data. If the system were full duplex, it

would be very stable, fast and popular.

56



Another issue is the opening and closing of text files by the web server and the

main program. The server crashed once because a client made a request and tried to

write to the text file. The server was already opened for another transaction and this

caused the error. Despite this crash, the experimented trials worked. Thus the

probabilities of a server crash are small but maximized when writing to it constantly in a

small period of time. The best way to solve this problem is to write to memory locations

at the server, this would eliminate all access problems because the operating systems

control the access queue. The other problem is that current Internet technology does not

have this capability. Small executables (written in C) would have to be called by a

remote user to run, call functions and accomplish this. An extra programming step would

have to be implemented but the advantages will make the system more stable. Future

development will make this a better access method to global variables.

The TCP server is a far more stable solution than the text file. The Active X

controls and Java applets must be more robust. They need to be able to handle all socket

communication errors if they occur. If the server is being used, the socket connection

should advice the client that someone else is using the hardware and to try again later.

Since Active X controls don't work on browsers other than IE, Java applets can be setup

for users that don't run IE. Or, all the development can be done in Java applets, this

depends on the developer and what features each control provides.

In regards to security, a database of usernames and password should be available

to give different users different levels of access, as opposed to hard coding the username

and password. In this implementation, hard coding was used to simplify the design and

to be able to demo the prototype.

57



The constraints of this thesis specify that the experiment is in house. But the final

destination of the setup will be a remote site. Thus certain modifications must be done to

the hardware as well as the software. Since the system will be communicating via a

wireless link, the timing of transmission of the real time data will have to be increased so

that the battery is not drained. Even though there is a solar panel feeding voltage to the

system, this does not guarantee that there will be enough power to drive the system for

the amount of time that a measurement will take place. Also, data transmission should

take place only when the server has established communication with a remote client. The

11OVAC pumps have to be replaced for 12-24 VDC solar pumps. This is one of the

major drawbacks for deployment and future development in this area is needed.

58



CHAPTER VII

VII. CONCLUSION

SCADA systems are used by many industries because they can manage sensors

and control external hardware. They are embedded systems that can be programmed and

deployed to monitor all kinds of parameters depending on the application. As an

example, the nuclear industry has SCADAs installed that check for water levels and

quality at different sites.

The problem with commercially available SCADAs is that they are restricted to a

local network of users and can only be accessed by proprietary software. An Internet

development guide was not available to give remote users out of the network, control and

access to SCADA data and external hardware through simple user interfaces.

Researchers and scientists don't need to know the hardware conflicts behind these

systems, they should be able to retrieve the data they need with the most minimum

amount of effort. SCADAs are not usually used to control external hardware on demand,

but to be deployable and autonomous systems. Their capabilities can be extended to use

them to access external hardware on demand for the purpose of conducting experiments

at hazardous sites via remote access.

A laboratory setup was built and interfaced to the SCADA to control a network of

pumps and valves to take measurements of water quality from distinct tanks. A custom

software was developed to interface the SCADA and communicate with it constantly.

Once this was accomplished, a client-server paradigm methodology was applied to make

this experiment available to remote users via the Internet. This consists in appending a

59



server module to the main program that communicates effectively with the SCADA.

Two modules were used, a text file server and a TCP server.

The text server module polls a text file that is available to a web server by using

server side and remote scripting. The text file is used as a global variable because all

software packages have access to it. An Internet GUI was developed to give remote users

access to the laboratory setup. When a web user clicks on a button in the GUI, it fires an

event that writes to the text file. Since this file is available to the server module, it opens

it and reads a code from it. This code is sent to the main program and passed to the

original functions that send commands to the SCADA. This procedure makes the

communication between the hardware and the remote user look transparent.

The TCP server module uses the Internet transport protocol to create a

communication link between the client and the server. In contrast to the text file method,

a remote user must first initiate communications with the server. When communication

is established and a button is clicked in the GUI, data is sent via the socket connection.

The data is received by the server and executed by the SCADA. The TCP server is a

better method to use than the text file because it proves to be more reliable due to the fact

that the web server handles all socket I/O communications. Furthermore, the TCP

protocol is very efficient because it works in full duplex mode and guarantees a reliable

stream of data [4].

This procedure proved to be effective because the website is independent of the

main program. Some of the benefits of this study include: the creation of simple user

interfaces, access to a wider research audience, and guidance for future system

development of remote hardware configurations.

60



Many applications arise from remote management of SCADA units. These

include but are not limited to accessing real time data, checking the status of the

environment and controlling external hardware to do certain functions. The ease of

having these setups via the Internet provides the flexibility of research from different

sites and the economics of having less or no manpower in the field, not to mention

protecting worker's health by minimizing exposure to possible contaminants.

61



LIST OF REFERENCES

[1] D. E. Comer, Computer Networks and Internets, 3rd ed., Upper Saddle River, NJ:
Prentice Hall, 2001.

[2] P. Arpia, A. Baccigalupi, F. Cennamo and P. Daponte, "A remote measurement
laboratory for educational experiments," Measurement, vol. 21, pp. 157-169, Aug.
1997.

[3] Ch. Salzmann, H.A. Latchman, D. Gillet and O. D. Crisalle, "Requirements for
real-time laboratory experimentation over the internet," International Conference
on Engineering Education, ICEE'98, Rio de Janeiro, Brazil, 1998.

[4] J. W. Overstreet and A. Tzes, "An Internet-based real-time control engineering
laboratory," IEEE Control Systems Magazine, vol. 19, issue 5, pp. 19-34, Oct.
1999.

[5] D. Gillet, H. A. Latchman, Ch. Salzmann and O. D. Crisalle, "Hands-on laboratory
experiments in flexible and distance learning," Journal of Engineering Education,
vol 90, no. 2,pp. 187-191, 2001.

[6] D. Srinivasagupta and B. Joseph, "An internet-mediated process control
laboratory," IEEE Control Systems Magazine, vol. 23, issue 1, pp. 11-18, Feb.
2003.

[7] C. L. Churms, D. Shin, E. S. Yoon, S. J. Park and E.S. Lee, "Web-based
interactive virtual laboratory system for unit operations and process systems
engineering," Computers & Chemical Engineering, vol. 24, no. 2-7, pp. 1381-
1385, 2000.

[8] P. D. Hoo, "Remote Instrumentation Access and Control," M.S. Thesis, Florida
International University, Miami, FL, 1996.

[9] C. Hopp, S. Stoll and U. Konigorski, "Remote control design and implementation
using the Internet" Proceedings of the Fifth Biannual World Automation Congress
(WAC 2002), vol. 14, pp. 481-486, 2002.

[10] B. Qiu, Y. Liu, K. Chan and L. Cao, "LAN-based control for load shedding,"
IEEE Computer Applications in Power, vol. 14, issue 3, pp. 38-43, Jul. 2001.

[11] F. J. Monaco and A. Gonzaga, "Remote device command and resource sharing
over the Internet: a new approach based on a distributed layered architecture,"
IEEE Transactions on Computers, vol. 51, issue 7, pp. 787-792, July 2002.

62



[12] "Collecting and displaying data on the web," Campbell Scientific Inc., Logan, UT,
2000.

[13] C. S. Horstmann and G. Cornell, Core Java, Palo Alto, CA: Sun Microsystems,
Inc., 1998.

[14] P. Broomberg, "Remote Scripting with cookies for small amounts of data,"
[Online]. Available: http://www.eggheadcafe.com/articles/20010828.asp.

[15] M. Nelson, Serial Communications Developer's Guide, Foster City, CA: M&T
books, 2000.

[16] B. Pfaffenberger, Linux Networking Clearly Explained, San Francisco, CA:
Morgan Kaufmann, 2001.

[17] "CRiOX Measurement and Control System Operator's Manual," Campbell
Scientific Inc., Logan, UT, 2002.

63



APPENDICES

A. Appendix I- Program code for embedded system................................................... 65
B. Appendix II - Visual basic code for main program and servers.............................. 68
C. Appendix III - Internet code for remote users.......................................................... 79

64



A. Appendix I- Program code for embedded system

REMOTE.DLD - CR10X ASSEMBLY PROGRAM

;{CR10X}

*Table 1 Program
01: 60 Execution Interval (seconds)

1: If Flag/Port (P91)
1: 11 Do if Flag 1 is High
2: 30 Then Do

2: Batt Voltage (P10)
1: 1 Loc [ batt ]

3: SDI-12 Recorder (P105)
1: 0 SDI-12 Address
2: 0 Start Measurement (aMO!)
3: 8 Port
4: 2 Loc [ WaterTemX ]
5: 1.0 Mult
6: 0.0 Offset

4: If (X<=>F) (P89)
1: 2 X Loc [ WaterTemX ]
2: 3 >=
3: 0 F
4: 30 Then Do

5: If (X<=>F) (P89)

1: 2 X Loc [ WaterTemX ]
2: 4 <
3: 50 F
4: 30 Then Do

6: Block Move (P54)
1: 1 No. of Values
2: 2 First Source Loc [ WaterTemX ]
3: 1 Source Step
4: 14 First Destination Loc [ WATER TEM
5: 1 Destination Step

7: End (P95)

8: End (P95)

9: End (P95)

65



*Table 2 Program
01: 10.0000 Execution Interval (seconds)

1: Set Port(s) (P20)
1: 8777 C8..C5 = input/output/output/output
2: 7888 C4..C1 = output/input/input/input

2: Read Ports (P25)

1: 0004 Mask (0..255)
2: 23 Loc [ LOWLVLSW ]

3: Read Ports (P25)

1: 0002 Mask (0..255)
2: 24 Loc [ HIGHLVLSW ]

4: Do (P86)
1: 10 Set Output Flag High (Flag 0)

5: Set Active Storage Area (P80)^24261
1: 1 Final Storage Area 1
2: 111 Array ID

6: Real Time (P77) ^20727

1: 1220 Year,Day,Hour/Minute (midnight = 2400)

7: Sample (P70) ^21468
1: 1 Reps
2: 14 Loc [ WATERTEM ]

8: Sample (P70) ^30394

1: 7 Reps
2: 3 Loc [ pHX ]

9: Sample (P70)^5545

1: 2 Reps
2: 23 Loc [ LOWLVLSW ]

10: Serial Out (P96)
1: 52 Printer Comma/9600 Baud

*Table 3 Subroutines

End Program

-Input Locations-
1 batt 1 1 1

2 WaterTemX 5 4 1

3 pHX 1 2 0
4 SpCX 1 2 0
5 DO PctX 1 2 0
6 ORPX 1 2 0
7 SALX 1 2 0

66



8 NITRATEX 1 1 0
9 CHLORIDEX 1 2 0
10 FLAG9 1 0 0
11 1 0 0
12 1 0 0
13 1 0 0
14 WATERTEM 1 1 1

15 PH 1 0 0
16 SPC 1 0 0
17 DOPCT 1 0 0
18 ORP 1 0 0
19 SAL 1 0 0
20 NITRATE 1 0 0

21 CHLORIDE 1 0 0
22 0 0 0

23 LOWLVLSW 1 1 1
24 HIGHLVLSW 1 1 1
25 ENDING 1 0 0
26 1 0 0

27 1 0 0

28 1 0 0

67



B. Appendix II - Visual basic code for main program and servers

SRS 1.BAS-MAIN MODULE

'AUTHOR: VICTOR ACUNA, M.S. 2003, FLORIDA INTERNATIONAL
UNIVERSITY

Public strComment As String
Public strFinalData As String
Public Sub send(data)

Do
'DoEvents, wait for response of "*" from criOx to continue
frmCpanel.MSComml.Output = data + Chr(13)
'implement delay
For i = 1 To 1000000

Next i

frmCpanel.MSComml.Output = Chr(13)
buffer$ = frmCpanel.MSComml.Input 'Buffer$ & MSComml.Input

Loop Until InStr(buffer$, "*")

frmCpanel.txtStatus.text = frmCpanel.txtStatus.text + buffer$ + vbCr

End Sub
Public Sub turnAction(strCmdl As String)
If strCmdl = "" Then
Exit Sub
End If

turnEnable (0) 'activate decoder
Select Case strCmdl
'this switches C6,C5,C4 into a binary 3 bit number for the decoder

switching
Case "000" 'select decoder and turn on corresponding sequence

send ("9104:0:0370U") 'syntax 91xx:y:ffffU = xx port #, y=
0 for low, 1 for high, ffff is checksum

send ("9105:0:0371U") 'syntax 9104 refers to port 4, 0 make
low, checksum

send ("9106:0:0372U") 'checksum is sum of all ASCII
characters up to the colon

Case "001"
send ("9106:0:0372U")
send ("9105:0:0371U")
send ("9104:1:0371U")

Case "010"
send ("9104:0:0370U")
send ("9105:1:0372U")

send ("9106:0:0372U")

Case "011"
send ("9106:0:0372U")

68



send ("9105:1:0372U")

send ("9104:1:0371U")

Case "100"
send ("9106:1:0373U")

send ("9105:0:0371U")
send ("9104:0:0370U")

Case "101"
send ("9106:1:0373U")
send ("9105:0:0371U")

send ("9104:1:0371U")

Case "110"
send ("9106:1:0373U")
send ("9105:1:0372U")

send ("9104:0:0370U")
Case "111"

send ("9106:1:0373U")
send ("9105:1:0372U")
send ("9104:1:0371U")

Case "off"
send ("9104:0:0370U")
send ("9105:0:0371U")
send ("9106:0:0372U")
Exit Sub

Case Else
'do nothing, ignore

End Select
turnEnable (1)
End Sub

Public Sub turnEnable(intCmd2 As Integer)
send (Chr(13)) 'data logger needs some CR to wake up and wait for
commands

If intCmd2 = 0 Then 'shutdown enable line and reset all ports to zero
send ("9107:0:0373U") 'sets enable low, turns driver ckt off

End If
If intCmd2 = 1 Then

send ("9107:1:0374U") 'sets enable high, turn driver ckt on

End If
End Sub

69



FRMCPANEL CODE FOR SRS1.FRM

f.Project I - ,rmCpanel (Form) X

Control Panel X1 -l

MANUAL CONTROL PANEL

CONTROL STATUS

PUMP #1 ON OFF J
DATA RETRIEVED

PUMP#2 ON OFF YEAR

PUMP. .3 ON OFF . ...DAY.of.YEAR

............................... TIME

PUMP#4 ON OFF ................................. R TEM

. . pH
PUMP #5 ON OFF

Specific Condo . . . . . . . ....................... TIE....... ...............

Drain Transfer Tnk . ON :2OFF......DO %
Valve.#1 . .................. ORP

FloodSensors ON OFF SalV...........................................................
#2

Drain Sensors . ON :2OFF--
Valve #3 ... CHLORIDE :

p SERVER MASTER EXIT

MODE CUT OFF EXc
. . .. . . You must wait at least 30-

WAT ER LEVEL S TATUS, will onl . .::: Record Data :: seconds betore DataSonde
alarm if the transfer tank is empty or O sends val.d data

afull. When ft, all pumps will be-
disabledll

Flood:::::::: COM port ON COM port OFF .2

Figure 18. frmCpanel.
Dim headcount As Integer
Dim indat As String
Dim data As String

Private Sub cmdsuttonClick(Index As Integer)
Dim i As Integer

Select Case Index

Case "0"
labelOn (Index) 'turn label on
turnAction ("000") 'send decoder address

70



Case "1"
labelon (Index)
turnAction ("001")

Case "2"
labelOn (Index)

turnAction ("010")
Case "3"

labelOn (Index)
turnAction ("011")

Case "4"
labelOn (Index)
turnAction ("100")

Case "5"
labelOn (Index)
turnAction ("101")

Case "6"
labelOn (Index)
turnAction ("110 " )

Case "7"
labelOn (Index)
turnAction ("111")

Case "8"
turnEnable (0) 'THIS TURNS EVERYTHING OFF

send ("9104:0:0370U")
send ("9105:0:0371U")
send ("9106:0:0372U")
'this entry depends on program running in crl0x
send ("9001:0:0366U") 'turn flag low to disable data logger

data storage
MSComml.PortOpen = False
End

Case "9"
turnEnable (0) 'THIS TURNS EVERYTHING OFF

send ("9104:0:0370U")
send ("9105:0:0371U")
send ("9106:0:0372U")

For i = 0 To 7
lblStatus(i).Caption = "OFF"
lblStatus(i).BackColor = &H80000009

Next i

End Select

End Sub

Private Sub labelOn(intStatusOn As Integer)
For i = 0 To 7

lblStatus(i).Caption = "OFF"
lblStatus(i).BackColor = &H80000009

Next i

lblStatus(intStatusOn).Caption = "ON"

lblStatus(intStatusOn).BackColor = &HFF&

End Sub

71



Private Sub cmdOffClick()
frmCpanel.MSComml.PortOpen = False
lblCom.Caption = "COM Port is OFF"
For i = 0 To 9
cmdButton(i).Enabled = False
Next i

End Sub

Private Sub cmdOnClick()
frmCpanel.MSComml.PortOpen = True
lblCom.Caption = "COM Port is ON"
For i = 0 To 9
cmdButton(i).Enabled = True
Next

End Sub

Private Sub cmdServerClick()
response = MsgBox("Entering server mode will disable local control" &

" and give access to remote users only. Do you wish to continue?
", vbInformation + vbYesNo, "ServerMode")

If response = vbYes Then

turnEnable (0) 'THIS TURNS EVERYTHING OFF
send ("9104:0:0370U")
send ("9105:0:0371U")
send ("9106:0:0372U")
Me.Hide
frmServer.Show
frmServer.Timerl.Enabled = True

End If

End Sub

Private Sub FormInitialize()

frmCpanel.MSComml.PortOpen = True
If frmCpanel.MSComml.CommEvent = comPortAlreadyOpen Then

MsgBox ("Com port is in use by another program!")
End

End If

turnEnable (0)
lblCom.Caption = "COM Port is ON"
'turn flag 1 high to initiate program in data logger, this entry
'depends on the program running in the data logger
send ("9001:1:0367U")
headcount = 0
indat = ""
End Sub

72



Private Sub FormTerminate()
frmCpanel.MSComml.PortOpen = True
turnEnable (0)
send ("9104:0:0370U")

send ("9105:0:0371U")

send ("9106:0:0372U")
'this entry depends on program running in crl0x
send ("9001:0:0366U") 'turn flag low to disable data logger data

storage
frmCpanel.MSComml.PortOpen = False

End Sub

Private Sub Levels(levelsw As String)
levelsw = Left(levelsw, 2)

If levelsw = "40" Then
lblLevel(1).Caption = "EMPTY"
lblLevel(1).BackColor = &HFF&

ElseIf levelsw = "02" Then
lblLevel(1).Caption = "FULL"
lblLevel(1).BackColor = &HFF&

ElseIf levelsw = "00" Then
lblLevel(1).Caption = "E/F"
lblLevel(1).BackColor = &H80000009

End If

Open "e:/downloads/rms_srs/rms_srs_local/levels.vtc" For Output As #2
Print #2, lblLevel(1).Caption
Close #2

End Sub

Private Sub MSComml_OnComm()
Dim strDataRaw As String

'store incoming data
strDataRaw = frmCpanel.MSComml.Input

If headcount = 3 Then
If strDataRaw = Chr$(10) Then

'split comma separated values to get individual values
strTempdata = Split(indat, ",")

If UBound(strTempdata) = 13 Then
headcount = 696

Else
indat =
headcount = 0

End If
End If
indat = indat & strDataRaw

End If

73



If strDataRaw <> "1" And headcount > 0 And headcount < 3 Then

headcount = 0
End If

If strDataRaw = "1" And headcount < 3 Then
headcount = headcount + 1

End If

'debugging windows
txtData.text = txtData.text & strDataRaw

'data must be filtered before writing

If headcount = 696 Then
'if resulting string is not the whole data set, discard
'strTempdata(0) = Right(strTempdata(0), 3) 'to separate

location id from illegal characters

For i = 1 To 11 '11
lblDataSet(i - 1) = strTempdata(i) &

Next i

'rebuild data nicely for output
strFinalData = Join(strTempdata, ",")

'send float level switches status

Levels (strTempdata(12) & strTempdata(13))

headcount = 0
indat = ""

Open "e:/downloads/rms_srs/rms_srs_local/datalog.vtc" For
Output As #1

Print #1, strFinalData
Close #1

End If

End Sub

Private Sub cmdRecordClick()
'append new data to data file

Dialog.Show

End Sub

Private Sub TimerlTimer()
send (Chr(13))

End Sub

74



DIALOG CODE FOR DIALOG.FRM

Figure 19. frmDialog.
Dim strComment As String
Option Explicit

Private Sub CancelButtonClick()
Me.Hide
End Sub

Private Sub OKButtonClick()
strComment = txtComment.text
strFinalData = strFinalData & "," & strComment

Open "e:/downloads/crlox/logger.dat" For Append As #1
Print #1, strFinalData
Close #1
MsgBox ("Record has been added")

'reset textbox
txtComment.text = vbNullString
Me.Hide
End Sub

FRMSERVER CODE FOR SERVER.FRM (TEXT FILE SERVER)

Private Sub CommandlClick()
lstStatus.Clear
End Sub

Private Sub cmdLocal_Click()
response = MsgBox("This will disable server mode and return control" &

" to local users only. Do you wish to continue? ",
vbInformation + vbYesNo, "Local_Mode") If response = vbYes Then
turnEnable (0) 'THIS TURNS EVERYTHING OFF

send ("9104:0:0370U")

send ("9105:0:0371U")
send ("9106:0:0372U")

75



Me. Hide
frmServer.Timerl.Enabled = False
For i = 0 To 7

frmCpanel.lblStatus(i) .Caption = "OFF"
frmCpanel.lblStatus(i).BackColor = &H80000009

Next i

frmCpanel.Show

End If
End Sub

*ii rjc1 r~ re ( - jfl ~J

Status: SERVER MODE

o . IlstStatus :

. LOCAL MODE

Figure 20. frmServer.

Private Sub TimerlTimer()

Open "e:/downloads/rms_srs/rms_srs_local/server.vtc" For Input As #1

Dim text As String

Do Until EOF(1)

Line Input #1, text
If text = "" And EOF(1) = True Then

Close #1
Exit Sub

Else
lstStatus.Addltem text
turnAction (text)

End If
Loop

Close #1

Open "e:/downloads/rms_srs/rms_srs_local/server.vtc" For Output As #1

Print #1, vbNullString
Close #1

End Sub

76



FRMTCPSERVER CODE FOR TCPSERVER.FRM (TCP SERVER)

Private Sub cmdLocal_Click()
response = MsgBox("This will disable server mode and return control" &
_ to local users only. Do you wish to continue? "

vbInformation + vbYesNo, "LocalMode")

If response = vbYes Then
turnEnable (0) 'THIS TURNS EVERYTHING OFF
send ("9104:0:0370U")
send ("9105:0:0371U")

send ("9106:0:0372U")
tcpServer.Close
Timerl.Enabled = False
Me.Hide
For i = 0 To 7

frmCpanel.lblStatus(i).Caption = "OFF"
frmCpanel.lblStatus(i).BackColor = &H80000009

Next i

frmCpanel.Show
End If
End Sub

Private Sub Form Load()
tcpServer.LocalPort = 1001
tcpServer.Listen
Timeri.Enabled = True
Call TCPstate
End Sub

Private Sub Form Terminate()
tcpServer.Close
frmCpanel.Show
Timerl.Enabled = False
Me.Hide
End Sub

Private Sub tcpServerConnectionRequest(ByVal requestID As Long)

If tcpServer.State <> sckClosed Then _
tcpServer.Close
' Accept the request with the requestID
' parameter.
tcpServer.Accept requestID

End Sub

Private Sub tcpServer_ DataArrival(ByVal bytesTotal As Long)
Dim TCPdata As String
tcpServer.GetData TCPdata

If TCPdata = "disconnect" Then

tcpServer.Close
tcpServer.Listen
turnAction ("off")

77



Else
turnAction (TCPdata)
End If
Call TCPstate
End Sub

Private Sub tcpServer_SendComplete()
txtDatasent.text = strFinalData
Call TCPstate
End Sub

Private Sub Timerl Timer()
If tcpServer.State = sckConnected Then

tcpServer.SendData strFinalData
End If
Call TCPstate
End Sub

Private Sub TCPstate()
Labell.Caption = tcpServer.State
End Sub

78



C. Appendix III - Internet code for remote users

GLOBAL.ASA - MANAGE SESSIONS

<SCRIPT LANGUAGE=VBScript RUNAT=Server>

Sub ApplicationOnStart

' Set user count to 0 when the server starts
Application("ActiveUsers") = 0

End Sub

Sub Session OnStart
' Change Session Timeout to x minutes
Session.Timeout = 30
' Set a Session Start Time
' This starts the session
Session("Start") = Now

' Increase the active visitors count
Application.Lock

Application("ActiveUsers") = Application("ActiveUsers") + 1
Application.UnLock

End Sub

Sub SessionOnEnd

End Sub

</SCRIPT>

LOGIN.ASP - AUTHENTICATES USERS

<%@ Language=VBScript %>
<HTML>

<HEAD><title>Login</title>
</HEAD>

<BODY><!--#include file="menu.htm"-->

<H3>Welcome to Remote Access</H3>
<H3>Instructions and guidelines:</H3>

<TABLE style="WIDTH: 600px" cellSpacing =1 cellPadding=l
width=600 align=left border=o background="">

<TR>

<TD style="WIDTH: 50px" width=50></TD>

<TD style="WIDTH: 500px" width=500>

<LI>Only one user is allowed to control setup

<LI>Please avoid opening other windows since it may
cause system failure

79



<LI>Once you are finished, sign out and all systems
will be shut down
<LI> Your browser must support frames and have the Java plug in

installed
<LI>Once authorized two windows will pop up, one with the

instrumentation panel and another with a live web cam
<LI>If you are asked to download the yahoo activex control please

do so
<LI>You must be able to install software in your machine, any

problems
contact your system&nbsp;administrator to download the plug-in

and active X
control&nbsp;
<LI> Refer to <A class=download href="help.html" target=top >

instruction sheet</A> for help
in using the instrumentation panel

<LI>Click "Remote Access"&nbsp;to begin:&nbsp; <±--
login.asp ***
This is the page which you will be redirected to if your log in failed

or was timed out.

<%6

'if the form was filled out, set the session variables
if not Request.Form("username") = "" then
Session("user") = Request.Form("username")
Session("pass") = Request.Form("password")

end if

'if the session variable do not match the username/password combo, show

the log in form
if not (Session("user") = "srs" and Session("pass") = "srs@hcet") then

<form name="forml" method="post" autocomplete="off">
<p align="left"><font size="4">Please Log In</font></p>
<p>Username: <input name="username"

></p>

<p>Password: <input type="password" name="password"></p>

<p>

<input type="submit" name="Submit" value="Remote Access">
<input type="reset" name="Reset" value="Reset">

</p>

</form>

<% else %>

<!-- Log in succeeded -- >
<SCRIPT ID=clientEventHandlersJS LANGUAGE=javascript>

window.open('cpanel.asp','winl','width=900,height=690');

</SCRIPT>

<p align="center"><font size="5">Thank You</font></p>

80



Thanks for logging in. You are authorized to access private
sections of this web site.

</p>

<% end if %></LI>

</TD></TR></TABLE>

</BODY>

</HTML>

CHECKLOGIN.ASP - CHECKS TO MAKE SURE VISITOR IS STILL LOGGED IN

checklogin.asp ***
' This file checks to see if you have logged in. If you have not, it
will redirect you to the login page.
' If you have logged in, it will continue to load the rest of the
requested page.

<%6

'This will keep the requested page in the address bar.
if not (Session("user") = "srs" and Session("pass") = "srs@hcet") then
Server. Transfer ("login. asp")

end if
%6>

CPANEL.ASP - CALLS THE CONTROL PANEL AND REAL TIME DATA VIEW

<% 'check to see if there is another user logged in
if Application("ActiveUsers") = 1 then
%6>

<!-- #include file="checklogin.asp"-->
<HTML>

<HEAD>

<title>Central Control Console</title>

</head>

<frameset framespacing="O" border="O" cols="160,200" frameborder="O">
<frameset rows="1610,*'>

<frame name="cpanel" target="main" src=remote0.asp

scrolling="no" noresize>
<frame name="float" src="float.asp" scrolling="no"

noresize>

</frameset>
<frameset rows="1380,*">

<frame name="realtimedata" src="realtimel.asp"

scrolling="no" noresize>

81



<frame name="webcam" src="webcam.htm" scrolling="no"
noresize>

</frameset>
<noframes>

<body>

<p>This page uses frames, but your browser doesn't support them.</p>

<p>This page uses frames, but your browser doesn't support them.</p>

</body>
</noframes>

</frameset>

</html>

Session("user") = ""
Session("pass") = ""

%3>

<%else
response.write("<b><FONT COLOR=#CC0000>Sorry this feature is

being accessed by someone else, try again later!</FONT></b>")
'Session.Abandon

end if%>

REMOTEO.ASP - CONTROL PANEL INTERFACE AND FUNCTIONS

<html><head>

<title>Central Control Console</title>
<base target= "main">

</head>
<body onload="start()" onunload="return window_onunload()">

<script language="JavaScript" src="rs/rs.htm"></script>
<script language="JavaScript">RSEnableRemoteScripting("rs/");</script>
<!--#include file="stylel.css"-->
<img height="40" src="images/logo2.gif" width="350"><br><br>
<h3><font color=blue>Central Control Console</h3></font>Note:&nbsp;
Devices can only be
activated one at a time.<br>

<form name=" forml">&nbsp;
<table style="WIDTH: 400px" cellSpacing="2" cellPadding="2" width="400"

align="left" border="O" background="">

<tr>

<td style="WIDTH: 175px" width="175"></td>

<td style="WIDTH: 50px" width="50"></td>

<td style="WIDTH: 40px" width="40" colSpan="2">

<p align="center"><strong><font face="Arial"

size="2">Status:</font></strong></p></td>

82



<td style="WIDTH: 30px" width="30">
<p align="center">&nbsp;</p></td></tr>

<tr>

<td><strong>Pump #1</strong></td>

<td><input style="WIDTH: 42px; HEIGHT: 24px" onclick="return
btnONlonclick()" type="button" size="28" value="ON" name="btnON1"
LANGUAGE= " javascript"></td>

<td style="WIDTH: 10px" width="10">

<p align="left"><IMG height=14 src="images/whitedot.gif" width=14
align=left name=statusl></p></td>

<td style="WIDTH: lopx" width="10"></td>

<td><input id="txtStatusl" style="WIDTH: 116px; HEIGHT: 22px"

size="13" name="txtStatusl" readOnly></td></tr>
<tr>

<td><strong>Pump #2</strong></td>
<td><input style="WIDTH: 42px; HEIGHT: 24px" onclick="return

btnON2_onclick ( }" type="button" size="28" value="ON"
name='"btnON2"></td>

<td><IMG height=14 src="images/whitedot.gif" width=14 align=left
name=status2></td>

<td></td>

<td rowSpan="3">
<p><font face="Arial" size="2">Device No and a OK <br>should

appear above, this
</font><font face="Arial" size="2">means&nbsp;the command was

sent
sucessfully.&nbsp;</font></p>

</td></tr>

<tr>

<td><strong>Pump #3</strong></td>
<td><input style="WIDTH: 42px; HEIGHT: 24px" onclick="return

btnON3_onclick (" type="button" size="28" value="ON"
name="btnON3 "></td>

<td><IMG height=14 src="images/whitedot.gif" width=14 align=left
name=status3></td>

<td></td></tr>

<tr>

<td><strong>Pump #4</strong></td>
<td><input style="WIDTH: 42px; HEIGHT: 24px" onclick="return

btnON4_onclick()" type="button" size="28 " value="ON"
name="btnON4"></td>

<td><IMG height=14 src="images/whitedot.gif" width=14 align=left

name=status4></td>
<td></td></tr>

<tr>

<td><strong>Pump #5</strong></td>
<td><input style="WIDTH: 42px; HEIGHT: 24px" onclick="return

btnON5_onclick ( }" type="button" size="28" value="ON"

name="btnONS"></td>
<td><IMG height=14 src="images/whitedot.gif" width=14 align=left

name=status5></td>
<td></td>

<td></td></tr>

<tr>

<td><strong>Drain tank</strong></td>

83



<td><input style="WIDTH: 42px; HEIGHT: 24px" onclick="return
btnON6_onclick()" type="button" size="28" value="'ON"
name="btnON6"></td>

<td><IMG height=14 src="images/whitedot.gif" width=14 align=left
name=status6></td>

<td></td>

<td rowSpan="6" valign="center"><IMG height=184
src="images/system_off.gif" width=160 name=status10></td></tr>

<tr>

<td><strong>Flood sensors</strong></td>
<td><input style="WIDTH: 42px; HEIGHT: 24px" onclick="return

btnON7_onclick()" type="button" size="28" value="ON"
name=1"btnON7"></td>

<td><IMG height=14 src="images/whitedot.gif" width=14 align=left
name=status7></td>

<td></td></tr>

<tr>

<td><strong>Drain sensors</strong></td>
<td><input style="WIDTH: 42px; HEIGHT: 24px" onclick="return

btnON8_onclick (" type="button" size="28" value="ON"
name="btnONS"></td>

<td><IMG height=14 src="images/whitedot.gif" width=14 align=left
name=status8></td>

<td></td></tr>

<tr>

<td style="HEIGHT: 25px" height="25"></td>
<td></td>

<td></td>
<td></td></tr>

<tr>

<td><strong>Master&nbsp;off:</strong>&nbsp;</td>
<td><input language="javascript" id="button2" onclick="return

btnOffonclick()" type="button" value="OFF" name="btnOff"></td>
<td><IMG height=14 src="images/whitedot.gif" width=14 align=left

name=status9></td>
<td></td></tr>

<TR>

<TD style="HEIGHT: 50px" vAlign=bottom height=50><INPUT
language=javascript style="FONT-WEIGHT: bold" onclick="return
btnSignOff_onclick()" type=button value="Sign Off"

name=btnSignOff></TD>
<TD></TD>

<TD></TD>

<TD></TD></TR>

<tr>

<td style="HEIGHT: 50px" vAlign="bottom" height="50"></td>

<td>

</td>

<td></td>

<td colspan=2>
<P><A class=download href="webcam.htm" target=top>Webcam

Viewer</A><br>
<A class=download href="help.html" target=top >Help: Instructions

and info</A>

84



<br><A class=download href="procedures.htm" target=top >Test loop
procedure</A></P></td></tr></table>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&n
bsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&
nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;

</p>

<p></P></form></body></html>

</ form>

<script ID="clientEventHandlersJS" LANGUAGE="javascript">

var cmd
var imgon="images/reddot.gif", imgoff="images/whitedot.gif";
var pumpon="images/pumpon.gif", systemoff="images/system_off.gif",
valvel="images/valve_1.gif";
var valve2="images/valve_2.gif", valve3="images/valve_3.gif"; //image
sources
var serverURL="remotex.asp";
var strResults,strStatus; //string to hold results from remote server

function start()

{
btnOff_onclick();
}

function write(cmd)

{
//this is used to call an asp page and pass a javascript variable
//document.location.replace('remote0.aspVar=' + cmd);

//Call RSExecute to enable remote scripting and return the values to
the array
//remember syntax variable=RSExecute("pagename.asp","functionname");
//then convert strings to float using Parse float and
//finally update the input fields and use round to restrict 3 decimal
places

strResults=RSExecute(serverURL, "writefile"',cmd);
strStatus=strResults.return_value; //store complete string

//select proper label for status check
switch (strStatus) {
case "000":

strStatus="Pump #1 OK";
break

case "001":
strStatus="Pump #2 OK";
break

case "010":
strStatus="Pump #3 OK";
break

case "011":
strStatus="Pump #4 OK";
break

85



case "100":
strStatus="Pump #5 OK";
break

case "101":
strStatus="Valve #1 OK";
break

case "110":
strStatus="Valve #2 OK";
break

case "111":
strStatus="Valve #3 OK";
break

case "off":
strStatus="System OFF OK";
break

default:
strStatus="";
break

}

forml.txtStatusl.value=strStatus;
//turn all leds off

}

function ledoff () {

//image variables
var cmdl="document.status"; cmd2=" .src=imgoff";

//turn all leds off
for (i=1;i<10;i++)

{eval(cmdl+i+cmd2);

}
}

function btnONlonclick() {
//cmd=forml.txtInputl.value;
cmd="000";
write(cmd);
ledoff();
document.status1.src=imgon;
document.status10.src=pumpon;
}

function btnON2_onclick() {
cmd="001";
write(cmd);
ledoff();
document.status2.src=imgon;
document.status10.src=pumpon;
}

function btnON3_onclick() {
cmd="010";
write (cmd);

86



ledoff();
document.status3.src=imgon;
document.status10.src=pumpon;

}

function btnON4_onclick() {
cmd="011";

write(cmd);
ledoff ();
document.status4.src=imgon;
document.status10.src=pumpon;

}

function btnON5_onclick() {
cmd="100";
write(cmd);
ledoff();
document.status5.src=imgon;
document.status10.src=pumpon;

}
function btnON6_onclick() {
cmd="101";
write(cmd);
ledoff();
document.status6.src=imgon;
document.status10.src=valvel;

}
function btnON7_onclick() {
cmd="110";
write (cmd);
ledoff();
document.status7.src=imgon;
document.status10.src=valve2;

}
function btnON8_onclick() {
cmd="111";
write (cmd);
ledoff();
document.status8.src=imgon;
document.statusl0.src=valve3;
}

function btnOff_onclick() {
cmd="off";
//document.location.replace('remote0.aspVar=' + cmd);
write (cmd);
ledoff();
document.status9.src=imgon;
document.status10.src=systemoff;
}

function btnSignOff_onclick() {
cmd="off";

87



write (cmd) ;
ledof f () ;
document.location.replace('reset.asp');
top.window.close();

}

function window_onunload() {
cmd="off";
write (cmd) ;
document.location.replace('reset.asp')

I

</script>

RESET.ASP - RESETS APPLICATION VARIABLE

Application ( "ActiveUsers") =0
%6>

REALTIME1.ASP - EXTRACTS DATA AND DISPLAYS IT ON SCREEN

<HTML>

<HEAD>

<title>Real-time Data View</title>
</HEAD>

<script language="JavaScript" src="rs/rs.htm"></script>
<script language="JavaScript">RSEnableRemoteScripting("rs/") ;</script>

<script language=" j avascript">
strDataCSV = new Array;
var serverURL="remotex.asp";
var strTempData; //catches string of data

function start(){
var strFunction;
var cmdl="document.realtime.txtPar'";
var cmd2=" .value=strDataCSV[";
var cmd3="' ";

//RSExecute calls extract data on server and gets the latest value

stored by server
strFunction=RSExecute (serverURL, "extractdata");
strTempData=strFunction.returnvalue;

//strData is a CSV string that must separated

var strDataCSV=extract(strTempData);

//send individual data strings to each corresponding text box

for (i=l;i<12;i++)

{

88



cmd=cmdl+i+cmd2+i+cmd3;//builds string with final instruction
eval(cmd);//evaluates the instruction cmd to send data to ALL

input boxes
//document.realtime.txtParl.value=strDataCSV[0];

}
timer = setTimeout("start()",30000)

}
//function to calculate size of incoming array of data
function findSize (temp) {
var count=0;
for (n=1; n<=temp.length; n++)

{
if (temp.substring(n-l,n)==",")

{
count++;//count amount of commas
//remember actual size of final array will be count+l

}
}

return count;
}

//function to extract comma separated data
function extract(temp)

{
var size=findSize(temp);
//size gives array size (size+l) this adapts to any string
for(m=0; m<size+l; m++)

{
for (n=1; n<=temp.length; n++)

{
if (temp.substring(n-1,n)==",")

{
//catch first element before ","

strDataCSV [m]=temp.substring(0,n-1);
//rewrite the original string without the first value
temp=temp.substring(n,temp.length);
n=100;//cheap way to break out of for loop so that values

don't get mixed up

}
}

}
//catch last accumulated value
strDataCSV [size] =temp;
return strDataCSV;//send to function calling
//you now have an array made of the csv string passed

}

//this function writes to 'custom.dat'

function save(){
var comment, writecustom;
comment=document.realtime.txtComment.value;
comment=strTempData+","+comment;
//call remote scripting

89



writecustom=RSExecute(serverURL,"writecustom",comment);
comment=writecustom.returnvalue;

comment=comment+" has been appended to 'custom.dat'!"
alert(comment);

document.realtime.txtComment.value="";
document.realtime.txtComment.focus();

}

</script>
<!--#include file="stylel.css"-->

<BODY onload="start()">
<strong><font face="Arial" color="blue" size="4">
Real-time Data View</font></strong>

<P>Note:&nbsp; Data is refreshed every 5 minutes.</P>
<P>

<form name=realtime>
<TABLE style="WIDTH: 400px" cellSpacing=2 cellPadding=2 width=400
background=""
border=O align=left>

<TR>

<TD style="WIDTH: 50px" width=50></TD>
<TD style="WIDTH: 110px" width=110><STRONG>Parameter</STRONG></TD>
<TD style="WIDTH: 50px" width=50>

<P align=right><STRONG>Value</STRONG></P></TD>
<TD style="WIDTH: 20px" width=20></TD></TR>

<TR>

<TD></TD>

<TD>Year</TD>
<TD><INPUT size=6 align=right name=txtParl
border=l
style="TEXT-ALIGN: right" readOnly
></TD>

<TD></TD></TR>

<TR>

<TD></TD>

<TD>Julian Day&nbsp;</TD>
<TD><INPUT

align=right size=6 name=txtPar2 style="TEXT-ALIGN: right"
readOnly

></TD>

<TD></TD></TR>

<TR>

<TD></TD>

<TD>Time (Military)</TD>
<TD><INPUT

align=right size=6 name=txtPar3 style="TEXT-ALIGN: right"
readOnly

></TD>

<TD></TD></TR>

<TR>

<TD></TD>

90



<TD>Water Temp</TD>
<TD><INPUT

align=right size=6 name=txtPar4 style="TEXT-ALIGN: right"
readOnly

>&nbsp;C</TD>

<TD></TD></TR>

<TR>

<TD></TD>

<TD>pH</TD>

<TD><INPUT

align=right size=6 name=txtPar5 style="TEXT-ALIGN: right"
readOnly

>&nbsp;unit</TD>
<TD></TD></TR>

<TR>

<TD></TD>

<TD>Specific Cond.</TD>
<TD><INPUT

align=right size=6 name=txtPar6 style="TEXT-ALIGN: right"
readOnly

>&nbsp;mS/cm</TD>
<TD></TD></TR>

<TR>

<TD></TD>

<TD>DO%</TD>

<TD><INPUT

align=right size=6 name=txtPar7 style="TEXT-ALIGN: right"
readOnly

>&nbsp;Sat</TD>
<TD></TD></TR>

<TR>

<TD></TD>

<TD>ORP</TD>

<TD><INPUT

align=right size=6 name=txtPar8 style="TEXT-ALIGN: right"
readOnly

>&nbsp;mV</TD>

<TD></TD></TR>

<TR>

<TD></TD>

<TD>Sal</TD>

<TD><INPUT

align=right size=6 name=txtPar9 style="TEXT-ALIGN: right"
readOnly

>&nbsp;ppt</TD>

<TD></TD></TR>

<TR>

<TD></TD>

<TD>N03-</TD>

91



<TD><INPUT

align=right size=6 name=txtParlO style="TEXT-ALIGN: right"
readOnly

>&nbsp;mg/1-N</TD>
<TD></TD></TR>

<TR>

<TD></TD>

<TD>Chloride</TD>

<TD><INPUT style="TEXT-ALIGN: right" readOnly align=right size=6
name=txtParll>&nbsp;mg/l</TD>

<TD></TD></TR>

<TR>

<TD style="HEIGHT: 5px" height=5></TD>

<TD></TD>

<TD></TD>

<TD></TD></TR>

<TR>

<TD></TD>

<TD><INPUT type=button value="Save Data" name=btnSave
onclick="return save()"></TD>

<TD colSpan=2><INPUT id=textl
style="WIDTH: 234px; HEIGHT: 22px" size=28 name=txtComment

></TD></TR>

<TR>

<TD></TD>

<TD colSpan=3>You may enter a comment in the text
field above to be appended to this data record.</TD></TR>

<TR>

<TD></TD>

<TD colSpan=3><STRONG>Download
.dat files (CSV)<br> right click, select "save target
as"<BR></STRONG><A class=download href="datalog.csv"

target=top><STRONG>1)LOGGED
DATA</STRONG></A><STRONG> (datalog.csv)<BR></STRONG><A

class=download
href="custom.csv" target=top><STRONG>2)USER SAVED

DATA</STRONG></A><STRONG>

(custom.csv)</STRONG></TD></TR>
<TR>

<TD></TD>

<TD></TD>

<TD>&nbsp;Calibration date: 2/20/03</TD>
<TD></TD></TR></TABLE></form></P>

<P>&nbsp;</P>

</BODY>
</HTML>

FLOAT.ASP - POLLS TEXT FILE TO FIND STATE OF FLOAT SWICTHES

<html>

<head>
<meta HTTP-EQUIV="refresh" CONTENT="30;url="float.asp">

92



</head>
<! -- #include file="'style1.css"'-->

<body>

'Read float status file
dim FileHndl, fileobject, valvestate
Floatfile = server.mappath("levels.vtc")

set fileobject = server.CreateObject("Scripting.FileSystemObject")

set FileHndl = fileobject.OpentextFile(Floatfile,1)
valvestate = FileHndl.readline
FileHndl.close

Response.Write "<font color=red>Transfer tank status: Transfer
tank is " & valvestate & "</font>"

</body>
</html>

REMOTEX.ASP - REMOTE SCRIPTING SERVER FILE

<!--<%@ LANGUAGE=VBSCRIPT %>-->
<% RSDispatch %>
<!--#INCLUDE FILE="rs/rs.asp"-->

<SCRIPT RUNAT=SERVER Language=javascript>
function Description()

{

//this.add = Function( 'n1','n2','return addNumbers(nl,n2)'
this.writefile = Function('cmd','return writefile(cmd)');
this.extractdata = Function('return extractdata()');
this.writecustom = Function('comment','return writecustom(comment)');
}
publicdescription = new Description();

</script>

<SCRIPT RUNAT=SERVER LANGUAGE="VBScript">

function writefile (cmd)
whichFN1=server.mappath("server.vtc")

dim fstemp, filetempl

' first, create the file system object
Set fstemp = server.CreateObject("Scripting.FileSystemObject")

' Now open it

const forappending =8

93



set filetempl=fstemp.OpentextFile(whichFN1, forappending)

filetempl.writeline(cmd)
filetempi.close

set filetempl=nothing
set fstemp=nothing

writefile=cmd
end function

function extractdata()

whichFN2=server.mappath("datalog.vtc")
dim fstemp2, filetemp2

first, create the file system object
Set fstemp2 = server.CreateObject("Scripting.FileSystemObject")
const forreading =1

set filetemp2=fstemp2.OpentextFile(whichFN2,1)
extractdata= filetemp2.readline
filetemp2.close

set filetempl=nothing
set fstemp=nothing
end function

function writecustom(comment)
whichFN3=server.mappath("custom.csv")

dim fstemp3, filetemp3

' first, create the file system object

Set fstemp3 = server.CreateObject("Scripting.FileSystemObject")

' Now open the file
const forappending =8

set filetemp3=fstemp3.OpentextFile(whichFN3, forappending)

filetemp3.writeline(comment)
filetemp3.close

set filetemp3=nothing
set fstemp3=nothing

writecustom=comment
end function

</script>

94



WEBCAM.HTM - EMBEDS VIDEO STREAM IN A WEB PAGE

<html>
<head>
<title>Remote Video Cam</title>
<script>
window.onerror=function(){return true)

function so ) {
VwrDlg. style. display=""";
tmp. style. display="none"";

}

</script>
</head>
<body onload="s ()" bgcolor="aliceblue">

<div align="center">
<object
codebase="http://chat.yahoo.com/cab/yvwrctl.cab#version=1, 0,0, 16"
id="VwrDlg" classid="CLSID:E504EE6E-47C6-11D5-BBAB-00DOB78F3D48"
style="display:none" width= "320" height="240" ></object>
</div>
<script>
VwrDlg. Count ryCode= "us"
VwrDlg .AppName=3
VwrDlg.Age=20
VwrDlg . RoomName=""
VwrDlg .UserName='""

VwrDlg.TargetName= "do87project"
VwrDlg . Token=""
VwrDlg.Start();
</script>

<center><h3><a href="javascript:window.close () ">Close
Window</a><h3></center>
</body>
</html>

JAVA APPLET CODE (SOCKETAPPLET.JAVA)
import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

import java.util.*;
import java.io.*;

import java.net.*;

public class SocketApplet2 extends JApplet implements Runnable {

private JButton buttons[];

private String names[] = {"Start Connection", "Pump #1",
"Pump#2", "Pump #3", "Pump #4", "Pump #5","Valve #1", "Valve #2",
"Valve #3", "Disconnect" );
private JTextField textField = null;

95



private GridLayout layout;
private Container container;

private String webServerStr = null;

private Socket connection = null;

private PrintWriter out = null;

private BufferedReader in = null;

private Thread thread;

public void init(){
layout = new GridLayout(11,1);
container = getContentPane();
container.setLayout(layout);

ButtonHandler handler = new ButtonHandler();

buttons = new JButton[names.length];

for (int i = 0; i < buttons.length; i++){
buttons[i] = new JButton(names[i]);
container.add(buttons[i]);
buttons[i].addActionListener(handler);
buttons [i] .setSize(20,10);

}

textField = new JTextField(25);
textField.setEditable(false);
textField.setBackground(Color.white);
container.add(textField);

}

private class ButtonHandler implements ActionListener {
public void actionPerformed(ActionEvent e) {

if (e.getSource() == buttons[0])

startConnection (;
else if (e.getSource() == buttons[1])

sendBytes ("000'") ;
else if (e.getSource() == buttons[2])

sendBytes ("001'");
else if (e.getSource() buttons[3])

sendBytes (" 010") ;
else if (e.getSource() == buttons[4])

sendBytes ("011");
else if (e.getSource() == buttons[5])

sendBytes("100");
else if (e.getSource() == buttons[6])

sendBytes ("101");
else if (e.getSource() == buttons[7])

sendBytes ("110");
else if (e.getSource() == buttons[8])

sendBytes("111");
else if (e.getSource() == buttons[9])

closeConnection();
}

}

96



public void startConnection(){
try {

connection = new Socket("tdid-4argf.hcet.fiu.edu", 1001);
out = new PrintWriter(connection.getOutputStream(),

true);

in = new BufferedReader(new InputStreamReader(

connection.getInputStream()));
} catch (UnknownHostException e) {
System.err.println("Don't know about host.");
System.exit(1);

} catch (IOException e) {
System.err.println("Couldn't get I/O for "

+ "the connection to: host");
System.exit(1);

}
thread= new Thread(this);
thread.start();

}

public void sendBytes(String bytes){

out.print(bytes);
out.flush();

}

public void getResponseFromServlet(){

try{
textField.setText(in.readLine());

}
catch (IOException e){

System.out.println("There was an error reading from the

servlet.");

}
}

public void closeConnection(){

out.print("disconnect");
out.flush();

try {
out.close();
in.close();
connection.close();
thread.destroy();

}
catch (IOException ioe){

System.out.println("Could not close connection!!");
ioe.printStackTrace();

}
}

public void run({

System.out.println("'hellol");

97



while (true)
try{

//String s=in.readLine();
//if (s!=null && !s.equals("")){
System.out.println("hello2"+in.readLine());
textField.setText(in.readLine());

//}

}
catch (IOException e){

System.out.println("There was an error reading from the
servlet.");

}

System.out.println("hello3");

}

}

}

ACTIVE X CONTROL CODE (REMOTECLIENT.DOB)
Dim data As String
Dim status As String

Private Sub cmdButton_Click(Index As Integer)
Dim i As Integer
If tcpClient.State = sckClosed Then

MsgBox ("Connection is closed, try connecting again!")
Exit Sub

End If

Select Case Index

Case "0"
SendData ("000")
labelOn (0)

Case "1"
SendData ("001")
labelOn (1)

Case "2"
SendData ("010")
labelOn (2)

Case "3"
SendData ("011")
labelOn (3)

Case "4"
SendData ("100")
labelon (4)

Case "5"
SendData ("101")

labelOn (5)
Case "6"

SendData ("110")
labelOn (6)

Case "7"

98



SendData ("111")
labelOn (7)

Case "8"
SendData ("off")
For i = 0 To 7

lblStatus(i).Caption = "OFF"
lblStatus(i).BackColor = &H80000009

Next i

Case "9"
SendData ("off")
For i = 0 To 7

lblStatus(i).Caption = "OFF"
lblStatus(i).BackColor = &H80000009

Next i

End Select

End Sub

Private Sub labelOn(intStatusOn As Integer)
For i = 0 To 7

lblStatus(i).Caption = "OFF"
lblStatus(i).BackColor = &H80000009

Next i

lblStatus(intStatusOn).Caption = "ON"
lblStatus(intStatusOn).BackColor = &HFF&

End Sub

Private Sub Levels(levelsw As String)

levelsw = Left(levelsw, 2)

If levelsw = "40" Then
lblLevel(1).Caption = "EMPTY"
lblLevel(1).BackColor = &HFF&

Elself levelsw = "02" Then
lblLevel(1).Caption = "FULL"

lblLevel(1).BackColor = &HFF&
ElseIf levelsw = "00" Then

lblLevel(1).Caption = "E/F"
lblLevel(1).BackColor = &H80000009

End If

End Sub
Private Sub SendData(cmd As String)

If tcpClient.State = sckClosed Then
MsgBox ("Connection is closed, try connecting again!")

Else
tcpClient.SendData cmd
End If

status = cmd
End Sub

99



Private Sub cmdConnectClick()
tcpClient.Close
tcpClient.Connect
cmdConnect.Enabled = False
cmdDisconnect.Enabled = True
cmdSignoff.Enabled = False
For i = 0 To 8

cmdButton(i).Enabled = True
Next i

End Sub

Private Sub cmdDisconnect_Click()
For i = 0 To 7

lblStatus(i).Caption = "OFF"
lblStatus(i).BackColor = &H80000009

Next i

SendData ("disconnect")
cmdConnect.Enabled = True
cmdDisconnect.Enabled = False
cmdSignoff.Enabled = True
For i = 0 To 8

cmdButton(i).Enabled = False
Next i

End Sub

Private Sub cmdSignoffClick()
For i = 0 To 7

lblStatus(i).Caption = "OFF"
lblStatus(i).BackColor = &H80000009

Next i
SendData ("disconnect")
cmdConnect.Enabled = False
cmdDisconnect.Enabled = False
cmdSignoff.Enabled = False
For i = 0 To 8

cmdButton(i).Enabled = False
Next i

End Sub

Private Sub tcpClient_Connect()
txtStatus.Text = "Connected to remote host"
End Sub

Private Sub tcpClientDataArrival(ByVal bytesTotal As Long)

'Dim strDataRaw As String, strDataRaw2 As String

tcpClient.GetData strDataRaw, vbString
strDataRaw = Split(strDataRaw, ",")

If UBound(strDataRaw) = 11 Then
For i = 1 To 9 'll

lblDataSet(i - 1) = strDataRaw(i) & "
Next i

100



Levels (strDataRaw(10) & strDataRaw(11))
End If

End Sub

Private Sub tcpClientSendComplete()
txtStatus.Text = status & " Command Sent successfully"
If status = "disconnect" Then

tcpClient.Close

End If
End Sub

Private Sub TimeriTimer()
currentTime = Time
currentDate = Date

Textl.Text = currentTime
Text2.Text = currentDate

End Sub

101


	Florida International University
	FIU Digital Commons
	4-7-2003

	Management of remote field instrumentation via the Internet
	Victor A. Acuña
	Recommended Citation


	tmp.1408368439.pdf.jvW3P

