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ABSTRACT OF THE THESIS 

DISTRIBUTION FITS FOR VARIOUS PARAMETERS  

IN THE HURRICANE MODEL 

by 

Victoria Oxenyuk 

Florida International University, 2014 

Miami, Florida 

Professor Sneh Gulati, Co-Major Professor 

Professor B.M. Golam Kibria, Co-Major Professor 

The FPHLM is the only open public hurricane loss evaluation model available for 

assessment of hazard to insured residential property from hurricanes in Florida. The 

model consists of three independent components: the atmospheric science component, the 

vulnerability component and the actuarial component. The atmospheric component 

simulates thousands of storms, their wind speeds and their decay once on land on the 

basis of historical hurricane statistics defining wind risk for all residential zip codes in 

Florida.  

The focus of the thesis was to analyze atmospheric science component of the 

Florida Public Hurricane Loss Model, replicate statistical procedures used to model 

various parameters of atmospheric science component and to validate the model. I 

establish the distribution for modeling annual hurricane occurrence, choose the best 

fitting distribution for the radius of maximum winds and compute the expression for the 

pressure profile parameter Holland B. 
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I.   INTRODUCTION 

Background 

Hurricanes are one of the greatest natural hazards; although relatively rare in 

occurrence they can cause colossal economic losses. In 1992, “when Hurricane Andrew 

struck Florida it caused over $30 billion in direct economic losses” (Lokupitiya et al., 

2005). Hurricane modeling has become a widely used tool for assessing risks associated 

with windstorm catastrophes. Since the groundbreaking studies of Russell (1968, 1971) 

and Tryggvason et al. (1976) the modeling methods have improved significantly as a 

consequence of increased computing capabilities, new advanced physical and statistical 

models and vast growth in quantity and quality of available data. Several private models 

for simulating hurricane loss have been developed in the recent years for use in the State 

of Florida but such models are typically commercial and are not available to research 

community and public. The Florida Public Hurricane Loss Model (FPHLM) is a notable 

exception.  

The FPHLM is an open public hurricane loss evaluation model which was 

developed as a joint effort of specialists in fields of meteorology, engineering, computer 

science, actuarial science, finance and statistics from Florida International University, 

NOAA Hurricane Research Division, University of Miami, Florida State University, 

Florida Institute of Technology and University of Florida. The model was created “for a 

purpose of probabilistic assessment of risk to insured residential property associated with 

wind damage from hurricanes” (Hamid et al., 2010). The FPHLM consists of three main 

components (Figure 1): first – the atmospheric science component which models the 
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track and intensity of hurricanes in Florida threat area; second – the engineering 

component which models vulnerability of insured property; and third – the actuarial 

science component which models the insured loss. The atmospheric science component 

simulates thousands of storms, their wind speeds and their decay once on land on the 

basis of historical hurricane statistics defining wind risk for all residential zip codes in 

Florida.  The wind risk information is then passed on to the engineering and actuarial 

science components to assess damage and annual loss. Each component is developed 

independently and delivered as a one-way input to the next component in line until the 

end result is achieved. 

 

Figure 1. Structure of FPHLM 

Problem Description 

The aim of my thesis is to analyze atmospheric science component of FPHLM, 

repeat statistical procedures that were used to model parameters of meteorological 

component and to validate the model. 
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Theoretical Perspective 

The atmospheric component of FPHLM includes annual occurrence model, which 

simulates the number of storms in a year, the storm track model, demonstrating the 

trajectory and intensity of hurricanes, and the wind field model. 

Modeling annual hurricane occurrence (AHO) is the first step of atmospheric 

science component. Since the available historical data of documented hurricanes are 

limited, simulation that replicates fundamental characteristics of existing data has to be 

run to supplement the number of hurricanes. Statistical distribution of the number of 

hurricanes occurring per year is essential for such a simulation. “According to domain 

knowledge in meteorology, the best statistical distribution of the number of hurricanes 

occurring per year is either the Poisson distribution or the Negative Binomial 

distribution” (Chen et al., 2003).  

One of the goals of my thesis is to determine which of the two distributions is the 

best for modeling AHO: Poisson distribution that assumes homogenous hurricane 

frequencies (the mean number of hurricanes in any two years is the same) or Negative 

binomial distribution that assumes non-homogenous annual occurrence rate. 

Wind field model is another component within a hurricane risk model, which is 

dedicated to simulating hurricanes, their wind speeds and their decay once on land on the 

basis of historical data. The wind field model is later used for engineering simulation of 

the damage to insured property and actuarial calculation of the resulting loss.  

Two fundamental components of the wind field model are radius of maximum 

winds (Rmax) and central pressure at landfall. These two variables are most relevant for 

estimating loss since the greater the area of strike the greater the damage and the lower 
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the central pressure the more intense the hurricane. The radius of maximum winds has a 

substantial impact on the area affected by the hurricane and modeling of Rmax influences 

the likelihood of the location experiencing strong winds in cases of near misses. 

Modeling the distribution of Rmax is therefore critical for estimating the possible losses for 

insurance pricing purposes. 

The FPHLM finds the Gamma distribution to be the best fit for the Rmax. In the 

present thesis I will determine how well Gamma distribution fits the Rmax data and try to 

find if there are distributions that fit the data better than the Gamma distribution. 

Holland B is an additional parameter defining the pressure field and maximum 

wind speeds in a hurricane. It was introduced by Holland (1980) and has been used in 

many hurricane threat studies since (Powell et al., 2005, Emanuel et al., 2006, Lee and 

Rosowsky, 2007, Hall and Jewson, 2008, and Vickery et al., 2009).  

 As a pressure profile parameter Holland B allows for the distinction in the 

maximum wind speeds observed in hurricanes for a given Δp (difference between central 

minimum sea level pressure and an outer peripheral pressure) all else being equal. The 

omission of B results in maximum wind speeds proportional to ඥ∆݌, whereas with B the 

maximum wind speed in the simulated hurricane is proportional to ඥ݌∆ܤ. 

 The FPHLM shows that Holland B parameter is inversely correlated with both the 

size and latitude of the hurricane. Finding an exact statistical relationship between B and 

radius of maximum winds and latitude is another goal of the present research. 

Data 

The analysis of annual hurricane occurrence and radius of maximum winds will 

use data obtained from historical record for the Atlantic tropical cyclone basin (known as 
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“HURDAT”) for the period from 1901 until 2010.  Earlier data are available but not used 

because of the lack of population centers and uncertainties about meteorological 

measurements before the start of 20th century. 

A model for the Holland B pressure profile parameter will be developed on the 

basis of a subset of the data published by Willoughby and Rahn (2004) and obtained by 

NOAA and U.S. Air Force Reserve aircraft between 1977 and 2000. 

To find the best fitting distribution the preliminary analysis of the data will be 

done through the use of EasyFit software which allows us to easily fit a large number of 

distributions to the data. Estimated parameters of the best fitting distributions will then be 

found using maximum likelihood estimator (MLE) method. In order to determine how 

well the selected distributions fit the data they will be tested for goodness-of-fit using 

Kolmogorov-Smirnov, Anderson-Darling and Chi-Square tests. Along with the goodness 

of fit tests the probability density function graphs, Q-Q and P-P plots will be used to 

visually assess the goodness of fit and empirically compare several fitted models. In order 

to determine the model for estimating Holland B, multiple regression analysis will be 

performed using the Proc REG procedure in SAS.  

Project Organization 

The purpose of my research is to examine the first part of the Florida Public 

Hurricane Loss Model – the atmospheric component - and check distributions of several 

parameters of the model. The thesis consists of six chapters and four appendices. 

In the second chapter I look at the available data from the historical prospective 

and check for increasing trends in hurricane intensity, size or number of hurricanes 
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striking Florida. The third chapter establishes the distribution for modeling annual 

hurricane occurrence. In the fourth chapter the best fitting distribution for the radius of 

maximum winds is identified, and finally in the fifth chapter the expression for the 

pressure profile parameter Holland B is computed. 

The last chapter presents the final results and conclusions. The appendices contain 

databases for radius of maximum winds and Holland B as well as SAS codes and outputs. 
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II.   TIME TRENDS 

One of the important questions asked by scientists when discussing the FPHLM is 

“whether the distribution of hurricane loss should reflect climate change (i.e., an 

increasing trend in hurricane intensity)” (Katz, 2010). Indeed climate change has been a 

growing topic of discussion so it would only be reasonable to suspect increasing trend in 

hurricane intensity, size or number of hurricanes striking Florida. The parameters of the 

FPHLM are assessed from the historical record under the assumption of stationarity and 

the validation of this assumption will be an important aspect of my research. 

The debate about whether warming tropical sea surface temperatures are 

producing more intense and long-lived cyclones has been going on for over a decade. 

Although Emanuel (2005) and Webster et al. (2005) have found that intensity and 

number of hurricanes show an increasing trend, studies by Klotzbach (2006) and Shapiro 

and Goldenberg (1998) conclude that most of this increase is most likely a result of 

improved observational technology.  

First I will look at the hurricane occurrence and see if the number of hurricanes 

has been higher in the recent years.  

 

 Figure 2. Number of hurricanes 
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The time series of annual hurricane counts (Figure 2) does not suggest a growing trend. 

There are also no other visible patterns. The number of hurricanes occurring in a year 

does not appear to be increasing. 

If frequency of damaging hurricanes is rising then it should be seen on the plot of 

radius of maximum winds in time or the plot of central pressure in time.  

 

Figure 3. Plot of Radius of Maximum Winds vs. Time 

The plot of radius of maximum winds (Figure 3) reveals higher values of Rmax in 

1910s as well as 1990s and 2000s but no clear increasing trend can be detected. 

The plot of central pressure in time (Figure 4) does not show any increase in 

hurricane strength. There are few higher values in 1980s but those indicate hurricanes of 

lower intensity. The strongest hurricanes with lowest central pressures are in 1920s, 

1960s and 1990s-2000s. Thus I conclude that there is no evidence of increasing trend in 

hurricane intensity or size. 
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 Figure 4. Plot of Central Pressure vs. Time 

My findings do not support the argument that global tropical cyclone intensity, 

frequency and longevity have undergone increases in recent years. I conclude that no 

significant increasing trend is evident. 
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III.   ANNUAL HURRICANE OCCURRENCE 

The first step in study of hurricanes and their impacts is to determine the 

frequency with which they occur.  Annual Hurricane Occurrence (AHO) rate estimates 

“the frequency of hurricanes occurring in a series of years based on an associated 

hurricane occurrence probability distribution, which is obtained through statistical 

analysis and calculation on the basis of historical hurricane records” (Chen et al., 2003). 

Substantial research in the area of modeling occurrence of hurricanes has been done in 

recent years by Chen et al. (2003 and 2004), Gray et al. (1992), Elsner and Schmertmann 

(1993), Elsner and Jagger (2004). The basic principle of these papers was to generate the 

statistical models from the available historical data in order to estimate AHO. Using 

obtained probability distributions the number of hurricanes per year in the future is 

produced for a desired number of years. 

Rare events in meteorology are classically described by the Poisson and the 

Negative Binomial distributions. The rate of occurrence of a stochastic process is 

typically described by the use of the Poisson distribution. However, Poisson distribution 

assumes the mean number of storms in any two non-overlapping time intervals of the 

same length to be equal. To allow those means to be unequal will lead to the annual 

occurrence modeled by a Negative Binomial distribution. General guiding principles as to 

the adequacy of the two distributions have been discussed (Thom, 1966) but one cannot 

accurately determine which model is appropriate until tests are conducted. 

In this section I will determine whether either Poisson or Negative Binomial is 

adequate in describing the distribution of the annual hurricane occurrence. 
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For the assessment of the AHO distribution to be conducted, a suitable dataset has 

to be obtained. Annual counts of tropical storms and hurricanes in the Atlantic Ocean are 

obtained from HURDAT database, which is maintained by the National Hurricane Center 

in Miami, Florida and the National Climatic Data Center in Asheville, North Carolina. 

The historical record for the Atlantic tropical cyclone basin contains six hourly record 

positions and intensities of tropical storm and hurricane for the period from 1851 to 2010. 

Only data beginning the 1901 are going to be used in my research because of unreliability 

of 19th century data. To focus on storms capable of affecting residential property in 

Florida, only storms in threat area (Figure 5) - within 1000 km of a location (26.0 N, 82.0 

W) are being counted.  

 

Figure 5. Florida Hurricane Threat Area 

In order to obtain the number of hurricanes in each year from 1901 to 2010 I 

looked at each hurricane and its six hourly positions recorded by HURDAT. If hurricane 



12 
 

entered threat area at any time during its track it had been counted so that any hurricanes 

could only be counted once. The results are presented in Table 1. 

Table 1. Annual Number of Hurricanes 

 

Historical data are retrieved and denoted by X = {xi} (I = 1,2,…,N), where N =110 

is the number of years of data available and xi is the number of storms occurred in the ith 

year. Values of x range in between 0 and 5 with mean 1.1091 and standard deviation 

1.1704 (Table 2). 

Table 2. Descriptive Statistics of Annual Occurrence Rate 

 

Each storm is considered as a point event in time, occurring independently. If λ is 

a measure of the historically determined number of events per year, then the probability 

Year
Total 

hurricanes
Year

Total 

hurricanes
Year

Total 

hurricanes
Year

Total 

hurricanes
Year

Total 

hurricanes
Year

Total 

hurricanes

1901 1 1921 1 1941 1 1961 0 1981 0 2001 0

1902 0 1922 1 1942 0 1962 1 1982 1 2002 1

1903 1 1923 1 1943 0 1963 1 1983 0 2003 0

1904 1 1924 3 1944 2 1964 3 1984 1 2004 4

1905 0 1925 0 1945 2 1965 1 1985 3 2005 5

1906 3 1926 3 1946 1 1966 2 1986 0 2006 0

1907 0 1927 0 1947 2 1967 0 1987 1 2007 0

1908 0 1928 2 1948 2 1968 2 1988 0 2008 2

1909 2 1929 1 1949 1 1969 2 1989 0 2009 0

1910 1 1930 0 1950 5 1970 0 1990 0 2010 0

1911 2 1931 0 1951 1 1971 0 1991 2

1912 1 1932 2 1952 1 1972 1 1992 1

1913 0 1933 5 1953 2 1973 0 1993 0

1914 0 1934 1 1954 2 1974 0 1994 0

1915 2 1935 2 1955 0 1975 1 1995 3

1916 3 1936 1 1956 2 1976 0 1996 2

1917 1 1937 0 1957 0 1977 0 1997 1

1918 0 1938 0 1958 1 1978 0 1998 2

1919 1 1939 1 1959 2 1979 2 1999 3

1920 1 1940 1 1960 1 1980 0 2000 1

Sample size (N ) 110 Min 0

Mean 1.1091 Median 1

Variance 1.3699 Max 5

Std. deviation 1.1704 Range 5
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P(X=x|λ) defines the probability of having x events per year, which is given by the 

Poisson probability density function (PDF) 

P(x) = 
ఒೣ

௫!
݁ିఒ. 

The parameter of the Poisson distribution λ can be estimated from data by the 

maximum likelihood estimator 

መߣ ൌ 	
∑ ௫೔
ಿ
೔సభ

ே
 . 

The  Negative Binomial distribution PDF is given by 

ܲሺݔሻ ൌ 	 ௰ሺ௫ା௞ሻ

௰ሺ௫ାଵሻ௰ሺ௞ሻ
ቀ ௞

௠ା௞
ቁ
௞
ቀ ௠

௠ା௞
ቁ
௫
, 

where Γ is the gamma function, m and k are parameters of the distribution. The maximum 

likelihood estimates of parameters can be obtained as  

ෝ݉ ൌ 	
∑ ௫೔
ಿ
೔సభ

ே
 and ෠݇ ൌ 	 ௠ෝమ

௦మି௠ෝ
 ,  

where s2 is the sample variance. 

 The parameters of both Poisson and Negative Binomial distributions were 

estimated using annual number of hurricanes dataset and results are presented in Table 3. 

Table 3. Estimated distribution parameters for AHO data 

 

After the estimation of parameters of both Poisson and Negative Binomial 

distributions, goodness-of-fit tests are performed to select the best fitting model. 

The Kolmogorov-Smirnov test is used to decide if a sample comes from a 

hypothesized continuous distribution. It is derived from the empirical cumulative 

Year Total hurricanes

Poisson λ = 1.1091

Negative Binomial n = 4, p = 0.8096
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distribution function (CDF). Assume that we have a random sample x1, x2,…, xn from 

some distribution with CDF F(x). The empirical CDF is denoted by 

ሻݔ௡ሺܨ ൌ 	
	ݏ݊݋݅ݐܽݒݎ݁ݏܾ݋	݂݋	ݎܾ݁݉ݑܰ ൑ ݔ

݊
. 

The Kolmogorov-Smirnov statistic (D) is derived from the largest vertical 

difference between the theoretical (F(xi)) and the empirical cumulative distribution 

function: 

ܦ ൌ	 max
ଵஸ௜ஸ௡

ቆܨሺݔ௜ሻ െ
݅ െ 1
݊

,
݅
݊
െ  .௜ሻቇݔሺܨ

The Kolmogorov-Smirnov statistic is thus only concerned with the maximum 

vertical distance between the cumulative distribution function of the fitted distribution 

and the cumulative distribution of the data. The Kolmogorov-Smirnov statistic’s value is 

only determined by the one largest discrepancy and takes no account of the lack of fit 

across the rest of the distribution.  

The null and the alternative hypotheses are: H0: the data follow the specified 

distribution vs. HA: the data do not follow the specified distribution. The P-value is 

calculated from the test statistic, and denotes the threshold value of the significance level 

in the sense that the null hypothesis (H0) will be accepted for all values of α less than the 

P-value.  

The Anderson-Darling test compares the fit of an observed cumulative 

distribution function to an expected cumulative distribution function. The A-D test gives 

more weight to the tails than the Kolmogorov-Smirnov test. 

The Anderson-Darling statistic (A2) is defined as 
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ଶܣ ൌ െ݊ െ
1
݊
෍ሺ2݅ െ 1ሻ ൈ ൣln ௜ሻݔሺܨ ൅ ln൫1 െ .௡ି௜ାଵሻ൯൧ݔሺܨ

௡

௜ୀଵ

 

The Chi-Square (χ2) goodness-of-fit test measures how well the expected 

frequency of the fitted distribution compares with the observed frequency of a histogram 

of the observed data.  

The Chi Square statistic is calculated as follows: 

߯ଶ ൌ෍
ሺ ௜ܱ െ ௜ሻଶܧ

௜ܧ
,

ே

௜ୀଵ

 

where Oi is the observed frequency of the ith histogram class or bar and Ei is the expected 

frequency from the fitted distribution for the ith histogram bar.  

Since the χ2 statistic sums the squares of all of the errors it can be 

disproportionately sensitive to any large errors. The χ2 statistic is also very dependent on 

the number of bars N that are used and by changing the number of bars one can quite 

easily switch ranking between two distribution types.  

Table 4. Goodness-of-fit tests for AHO data 

 

The results of goodness-of-fit tests for both Poisson and Negative Binomial 

distributions are presented in Table 4 and according to all 3 tests, the Poisson distribution 

is showing a better fit than Negative Binomial. 

For visual assessment and an empirical comparison of the goodness of fit the 

distribution graphs can be used. Figure 6 shows the occurrence rates of historical and 

Statistic P‐value Rank Statistic Rank Statistic Rank

Poisson 1.71979 0.88640 1 0.32986 1 16.465 1

Neg. Binomial 2.83815 0.58527 2 0.42963 2 28.094 2

Chi‐Squared Kolmogorov‐Smirnov Anderson‐Darling
Distribution
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modeled hurricane data. Poisson model does appear to have a better agreement with 

historical occurrences than the Negative Binomial. 

 

Figure 6. Comparison of simulated vs. historical occurrences 

 

Figure 7. P-P plot 
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In order to see how well Poisson and Negative Binomial Distributions fit AHO 

data we can also look at the P-P plot (Figure 7), which is a graph of the empirical CDF 

values plotted against the fitted CDF values and the closer to linear it is, the better the 

distribution fits the data. Points of the Poisson distribution are closer to the straight line 

than the Negative Binomial which means that the Poisson distribution is the better choice 

for AHO model. This is consistent with the goodness-of-fit tests. 

I conclude that the best fitting distribution for the annual hurricane occurrence on 

the basis of the results of goodness-of-fit tests, histogram of historical and modeled 

occurrences and P-P plot is Poisson distribution with parameter λ=1.1091.  
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IV.   RADIUS OF MAXIMUM WINDS 

The next part of the atmospheric science component of the hurricane model is the 

wind field model. Here hurricanes are simulated using historical data in order to record 

wind speeds and decay of the storm once on land. Recorded data from the wind field 

model are later used by engineers and actuarial scientists in assessment of the likely 

damage to insured property and losses associated with it. 

Radius of maximum winds (Rmax) is one of the random variables used to 

characterize the wind field. The radius of maximum winds at landfall is the distance 

between the center of a cyclone and its band of strongest winds. I am going to look 

closely at Rmax and select a statistical distribution that is best for describing Rmax. 

The statistical information used to develop an Rmax model (landfall Rmax database) 

is created using the historical record for the Atlantic tropical cyclone basin (known as 

“HURDAT”) and applying the annual occurrence model and the storm track model. The 

database includes 112 measurements of radius of maximum wind, central pressure and 

location at landfall for storms from 1901 till 2010 (Appendix 1).  

Values of Rmax, measured in statue miles, range in between 5.75 and 52.9 with 

mean 25.65 and standard deviation 11.2 (Table 5). 

Table 5. Descriptive Statistics of Radius of Maximum Winds

 

There are numerous probability distributions each developed to address various 

data analysis needs, therefore the candidate distributions to fit should be chosen 

Sample size 112 Min 5.75

Mean 25.649 Median 24.725

Variance 125.31 Max 52.9

Std. deviation 11.194 Range 47.15
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according to the nature of the data. The Rmax dataset is continuous. Another way to 

classify the distributions considers the range. Radius of maximum winds cannot contain 

negative values so only non-negative distributions should be considered. 

Another way of identifying the proper distribution is by looking at the histogram 

of the data and determining whether the data are symmetric, left-skewed, right-skewed 

and using the distributions which have the same shape. According to the histogram the 

Rmax data are right-skewed (Figure 8). 

 

Figure 8. Probability Density Function of Radius of Maximum Winds 

Using EasyFit software I have done preliminary analysis of the Rmax landfall 

database on the basis of its semiboundness and skewness. Only distributions with 

maximum of 2 parameters were considered because extra parameters will make the use 

for the wind field model over complicated and not practical. Also distributions with more 

parameters may well fit the data better because of a lot more flexibility in shape than a 2-

parameter and apparent improvement may be spurious due to over-fitting. 
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Five distributions that were found to be a good fit for modeling Rmax on the basis 

of the provided criteria: Gamma, Lognormal, Rayleigh, Weibull and Inverse Gaussian. 

Gamma and Lognormal are the distributions that were considered in the Florida Public 

Hurricane Loss Model and Gamma was chosen as the best fit. Probability density 

functions of selected distributions are presented in the table (Table 6). 

Table 6. Probability density functions of distributions to be fitted to Rmax data 

 

Parameters of selected distributions were obtained using maximum likelihood 

estimators and results are presented in the table (Table 7). 

Table 7. Estimated distribution parameters for Rmax data 
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In order to determine how well the selected distributions fit the Rmax data I have 

tested them for a goodness-of-fit and the results are presented in Table 8.  

Table 8. Goodness-of-fit tests for Rmax data 

 

The idea behind the goodness-of-fit tests is to measure the distance between the 

data and the tested distribution. And although the logic of applying various goodness-of-

fit tests is the same, they differ in how the test statistic is calculated. The most commonly 

used goodness of fit tests are Kolmogorov-Smirnov, Anderson-Darling and Chi-Square. 

The two goodness-of-fit tests that were used are Kolmogorov-Smirnov and Anderson-

Darling. The chi-square test is not considered because the test has low power for 

continuous data.  

The Kolmogorov-Smirnov test was used to arrange the distributions in the order 

of performance according to that test. Since the goodness-of-fit test statistics indicate the 

distance between the data and the fitted distributions, it is obvious that the distribution 

with the lowest statistic value is the best fitting. 
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Lognormal and Inverse Gaussian distributions show poor fit for Rmax data with P-

values of Kolmogorov-Smirnov test below 0.5. Other distributions show better fits 

according to both Kolmogorov-Smirnov and Anderson-Darling tests. I conclude that 

Lognormal and Inverse Gaussian distributions are not good fits and exclude them from 

further consideration. 

The three distributions for be considered further are Weibull, Rayleigh and 

Gamma. Gamma distribution was used to fit the radius of maximum winds in the Florida 

Public Hurricane Loss Evaluation Model, however we see that other distributions 

perform better than the Gamma distribution.  

Along with the goodness of fit tests, the distribution graphs can be very helpful to 

determine the best fitting model. They enable us to visually assess the goodness of fit and 

empirically compare several fitted models. 

First I consider the Probability Density Function Graph which displays the 

theoretical PDFs of the fitted distributions and the histogram of the Rmax data (Figures 9 

and 10). Since the histogram depends on how the data are sorted into bins, two 

histograms are displayed with the Rmax values binned in 10 and 15 intervals for 

comparative analysis. All 3 distributions are plotted on the same graphs. Displaying 

several distributions at the same time will allow us to visually compare the models and 

determine how they differ. 

Although it can be difficult to come to a decision about better fit on the basis of 

these graphs as they require the arbitrary grouping of the data, the Weibull and Rayleigh 

distributions do appear to fit data better that the Gamma distribution. 
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Figure 9. PDF Graph with Rmax values binned in 10  intervals 

 

Figure 10. PDF Graph with Rmax values binned in 15 intervals 

To avoid grouping of the data we can look at the Q-Q plot (Figure 11). In the 

quantile-quantile graph the input data values are plotted against the quantiles of the fitted 

distribution and both axes of this graph are in statue miles - units of the Rmax. Weibull, 

Rayleigh and Gamma distributions are plotted on the same plot. 
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Figure 11. Q-Q plot 

 

If the distribution is the correct model, the graph points will lie on an 

approximately straight line. All 3 distributions have Q-Q plots that make us believe that 

they are good fits but Gamma and Rayleigh distributions have points further away from 

the straight line as values of Rmax get larger. This is consistent with the results of the 

Kolmogorov-Smirnov test.  

On the basis of the results of Goodness-of-fit test, the Probability Density 

Function Graph and the Q-Q plot, the Weibull distribution with parameters α=2.4736 and 

β=28.666 is the best fit for the Radius of maximum winds.  

Gamma and Weibull distributions are commonly encountered in reliability 

analysis and it is often difficult to choose between the two. Nevertheless, as explained by 

Bain and Engelhardt (1980), “even though the two models may offer similar data fits 

even for moderate sample sizes, it is still desirable to select the correct (or more nearly 
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correct) model, if possible, since inferences based on the model will often involve tail 

probabilities where the affect of the model assumption will be more critical”. 

Although the Gamma distribution cannot be rejected for modeling Rmax in the 

wind field model, I show that the Weibull distribution is a better fit for the radius of 

maximum winds. 
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V.   HOLLAND B 

Another important parameter of the wind field model is the Holland B parameter. 

Holland B is an additional parameter defining the pressure field and maximum wind 

speeds in a hurricane. It was introduced by Holland in 1980 and since been used in 

hurricane threat studies by many researchers including Powell et al. (2005), James and 

Mason (2005), Emanuel et al. (2006), Lee and Rosowsky (2007), Hall and Jewson (2008) 

and Vickery et al. (2009) among others.  

The pressure p(r) is defined as: 

ሻݎሺ݌ ൌ ௖݌	 ൅	∆݌	݁
ିቀೃ೘ೌೣ

ೝ
ቁ
ಳ

, 

where r is the distance from the center of the storm, pc is the pressure at the center of the 

storm, Δp is the difference between central minimum sea level pressure (pc) and an outer 

peripheral pressure (1013 mb), and Rmax is the radius of maximum winds. 

Introduction of B parameter results in the maximum wind speed in the simulated 

hurricane be proportional to ඥ݌∆ܤ compared to ඥ∆݌ without the Holland B. 

A model for the Holland B pressure profile parameter will be developed using a 

subset of the data published by Willoughby and Rahn (2004). Data consist of winds and 

geopotential heights obtained by NOAA and U.S. Air Force Reserve aircraft between 

1977 and 2000 and supplemented with Δp pressure deficit and Rmax values. We retained 

116 profiles with latitudes 20°-34°N, longitudes 70°-95°W, flight level winds Vmax 

>30m/s and values of B 0.5-2.2 (Appendix 2). 

Least squares fits of the Holland B model to the data will offer assessment of the 

parameters’ distributions. 
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 The FHPLM considers 2 models: in first model Holland B is correlated with the 

radius of maximum winds ሺܴ௠௔௫ሻ	and latitude of the hurricane (ݐܽܮሻ 

ܤ ൌ ଴ߚ ൅ ݐܽܮ	ଵߚ ൅ ܴ௠௔௫	ଶߚ ൅  ,ߝ

in the second model, the B parameter is also correlated with Δp2 the square difference 

between central minimum sea level pressure and an outer peripheral pressure (1013 mb) 

ܤ ൌ ଴ߚ ൅ ݐܽܮ	ଵߚ ൅ ܴ௠௔௫	ଶߚ ൅ ଶ݌∆	ଷߚ ൅  .ߝ

 Multiple regression analysis was performed on the dataset using the Proc REG 

procedure in SAS (Appendix 3A). On the basis of the least squares parameter estimates 

(Appendix 4A) the model for estimation of Holland B using the radius of maximum 

winds	and latitude of the hurricane is: 

෠ܤ ൌ 1.55384 ൅ ݐܽܮ	0.00015058 െ 0.00439	ܴ௠௔௫. 

 Testing for significance of the regression equation using ANOVA (Appendix 4A) 

showed F=7.14 with P-value=0.0012, which means this regression is significant.  

 Coefficient of determination R2 = 0.1121, which means that only 11.21% of the 

total variability in the B parameter is explained by the fitted equation. 

 Similar regression analysis was performed on the model for estimation of Holland 

B using the radius of maximum winds, latitude of the hurricane and the square difference 

between central minimum sea level pressure and an outer peripheral pressure using the 

Proc REG procedure in SAS (Appendix 3B). On the basis of the least squares parameter 

estimates (Appendix 4B) the new model is: 

෠ܤ ൌ 1.50264 ൅ ݐܽܮ	0.00086116 െ 0.00423	ܴ௠௔௫ ൅  .ଶ݌∆	0.00000885

 Testing for significance of the regression equation using ANOVA (Appendix 4B) 

showed F=4.95 with P-value=0.0029, which means this regression is significant.  
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 Coefficient of determination R2 = 0.1171, which means that only 11.71% of the 

total variability in the B parameter is explained by the fitted equation. Model including 

 ଶ has a slightly higher coefficient of determination but still does not explain most of݌∆

variability in Holland B. 

In order to obtain a model which can explain a larger portion of variability in 

Holland B parameter we can include all available predictor variables in the regression 

model: 

ܤ ൌ ଴ߚ ൅ ݐܽܮ	ଵߚ ൅ ݊݋ܮ	ଶߚ ൅ ܴ௠௔௫	ଷߚ ൅ ଶ݌∆	ସߚ ൅ 	ହߚ ௠ܸ௔௫ ൅  ,ߝ

where Lat is the latitude of the hurricane, Lon is the longitude of the hurricane, ܴ௠௔௫ is 

the radius of maximum winds, Δp2 is the square difference between central minimum sea 

level pressure and an outer peripheral pressure (1013 mb), Vmax is the maximum wind and 

 .is the error term ߝ

Using SAS Proc REG procedure (Appendix 3C) multiple regression analysis was 

performed. On the basis of the least squares parameter estimates (Appendix 4C) the 

model for estimation Holland B using all available predictor variables is: 

෠ܤ ൌ 0.25712 െ ݐܽܮ	0.001 െ ݊݋ܮ	0.00308 െ 0.00157	ܴ௠௔௫ െ ଶ݌∆	0.00006305 ൅

0.02652	 ௠ܸ௔௫. 

 Testing for significance of the regression equation using ANOVA (Appendix 4C) 

showed F=13.17 with P-value<0.0001, which means this regression is significant.  

 Coefficient of determination in this case R2 = 0.3745, which is significantly 

higher than the previous two models and means that 37.45% of the total variability in the 

B parameter is explained by the fitted equation. 
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Although this model is good it is not convenient. The model includes terms with 

large individual t-test p-values: P-value (Lat) = 0.877 and P-value (Lon) = 0.337 

(Appendix 4C). This suggests that perhaps the model is more complicated than it needs to 

be and includes some redundant terms. We should check if it can be reduced. In order to 

simplify the model a stepwise procedure on the basis of the partial F-value was chosen 

and performed on the dataset using the Proc Stepwise in SAS (Appendix 3C). Obtained 

results (Table 9) suggest the following optimal reduced model: 

෠ܤ ൌ ଴ߚ ൅ ܴ௠௔௫	ଵߚ ൅ ଶ݌∆	ଶߚ ൅ 	ଷߚ ௠ܸ௔௫ ൅  .ߝ

Table 9. Results of the stepwise procedure 

 

On the basis of the least squares parameter estimates obtained using SAS multiple 

regression analysis (Appendix 3D, 4D) the model for estimation Holland B using ܴ௠௔௫ 

the radius of maximum winds, Δp2 the square difference between central minimum sea 

level pressure and an outer peripheral pressure (1013 mb) and Vmax the maximum wind is: 

෠ܤ ൌ 0.50274 െ 0.00181	ܴ௠௔௫ െ ଶ݌∆	0.00006228 ൅ 0.02612	 ௠ܸ௔௫ 

Removing two indicators from the model increased the value of adjusted RA
2 to 

0.3520 compared to 0.3460 for the model with five predictors. Unlike R2, the adjusted 

RA
2 increases only if the new term improves the model more than would be expected by 
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chance. Compared to the full model coefficient of determination R2 was reduces from 

0.3745 to 0.3689, which is still significantly higher than the first two models. 

Throughout my analysis I have assumed that the errors are normally and 

independently distributed with mean zero and constant variance σ2 as well as that the 

observations are adequately described by the model. Residual analysis is the key tool in 

model adequacy checking. The most effective method of checking the normality 

assumption is constructing a normal probability plot of the residuals. If the errors are 

normally distributed this plot should resemble a straight line. While investigating this plot 

the focus should be on the central values of the plot rather than the extremes. The normal 

probability plot of the residuals for Holland B with Rmax, Δp2 and Vmax as predictors 

(Figure 12) resembles a straight line with all values being in (-2.7,2.7) z- range.  

Figure 12. Normal Probability Plot 

 

Plot of residuals vs. predicted values (Figure 13) does not reveal any obvious 

patterns. Data are scattered randomly around 0. This supports the assumption that the 

error distribution for Holland B with Rmax, Δp2 and Vmax as predictors is approximately 

normal. 
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Figure 13. Plot of Residuals vs. Predicted values 

Four models for Holland B parameter were considered. First two models, both 

used in the FHPLM, could only explain 11.21% and 11.71% of the total variability in the 

B parameter. The first model used the radius of maximum winds and the latitude of the 

hurricane and predictor variables; the second model also considered the square difference 

between central minimum sea level pressure and an outer peripheral pressure. The third 

model explained 37.45% of the total variability in Holland B but included five predictor 

variables. The fourth model was chosen to be the most optimal for use in predicting the 

Holland B parameter. It explains 36.89% of the total variability in the predicted 

parameter and correlated Holland B with the radius of maximum winds, the square 

difference between central minimum sea level pressure and an outer peripheral pressure 

and the maximum wind: 

෠ܤ ൌ 0.50274 െ 0.00181	ܴ௠௔௫ െ ଶ݌∆	0.00006228 ൅ 0.02612	 ௠ܸ௔௫. 
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VI.   FINAL RESULTS AND CONCLUSIONS 

The FPHLM is the only open public hurricane loss evaluation model available for 

assessment of hazard to insured residential property related to damage from hurricanes in 

Florida. Atmospheric science component is the first part of this model; it simulates 

thousands of storms, their wind speeds and their decay once on land on the basis of 

historical hurricane statistics defining wind risk for all residential zip codes in Florida.  

The focus of my thesis was to analyze the atmospheric science component of the 

Florida Public Hurricane Loss Model, replicate statistical procedures used to model 

various parameters of atmospheric component and to validate the model. 

First I looked at the available data from the time point prospective and checked 

for increasing trends in hurricane intensity, size or number of hurricanes striking Florida. 

The time series of annual hurricane counts, the plot of radius of maximum winds in time 

or the plot of central pressure in time show no visible patterns in the data and nothing 

suggests an increasing trend. My findings do not support the argument that global tropical 

cyclone intensity, frequency and longevity have undergone increases in the recent years. I 

concluded that no significant increasing trend is evident. 

Next I studied the frequency with which hurricanes occur and generated statistical 

distribution from the available historical data in order to estimate annual hurricane 

occurrence. Two distributions were considered: Poisson and Negative Binomial. On the 

basis of the results of goodness-of-fit tests, histograms of historical and modeled 

occurrences and P-P plots, I concluded that the best fitting distribution for the annual 

hurricane occurrence is the Poisson distribution with parameter λ=1.1091.  
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Further I modeled the distribution of radius of maximum winds which is a critical 

parameter for estimating the possible losses for insurance pricing purposes. The radius of 

maximum winds has a substantial impact on the area affected by hurricane and modeling 

of the Rmax influences the likelihood of the location experiencing strong winds in cases of 

near misses. Five distributions were considered: Gamma, Lognormal, Rayleigh, Weibull 

and Inverse Gaussian. On the basis of the results of the Goodness-of-fit test, Probability 

Density Function Graph and the Q-Q plot, the Weibull distribution with parameters 

α=2.4736 and β=28.666 was chosen as the best fit for the Radius of maximum winds.  

The FPHLM currently uses Gamma distribution for modeling radius of maximum winds 

and although the Gamma distribution cannot be rejected for modeling Rmax in the wind 

field model, I showed that the Weibull distribution is better fit. 

Finally, the expression for finding an exact statistical relationship between the 

pressure profile parameter Holland and its’ predictor variables was computed. Four 

models for the Holland B parameter were considered. The first two models, both 

considered in the FHPLM, could only explain 11.21% and 11.71% of the total variability 

in the B parameter. The third model explained 37.45% of the total variability in Holland 

B but included five predictor variables. The fourth model was chosen to be the most 

optimal to use in predicting Holland B parameter. It explains 36.89% of the total 

variability in the predicted parameter and correlated Holland B with the radius of 

maximum winds, the square difference between central minimum sea level pressure and 

an outer peripheral pressure and the maximum wind: ܤ෠ ൌ 0.50274 െ 0.00181	ܴ௠௔௫ െ

ଶ݌∆	0.00006228 ൅ 0.02612	 ௠ܸ௔௫. 
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APPENDICES 

Appendix 1. Landfall Rmax database 

 

Year Name Rmax (sm) Po (mb) LFLat LFLon
1901 No_name 37.95 972.6 30.4 88.8
1903 No_name 49.45 976.6 26.1 80.1
1906 No_name 29.90 979 27.4 80.1
1906 No_name 29.90 979 25.1 81
1906 No_name 34.50 976.6 33.3 79.2
1906 No_name 40.25 976.6 26.4 80.1
1906 No_name 18.40 966.8 24.9 81
1906 No_name 49.45 965.1 30.4 88.7
1909 No_name 25.30 957 24.7 81
1910 No_name 36.80 953.3 26 81.7
1910 No_name 32.20 941.4 24.4 82.7
1911 No_name 31.05 979.3 32.2 80.6
1915 No_name 29.90 932.3 29.2 90
1916 No_name 21.85 973.9 30.3 87.5
1916 No_name 29.90 950.2 30.4 88.3
1917 No_name 37.95 964.4 30.4 86.7
1919 No_name 17.25 929.2 24.6 82.9
1921 No_name 20.70 960 27.9 82.8
1924 No_name 24.15 978.3 25.5 81.7
1924 No_name 21.85 971.9 24.6 82.9
1926 No_name 16.10 959.7 29.9 81.3
1926 No_name 19.55 955 30.3 87.5
1926 No_name 27.60 950 26.4 81.9
1926 No_name 24.15 931.9 23.9 80.4
1926 No_name 21.85 931 25.6 80.3
1928 No_name 32.20 935.3 26.7 80
1929 No_name 32.20 948.2 25 80.5
1933 No_name 14.95 947.5 26.9 80.1
1935 No_name 11.50 977 25.2 81.1
1935 No_name 11.50 972.9 25.9 80.1
1936 No_name 21.85 963.8 30.4 86.4
1940 No_name 31.05 974.6 32.1 80.8
1941 No_name 20.70 981.4 29.8 84.7
1944 No_name 33.35 948.9 24.6 82.8
1945 No_name 13.80 951.2 25.3 80.3
1947 No_name 14.95 968.2 31.9 81.1
1947 No_name 26.45 966.5 29.6 89.5
1947 No_name 29.90 960 26.3 81.8
1947 No_name 29.90 946.8 26.3 80.1
1948 No_name 18.40 977 25.9 80.1
1948 No_name 18.40 963.4 27.2 80.2
1948 No_name 14.95 962.7 24.8 81
1948 No_name 18.40 950.9 25.9 81.7
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Year Name Rmax (sm) Po (mb) LFLat LFLon
1948 No_name 8.05 935.3 24.6 81.7
1949 No_name 26.45 953.6 26.9 80
1950 Baker 24.15 979.3 30.2 88.1
1950 Easy 17.25 958.3 28.6 82.7
1950 King 6.90 955 26.1 80.1
1956 Flossy 20.70 973.9 30.4 86.4
1958 Helene 28.75 932 32.7 78.7
1959 Gracie 29.90 950.9 32.5 80.4
1960 Ethel 25.30 976 30.3 89.3
1960 Donna 27.60 970 29.5 81.1
1960 Donna 20.70 930 24.8 80.9
1964 Isbell 14.95 977.7 26.9 80
1964 Cleo 8.05 967.5 25.7 80.2
1964 Isbell 11.50 964.1 25.8 81.3
1964 Dora 39.10 961 29.9 81.3
1965 Betsy 25.30 951.9 25 80.5
1966 Alma 23.00 977 30.1 84.2
1966 Inez 17.25 977 24.1 84.1
1966 Alma 17.25 970.2 24.6 82.9
1968 Gladys 19.55 977 28.6 82.7
1972 Agnes 23.00 978 29.9 85.4
1975 Eloise 16.10 955 30.3 86.5
1976 Belle 28.75 963.1 32.5 75.2
1979 David 11.50 968 31.6 81.2
1979 David 31.05 968 27.1 80.1
1979 Frederic 37.95 946 30.4 88.3
1985 Bob 27.95 1003 32.2 80.5
1985 Elena 46.58 971 28.8 83.8
1985 Kate 27.95 967 30 85.4
1985 Elena 17.20 959 30.4 89.2
1985 Elena 18.63 954 29.4 85.9
1987 Floyd 15.53 993 24.8 81
1988 FLORENCE 28.75 983 28.7 89.3
1989 HUGO 40.25 935 31.7 78.8
1991 BOB 34.50 965 33 76.1
1992 ANDREW 17.25 947 25.8 83.1
1995 ERIN 46.00 988 29.6 83.4
1995 ERIN 23.00 985 30.6 87.5
1995 ERIN 46.00 985 27.7 80.4
1995 ERIN 23.00 974 29.8 86.6
1995 OPAL 28.75 938 29 87.7
1996 BERTHA 28.75 984 31.2 78.6
1996 FRAN 23.00 954 31 77.2
1997 DANNY 34.50 992 29.2 89.9
1997 DANNY 11.50 990 29.5 89.4
1997 DANNY 17.25 984 30.3 88
1998 GEORGES 34.50 982 23.9 81.3
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Year Name Rmax (sm) Po (mb) LFLat LFLon
1998 GEORGES 34.50 965 30.4 88.9
1998 BONNIE 46.00 958 30.8 76.4
1999 IRENE 46.00 982 27.8 80.1
1999 DENNIS 46.00 967 30.8 78.4
1999 FLOYD 40.25 947 30.6 79.1
2004 FRANCES 37.95 960 27.2 80.2
2004 JEANNE 51.75 953 27.3 80.2
2004 CHARLEY 5.75 947 26.56 82.29
2004 IVAN 26.45 943 30.2 87.8
2005 KATRINA 10.72 986 25.88 80.13
2005 RITA 12.65 976 23.75 82
2005 WILMA 52.90 951 25.92 81.58
2005 DENNIS 5.75 946 30.38 87.05
2005 DENNIS Cuba 9.19 937 22.1 80.6
2005 KATRINA 19.55 932 30.25 89.62
2007 Humberto 12.65 985 29.5 94.4
2008 Dolly 6.90 967 26.4 97.2
2008 Paloma_Cuba 14.95 970 20.7 78
2008 Gustav 29.90 941 22.4 83.1
2008 Ike 42.55 950 29.3 94.7
2010 Paula_Cuba 16.10 1000 22.7 83.9
2010 Earl 31.00 935 30.1 74.8
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Appendix 2. Holland B database 

 

Hurricane Name Pmin B Rmax DelP^2 Vmax Lat Lon

1 LILI96_18H1 978 0.69 78 1225 30.02 21.83 -82.13
2 ERIN95_01U1 990 1.24 42.5 529 30.47 25.42 -76.32
3 GEORGES98_25I1 981 1.5 72.5 1024 30.59 23.43 -80.15
4 ROXANNE95_16U1 982 1.18 38 961 30.86 20.35 -92.11
5 FLORENCE88_09H 991 1.36 36 484 30.98 28.67 -89.34
6 DAVID79_02H 993 1.24 46.5 400 31.29 24.41 -78.03
7 ALICIA83_17I 982 1.21 36 961 31.3 27.68 -93.83
8 BONNIE98_22U1 990 1.16 30.5 529 31.32 22.69 -70.14
9 BOB91_18U1 979 0.78 44 1156 31.38 30.7 -76.82

10 DAVID79_02I 988 1.47 48.5 625 31.56 23.67 -77.04
11 DANNY85_15I1 993 1.69 58.5 400 31.73 29.61 -92.7
12 DANNY85_15H1 993 2.06 62 400 32.1 28.59 -92.33
13 DANIELLE98_30I 988 1.32 37.5 625 32.16 27.84 -74.16
14 FRAN96_03U1 976 1.28 76.5 1369 32.17 24.68 -70.65
15 DANIELLE98_31U3 976 1.01 32.5 1369 32.35 31.14 -73.23
16 DANIELLE98_30U2 988 1.2 32.5 625 32.46 28.13 -74.27
17 ERIN95_01U2 986 1.45 37.5 729 32.89 26.47 -78.09
18 GEORGES98_28U2 966 0.93 32.5 2209 33.29 30.45 -88.9
19 OPAL95_03U2 967 1.09 27 2116 33.75 24.13 -90.34
20 DAVID79_03F 974 1.33 38 1521 33.81 25.57 -79.25
21 ELENA85_1_30I 980 0.85 70 1089 33.9 27.47 -87.44
22 BERTHA96_09U2 963 0.87 78 2500 33.95 23.63 -72.5
23 DENNIS99_28U1 969 1.18 60.5 1936 34.01 27.01 -76.93
24 OPAL95_03U1A 969 1.53 42.5 1936 34.23 22.26 -92.2
25 ERIN95_02U2 987 1.51 33.5 676 34.44 29.15 -85.52
26 GEORGES98_25H1 981 1.31 66.5 1024 35.11 24.27 -81.81
27 GEORGES98_25U1 986 1.18 46.5 729 35.15 24.83 -83.15
28 DANIELLE98_31U1 982 1.27 28 961 35.19 29.68 -73.81
29 DANIELLE98_01U1 973 0.83 77.5 1600 35.55 32.38 -71.6
30 GEORGES98_26U1 974 1.24 46 1521 35.74 25.43 -84.41
31 GEORGES98_27U2 966 0.84 61 2209 35.92 29.03 -88.32
32 GEORGES98_26U3 975 1.09 38.5 1444 36.29 27.2 -86.79
33 GEORGES98_26U2 974 1.06 38 1521 36.5 26.32 -85.75
34 BERTHA96_12U2 979 1.15 74.5 1156 36.71 32.75 -78.1
35 BERTHA96_09U1 965 1.14 34 2304 37.24 21.95 -70.09
36 GEORGES98_28U1 962 1.2 40.5 2601 37.46 29.8 -88.73
37 ELENA85_2_31H 975 1.31 68 1444 37.55 28.77 -84.27
38 EMILY93_29U4 978 1.45 47.5 1225 37.59 31.43 -70.37
39 GEORGES98_27U1 970 1.02 42.5 1849 37.71 28.21 -87.73
40 ELENA85_2_31I 975 1.04 68 1444 37.72 28.78 -83.82
41 ERIN95_03U1 982 1.57 24.5 961 37.91 30.02 -86.77
42 BOB91_18U2 976 1.17 29.5 1369 38.01 32.99 -76.07
43 ELENA85_2_30I2 976 1.39 66.5 1369 38.24 28.52 -85.36
44 GLORIA85_3_26I 945 1 45.5 4624 38.69 29.26 -75.13
45 DENNIS99_29U2 971 1.44 58 1764 39.21 32.09 -78.04
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Hurricane Name Pmin B Rmax DelP^2 Vmax Lat Lon

46 FLOYD99_15U3 945 1.66 54.5 4624 39.25 33.59 -77.96
47 DENNIS99_28U3 979 1.62 75 1156 39.4 28.96 -77.93
48 GILBERT88_15I1 947 1.02 68.5 4356 39.53 21.97 -92.07
49 ALICIA83_17H 982 1.43 32.5 961 39.7 27.97 -94.37
50 BONNIE98_25U2 963 1.21 86.5 2500 39.72 31.31 -76.9
51 ALICIA83_17I2 979 1.16 20.5 1156 40.13 28.49 -94.69
52 BONNIE98_26U1 961 1.32 84 2704 40.25 32.54 -77.67
53 LILI96_18H2 975 1.52 42 1444 40.73 23.24 -77.14
54 DENNIS99_29U1 970 1.73 70 1849 40.81 30.34 -78.27
55 GILBERT88_15I2 950 1.22 54.5 3969 40.86 22.7 -94.18
56 HORTENSE96_13U1 938 0.98 17 5625 41 27.96 -71.19
57 DENNIS99_28U2 974 1.27 90.5 1521 41.08 27.95 -77.5
58 BONNIE98_22U2 984 1.25 40 841 41.27 23.62 -71.26
59 BONNIE98_24U2 961 1.17 83.5 2704 41.38 27.16 -73.24
60 DIANA84_2_12I 960 1.26 16 2809 41.55 33.96 -77.17
61 FRAN96_05U1 949 0.97 83 4096 41.64 30.82 -77.13
62 DIANA84_2_11I 958 1.57 24 3025 41.74 31.69 -78.73
63 FRAN96_05U2 953 0.99 92.5 3600 41.77 33 -77.86
64 EMILY93_30U2 975 1.52 35 1444 42.04 32.35 -73.07
65 FRAN96_04U3 954 0.8 90.5 3481 42.15 29.09 -76.31
66 BONNIE98_26U2 964 1.31 78.5 2401 42.29 33.8 -77.86
67 DIANA84_2_12H2 968 1.49 29.5 2025 42.33 33.86 -77.6
68 FREDERIC79_11H 976 1.76 37.5 1369 42.67 24.69 -85.15
69 EDOUARD96_31U1 947 1.09 56 4356 42.86 32.11 -70.15
70 ELENA85_2_01H 962 1.39 36 2601 42.98 28.58 -84.07
71 FLOYD99_15U2 939 1.42 63 5476 43.16 31.14 -78.88
72 BONNIE98_23U3 957 0.97 92.5 3136 43.35 24.99 -71.9
73 EMILY93_31U1 971 1.63 39.5 1764 43.41 33.05 -74.23
74 FRAN96_03U2 974 1.75 56 1521 43.77 25.48 -72.64
75 FREDERIC79_11IA 976 1.69 37.5 1369 43.8 25.44 -85.5
76 FLOYD99_15I 939 1.68 49 5476 43.86 32.16 -78.55
77 BONNIE98_23U1 961 1.39 33.5 2704 44.14 24.2 -71.56
78 FRAN96_04U1 957 1.46 45 3136 45.03 27.7 -75.4
79 BONNIE98_26I 961 1.33 79.5 2704 45.03 33.69 -77.87
80 BONNIE98_24U1 957 1.33 91.5 3136 45.19 25.73 -72.44
81 HORTENSE96_11I1 976 1.73 27 1369 45.58 21.86 -70.84
82 BONNIE98_24I 960 1.4 76 2809 46.04 26.68 -72.97
83 FRAN96_05H1A 952 1.43 72 3721 46.48 33.44 -77.97
84 OPAL95_04U1 944 0.96 17.5 4761 46.76 26.45 -88.95
85 FREDERIC79_11IC 976 1.65 32.5 1369 48.33 26.06 -86.15
86 ELENA85_2_01I 962 1.46 28.5 2601 48.72 28.89 -84.63
87 FREDERIC79_12F 951 0.95 68 3844 48.77 28.14 -87.42
88 EDOUARD96_30U2 938 0.88 65 5625 48.83 29.62 -70.45
89 ANDREW92_25U2 947 1.22 31 4356 49.28 27.07 -87.96
90 HORTENSE96_12H1 956 1.62 23 3249 49.75 23.28 -71.58
91 FLOYD99_15U1 934 1.71 65 6241 49.91 29.25 -78.88
92 FLOYD99_14U1 926 1.25 35.5 7569 49.96 25.05 -75.66
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Hurricane Name Pmin B Rmax DelP^2 Vmax Lat Lon

93 FREDERIC79_11IB 976 2.06 37.5 1369 50.58 25.81 -85.7
94 ELENA85_2_02I 956 1.6 30 3249 50.66 29.66 -87.15
95 ANDREW92_22U2 988 1.69 16 625 51.04 25.67 -71.68
96 DIANA84_2_11H 966 1.59 16.5 2209 51.28 32.83 -78.23
97 FREDERIC79_12H2 951 1.64 46 3844 51.38 29.97 -88.2
98 ANDREW92_24U1 933 1.32 17 6400 51.39 25.85 -83.54
99 FREDERIC79_12H1B 951 1.58 32 3844 51.96 27.05 -86.8

100 DIANA84_2_11I2 956 1.49 17.5 3249 52.81 33.72 -77.71
101 ANDREW92_25U4 943 1.59 27 4900 53.13 29.15 -91.3
102 FLOYD99_14U2 928 1.22 69.5 7225 53.23 26.05 -76.86
103 ALLEN80_06I 955 1.64 24 3364 53.4 20.15 -81.42
104 EDOUARD96_30U1 940 1.5 29.5 5329 54.12 27.83 -70.28
105 HORTENSE96_12U1 964 1.66 16.5 2401 54.92 25.09 -71.66
106 FLOYD99_13I 923.5 1.57 35 8010.25 55.6 24.41 -73.73
107 FLOYD99_14U3 930 1.71 66 6889 56.79 27.62 -77.87
108 ANDREW92_23U2 940 1.29 12 5329 56.88 25.43 -77.05
109 ALLEN80_08I 940 1.56 15 5329 57.58 24.28 -92.47
110 FREDERIC79_12H1A 951 2 30.5 3844 58.35 26.54 -86.51
111 ANDREW92_25U3 948 1.66 27.5 4225 59.64 28.09 -90.09
112 FLOYD99_13U1 927 1.68 35 7396 60.66 23.78 -70.6
113 ANDREW92_23U3 927 1.68 20 7396 62.26 25.46 -79.54
114 ANDREW92_23U1 954 1.58 13.5 3481 63.42 25.38 -75.04
115 GILBERT88_14H1 889 1.38 12 15376 63.61 20.16 -85.75
116 ALLEN80_07H 905 1.95 16.5 11664 76.28 21.77 -86.46
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Appendix 3. SAS codes 

A. SAS code for estimation Holland B using the radius of maximum winds	and 

latitude 

title 'hollandB'; 
data holland; 
infile "c:\hollandB.dat"; 
input y x1 x2 x3 x4 x5; 
proc print; 
proc reg; 
model y=x1 x3 / p r xpx i covb dw; 
output out=new p=yhat r=resid; 
proc plot data=new; 
plot resid*yhat; 
proc univariate normal plot data=new; 
var resid; 
run; 

B. SAS code for estimation Holland B using the radius of maximum winds, the 

square difference between central minimum sea level pressure and an outer 

peripheral pressure	and latitude 

title 'hollandB'; 
data holland; 
infile "c:\hollandB.dat"; 
input y x1 x2 x3 x4 x5; 
proc print; 
proc reg; 
model y=x1 x3 x4 / p r xpx i covb dw; 
output out=new p=yhat r=resid; 
proc plot data=new; 
plot resid*yhat; 
proc univariate normal plot data=new; 
var resid; 
run; 

C. SAS code for estimation Holland B using the latitude, the longitude, the radius of 

maximum winds, the square difference between central minimum sea level 

pressure and an outer peripheral pressure and the maximum wind 

title 'hollandB'; 
data holland; 
infile "c:\hollandB.dat"; 
input y lat lon rmax delp2 vmax; 
proc print; 
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proc reg; 
model y=lat lon rmax delp2 vmax / p r xpx i covb dw; 
output out=new p=yhat r=resid; 
proc plot data=new; 
plot resid*yhat; 
proc univariate normal plot data=new; 
var resid; 
proc stepwise data=holland; 
model y=lat lon rmax delp2 vmax / stepwise; 
run; 
 

D. SAS code for estimation Holland B using the radius of maximum winds, the 

square difference between central minimum sea level pressure and an outer 

peripheral pressure and the maximum wind 

 
title 'hollandB'; 
data holland; 
infile "c:\hollandB.dat"; 
input y lat lon rmax delp2 vmax; 
proc print; 
proc reg; 
model y=rmax delp2 vmax / p r xpx i covb dw; 
output out=new p=yhat r=resid; 
proc plot data=new; 
plot resid*yhat; 
proc univariate normal plot data=new; 
var resid; 
run;  
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Appendix 4. SAS output 

A. SAS output using the radius of maximum winds	and latitude 
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B. SAS output using the radius of maximum winds, the square difference between 

central minimum sea level pressure and an outer peripheral pressure	and latitude 
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C. SAS output using the latitude, the longitude, the radius of maximum winds, the 

square difference between central minimum sea level pressure and an outer 

peripheral pressure and the maximum wind 
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D. SAS output using the radius of maximum winds, the square difference between 

central minimum sea level pressure and an outer peripheral pressure and the 

maximum wind 
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