
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-27-2014

Two-Bit Pattern Analysis For Quantitative
Information Flow
Ziyuan Meng
zmeng001@fiu.edu

DOI: 10.25148/etd.FI14040860
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Information Security Commons, and the Programming Languages and Compilers
Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Meng, Ziyuan, "Two-Bit Pattern Analysis For Quantitative Information Flow" (2014). FIU Electronic Theses and Dissertations. 1326.
https://digitalcommons.fiu.edu/etd/1326

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.fiu.edu%2Fetd%2F1326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.fiu.edu%2Fetd%2F1326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.fiu.edu%2Fetd%2F1326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1326?utm_source=digitalcommons.fiu.edu%2Fetd%2F1326&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

TWO-BIT PATTERN ANALYSIS FOR QUANTITATIVE INFORMATION

FLOW

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Ziyuan Meng

2014

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Ziyuan Meng, and entitled Two-Bit Pattern Analysis
for Quantitative Information Flow, having been approved in respect to style and
intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Jinpeng Wei

Bogdan Carbunar

Jeffrey Fan

Raju Rangaswami

Geoffrey Smith, Major Professor

Date of Defense: March 27, 2014

The dissertation of Ziyuan Meng is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2014

ii

c© Copyright 2014 by Ziyuan Meng

All rights reserved.

iii

DEDICATION

To my parents.

iv

ACKNOWLEDGMENTS

I would like to dedicate this thesis to my family and friends for their love and

support, in particular, to my mother Yuanlan Hu and father Zhongxiang Meng, who

have made my accomplishments possible. I would also like to recognize my friends in

the Florida International University community. I truly appreciate the inspiration

and encouragement you have given me during my time in the doctoral program.

Special thanks to my friend and advisor Geoffrey Smith for his guidance, con-

fidence in my abilities and balanced perspective on life. I wish to thank other

members of my dissertation committee: Jinpeng Wei, Raju Rangaswami, Jeffrey

Fan and Bogdan Carbunar for generously offering their time, support, guidance and

good will throughout the preparation and review of this document. I also want to

thank Alexander Tepper for his help in editing this dissertation.

v

ABSTRACT OF THE DISSERTATION

TWO-BIT PATTERN ANALYSIS FOR QUANTITATIVE INFORMATION

FLOW

by

Ziyuan Meng

Florida International University, 2014

Miami, Florida

Professor Geoffrey Smith, Major Professor

Protecting confidential information from improper disclosure is a fundamental

security goal. While encryption and access control are important tools for ensuring

confidentiality, they cannot prevent an authorized system from leaking confidential

information to its publicly observable outputs, whether inadvertently or maliciously.

Hence, secure information flow aims to provide end-to-end control of information

flow. Unfortunately, the traditionally-adopted policy of noninterference, which for-

bids all improper leakage, is often too restrictive. Theories of quantitative informa-

tion flow address this issue by quantifying the amount of confidential information

leaked by a system, with the goal of showing that it is intuitively “small” enough

to be tolerated. Given such a theory, it is crucial to develop automated techniques

for calculating the leakage in a system.

This dissertation is concerned with program analysis for calculating the maxi-

mum leakage, or capacity, of confidential information in the context of deterministic

systems and under three proposed entropy measures of information leakage: Shan-

non entropy leakage, min-entropy leakage, and g-leakage. In this context, it turns

out that calculating the maximum leakage of a program reduces to counting the

number of possible outputs that it can produce.

vi

The new approach introduced in this dissertation is to determine two-bit pat-

terns, the relationships among pairs of bits in the output; for instance we might

determine that two bits must be unequal. By counting the number of solutions to

the two-bit patterns, we obtain an upper bound on the number of possible outputs.

Hence, the maximum leakage can be bounded. We first describe a straightforward

computation of the two-bit patterns using an automated prover. We then show a

more efficient implementation that uses an implication graph to represent the two-

bit patterns. It efficiently constructs the graph through the use of an automated

prover, random executions, STP counterexamples, and deductive closure. The ef-

fectiveness of our techniques, both in terms of efficiency and accuracy, is shown

through a number of case studies found in recent literature.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Organization . 7

2. PRELIMINARIES . 8
2.1 Information Channel . 8
2.2 Measuring Leakage using Mutual Information 9
2.3 Measuring Leakage using Min-entropy 11
2.4 Measuring Leakage using Gain Functions and g-leakage 14
2.5 Channel Capacity . 17

3. TWO-BIT PATTERNS . 20
3.1 Deriving Predicates . 21
3.2 Discovering One-Bit and Two-Bit Patterns 23
3.3 Counting the Number of Solutions . 28

4. OPTIMIZATION . 31
4.1 Formal Framework . 31
4.1.1 Implication Graphs . 32
4.1.2 Semantic Characterization . 33
4.2 One-bit Patterns, Random Execution, and STP Counterexamples 35
4.3 Two-bit Patterns and Deductive Closure 36
4.4 Computing Implication Graphs Efficiently 40
4.5 Revisiting the Illustrative Example . 42

5. EXPERIMENTS . 43
5.1 Sanity Check . 43
5.2 Implicit Flow . 45
5.3 Population Count . 46
5.4 Mix and Duplicate . 47
5.5 Masked Copy . 48
5.6 Binary Search . 49
5.7 Electronic Purse . 50
5.8 Sum Query . 51
5.9 Ten Random Outputs . 52
5.10 Summary . 53

viii

6. RELATED WORK . 58
6.1 Calculating Quantitative Information Flow 58
6.2 Binary Implication Graph . 64
6.3 Unit-Two Variable Per Inequality Constraints 67

7. CONCLUSION AND FUTURE WORK 69
7.1 Conclusion . 69
7.2 Future Work . 69
7.2.1 Abstract Interpretation . 70
7.3 Low Input . 73
7.4 The Origin of Undue Information Flow 73

BIBLIOGRAPHY . 77

VITA . 81

ix

LIST OF FIGURES

FIGURE PAGE

1.1 Two-bit patterns for {00010, 10001, 00001, 00110, 10101, 00101} 4

3.1 Illustrative example program that leaks information from X to Y 20

3.2 Translation of illustrative example into STP 22

3.3 Algorithm to determine two-bit patterns for Yf 27

4.1 The implication graph for {00010, 10001, 00001, 00110, 10101, 00101} . 33

4.2 A partially-known implication graph . 37

6.1 The symbolic representation for {000, 100, 110} 62

6.2 A SQIF state exploration trace for sanity check program 63

6.3 An implication graph derived from E (reprinted from [HJB11]) 65

6.4 Stamp times in IG(E) (reprinted from [HJB11]) 66

7.1 The stack holds the return address, the arguments, and the local vari-
ables for foo . 75

7.2 The stack with overwritten return address 76

x

CHAPTER 1

INTRODUCTION

1.1 Motivation

With mobile devices and networking technology becoming more widespread, com-

puting systems process more confidential information than ever. Users would like

to know whether this information has been leaked to other undesirable users. Tra-

ditional approaches to information security, such as access control and encryption,

cannot guarantee control over the way in which this confidential information is dis-

tributed/propagated. For instance, an Android download can claim to respect the

system’s permission management, yet secretly send sensitive information to the net-

work after it is authorized. Similarly, encryption can ensure that only the endpoints

of a communication channel have access to the secret information. However, it

cannot stop the receiver from improperly distributing the decrypted data.

The concept of secure information flow aims to provide an end-to-end mechanism

to control the flow of information, and therefore, protect the confidential data.

Unfortunately, the traditionally-adopted policy of non-interference, which forbids

all improper leakage, is often unrealistic in many application senarios. There are

two main reasons for this. First, in some applications, leakage is an intrinsic part of

their functionalities. For instance, an ATM machine that rejects an incorrect PIN,

thereby reveals that the secret PIN differs from the one that was entered. Similarly,

publishing the tally of votes in an election manifests some information about the

secret ballots that were cast. Another more subtle reason of leakage is the side

channel. For instance, the amount of time taken by a cryptographic operation may

be observable by an adversary and may inadvertently reveal information about the

secret key. As a result, the last decade has seen growing interest in quantitative

1

theories of information flow, which address this problem by quantifying the amount

of confidential information leaked by a system, with the goal of showing that it is

“small” enough to be tolerated [CHM05, CMS05, KB07, Smi09, AAP10, HSP10].

Given such a theory, it is crucial to develop automatic techniques for calculating

or estimating the amount of leakage in a system, in order to verify whether it

conforms to a given quantitative flow policy. This is an area that is now seeing

a great deal of work, both in the context of deterministic imperative programs

[BKR09, KR10, NMS09, HM10] and probabilistic systems [APvRS10, CCG10], and

utilizing both model checking and statistical sampling techniques.

To give some quick intuition, assume (as we will throughout this dissertation)

that X and Y are 32-bit unsigned integers, where X is the secret input and Y is the

observable output. Consider the following three C programs:

1. Y = X;,

2. Y = 17;,

3. Y = X & 0x1f;

Intuitively, it seems clear that the leakage of these three programs should be 32, 0,

and 5 bits, respectively. Notice that these quantities are the logarithms (to base 2)

of the number of feasible values for Y, which is 232, 1, and 25, respectively.

1.2 Contributions

The major contribution in this dissertation is to introduce and explore the use of

what we call two-bit patterns to calculate upper bounds on the maximum amount of

leakage in deterministic imperative programs under Shannon entropy , min-entropy ,

and the recently proposed g-entropy . Min-entropy leakage and g-entropy leakage

2

are alternatives to the more commonly-used measure based on Shannon entropy

and mutual information. In Chapter 2, we review these theories and motivations

in the context of security. For now, it suffices to know that the capacity (i.e. their

maximum leakage over all prior distributions on the secret input) of deterministic

systems, whether measured by Shannon entropy or min-entropy, is the logarithm of

the number of feasible outputs. And this quantity is also an upper bound on the

g-leakage, for any gain function g [Smi09, BCP09, ACPS12].

Thus, the problem can be reduced to calculate the number of feasible outputs

that a deterministic program can produce. Our approach to bounding this quantity

is to determine two-bit patterns among the bits of the feasible outputs. The key

idea is to bound the number of feasible outputs by determining one-bit patterns

that constrain each individual bit and two-bit patterns that constrain each pair of

bits in the output. For example, suppose that the program has 6 feasible outputs:

{00010, 10001, 00001, 00110, 10101, 00101}

where we index the 5 bit positions from 4 down to 0. Studying these outputs, we

notice that bit 3 is fixed—it is 0 in every output, which we express as Zero(3). In

contrast, bits 4, 2, 1, and 0 can each be 0 or 1, and we refer to them as Non-fixed.

Notice that it is only the non-fixed bits that give rise to multiple outputs; here the

fact that there are 4 non-fixed bits tells us immediately that there can be at most

24 = 16 feasible outputs.

We can tighten this bound by considering the relationship between each pair of

non-fixed bits. For instance, if we examine bits 4 and 0, we see that the possible

combinations of values that they can take are {00, 11, 01}, which we express as

Leq(4, 0). Bits 4 and 2, in contrast, can take all four combinations {00, 10, 01, 11},

which we express as Free(4, 2). The complete two-bit patterns for this example are

3

Zero(3)


4 2 1 0

4 Eq Free Nand Leq
2 Free Eq Free Free
1 Nand Free Eq Neq
0 Geq Free Neq Eq


Figure 1.1: Two-bit patterns for {00010, 10001, 00001, 00110, 10101, 00101}

shown in Figure 1.1. Two-bit patterns represent constraints that must be satisfied

by the bits of each feasible output. If we count the number of solutions to the two-

bit patterns, we get an upper bound on the number of feasible outputs. In this case,

it turns out that there are just 6 solutions, meaning that here our upper bound is

exact.

For a small program, the two-bit patterns of its output could be calculated by

using STP solver, an automated theorem prover. Consider the C-like programs that

take as input a secret value X and produce an output Y, where we assume that all

variables are 32-bit unsigned integers. The idea of two-bit patterns is to determine,

for every pair (i, j) of bit positions,1 which of the four combinations (0, 0), (0, 1),

(1, 0), and (1, 1) are possible values for bits i and j of Y. As an example, consider

the following program, adapted from [NMS09]:

Y = ((X >> 16) ^ X) & 0xffff;

Y = Y | Y << 16;

This program can be translated into the following STP assertions, where the symbol

Y1 denotes the intermediate value of variable Y:

X : BITVECTOR(32);

Y1, Y : BITVECTOR(32);

1We number the bits from 0 to 31, right to left.

4

ASSERT(Y1 = BVXOR((X >> 16), X) & 0hex0000ffff);

ASSERT(Y = Y1 | (Y1 << 16));

Then the bit-patterns for Y is determined by making STP queries, which ask whether

a given property (e.g., “Y[3] = Y[19]”) is a logical consequence of the ASSERT

statements. We use one or two STP queries to determine each one-bit pattern,

and then use a decision tree of at most four STP queries to determine the two-bit

pattern among each pair of non-fixed bits. In this case, there are 32 · 31/2 = 496

two-bit patterns on Y; the only interesting patterns are that bits i and i + 16 must

be equal, for 0 ≤ i ≤ 15. That is, bits i and i + 16 can be (0, 0) or (1, 1), but not

(0, 1) or (1, 0). If we count the number of solutions to the two-bit patterns by using

the SatisfiabilityCount function of Mathematica, we get an upper bound on the

number of possible values of Y. Here there are 216 solutions to the two-bit patterns,

giving a maximum leakage of at most log 216 = 16 bits, which is exact in this case.

Notice that two-bit patterns subsume one-bit patterns, which classify each bit as

0, 1, or non-fixed. For example, if we know that bits i and j cannot be (0, 0) or (0, 1),

then we know that bit i must be 1. But one-bit patterns are clearly inadequate for

estimating leakage, as seen by an example like:

if (X % 2 == 0)

Y = 0;

else

Y = 0xffffffff;

in which all 32 bits of Y are non-fixed, even though Y has only two possible values.

Another contribution in this dissertation is the representation of two-bit patterns

as a directed implication graph. Nodes represent bits or the negations of bits, and

edges represent logical implication. Such representation not only provides a coher-

5

ent mathematical representation of two-bit patterns, but also facilitates many new

techniques to improve the efficiency of two-bit pattern computation. We include

three optimization techniques in this dissertation:

1. random execution: Random execution of the program can fill in many entries

in the adjacency matrix of the implication graph without using STP queries.

2. STP counterexamples: When a STP query returns invalid, STP can give a

counterexample showing why the query is invalid. This gives a new, and

probably rare, feasible output. This output may well reveal some interesting

bit patterns, which we have not seen before. Thus, it cheaply fills in many

additional entries in the adjacency matrix.

3. deductive closure: Given a partially known adjacency matrix, we can fill in

additional entries whose value is a logical consequence of the entries already

known.

Portions of this dissertation are based on work previously published on ACM

SIGPLAN 2011 Workshop on Programming Languages and Analysis for Security

(PLAS) [MS11] , which introduced the concept of two-bit pattern analysis and de-

scribed a straightforward algorithm to compute the two-bit patterns of the output

for a given deterministic program, and 2013 International Workshop on Quantita-

tive Aspects in Security Assurance (QASA) [MS13], which introduced a coherent

representation of two-bit patterns as implication graphs and described an optimized

algorithm to speed up the two-bit pattern computing. My specific contributions

include proposing the original idea of using bit-level constraints to characterize the

feasible outputs, building the implementation, and conducting the experiments on

the collected case studies.

6

1.3 Organization

The rest of the dissertation is structured as follows. In Chapter 2, we begin by

reviewing the theories of Shannon entropy, min-entropy and g-entropy measure of

leakage that we use in this work. In Chapter 3, we explain the concept of two-bit

patterns in detail using an illustrative example. In Chapter 4, we explore several

optimized techniques to speed up the two-bit pattern analysis. In Chapter 5, we

present the results achieved by our techniques on a number of case studies drawn

from the recent literature in quantitative information flow analysis. In Chapter 6,

we discuss related work and compare it with our approach. Finally, in Chapter 7,

we discuss future directions and conclude.

7

CHAPTER 2

PRELIMINARIES

This chapter introduces the mathematical foundations of quantitative informa-

tion flow analysis, recalling important concepts of information theory [Sha48, Fel68,

Gal68, Mac03, CT06] and their measure of information leakage. These concepts

include the classical mutual information measure of leakage, min-entropy measure

of leakage proposed in [Smi09], and g-leakage proposed in [ACPS12].

2.1 Information Channel

An information theoretic channel offers a very general setting for theories of quanti-

tative information flow. Channels do not rely on any explicit notion of “messages”;

instead they capture relationships between system inputs and outputs through a

channel matrix . A channel matrix gives the conditional probability of each possible

output, given each possible input. Here “outputs” can be any subtle aspect of the

system’s behavior that is observable to an adversary. For instance, the amount of

time taken by a cryptographic operation may be observable by an adversary, and

may reveal information about the secret key.

Formally, a channel is a triple (X ,Y , C), where X is a finite set of secret input

values, Y is a finite set of observable output values, and C is an |X | × |Y| matrix,

called the channel matrix, such that C[x, y] = p(y|x), the conditional probability of

obtaining output y given that the input is x. Note that each row of C sums to 1.

An important special case is a deterministic channel, in which each input produces

a unique output. In terms of C, this means that each entry is either 0 or 1, and

each row contains exactly one 1.

Any a priori distribution π on X determines a random variable X. By π and

C, the joint probability pXY on X × Y can be determined:

8

p(x, y) = π[x]C[x, y]

It can be shown that pXY contains all information needed to determine a marginal

distribution for Y :

p(y) =
∑

x∈X p(x, y)

and to reconstruct the marginal distribution for X:

p(x) =
∑

y∈Y p(x, y) = π[x]

Hence the conditional probabilities in C can also be reconstructed from pXY :

p(y|x) = p(x,y)
p(x)

= C[x, y]

provided that p(x) is nonzero.

We are interested in quantifying the amount of information that flows from X

to Y by considering an adversary A, who knows both C and π, wishes to guess the

value of X by observing Y ’s value after the execution of C. It is, therefore, natural

to measure information leakage by comparing A’s “uncertainty” about X before

and after seeing the value of Y , using the equation

leakage = initial uncertainty – remaining uncertainty.

2.2 Measuring Leakage using Mutual Information

Until recently, most works on quantitative information flow (for example, [CPP08]

and [Mal07]) have defined “uncertainty” using Shannon entropy and conditional

Shannon entropy [Sha48]:

H(π) = −
∑
x∈X

π[x] log π[x]

9

and

H(π,C) =
∑
y∈Y

p(y)H(pX|y),

which leads to defining leakage as mutual information:

leakage = H(π)−H(π,C) = I(π,C).

A critical question about any leakage measure, however, is whether it gives good

operational security guarantees. In particular, we would like to know whether the

measure of remaining uncertainty accurately reflects the threat to X, given Y . For

H(π,C), Massey’s guessing entropy bound [Mas94] shows thatG(π,C), the expected

number of guesses required to guess X given Y , grows exponentially with H(π,C).

A weakness of this bound, however, is that G(π,C) can be arbitrarily high , even

when X is highly vulnerable to being guessed in one try. A key example from

[Smi09] illustrates this. Consider the program:

if (X % 8 == 0)

Y = X;

else

Y = 1;

(2.1)

where X is a uniformly-distributed 64-bit unsigned integer, 0 ≤ X < 264, so that

the initial uncertainty H(π) = 64. Using the symmetric property of the mutual

information and the fact that H(Y |X) = 0 in deterministic programs, the mutual

10

information leakage of this program can be easily calculated

I(π,Ex2.1) = I(Y,X)

= H(Y)−H(Y |X)

= H(Y)

=
∑
y∈Y

p(y) log
1

p(y)

= 2612−64 log 264 +
7

8
log

8

7
≈ 8.17

which means that the remaining uncertainty H(π,C) ≈ 55.83. Here the adversary

A’s expected probability of guessing X in one try exceeds 1/8, since X is leaked com-

pletely whenever Y 6= 1. Nevertheless, the guessing entropy is high, since nothing

is leaked when Y = 1 (except the fact that the last three bits are not all 0):

G(π,Ex2.1) =
1

8
· 1 +

7

8
· 1

2
· (7

8
264 + 1) ≈ 262.6.

It is instructive to compare program (2.1) with

Y = X & 0777; (2.2)

which simply copies the 9 bits of X into Y . The mutual information leakage of

program (2.2) is 9, making it worse than program (2.1), even though it gives A a

probability of guessing X in one try of only 2−55, since the first 55 bits of X remain

completely unknown.

2.3 Measuring Leakage using Min-entropy

In view of the unsatisfactory security guarantees given by mutual information leak-

age, it was proposed in [Smi09] to define “uncertainty” in terms of the vulnerability

11

of X to being guessed correctly in one try by A. Again, we make the assumption

that A knows π and C, then the a priori vulnerability is

V (π) = max
x∈X

π[x]

and the a posteriori vulnerability is

V (π,C) =
∑
y∈Y

p(y) max
x∈X

p(x|y)

=
∑
y∈Y

max
x∈X

p(x, y)

=
∑
y∈Y

max
x∈X

π[x]C[x, y].

We convert from vulnerability to uncertainty by taking the negative logarithm,

giving Rényi’s min-entropy [R6́1]. Our definitions, then, are

• initial uncertainty: H∞(π) = − log V (π)

• remaining uncertainty: H∞(π,C) = − log V (π,C)

Finally, we define the min-entropy leakage from X to Y via C, denoted L(π,C), to

be

L(π,C) = H∞(π)−H∞(π,C)

= − log V (π)− (− log V (π,C))

= log
V (π,C)

V (π)
.

Thus, min-entropy leakage is the logarithm of the factor by which knowledge of Y

increases the expected one-guess vulnerability of X. Using this new definition of

leakage to re-evaluate program (2.1), we find that its min-entropy leakage is 61.00,

reflecting the fact that V (π,C) ≈ 1/8. In contrast, for program (2.2) the min-

entropy leakage is 9, reflecting the fact that V (π,C) = 2−55.

12

Min-entropy leakage is a step toward measuring information leakage with opera-

tional significances. However, there still exist scenarios where leakage measured by

min-entropy can be misleading. One such situation is where A is allowed to make

multiple guesses. To illustrate, comparing the program (2.1) with the following

example from [Smi09]:

Y = X | 07; (2.3)

Again, we assume that X, Y are 64-bit unsigned integers and X is uniformly dis-

tributed. Both programs have 61.000 bits min-entropy leakage. However, they

present different threats in the 8-guess scenario. A can determine X within 8 guesses

after observing the value of Y produced by program (2.3), while program (2.1) offers

A almost no clue about X seven-eighths of the time. Another scenario indicating the

limitation of min-entropy leakage is the case where A is only interested in guessing

the secret partially or approximately. An example from [ACPS12] illustrates this.

Consider a probabilistic channel which takes a secret array X containing 10-bit,

uniformly-distributed passwords for 1000 users and produces one randomly-chosen

user’s password along with his/her index:

u
?←− {0...999};

Y = (u,X[u]);
(2.4)

If we take all the users’ passwords as a whole, then the channel’s prior vulnerabil-

ity is 2−10000 and its posterior vulnerability is 2−9990. Thus, the leakage measured by

min-entropy is 10 bits. If we focus on the threat to any particular user i’s password,

then the prior vulnerability becomes 2−10 and the posterior vulnerability becomes

0.001 · 1 + 0.999 · 2−10 ≈ 0.00198, since in one time out of a thousand, A learns user

i’s password but knows nothing about it the rest of the time. Thus, the leakage of

this “sub-channel” measured by min-entropy is log 2.023 ≈ 1.016 bits out of 10 bits.

13

In either circumstance, min-entropy leakage fails to reflect the real danger in this

example: some user’s password is always publicized.

2.4 Measuring Leakage using Gain Functions and g-leakage

To overcome its limitation and to model the threats in a wide variety of scenarios,

min-entropy is generalized using the notion of gain function [ACPS12]. The key idea

is that for each guess w whichA could make about the secret, there is a value between

0 and 1 quantifying the benefit which he/she gains when the secret is actually x.

Different operational scenarios can be expressed by carefully designed gain functions.

Formally, given a set W of guesses and a set X of secrets, a gain function g is a

function: W×X → [0, 1]. Then a generalization of the prior vulnerability is defined

as:

Vg(π) = max
w∈W

∑
x∈X

π[x]g(w, x)

The rationale of the definition is that adversary A makes a guess w that maximizes

the expected gain over X . The generalization of the posterior vulnerability is defined

in a similar way:

Vg(π,C) =
∑
y∈Y

max
w∈W

∑
x∈X

π[x]C[x, y]g(w, x)

=
∑
y∈Y

max
w∈W

∑
x∈X

p(x, y)g(w, x)

=
∑
y∈Y

p(y)Vg(pX|y)

The definitions of g-entropy and g-leakage are similar to the definitions of min-

entropy and min-leakage:

14

Hg(π) = − log Vg(π)

Hg(π,C) = − log Vg(π,C)

Lg(π,C) = Hg(π)−Hg(π,C) = log
Vg(π,C)

Vg(π)

This section is concluded by introducing several gain function examples from

[ACPS12], which illustrate how gain functions allow a wide range of scenarios to be

expressed. A very simple gain function is the identity gain function gid : X ×X →

[0, 1]. It describes an operational scenario when A only benefits from guessing the

entire secret correctly. Formally, it is defined as:

gid(w, x) =


1, if w = x

0, if w 6= x

[ACPS12] shows that ordinary vulnerability is a special case of g-vulnerability.

Proposition 2.4.1 Vulnerability under gid coincides with vulnerability:

Vgid(π) = V (π)

Proof. For any w,
∑

x π[x]gid(w, x) = π[w]. So Vgid(π) = maxw π[w] = V (π).

This implies that gid-leakage also coincides with min-entropy leakage.

To specify the scenario where A can make 3 guesses to find the secret, 3-tries

gain function is crafted where W ∈ 2X and |W | = 3:

g3(W,x) =


1, if x ∈ W

0, otherwise.

15

The gain function g3 helps distinguish program (2.1) from program (2.3). Recall

that both programs have min-entropy leakage of 61 bits when X is a uniformly-

distributed 64-bit unsigned integer. Their leakages measured by g3 are quite dif-

ferent. In program (2.3), both the prior vulnerability and the poster vulnerability

increase by a factor of 3 due to the 3 tries. Hence, Lg3(π,Ex2.3) remains the same.

Program (2.1)’s posterior vulnerability doesn’t increase very much under g3:

Vg3(π,Ex2.1) =
1

8
· 1 +

7

8
· 3 · 2−64 ≈ 1

8

Hence, Lg3(π,Ex2.1) is reduced to about 59.4 bits. However, in the scenario where

there is a penalty for wrong guesses (e.g., electrocution via keyboard) and A is

reluctant to guess, program (2.1) is actually worse. This is because A knows the

exact value of X whenever Y 6= 1.

To reflect the danger of program (2.4), adversary A is only interested in some

users’ password, we can design the following W and gain function g:

W = {(u, x)|0 ≤ u ≤ 999 and 0 ≤ x ≤ 1023}

g((u, x), X) =


1, if X[u] = x

0, otherwise.

Revisiting example (2.4), the prior vulnerability becomes 2−10 under g, since every

user’s password is uniformaly distributed and ranges from 0 to 1023. The posterior

vulnerability under g becomes 1, since for every observable output (u,X[u]), A can

always choose the guess accordingly to guarantee gain 1. Hence, the g-leakage under

g is 10 bits out of 10 bits. Comparing this result with the min-entropy leakage which

is 10 bits out of 10000 bits, leakage under g describes the threat more accurately.

16

2.5 Channel Capacity

This section will discuss the channel capacity related properties of the entropy defi-

nitions introduced in the previous sections. Primarily, we focus on the capacities of

deterministic channels which are the objects of leakage analysis in this dissertation.

Channel capacity, the maximum leakage over all possible a priori distributions, is an

important notion in information theory. It provides a further abstract way of study-

ing a channel independent of any particular prior distribution and focuses on its

“worst-case” leakage. Throughout this dissertation, we will use the name Shannon

capacity refering to the capacity under mutual information, min-capacity with the

notationML(C) refering to the capacity under min-entropy leakage, and g-capacity

with the notation MLg(C) refering to the capacity under g-leakage.

In general, calculating the Shannon capacity of a channel matrix is difficult. But

as shown in [BCP09, KS10], calculating the min-capacity is straightforward. It is

simply the logarithm of the sum of the column maximums of C :

Theorem 2.5.1 For any channel matrix C,

ML(C) = log
∑
y∈Y

max
x∈X

C[x, y]

Proof.

L(π,C) = log
V (π,C)

V (π)

= log

∑
y∈Y maxx∈X (π[x]C[x, y])

maxx∈X π[x]

≤ log

∑
y∈Y maxx∈X C[x, y](maxx∈X π[x])

maxx∈X π[x]

= log
∑
y∈Y

max
x∈X

C[x, y]

17

Notice that the min-capacity is always realized by a uniform distribution on X . As

a corollary, the min-capacity of a deterministic channel is just the logarithm of the

number of possible outputs. Interestingly, this is also its Shannon capacity [Smi09]:

Theorem 2.5.2 If C is deterministic, then its min-capacity and Shannon capac-

ity coincide, with both equal to log |Y| (assuming that every element of Y is really

possible).

Proof. Since C is a deterministic channel, each of its entry is either 0 or 1. And

there is at least one entry of 1 for each column since every element in Y is feasible.

By Theorem 2.5.1, the min-capacity of C is the logarithm of the sum of its column

maximums. Hence the min-capacity of C is just log |Y|.

Recall that the Shannon leakage of a deterministic channel is H(Y). H(Y)

achieves its maximum value log |Y| when Y is uniformly distributed. This can

always be realized by some a prior distribution on X .

When it comes to g-capacity, there is miraculous order between g-capacity and

min-capacity: for every gain function g, min-capacity is an upper bound on g-

capacity [ACPS12]:

Theorem 2.5.3 For every channel C and gain function g, MLg(C) ≤ML(C).

Proof.

Vg(π,C) =
∑
y∈Y

max
w∈W

∑
x∈X

C[x, y]π[x]g(w, x)

≤
∑
y∈Y

max
w∈W

∑
x∈X

(max
x∈X

C[x, y])π[x]g(w, x)

= (
∑
y∈Y

max
x∈X

C[x, y])(max
w∈W

∑
x∈X

π[x]g(w, x)),

Applying Theorem 2.5.1, we have

18

Vg(π,C) ≤ 2ML(C)Vg(π)

Hence,

Lg(π,C) = log
Vg(π,C)

Vg(π)
≤ML(C)

This implies that MLg(C) ≤ML(C).

From the theorems above, we have the following conclusion on the channel ca-

pacities of deterministic channels:

Corollary 2.5.4 The capacity of a deterministic system, whether measured by Shan-

non entropy or min-entropy, is the logarithm of the number of feasible outputs. This

quantity is also an upper bound on the g-leakage, for any gain function g.

Proof. Follows from Theorem 2.5.2 and Theorem 2.5.3.

19

CHAPTER 3

TWO-BIT PATTERNS

Given any theory of quantitative information flow, it is desirable to develop auto-

matic techniques for calculating/bounding the amount of leakage in a system, to

verify whether it conforms to a given quantitative flow policy. As we have seen in

Corollary 2.5.4, in the context of deterministic systems, this task is reduced to cal-

culating/bounding the number of the feasible outputs. In this chapter, we introduce

the approach of two-bit patterns to calculate upper bounds on the channel capacity

of a deterministic C-like program. The chapter is based on our work previously pub-

lished at ACM SIGPLAN 2011 Workshop on Programming Languages and Analysis

for Security (PLAS) [MS11].

The approach can be divided into three major steps. The first step is to derive

the mathematical relationship between the initial values of the secret input variables

and final values of the output variables. The second step is to discover the one-bit

patterns that constrain each individual bit and the two-bit patterns that constrain

each pair of bits in the final values of the outputs. The third step is to use a

#SAT algorithm to count the number of instances that satisfy all the bit patterns

discovered in the second step; the logarithm of this number is our upper bound on

the channel capacity.

Throughout this chapter, we use the analysis of the program shown in Figure 3.1

to illustrate these three steps in detail. Assuming that X is the secret input variable,

X = X & 0x77777777;

if (X <= 64) Y = X; else Y = 0;

if (Y % 2 == 0) Y++;

Figure 3.1: Illustrative example program that leaks information from X to Y

20

Y is the output variable, and both are 32-bit unsigned integers, the program can

produce 17 distinct outputs: 1, 3, 5, 7, 17, 19, 21, 23, 33, 35, 37, 39, 49, 51, 53, 55, 65.

3.1 Deriving Predicates

This step can be accomplished by generating a series of predicates which describe

the relationship between the value of variables before and after each computation

step. As in SSA (single static assignment) form, we represent the successive values

of each variable V by a sequence of symbols V0, V1, V2, etc. For each computation

step, a fresh symbol is introduced for each variable affected by the step; it represents

the value of the variable after the computation step. Then a predicate is derived to

describe the relationship between the new symbol and the previous symbols. For

example, the first assignment in the program in Figure 3.1 gives rise to the predicate

X1 = X0 & 0x77777777

Here the symbols X0 and X1 represent variable X’s value before and after the first

assignment. Since variable Y is not affected, no new symbol is introduced for it and

Y0 (variable O’s initial value) remains current.

The second and third commands in the example each require a conditional ex-

pression:

Y1 = if X1 <= 64 then X1 else 0

Y2 = if Y1 mod 2 = 0 then Y1+1 else O1

These three predicates implicitly constitute a symbolic description of Y’s final value

in terms of X’s initial value. Currently, the loops need to be unrolled completely to

get their SSA forms.

21

X0, X1 : BITVECTOR(32);

Y1, Y2 : BITVECTOR(32);

ASSERT(X1 = X0 & 0hex77777777);

ASSERT(Y1 = IF (BVLE(X1, 0hex00000040))

THEN X1

ELSE 0hex00000000

ENDIF);

ASSERT(Y2 = IF (BVMOD(32, Y1, 0hex00000002) = 0hex00000000)

THEN BVPLUS(32, Y1, 0hex00000001)

ELSE Y1

ENDIF);

Figure 3.2: Translation of illustrative example into STP

Next, we translate the predicates that we have derived into the language of the

STP solver [GD07]. STP is an efficient decision procedure for testing validity (or

satisfiability) of predicates in quantifier-free first-order logic over bit-vectors and

arrays; it has been widely used by many program analysis research groups.

The translation is straightforward—each symbol (representing a 32-bit value) is

declared as a bit-vector, the operations in each predicate are replaced with STP

equivalents. For instance, the expression Y1 mod 2 translates into

BVMOD(32, Y1, 0hex00000002)

where BVMOD stands for “Bit-Vector Modulo” and the parameter 32 gives the word

size. Finally, each predicate is translated into an STP ASSERT statement. The

complete translation of the program in Figure 3.1 is shown in Figure 3.2.

So far, we do the translation to STP manually, leaving generalization and au-

tomation of the process to future work.

22

3.2 Discovering One-Bit and Two-Bit Patterns

Now we wish to discover the relations (bit patterns) among the bits in Y2, which

is the final value of the output variable Y. We achieve this by making STP queries

with respect to the assertions generated in Step 1. In STP, QUERY(P) asks whether

predicate P is a logical consequence of the ASSERT statements that have been made.

If so, STP responds VALID; if not, it responds INVALID.

We start by determining the one-bit pattern for each bit of Y2. A one-bit pattern

describes the set of possible values for a particular bit. Since a bit is either 0 or 1,

there are three one-bit patterns: Zero, One, and Non-fixed, which means that it is

possible for the bit to be either 0 or 1. The STP query

QUERY(Y2[i:i] = 0bin0)

tests whether bit i of Y2 is necessarily 0, given the ASSERT statements that have

been made. If STP returns VALID, then we can conclude that the bit must be 0; if

it returns INVALID, then we know that the bit i can be 1. Similarly, the STP query

QUERY(Y2[i:i] = 0bin1)

tests whether bit i of Y2 is necessarily 1. If both queries return INVALID, then the

bit can be either 0 or 1.

Using more readable notation, if we denote the final output symbol with Yf , then

the algorithm to determine the one-bit pattern for bit i of Yf is

if (Yf [i] = 0) is valid then

Zero

else if (Yf [i] = 1) is valid then

One

else

23

Non-fixed

end if

Notice that it requires one or two STP queries per bit.

On the example in Figure 3.1, as translated into Figure 3.2, STP discovers that

26 of the bits in Y2 have pattern Zero, namely, bits 31 down to 7, along with bit

3. Also, bit 0 has pattern One. The remaining 5 bits (bits 6, 5, 4, 2, and 1) have

pattern Non-fixed. The one-bit patterns can be displayed compactly in a vector,

using * to represent the bits with pattern Non-fixed:

0000000000000000000000000***0**1

Discovering these 32 one-bit patterns required a total of 38 STP queries and 1072

ms.1 Notice that we can immediately conclude that the number of possible values

for Y2 is at most 25 = 32, since it has only 5 non-fixed bits.

We can tighten our upper bound by next determining the two-bit pattern for

every pair of bits; notice that we need to do this only among the bits with the

pattern Non-fixed. A two-bit pattern describes the set of possible values that a pair

of bits can have. Hence the set of two-bit patterns is the powerset of the set of

two-bit values, minus the empty set. There are four possible values for a pair of

bits: {00, 01, 10, 11}. Hence the number of two-bit patterns is 24 − 1 = 15.

Here is the complete enumeration of the possible two-bit patterns:

1. {00}

2. {01}

3. {10}

4. {11}
1Throughout this paper, all times are given in milliseconds.

24

5. {00, 01}

6. {00, 10}

7. {01, 11}

8. {10, 11}

9. {00, 11}

10. {01, 10}

11. {00, 01, 10}

12. {00, 01, 11}

13. {00, 10, 11}

14. {01, 10, 11}

15. {00, 01, 10, 11}

Notice, however, that the first eight patterns will never occur, since in each of them

at least one of the two bits is fixed. Therefore, we only need to consider the last

seven patterns (patterns 9 through 15). Interestingly, each of these seven patterns

can be interpreted as a binary relation:

• {00, 11} is the equality relation

• {01, 10} is the inequality relation

• {00, 01, 10} is the logical nand relation

• {00, 01, 11} is the ≤ relation

• {00, 10, 11} is the ≥ relation

• {01, 10, 11} is the logical or relation

• {00, 01, 10, 11} is the universal relation, saying that the two bits are indepen-

dent of each other.

25

We will refer concisely to these seven patterns as Eq, Neq, Nand, Leq, Geq, Or, and

Free, respectively.

The two-bit patterns can be computed by a straightforward algorithm. It deter-

mines the two-bit patterns via a decision tree of queries. For instance,

QUERY(Y2[i:i] = 0bin0 OR Y2[j:j] = 0bin0)

returns VALID iff bits i and j cannot both be 1. Similarly,

QUERY(Y2[i:i] = 0bin1 OR Y2[j:j] = 0bin1)

returns VALID iff bits i and j cannot both be 0. So if both these queries return

VALID, then the pattern for bits i and j must be {01, 10}, or Neq. (Notice that

both 01 and 10 must be possible, because we find two-bit patterns only among bits

that are not fixed.)

Other two-bit patterns can be determined in a similar manner. The complete

algorithm is shown in Figure 3.3. Notice that under this algorithm, 2 STP queries

are required to determine the Neq and Nand patterns, 3 STP queries are required

to determine the Eq, Geq, and Leq patterns, and 4 STP queries are required to

determine the Or and Free patterns. Hence, if the output Yf contains m non-

fixed bits, then at most 2m(m− 1) STP queries suffice to determine all the two-bit

patterns.

On the program in Figure 3.1, it turns out that there are four interesting two-bit

patterns among the 5 non-fixed bits of Y2, namely Nand(6,1), Nand(6,2), Nand(6,4),

and Nand(6,5). All other pairs of non-fixed bits are Free. Finding these two-bit

patterns required a total of 32 STP queries and 2558 ms.

We remark that the average time per STP query for the illustrative example

is about 41 ms for the one-bit pattern queries, and 80 ms for the two-bit pattern

queries. These times are unusually high, compared with the times for the other case

26

for all non-fixed bits i and j such that i > j do
if (Yf [i] = 0 ∨ Yf [j] = 0) is valid then

if (Yf [i] = 1 ∨ Yf [j] = 1) is valid then
Neq(i, j)

else
Nand(i, j)

end if
else if (Yf [i] ≥ Yf [j]) is valid then

if (Yf [i] ≤ Yf [j]) is valid then
Eq(i, j)

else
Geq(i, j)

end if
else if (Yf [i] ≤ Yf [j]) is valid then

Leq(i, j)
else if (Yf [i] = 1 ∨ Yf [j] = 1) is valid then

Or(i, j)
else

Free(i, j)
end if

end for

Figure 3.3: Algorithm to determine two-bit patterns for
Yf

27

studies by the same straightforward approach in Chapter 5. The cause turns out to

be the use here of the expensive BVMOD operation. If we rewrite the last line of the

illustrative example from

if (Y % 2 == 0) Y++;

to the equivalent

if (Y & 0x00000001 == 0) Y++;

we find that the cost per STP query drops to under 2 ms.

3.3 Counting the Number of Solutions

Finally, we determine an upper bound on the number of possible outputs by counting

the number of solutions to the two-bit patterns. We do this using the SatisfiabilityCount

function provided by Mathematica.2 Given a boolean proposition P and a list of

boolean variables b1, b2, . . . , the Mathematica call

SatisfiabilityCount[P, {b1, b2, . . .}]

returns the number of truth assignments to b1, b2, . . . that make P true. (Notice

that if some bi does not occur in P , then it can be freely set to true or false without

affecting the truth of P .)

We call SatisfiabilityCount with a boolean proposition formed from the two-

bit patterns (other than Free) discovered in Step 2, together with a list of all the

non-fixed bits of the output. In the case of the program in Figure 3.1, we make the

call

2http://www.wolfram.com/mathematica/

28

In[1] = SatisfiabilityCount[Nand[b6,b1] &&

Nand[b6,b2] &&

Nand[b6,b4] &&

Nand[b6,b5],

{b6,b5,b4,b2,b1}]

which produces the result

Out[1] = 17

in less than 1 ms. It is straightforward to see that this result is an upper bound on

the number of outputs that can be produced by the program; in this example, it

turns out to be exactly correct. It implies a min-capacity of at most log 17 ≈ 4.087

bits.

From a theoretical perspective, it is interesting to note that the proposition

P that we construct from the two-bit patterns can easily be put into 2CNF (2

conjunctive normal form). For example, if bits a and b have pattern Eq, then they

cannot be 01 or 10, giving

¬(āb+ ab̄) ≡ (a+ b̄)(ā+ b).

While testing satisfiability of propositions in 2CNF can be done in linear time, it

turns out that counting the number of satisfying assignments is still #P-complete

[Val79]. Nevertheless, our experiments have been encouraging with respect to the

feasibility of this approach—in all cases, we found that SatisfiabilityCount took

a negligible amount of time compared with the time to find the bit patterns.

We have performed the two-bit pattern computing for the aforementioned illus-

trative example on a Lenovo B570 computer with a 2.3 GHz Intel Core i3-2310M

processor and 3GB of DDR3 RAM. The machine runs Ubuntu 12.04 Linux operat-

ing system. We have implemented the two-bit pattern computing algorithm using

29

OpenJDK for Java 6 and Java binding for the STP decision procedure. We used the

SatisfiabilityCount function in Mathematica 9 to count the number of solutions

for the two-bit patterns. Under this environment, our approach takes less than 3

seconds to find an upper bound (17) on the number of possible outputs, and here it

turns out to be exact.

One might wonder how these results compare with a more brute-force approach

to counting the number of possible outputs. Specifically, we can test whether any

32-bit value v is a possible output using the STP query

QUERY(NOT(Y2[0:31] = v))

which returns INVALID iff v is a possible output. If we try this query on all 232

values of v, from 0x00000000 to 0xffffffff, then we will know exactly how many

outputs are possible. However, experiments under the environment described above

show that on average each of these queries takes 20 ms, which implies that it would

take 2.7 years to complete the 232 queries.

Another approach to counting the number of possible outputs is exhaustive test-

ing. We can execute the program on each 32-bit value of X and count how many

distinct values Y may obtain. Experiments (again under the environment described

above) show that on average each execution takes 0.1 ms, which implies that it

would take about 5 days to complete all 232 executions. 3

3Additional time would be required to count the number of distinct values produced.
We have not implemented such a procedure.

30

CHAPTER 4

OPTIMIZATION

In this chapter, we introduce an efficient approach to compute two-bit patterns.

The chapter is based on our work previously published at 2013 International Work-

shop on Quantitative Aspects in Security Assurance (QASA) [MS13]. The approach

is based on four techniques: implication graph, random execution, STP counterex-

amples and deductive closure. We first show that the two-bit patterns can be repre-

sented as a directed implication graph, as used in the study of the 2SAT problem.

Nodes represent bits or the negations of bits, and edges represent logical implica-

tion. Then, we show that random execution of the program can cheaply produce

feasible outputs, which allow us to fill in many entries of the adjacency matrix rep-

resentation of the implication graph without using STP queries. Moreover, STP

counterexamples is a feature of STP solver. It gives a counter example to explain

why a query returns invalid, and thus allows us to fill in many additional entries

of the adjacency matrix. Finally, given a partially known adjacency matrix, we

can perform deductive closure to fill in additional entries whose value is a logical

consequence of the entries already known.

We combine these techniques into a single algorithm. As a re-evaluation on

the illustrative example in Figure 3.1 shows, this optimized approach enables us to

significantly reduce the time required for two-bit pattern analysis. More case studies

on the effectiveness of this approach are presented in the next chapter.

4.1 Formal Framework

This section explores the mathematical aspects of the two-bit patterns: implication

graph representations, and their relationship with concrete states. The set of feasible

outputs of a program can be modeled as a set R of states ρ. The bits in a state

31

are indexed by a set I of indices. (For example, for the 5-bit states modeled in

Figure 1.1, we would have I = {0, 1, 2, 3, 4}.) Formally, a state ρ is a mapping:

ρ : I → B, where B = {0, 1}.

4.1.1 Implication Graphs

Recall that the seven possible two-bit patterns among a pair of non-fixed bits, Eq,

Neq, Nand, Leq, Geq, Or, and Free, can be encoded as 2CNFs. Since implication and

negation are logically complete, each CNF can be expressed in terms of implications

over literals, which are indices or negated indices:

Two-Bit Pattern Implications

Eq(i, j) i→ j, j̄ → ī, j → i, ī→ j̄

Neq(i, j) i→ j̄, j → ī, ī→ j, j̄ → i

Nand(i, j) i→ j̄, j → ī

Leq(i, j) i→ j, j̄ → ī

Geq(i, j) j → i, ī→ j̄

Or(i, j) ī→ j, j̄ → i

(Notice that Free(i, j) does not result in any implications.)

This translation enables us to represent a set of two-bit patterns as a directed

graph whose nodes are literals and whose edges represent implication; such graphs

are known as implication graphs in the study of the 2SAT problem [Kro67, APT79].

As an example, Figure 4.1 shows the implication graph, in both graphical and ad-

jacency matrix representations, corresponding to the two-bit patterns in Figure 1.1.

(To avoid clutter, we omit self-loops in the graphical representation.) Implication

32

4

4̄

1̄

1

0

0̄

2

2̄



4 2 1 0 4̄ 2̄ 1̄ 0̄

4 1 0 0 1 0 0 1 0
2 0 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0 1
0 0 0 0 1 0 0 1 0
4̄ 0 0 0 0 1 0 0 0
2̄ 0 0 0 0 0 1 0 0
1̄ 0 0 0 1 0 0 1 0
0̄ 0 0 1 0 1 0 0 1


Figure 4.1: The implication graph for {00010, 10001, 00001, 00110, 10101, 00101}

graphs have the property of being skew-symmetric [GK96], since there is an edge

from i to j iff there is an edge from j̄ to ī.

The implication graph in Figure 4.1 omits mention of the fixed bit 3, since

fixed bits do not contribute to multiple outputs. But the one-bit patterns can

be incorporated into the implication graph. For example, the implication 3 → 3̄

expresses that bit 3 must be 0.

4.1.2 Semantic Characterization

To establish the correctness of our two-bit pattern analysis, we need a semantic

characterization of implication graphs (represented as adjacency matrices). To use

the language of abstract interpretation [CC04], we want to see implication graphs as

an abstract domain for the concrete domain of sets of states.

To facilitate this connection, we define literals Î = I ∪ {̄i | i ∈ I}. We, moreover,

extend states to Î by specifying that ρ(̄i) = ρ(i). Notice then that an implication

i→ j holds in state ρ iff ρ(i) ≤ ρ(j).

Now, we define our abstraction function α that maps a set R of states to an

implication graph M :

33

Definition 4.1.1 Abstraction function α : P(Î → B)→ (Î × Î → B) is given by

α(R)ij =

 1, if for all ρ ∈ R, ρ(i) ≤ ρ(j)

0, otherwise.

Next, we define the concretization function γ that maps an implication graph M

to a set R of states:

Definition 4.1.2 Concretization function γ : (Î × Î → B)→ P(Î → B) is given by

γ(M) = {ρ | for all i, j, if Mij = 1 then ρ(i) ≤ ρ(j)}

(Note that 0s in M do not constrain the states.)

The key correctness property of the implication graph domain is given by the

following theorem, which ensures that when we calculate implication graph M =

α(R), where R is the set of feasible states, then we know that γ(M) is a superset of

R, implying that we over-approximate the set of feasible states.

Theorem 4.1.3 Given any set R of states, R ⊆ γ(α(R)).

Proof. Let M = α(R). We need to prove that ρ ∈ R⇒ ρ ∈ γ(M). By the definition

of α, ∀i, j, if Mij = 1 then ρ(i) ≤ ρ(j) since ρ ∈ R. By the definition of γ, this

means that ρ ∈ γ(M).

Note, however, that the relationships specified in an arbitrary implication graph

M may be incoherent; for instance, we might have Mij = 1 and Mjk = 1, but

Mik = 0. Hence, we have the following definition.

Definition 4.1.4 Implication graph M is coherent if there exists a set R such that

M = α(R).

Coherent implication graphs behave well with respect to γ and α:

34

Theorem 4.1.5 If M is coherent, then α(γ(M)) = M .

Proof. Let M = α(R) and α(γ(M)) = N where R is a nonempty set of states. ∀i, j,

if Mij = 1 then ∀ρ ∈ γ(M), ρ(i) ≤ ρ(j) by the definition of γ. Hence, Nij = 1 by

the definition of α. ∀i, j, if Mij = 0 then ∃ρ ∈ R, ρ(i) > ρ(j) by the definition of α.

By Theorem 4.1.3, ρ ∈ γ(M). Hence, Nij = 0 by the definition of α. Therefore, M

is identical to N .

4.2 One-bit Patterns, Random Execution, and STP Coun-

terexamples

As was shown in Figure 4.1, we include only the non-fixed bits in the implication

graph. This means that computing the implication graph for the set R of feasible

outputs of a given program still has to begin by determining the one-bit patterns.

For each bit i of output Y, we use the same one-bit pattern queries as in the straight-

forward approach in Chapter 3 to determine whether it is Zero, One or Non-fixed.

Also, only the Non-fixed bits in Î are included in the implication graph M .

In the hope of avoiding the need for so many STP queries, however, we first

execute the program on a set of randomly-chosen inputs X. For each bit i of Y, these

random executions reveal at least one possible value, allowing us to determine its

one-bit pattern using just one STP query. If we are lucky, the random executions

may reveal that bit i can be both 0 and 1, allowing us to conclude that it is Non-fixed

without making any STP queries. (Of course, the likelihood of this will depend on

the probability distribution on Y, as many programs produce certain values of Y with

very low probability.) We found in our case studies that doing 40 random executions

35

typically gets most of the possible benefit without costing very much, so that is the

number of random executions that we use in our implementation.

We can further improve efficiency by making use of STP counterexamples. If we

query “Y[i] = 0?” and STP returns invalid, then STP can give us, essentially for

free, a counterexample showing why the query is invalid. This gives us a new, and

probably rare, feasible output that we have not seen before. (Here it would be an

output where Y[i] = 1.) This output may well reveal that some other bits of Y are

Non-fixed, freeing us from the need to make queries about them.

4.3 Two-bit Patterns and Deductive Closure

Our goal is to determine the implication graph M using as few STP queries as

possible. To this end, it is useful to extend to partially-known implication graphs,

where we use ⊥ to denote unknown entries. Recall that we limit M to the non-fixed

bits of Î, which is denoted by ÎN . Hence, formally, M : ÎN × ÎN → B⊥, where B⊥ is

the flat domain {0, 1,⊥} with partial order ⊥ � 0 and ⊥ � 1. We also extend � to

implication graphs M pointwise.

When we are calculating the implication graph M of a set R of feasible outputs,

our strategy will be to populate M with ⊥s initially, and to fill in entries so as to

preserve the key invariant M � α(R), which says that every 0 and 1 entry in M

accurately describes R.

The first entries that we can make in M are the trivial ones saying that, for all

literals i ∈ ÎN , Mii = 1 and Mīi = 0. (Mīi = 1 would imply that i is Zero.)

We can also fill in a large number of entries based on the random executions

and STP counterexamples described above. Suppose that we have found a feasible

output where bits i and j are 0 and 1, respectively. Then we can conclude that

36

a b c

d


a b c d

a 1 1 ⊥ 1
b 0 1 1 0
c ⊥ 0 1 0
d 0 0 0 1


Figure 4.2: A partially-known implication graph

Mji = 0 and Mīj̄ = 0. Indeed, every combination of values for bits i and j allows

us to deduce two 0s in M . Hence, a single feasible output lets us fill in one fourth

of the nontrivial entries of M . (If there are n non-fixed bits, then M has 4n2 − 4n

nontrivial entries, and a feasible output lets us fill in n2 − n of them.) Additional

feasible outputs let us fill in a variable number of additional entries, depending on

the particular patterns of bits that they exhibit.

Each remaining entry of M could of course be filled in by an STP query, but we

can do better by taking advantage of the dependencies among the entries. Consider

the partially-known implication graph in Figure 4.2, where the dashed edges denote

edges whose existence/non-existence is unknown. If we consider the unknown edge

from a to c, we can easily deduce that it must exist, by transitivity. More interest-

ingly, we can also deduce that the unknown edge from c to a must not exist. For an

edge from c to a would by transitivity imply also an edge from c to d, contradicting

the known fact that there is no such edge.

Algorithm 1: DeductiveClosure1 algorithm

Input : implication graph M over non-fixed bits ÎN
Output: M with additional 1s implied by transitivity

for k ∈ ÎN do

for i ∈ ÎN do

for j ∈ ÎN do
if Mik = 1 ∧Mkj = 1 then

Mij ← 1;

37

Algorithm 2: DeductiveClosure2 algorithm

Input : transitive implication graph M over non-fixed bits ÎN
Output: M with additional 0s implied by transitivity

for k ∈ ÎN do

for i ∈ ÎN do

for j ∈ ÎN do
if (Mik = 0 ∧Mjk = 1) ∨ (Mki = 1 ∧Mkj = 0) then

Mij ← 0;

These insights lead to two algorithms for deductive closure. The first, shown in

Algorithm 1, is Warshall’s classic transitive closure algorithm. The second, shown in

Algorithm 2, takes as input a transitive implication graph M and deduces additional

0 entries. To get some intuition, notice that when the first disjunct of the if holds,

then we have i 6→ k and j → k. Hence, i → j is impossible, as this would yield

i→ k by transitivity.

DeductiveClosure1 has one interesting property: after any number of iterations

of its outer loop, if Mij = 1 then there must already be a path from i to j in the

initial M .

Lemma 4.3.1 Let Mn be the adjacency matrix after n iterations of the outer loop

of DeductiveClosure1, if Mn
ij = 1 then there is a path from i to j in M0.

Proof. We prove the lemma by induction on n.

The base case n = 0 is true since M0 is just the initial adjacency matrix.

Let’s assume that the lemma is true for the case n = l − 1 and let k be the literal

selected by the outer loop in the lth iteration. Then, M l
ij is set to 1 by the lth

iteration only if M l−1
ik = 1 and M l−1

kj = 1. By the induction assumption, there are

a path from i to k and a path from k to j in M0. By the transitivity, there must

be a path from i to j in M0. Hence, if M l
ij = 1 then there must be a path from i

38

to j in M0. Thus, the lemma holds for the case n = l. From the base step and the

induction step, by the principle of mathematical induction, we can conclude that

the lemma holds for all n.

It is trivial to show that the lemma holds after the completion of DeductiveClosure1.

DeductiveClosure2 also has a similar property for the 0 entries. After any number

of iterations of its outer loop, if Mij = 0 there exists u, v in the initial M such that

there is path from u to i, and a path from j to v, but no path from u to v.

Lemma 4.3.2 Let Mn be the adjacency matrix after n iterations of the outer loop

of DeductiveClosure2, if Mn
ij = 0 then there exists u, v in M0 such that M0

ui = 1,

M0
jv = 1, and M0

uv = 0.

Proof. The base case k = 0 is true since M0 is just the initial adjacency matrix and

we can have u = i and v = j for each M0
ij = 0.

Let’s assume that the lemma is true for the case n = l − 1 and let k be the literal

selected by the outer loop in the lth iteration. Then, M l
ij is set to 0 by the lth

iteration only if either (a) M l−1
kj = 0∧M l−1

ki = 1 or (b) M l−1
ik = 0∧M l−1

jk = 1. In the

case (a), by the induction assumption, we know that there must exist two literals

u, v where M0
uv = 0, M0

uk = 1, M0
jv = 1. This means that M0

ui = 1. In the case (b),

by the induction assumption, we know that there must exist two literals u, v where

M0
uv = 0, M0

ui = 1, M0
kv = 1. This means that M0

jv = 1.

Hence, if M l
ij = 0 then there exists u, v in M0 such that M0

ui = 1, M0
jv = 1, and

M0
uv = 0. Thus, the lemma holds for the case n = l. From the base step and the

induction step, by the principle of mathematical induction, we can conclude that

the lemma holds for all n.

39

This lemma also holds after the completion of DeductiveClosure2(M). Let

DC(M) denote the result of calling the procedure of DeductiveClosure1(M) fol-

lowed by DeductiveClosure2(M). The soundness of DC is given by the following

theorem, which says that if implication graph M is correct for some set R of feasible

outputs, then so is DC(M); this implies that both the 0 and 1 entries filled in by

DC are correct for R.

Theorem 4.3.3 For all M and R, if M � α(R), then DC(M) � α(R).

Proof. Suppose DC(M)ij = 1. By the Lemma 4.3.1, there is a path in M : i→ i1 →

... → im → j (m ≥ 0). Therefore, ∀ρ ∈ R, ρ(i) ≤ ρ(i1) ≤ ... ≤ ρ(im) ≤ ρ(j) since

M is correct for R. Hence, DC(M)ij = α(R)ij.

Now suppose DC(M)ij = 0. By the Lemma 4.3.2, there exists u, v in M such that

Muv = 0, Mui = 1, and Mjv = 1. Hence, ∃ρ ∈ R such that ρ(i) ≥ ρ(u) > ρ(v) ≥ ρ(j)

since M is correct for R. Hence, DC(M)ij = α(R)ij.

We moreover conjecture that DC satisfies a completeness property saying that

it fills in as many 1 and 0 entries as can be done without violating soundness.

Nevertheless, we have yet not proved this.

4.4 Computing Implication Graphs Efficiently

Our algorithm for building the implication graph M is shown as Algorithm 3.

Notice that the selection of the ⊥ entry to fill in next is unspecified—our current

implementation does this randomly. Also, DC is invoked each time a new entry

of M is found, to see whether any additional entries can be deduced. However,

DeductiveClosure1 is invoked only if a new 1 entry was found, since otherwise it

cannot possibly deduce anything new. Note also that the else branch corresponds

to an invalid STP query, which gives us a new counterexample to exploit.

40

Algorithm 3: Compute the implication graph

input : non-fixed bits ÎN for a set R of feasible outputs
output: implication graph M representing the two-bit patterns

for all i, j ∈ ÎN , Mij ← ⊥;

for all i ∈ ÎN , Mii ← 1, Mīi ← 0;
fill in the 0 entries in M determined by random executions and
counterexamples;
while M has an entry with ⊥ do

select p, q ∈ ÎN with Mpq = ⊥;
if STP query reveals that bit p ≤ bit q in R then

Mpq ← 1;
Mq̄p̄ ← 1;
DeductiveClosure1 (M);
DeductiveClosure2 (M);

else
Mpq ← 0;
Mq̄p̄ ← 0;
get counterexample and use it to fill in more 0 entries of M ;
DeductiveClosure2 (M);

To show the correctness of Algorithm 3, note that the initialization of M es-

tablishes M � α(R). Assuming that the STP queries are answered correctly, the

assignments to Mpq and Mq̄p̄ preserve this invariant, as do the calls to DC, by The-

orem 4.3.3. Hence, the algorithm terminates with M = α(R), as desired.

Having calculated the implication graph M , we next compute the size of γ(M) by

extracting the inequalities in M and counting the number of solutions using Math-

ematica’s SatisfiabilityCount function. (Here we first compact the inequalities

by collapsing the strongly connected components of M and taking the transitive

reduction.) Finally, we compute the maximum leakage as log |γ(M)|, since (by The-

orem 4.1.3) the size of γ(M) is an upper bound on the number of feasible outputs.

41

4.5 Revisiting the Illustrative Example

We revisit the illustrative example in Figure 3.1 using the optimized approach. The

optimized approach achieves a notable improvement on performance—57% time re-

duction. This is achieved in the same computing environment described in Chapter

3. However, the effectiveness of different techniques varied. On this program, ran-

dom execution can only have very limited benefit, since a randomly-chosen 32-bit

value for X is highly unlikely to be less than or equal to 64. In all the experiments,

at the second line, only the else branch are taken. Therefore, the only output

that has been produced is 1. This is why it filled just 25% of the non-trivial en-

tries in the implication graph. STP counterexamples, on the other hand, contribute

significantly—57% of the non-trivial entries. The two-bit patterns of the outputs in

this case are so simple that there is no transitive structure in them. This prevents

deductive closure from making any contribution.

42

CHAPTER 5

EXPERIMENTS

In this chapter, we assess the accuracy and efficiency of our two-bit pattern

approach by trying it on eleven case studies, most of which come from the recent

literature in quantitative information flow analysis. In all the case studies, we assume

that X is the secret input variable, Y is the output variable, and all the variables are

32-bit unsigned integers. For each case study, both the straightforward technique

which determined each two-bit pattern individually through STP queries and the

optimized technique described in Chapter 4 are used to compute the two-bit patterns

of the feasible outputs. 1 Recall that both techniques are doing the same two-bit

pattern analysis, this means that upper bounds on leakage derived from them are

exactly the same. Hence, the differences between them are only on efficiency. Also,

for all the case studies, their channel capacities, measured by Shannon entropy , min-

entropy, or g-leakage coincide since they are deterministic programs. Throughout

this chapter, we use the term capacity refering to all these channel capacities.

5.1 Sanity Check

Consider the “sanity check” program from [NMS09], where Y is influenced by X only

when X is found to be within an acceptable range:

if (X < 16)

Y = base + X;

else

Y = base;

1Because of the randomness in our new techniques, the new timings using the optimized
technique are averages over 10 executions.

43

The possible outputs here range from base to base+15, giving a capacity of log 16 =

4 bits.

An interesting property of this program is that the bit patterns of Y’s final value

depend on the initial value of base. For instance, when base is 0x00001000, then

28 bits in Y are fixed: bits 31 through 13 and bits 11 through 4 are Zero, and bit 12

is One. The last 4 bits are Non-fixed, therefore, the one-bit patterns are

0000000000000000000100000000****

The two-bit patterns among the 4 non-fixed bits are all Free. SatisfiabilityCount

computes that there are 16 instances which satisfy all of these bit patterns, giving

a (precisely correct) channel capacity of 4 bits. In terms of efficiency, it takes the

straightforward approach 37 STP queries and 33 ms to compute the one-bit patterns,

24 STP queries and 21 ms to compute the two-bit patterns, and SatisfiabilityCount

requires less than 1 ms. The optimized approach achieves a modest improvement

on performance. The effectiveness of different techniques varied. On this program,

random execution will have little benefit, since a randomly-chosen 32-bit value for

X is highly unlikely to be less than 16—this is why it filled just 25% of the non-

trivial entries in the implication graph. STP counterexamples, on the other hand,

contribute significantly—50% of the non-trivial entries. Finally, the contribution of

deductive closure is zero. When base is 0x00001000, only the rightmost four bits of

Y are non-fixed, and their two-bit patterns are all Free, preventing deductive closure

from deducing anything; hence, we see only a 33% time reduction with this base.

In contrast, when base is 0x7ffffffa, the situation becomes a lot more inter-

esting. The bit patterns in Y are complex, since now the possible outputs range

from 0x7ffffffa to 0x80000009. The possibility of a string of carries leads to

many dependencies among the bits of Y. It takes the straightforward approach 64

STP queries and 66 ms to show that all 32 bits are Non-fixed. And there are many

44

interesting two-bit patterns among the 32 · 31/2 = 496 pairs of bits. Namely, bits

30 through 4 are all equal to one another, and different from bit 31. Moreover, bits

30 through 4 are all less than or equal to bit 3. Finally, we have Or(31,3). In total,

we find that 90 pairs have pattern Free, and the remaining 406 pairs have pattern

Eq, Neq, Leq, or Or. Determining these two-bit patterns requires 1552 STP queries

and 2040 ms. Finally, SatisfiabilityCount requires 1 ms to determine that there

are 24 solutions to the bit patterns, implying a capacity of at most log 24 ≈ 4.58

bits, which is close to the actual capacity of 4 bits. Because a large number of

literals are in the equivalance relation, deductive closure is very helpful here, since

it found 36% of the entries. Overall, the optimized approach gains a time reduction

of 90%. In fact, when the random testing and STP counterexamples are disabled,

the contribution of deductive closure becomes the dominating force, finding 93% of

the entries.

5.2 Implicit Flow

Here is a program from [NMS09] that indirectly copies X to Y if X ≤ 6; otherwise, it

sets Y to 0:

Y = 0;

if (X == 0) then Y = 0;

else if (X == 1) then Y = 1;

else if (X == 2) then Y = 2;

...

else if (X == 6) then Y = 6;

else Y = 0;

Since there are 7 possible outputs, the capacity is log 7 ≈ 2.81 bits.

45

The straightforward approach is efficient in this case. It only spends 28 ms to

find that the one-bit patterns here are

00000000000000000000000000000***

and the two-bit patterns on the 3 Non-fixed bits are all Free. Hence, there are 8

solutions to the bit patterns, implying a capacity of at most 3 bits. Notice that

two-bit patterns do not capture the fact that 7 is not a possible output here. The

reason is that while the last three bits of Y cannot all be 1, any two of them can be

1.

The optimized approach gains 61% time reduction, a rather modest improve-

ment. As in the case of sanity check, random execution will have little impact, since

a randomly-chosen 32-bit value for X is highly unlikely to be less than or equal to

6. Therefore, random executions almost certainly produce a single output, 0. Nev-

ertheless, this output still helps reducing the number of one-bit pattern queries to

32 and contributes 25% of the non-trivial entries in the implication graph. The rest

of non-trivial entries are filled by only 4 implication queries. Because the two-bit

patterns among the only three non-fixed bits of Y are all Free, deductive closure was

once again prevented from deducing anything.

5.3 Population Count

This program from [NMS09] uses clever bit operations to count the number of bits

in X that are 1, and leaks this count to Y:

X = (X & 0x55555555) + ((X>>1) & 0x55555555);

X = (X & 0x33333333) + ((X>>2) & 0x33333333);

X = (X & 0x0f0f0f0f) + ((X>>4) & 0x0f0f0f0f);

46

X = (X & 0x00ff00ff) + ((X>>8) & 0x00ff00ff);

Y = (X + (X>>16)) & 0xffff;

It has 33 possible outputs. Thus, its capacity is log 33 ≈ 5.044 bits.

The straightforward approach uses 38 STP queries and 184 ms to find that the

one-bit patterns are

00000000000000000000000000******

Among the 6 non-fixed bits, we find (using 50 STP queries and 721 ms) that there

are 5 interesting two-bit patterns: Nand(5,4), Nand(5,3), Nand(5,2), Nand(5,1) and

Nand(5,0). These patterns have exactly 33 instances; therefore, our bound is exact.

The optimized approach achieves 80% time reduction. Random execution is

highly effective in this case. It shows that the last 5 bits of Y are non-fixed, and

therefore reduce the one-bit pattern queries from 32 to 27. This turns out to be a

big win in time reduction , since the one-bit pattern queries on the last 5 bits are

more expensive. Random execution also contributes 80% of the non-trivial entries

in the implication graph. The rest of the entries are filled by only a few implication

queries and deductive closure.

5.4 Mix and Duplicate

Next, we revisit the example (also from [NMS09]) discussed in the Introduction. It

combines the two halves of X using XOR, and then duplicates these 16 bits in both

the upper and lower halves of Y:

Y = ((X >> 16) ^ X) & 0xffff;

Y = Y | Y << 16;

47

Hence, it has 216 = 65536 possible outputs, giving a capacity of 16 bits.

In 64 STP queries and 23 ms, the straightforward approach finds that all 32 bits

are non-fixed. Then, in 1968 STP queries and 863 ms, it finds that there are 16 Eq

patterns

Eq(31, 15),Eq(30, 14),Eq(29, 13), . . . ,Eq(16, 0)

and 480 Free patterns.

For some reason, SatisfiabilityCount took much longer here than in any other

case—it took 42 ms to determine that there are 65536 solutions to the bit patterns.

We get a capacity of at most log 65536 = 16 bits, which is again exact.

The optimized approach, on the other hand, only spends 82 ms–reduced time

by 91%. The major win came from random execution. The random execution is so

effective that it shows that all the bits are non-fixed. Therefore, no one-bit pattern

querie is needed. It also fills most of the 0 entries in the implication graph.

5.5 Masked Copy

This simple program copies the first 16 bits of X into Y, masking out the last 16 bits:

Y = X & 0xffff0000;

As in the previous example, it has 216 = 65536 possible outputs, giving a capacity

of 16 bits.

In 48 STP queries and 9 ms, the straightforward approach finds that the one-bit

patterns are

****************0000000000000000

In 480 STP queries and 114 ms, it finds that all two-bit patterns are Free. Thus,

we get a min-capacity of 16 bits, which is again exact.

48

In the optimized approach, random execution turns out to be highly effective.

It produces enough feasible outputs which manifest all the non-fixed bits and Free

relations among them. Hence, all of the 0 entries in the implication graph are filled.

Only the rightmost 16 bits are left for one-bit pattern queries to find out that they

have fixed value 0. Thus, it leaves no room for STP counterexample and deductive

closure to make any contribution.

5.6 Binary Search

Now we consider a program that uses binary search to leak the first b bits of X to Y:

Y = 0;

for (i = 0; i < b; i++) {

m = 2^(31-i);

if (Y + m <= X) Y += m;

}

We handle the loop by unrolling it completely, precomputing the value of m at each

iteration. When b = 16, we get the program

Y = 0;

if (Y + 2147483648 <= X) Y += 2147483648;

if (Y + 1073741824 <= X) Y += 1073741824;

if (Y + 536870912 <= X) Y += 536870912;

if (Y + 268435456 <= X) Y += 268435456;

if (Y + 134217728 <= X) Y += 134217728;

if (Y + 67108864 <= X) Y += 67108864;

if (Y + 33554432 <= X) Y += 33554432;

49

if (Y + 16777216 <= X) Y += 16777216;

if (Y + 8388608 <= X) Y += 8388608;

if (Y + 4194304 <= X) Y += 4194304;

if (Y + 2097152 <= X) Y += 2097152;

if (Y + 1048576 <= X) Y += 1048576;

if (Y + 524288 <= X) Y += 524288;

if (Y + 262144 <= X) Y += 262144;

if (Y + 131072 <= X) Y += 131072;

if (Y + 65536 <= X) Y += 65536;

As in the previous example, it has 216 = 65536 possible outputs, giving a capacity

of 16 bits.

In 48 STP queries and 246 ms, the straightforward approach finds that the one-

bit patterns are

****************0000000000000000

In 480 STP queries and 4220 ms, it finds that all two-bit patterns are Free. Thus,

we get a capacity of 16 bits, which is again exact.

As in the case of Masked Copy, random execution is highly effective—it usually

finds enough feasible outputs to fill in all of the entries of M . Because STP queries

on this program are very expensive (after all, it has 216 possible execution paths),

avoiding STP queries is very beneficial, since it reduces the analysis time by more

than 99%. The only significant time spending comes from 16 one-bit pattern queries

needed to confirm that the rightmost 16 bits are fixed with the value 0.

5.7 Electronic Purse

Next, we consider the electronic purse program from [BKR09]:

50

Y = 0;

while(X >= 5) {

X = X - 5;

Y = Y + 1;

}

Here we add the assumption that X < 20, which means that Y can range from 0 to

3, giving a capacity of 2 bits.

Again we unrolled the loop. The straightforward approach finds (in a total of

272 ms) that the first 30 bits of Y must be 0, and the last 2 bits are Free, giving a

capacity of 2 bits. As in the two previous cases, random execution produces enough

feasible outputs which reveal the non-fixed bits and their Free relations. However,

since one-bit patterns queries dominate the time in both techniques, the overall

improvement is modest–42% time reduction.

5.8 Sum Query

Here is the sum query from [BKR09]:

Y = X1;

Y = Y + X2;

Y = Y + X3;

Here we assume that X1, X2, and X3 are each less than 10. This means that there

are 28 possible outputs (from 0 to 27) and a capacity of log 28 ≈ 4.807 bits.

In a total of 235 ms, the straightforward approach finds that the first 27 bits of

Y must be 0, and the last 5 bits are Free, giving a capacity of log 32 = 5 bits. As

in the case of Electronic Purse, the optimized approach mainly saves the time on

51

computing two-bit patterns. However, since one-bit pattern queries dominate the

time in both techniques, the overall gain in time reduction is only 50%.

5.9 Ten Random Outputs

While bit patterns performed quite well in all our previous case studies, we did

identify a scenario where they perform very poorly. Consider a family of programs

that each have exactly ten possible outputs:

if (X == r1) Y = r1;

else if (X == r2) Y = r2;

else if (X == r3) Y = r3;

...

else if (X = r9) Y = r9;

else Y = r10;

Suppose we create such a program by generating distinct 32-bit values r1 through

r10, uniformly and independently. Intuitively, we would expect that the one-bit

patterns for Y will all be Non-fixed, and the two-bit patterns will overwhelmingly be

Free, leading us to greatly overestimate the capacity.

We confirmed this intuition experimentally by creating 20 such programs and

finding the average result of our bit-pattern analysis. On average, the bit patterns

had over 400,000 solutions, giving a capacity of 18.645 bits, which far exceeds the

actual capacity of log 10 ≈ 3.322 bits. While the inaccuracy here is striking, prac-

tical programs would seem unlikely to produce such completely unrelated outputs;

therefore, it is not clear whether this example represents a significant limitation of

two-bit patterns.

52

Program Min-capacity Upper bound
Illustrative example 4.087 4.087
Sanity check, base=0x00001000 4. 4.
Sanity check, base=0x7ffffffa 4. 4.585
Implicit flow 2.807 3.
Population count 5.044 5.044
Mix and duplicate 16. 16.
Masked copy 16. 16.
Binary search, b=16 16. 16.
Electronic purse 2. 2.
Sum query 4.807 5.
Ten random outputs (average) 3.322 18.645

Table 5.1: Accuracy of our upper bounds

It is worthwhile to note that STP counterexamples are highly effective in this

case. This is due to the fact that there are only ten feasible outputs. Even one or

two counter examples can fill many entries in the implication graph, and thus, save

STP implication queries. In fact, the optimized approach only needs 67 implica-

tion queries in average to compute the implication graph, while the straightforward

approach needs about 1900 queries on average. The overall time reduction is 94%.

5.10 Summary

We present our results on the case studies in six tables. Table 5.1 compares the

channel capacities with our upper bounds. Table 5.2 shows our times (in millisec-

onds) spent by the straightforward technique to compute one-bit patterns, two-bit

patterns, and to count the number of solutions to the bit patterns.2 Table 5.3

shows the corresponding results obtained by the optimized technique. Table 5.4

presents details of bit-pattern analyses: the number of STP queries required by

2The times reported here for our analysis on the straightforward technique are faster
than those reported in [MS11], because we have redone our old experiments on a faster
computer: a 2.3 GHz Intel Core i3-2310M.

53

Program One-bit patterns Two-bit patterns #SAT

Illustrative example 1072 1747 <1
Sanity check, base=0x00001000 33 21 <1
Sanity check, base=0x7ffffffa 66 2040 1
Implicit flow 12 16 <1
Population count 184 721 <1
Mix and duplicate 23 863 42
Masked copy 9 114 <1
Binary search, b=16 246 4220 <1
Electronic purse 210 62 <1
Sum query 135 100 <1
Ten random outputs (average) 91 3460 14

Table 5.2: Times in ms to calculate our bounds using the straightforward technique:
#SAT = times for SatisfiabilityCount

Program
Random
execution

One-bit
patterns

Two-bit
patterns

#SAT

Illustrative example 1 805 398 <1
Sanity check, base=0x00001000 1 28 7 <1
Sanity check, base=0x7ffffffa 2 4 197 < 1
Implicit flow 1 7 3 <1
Population count 4 79 96 <1
Mix and duplicate 2 0 80 < 1
Masked copy 2 2 6 <1
Binary search, b=16 1 21 2 <1
Electronic purse 4 153 0 <1
Sum query 1 113 4 <1
Ten random outputs (average) 1 7 216 < 1

Table 5.3: Times in ms to calculate our bounds using the optimized technique: #SAT
= times for SatisfiabilityCount

54

Program 1-bit 2-bit 1-bit* =>
of
Non-fixed bits

of
Free pairs

Illustrative example 38 32 30 13 5 6
Sanity check, base=0x00001000 37 24 32 6 4 6
Sanity check, base=0x7ffffffa 64 1552 3 75 32 90
Implicit flow 35 12 32 4 3 3
Population count 38 50 27 6 6 10
Mix and duplicate 64 1968 0 32 32 480
Masked copy 48 480 16 0 16 120
Binary search, b=16 48 480 16 0 16 120
Electronic purse 34 4 30 0 2 1
Sum query 37 40 27 1 5 10
Ten random outputs (average) 64 1843 4 67 32 384

Table 5.4: Details of our bit pattern analyses: 1-bit=the number of one-bit queries
by the straightforward technique, 2-bit=the number of two-bit queries by the
straightforward technique, 1-bit*=the number of one-bit queries by the optimized
technique, =>=the number of implication queries by the optimized technique

both techniques, the number of Non-fixed bits, and the number of Free pairs. Ta-

ble 5.5 compares the times to do two-bit pattern analysis using both techniques. As

can be seen, two-bit patterns usually allow quite accurate bounds to be calculated.

Even the straightforward technique only takes a few seconds to compute two-bit

patterns. The optimized technique based on implication graphs, random execution,

STP counterexamples, and deductive closure allows two-bit pattern analysis to be

done more efficiently. The times are reduced in all 11 case studies, by an average

of 72%; in five cases, the reduction exceeds 90%. However, the reductions are quite

variable, ranging from 33% to over 99%.

One way to understand the varied effectiveness of the different techniques that

we are using is to consider what percentage of the non-trivial entries of the impli-

cation graph M are found by random execution, by STP counterexamples, by STP

queries, and by deductive closure. Table 5.6 gives this information. It shows that

the percentage of entries found by random execution varies greatly, from as little as

25% to as much as 100%. STP counterexamples contribute between 0% and 70%.

55

Program OTime NTime Reduction
Illustrative example 2819 1204 57%
Sanity check, base=0x00001000 54 36 33%
Sanity check, base=0x7ffffffa 2106 203 90%
Implicit flow 28 11 61%
Population count 905 179 80%
Mix and duplicate 886 82 91%
Masked copy 123 10 92%
Binary search, b=16 4466 24 99%
Electronic purse 272 157 42%
Sum query 235 118 50%
Ten random outputs (average) 3551 224 94%

Table 5.5: Old and new times in ms to do two-bit pattern analysis: OTime=old
time for two-bit pattern analysis using the straightforward technique, NTime=new
time for two-bit pattern analysis using the optimized technique, Reduction=1 −
NTime/OTime

As for deductive closure, it contributes in only two of the case studies, and this is

mostly a function of the fact that random execution and STP counterexamples often

fill in almost all of M . To see what contribution deductive closure could have made,

we repeated the experiments with random execution and STP counterexamples dis-

abled. As seen in P4*, deductive closure could have made a significant contribution

in five of the case studies.

To further test the optimized approach’s capability of speeding up the perfor-

mance, we contrived the following program:

Y = X;

if ((Y & 0xffff) != 0)

Y = Y | 0xffff0000;

An interesting property of this program is that each of the leftmost 16 bits of Y

is greater than or equal to each of the rightmost 16 bits of Y, and there are no

other constraints. This poses a challenge to the optimized approach due to a great

amount of “arrow” among the bits, 256 in total. However, the optimized approach

56

Program P1 P2 P3 P4 P3* P4*
Illustrative example 25 57 18 0 67 33
Sanity check, base=0x00001000 25 50 25 0 100 0
Sanity check, base=0x7ffffffa 25 35 4 36 7 93
Implicit flow 25 58 17 0 100 0
Population count 80 10 10 0 88 12
Mix and duplicate 98 2 0 0 57 43
Masked copy 100 0 0 0 100 0
Binary search, b=16 100 0 0 0 100 0
Electronic purse 100 0 0 0 100 0
Sum query 97 3 0 0 100 0
Ten random outputs (average) 25 70 3 2 53 47

Table 5.6: Average percentage of M found by different techniques: P1=entries found
by random execution, P2=entries found by STP counterexamples, P3=entries found
by STP implication queries, P4=entries found by deductive closure. P3* and P4*
are the same as P3 and P4, but with random execution and STP counterexamples
disabled.

still achieved a modest time reduction. It took the straightforward approach 64

STP queries and 23 ms to compute the one-bit patterns, 1728 STP queries and 809

ms to compute the two-bit patterns, With the help of random executions and STP

counterexamples, the optimized approach only spent one STP and 1 ms to compute

the one-bit patterns, 272 STP queries and 543 ms to build the implication graph.

In fact, random executions and STP counterexamples are so effective in this case

that they largely eliminate the need to determine the Free patterns within both the

leftmost 16 bits and the rightmost 16 bits. As in many previous case studies, the

deductive closure was prevented from contributing anything.

57

CHAPTER 6

RELATED WORK

This chapter discusses the relevant literature in fields of contemporary quantita-

tive information flow, constraint solving, and abstract interpretation. These works

are compared with two-bit patterns from both theoretical and implementational

perspectives.

6.1 Calculating Quantitative Information Flow

Calculating quantitative information flow is a challenging problem, as shown for

example by the negative computational complexity results given in [YT10]. The pa-

per shows that the problem of comparing the min-entropy leakage of two loop-free

boolean programs is #P-hard; they give a reduction showing that one can count the

number of satisfying assignments of a boolean proposition (which is #P-complete)

via a polynomial number of such comparison queries. Nevertheless, this is an area

that is now seeing a great deal of work, both in the context of imperative programs

[BKR09, KR10, NMS09, PMTP12, HM10, APvRS10, CCG10] and real world soft-

wares [HM10, KMO12]. Our focus here will be on techniques for calculating channel

capacity under min-entropy and Shannon entropy of deterministic programs.

One work, which is similar to our two-bit patterns, is the paper by Newsome,

McCamant, and Song [NMS09], which estimates Shannon capacity of deterministic

x86 binaries. Interestingly, their motivation is quantitative integrity, looking at the

amount of influence the untrusted input can have on the trusted output. While

they actually use Shannon capacity, by Theorem 2.5.2 above this coincides with

min-capacity, and amounts simply to counting the number of possible output val-

ues. They estimate this through various heuristics, using STP to check whether a

particular output is possible or not, and whether an interval contains any possible

58

outputs. Using binary search, they try to find which intervals in the range of Y con-

tain possible outputs and which do not. When they find that an interval contains

at least one possible output, they sometimes use random sampling to estimate the

density of possible outputs within it.

While these techniques often work well, they do poorly on programs like Mix

and Duplicate, whose outputs are sparse and scattered. In that program, interval

analysis gives no useful information, and sampling cannot give accurate estimates,

since it has only 216 possible outputs (out of 232 32-bit integers). For cases like this,

they rely complementarily on a probabilistic #SAT algorithm to estimate directly

the number of possible output values. However, this is expensive, taking up to 30

seconds in some cases.

We believe that our case studies show that two-bit patterns offer a useful in-

termediary for leakage calculation for two reasons. First, two-bit patterns can be

calculated rather quickly and they usually provide quite accurate upper bounds on

the min-capacity. Second, counting the number of solutions to the bit patterns,

using SatisfiabilityCount, seems to be much faster than trying to count the

number of solutions to the whole program model.

A quite different approach to approximating leakage is given in the recent work

of Köpf and Rybalchenko [KR10], which uses statistical sampling to estimate the

mutual-information leakage of a deterministic imperative program from input X to

output Y , under a uniform a priori distribution. While they present the technique

in terms of estimating H(X|Y), it is easier to remember that the mutual-information

leakage is just H(Y). They assume that for each possible output value y, we can

estimate its probability (by estimating the number of values of X that lead to y).

Then they observe that H(Y) is the expected value of log 1
P (y)

, where y is a sampled

59

output value:

mutual information leakage = H(Y) = E

(
log

1

P (y)

)
.

With n samples, y1, y2, . . . yn, we find that H(Y) is also the expected value of

1
n

∑n
i=1 log 1

P (yi)
. Crucially, the variance of this last random variable is small relative

to the number of possible inputs, which means that the Chebyshev inequality can

be used to give good bounds on the accuracy of the estimate for not-too-large values

of n. However, it is not clear whether a similar technique can be used to calculate

min-entropy leakage.

Another model-checking based work in this area is the recent paper by Heusser

and Malacaria [HM10]. While they actually focus on the Shannon capacity of de-

terministic programs, again this essentially amounts to counting the number of

possible output values. Rather than attempting to calculate the capacity, they in-

stead focus on solving the problem of testing whether the capacity is at least some

threshold. Their approach is to test whether a program P can produce at least b

different outputs by forming a new program P ′ which runs P independently b times

on nondeterministically-chosen inputs. They then check (using the bounded model

checker CBMC) whether there is a path to a state where all b outputs are distinct.

In this way, they determine whether P ’s capacity is at least log b bits. They model

both high inputs, which are confidential, and low inputs, which are controlled by

users. In the particular case of low input, all runs of P in P ′ have varying high

input, but the same low input. Therefore, the model checker essentially determines

whether there exists a value of l under which P ’s capacity is at least log b bits.

While the technique yields interesting results on leakage in real Linux kernel

vulnerabilities, the time taken by this method grows very quickly with b. Based on

60

their experimental timings, it seems that one cannot go very much above b = 128;

checking with b = 220 (corresponding to a 20-bit capacity) would appear infeasible.

Abstract interpretation has also been considered as an approach to measure

information leakage in large programs. Köpf, Mauborgne, and Ochoa [KMO12]

develop an abstract interpretation for bounding capacity, and use it to show bounds

on cache leaks in implementations of the AES cryptosystem.

One closely related work on quantitative information flow analysis is the symbolic

quantitative information flow (SQIF) by Phan, Malacaria, Tkachuk, and Păsăreanu

[PMTP12]. They also tackle the problem of counting the feasible outputs of a

deterministic program, but with a different strategy. Unlike two-bit patterns which

provide an approximation on the set of feasible states of the output, SQIF essentially

describes precisely all of the feasible program outputs using a tree-based symbolic

representation. For a program P with a k-bit output Y , Y is viewed as a bit vector:

yk−1yk−2..y0. Its feasible states can be represented by a binary tree. The tree has

a root node y0. For every node yi, the left path represents ¬yi, and the right

path represents yi. The succession of the nodes in the tree follows the strict order

of y0 > y2 > ... > yk−1. For example, suppose that the program has 3 feasible

outputs, {000, 100, 110}, where we index the 3 bit positions from 2 down to 0.

These outputs can be represented by the binary tree in Figure 6.1. One obvious

benefit of this representation is that counting the number of feasible outputs becomes

straightforward. It is reduced to counting the number of leaf nodes.

Given a deterministic program with a high input and a low output, its symbolic

representation of the feasible output states can be computed by a recursive method

based on model checking tool like Java Pathfinder (JPF) [JPF]. To illustrate the

technique, let’s revisit the case study of sanity checker in Chapter 5.

base = 8;

61

y0

y1

y2

¬y0 ∧ ¬y1 ∧ ¬y2

y2

¬y0 ∧ ¬y1 ∧ y2 ¬y0 ∧ y1 ∧ y2

Figure 6.1: The symbolic representation for {000, 100, 110}

if (X < 16)

Y = base + X;

else

Y = base;

Assuming that all the variables are 32-bit integers, and the variable base has an

initial value 8, Y can only have integer values from 8 to 23. The procedure starts

with the lowest bit y0. To test whether y0 can be true, Java Pathfinder checks the

validity of y0 by using the following assertion:

assert!y0;

In this example, the model checker would return False since all odd values from 9

to 23 are the outputs where y0 is True. The procedure then proceeds recursively,

first on the path of y0 and to the next level with a path condition pc = y0 as the

passing argument. From there, it repeats the same check on pc ∧ y1. For each node

yi, the recursion checks the satisfiability of the right path (yi) first and then the left

path (¬yi). The procedure continues until it hits the deepest level of the tree (the

32th level in this case) or the checking fails. A trace of the state space exploration is

described in Figure 6.2. The procedure takes its progression on the path of successive

right paths, until the 5th level where pc = y0 ∧ y1 ∧ y2 ∧ y3 and the testing on the

62

y0

y1

y2

y3

y4

UNSATy0 ∧ y1 ∧ y2 ∧ y3 ∧ ¬y4

y0

y0 ∧ y1

y0 ∧ y1 ∧ y2

y0 ∧ y1 ∧ y2 ∧ y3

Figure 6.2: A SQIF state exploration trace for sanity check program

satisfiability of pc ∧ y4 fails. Hence, it takes on the path of ¬y4; there pc ∧ ¬y4 is

found to be satisfiable. From the 6th level, only the path of ¬yi is satisfiable until

i = 32. A full path to the feasible output 00000000000000000000000000001111 (15)

is found. At the end of the procedure, we have all the feasible outputs from 8 to 23;

which means that the program has a Shannon/Min capacity of 4 bits.

In [PMTP12], they also makes a comparison between SQIF and two-bit patterns

on a few case studies. In the case of ten random outputs, the SQIF triumphs over

our approach:

if (X == r1) Y = r1;

else if (X == r2) Y = r2;

else if (X == r3) Y = r3;

...

else if (X = r9) Y = r9;

else Y = r10;

According to their experimentation report, when r1 to r9 are uniformly distributed,

SQIF always finds exactly 10 outputs in about 1 second. Recall our experiment in

Chapter 5; two-bit pattern analysis takes about 224 milliseconds with a result of

63

18.645 bits in average. However, in the case studies which have a large number of

feasible outputs, it is doubtful that SQIF can compute them efficiently.

6.2 Binary Implication Graph

The binary implication graph can be used to facilitate conjunctive normal form

(CNF) simplification. One example of this effort is Marijn J. H. Heule, Matti

Järvisalo and Armin Biere’s work on efficient CNF simplification based on binary

implication graphs [HJB11]. They introduce an efficient method to “unhide” various

redundancies in a CNF formula using the time stamping information in the binary

implication graphs, derived from the size 2 clauses in the CNF. In particular, they

are interested in hidden literals and hidden tautologies. Hidden literals are the kind

of literals which can be removed from a clause without affecting the set of satisfying

assignments. Hidden tautologies are the kind of clauses which can be removed from

the conjunction without affecting the set of satisfying assignments. Knowing the

implications among the literals can facilitate the detection of these redundancies.

For instance, a literal l in a clause C is a hidden literal, if the implication l → l′

holds and l′ ∈ C. In this context, l is redundant and can be removed from C. A

clause C is a hidden tautology, if the implication l̄ → l′ holds and both l and l′

are in C. C is redundant, since either l or l′ must be true. Consider the following

formula from [HJB11]:

E = (ā ∨ c) ∧ (ā ∨ d) ∧ (b̄ ∨ d) ∧ (b̄ ∨ e) ∧ (c̄ ∨ f) ∧ (d̄ ∨ f) ∧ (f̄ ∨ h) ∧ (ḡ ∨ f) ∧

(ḡ ∨ h) ∧ (ā ∨ ē ∨ h) ∧ (b̄ ∨ c̄ ∨ h) ∧ (a ∨ b ∨ c ∨ d ∨ e ∨ f ∨ g ∨ h).

The implicaton graph derived from the size 2 clauses in E, denoted by IG(E), is

presented in Figure 6.3. It has five root nodes (no incoming arcs): a, b, ē, g, and h̄.

64

a b

c d e

f g

h ā b̄

c̄ d̄ ē

f̄ ḡ

h̄

Figure 6.3: An implication graph derived from E (reprinted from [HJB11])

The formula has redundant clauses and literals. The clauses (ā∨ ē∨h), (ḡ∨h), and

(b̄ ∨ c̄ ∨ h) are hidden tautologies. In the last clause, all literals except e and h are

hidden.

The authors use a depth first search (DFS) procedure to associate “time stamps”

to literals (nodes) in IG(E). A “time stamping” for a node v has a discovered time

and a finished time, denoted by dsc(v) and fin(v), respectively. The discovered time

for a literal is the first time it is encountered during search, and the finished time is

the last time it is encountered during search. This “time stamping” procedure is ap-

plied first to each root in IG(E), then to the literals which have not yet been visited.

The result is a forest of DFS trees with discovered-finished intervals, [dsc(v),fin(v)],

attached to each literal as presented in Figure 6.4. Dashed lines here represent im-

plications in IG(E) which are not used to set the time stamps. According to the

“parenthesis theorem”, for two nodes u and v, v is a descendant of u in the DFS

tree if and only if the time stamp interval of u contains the time stamp interval of v.

In otherwords, dsc(v) > dsc(u) and fin(u) > fin(v). Given the time stamps, these

conditions can be verified in constant time.

With these time stamps, both hidden literals and hidden tautologies can be

detected by simple comparison procedures. For instance, a simple comparison among

the literals in the last clause of E can quickly discover that dsc(c) > dsc(a) and fin(c)

< fin(a). This means that a→ c. Hence, a can be removed from the clause. b can

65

a : [29, 32] b : [11, 16]

c : [30, 31] d : [14, 15] e : [12, 13]

f : [2, 5] g : [1, 6]

h : [3, 4] ā : [22, 23] b̄ : [8, 9]

c̄ : [25 : 26] d̄ : [21, 24] ē : [7, 10]

f̄ : [20, 27] ḡ : [18, 19]

h̄ : [17, 28]

Figure 6.4: Stamp times in IG(E) (reprinted from [HJB11])

also be removed from the clause, since dsc(e) > dsc(b) and fin(e) < fin(b). The

time stamps also facilitate the checking of hidden tautologies. (ā ∨ ē ∨ h) in E,

for instance, can be quickly discovered as a tautology, since the time stamp of h̄

contains the time stamp of ā, which means that h̄→ ā.

They also propose an advanced version of DFS time stamping procedure, which

can perform additional simplifications, such as transitive reduction and discovering

equivalence relations among literals on-the-fly during the stamping procedure. Ex-

periments on real-world SAT competition benchmarks show that unhiding based on

time stamping notably improves the SAT solving.

Conceivably, the techniques introduced in the above work could improve the

efficiency of two-bit pattern computing. Instead of fully relying on STP solver,

we can convert the target program into a CNF formula. Then we can use the

time stamping information in the implication graph derived from the size 2 clauses

to cheaply determine many bit patterns. Hence, we may reduce the number of

necessary STP queries.

66

6.3 Unit-Two Variable Per Inequality Constraints

Two-bit patterns is strongly similar to Unit-Two Variables Per Inequality (UTVPI)

constraints. A UTVPI constraint takes the form a.x+b.y ≤ d where a, b ∈ {−1, 0, 1}.

The theory of UTVPI has been studied by both decision procedure community and

abstract interpretation community. One abstract domain, which closely resembles

our works on two-bit patterns and the implication graphs, is Miné’s octagon abstract

domain[Min01]. The octagon domain is a practical representation of invariants of

the form ±x ± y ≤ d , where x and y are numerical variables and d is a numerical

constant. As our work on two-bit patterns, the set of numerical variable V =

{V1, ..., Vn} is also extended into V ′ = {V ′1 , ..., V ′2n} with each variable Vi having both

a positive variable V ′2i−1 representing Vi and a negative variable V ′2i representing −Vi.

Every constraint over V can be encoded as an equivalent constraint over V ′:

the constraint is represented as

Vi − Vj ≤ c (i 6= j) V ′2i−1 − V ′2j−1 ≤ c , V ′2j − V ′2i ≤ c

Vi + Vj ≤ c (i 6= j) V ′2i−1 − V ′2j ≤ c , V ′2j−1 − V ′2i ≤ c

−Vi − Vj ≤ c (i 6= j) V ′2i − V ′2j−1 ≤ c , V ′2j − V ′2i−1 ≤ c

Vi ≤ c V ′2i−1 − V ′2i ≤ 2c

Vi ≥ c V ′2i − V ′2i−1 ≤ −2c

A set of octagonal constraints C over V ′ can be represented as a potential graph

which is very similar to the implication graph. A potential graph has nodes in V ′.

For each pair of variables (Vi, Vj) ∈ V ′, there is an arc from Vi to Vj with weight c, if

the constraint Vi−Vj ≤ c is in C. The potential graphs can be desribed by difference-

bound matrices(DBMs). Given a set of constraints C over V ′, its corresponding DBM

m is 2N × 2N matrix (N = |V|) with the following definition:

67

mij =

 c, if (vj − vi ≤ c) ∈ C

∞, otherwise.

Miné proposes a normalization algorithm inspired by Floyd-Warshall shortest-path

closure algorithm to compute the strong closure of a given potential graph and

build abstract transfer functions with a cubic time cost. Incorporated into the

famous Astrée static analyzer, the octagon domain has achieved remarkable success

on proving the safety properties of large critical softwares.

The decision procedure community is also interested in UTVPI constraints from

the satisfiability perspective: whether a given set of UTVPI constraints is satisfiable.

Jaffar, Maher, Stuckey and Yap proposed the first algorithm to decide whether a

conjunction of UTVPI constraints is satisfiable in both real and integer domains

[JMSY94]. The algorithm is based upon the following inference rules:

a.x+ b.y ≤ c − a.x+ b′.z ≤ d

b.y + b′.z ≤ c+ d
(TRANSITIVE)

a.x+ b.y ≤ c a.x− b.y ≤ d a ∈ {−1, 1}
a.x ≤ b(c+ d)/2c

(TIGHTENING)

Given a set of UTVPI constraints C, the decision procedure incrementally computes

its closure with respect to the inference rules. C is unsatisfiable if and only if its

closure contains a constraint 0 ≤ d, and d < 0. The algorithm takes O(n2m) time,

where n is the number of variables and m is the number of constraints.

The structural similarity between UTVPI and our graph representation of two-

bit patterns demonstrates the potential utility of the techniques introduced above.

For instance, we may conceivably define the abstract interpretation in terms of

implication graphs and their transformations.

68

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, we introduced the technique of calculating upper bounds on

channel capacity of deterministic imperative programs through the use of two-bit

patterns. We then introduced the implication graph as a coherent representation

of two-bit patterns and laid its mathematical foundation using the language of ab-

stract interpretation. Furthermore, a hybrid optimized approach based on implica-

tion graphs, random execution, STP counterexamples, and deductive closure was

proposed to allow two-bit pattern analysis to be done more efficiently.

In our case studies of small (but tricky) programs, we found that two-bit patterns

usually allow quite accurate bounds to be calculated in a few seconds even using

the non-optimized approach. The hybrid optimized approach allows two-bit pattern

analysis to be done more efficiently. Experiments show a substantial benefit from

the new techniques, with time reductions averaging 72%, and often exceeding 90%.

7.2 Future Work

In future work, there are several directions to explore. First, we need to show the

completeness of deductive closure. Second, as we scale to complex programs, it is

clear that STP queries (and STP counterexamples) about the entire program will

ultimately become infeasible. For this reason, we are also interested in exploring

the possibility of doing an approximate two-bit pattern analysis as a compositional

abstract interpretation over the domain of implication graphs. Third, in many real

applications, the high input is not the only influence on the observable output.

69

The low input, a non-confidential input, is often an intrinsic part of the system’s

functionality. The low input is either provided by users or determined by other

external factors. It, too, influences the output. We would like to determine the

maximum leakage from the high input to the observable output for all the possible

low inputs. Finally, a philosophical study on the origin of undue information flow

is crucial for the future of cyber security. We are interested in understanding why

there is information flow between the variables with conflicting labels (high/low).

7.2.1 Abstract Interpretation

As many senior researchers in the field of formal verification have pointed out, the

two-bit patterns already constitute a bit-level relational abstract domain. It is re-

lational because it is about the relationships among the bits. It is an abstract

domain because two-bit patterns, represented as implication graphs, form a com-

plete lattice. There is already a partial order, denoted by vAM on the set AM

of adjacency matrix representations of implication graphs. Intuitively, M vAM N

means that for each pair of bits, their contraint in M is tighter than the correspond-

ing constraint in N . vAM corresponds to the subset inclusion of concrete states:

M vAM N =⇒ γ(M) ⊆ γ(N). The set AM has the greatest element >AM for

vAM. It is defined as ∀i, j,>AM
ij = 0. >AM corresponds to the situation where every

pair of bits are in Free relationship. Therefore, >AM represents the whole space of

concrete states. If we extend AM by introducing the smallest element, denoted by

⊥AM, which represents an empty set of the concrete state, we obtain a complete

lattice (AM,vAM,tAM,uAM,>AM,⊥AM) with the following definitions:

70

∀M,N, M vAM N
def⇐⇒ ∀i, j,Mij ≥ Nij

∀M,N, (M tAM N)ij
def
= Mij ∧Nij

∀M,N, (M uAM N)ij
def
= Mij ∨Nij

where M and N are adjacency matrices in AM. The lattice also has the following

definitions with respect to ⊥AM:

∀K], ⊥AM vAM K]

∀K], ⊥AM tAM K] def
= K] tAM ⊥AM def

= K]

∀K], ⊥AM uAM K] def
= K] uAM ⊥AM def

= ⊥AM

where K] stands for any element in AM or ⊥AM.

The challenge is how to define the interpretation on the domain. One solution

is to conduct interpretation by using STP solver to find bit patterns for a vector

consisting of the concatenation of all the program variables after each instruction

in a sequential instruction composition. To illustrate this incremental approach, we

use the analysis of the following program to show the transformation of the two-bit

patterns after each instruction step in detail:

X = X & 0x3;

Y = 16*X + X*X;

Assuming that X is the secret input variable, Y is the output variable, and both are

6-bit unsigned integers, the program can produce 4 distinct outputs: 0, 17, 36, 57.

Therefore, the program has a Shannon/min capacity of 2.

After the first instruction, the analysis finds that the first 4 bits of X became

Zero, and all other bits in X and Y are non-fixed. It also finds that all of the two-bit

71

patterns are Free. Based on this configuration, the analysis of the second instruction

finds more complex patterns among the bits in Y. Namely, bit 1 is Zero. Bit 2 and

bit 3 are all less than or equal to bit 5. Moreover, bit 3 is less than or equal to bit

0, which is equal to bit 4. Finally, we have Nand(4,2), Nand(0,2), and Nand(3,2).

There are six solutions corresponding to these bit patterns. Hence, the estimated

channel capacity (under Shannon entropy or min-entropy) is 2.58 bits.

Nevertheless, the two-bit pattern characterization of the feasible intermediate

program states can be overly imprecise. Consider the following program:

Y = X*X;

Y = X*X - Y;

Assuming that X is a 2-bit unsigned integer variable and Y is a 4-bit unsigned integer

variable, then the program results with Y = 0. Hence, there is no leakage in this

program. If we analyze bit patterns in concatenation XY after the first instruction,

they are exactly the same as the patterns in the final value of Y in the previous

program. Further analysis of the second instruction would fail to achieve the correct

result, Y = 0.

One way to improve the precision is to extend the current mathematical frame

for a more powerful abstract domain. Instead of having only one conjunction of two-

bit patterns, we can use multiple disjointed conjunctions of two-bit patterns as the

abstract domain. Such extension will allow more complex relationships among bits

to be expressed. This, of course, will add considerably to the cost of the analysis.

Due to its bit-wise nature, this kind of abstract interpretation is suitable for static

or dynamic analysis for the binary code. One potential application is to detect the

security flaws in the binary implemention by analyzing various information flows.

72

7.3 Low Input

The current approach does not distinguish the high input from the low input, either

under control of the users or caused by some external factors. In the presence of low

inputs, counting the number of feasible outputs can badly overestimate the leakage.

As an example, consider the following program:

X = X & 0x0000000f;

L = L & 0xfffffff0;

Y = X | L;

Assuming that X is the secret input variable, L is the low input variable, Y is the

output variable, and all are 32-bit unsigned integers, the program can produce 232

distinct outputs. However, only the last 4 bits of Y are influenced by X.

Therefore, it is desirable to determine the maximum leakage from the high input

to the observable output for all the possible user inputs. One trivial approach is to

try all of the values for the low input and estimate the leakage for each of them.

This, of course, is computationally inefficient. Heusser and Malacaria’s work [HM10]

provides some insights on how to model the leakage with the presence of both high

and low inputs. However, more work is still needed to find the “worst” value of the

low input which corresponds to the maximum leakage.

7.4 The Origin of Undue Information Flow

In addition to the technical improvement on the current bit pattern based code

analysis, it is crucial to have an understanding of the origin of undue information

flow from historical and philosophical perspectives. Contemporary researchers pri-

marily view the information security issue as a logical problem, and are unaware of

73

the Cartesian philosophical tradition which we have inherited since the beginning

of computer science. Since Descartes, humans have been viewed as self-enclosing

rational subjects, who relate to the external world as objects through mental rep-

resentations. This rationalism has been pervasive in all modern sciences including

computer science. The majority of scientists believe that reality can be represented

in term of facts and rules.

However, since the 20th century, this Cartesian tradition has been contested by

many continental philosophers. The most profound challenge came from the German

philosopher, Martin Heidegger. As he pointed out, there are ontological differences

between the mode of being in the life world and the Cartesian representational mode

of being. First, human beings do not usually analyze things theoretically, but rather

use them and take them for granted. In everyday life, things are encountered by

human beings as mutually referred equipments in a unified whole. A house refers to

bad weather and to our need to stay dry; the need to stay dry refers to our medical

knowledge; this knowledge refers in turn to our fear of illness. We are woven together

with this referential totality, the world. Second, the concepts of time are different in

these two modes of being. Unlike the chronological time, an infinite series of “nows”

counted by a clock, the time in the human everyday life is continuous. According to

Heidegger, temporality is a unity against which past, present and future stand out,

while remaining essentially interlocked.

When a programmer creates a software, he/she always projects a particular

social reality in the life world onto a discrete and procedural universe of bits. In

this virtual universe, things are uniformized as binaries. The organic relationships

among them are also mechanized in Turing Machines. This immediately put things

in a “vulnerable” state. For any software system which strives to imitate this organic

human social existence, it is difficult to keep all of the elements in the system

74

buf[3]...buf[1] buf[0]
buf[7] ... buf[4]
arguments of foo

return address
Stack before calling

foo

Figure 7.1: The stack holds the return address, the arguments, and the local vari-
ables for foo

(variables or other resources) within the same statically defined categories (types).

At some points of the computation, there will be some variables or handlers which

are simultaneously members of different categories. While many of the overlaps

are harmless, some can cause serious security problems, especially when the overlap

occurs at distinct abstraction layers in the system. As an example, consider the

following function foo:

void foo(const char* input) {

char buf[8];

strcpy(buf, input);

}

When this function is called from another function, a series of actions occur at

the system level. First, the calling function pushes the return address, that is the

address of the return statement onto the stack. Then, the called function pushes

zeroes on the stack to store its local variable. Since foo has an character array

buf[8], there will be space for 8 characters allocated. The configuration of the

stack is depicted in Figure 7.1. The call to strcpy is dangerous here. The function

strcpy simply copies characters until it encounters a “0” character in the source

string. Since the argument which is given to the call can be much longer, it can

overwrite the return address in the stack. This vulnerability can be maliciously

75

exploits
exploits
exploits

starting address of
the exploits

Stack before calling
foo

Figure 7.2: The stack with overwritten return address

exploited by an adversary to gain the control over the system. The stack with an

an overwritten return address is depicted in Figure 7.2. When the buffer overflow

happens, the original memory location for the return address becomes a member for

two conflicting categories now. It is simultaneously a system parameter and a user

input!

In the future, information flow research needs to move beyond the pure logical

view of computing and be more aware of this ontological difference. The operational

semantics, both in information theory and the enforcement technique, should reflect

the the dynamics of human existence and its historical character.

76

BIBLIOGRAPHY

[AAP10] Mário Alvim, Miguel Andrés, and Catuscia Palamidessi. Probabilistic
information flow. In Proc. 25th IEEE Symposium on Logic in Computer
Science (LICS 2010), pages 314–321, 2010.

[ACPS12] Mário S. Alvim, Kostas Chatzikokolakis, Catuscia Palamidessi, and Ge-
offrey Smith. Measuring information leakage using generalized gain
functions. In Proc. 25th IEEE Computer Security Foundations Sym-
posium (CSF 2012), pages 265–279, June 2012.

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-
time algorithm for testing the truth of certain quantified boolean for-
mulas. Information Processing Letters, 8(3):121–123, 1979.

[APvRS10] Miguel Andrés, Catuscia Palamidessi, Peter van Rossum, and Geoffrey
Smith. Computing the leakage of information-hiding systems. In Javier
Esparza and Rupak Majumdar, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’10), volume 6015 of
Lecture Notes in Computer Science, pages 373–389, 2010.

[BCP09] Christelle Braun, Konstantinos Chatzikokolakis, and Catuscia
Palamidessi. Quantitative notions of leakage for one-try attacks. In
Proc. 25th Conference on Mathematical Foundations of Programming
Semantics (MFPS 2009), volume 249 of ENTCS, pages 75–91, 2009.

[BKR09] Michael Backes, Boris Köpf, and Andrey Rybalchenko. Automatic dis-
covery and quantification of information leaks. In Proc. 30th IEEE
Symposium on Security and Privacy, pages 141–153, 2009.

[CC04] Patrick Cousot and Radhia Cousot. Basic concepts of abstract inter-
pretation. In Building the Information Society, pages 359–366. Kluwer
Academic Publishers, 2004.

[CCG10] Konstantinos Chatzikokolakis, Tom Chothia, and Apratim Guha. Sta-
tistical measurement of information leakage. In Javier Esparza and
Rupak Majumdar, editors, Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’10), volume 6015 of Lecture Notes
in Computer Science, pages 390–404, 2010.

77

[CHM05] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative
information flow, relations and polymorphic types. Journal of Logic
and Computation, 18(2):181–199, 2005.

[CMS05] Michael Clarkson, Andrew Myers, and Fred Schneider. Belief in in-
formation flow. In Proc. 18th IEEE Computer Security Foundations
Workshop (CSFW ’05), pages 31–45, 2005.

[CPP08] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash
Panangaden. Anonymity protocols as noisy channels. Information and
Computation, 206:378–401, 2008.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
John Wiley & Sons, Inc., second edition, 2006.

[Fel68] William Feller. An Introduction to Probability Theory and Its Applica-
tions, volume I. John Wiley & Sons, Inc., third edition, 1968.

[Gal68] Robert G. Gallager. Information Theory and Reliable Communication.
John Wiley & Sons, Inc., 1968.

[GD07] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors
and arrays. In Proc. 19th International Conference on Computer Aided
Verification (CAV 2007), volume 4590 of Lecture Notes in Computer
Science, pages 524–536, 2007.

[GK96] Andrew V. Goldberg and Alexander V. Karzanov. Path problems in
skew-symmetric graphs. Combinatorica, 16(3):353–382, 1996.

[HJB11] Marijn J. H. Heule, Matti Järvisalo, and Armin Biere. Efficient cnf
simplification based on binary implication graphs. In Proceedings of the
14th International Conference on Theory and Application of Satisfiabil-
ity Testing, SAT’11, pages 201–215, Berlin, Heidelberg, 2011. Springer-
Verlag.

[HM10] Jonathan Heusser and Pasquale Malacaria. Quantifying information
leaks in software. In Proc. ACSAC ’10, pages 261–269, 2010.

[HSP10] Sardaouna Hamadou, Vladimiro Sassone, and Catuscia Palamidessi.
Reconciling belief and vulnerability in information flow. In Proc. 31st
IEEE Symposium on Security and Privacy, pages 79–92, 2010.

78

[JMSY94] Joxan Jaffar, Michael J Maher, Peter J Stuckey, and Roland HC Yap.
Beyond finite domains. In Principles and Practice of Constraint Pro-
gramming, pages 86–94. Springer, 1994.

[JPF] http://babelfish.arc.nasa.gov/trac/jpf/.

[KB07] Boris Köpf and David Basin. An information-theoretic model for adap-
tive side-channel attacks. In Proc. 14th ACM Conference on Computer
and Communications Security (CCS ’07), pages 286–296, 2007.

[KMO12] Boris Köpf, Laurant Mauborgne, and Mart́ın Ochoa. Automatic quan-
tification of cache side-channels. In Proc. 24th International Conference
on Computer-Aided Verification (CAV ’12), pages 564–580, 2012.

[KR10] Boris Köpf and Andrey Rybalchenko. Approximation and randomiza-
tion for quantitative information-flow analysis. In Proc. 23nd IEEE
Computer Security Foundations Symposium (CSF ’10), pages 3–14,
2010.

[Kro67] Melven R. Krom. The decision problem for a class of first-order formulas
in which all disjunctions are binary. Zeitschrift für Mathematische Logik
und Grundlagen der Mathematik, 13:15–20, 1967.

[KS10] Boris Köpf and Geoffrey Smith. Vulnerability bounds and leakage re-
silience of blinded cryptography under timing attacks. In Proc. 23nd
IEEE Computer Security Foundations Symposium (CSF ’10), pages 44–
56, 2010.

[Mac03] David J.C. MacKay. Information Theory, Inference, and Learning Al-
gorithms. Cambridge University Press, 2003.

[Mal07] Pasquale Malacaria. Assessing security threats of looping constructs. In
Proc. 34th Symposium on Principles of Programming Languages (POPL
’07), pages 225–235, 2007.

[Mas94] James L. Massey. Guessing and entropy. In Proc. 1994 IEEE Interna-
tional Symposium on Information Theory, page 204, 1994.

[Min01] Antoine Min. The octagon abstract domain. In Eighth Working Confer-
ence on Reverse Engineering, pages 310–319. IEEE Computer Society,
2001.

79

[MS11] Ziyuan Meng and Geoffrey Smith. Calculating bounds on information
leakage using two-bit patterns. In Proceedings of the ACM SIGPLAN
6th Workshop on Programming Languages and Analysis for Security,
PLAS ’11, pages 1:1–1:12, New York, NY, USA, 2011. ACM.

[MS13] Ziyuan Meng and Geoffrey Smith. Faster two-bit pattern analysis of
leakage. In Proc. 2nd International Workshop on Quantitative Aspects
in Security Assurance (QASA ’13), pages 2:1–2:14, 2013.

[NMS09] James Newsome, Stephen McCamant, and Dawn Song. Measuring
channel capacity to distinguish undue influence. In Proc. Fourth Work-
shop on Programming Languages and Analysis for Security (PLAS ’09),
pages 73–85, 2009.

[PMTP12] Quoc-Sang Phan, Pasquale Malacaria, Oksana Tkachuk, and Corina S.
Păsăreanu. Symbolic quantitative information flow. SIGSOFT Softw.
Eng. Notes, 37(6):1–5, November 2012.

[R6́1] Alfréd Rényi. On measures of entropy and information. In Proc. 4th
Berkeley Symposium on Mathematics, Statistics and Probability 1960,
pages 547–561, 1961.

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27:379–423, 623–656, 1948.

[Smi09] Geoffrey Smith. On the foundations of quantitative information flow. In
Luca de Alfaro, editor, Proc. 12th International Conference on Foun-
dations of Software Science and Computational Structures (FoSSaCS
’09), volume 5504 of Lecture Notes in Computer Science, pages 288–
302, 2009.

[Val79] Leslie G. Valient. The complexity of enumeration and reliability prob-
lems. SIAM J. on Computing, 8:410–421, 1979.

[YT10] Hirotoshi Yasuoka and Tachio Terauchi. Quantitative information flow
— verification hardness and possibilities. In Proc. 23nd IEEE Computer
Security Foundations Symposium (CSF ’10), pages 15–27, 2010.

80

VITA

ZIYUAN MENG

October 22, 1979 Born, Shijiazhuang, Hebei, China

2002 B.S., Computer Science
Tongji University
Shanghai, China

2005 M.S., Computer Science
Florida International University (Beijing Campus)
Beijing, China

2005–2006 VLSI verification engineer
VIA Technologies Inc
Beijing, China

2007–2009 Teaching assistant
Florida International University
Miami, Florida

2009–present Research assistant
Florida International University
Miami, Florida

PUBLICATIONS

Ziyuan Meng and Geoffrey Smith, “Calculating Bounds on Information Leakage
Using Two-Bit Patterns,” Proceeding of ACM SIGPLAN Sixth Workshop on Pro-
gramming Languages and Analysis for Security (PLAS), pages 1:1-1:12, 2011.

Ziyuan Meng and Geoffrey Smith, “Faster Two-Bit Pattern Analysis of Leakage,”
Proceeding of 2nd International Workshop on Quantitative Aspects of Security As-
surance (QASA), pages 2:1-2:14, 2013.

81

	Florida International University
	FIU Digital Commons
	3-27-2014

	Two-Bit Pattern Analysis For Quantitative Information Flow
	Ziyuan Meng
	Recommended Citation

	Two-Bit Pattern Analysis for Quantitative Information Flow

