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ABSTRACT OF THE THESIS 

FIBER PATHWAYS FOR LANGUAGE IN THE DEVELOPING BRAIN: A 

DIFFUSION TENSOR IMAGING (DTI) STUDY 

by 

Iris Broce 

Florida International University, 2014 

Miami, Florida 

Professor Anthony Dick, Major Professor 

 The present study characterized two fiber pathways important for language, the 

superior longitudinal fasciculus/arcuate fasciculus (SLF/AF) and the frontal aslant tract 

(FAT), and related these tracts to speech, language, and literacy skill in children five to 

eight years old. We used Diffusion Tensor Imaging (DTI) to characterize the fiber 

pathways and administered several language assessments. The FAT was identified for the 

first time in children. Results showed no age-related change in integrity of the FAT, but 

did show age-related change in the left (but not right) SLF/AF. Moreover, only the 

integrity of the right FAT was related to phonology but not audiovisual speech 

perception, articulation, language, or literacy. Both the left and right SLF/AF related to 

language measures, specifically receptive and expressive language, and language content. 

These findings are important for understanding the neurobiology of language in the 

developing brain, and can be incorporated within contemporary dorsal-ventral-motor 

models for language.  
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CHAPTER I 

INTRODUCTION 

 Although great strides have been made in understanding brain development over 

the last century, the relation between brain development and behavior is an active field of 

inquiry. Particularly, with the advent of the magnetic resonance imaging (MRI) technique 

of diffusion-weighted imaging, scientific research has shifted to studying white matter 

development, which is the development of connections between neurons in the brain and 

central nervous system. Using diffusion weighted imaging, white matter development can 

be investigated in typically developing children and related to behavior. Specifically, 

different white matter pathways can be identified, tracked, characterized, and quantified 

in terms of their structural integrity, and these metrics can be related to a number of 

behavioral outcome measures. In the present study we focus on identifying a new fiber 

pathway—the frontal aslant tract (FAT)—for the first time in young children. We then 

relate the putative language pathway and another pathway of the dorsal speech stream, 

the superior longitudinal fasciculus/arcuate fasciculus (SLF/AF), to speech, language, and 

literacy outcomes. The findings we report contribute to a growing understanding of brain 

development and its relation to behavior. 
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CHAPTER II 

LITERATURE REVIEW 

Investigating White Matter Development in vivo 

 Neurons are the major components of information processing and storage in the 

human brain. However, they have different parts and each part contributes uniquely to 

neural transmission. For example, in addition to the neural cell body or soma, parts of the 

neuron such as dendrites or even the cell body itself, are specifically designed to facilitate 

the receipt of information to the neuron from other neurons (Lenroot & Giedd, 2006). In 

most cases neurons also have a single axon that emanates from the neural cell body 

(Lenroot & Giedd, 2006). The axon is primarily involved in transmission of information 

away from the neuron to other neurons. In the nervous system, these axons form tightly 

organized cords, much like an electrical wiring system, called white matter tracts 

(Lenroot & Giedd, 2006). Through this organization, they connect different areas of the 

brain, sometimes several centimeters apart. Also like an electrical wiring system, most 

central nervous system axons are insulated. In the brain, a substance made mostly of 

lipids called myelin accomplishes this insulation. Myelin serves a number of functions, 

which contribute to a substantial increase in the efficiency and speed of neural 

transmission of information (Lenroot & Giedd, 2006). Because it is a lipid substance, 

myelin also gives the brain’s white matter its light appearance. 

It has been known for more than a century that over the course of development, 

different parts of the brain myelinate at different rates (Flechsig, 1896), which means 

they acquire the full myelin sheath at different times depending on what part of the brain 

the axon is projecting from and to. However, historically these studies required 
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postmortem examination of fetal, infant, or child brain tissue, which is prohibitive for 

most researchers interested in brain development. New technology call diffusion-

weighted imaging, or diffusion tensor magnetic resonance imaging (DTI-MRI), invented 

in 1994 (Basser, Mattiello, & LeBihan, 1994), now allows the examination of the 

development of white matter in vivo. 

Diffusion Tensor Imaging takes advantage of differences in water diffusion in 

axons of high versus low structural integrity. The diffusion process follows Brownian 

motion--that is, the random thermal motion of molecules in biological tissues. Much like 

a plumbing pipe, diffusion in axons, especially myelinated axons of the white matter, is 

anisotropic (or, directional), with water molecules moving faster along the length of an 

axon than perpendicular to it (Mori & Zhang, 2006). The advances of DTI make it 

possible to quantify individual differences in white matter integrity (fractional anisotropy; 

FA) and the degree of diffusion of water molecules through different tissues (apparent 

diffusion coefficient; ADC). For these measures, FA takes on values of 0 (i.e., when 

diffusion is completely isotropic) to 1 (i.e., when diffusion is anisotropic). The ADC 

values range from 0.60 - 1.05 x 10-3 mm2/s, and have an identifiable range of values in 

typically developing brains of 0.84 +/- 0.11 x 10-3 mm2/s (Sener, 2001). However, these 

values are age and region specific, which means different white matter tracts mature at 

different rates over development. The ADC values in deep white matter for infants 3-4 

months of age are higher (M = 1.11 +/- 1.20 x 10-5 mm2/s) compared to adults (Morriss, 

Zimmerman, Bilaniuk, Hunter, & Haselgrove, 1999), but ADC values decrease (at a 

slower rate after 4 months), reaching adult values by around 36 months (Morriss et al., 

1999; Schneider, Ilyasov, Hennig, & Martin, 2004). 
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Using DTI, visualization of white matter tracts in three-dimensional space can be 

achieved using methods that follow the path of greatest diffusion along the x, y, z axis 

(Basser et al., 1994). For example, the method of tract tracing used in this study follows 

the value of FA from pixel to pixel to trace out fiber tracts. Advances in DTI have 

enriched our understanding about how particular fiber pathways connect regions to 

support speech, language and literacy in adults (Bernal & Altman, 2010; Catani, Jones, & 

ffytche, 2005; Glasser & Rilling, 2008; Thiebaut de Schotten, Dell'Acqua, Valabregue, & 

Catani, 2012). However, in part because the methodology is relatively new, little is 

known about the development of these pathways, and their corresponding function in 

young children remains understudied.  

White Matter Development 

 The organization and integrity of white matter tracts follows a protracted 

developmental timeline. It begins in the fetal period and continues into adulthood, but 

there are also regional differences in the timing of development (Kasprian et al., 2008; 

Lebel et al., 2012; Zhai, Lin, Wilber, Gerig, & Gilmore, 2003). Research suggests that 

maturation of fiber tracts during the first 2 years of life in normal developing infants is 

characterized by three stages 1) rapid change during the first 12 months, 2) slow 

modifications during the second year, and 3) slower development after 24 months (Geng 

et al., 2012; Hermoye et al., 2006; Schneider et al., 2004). In addition to this 

characteristic temporal order, fiber tracts develop in region-specific ways (Dubois et al., 

2008; Paus et al., 2001; Zhai et al., 2003). Flechsig (1896) showed that white matter 

development in infants begins first in “projection” pathways of the primary sensory and 

motor regions. Moreover, several “association” fiber pathways, which connect secondary 
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regions of the cortex, are identifiable at birth. These include the superior longitudinal 

fasciculus, cingulum, corpus callosum, inferior fronto-occipital, and inferior frontal 

occipital fasciculus (Dubois et al., 2008; Geng et al., 2012; Hermoye et al., 2006). A 

number of these pathways show reduced white matter integrity at birth. For example, FA 

values are highest in deep white matter structures (e.g., corpus callosum) and lowest in 

frontal-temporal connections (e.g., the superior longitudinal fasciculus and inferior 

longitudinal fascicles; Dubois et al., 2008; Hermoye et al., 2006; Schneider et al., 2004). 

These pathways also show prolonged developmental trajectories, with frontal-temporal 

and frontal-parietal connections showing extended age-related change (Barnea-Goraly et 

al., 2005; Lebel et al., 2012).  

 After infancy, age-related changes in white matter development continue through 

childhood and into early adulthood (Nagy, Westerberg, & Klingberg, 2004; Paus et al., 

1999; Reiss, Abrams, Singer, Ross, & Denckla, 1996), but again maturation is regionally 

specific, with some fiber pathways developing to maturity later than others (Barnea-

Goraly et al., 2005; McGraw, Liang, & Provenzale, 2002; Wilke, Krägeloh-Mann, & 

Holland, 2007). For example, of the association tracts, the inferior longitudinal and 

fronto-occipital fasciculi are the first to mature, while the superior longitudinal 

fasciculus/arcuate fasciculus (SLF/AF) and the uncinate fasciculi are the last (Lebel et al., 

2012). Optimal white matter development has many advantages. For example, increases 

in myelination and axonal thickness concomitant with improved organization of white 

matter tracts result in increased efficiency and speed of neural transmission (Aboitiz, 

Scheibel, Fisher, & Zaidel, 1992; Schmithorst, Wilke, Dardzinski, & Holland, 2005). 

Secondly, several studies have related these changes to behavioral changes in children. 
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For example, age-related changes in white matter integrity have been associated with 

visual information processing efficiency (Mabbott, Noseworthy, Bouffet, Laughlin, & 

Rockel, 2006), working memory capacity (Klingberg, Vaidya, Gabrieli, Moseley, & 

Hedehus, 1999; Nagy et al., 2004), and overall intelligence (IQ; Schmithorst et al., 2005). 

Researchers have also explored speech, language, and literacy correlates of white matter 

development. For example, age-related changes in white matter integrity have been 

associated with auditory processing ability (Schmithorst, Holland, & Plante, 2011), 

phonological awareness skill (Yeatman et al., 2011), reading speed (Nagy et al., 2004), 

and accuracy reading words and pseudowords (Qiu, Tan, Zhou, & Khong, 2008; 

Yeatman et al., 2011). However, maturation should not be considered as the sole 

contributor to enhanced performance. For example, several studies found that white 

matter integrity significantly predicted working memory capacity (Klingberg et al., 1999) 

or phonological awareness (Yeatman et al., 2011), even after controlling for age. 

Therefore, the evidence suggests that other factors aside from maturation (e.g., 

experience) account for observed brain/behavior relations.  

While these studies have significantly contributed to our understanding of white 

matter development in relation to behavioral changes, they have typically been studied in 

older children. They have also failed to develop a comprehensive picture of how the 

known perisylvian language pathways develop and contribute to a broader language 

profile—that is, a profile that establishes the child’s skill in multisensory speech 

processing, phonological and articulatory ability, receptive and expressive language 

ability, and literacy. Therefore, the present study aims to establish a better understanding 

of how perisylvian language pathways relate to speech, language, and literacy. In the next 
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section we review which fiber pathways are thought to anchor the perisylvian language 

network in the human brain. 

Contemporary Model of the Neurobiology of Language 

 Our investigation is framed within a contemporary model for the neurobiology of 

language, which is a dual stream model analogous to the model for visual processing 

(Dick & Tremblay, 2012; Dick, Bernal, & Tremblay, 2013; Hickok & Poeppel, 2007; 

Poeppel, Emmorey, Hickok, & Pylkkänen, 2012). The dual stream model examines 

dorsal and ventral processing streams. The dorsal stream involves interactions between 

frontal, parietal, and temporal brain regions and has been implicated in mapping auditory 

speech sounds to articulatory (motor) representations and also in processing complex 

syntactic structures. The most prominent pathway proposed to connect these regions is 

the superior longitudinal fasciculus/arcuate fasciculus (SLF/AF). In comparison, the 

ventral stream has been implicated in mapping auditory speech sounds to meaning and 

also in processing less complex syntactic structure. The most prominent pathways within 

the ventral stream are the uncinate fasciculus (UF), the extreme capsule (EmC), the 

middle longitudinal fasciculus (MdLF), the inferior longitudinal fasciculus (ILF), and the 

inferior fronto-occipital fasciculus (IFOF). A third set of fiber pathways comprising the 

motor stream establish the connections necessary for speech production, and include the 

cortico-bulbar system, the cortico-striatal loops, and the cortico-cerebellar system. A 

newly discovered association pathway of the cortex, the frontal aslant tract (FAT), has 

been proposed as an important pathway in the motor stream. See Figure 1 below. 
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Figure 1. Lateral view of the left hemisphere showing the most prominent fiber pathways 

for language. The current study focuses on two: the SLF/AF in green and the FAT in 

purple. Reprinted from Dick and Small, in press. 

Fiber Pathways for Speech, Language, and Literacy 

From the set of fiber pathways that serve the processing of language, from early 

speech perception to semantic processing to narrative-level understanding, the present 

study focuses on two main pathways that are most associated with developing speech, 

language, and literacy abilities. The first is the well-known SLF/AF pathway that anchors 

the dorsal stream and is thought to be involved in phonological processing, receptive and 

expressive language processing, and literacy. The second pathway is the newly described 

Frontal Aslant Tract (FAT) of the motor speech stream (see Figures 2 and 3). Below we 

briefly review what is known about the putative functions and development of these two 

pathways with respect to speech, language, and literacy. 
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Figure 2. Connections of the SLF/AF in lateral view.  

 

Figure 3. Connections of the frontal aslant tract (FAT) in coronal section, with outline of 

the inferior frontal and superior frontal origins and terminations in the medial and lateral 

sagittal views. IFGOp = inferior frontal gyrus, pars opercularis; SFG = superior frontal 

gyrus; SMA = supplementary motor area; Pre-SMA = pre-supplementary motor area. 
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Behavioral and Neural Components of Speech, Language, and Literacy  

Behavioral Components of Speech. It is often underappreciated that speech 

development occurs in a multisensory context. Infants develop in a multisensory 

environment, and early speech perception experiences are often accompanied by visual 

speech information. A very large corpus of research suggests that multisensory 

stimulation provides tangible benefits to the developing child (Bahrick, Lickliter, & 

Flom, 2004; Blomert & Froyen, 2010; Erdener & Burnham, 2013; Gogate & Bahrick, 

1998; Gogate, Bahrick, & Watson, 2000; Lachs, Pisoni, & Iler Kirk, 2001; Magnan & 

Ecalle, 2006; Magnan, Ecalle, Veuillet, & Collet, 2004; Nath, Fava, & Beauchamp, 2011; 

Ross et al., 2011; Sekiyama & Burnham, 2004). For example, amodal information, which 

refers to information shared across multiple sense modalities (i.e., temporal synchrony, 

rhythm, tempo), seems to have the effect of directing attention to what is important in the 

environment, and enhancing salient features of actions and objects (Bahrick et al., 2004; 

Calvert, Campbell, & Brammer, 2000). Broadly, the detection of temporal synchrony 

seems to be an important skill in producing meaningful, unified percepts (Bahrick & 

Lickliter, 2004). For example, during synchronous AV speech stimulation, visual input 

from a speaker’s mouth and lips has the effect of speeding up and enhancing auditory 

neural processing, indexed by shorter latencies and larger amplitudes compared to 

unisensory auditory stimulation (van Wassenhove, Grant, & Poeppel, 2005). These 

results in turn may have the affect of facilitating categorical learning of speech 

information.    

Early detection and identification of synchronous AV speech information seems 

to facilitate the perception and learning of more complex speech skills. The impact of 
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visual speech influence on speech perception seems to emerge early, around 4-months of 

age (Bahrick, 2010; Kuhl & Meltzoff, 1982). By 4-months, infants successfully match 

congruent speech information (i.e., visual /a/, auditory /a/) versus incongruent (i.e., visual 

/i/, auditory /a/) speech information (Kuhl & Meltzoff, 1982). In the same study, Kuhl 

and Meltzoff (1982) also found that infants spontaneously produced sounds that 

resembled those of the female actress articulating the vowels, with respect to intonation, 

contours, and overall durations. These findings suggest that infants may be making use of 

the visual articulatory information from the speaker’s lips and mouth and auditory 

information from the sound of the speaker’s voice to produce the sounds themselves.  

Findings from Kuhl and Meltzoff (1982) are consistent with the intersensory redundancy 

hypothesis, which suggests that the overlap of amodal properties (e.g., temporal 

synchrony, rhythm, or intensity) guides what we attend to, perceive, learn and remember 

(Bahrick 2010). Therefore, congruent and synchronous AV speech (e.g., congruent 

audiovisual /ba/) may help recruit attention (Bahrick 2010), speed up neural processing 

(van Wassenhove, Grant, & Poeppel, 2005), and help with learning properties across a 

third domain (e.g., articulatory /ba/). These data suggest that early sensitivity to 

multisensory AV speech information, such as the detection of synchrony and other 

linguistic properties of speech, may serve as a strong foundation, a bootstrapping effect, 

for later, more sophisticated speech and literacy skill in childhood and adulthood.  

The influence of multisensory audiovisual speech on auditory speech perception 

continues to show age-related change well into middle childhood and adulthood, but 

there seems to be rapid development in the period between 5- and 8-years. For example, 

there are age-related differences in the degree to which visual speech information 
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enhances the perception of auditory speech, such that children benefit significantly less 

from observing visual information than adults (Desjardins, Rogers, & Werker, 1997; 

Massaro, Thompson, Barron, & Laren, 1986; McGurk & MacDonald, 1976; Sekiyama & 

Burnham, 2008).  In fact, younger children (5-years-old) seem to take less advantage of 

visual speech information than older children (8-years-old) (Van Linden & Vroomen, 

2008). It has been suggested that preschool children (age 5) have less experience 

producing speech compared to older children, and as a result do not benefit from AV 

speech to the same degree (Desjardins et al., 1997; Van Linden & Vroomen, 2008). 

Therefore, the degree of experience with multimodal speech matters, and the research 

suggests that the multimodal speech perception system is one that takes years to develop 

into full maturity, but that also shows significant development between 5- and 8-years.  

Neural Components of Speech. Several brain regions have been implicated in 

AV speech, predominately the inferior frontal/ventral premotor, inferior parietal, and 

posterior temporal regions, and these regions have been proposed to be connected by the 

SLF/AF (Bernal & Altman, 2010; Catani et al., 2005; Dick & Tremblay, 2012; Martino et 

al., 2013; Thiebaut de Schotten et al., 2012). Two processing streams, namely the 

auditory-visual and auditory-motor pathways, ground functional interactions among this 

frontal-parietal-temporal network. The first, the sensory-sensory (auditory-visual) 

pathway is anchored by the posterior superior temporal sulcus (STSp), and connects 

visual domains (especially MT/V5), primary auditory cortex, STSp, and inferior frontal 

regions (Arnal, Morillon, Kell, & Giraud, 2009; Calvert, 1997). Evidence in older 

children (Nath & Beauchamp, 2012; Nath et al., 2011) and adults (Arnal et al., 2009; 

Barrós-Loscertales et al., 2013; Calvert, 1997) suggest that auditory and visual 
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information are integrated into perceptual units in the STSp. For example, the 

amplification of the activation in STSp has been associated with perceiving McGurk 

fusions. McGurk fusions occur when perceivers are presented with incongruent visual 

and auditory stimuli (e.g., visual /da/, auditory /ba/), and as a consequence report hearing 

a syllable that is different from the original stimuli (e.g., ga).  

The second, the “sensory-motor” stream has been suggested to be involved in 

mapping the perceptual units of sound (i.e., phonological information) in the auditory 

modality to articulatory representations involved in producing those sounds (Callan, 

Jones, Callan, & Akahane-Yamada, 2004; Skipper, van Wassenhove, Nusbaum, & Small, 

2007). This stream is anchored by the inferior supramarginal gyrus/planum temporale 

(iSMG/PTe), and connects inferior frontal gyrus, premotor cortex, anterior insula, and in 

some reports precentral and somatosensory brain regions to the posterior planum 

temporal (Spt), and focal regions of the STG and STS (Buchsbaum, Hickok, & 

Humphries, 2001; Callan et al., 2004; Dronkers, 1996; Hickok & Poeppel, 2000; Wilson, 

2004). 

The auditory-motor network has been primarily implicated in planning and 

executing speech movements (e,g., speech production). However, several lines of 

neuroscience research suggest that motor regions play a crucial role in AV speech 

perception as well, namely through functional interactions between auditory, motor, and 

somatosensory brain regions (Callan et al., 2004; Skipper, Nusbaum, & Small, 2005; 

Skipper et al., 2007; Watkins, Strafella, & Paus, 2003) and with the iSMG/PTe as an 

important structure facilitating integration (Griffiths & Warren, 2002; Karbe, Herholz, 

Weber-Luxenburger, Ghaemi, & Heiss, 1998; Okada & Hickok, 2009). The FAT tract in 
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particular may contribute to audiovisual processing by facilitating interactions between 

speech-motor regions of the supplementary motor areas and the inferior frontal gyrus. 

However, to date this has not been investigated. 

In summary, two processing streams seem to be involved in auditory and 

audiovisual speech perception, namely the auditory-visual and auditory-motor pathways 

and these pathways are connected by the SLF/AF. While the SLF/AF has been proposed 

to connect the described speech network, we do not know if there are structural 

differences in the SLF/AF related to speech in the developing child’s brain, and in 

particular there is no evidence linking the development of these fiber pathways to age-

related changes in audiovisual speech perception. It is also notable that no studies have 

identified the FAT in children of any age, nor attempted to relate the integrity of this tract 

to developing speech. Given its putative involvement in speech production, the FAT may 

also contribute to speech perception, especially in children who are continuing to develop 

articulatory and phonological skill.  

Behavioral Components of Language. Language is a complex cognitive task 

that requires processing multiple levels of information, such as word-level processing, 

sentence processing, and discourse processing. Development of language proceeds across 

these levels. Thus, infants can learn to discriminate speech sounds by 4-6 months, and by 

6-8 months, infants begin to babble, or produce sounds that are within their native 

inventory of phonemes (Bates, Benigni, Bretherton, Camaioni, & Volterra, 1979; 

Lewedag, Oller, & Lynch, 1994; Masataka, 2001). Comprehension at the word level 

emerges around 8-10 months (Bates, Benigni, Bretherton, Camaioni, & Volterra, 1979), 

and production of words occurs a few months later at 11-13 months (Bates & Dick, 2002; 



 15

Shore, Bates, Bretherton, Beeghly, & OConnell, 1990). With age, more complex skills 

emerge. For example, at 18-20 months, infants begin to combine words together (Bauer 

& Thal, 1990), and by 24 months, the combinations of words follow the appropriate 

grammatical structure of their native language (Bauer, Wenner, Dropik, & Wewerka, 

2000). While the developing child begins to produce meaningful and grammatically 

correct utterances by 24 months, we must acknowledge that there are individual 

differences in toddlers’ receptive and expressive language, meaning their ability to 

understand and produce language, and this is predictive of children’s later receptive and 

expressive language in early school years.  

Neural Components of Language. The neural network for expressive and 

receptive language includes the fronto-temporo-parital neural network reviewed for 

speech perception and production, including the inferior frontal/ventral premotor, inferior 

parietal, and posterior temporal regions. However, processing beyond phonological-level 

information, at the semantic and syntactic level, includes more extensive perisylvian 

language cortical regions including the occipito-temporal and middle and inferior 

temporal regions (Catani & Mesulam, 2008; Dick, Solodkin, & Small, 2010; Glasser & 

Rilling, 2008; Hickok & Poeppel, 2004). Some additional projections to the SLF/AF have 

been associated with higher-level language processing. For example, neuroimaging 

evidence in addition to evidence from adults with stroke has found that damage to the 

SLF is related to deficits in repetition of speech, while the AF components seems to be 

important for comprehension of speech (Breier, Hasan, Zhang, Men, & Papanicolaou, 

2008). Only one study has related the FAT to behavioral measures of language (Catani et 

al., 2013). Catani and colleagues characterized the FAT in adults with Primary 
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Progressive Aphasia and found that white matter integrity of the FAT was associated 

with the expressive language measure of verbal fluency (Catani et al., 2013). As already 

mentioned, no study of the FAT has been conducted in children, but given the association 

with expressive language in adults with aphasia, we might expect the FAT to support 

developing expressive language in children.  

Behavioral Components of Literacy. Literacy is developing at the same time as 

language and the ability to read requires children to develop several skills. First, the child 

must know the phonological structure (i.e., the units of sounds) of a given language 

regardless of language dominance. In alphabetic languages, such as English or Spanish, 

children must also learn to map letters to speech sounds (i.e. phonemes), and then 

assemble these sounds serially, letter-by-letter to create meaningful words (Durgunouglu, 

Nagy, & Hancin-Bhatt, 1993; Liberman & Shankweiler, 1987; Read, Yun-Fei, Hong-Yin, 

& Bao-Qing, 1986). The ability to recognize and manipulate the sound structure of 

spoken words is called phonological awareness (Mattingly, 1972), and has been found to 

be the most significant predictor in later reading and vocabulary skill in school-aged 

kindergarten children (Lundberg, Olofsson, & Wall, 1980). In fact, these effects are also 

detected over an extended developmental timeline; so much so that early phonological 

awareness predicts literacy outcomes from kindergarten through the fourth grade and 

remain remarkably stable (Wagner et al., 1997). Therefore, children, especially young 

children, may profit from phonological training even before beginning to read, and 

further may profit from a continuation of phonologically mediated training through the 

elementary school grades. These results have important implications not only for 

preschool instruction, but also for developing literacy and teaching programs geared 
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toward adults and individuals with reading disabilities. Importantly a number of gains in 

literacy are occurring in the 5-8-year age range we target in the present study. 

Neural Components of Literacy. A growing body of literature has investigated 

the structural connectivity supporting literacy in children and found that fibers traveling 

anterior to posterior in the temporal and parietal cortex are associated with reading 

(Klingberg et al., 2000). These fibers, which travel as part of the SLF/AF, have been 

proposed to connect inferior frontal/ventral premotor, supramarginal gyrus and angular 

gyrus in the parietal lobe, occipital temporal areas, and posterior temporal cortical regions 

(Shaywitz & Shaywitz, 2008), and they play a critical role in phonological awareness 

(e.g., rhyming tasks) and reading (Beaulieu et al., 2005; Shalom & Poeppel, 2008; 

Temple et al., 2003).  

White matter integrity of the SLF/AF in the temporal-parietal region of the left 

hemisphere has been significantly related with reading scores in reading-impaired 

children and adults and typically developing children (Klingberg et al., 2000; Nagy et al., 

2004; Thiebaut de Schotten, Cohen, Amemiya, Braga, & Dehaene, 2012). One case study 

reported that a 5-year-old acquired severe dyslexia after damage to the arcuate fasciculus 

(Rauschecker et al., 2009). Taken together, the aforementioned evidence suggests that the 

inferior frontal-parietal-temporal network, connected by the perisylvian SLF/AF is 

important for reading. In contrast, the FAT has not been associated with literacy, and 

there is little reason to suspect that it might be, as it does not provide connectivity to 

temporal and parietal regions most important for reading. 
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CHAPTER III 

HYPOTHESES AND PREDICTIONS 

As our review shows, there is a growing literature investigating developing fiber 

pathways and the relation of these to speech, language, and literacy. However, the vast 

majority of these studies have investigated older children (e.g., older than 8 years). This 

is often done for practical reasons, as it is difficult to scan younger children because of 

issues with MRI image artifacts as a result of movement during the scan. As our literature 

review suggests, though, this focus on older children misses the considerable 

development in speech, language, and literacy occurring in younger age ranges, 

particularly from 5-8-years. Although these behavioral-level trends are well established, 

almost no work has investigated the developing fiber pathways that contribute to this 

development. 

 To fill the considerable knowledge gap, the present study aims to characterize the 

specific age-related changes in SLF/AF and the FAT white matter microstructure and 

relate white matter microstructure of both pathways to speech, language, and literacy 

abilities. The most prominent fiber pathway identified with language and literacy is the 

SLF/AF. The SLF/AF has been investigated in children, but these children are much 

older than we investigate here (typically 8-11-years old), and there is often little 

investigation of the relation to specific behavioral measures of language, or if behavioral 

measures are used, they are gross language measures (e.g., verbal IQ). The FAT is newly 

described in adults, but has never been shown in children. Therefore, the aims of the 

present study are to: 1) identify the FAT in young children who are still developing 

speech, language, and literacy, 2) relate the FAT to speech, language, and literacy, 3) 
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characterize the SLF/AF, and 4) relate the SLF/AF to speech, language, and literacy. The 

measures of speech, language and literacy skill that we investigate include performance 

on AV speech perception task, and performance on a battery of tests assessing 

phonology, articulation, receptive and expressive language, and phonological awareness.  

We predict that, after controlling for age, whole brain white matter integrity, non-

verbal IQ, and sex, higher white matter integrity (higher FA values; lower ADC values) 

of the SLF/AF and FAT will be related to better speech, language and literacy skills. The 

exception to this is that we did not expect a relation between FAT white matter integrity 

and literacy. The latter hypothesis is supported by our review of the neural components of 

literacy, which predominately include connections among inferior frontal/ventral 

premotor, supramarginal gyrus and angular gyrus in the parietal lobe, occipital temporal 

areas, and posterior temporal cortical regions (Shaywitz & Shaywitz, 2008). While the 

FAT has been proposed to connect supplementary motor and pre-supplemetary motor 

areas with the inferior frontal gyrus, it does not make connections to inferior parietal and 

occipitotemporal regions involved in literacy. Therefore, we do not expect a relation 

between the FAT white matter integrity and literacy. 
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CHAPTER IV 

METHOD 

Participants 

 Nineteen children (9 females, 10 males; age range = 5-8 years, M age = 6.8 years, 

SD = 1.1 years) comprised the final sample. All participants were screened by phone for 

contraindication to MRI, were right-handed according to the Edinburgh Handedness 

Inventory, bilingual English/Spanish speakers with normal hearing (self-reported), and 

had normal (or corrected to normal) vision. An additional 3 children completed the 

diffusion weighted scan but were not analyzed because of image artifacts indicated after 

the scan (one was due to an error of the technician; two were removed due to motion 

artifact). An additional 11 children were consented but did not complete the diffusion 

weighted scan because of their refusal to assent, or because of significant movement 

during the T1-weighted structural scan before the diffusion-weighted scan was initiated. 

Written informed consent/assent was obtained from all parents and children for whom we 

have usable data. The Western Institutional Review Board and the Florida International 

University Institutional Review Board approved the study. 

Procedure 

Data were collected during two visits. The first visit took place at Miami 

Children’s Hospital, Miami, FL and consisted of three sessions: 1) a pre-test session 

audiovisual speech categorization task (~8 min) to determine individual’s categorical 

speech perception, 2) a scanning session (~25 min), and 3) a post-test session (~4 min) to 

determine visual influence of speech. The second visit was scheduled within two weeks 

of the first visit and took place at Florida International University. During this visit (~90 
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min), we administered a battery of language tests measuring phonology, articulation, 

receptive and expressive language, and reading abilities.  

Stimuli for the Audiovisual Speech Task. Six adults (3 females) were recorded 

speaking syllables (/ba/, /da/, /pa/, /ka/) with a digital video camera under two conditions 

(Visual Speech [VS] and Masked Speech [MS]). In the MS condition, speakers wore a 

surgical mask to hide lip and mouth speech-related movements. In the VS condition, 

speakers did not wear a surgical mask. Two additional speakers (1 female) were recorded 

saying these same syllables with a remote microphone. The consonant-vowel (/ba/, /da/, 

/pa/, /ka/) utterances were selected because the place of articulation of the consonant 

varied along a single factor. The same vowels were selected because the formant 

structure has been shown to provide superior signal/noise ratio relative to the MRI 

scanner during functional runs (Miller & D'Esposito, 2005).  

From these audio recordings, two naturalistic 7-step continua (ba ←→ da; pa 

←→ ka) were developed using Praat software. The start of each vowel /a/ was clipped to 

isolate the consonant. Then the vowel from one recording was affixed to each consonant. 

Affixing the vowel from one recording to each consonant ensured that identical vowels 

were heard across all constants. Then we used “Pitch Synchronous Overlap and Add” to 

modify the pitch and duration of each sound, and interpolated between these two 

modified sounds to develop the continua. By combining the audio clips from the continua 

with the video clips from the six speakers, we created the audiovisual clips. For both VS 

and MS conditions, the consonantal burst of the auditory file was aligned to the 

consonantal burst of auditory portion of the video file. All clips were edited to last 1.6 

seconds.  
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Pre-and-post-test categorical syllable perception. The categorical syllable 

perception task included pre-and post-test sessions. The purpose of the pre-test was to 

identify each individual’s speech categorical boundary. To do this, we used the MS 

stimuli to create a second factor, Ambiguity. We used the MS to avoid visual influences 

from the lips and mouth, and therefore better capture their auditory syllable perception. 

Along the seven step pa ←→ ka or /ba/ ←→ da speech continua, the first and last steps 

were designed as unambiguous. Steps in between the first and last were considered 

ambiguous because as you move along the pa ←→ ka continuum, the /pa/ starts to sound 

more like a /ka/. However, while some participants may hear the /pa/ sound change to a 

/ka/ sound at the third step of the continuum, others might hear it change at the fourth and 

fifth step. The two ambiguous sounds along the continuum in which the participant shifts 

from one category (e.g., /pa/) to a different category (e.g., /ka/) defined their speech 

categorical boundary. Therefore, to determine the pre-test categorical boundary, 

participants were presented with MS stimuli. Each step along the continuum was 

presented 3 times in a pseudo-randomized sequence for a total of 48 trials across the two 

continua (~8 mins). Children were asked to watch the video clip and repeat out loud the 

sound they heard. Their responses determined which step along the 7 step continua (e.g., 

/ba/ ←→ /da/), the child shifted from one speech category (e.g., /ba/) to a different 

speech category (e.g., /da/), without the influence of speech-related lip and mouth 

movements. The two ambiguous sounds at the category boundary along with two 

unambiguous sounds (the ends of the continua) were presented to each participant during 

the post-test session.  
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The purpose of the post-test session was to calculate the degree to which visual 

information from the lips and mouth influenced participant’s categorical speech 

perception. For the post-test, children were presented with the VS and MS stimuli using 

only the ambiguous and endpoints of the continuum (48 stimuli total, ~ 8mins). 

Therefore, each participant heard different sounds depending on how they categorized 

them in the pre-test. Once more, children were asked to watch the video clip and repeat 

out loud the sound they heard. For each stimulus, the difference in steps along the 

continuum across the VS and MS condition serves as a measure of AV integration.  

Assessments. The following assessments were administered to obtain a complete 

understanding of each child’s speech and language ability: the Diagnostic Evaluation of 

Articulation and Phonology (DEAP; Dodd, Zhu, Crosbie, Holm, & Ozanne, 2002), 

including articulation, and phonology subtests, the Clinical Evaluation of Language 

Fundamentals-4 (CELF-4; Semel, Wiig, & Secord, 2003), including receptive language 

(REC), expressive vocabulary (EXP), concept and directions, word class, and sentence 

structure subtests, the Wechsler Preschool and Primary Scale of Intelligence Third 

Edition (WPPSI – III; Wechsler, 2002) Block Design subtest, and the Word Attack (Test 

3), Sound Awareness (Test 7), and Sound Blending (Test 8) subtests of the Woodcock-

Johnson III Diagnostic Reading Battery (WJ III DRB; Schrank & Mather, 2006). For this 

analysis, we used the DEAP for measuring phonology and articulation, the CELF for 

measuring receptive and expressive language, and the WJ-III for measuring literacy. We 

also used the block design subtest of the WPPSI-III to control for non-verbal IQ. 

Standardized scores were used in the analysis for all subtests. 
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Data Acquisition. Participants were scanned on a 3 Tesla Philips MRI scanner 

with SENSE coil housed at Miami Children’s Hospital. Prior to the actual scanning 

session, participants underwent a simulated scan in a mock scanner to familiarize them to 

the MRI scanner environment. In addition, vitamin E capsules were placed on 

participants' fronto-temporal left forehead to verify orientation of images during post-

processing.  

 Diffusion-weighted images were collected for detecting individual differences in 

white matter architecture. Images were acquired using single-shot spin-echo echo-planar 

imaging sequence (15 gradient directions, b value = 900 s/mm2 and b = 0 s/mm2 

(reference scan), matrix size = 112×112, time echo [TE] = 60, time repetition [TR] = 

6157, NEX = 3, FOV = 240×240 mm2, slice thickness = 2 mm, number of axial slices = 

55 (no gap), and voxel size = 0.938 mm x 0.938 mm x 2 mm). We also collected high-

resolution T1-weighted anatomical images for each participant using an 8-min sagittal 3-

D spoiled gradient recall (SPGR) sequence (120 axial slices, voxel size = 1.5 × .938 × 

.938 mm resolution). Head motion was minimized by placing cushions around the head 

and securing a strap across the forehead. The duration of scanning time was 

approximately 25 min per subject, not including setup time. 

Diffusion Tensor Imaging Post-Processing. We used FSL 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), DSI Studio (http://dsi-studio.labsolver.org/), and 

Matlab (http://www.mathworks.com) software packages for all analyses. Diffusion-

weighted images were denoised using the Non-Local Means Filter adapted to Rician 

noise distribution (NLMr; Coupé, Manjón, Robles, & Collins, 2011). The filter restores 

the intensity of voxels by computing a weighted average of all voxel intensities in the 
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image, producing better quality fractional anisotropy maps (Descoteaux, Wiest-Daesslé, 

Prima, Barillot, & Deriche, 2008; Wiest-Daesslé, Prima, Coupé, Morrissey, & Barillot, 

2008). Data were preprocessed also for eddy currents and subject motion, using affine 

registration to a non-weighted diffusion reference image (b =0). Non-brain tissue was 

removed using FSL’s automated brain extraction tool (BET). Using DSI Studio, we 

determined the tensors in each voxel using an over-determined linear equation system 

with least squares fitting (Jiang, van Zijl, Kim, Pearlson, & Mori, 2006). The gradient 

table, which is necessary to extract the diffusion tensor, was computed using an open 

source PARtoNRRD toolbox in Matlab (Farrell et al., 2007). The diffusion tensor was 

used to calculate the eigenvalues reflecting diffusion parallel and perpendicular to each of 

the fibers along 3 axes (x, y, z). The resulting eigenvalues were then be used to compute 

FA and ADC values (Basser et al., 1994).  

 We verified that the orientation and directions of tensors were correct using the 

fractional anisotropy red-green-blue (RGB) color map across all axes. We used well-

defined fiber pathways for this verification, and inspected whether the cingulum was 

oriented along the anterior-posterior axis (labeled green) in the sagittal plane, whether the 

cortico-spinal tract (CST) was oriented along the superior-posterior axis (blue) in the 

coronal plane, and finally whether the corpus callosum was oriented along the medial-

lateral axis (red) in the axial plane. 

Fiber Tract Identification. All fiber tracking procedures were performed in DSI 

Studio with a fractional anisotropy threshold of 0.15 and fiber angles of less than 40° 

between connecting pixels. These thresholds are standard thresholds used by a prominent 

published atlas of white matter tracts (Oishi et al., 2008).  
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Manual Fiber Tract Identification. We manually identified the SLF/AF for 

each individual using a one region of interest (ROI) approach. The SLF/AF region of 

interest was guided by fiber orientation maps and defined on the fractional anisotropy 

map computed from the averaged DT-MRI volume: red for medial-lateral, green for 

anterior-posterior, and blue for superior-inferior. We manually defined an ROI that 

encompassed all green voxels lateral to the internal capsule (Catani et al., 2005). The 

SLF/AF ROI was defined liberally, making sure to include all possible SLF/AF voxels 

and allowing voxels from neighboring tracts as well.  

 We also manually identified the FAT. We used a two-ROI approach (Catani et al., 

2012; Thiebaut de Schotten et al., 2012). The first ROI was drawn in the posterior part of 

Broca’s territory (i.e., precentral cortex, BA 6, pars opercularis, BA 44). The second ROI 

was drawn in the SMA and pre-SMA in the superior frontal gyrus (BA 8 and 6; Lawes et 

al., 2008; Oishi et al., 2008). All fibers passing through these ROIs were reconstructed in 

three dimensions and visualized using streamtubes. The streamtube method is used 

because it represents structures with primarily linear diffusion, that is the diffusion tensor 

along one direction in a 3D field (one eigenvalue) is much larger than the other two and 

therefore corresponds to linear anisotropy diffusion (Zhang, Demiralp, & Laidlaw, 2003). 

White-matter tracts tend to produce tensors with linear anisotropy (Coremans, Luypaert, 

Verhelle, Stadnik, & Osteaux, 1994).  

Data Analysis 

Use of Robust Statistics. We related our calculations of FA and ADC measures 

of white matter integrity to age and behavioral outcome measures using robust estimates 

of correlation (rrob) and robust regression (using the Huber loss function). We used robust 
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procedures because they are less influenced by outliers and increase the precision of 

parameter estimates when there are outliers (Wilcox, 2012; Wright & London, 2009). We 

also calculated 95% confidence intervals using bootstrap methods for estimating the 

parameters (Efron, 1992; Efron & Tibshirani, 1986). We used the R statistical package 

(v. 2.15.1; http://www.R-project.org) to conduct these analyses. 
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CHAPTER V 

RESULTS 

The goal of the analysis was two-fold. First, we identified and characterized age-

related changes of white matter integrity in two fiber tracts important for language, the 

frontal aslant tract (FAT) and the superior longitudinal fasciculus/arcuate fasciculus 

(SLF/AF). Second, we related these changes to developing speech, language, and 

literacy.  

Identification of the FAT and SLF/AF Tracts  

We were able to track both the left (M FA = 0.40, SD = .02; M ADC = 0.84 +/- 

0.02 x 10-3 mm2/s) and right (M FA values = 0.40, SD = .02; M ADC = 0.84 +/- 0.02 x 

10-3 mm2/s) FAT in 17 out of 19 children. See Figure 4 on the next page. In one child we 

were not able to track the left FAT, but we were able to track the right FAT; in a different 

child we were not able to track the right FAT, but we were able to track the left FAT. 

However, it is notable that both of these FAT tracts appeared when the step size was 

adjusted to a more liberal level (of 2 mm). See Figure 5 on the next page. Thus, the lack 

of identification should not be taken to indicate an absence of the tract, but may indicate 

an artifact in the data, noise in the data, reduced myelination of the tract, or Type II 

statistical error. 

We were also able to reliably track the left (M FA = 0.45, SD = .02; M ADC = 

0.82 +/- 0.02 x 10-3 mm2/s) and right (M FA = 0.44, SD = .02; M ADC = 0.82 +/- 0.02 x 

10-3 mm2/s) SLF/AF in all children (see Figure 6). Both FA and ADC values for this tract 

fell within the normal range for children (Morriss et al., 1999; Sener, 2001). 
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Figure 4. Connections of the Frontal Aslant Tract (FAT) in 19 children. Note: This 

mosaic is displayed in radiological orientation. Therefore, the right side of the image 

represents the left cerebral hemisphere. 
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Figure 5. Left: FAT of one child was not identified in the right hemisphere under more 

stringent step size (of 1 mm). Right: FAT appeared when the step size was adjusted to a 

more liberal level (of 2 mm). Note: Figures are displayed in radiological orientation. 

  
 
Figure 6. Left and right connections of the SLF/AF in one child.  

Age-related Change in the FAT and SLF/AF 

To characterize age-related changes of the FAT and SLF/AF we ran robust 

correlations. Figures 7 and 8 show robust elliptical plots (relplots; (Goldberg & Iglewicz, 

1992). Neither the left nor the right FAT showed age-related changes in white matter 

integrity, measured by FA values (Figure 7) and by ADC values (Figure 8). In contrast, 

the left SLF/AF did show age-related changes in white matter integrity, measured by FA 

values (rrob = .88; p < .001), but the right SLF/AF did not (Figure 7). Neither tract 

showed significant age-related change in ADC (Figure 8).  
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Figure 7. Top: Age-related changes in fractional anisotropy in the left and right Frontal  

Aslant Tract. Bottom: Age-related changes in fractional anisotropy in the left and right 

Superior Longitudinal Fasciculus/Arcuate Fasciculus.  
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Figure 8. Top: Age-related changes in apparent diffusion coefficient in the left and right 

Frontal Aslant Tract. Bottom: Age-related changes in apparent diffusion  

coefficient in the left and right Superior Longitudinal Fasciculus/Arcuate  

Fasciculus. 

Relation of the FAT and SLF/AF to Speech, Language, and Literacy 

To relate the FAT and SLF/AF white matter integrity to speech, language, and 

literacy we conducted robust linear models. For these models we bootstrapped the 

residuals (10,000 iterations) to obtain the 95% confidence intervals. The effects are 

reported after controlling for age in months, non-verbal IQ, sex, and whole brain FA in 
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the model. The adjusted R2 values are reported from the ordinary least squares model; 

these are not available for robust models, and should be interpreted with caution. In Table 

1 on the next page, only those findings in which the bootstrapped confidence intervals do 

not cover zero are reported. Results indicate that the right FAT was negatively related to 

phonology. Therefore, increased white matter integrity of the right FAT as measured by 

FA values, was associated with lower phonological scores. Moreover, we failed to find 

evidence that the FAT white matter integrity (as measured by FA and ADC) was related 

to our measures of AV speech perception, articulation, language, or literacy. In contrast, 

we found that both the left and right SLF/AF were related to language, specifically 

receptive language, expressive vocabulary, and language content, as measured by the 

CELF
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Frontal Aslant Tract (FAT) and Superior longitudinal fasciculus/arcuate fasciculus integrity predicts receptive and expressive language and 

phonology 

Fractional Anisotropy (FA) Measures 

Predictor  Outcome B (SE) ß 95% CI R2
adj 

Right FAT  Phonology -186.3 (88.8) -0.46 -360.2 to -12.0 0.16 

Left SLF/AF  CELF Receptive Language 547.0 (131.5) 0.66 287.1 to 802.7 0.51 

Left SLF/AF  CELF Language Content 484.4 (120.4) 0.60 247.5 to 719.6 0.64 

Right SLF/AF  CELF Receptive Language 396.4 (118.2) 0.52 168.9 to 632.4 0.30 

Right SLF/AF  CELF Language Content 265.2 (113.3) 0.36 43.4 to 487.7 0.46 

Right SLF/AF  CELF Expressive Vocabulary 66.9 (31.4) 0.42 5.3 to 128.6 0.12 

Apparent Diffusion Coefficient (ADC) Measures 

Left SLF/AF  CELF Receptive Language -26.6 (9.1) -0.45 -45.0 to -9.2 0.24 

Left SLF/AF  CELF Language Content -22.7 (8.0) -0.40 -39.0 to -7.4 0.54 

Left SLF/AF  CELF Expressive Vocabulary -6.3 (2.3) -0.52 -10.8 to -1.7 0.10 

Right SLF/AF  CELF Receptive Language -25.4 (9.1) -0.43 -43.2 to -7.5 0.21 

Right SLF/AF  CELF Language Content -18.3 (8.2) -0.32 -34.6 to -2.3 0.46 

Note. Effects reported for robust linear models after controlling for age in months, sex, and whole brain FA (for FA predictors) or whole brain ADC 

(for ADC predictors), and block design. FAT = Frontal Aslant Tract; SLF/AF = Superior longitudinal fasciculus/arcuate fasciculus. CELF = Clinical 

Evaluation of Language Fundamentals. To reduce digits, ADC values were divided by a constant. Adjusted R2 values are reported from the ordinary 

least squares model.  
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CHAPTER VI 

DISCUSSION 

The work presented here showed that different white matter pathways can be 

identified, tracked, characterized, and quantified in terms of their structural integrity, and 

these metrics can be related to a number of behavioral outcome measures. In the present 

study we identified a new fiber pathway—the frontal aslant tract (FAT)—for the first 

time in young children. In addition to the FAT, we also characterized the superior 

longitudinal fasciculus/arcuate fasciculus (SLF/AF), another pathway of the dorsal 

speech stream, and related the two tracts to speech, language, and literacy outcomes. The 

findings in the current study contribute to a growing understanding of brain development 

and its relation to behavior. 

Frontal Aslant Tract (FAT) 

The FAT is a newly described fiber tract that has been recently identified in adults 

(Catani et al., 2012; Ford, McGregor, Case, Crosson, & White, 2010; Lawes et al., 2008; 

Oishi et al., 2008). However, this is the first study to identify the FAT in children. We 

were able to identify the FAT bilaterally in almost all children. Advances in our 

understanding of FAT connectivity is important because of its putative involvement in 

speech production, speech perception, language, and literacy, especially in children who 

are continuing to develop these skills.  

The FAT has been suggested to make connections from the superior frontal gyrus 

(Lawes et al., 2008), the posterior SMA (Oishi et al., 2008), and the pre-SMA (Ford et 

al., 2010) to the inferior frontal gyrus (Catani et al., 2013). It has been suggested to play a 

role in speech production (Catani et al., 2013; Dick et al., 2013) and found to be related 
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to verbal fluency in patients with primary progressive aphasia (Catani et al., 2013). 

Several fMRI studies suggest that motor regions are activated during speech perception 

tasks (Skipper et al., 2005; Skipper et al., 2007; Tremblay & Small, 2011; Wilson, 2004; 

Wilson & Iacoboni, 2006). The shared neural activation maps between speech perception 

and production suggest a close relationship between sensory and motor domains that may 

be important for communicating information about the acoustic speech sounds (e.g., /ba/) 

and how to produce these sounds (Tremblay & Small, 2011). The primary finding of this 

study was that the FAT indeed provides a direct connection between the posterior SMA 

(Oishi et al., 2008), and the pre-SMA (Ford et al., 2010) to the inferior frontal gyrus 

(Catani et al., 2013). However, the FAT did not show age-related change. Absence of 

age-related change in the FAT may reflect that the tract is rather mature by 5-8 years old. 

Furthermore, it may be that age-related changes could be observed at younger ages, for 

example, when infants are learning to babble.  

In addition, we expected the FAT to play a critical role in speech and language, 

especially in children who are currently developing these skills. In the present study, we 

found a significant negative relationship between white matter integrity of the right FAT 

and phonology. This finding was unexpected. If any relationship existed, we expected 

both the left and right FAT to be positively related to phonology. However, the relation 

between FAT integrity and phonology may be better understood by further delineating 

different connections within the pathway. That is, evidence suggests that the pre-SMA 

and SMA are anatomically and functionally distinct, with the pre-SMA a prefrontal 

region and the SMA a non-primary motor region (Luppino, Matelli, Camarda, & 

Rizzolatti, 1994; Picard & Strick, 1996; Tremblay & Gracco, 2010). Therefore, isolating 
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pre-SMA and SMA might better capture interactions between white matter integrity and 

speech and language. In addition, fMRI studies have suggested the pre-SMA as playing a 

critical role in more complex/cognitive motor control (Kim et al., 2010), such as the 

selection of words and oral motor responses (Tremblay & Gracco, 2010). Simultaneous 

activity in the pre-SMA and IFG has been reported as critical in the selection process of 

spoken word generation (e.g., compared to reading aloud; Tremblay & Gracco, 2006). In 

comparison, the SMA has been implicated in making connections with the spinal cord 

and important in action generation (Tremblay & Gracco, 2006). The aforementioned 

evidence suggests the possibility that there are two functionally distinct tracts, similar to 

the SLF/AF (discussed below), and the fiber tracts from the pre-SMA may be correlated 

with online selection and generation of speech, compared with the SMA in repetition of 

speech. Broadly, isolating contributions of the pre-SMA and SMA may more accurately 

characterize the relationship between the FAT and speech, language, and literacy.  

In addition to the negative relationship between the right FAT and phonology, we 

also failed to find a significant relationship between the left and right FAT and AV 

speech perception, articulation, language, and literacy. While the non-significant 

relationship of the FAT and literacy was expected, we did expect a relationship between 

FAT integrity and articulation. In this case, it may be that the FAT is mature by the age 

range we tested, and shows little age-related change. Our behavioral measures of 

articulation suggest that typical developing children do not vary much in their ability 

produce speech sounds—most children performed well on the DEAP, with a range 

between 75 and 110, and the majority of children scoring above 105 (n=15), a score of 

110 indicating ceiling performance. Thus, one way of looking at this is that the 
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behavioral and brain data are congruent and show relative maturity at this age. However, 

this result should be interpreted with caution because of the ceiling effects in the 

behavioral measures. Moreover, children in the present study are typically developing. 

Therefore, we might observe a different brain/behavior relation in children who have 

speech disorders (Sener, 2001). Future studies that investigate a younger age cohort, or 

children with speech pathologies, may reveal a fundamental relationship between this 

pathway and articulation.  

Superior Longitudinal Fasciculus/Arcuate Fasciculus (SLF/AF) 

The present study also characterized the SLF/AF bilaterally in all children. The 

SLF/AF has been well studied in both adults and children. Previous work with older 

children (7-11 years old) suggests that left AF fibers show age-related changes (Yeatman 

et al., 2011). Schmithorst and colleagues (2002) also report significant positive 

correlation of FA with age (5-18 years old) in the left arcuate fasciculus, but not the right. 

The lateralization of change in FA is similar to what we reported here. The present work 

also focuses on a narrow age range (5-8 years) because during this age range children are 

developing speech, language, and literacy skill. We expanded on these finding by 

focusing on contributions from both the left and right hemisphere and showing that the 

left and right hemispheres show a different developmental trend, with the left SLF/AF 

showing a significant increase in FA with age.  

The current study found asymmetric trajectories of brain development in the 

SLF/AF. We found age-related changes in white matter integrity in left SLF/AF but not 

the right. The SLF/AF connects frontal, temporal, and parietal lobes (Hickok & Poeppel, 

2007), which are important for processing speech, language, and literacy (Paus et al., 
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1999; Beaulieu et al., 2005; Klingberg et al., 2000). In addition, while both hemispheres 

are implicated in language processing, evidence suggests that more generally, language 

processing is strongly left dominant (Hickok & Poeppel, 2007). Therefore, age-related 

changes in the left SLF/AF but not the right may reflect asymmetrical re-organization of 

the SLF/AF fiber pathway to be more coherent during language development. Of note, 

the work presented here also suggests that maturation of the SLF/AF is not the sole 

predictor of language. For example, despite that age-related changes in white matter 

integrity were specific to the left SLF/AF, we found that white matter integrity in both the 

left and right SLF/AF predicted receptive language, expressive vocabulary, and language 

content. These results were robust even after controlling for age, sex, non-verbal IQ, and 

whole brain white matter integrity.  

Moreover, we found a non-significant relationship between white matter integrity of 

the SLF/AF and speech and literacy. Other studies have provided evidence for white 

matter integrity in the SLF/AF for reading (Klingberg et al., 2000), phonological 

awareness (Yeatman et al., 2011), and speech (Catani et al., 2005). However, aside from 

Yeatman and colleagues (2011), the aforementioned studies were conducted in adults. 

The distinct findings may also be related to evidence suggesting that different 

components of the SLF/AF contribute uniquely to speech (Catani et al., 2005), and 

literacy (Thiebaut de Schotten et al., 2012). Therefore, the next step should be to 

characterize the different components of the SLF/AF, for the same reasons proposed for 

the FAT, and relate them to speech and literacy. 
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Importance of Findings for a Model of the Neurobiology of Language 

More broadly, the work presented here complements the dorsal-ventral-motor 

model for language. In the introduction, we proposed the SLF/AF and the FAT as 

important for language. We characterized the SLF/AF in the developing brain and found 

that both the left and right SLF/AF predicted receptive language, expressive vocabulary, 

language content, but not speech and literacy. In retrospect, this makes sense because our 

measures of receptive and expressive language are based on the child’s listening and 

auditory comprehension abilities and their ability to name illustrations of people, objects, 

and actions, respectively. Successfully doing this task requires the entire SLF/AF tract 

and both hemispheres.  

The primary finding was that both the left and right SLF/AF predicted language, 

specifically receptive and expressive language, and language content. While both the left 

and right SLF/AF predicted receptive language and language content, the left SLF/AF as 

predictors accounted for more variance in the model compared with the right SLF/AF 

predictors with respect to receptive language and language content. The finding is 

consistent with models of language, which suggest that language is processed bilaterally, 

although not identically (Hickok & Poeppel, 2004; Ivry, 1998; Poeppel, 2003; Zatorre, 

Meyer, Gjedde, & Evans, 1996). That is, while the two hemispheres contribute to 

language processing, each hemisphere performs different computations on the incoming 

speech signal (Hickok, 2009). Thus, our findings suggest that the left and right SLF/AF 

are important for language, but their contributions are not identical.  

We also found that the left SLF/AF and the right SLF/AF predicted expressive 

vocabulary, measured by the CELF. The expressive vocabulary subtest evaluates the 



 41

student's ability to name illustrations of people, objects, and actions (referential naming). 

Both the left and right hemispheres are implicated in phonological processing and involve 

both motor/premotor cortices (Hickok & Poeppel, 2007). Therefore, this finding is 

consistent with the idea that language is a bilateral process in the normal brain.  

In addition, evidence from patients with neurological deficits reveals similar 

reports with respect to bilateral contributions to language processing. For example, 

auditory comprehension at the lexical level in the right hemisphere is spared in split-brain 

patients and patients undergoing the Wada test (Barde, Baynes, Gage, & Hickok, 2000; 

McGlone, 1984). It is noteworthy, however, that findings from the present study do not 

negate that in typical right-handed individuals the left hemisphere is a prominent 

contributor to language function. Rather, the findings support the right hemisphere, more 

specifically the right SLF/AF, in language processing. In addition, while this study does 

not inform us about how different components of the SLF/AF participate in 

comprehension and articulation, it does reveal that the SLF/AF as a whole is important 

for language. 

Lastly, the dorsal-ventral-motor model for language processing suggests a motor 

component. The FAT was suggested to make connection from typically motor regions to 

the IFG (Catani et al., 2013; Dick et al., 2013). Although the present study found no age-

related change or a functional specialization of the FAT with respect to speech, language, 

and literacy, this does not mean that the FAT does not serve an important function for 

language. In fact, as mentioned earlier, others have found the FAT important for language 

production (Catani et al., 2013). Incorporating the FAT as part of the dorsal-ventral-

motor model for language is essential not only in understanding language, but also in 
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other domains, for example, during neurosurgery, where avoiding fibers that are 

important for language and motor function are essential. Therefore, in addition to 

mapping prominent fiber tracts such as the SLF/AF and others from the ventral stream, as 

specified in the introduction, the FAT should also be considered. 

Summary 

 In the present study, we were able to track the FAT for the first time in children. 

While the FAT did not show age-related change, the left SLF/AF did show age-related 

change, but the right SLF/AF did not. White matter integrity of the right FAT predicted 

phonology but did not predict performance on AV speech, articulation, language, and 

literacy. White matter integrity in the left and right SLF/AF predicted language, 

specifically receptive language, expressive vocabulary, and language content. Neither the 

left or right SLF/AF predicted speech or literacy. We propose understanding the 

relationship between the FAT and SLF/AF and speech and literacy requires isolating 

components from each that are implicated in speech and literacy. 
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