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ABSTRACT OF THE THESIS 

LINEAR AND NONLINEAR MOTION OF A BAROTROPIC VORTEX 

by 

Israel Gonzalez III 

Florida International University, 2014 

Miami, Florida 

Professor Hugh E. Willoughby, Major Professor 

The linear Barotropic Non-Divergent simulation of a vortex on a beta plane is consistent 

with Willoughby’s earlier shallow-water divergent results in that it produced an 

unbounded accelerating westward and poleward motion without an asymptotic limit.  

However, Montgomery’s work which yielded finite linear drift speeds for his completely 

cyclonic vortex was inconsistent with ours.  The nonlinearly-forced streamfunction 

exhibited a beta-gyre like structure, but with opposite polarity phase to the linear gyres.  

Utilization of the linear model with time-dependent, but otherwise beta-like, forcing 

revealed increasing magnitude and phase reversal in the neighborhood of a low cyclonic 

frequency.  Here, the mean bounded vortex has an outer waveguide that supports Vortex 

Rossby Wave propagation that is faster than the mean flow and confined to a very narrow 

band of frequencies between zero and the Vortex Rossby Wave cutoff.  The low 

frequency waves constitute the beta-gyre mode described previously by Willoughby. 
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INTRODUCTION 

 

Tropical cyclone track forecasting has improved substantially since the mid-20th 

century, largely through improved understanding of cyclone motion dynamics.  The beta 

(β) gyres are a generally accepted mechanism that contributes to propagation observed in 

real-life storms.  In the 1980s and 1990s, β-gyre dynamics was the focus of intense 

modeling and observational efforts (e.g., Chan, Holland, Williams, Wang).  Semispectral 

shallow-water barotropic (i.e., no vertical wind shear) linear and nonlinear time-marching 

models have been utilized by Willoughby (1992, 1994) to simulate vortex motion on a β-

plane.  The vortex accelerated toward the northwest (NW) without limit, ostensibly 

through resonant growth of a free linear mode.  In the analogous nonlinear model, wave-

wave interaction limited the westward and poleward motion to reasonable speeds of 1-2 

ms-1.  Subsequent work by Montgomery et al. (1997) was unable to replicate the linear 

result.  Here, we revisit the problem in a Barotropic Non-Divergent context both to 

resolve the question of the free mode’s existence and to clarify the nonlinear dynamics.  

The results elucidate the physics of tropical cyclone motion and may provide a basis for 

semi-spectral forecast models. 
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TROPICAL CYCLONES 

 

Rotational Dynamics 

 Tropical Cyclones (TCs) are diabatically maintained low-pressure systems that 

draw their energy from the tropical ocean.  Their winds swirl counter-clockwise in the 

Northern Hemisphere around the center in gradient balance with their almost circular 

pressure field (Figure 1).  The pressure-gradient force (blue arrow) points inward toward 

the low-pressure center and balanced by the outward centrifugal and Coriolis force (green 

arrow).  The opposite is true for high-pressure 

systems such as anticyclones.  The Coriolis Effect is 

the deflection of a large-scale motion to the right 

because of the Earth’s rotation and as such, acts 

orthogonally to the right of the wind (black arrow) in 

the Northern Hemisphere, thereby explaining the flow 

pattern. 

 

Vorticity 

 Since TCs are overwhelmingly rotational, vorticity (e.g., Holton 19, pp.92) is an 

essential concept to understanding their dynamics.  In qualitative terms, vorticity is the 

measure of rotation separated into two primary parts and defined mathematically as v   

or the curl of the horizontal wind vector v .  Relative vorticity, ζ, is relative to the Earth 

and characterized as either positive (i.e., cyclonic) or negative (i.e., anticyclonic) rotation; 

 

Figure 1. Circular vortex in 
gradient balance 
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TCs have positive ζ at their core.  The second part is proportional to the vertical 

component of the Earth’s rotation and is known as planetary vorticity, f, or the Coriolis 

parameter.  Mathematically, f=2Ωsinφ, where Ω is the angular velocity of the planet and 

φ is the latitude.  Thus f is zero at the equator and increases poleward.  The spatial 

gradient of planetary vorticity, β=∂f/∂y, accounts for the β-effect, the change in f across 

the circulation.  Additionally, absolute vorticity is the sum of relative and planetary and 

vorticity.  In TCs, the relative vorticity gradient decreases outward from the storm, 

negative near the center, and becomes less negative outward.  In a bounded vortex where 

circulation approaches zero at large radius, the relative vorticity and its gradient become 

weakly positive at the periphery. 

Vorticity is a conservative property in a 

Barotropic Non-Divergent (BND), frictionless 

flow, where it cannot be created nor destroyed.  

However, in the real atmosphere, (but not in 

BND flows) it can be stretched or compressed 

vertically.  Tropical Cyclones obtain their 

energy from the warm ocean surface as 

convergence of the air swirls into the center.  

The water evaporates into vapor that rises in the 

eyewall convection.  The vapor then condenses into liquid water and releases latent heat.  

As a result, TCs have warm cores where rising motion stretches the vorticity upward thus 

concentrating it and causing the swirling wind to increase.  Consequently, the eyewall is 

where the convection and strongest winds are found.  Conversely, sinking motion occurs 

 

Figure 2. Conservation of absolute 
vorticity of a nonrotating air parcel 
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in the eye of the storm which causes the vorticity to compress downward.  As a result, the 

eye is the calmest part of a TC.   

In the BND context, absolute vorticity conservation states that if a parcel of 

nonrotating air at some arbitrary latitude is displaced poleward, f will increase and ζ 

decrease to retain the same absolute vorticity that it had at its initial position.  The air 

consequently acquires anticyclonic relative vorticity.  The opposite is true if that same air 

parcel was displaced equatorward.  The process in Figure 2 occurs in TCs because of 

their large size and is responsible for formation of asymmetries called the β-gyres. 

 

Structure 

The typical structure of a mature TC consists of a well-defined, fairly symmetric 

circulation with a large outflow pattern near the tropopause (e.g., H~12 km).  The low-

level circulation is masked by higher convective clouds known as the Central Dense 

Overcast with an often cloud-free eye.  Spiral rain bands of convection wrap around the 

storm in most, if not all of the quadrants.  The secondary circulation induced by latent 

heat release maintains the storm for times much longer than the orbital period of air 

swirling around the center.  Without it, the vortex would experience rapid spin-down and 

dissipation. 

 

General Motion 

 Tropical Cyclones can be thought of as rotating cylinders whose horizontal 

dimensions (e.g., L~300-2000 km) are an approximate order of 100 times greater than its 

vertical dimensions (e.g., H~10-12 km).  Thus, they fall near the lower margin of the 
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synoptic scale (i.e., H/L << 1) weather systems.   Despite their large size however, they 

are embedded in the Earth’s tropospheric planetary scale flow in which horizontal 

dimensions are much larger.  As a result, TCs are, to a first approximation, blobs of 

vorticity that move with environmental currents.  In the North Atlantic tropics and 

subtropics (i.e., between 0⁰	N and 30⁰	N), observations generally show a westward and 

poleward motion to the right of the background flow, consistent with the easterly (i.e., 

east to west) flow of the Trade Winds and the southern periphery of the Bermuda and 

Azores High.  When TCs reach the mid-latitudes (i.e., > 30⁰	N), their motion is 

dominated by the stronger prevailing westerlies which are primarily responsible for 

recurvature out to the cold open North Atlantic.  The role of environmental flow in TC 

motion is evident, but there are other important factors. 

 In actuality, TC motion is primarily controlled by the winds at mid-levels (i.e., 

500 millibars) of the atmospheric environment.  In a 

uniform flow, the steering current would push the 

TC’s vorticity downstream, thus causing it to move 

with the flow (Figure 3).  In addition to their 

advection by the surrounding “steering currents”, 

TCs also propagate as a result of flow across their 

centers induced by asymmetries stemming from the 

β-effect. 

 

  

Figure 3. TC embedded in an 
easterly uniform flow with no 
vorticity 
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PREVIOUS WORKS 

 

Vortex Motion on a Beta Plane 

 Tropical Cyclones move generally with the environmental current but are often 

observed to deviate slightly from their expected track.  A plausible explanation for the 

deviation is that the stronger Coriolis force exerted on the poleward part of a storm 

causes it to move to higher latitude, as first suggested by Rossby (1948).  He claimed that 

a net force must exist to drive a TC poleward.  Subsequent research in the late 1950s and 

1960s seemed to validate the β-effect, but a physical mechanism was not understood until 

the early 1980s (Chan & Holland).  The idea was that the swirling flow of a TC advects f 

within the storm itself and produces two oppositely rotating gyres (called β-gyres) on the 

periphery, such that the counter flow between them moves northwestward across the 

center of the vortex.  The resulting asymmetric secondary circulation drives the TC 

poleward and westward and appears responsible for the tendency to move differently 

from what the environmental steering flow would otherwise dictate. 

The linear argument mentioned earlier however was shown to be somewhat 

inaccurate by Chan & Williams (1987) in terms of explaining the β-effect.  From a 

numerical standpoint, the linear solution of the barotropic vorticity equation in an 

environment devoid of any steering flow would produce a westward moving vortex with 

slow propagation.  Therefore, nonlinear interactions between the mean vortex swirling 

flow and f must play a significant role in moving the storm poleward.  Consequently, 

scientists became motivated to include nonlinearity in their models to represent vortex 

motion on a β-plane more realistically. 
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Beta Gyre Normal Mode Theory 

 Willoughby (1992, 1994) developed a shallow-water (i.e., H=500 m) divergent, 

barotropic, time-marching model to simulate both linear and nonlinear vortex motion 

with a 4 km horizontal resolution on a domain that extended from the center to 3000 km 

radius.  The vortex was bounded in a sense that the circulation approached zero at some 

large but finite radius thus requiring anticyclonic vorticity and a reversal of vorticity 

gradient at the vortex periphery from the Circulation Theorem.  In his model, the vortex 

supported two linear normal modes: a neutral normal mode near zero frequency 

(equivalent to the β-gyre asymmetries), and an alternative vortex with zero relative 

angular momentum; it had a barotropically unstable mode that exhibited a paired “trailing 

spiral” asymmetry close to the center.   

The linear case produced β-gyre streamfunction dipoles with opposite polarity on 

either side of the vortex.  The asymmetries appeared to represent normal modes of the 

linear system.  A normal mode is defined as a set of parts of an oscillating system in 

which they obtain a sinusoidal motion at the same frequency (i.e., resonance).  When a 

normal mode is forced at its resonant frequency in the absence of dissipation, it grows 

linearly with time to large amplitude and known to persist for long periods of time in the 

absence of forcing.  The track from linear calculations showed an essentially constant 

acceleration poleward and westward to non-physically high speeds.  Hypothetically a 

resonant excitation of near-zero-frequency normal mode by the β-effect appeared 

responsible.  

Willoughby attempted to validate his hypothesis by “switching off” the β-forcing 

at 240 hrs after the gyres have already established themselves as asymmetric structures.  
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He then ran the model for an additional 10 days (i.e., to 480 hrs) and found that the 

asymmetries retained their structure and the near-constant NW track persisted with nearly 

constant speed on an f-plane (where f does not vary with latitude).  Furthermore, he was 

able to manipulate the β-gyres by rotating and scaling them to produce any desired initial 

motion which seemed to support the normal mode theory (Willoughby 1995).  

Willoughby concluded that a general property of barotropic vortices is the existence of a 

neutral mode under the condition that the mean vortex is bounded at some finite radius 

where the circulation is zero. 

The analogous nonlinear case considered wave-wave interactions that change the 

axially symmetric structure of the vortex and limit its speed.  In addition, they support 

wave energy cascade to higher wavenumbers.  The interaction with the mean vortex 

produced an annulus of anticyclonic flow on the vortex periphery that contained a new 

set of β-gyres but of opposite polarity to the original ones in the linear model.  

 

Asymmetric Balance 

 Shapiro and Montgomery (1993) developed the Asymmetric Balance (AB) 

equations for asymmetric motions on circular vortices and applied them to vortex motion 

on a β-plane in fixed coordinates (1997).  Asymmetric Balance allows one to separate the 

linear and nonlinear balance contributions to the vortex motion when the standard Rossby 

number (i.e., v0/fL) is not small.  The mathematical framework for studying the slow 

evolution of rapidly rotating fluid systems such as TCs and addresses asymmetric 

dynamics that include: spiral rain bands, track, and environmental interaction is what AB 

represents.  Montgomery’s somewhat different approach to Willoughby (1992) yielded 
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inconsistent linear results that produced a vortex speed that asymptoted after 240 hrs at 

~6 ms-1.  The track was faster than full-physics models or observations and not much 

slower than Willoughby’s linear results (i.e., 8 ms-1) after 240 hrs.  Asymmetric Balance 

requires that the linearized Lagrangian derivative yields frequencies well below the 

inertia frequency and is not met for low-frequency wavenumber-one perturbations in the 

vortex core.  The vorticity dynamics of their completely cyclonic vortex differ 

significantly from those of a bounded vortex whose circulation approaches zero at large 

radius, dissipative (i.e., K=60 m2s-1)  nature of the model, and different vortex tracking 

method may explain the asymptotic motion.  Nevertheless, Montgomery argued against 

the β-gyre normal mode theory because his results suggest that finite drift speeds are 

always attained in a vortex with finite depth (i.e., divergent).  Moreover, he performed his 

own set of reinitialization experiments for different types of vortices and found that the β-

gyres persisted for long times but not infinitely.  The asymmetries decayed with a half 

time proportional to the radial shear and “axisymmetrized”.  
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SECONDARY CIRCULATION EFFECT ON MOTION 

 

Beta Gyres 

Vorticity advection by the surrounding “steering current” is the dominant process 

in TC motion on an f-plane causing simple movement with the background flow in an 

environment with no vorticity gradients.  On the other hand, vorticity advection by the 

mean swirling flow associated with the vortex dominates in still surroundings on a β-

plane (where f varies with latitude).  From conservation of absolute vorticity, ζ must 

decrease (as f increases) to the north and increase (as f decreases) to the south of the TC.  

The change in ζ is a function only of the storm latitude and the size of the radius of 

circulation (Marks, 1992).  As a result, vorticity pattern of opposite phase forms 

(anticyclonic to the north and cyclonic on the south) such that there is a beta-induced 

secondary easterly flow across the vortex.  The radial ventilation flow advects cyclonic 

relative vorticity out of the vortex core on the west side of the center to spin up a cyclonic 

circulation there.  Conversely, inflow on the east brings low relative vorticity into the 

vortex, spinning up an anticyclonic gyre there.  The superposition of the beta-induced and 

ventilation-induced gyres produces a northeast-southwest (NE-SW) oriented β-gyre 

streamfunction dipole such that the southeasterly flow between the gyres advects the 

vortex poleward and westward as shown in Figure 4 (Chan & Williams). 

 

Beta Drift 

Tropical Cyclones therefore have two forms of secondary flow that are combined 

to produce a deviated displacement to the NW irrespective of advection by the large-scale 
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flow.  Vortex-following models have produced northwestward motion at 1-2 ms-1 on a 

Northern Hemispheric β-plane, despite zero background environmental steering flow 

(known as β-drift),  and is the basis for the linear model considered here.  The total 

motion of a TC can be considered as the vector sum of the advection by the background 

winds and the β-gyre propagation.  Propagation is independent of the background flow to 

a first approximation.  The concept from Figure 5 is utilized by the National Hurricane 

Center and implemented into their Beta and Advection Model for track forecasting 

(Marks, 1992). 

 

  

Figure 4. The impact of the β-
effect on forming the β-gyres 

 

Figure 5. Vector motion to the 
WNW 
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VORTEX ROSSBY WAVES 

 

General Structure and Propagation 

 Our study continues Cotto’s (2012) work on Vortex Rossby Waves (VRWs); 

vorticity waves formed by the β-effect that propagate upon the radial gradient of mean 

vortex vorticity.  In cyclonic vortices where the mean vorticity decreases outward (e.g., 

TCs), they propagate upstream so that their phase velocity with respect to the ground is 

slower than the mean swirling flow.  Thus, VRWs are advected cyclonically downstream 

around the vortex.  Two-dimensional Rossby waves in cylindrical coordinates are 

confined to a “passband” between zero frequency and the frequency of one-dimensional 

Rossby waves with the same tangential wavenumber.  In a divergent context, vorticity 

stretching and advection can excite VRWs as can advection by the axisymmetric vortex 

of the gradient of planetary vorticity.  Willoughby hypothesized that the β-gyres are 

VRW normal modes on completely cyclonic BND vortices (Montgomery & Kallenbach 

1997). 
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DYNAMICS OF THE BND MODEL 

 

Simulated Environment 

 Here, we revisit the work done in the late 1980s and 1990s, using a vortex-

following 2-D model on a Northern Hemispheric β-plane and considers a BND vortex in 

a still environment initialized from asymmetry and rest.  It is scaled to resemble a TC on 

a rotating spherical Earth.  Time integration of the vorticity equation yields the 

asymmetric structure of the vortex, including a well-defined wavenumber-1 (WN1) 

asymmetry resulting from the displacement between the center of the rotation and the 

origin of the cylindrical coordinates.  Periodically, the vortex is repositioned to remove 

the asymmetry and updates the motion inherited from previous computations.  We use the 

simplest imaginable model exclusively on MATLAB that includes the essential rotational 

dynamics of the β-drift.   

 

Vorticity Equation 
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A translating cylindrical coordinate system is a natural choice to represent a 

circular vortex (Figure 6).  The variables used are v0, 

mean tangential wind; r, radius; λ, azimuth angle 

reckoned cyclonically from north; u, radial 

perturbation wind component (positive outward); v, 

tangential perturbation wind component (positive 

cyclonically); ϕ, perturbation geopotential; and f0, 

Coriolis parameter.  We chose a fixed latitude 

(φ=20⁰N) to calculate f0 because it is a typical location 

of TC genesis and to keep the model idealized.  Vorticity equation derivation begins with 

the radial and tangential momentum equations (1a & 1b), where 


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
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Cross-differentiating by taking 



r

1
 of (1a) and 

rr

1





 of (1b) and subtracting 

effectively eliminates the geopotential terms and yields the vorticity equation: 

Figure 6. Cylindrical coordinate 
system (Willoughby 1987) 
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The nondivergent nature of our model implies that the second term in (2) is zero. 

 

  



16 
 

Streamfunction 

Since the flow is nondivergent, u and v can be represented with a streamfunction, 

),,( tr   such that, 






r

u
1

  and  
r

v






.  Therefore, (2) becomes: 









cos

111
00

2

2

22

2

v
rrrrrrr

v

t










































                                      (3).                        

 

Solution Strategy 

 In moving coordinates, a convenient way to represent the wave solutions with 

tangential wavenumber, n, and apparent frequency, ω, is in terms of the real parts of the 

products of complex amplitudes such that,       ntiertr ,, .  The left side of 

equation (3) simplifies to obtain a dispersion relation for unforced free waves: 
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Equation (4) may be solved for the Doppler-shifted frequency (Ω) and ω respectively: 
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Writing Ψ in terms of zero order Hankel functions  rkH r0 , where kr is the radial 

wavenumber allows us to solve for Ω to obtain a local dispersion relation for a 

nondivergent 1-D Rossby Wave. 
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Since v0 decreases with distance from the vortex center while r increases, v0/r becomes 

smaller.  The limits of wave propagation speed are dictated by kr, which can be expressed 

as 2π/Lr (Lr is the local radial wavelength).  The most negative Ω occurs when kr is zero 

(e.g., Lr approaches negative infinity) which yields the fastest tangential wave 

propagation with respect to the mean wind.  Consequently, (7) reduces to the dispersion 

relation for a 1-dimensional VRW.  Vortex Rossby Wave “cutoff frequency” coincides 

with the maximum value of Ω at any given radius.  When VRW’s frequencies are 

Doppler-shifted to the cutoff frequency, wave reflection typically ensues.  When Ω is 

zero, the waves become locally very short and continue to decrease in radial wavelength 

as they approach the critical radius.  As kr becomes large and Lr→0, radially propagating 

VRWs are absorbed at the VRW critical radius. 
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Lindzen-Kuo Solver 

 The definition of the vorticity reduces to a 2nd order differential equation with two 

endpoint boundary conditions.  The Lindzen-Kuo algorithm (1969) solves the resulting 

Poisson equation for Ψ(r) where boundary conditions are imposed at both ends of the 

domain.  The equation is of the form     Frh
dr

d
rg

dr

d






2

2

, where g and h are 

constants and F is the forcing; ζ in this case.  It can be written in finite difference form as, 
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where n is the radial index.  Collecting like terms yields, 
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An, Bn, and Cn are defined to represent the terms inside the brackets so equation (9) 

becomes, 

 

FCBA nnnnnn   11                                                                                          (10),                   

 

The solution for equation (10) is obtained by using the substitution: 
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nnnn   1                                                                                                            (11),                

 

where αn(r) and βn(r) are newly introduced variables. 

Substituting (11) into (9) yields: 
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The arrays of α1, α2,…αN-1 and β1, β2,…βN are computed using (12) in an outward pass 

from n=0,…N, and then (10) is applied on an inward pass that starts with the outer 

boundary condition to compute ΨN-1, ΨN-2,…Ψ1. 
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LINEAR MODEL 

 

Logic & Formulation 

 The linear model obtains solutions for the vorticity and streamfunction forced 

directly through f-advection by the mean swirling flow.  Planetary and perturbation 

vorticity are advected by the axisymmetric flow and the perturbation radial flow advects 

axially symmetric mean vorticity.  The model is based upon a time marching scheme to 

obtain the WN1 vorticity asymmetry.  Solutions are semispectral with sinusoidal 

variation (WN1 only) in azimuth and finite-difference representation in radius and time.  

The domain extends to 4000 km radius with uniform 1 km resolution.  In addition, the 

outer 500 km of the domain contains a “sponge ring” which, as the name suggests, 

absorbs waves through imposed strong Newtonian dissipation.  Consequently, there is a 

prevention of the computation from being contaminated by outer boundary wave 

reflection.  The linear model replicates linear β-gyre results (Willoughby 1992). 

 The general formulation for the linear model includes a movable mean vortex 

with fixed axially symmetric structure that is not allowed to change shape or intensity 

with time.  The vortex obeys a Wood-White profile with specified maximum tangential 

wind (v0=50 ms-1), radius of maximum wind, RMW (25 km), and three power-law 

exponents that shape different portions of the velocity profile (Figure 7).  The mean 

vortex is bounded in a similar manner as Willoughby’s and resembles a TC at the 

threshold of Category-3 intensity.  Beta gyres are hypothesized to be downstream 

propagating VRWs on the reversed peripheral mean vorticity gradient (Figure 8) 

confined in a band between zero and VRW cutoff frequency so that two waveguides 
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exist.  The inner one supports propagation against (i.e., slower than) the cyclonic mean 

flow, while the outer has the waves propagate faster than the mean flow. 

 

 

 

 

 

 

 

 

The model calculates the fixed vorticity and vorticity gradient, is initialized from 

zero perturbation amplitude and rest, marches the vorticity forward in 2.5-minute (150 s) 

time steps, and utilizes the Lindzen-Kuo solver to invert the vorticity to obtain the 

streamfunction.  The new vorticity then becomes the input for the next time step.  In 

addition, the vortex is tracked with a method known as “alpha (α) gyre closure” 

(Willoughby 1992).  The α-gyres (sometimes referred to as psuedomodes) are apparent 

WN1 asymmetries that form near the RMW from mispositioning of the extrapolated 

vortex center, such that it is displaced from the origins of the coordinate system.  To 

minimize the α-gyres, after each time step, the model finds the vortex centering error, 

relocates the center, and corrects the vorticity, streamfunction, and motion to the re-

centered reference frame. 

 

  

Figure 7. Wood-White 
cyclostrophic (Vc) & gradient 
(Vg) wind profile 

 

Figure 8. Radial vorticity and 
vorticity gradient 
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Vorticity Time Marching 

 Since our work is a time-marching problem, the derived nondivergent vorticity 

equation (2) is used to solve for the WN1 vorticity tendency: 
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                                                                    (13).                 

 

 The terms in (13) are: tangential vorticity advection (2nd term); radial vorticity advection 

including that because of the vortex motion, where   iyxr eiccic  Re  is the 

translation speed in cylindrical coordinates (see Appendix 1); advection of the planetary 

vorticity gradient by the mean vortex.  Unlike the earlier primitive equation model 

(Willoughby 1992) which ran for several minor time steps between relocations, the center 

is relocated after each time step.  The numerics use leapfrog time-marching with an 

Asselin filter and typically runs for 10 simulated days or 240 hrs (equivalent to 2880 time 

steps). 

 

Vortex Track, Speed, and Direction of Motion 

 The complete linear solution replicates the results of Willoughby (1992) with a 

predominantly NW track that accelerates throughout the simulation.  During the 10-day 

period, the vortex moved a total distance of ~6000 km with an average speed of ~7 ms-1 

and final speed of 14 ms-1 (Figure 9).  The large distance traveled by the vortex in this 

model compared to Willoughby 1992 (~3800km) is attributed to nondivergence.  The 

Poisson equation used here does not contain the Rossby radius term so that it yields a 
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larger streamfunction amplitude than the divergent model would with the same vorticity.  

In addition, the mean vortex direction of motion was mostly 325⁰ because of the 

combined westward and poleward movement (Figure 10).  An important note to consider 

is that the speed is sensitive to changes in the Newtonian damping time (normally 1 day-1 

or 1/86400 s).  Larger values yield a decreased acceleration. 

 

 

 

 

 

 

 

 

 

Vorticity & Streamfunction 

 The vorticity field exhibits a trailing spiral pattern (akin to VRWs) with 

“filamentation” occurring around the center (Figure 11).  The vorticity filaments wrap 

tightly around the vortex near the critical radius, where the frequencies are Doppler-

shifted to zero.  Vorticity waves’ inward propagating energy gets absorbed at the critical 

radius where its wavelength becomes increasingly shorter.  Conversely, waves that 

propagate outward approach the cutoff frequency and are reflected.  The streamfunction 

field illustrates the β-gyres as dipoles of opposite polarity in the outer part of the vortex 

(Figure 12).  Since the Lindzen-Kuo solver inverts the vorticity to calculate the 

 

Figure 10. Unbounded 
acceleration in NW direction 

 

Figure 9. Vortex moves 
westward and poleward 
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streamfunction, the streamfunction color scheme is reversed from the vorticity.  Contours 

represent streamlines of the flow.  The amplitude is proportional to the vortex speed and 

the flow between the asymmetries is consistent with a NW motion. 

 

 

 

 

 

 

 

 

 

 

Doppler-shifted Frequencies 

 Figure 13 depicts the variation of Doppler-shifted frequency for the β-gyres in the 

linear model.  The VRWs in the outer waveguide have a very low (i.e., near zero) 

cyclonic frequency and propagate with a small group velocity in a narrow passband 

between zero frequency and the positive cutoff frequency.  Beta forces the waves at zero 

frequency close to their resonance, allowing them to grow to large amplitude, therefore 

explaining the seemingly limitless accelerated motion in the linear model.  The largest 

amplitude wave (for ω=1x10-6 s-1)  is confined to a radial interval between ~1100 km and 

1700 km which includes the centers of the  β-gyre WN1 asymmetries in Figure 12.  The 

VRWs are weakly damped because the waveguide in which they are trapped is “leaky”.   

 

Figure 11. Linear vorticity field 
with trailing spirals and 
filamentation 

 

Figure 12. Linear streamfunction β-
gyre asymmetries 
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Initially inward propagating energy eventually reaches the critical radius where its 

vorticity becomes filamented and transferred to the mean flow.  Initially outward 

propagating energy is ultimately reflected from the cutoff radius, then propagates inward 

and absorbed at the critical radius.  Since the Doppler-shifted frequencies are so low, the 

radial group velocities are slow and dissipation by this process is gradual.  Whether the 

VRWs represent a continuous spectrum or discrete normal modes is unclear; although the 

former interpretation seems more likely.  

 

  

  

 

Figure 13. Doppler-shifted 
frequencies of the β-gyre waves 
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NONLINEAR MODEL 

 

Logic & Formulation 

 The analogous nonlinear model includes wave-wave interactions between 

azimuthal wavenumbers by using a system of coupled, highly truncated partial 

differential equations that represent interaction between waves with azimuthal WN1 and 

WN2 semi-spectrally.  That is, Fourier transformation 

in azimuth simplifies the system by yielding linear 

vorticity equations for WN1 and WN2 only, in which 

wave-wave interaction terms contain all of the 

nonlinearity.  The wave-wave interactions of interest 

are: linear WN1 interacts with itself to force WN2 

nonlinearly while WN1 interacts with WN2 to force 

WN1 nonlinearly (Figure 14).  

The formulation is similar to the linear model but the nonlinear version calculates 

linearly forced WN1, nonlinearly forced WN2, and nonlinearly forced WN1 vorticity and 

streamfunction.  Computation of linear WN1 vorticity is exactly the same as in the linear 

model and yields the same results; apart from the effect of differing motion.  The 

significant differences are in the WN2 and WN1 vorticity equations (with the nonlinear 

and wave-wave interaction terms), and provide a simplification of the earlier model 

(Willoughby 1994) inasmuch as nonlinearity limits vortex propagation relative to the 

linear model.   

 

Figure 14. Wave-wave 
interaction diagram 
(Willoughby et al. 2000) 
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Vorticity Time Marching 

 The vorticity time marching method for the nonlinear model is the same as the 

linear model but includes nonlinear WN2 and WN1 vorticity tendency equations: 
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The terms on the right-hand side of equation (14) are: linear tangential vorticity advection 

by the mean vortex, linear radial mean-vorticity advection by the perturbation flow, and 

nonlinear tangential and radial advection of perturbation and planetary vorticity.  The 

nonlinear WN1 vorticity tendency equation is basically (13) with the additional terms 

(fourth to seventh) representing the forcing from β-effect and vortex motion: 
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The terms with the “over bar” symbol are complex conjugates (see Appendix 2).  

Equations (14) and (15) are marched forward in time using the semispectral algorithm 

with α-gyre closure (Willoughby 1994). 
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Vortex Track, Speed, and Direction of Motion  

 The nonlinear model results replicate Willoughby (1994) by significantly limiting 

the vortex translation speed.  For the entire 10-day simulation, the vortex only travels 

~2000 km (about 1/3 the distance traveled in the linear model), which is equivalent to an 

average speed slightly above 2 ms-1 (Figure 15).  Most significantly, the translation speed 

asymptotes to just below 3 ms-1 early in the model run and maintains that fixed value 

until the end of the simulation.  The direction of motion in Figure 16 is the same as the 

linear model (~325⁰).  The computed translation speed is slightly faster than the typical 

1-2 ms-1 β-drift speed because of the BND formulation, and the larger basic vortex (3000 

km) compared with the original model and nature.  Outer circulation changes can affect 

the motion by changing the effective radius where the β-effect acts are excluded here. 

 

 

 

 

 

 

 

 

 

  

Figure 15. Limited vortex 
motion in the nonlinear model 

 

Figure 16. Vortex speed 
asymptotes after Day 2 in NW 
direction 
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Vorticity and Streamfunction of the Complete Solution 

 Solutions for vorticity and streamfunction are displayed as linear WN1, nonlinear 

WN2, and nonlinear WN1 asymmetries (Figures 17-21).  The superposition of the 

accompanying results reduces the overall vortex translation speed shown earlier. 

Vorticity plots illustrate "trailing spiral" features and where filamentation is occurring 

near the critical radius (Figures 17 & 18).  Analogous nonlinear streamfunction field 

contours exhibit asymmetries forced by wave-wave interaction.  Interaction of WN1 with 

itself produces a “quadropole” structure that is typical when dealing with higher 

wavenumbers (Figure 20); WN3 for example would hypothetically yield a triple dipole 

structure.  However, the most important and encouraging result stems from interaction of 

WN2 with WN1 to force nonlinear WN1 beta gyre-like asymmetries that are of opposite 

phase and lower amplitude to the linear gyres (Figure 21).  Consequently, the ventilation 

flow between them is toward the southeast, thus counteracting the NW current of the 

linear asymmetries (Figure 19).  Therefore, the nonlinearly-forced "anti-beta gyres" 

constitute the mechanism to which the nonlinear model controls the vortex speed. 
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Figure 17. Nonlinearly-forced 
WN2 vorticity field 

 

Figure 18. Nonlinearly-forced 
WN1 vorticity field 

 

Figure 20. Nonlinearly-forced 
WN2 β-gyre double dipole 
asymmetries 

 

Figure 21. Nonlinearly-forced 
WN1 anti-β gyre asymmetries 

 

Figure 19. Linearly-forced WN1 
β-gyre asymmetries 
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STEADY STATE MODEL 

 

Logic & Formulation 

 The predecessor of the original time-domain simulation was a frequency-domain 

model (Willoughby 1987) that attempted to simulate steady linear motion of a shallow-

water (H=4 km) vortex on a β-plane.  The model diagnosed the streamfunction, velocity 

potential, and geopotential at a specified frequency using the vorticity, divergence, and 

mass continuity equations.  An unrealistically fast poleward and westward motion was 

produced and first prompted the hypothesis of a normal mode that is excited resonantly 

by the β-effect.  Significance of nonlinear processes became apparent thereafter. 

 Here, the logic of his approach is explored in a BND context to gain insight into 

the β-gyres’ dynamics.  The frequency-domain model simulates for a single Fourier 

component at a specified frequency.  The β-effect forcing is at zero frequency, but here, it 

has the same structure and rotates with a specified frequency, as the forthcoming 

streamfunction results will show.  The domain is an annulus that excludes the immediate 

area around the origin thus, preventing growth of the α-gyre asymmetry from vortex 

motion.  Steady state method exhibits a linear balance among forcing, tangential 

advection by the mean flow, and advection of mean vorticity by the radial perturbation 

flow. 

The governing equation is the wavenumber-1 vorticity equation Fourier 

transformed in both time and azimuth (e.g., Cotto 2012) solved using Lindzen-Kuo 

algorithm for specified frequency, ω.  Steady state method is simpler to work with and 
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provides an alternative to the time-marching linear problem.  Exclusion of the domain 

center allows isolation of the β-gyres and the vortex here does not move. 

 

Streamfunction & Resonance 

 The streamfunction was plotted for several specified positive and negative 

frequency values ranging from 1x10-4 s-1 to -1x10-4 s-1 (Figures 22-27).  Here, they are 

shown in descending order to illustrate how the β-gyres rotate with decreasing frequency 

by a magnitude of 10 in each frame (except from third to fourth).  For a frequency of 

1x10-4 s-1, the β-gyre dipole is clearly evident with a north-south orientation (Figure 

22).  However, when we decrease the frequency to 1x10-5 s-1, the asymmetries rotate 

slightly counter-clockwise such that their orientation is more northwest-southeast (Figure 

23).  The rotation pattern continues for the remaining four frames; Figure 24 produces the 

largest streamfunction amplitude, while the final frame (Figure 27) exhibits a complete 

1800 phase rotation from its positive counterpart. As before, the cool colors in Figures 22-

27 correspond to cyclonic flow and vice-versa for 16-day dissipation.  The maximum 

amplitude of the streamfunction is inversely proportional to the dissipation rate (i.e., 1/x), 

where x is an arbitrary number of days.  Experimentation with different ω and dissipation 

values (e.g., 1-16 days) yields no apparent resonance for the imaginary part of the 

frequency. 
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Figure 22. North-south oriented 
β-gyres for ω=1x10-4 s-1 

 

Figure 23. NW-SE oriented β-
gyres for ω=1x10-5 s-1 

 

Figure 24. East-west oriented β-
gyres for ω=1x10-6 s-1 

 

Figure 25. NE-SW oriented β-
gyres for ω=-1x10-6 s-1 

 

Figure 26. NNE-SSW oriented 
β-gyres for ω=-1x10-5 s-1 

 

Figure 27. North-south oriented 
β-gyres for ω=-1x10-4 s-1 
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Figure 28 illustrates the maximum streamfunction amplitude plotted as a function 

of frequency and clearly shows a peak in the resonant response at near-zero frequency.  

The streamfunction increases as the frequency becomes less negative and decreases with 

increasing positive frequency.  Consequently, a phase reversal is apparent as the 

streamfunction amplitude goes through its maximum.  In a non-resonant system, 

advection of vorticity by the mean vortex flow would be strongest on the east side, and 

the resulting vortex asymmetry most anticyclonic to the north.  As the flow continued to 

circulate around, the streamfunction amplitude would become zero on the west side and 

acquire the most cyclonic vorticity passed south of the center.  Beta gyre asymmetries 

would consequently form with a north-south orientation such that the ventilation flow 

would be easterly (270⁰).  Conversely, the pattern of 

advection-induced gyres would reverse for a rotating 

source with frequency above the resonant frequency.  

Thus, the β-gyre phase in the original linear model 

(motion toward 325⁰) stems from the phase rotation 

across the resonant frequency at ω=1x10-6 s-1. 

 

  

 

Figure 28. Resonant frequency 
at ω=1x10-6 s-1 
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REINITIALIZATION OF THE LINEAR MODEL 

 

Logic & Formulation 

 Another effective method for testing β-gyre normal mode theory is reinitialization 

of the linear model.  The process involves rotating and scaling the β-gyres and then using 

them as initial conditions in an attempt to produce arbitrary motion on an f-plane to see if 

the result yields persistent motion.  The working linear model was manually programmed 

to ask whether or not to reinitialize.  Choosing “yes” will yield zero forcing at a specified 

time in the simulation followed by inputting a desired compass direction and day which 

should affect the vortex track.  Selecting “no” on the other hand, allows the model to 

retain its forcing and will thus run normally. In the case shown here, we chose “yes”, 

rotated the β-gyres 270⁰ counter-clockwise, and turned off the β-effect at Day 5.  Ideally, 

reinitialization should occur well after the β-gyres have had sufficient time to develop 

and establish themselves into well-defined WN1 asymmetries.  In addition, we decided to 

extend the simulation to 15 days (360 hrs) to test the gyres' resilience under adverse 

conditions. 

 

Vortex Track, Speed, and Direction of Motion  

 As in the original linear model, motion on a β-plane is a steady acceleration to the 

NW for the first 4 days but reinitialization 2000 km north of the starting point causes the 

vortex to turn westward.  For the remainder of the simulation it follows a slowly 

cyclonically-curving track (Figure 29).  The turn is forced by artificially imposing a 270⁰ 

β-gyre rotation.  By Day 10 (five days after β was turned off), the vortex speed decreases 
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fairly quickly but ultimately, the rate of deceleration slows and levels off.  The initial 

motion toward 325⁰ shifts abruptly to 270⁰ when the gyres are rotated and β is 

suppressed (Figure 30).  The gradual cyclonic curvature of the track is consistent with the 

very low (but nonzero) frequencies and slow (small radial group velocity) leaking of 

wave energy to the critical radius described earlier. 

 

 

 

 

 

 

 

 

 

 

Streamfunction 

 Our working linear model initially runs on a 

β-plane until the forcing is turned off on Day 5 so 

that the remainder of the simulation operates on an 

f-plane.  Figure 31 shows the streamfunction field at 

360 hrs (i.e., 10 days after reinitialization) which 

clearly illustrates that the β-gyres’ presence but with 

a north-south orientation such that the ventilation 

 

Figure 31. Reinitialized β-gyres 
rotated 270⁰ 

 

Figure 29. Vortex accelerates 
NW then curves cyclonically 

 

Figure 30. Pronounced shift in 
speed and direction after 
reinitialization 
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flow is toward the west-southwest.  The asymmetries were rotated counter-clockwise 

2700 as we commanded the model to do and consequently force the vortex to shift to the 

cyclonic track mentioned earlier. 
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CONCLUSIONS 

 

 The BND vortex-following model allows us to focus on the rotational dynamics 

of TC motion initialized from rest in a quiescent environment on a Northern Hemispheric 

β-plane.  Our linear results are consistent with the vortex-following linear primitive 

equation model of Willoughby (1992) as far as producing WN1 asymmetries with 

northeast-southwest orientation and a steadily accelerating NW speed.  Indeed, β-gyres 

represent VRWs whose Doppler-shifted frequencies are confined to a frequency passband 

that corresponds to a narrow waveguide where they propagate downstream in the 

reversed vorticity gradient on the vortex periphery.  Small Newtonian dissipation values 

were used; stronger values slow the motion.  The analogous nonlinear results replicated 

earlier results (Willoughby 1994) inasmuch as wave-wave interactions limited the vortex 

translation speed to reasonable values.  In addition, the isolation of nonlinearly forced 

anti β-gyres reveals a clear and readily understood mechanism for the reduced motion.  

Therefore, reproducing the unbounded linear and bounded nonlinear acceleration confirm 

earlier results.  The radial variation Doppler-shifted frequencies illustrate that the β-gyres 

damp slowly with a VRW critical radius at the inner edge of the waveguide.  Therefore, 

the β-gyres appear to represent a continuous spectrum of free VRWs confined in a narrow 

range of low cyclonic frequencies rather than discrete normal modes.  

 Two additional methods we utilized that helped us gain further insight into the β-

gyres were steady state simulation and reinitialization.  In the steady state model, the 

vorticity equation is forced at a specified frequency such that inner boundary conditions 

on an annular domain suppress the α-gyre asymmetries.  Results produced β-gyre WN1 



39 
 

asymmetries that rotate counter-clockwise with decreasing frequency and a phase 

reversal occurs when the streamfunction passed its maximum amplitude.  In 

reinitialization, the β-effect forcing is turned off at a specified simulated time and the 

vorticity field is scaled or reoriented.  The vortex turns slowly in a cyclonic sense (for 

270⁰ phase rotation), consistent with the low cyclonic frequencies of VRWs in the outer 

waveguide.  As vorticity leaks inward to the VRW critical radius (where they get 

absorbed) the β-gyres and motion decay fairly quickly before leveling off through the 

remainder of the simulation but do persist nonetheless.  Furthermore, experimentation 

with other phase rotations (e.g., 90⁰, 180⁰, etc.) confirms that changing the orientation of 

the gyres alters the vortex track by producing any desired motion on an f-plane. 

The existence of the outer waveguide is the key to understanding the β-gyres as 

free waves and permits propagation only in a narrow low-frequency passband.  In a 

bounded vortex the passband encompasses only very low cyclonic frequencies, which 

correspond to a period of ~100 days.  Resonance between the α-gyres at zero frequency 

and β-gyres at very low cyclonic frequencies is believed to be responsible for the 

unbounded linear acceleration.   The nonlinear mechanism that limits acceleration is 

excitation of a free wave structure with the same shape, but opposite phase and reduced 

amplitude to the linearly forced β-gyres.  Reinitialization on an f-plane produces very 

gradual cyclonic deflection of the vortex accompanied by steady decay as the wave 

energy propagates inward to the VRW critical radius at the proximal boundary of the 

waveguide.  Consequently, the waveguide is “leaky” despite low radial group velocities 

since the waves become increasingly shorter such that radial wavenumber is large. 
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Appendix 1- Complex representation of the moving cylindrical coordinate system 

 

In the moving coordinates, a convenient way to represent the wavenumber 1 fields is in 

terms of the real parts of the products of complex amplitudes with ie (Willoughby 

1992).  The combination of cylindrical and Cartesian coordinates yields the following 

relation: 

  sin0 rxx  , 

  cos0 ryy  , 

Such that  )(),( 00 tytx  are the vortex center coordinates.  The Cartesian components for 

the vortex translation speed C is ),( yx cc , where the complex representation of its 

amplitude is )( yx icc  .  Applying some clever algebraic manipulation to the radial 

translation below yields a representation of the vortex motion in cylindrical components: 

 

  sincosResincos xyxyr iciiciccc   

     ]sincos[Re  xy icici   

     )]sin)(cos[(Re  iicci yx   

     iiCe Re  
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Similarly for the tangential vortex translation we have, 

 

  sin)(cosResincos yxyx ciiiciccc   

        )sin)(cos(Re  iicc yx   

        iCe Re  
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Appendix 2- Complex conjugate terms in the nonlinear WN1 vorticity tendency 
equation 

 

Some of the terms are complex conjugates that can be understood with the following 

expression:  

 

    imin BeAe  ReRe                                                                                                        (I),              

 

Where A & B are arbitrary complex amplitudes and n & m are arbitrary tangential 

wavenumbers  

 

    ininin eAAeAe  

2

1
Re                                                                                          (II),              

 

Where A  is the complex conjugate (similar for B).  Applying (II) to (I) by using simple 

algebra and combining like terms yields this relation: 

 

     )()( ReRe
2

1 mnimni eBAABe    
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