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ABSTRACT OF THE THESIS 

A NEW METHOD FOR TESTING NORMALITY BASED UPON A CHARACTERIZATION 

 OF THE NORMAL DISTRIBUTION 

by 

Davayne Antoneil Melbourne 

Florida International University, 2014 

Miami, Florida 

Professor Hassan Zahedi, Major Professor 

The purposes of the thesis were to review some of the existing methods for testing 

normality and to investigate the use of generated data combined with observed to test for 

normality. The approach to testing for normality is in contrast to the existing methods which are 

derived from observed data only. The test of normality proposed follows a characterization 

theorem by Bernstein (1941) and uses a test statistic D*, which is the average of the Hoeffding’s 

D-Statistic between linear combinations of the observed and generated data to test for normality.  

Overall, the proposed method showed considerable potential and achieved adequate 

power for many of the alternative distributions investigated. The simulation results revealed that 

the power of the test was comparable to some of the most commonly used methods of testing for 

normality. The test is performed with the use of a computer-based statistical package and in 

general takes a longer time to run than some of the existing methods of testing for normality. 
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1. INTRODUCTION 

The normal distribution is possibly the most important probability distribution function in 

the field of statistics. Much work has been done to investigate the behavior and properties of the 

normal distribution since many parametric statistical methods are formulated using the underlying 

assumption that data collected comes from a normal distribution. The need for determining 

normality has resulted in many tests being developed over the years to test whether a sample of 

observations can be modeled by the normal distribution. The assumption of normality is needed 

for many statistical tests which have implications or relevance to not just the field of statistics but 

across many disciplines, such as physical science, psychology, engineering, social sciences and 

many other subject areas. 

  Many of these tests detect deviations from normality when sample size is very large, and 

are usually formulated using a distance parameter which measures the deviation of the observed 

sample from normality. These methods all have some specific drawback ranging from performing 

poorly when sample size is small to having small power when the data follows a distribution that 

is similar in shape to the normal distribution. Because of the importance of the normal 

distribution, there is always a need to improve upon the currently available tests of normality or 

to develop new tests for testing normality. 

The main purpose of the thesis is to first conduct a short review of existing methods for 

testing normality and then to investigate the use of simulated data combined with observed data 

to test for normality. The proposed procedure for testing normality will involve incorporating 

generated data and observed data to perform the test for normality. For conducting inference, the 

combination of observed and generated data is referred to as ‘enriched data’. The investigation is 

examines a specific characterization of the normal distribution. The characterization developed by 

Bernstein (1941) states, “If ଵܺ	and ܺଶ  are identically and independently distributed random 
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variables and ܷ	 ≡ ଵܺ + ܺଶ  and ܸ ≡ ଵܺ − ܺଶ	 are independent, then ܷ, ܸ, ଵܺ	 and ܺଶ  are all 

normally distributed.”  

The method that is proposed is a new procedure for inference that is made possible 

because of the power of currently existing statistical packages which make it possible to produce 

large sets of random variates from a distribution. The proposed method is in contrast to the 

existing methods of inference which are based on observed data and expected data under the null 

hypothesis. After the test procedure is developed its power is compared to some of the most 

popular existing methods of testing for normality and observe whatever drawbacks may exist.  

 

The organization of the thesis is as follows: A review of the literature on tests for 

normality and characterizations of the normal distribution are presented in Chapters 1 and 2. In 

Chapters 3 and 4, the test procedure and the main theorem are provided along with the simulation 

results and discussion.  
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II. LITERATURE REVIEW 

Most parametric analyses assume that an observed data set can be modeled by a given 

distribution. Much effort has been placed over the years into developing methods for testing how 

well a set of data points can be modeled by a given distribution. These tests are known as 

goodness of fit tests, Conover (1999). Goodness-of-fit tests are used to assess whether data are 

consistent with a hypothesized null distribution.	Typically measures of goodness of fit compute 

departures of the observed data from the expected values of the distribution under investigation.  	
Of all goodness-of-fit tests available, possibly the most commonly used and most important 

are those that test for normality. The amount of effort that has been devoted to testing for 

normality is warranted given the broad range of application of the normal distribution across 

disciplines. Some of the most commonly methods of testing for normality include Cramer-von 

Mises test (1929), Kolmogorov – Smirnoff (1939) translated to English by Massey (1951), 

Anderson Darling (1952), Shapiro and Wilk (1965), Lilliefors (1967) and Pearson, D’Agostino 

and Bowman (1973). Of all these the Shapiro-Wilk’s is most commonly used and is generally 

regarded as the most robust method of testing normality. 

 

1.  Cramer-Von Mises test 

The Cramer-Von Mises test is a goodness of fit test that was developed by Von Mises (1928) 

and Cramer (1931). The test statistic examines the distance between the empirical distribution and 

theoretical cumulative distribution function under the null hypothesis ܪ଴. The statistic ߱ଶis given 

by: 

߱ଶ = ׬	 (ݔ)௡ܨ] − ∞ି∞ଶ[(ݔ)∗ܨ  (1.1)																																																															(ݔ)∗ܨ݀
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where, (ݔ)∗ܨ  is the theoretical distribution function and ܨ௡(ݔ)  is the empirical distribution 

function.   

 The test statistic can also be written as: 

	߱ଶ = ଵଵଶ௡ + ∑ [ଶ௜ିଵଶ௡ − ଶ௡௜ୀଵ[((௜)ݔ)ܨ ,                                                  (1.2) 

where, ݔ(௜) are ordered values of the sample.  

A table of approximate critical values for the statistic under ܪ଴ is given in Anderson and 

Darling (1952) and the bias and power of the test is also discussed by Thompson (1966). The test 

has been shown to be more powerful than Kolmogorov-Smirnov for certain types of hypothesized 

distributions. It is best suited for situations when it is expected that the alternative distribution 

deviates a little over the entire sample range rather than having large deviations over a small 

section of the sample. In the latter case the Kolmogorov – Smirnov is more suitable. Stephens 

(1974) provides a rather comprehensive comparison of various goodness-of-fit tests. In the 

Cramer-Von Mises test, when (ݔ)∗ܨ is assumed to be normal then the test can be used as a test 

for normality.  

 

2. Kolmogorov-Smirnov test 

The Kolmogorov-Smirnoff is another general goodness-of-fit test which can be adopted to 

test for normality when the mean and variance are specified. The test statistic uses the largest 

vertical difference between the hypothesized and empirical distribution.  The test statistic is 

defined as:  



5 

 

                                  T = ݌ݑݏ௫|(ݔ)∗ܨ   (1.3)                                                          ,|(ݔ)௡ܨ	−

where, (ݔ)∗ܨ is the hypothesized distribution under ܪ଴ and ܨ௡(ݔ) is the empirical distribution.  

When (ݔ)∗ܨ is assumed to be a specified normal distribution the test can be used as a test 

for normality. In this case, if T exceeds the 1 − ߙ   significant point the null hypothesis of 

normality (µ,	ߪ) is rejected at ߙ level of significance. The distribution of T does not depend on 

the hypothesized distribution when the null distribution is a continuous distribution. Significance 

points are tabulated for different sample sizes and are given in Conover (1999) with additional 

details on the computation of the test statistic and some historical perspective on the method. 

 

3. Anderson Darling 

The Anderson-Darling test is a general goodness-of-fit test which tests whether the sample 

comes from a specified distribution. It tests the hypothesis that a sample has been drawn from a 

population with a specified continuous distribution function (ݔ)ܨ.		Let ݔଵ, ଶݔ	  ௡, be n sampleݔ…

observations under ܪ଴,  and let ݔ(ଵ) ≤	ݔ(ଶ) 	≤ ⋯ ≤  .be the n ordered sample observations  (௡)ݔ	

The test statistic is defined as: 

  	 ௡ܹଶ = −	݊ −	 ଵ௡	∑ (2݆ − 1)ൣln ௝ݑ + 	ln	(1 − ௡ି௝ାଵ)൧௡௝ୀଵݑ                                              (1.4) 

where, ݑ௜ =  .൯(௜)ݔ൫ܨ
The null hypothesis is rejected for large values of the test statistic. The Anderson Darling’s 

test is very efficient in detecting deviation of the true distribution from the hypothesized 

especially when it differs in the tails. Critical values for  ௡ܹଶ  are not available for small sample 

sizes but asymptotic significant points are tabulated for large sample sizes in Anderson and 
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Darling (1952). When a significant number of ties exist in the sample, the test will frequently 

reject the null hypothesis, regardless of how well the data fit the distribution. The test can be 

adopted for testing for normality if  (ݔ)ܨ is assumed to be normal.  

 

4. Shapiro-Wilk’s Test 

The Shapiro-Wilk’s test of normality is built upon the test statistic W, derived from the 

sample itself and expected values of order statistics from a standard normal distribution. It tests 

the null hypothesis that the sample came from a normal distribution with unknown mean and 

variance. The test statistic is the square of the Pearson correlation coefficient computed between 

the order statistics ܺ(௜) and the scores	ܽ௜, which are the expected values of order statistics from a 

normal distribution. The W statistic is defined by: 

    ܹ = ଵ஽ උ∑ ܽ௜(	X(௡ି௜ାଵ)௞௜ୀଵ − ܺ(௜))	ඏଶ                                                           (1.5) 

where,            ܦ = ∑ ( ௜ܺ − തܺ)௡௜ୀଵ ଶ
                                                          (1.6) 

and   ܺ(௜) represent the ith order statistic of the sample. 

The values of W lie between 0 and 1 and small values of the statistic indicate departure from 

normality. Under ܪ଴, W has a distribution that is independent of ܵଶ and തܺ and is both scale and 

origin invariant. See Conover (1999) for further details and also a table of critical values of the 

test statistic. 
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5. Lilliefor’s test 

Lilliefor (1968) extended Kolmogorov’s test for testing a composite hypothesis that the data 

come from a distribution with unknown shape or scale parameter. The test statistic is defined as  

D = ݉ܽݔ௫|(ݔ)∗ܨ −	ܵ௡(ݔ)|                                                            (1.7) 

where, ܵ௡(ݔ)  is the sample cumulative distribution function and (ݔ)∗ܨ  is the cumulative 

distribution function (CDF) of the null distribution. 

Lilliefor’s test is similar to the Kolmogorov-Smirnov test but the distribution of the test statistic 

under ܪ଴  is different and hence critical values are different. The test can be used for testing 

normality when the distribution under ܪ଴  is assumed to be normal with unknown mean and 

variance. See Conover (1999) for further reference and a table of critical values. 

 

6.  D’Agostino’s K-Squared tests 

D’Agostino’s K-Squared tests use sample kurtosis and skewness to detect departures from 

normality. The drawback of these tests is that they have power only for the alternative hypothesis 

that the distribution is skewed and/or kurtic. The tests are derived from the third and fourth 

standardized moments given by:  

ඥߚଵ	  = 
ா	(௑ି	ఓ)య[ா(௑ି	ఓ)మ]య మൗ   = 

ா(௑ି	ఓ)యఙయ 	                                                     (1.8) 

and,                                            ߚଶ = 
ா	(௑ି	ఓ)ర[ா(௑ି	ఓ)మ]మ  =  

ா(௑ି	ఓ)రఙర              (1.9) 

The sample estimates of  ඥߚଵ	 and 		ߚଶ are, 
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                                             ඥܾଵ	 = 
௠య(௠మ)యమ     and  	ܾଶ = 

௠ర(௠మ)మ                                           (1.10) 

where,    				݉௞		=  
ଵ௡ ∑ ( ௜ܺ − തܺ)௡௜ ௞

  respectively.                                          (1.11) 

I. Test of  skewness 	ඥߚ૚	 :   
Here the null is 		ܪ଴: The data is normal  ඥߚଵ	 = 0  versus 

	ଵߚ௔: Non-normality as a result of skewness ඥܪ  	≠ 0   

Under ܪ଴, the test statistic ܼ(ඥܾଵ	) is approximately normally distributed for ݊ > 8 and 

is defined: 

ܼ(ඥܾଵ	) = ߜln(ܻ ൗߙ + ൛(ܻ ൗߙ )ଶ + 1ൟభమ),                                           (1.12) 

where, 																														ߙ = 	 ሼ2 (ܹଶ − 1)⁄ ሽଵ ଶൗ ,                                                        (1.13) 

ߜ                                        = 	1 √lnܹ⁄ ,                                                                      (1.14) 

                            	ܹଶ = 	−1 + ൛2൫ߚଶ൫ඥܾଵ൯ − 1൯ൟଵ ଶൗ ,                                         (1.15) 

ଶ൫ඥܾଵ൯ߚ                            = ଷ൫௡మାଶ଻௡ି଻଴൯(௡ାଵ)(௡ାଷ)(௡ିଶ)(௡ାହ)(௡ା଻)(௡ାଽ) ,                                                 (1.16)        

   ܻ = 	ඥܾଵ ቄ(௡ାଵ)(௡ାଷ)଺(௡ିଶ) ቅଵ ଶൗ
                                                      (1.17) 

 

II. Test of kurtosis ࢼ૛: 

Here the null is  ܪ଴: The data is normal ߚଶ = 3 versus 

ଶߚ ௔: Non-normality as a result of kurtosisܪ  	≠ 3  

The test statistic ܼ(ܾଶ) is defined as:  

                               ܼ(ܾଶ) = ቌቀ1 − ଶଽ஺ቁ − ൤ ଵିଶ ஺⁄ଵା௫ඥଶ (஺ିସ)⁄ ൨భయቍ /ඥ2 ⁄ܣ9                           (1.18) 
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where,                                    ܣ = 6 + ଼ඥఉభ(௕మ) ൤ ଶඥఉభ(௕మ) + ට(1 + ସఉభ(௕మ))	൨,                               (1.19) 

ඥߚଵ(ܾଶ) = 	 ଺(௡మିହ௡ାଶ)(௡ା଻)(௡ାଽ) ට଺(௡ାଷ)(௡ାହ)௡(௡ିଶ)(௡ିଷ),                                     (1.20)  

and,                                           ݔ = (ܾଶ	 −  (1.21)                                   .(ଶܾ)ݎܽݒඥ/((ଶܾ)ܧ

It is also shown that under ܪ଴ the test statistic ܼ(ܾଶ) is approximately normally distributed for n 

≥ 20. 

 

III. The omnibus test:  

Pearson and D’agostino (1973) developed an omnibus statistic using ඥܾଵ	   and  ܾଶ which is 

able to detect deviations from normality as a result of kurtosis or skewness.  They derived the test 

statistic 

 ) + ܼଶ(ܾଶ)                                                  (1.22)	ଶ  = ܼଶ(ඥܾଵܭ

where, ܼ(ඥܾଵ	) and ܼ(ܾଶ)  are the normal approximations of skewness ඥߚଵ	   and kurtosis ߚଶ	 
defined in (1.8) and (1.9) above. Under ܪ଴ , the statistic ܭଶ		has approximately a chi-square 

distribution with 2 degrees of freedom. 

 

Characterizations of Normal distribution 

A characterization of a distribution is a property that is unique to that distribution, and 

thus can be used to develop tests to determine whether a given sample is taken from that 

distribution. The earliest characterization of the normal distribution was by Gauss (1809). He 

showed that if the solution to the likelihood equation was the sample mean, for all possible 
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samples and for all values of n, and the score function is continuous, then the underlying 

distribution must be normal.  

 

Cramer’s theorem (1936) states, if there exists a normally distributed random variable Z 

where ܼ = ܺ + ܻ (the sum of two independent random variables) then X and Y must be normally 

distributed as well. Further developments were made to the above characterization which 

eventually led to Bernstein’s (1941) theorem which states, “Let ଵܺ  and ܺଶ  be independent 

random variables with finite variances.  Then the sum ଵܺ  + ܺଶ  and the difference ଵܺ −	ܺଶ are 

independent if and only if ଵܺ  and ܺଶ  are normally distributed.”  

Ahmad and Mugdadi (2003) developed a test for normality using this criterion. They test 

for normality by testing for independence of U = ௜ܺ -	ܺ௜∗  and V = ௜ܺ + ܺ௜∗,			݅ ≠ ݅∗. The kernel 

method of density estimation was used to estimate the joint density ℎ(ݑ, ,ܷ) of (ݒ ܸ) and the 

marginal densities ܷ(ℎଵ) and ܸ(ℎଶ). The sample estimate of the distance parameter ߲ was used 

to test for normality where; 

߲ = ∬ [ℎ(ݑ, (ݒ − ℎଵ(ݑ)ℎଶ(ݒ)]∞ି∞ ଶ  (2.1)                                          	ݑ݀	ݒ݀	

The parameter	߲  is a measure of departure from normality and is equal to zero if and only if the 

data follow a normal distribution. The derivation of kernel density estimates is very tedious and 

complicated and thus presents a drawback to this method. 

Another well-known characterization is that the sample mean തܺ  and sample variance ܵଶ are independent if and only if the underlying population is normal. Similarly, തܺ   and  ଵ௡ ∑ ( ௜ܺ		 − 	 തܺ)ଷ௡௜    are independent if and only if X is normal. Lin and Mudholkar (1980) proposed 

a test that examines the independence of തܺ and ܵଶ. They used a jackknife procedure (drawing 

subsets from the original n sample points) to estimate the correlation ߩ( തܺ;	ܵଶ), and used this for a 
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test for normality against asymmetric alternatives.  They also presented a test built on the 

independence of തܺ  and 
ଵ௡ ∑ ( ௜ܺ		 − 	 തܺ)ଷ௡௜  constructed using the same jackknife procedure. The 

authors named the tests the ܼଶ	 test and ܼଷ	 test respectively. 

 They obtained an expression for the test statistic  ܼଶ	 using Fisher’s z-transform. 

ܼଶ			=  
ଵଶ log (

ଵା௥మଵି௥మ)                                                               (2.2) 

where, ݎଶ  is the sample correlation coefficient ݎ		 ( തܺ ; 	ܵଶ ). The statistic ܼଶ	  is used to test for 

normality and can be used for both one sided and two sided tests.  

For the ܼଷ	  test they considered the mean തܺ  and the third central sample moment ̂ߤଷ =	ଵ௡ ∑ ( ௜ܺ		 − 	 തܺ)ଷ௡௜ .  Using Fisher’s z-transform they obtained a test statistic called ܼଷ	defined as: 

ܼଷ			=  
ଵଶ log (

ଵା௥యଵି௥య),                                                                (2.3) 

where, ݎଷ is the sample correlation coefficient between( തܺ,   is used to test for	ෝଷ). The statistic ܼଷߤ	

normality and can be used for both one sided and two sided tests. 

Further characterizations of the normal distribution were made on the basis of order 

statistics, maximum-likelihood estimators and independence of variables. There are a plethora of 

theorems and characterizations of the normal and other distributions in the literature.  Kagan, 

Linniks and Rao (1973) and Duerinckx, Ley and Swan (2012), covered a substantial review of 

many of the characterization results. Additionally books by Galambos and Kotz (1978) and 

Kakosyan, Keblanov and Melamed (1974) can be used for a detailed survey of many 

characterization results. 

III. BASIS FOR TEST 
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The focus throughout the paper is to investigate the effect of testing for normality using 

observed data combined with additional simulated data (enriched data). The combination of 

generated and observed data will be used to develop a test statistic following the characterization 

of the normal distribution developed by Bernstein (1941). The proposed method is a new 

exploration into the use of simulated data that to the best of my knowledge has not been 

investigated before. If indeed the results of such explorations using the normal setting yield 

positive results, these tests could possibly be modified and applied to various other goodness-of-

fit tests.  

Main Theorem 

Theorem 1:   If X and Y are identically and independently distributed random variables and U ≡ 

X+Y and V ≡ X-Y  are independent, then U, V, X and Y are all normally distributed.  

The proof of Bernstein’s theorem is rather complicated and is omitted here. For a detailed 

proof please see Bernstein (1941) or Wlodzimierz (2005). The theorem is used to develop our test 

of normality. In the most basic case we are interested in the following Goodness of Fit test.  

Let  ଵܺ,ܺଶ … , ܺ௡ be the observed sample X from our population of interest. We wish to test: 

 .௢ଶߪ ௢ and varianceߤ ଴: X has a Normal distribution with specified meanܪ
 .ୟ: X does not have a Normal distributionܪ

Let Y = ( ଵܻ	, ଶܻ … , ௡ܻ) be n randomly generated points from a Normal (ߤ௢, 	ࢁ	 Compute .(2݋ߪ +ࢄ≡ ࢂ	and	ࢅ ≡ −ࢄ   .ࢅ

Since Y is normally distributed then by Bernstein’s theorem, if 	ࢁ and ࢂ are independent then X 

must be normally distributed with mean ߤ௢  and variance ߪ௢ଶ . Therefore the test of normality 

reduces to a test for independence between ࢁ and ࢂ.  
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For the purposes of the paper the Hoeffding’s D - statistic was used to test for independence. 

Before choosing the Hoeffding’s test of independence as the method for our proposed test, 

simulations were conducted to compare the effectiveness of three common methods of testing for 

independence. The three methods compared were: Hoeffding’s D-Statistic, Spearman’s Rank 

Correlation Coefficient and Kendall’s Tau. The results of simulation showed that the Hoeffding’s 

test is able to capture more subtle departures from independence than the other methods. The 

greater power of the Hoeffding’s test is a very important implication, which might be useful to 

other experimenters wishing to test independence when the sample size is not very large.  If the 

aim of their experiment is to capture minute departures from independence of two samples then 

clearly Hoeffding’s D test seems to be the logical choice.  

 Table 1 below provides a comparison of the power of the three methods for testing 

independence. The power is computed by calculating the percentage of times of 10,000 trials that 

independence between U = X + Y and V = X - Y is rejected. 

Table 1: Comparison of power of 3 methods of testing independence at α = 0.05% level of 

significance. 

Distribution Sample size Spearman’s Rank Kendall’s Tau Hoeffding’s-D 
Normal (0,1) 10 0.070 0.063 0.091 
 20 0.039 0.041 0.076 
 50 0.052 0.052 0.059 
 100 0.057 0.056 0.062 
 200 0.064 0.059 0.058 
 500 0.052 0.052 0.050 
Chi-square 2 10 0.084 0.081 0.211 
 20 0.091 0.087 0.408 
 50 0.087 0.094 0.949 
 100 0.088 0.095 1.000 
 200 0.093 0.097 1.000 
 500 0.099 0.112 1.000 
Exponential  10 0.080 0.080 0.194 
 20 0.101 0.101 0.414 
 50 0.103 0.104 0.947 
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 100 0.103 0.103 1.000 
 500 0.105 0.112 1.000 
 1000 0.099 0.104 1.000 
 2000 0.097 0.106 1.000 
Uniform (0,1) 10 0.020 0.015 0.073 
 20 0.006 0.015 0.042 
 50 0.004 0.015 0.043 
 100 0.005 0.015 0.097 
 200 0.002 0.010 0.568 
 500 0.001 0.007 1.000 
T (7) 10 0.067 0.061 0.110 
 20 0.064 0.062 0.072 
 50 0.073 0.067 0.085 
 100 0.074 0.062 0.074 
 200 0.075 0.081 0.080 
 1000 0.071 0.080 0.126 
Gamma (4,5)  10 0.070 0.055 0.128 
 20 0.047 0.047 0.126 
 50 0.068 0.063 0.224 
 100 0.056 0.056 0.522 
 200 0.069 0.068 0.952 
 500 0.047 0.051 1.000 
 1000 0.054 0.056 1.000 
Beta (2,2)   10 0.033 0.022 0.084 
 20 0.036 0.027 0.066 
 50 0.027 0.019 0.044 
 100 0.026 0.017 0.038 
 500 0.024 0.013 0.187 
 1000 0.022 0.016 0.788 
 2000 0.018 0.014 1.000 
Cauchy  (0,1)  10 0.121 0.128 0.171 
 20 0.116 0.157 0.173 
 50 0.111 0.171 0.263 
 100 0.128 0.177 0.589 
 500 0.182 0.222 1.000 
 1000 0.098 0.156 1.000 
 2000 0.114 0.162 1.000 

 

Table 1 

Description of Hoeffding’s test: 



15 

 

Hoeffding’s Dependence Coefficient D, is a nonparametric measure of association 

developed by Hoeffding (1948) that detects more general departures from independence. The 

statistic approximates a weighted sum over observations from a bivariate sample by placing ranks 

on observations. The D – statistic is defined by the SAS Institute (2010) as:   

ܦ = 30 (௡ିଶ)(௡ିଷ)஽భା஽మିଶ(௡ିଶ)஽య௡(௡ିଵ)(௡ିଶ)(௡ିଷ)(௡ିସ)                                                      (3.1)        

where,      ܦଵ = ∑(ܳ௜ − 1)(ܳଵ − 2),                                                                 (3.2)                   

ଶܦ                               = ∑(ܴ௜ − 1)(ܴଵ − 2)( ௜ܵ − 1)( ௜ܵ − 2),                                      (3.3) 

and      ܦଷ = ∑(ܴ௜ − 2)( ௜ܵ − 2)(ܳ௜ − 1),                                                    (3.4) 

where ܴ௜ is the rank of ݑ௜, ௜ܵ is the rank of ݒ௜ and ܳ௜	(also called the bivariate rank) is 1 plus the 

number of point with both ݔ	݀݊ܽ	ݕ values less than the ݅ݐℎ point (ݑ௜,  ௜). That is for each sampleݒ

point (ݑ௜,  :௜), ܳ௜ is defined byݒ

ܳ௜ = 	∑ ,௝ݑ)]ܫ ௝)௡௝ୀଵݒ 	≤ 	 ,௜ݑ)                                             [(௜ݒ
= 1 + number of sample points (ݑ௝, ,௜ݑ)  ௝) which is less thanݒ ,(௜ݒ ݅ ≠ ݆  

When no ties occur among data set, the ܦ	 statistic values are generally 

between	−0.5	and	1, with 1 indicating complete dependence. Generally for any D ≤ 0 it is safe 

not to reject	ܪ଴ and conclude there is independence. To test for independence, at 0)ߙ < ߙ < 1) a 

given level of significance, let ߩ௡, be the smallest number satisfying the inequality ܲሼܦ > ௡ሽߩ ܸ	݀݊ܽ	ܷ	when	ߙ	>  are independent. Compute D from (3.1) and reject ଴ܪ	  the hypothesis of 

independence if ܦ  statistic ܦ ௡. When n is large (n >10), the critical values of Hoeffding’sߩ	<

are computed using the asymptotic distribution by Blum, Kiefer, and Rosenblatt (1961) for some 
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selected values of significance.  If the sample size is less than 10, refer to the tables in Hollander 

and Wolfe (1999) for the exact distribution of ܦ.  

In this chapter we covered and compared the power of some of the most common 

methods of testing for independence. On the basis of the simulation results the Hoeffding’s test 

was selected as the preferred method of testing independence. In the next chapter we combine the 

concepts discussed in Chapters 1-3 to present the test for normality using enriched data. First we 

test when ܪ଴ is a simple hypothesis, ‘testing for a specified normal distribution’ and then the 

procedure is extended to test for a composite hypothesis when the mean and variance are not 

specified. The proposed test of normality will be referred to as the ‘Enriched Method’. 
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IV. TEST PROCEDURE 

The first test that is investigated is for the simple hypothesis that: 

:௢ܪ ܶℎ݁	݀ܽܽݐ	݁݉݋ܿ	݉݋ݎ݂	ܽ	݂݀݁݅݅ܿ݁݌ݏ	݈ܽ݉ݎ݋݊	݊݋݅ݐݑܾ݅ݎݐݏ݅݀. 

:௔ܪ ܶℎ݁	݀ܽܽݐ	݋݀	ݐ݋݊	݁݉݋ܿ	݉݋ݎ݂	ݐℎ݁	݂݀݁݅݅ܿ݁݌ݏ	݈ܽ݉ݎ݋݊	݊݋݅ݐݑܾ݅ݎݐݏ݅݀. 

The proposed test is similar to the Kolmogorov-Smirnov (KS) goodness-of-fit test which 

is widely used to test for a specified normal distribution. We will investigate how the simulated 

data and observed data can be combined to test for normality. The test procedure which uses 

linear combinations of the observed sample and the generated data is as follows.  

Procedure for computing the test statistic D*:  

3.1: Let ࢄ = ( ଵܺ, … , ܺ௡)  be a random sample from a population with mean ߤ௢  and 

variance ߪ௢ଶ.   
3.2: Randomly generate samples ࢏ࢅ 	= ( ଵܻ௜, … , ௡ܻ௜), ݅ = 	,݉	݋ݐ	1 of size n from a ܰ(ߤ௢	,   .(௢ଶߪ
3.3: Compute ࢏ࢁ 	= ࢄ ࢏ࢂ and ࢏ࢅ	+ 	= ࢄ ݅ for ࢏ࢅ	− =  (100= ݉) .݉	݋ݐ	1

3.4: Compute D* = 
ଵ௠∑ ௜௠௜ୀଵܦ   

        where,ܦ௜  is the Hoeffding’s D-statistic computed between each ௜ܷ	 = [( ଵܺ + ௜ܻଵ), (ܺଶ +										 ௜ܻଶ), … . , (ܺ௡ + ௜ܻ௡)] and ௜ܸ	 = [( ଵܺ − ௜ܻଵ), (ܺଶ − ௜ܻଶ), … . , (ܺ௡ − ௜ܻ௡)], ݅ =   .݉	݋ݐ	1
3.5: Reject the null hypothesis of normality if D* > ܦ∝ , where ܦ∝ are critical points of 

the D* statistic developed under the null hypothesis of normality.  

The table of significance points for D* statistic for α = 0.01, 0.05, 0.10, 0.50, 0.90 and 0.99 are 

given in table 2 below. These significance points were developed from 10,000 repetitions of the 
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procedure given in 3.1 – 3.5 for generated samples from a ܰ(0	,1)	distribution and the various 

percentiles observed to develop the critical values for the various levels of significance. 

Table 2: Significance points of D* statistic under normality when population mean and variance 

are known. 

Sample size p(0.01) p(0.05) p(0.10) p(0.50) p(0.90) p(0.95) p(0.99) 

6 -0.13917 -0.09667 -0.07500 -0.00073 0.08000 0.13417 0.25083 
10 -0.05020 -0.03841 -0.03200 -0.00053 0.03833 0.05782 0.11407 
15 -0.02596 -0.02109 -0.01811 -0.00048 0.02292 0.03691 0.07898 
20 -0.01733 -0.01428 -0.01242 -0.00040 0.01541 0.02504 0.04578 
25 -0.01274 -0.01065 -0.00929 -0.00031 0.01239 0.02043 0.04040 
30 -0.01005 -0.00852 -0.00755 -0.00026 0.01020 0.01637 0.02984 
35 -0.00842 -0.00725 -0.00650 -0.00019 0.00867 0.01372 0.02886 
40 -0.00701 -0.00602 -0.00543 -0.00010 0.00763 0.01239 0.02526 
45 -0.00630 -0.00534 -0.00478 -0.00008 0.00654 0.01086 0.02199 
50 -0.00547 -0.00474 -0.00423 -0.00007 0.00584 0.00975 0.01933 
60 -0.00443 -0.00393 -0.00355 -0.00006 0.00499 0.00799 0.01529 
70 -0.00386 -0.00331 -0.00297 -0.00005 0.00436 0.00694 0.01310 
80 -0.00331 -0.00289 -0.00261 -0.00004 0.00355 0.00578 0.01049 
90 -0.00296 -0.00257 -0.00232 -0.00002 0.00297 0.00486 0.00971 

100 -0.00264 -0.00231 -0.00209 -0.00002 0.00282 0.00473 0.00902 
200 -0.00125 -0.00108 -0.00098 -0.00005 0.00147 0.00237 0.00497 
300 -0.00081 -0.00074 -0.00066 -0.00003 0.00098 0.00153 0.00289 
400 -0.00061 -0.00055 -0.00050 -0.00002 0.00066 0.00100 0.00206 
500 -0.00049 -0.00044 -0.00040 0.00000 0.00059 0.00099 0.00180 

1000 -0.00024 -0.00022 -0.00020 0.00001 0.00026 0.00044 0.00079 
2000 -0.00012 -0.00011 -0.00009 0.00001 0.00017 0.00029 0.00048 

 

Table 2 

It must be highlighted that the percentiles of D* do not depend on the mean or the 

variance of the specified normal distribution. That is they are invariant to the mean or the 

variance when the samples are from the same specified normal distribution. The independence of 

the percentiles is a direct result of Bernstein’s theorem where independence holds as long as the 

mean and the variance of ࢄ	and	࢏ࢅ are the same.  Additionally the choice of 100 samples for 
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calculating D*, the average of the Hoeffding’s D-statistics between ࢏ࢁ and ࢏ࢂ, was done because 

such a size is large enough to ensure that the results are consistent. The simulations revealed that 

when the number of samples of ࢏ࢅ is greater than 100, the distribution of D* becomes stable thus 

ensuring consistent results while avoiding unnecessary computation time for generating more 

samples. 

 

Simulation Results 

Monte Carlo simulations were done to compare the power of the ‘Enriched method’ 

(EM) with that of the Shapiro -Wilk (SW), Anderson Darling (AD) and Kolmogorov-Smirnov 

(KS) tests. To obtain the simulated power against a particular distribution at ߙ = 5% for each 

sample size, a total of 10,000 samples were generated and then the different tests applied to each 

sample using the SAS statistical package. The simulated power was then computed by finding the 

percentage of 10,000 trials that normality was rejected using each method.  

For the case of the simple hypothesis stated above, the power of the ‘Enriched Method’ 

which is being investigated was compared to the power of the KS test since the KS test is the 

most widely used when testing for specified normality. The power was estimated for various 

alternative distributions, some of which are presented in table 3 with corresponding graphs in 

figure 1.  

The EM method has greater estimated power than the KS for some of the distributions 

investigated at α = 5% level of significance. The EM method has uniformly greater power than 

the KS test against a T distribution with n = 7 degrees of freedom. At a sample size of 500, the 

EM test has adequate power of 98% while the KS test has power of 57%. Similar results are seen 

for a T distribution with n = 3 degrees of freedom, where the EM had a power of 90% for a 
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sample size of 100 whereas the KS had power of 71% for the same sample size.  Against a Beta 

(2, 2) distribution, the EM performed better for smaller sample sizes than the KS test. However as 

the sample size increased the KS test converged in power to the EM method eventually 

surpassing the power of the EM method at sample size of 500.  For many other distributions the 

two tests performed relatively similar. 

 Both methods had similar power against an Exponential (λ = 1) distribution with both 

achieving adequate power for relatively small sample size. Against a Chi-square distribution with 

n = 4 degrees of freedom the KS test had better power at smaller sample sizes but as the sample 

sized increased the EM method converged in power to the KS test. The same observation was 

seen against a Gamma (4, 5) and Uniform (0, 1) distribution.   See Figures 1(a) – (f) for a 

graphical representation of the results. 

Both methods typically require large sample sizes in order to achieve adequate power 

against most symmetric distributions as can seen from the simulations made against the Beta (2, 

2), T (7) and Uniform (0,1). In contrast the tests are able to detect non-normality for relatively 

small sample sizes when the distributions are highly skewed. The simulations failed to reveal 

which of the two methods had a clear cut advantage over the other as none of the methods 

consistently outperformed the other. It would appear however that the KS test has an advantage 

against distributions that are highly skewed. 

 

Table 3: Comparison of Power of Enriched method and Kolmogorov-Smirnov test against some 

alternative distributions for known mean and variance at α = 5% level of significance. 

Distribution Sample size Enriched Method Kolmogorov -
Smirnov 

Uniform (0,1) 10 0.023 0.078 
 20 0.040 0.150 
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 50 0.166 0.306 
 100 0.366 0.630 
 200 0.942 0.958 
 500 1.000 1.000 
 1000 1.000 1.000 
 2000 1.000 1.000 

Chisquare (4) 10 0.118 0.161 
 20 0.267 0.337 
 50 0.745 0.689 
 100 0.981 0.987 
 200 1.000 1.000 
 500 1.000 1.000 
 1000 1.000 1.000 
 2000 1.000 1.000 

T (7) 10 0.078 0.066 
 20 0.084 0.090 
 50 0.121 0.127 
 100 0.204 0.165 
 200 0.527 0.278 
 500 0.980 0.568 
 1000 1.000 0.883 
 2000 1.000 1.000 

Beta (2,2) 10 0.041 0.044 
 20 0.064 0.063 
 50 0.123 0.114 
 100 0.214 0.198 
 200 0.648 0.398 
 500 0.843 0.882 
 1000 0.986 0.998 
 2000 1.000 1.000 

Gamma (4,5) 10 0.079 0.119 
 20 0.110 0.210 
 50 0.267 0.416 
 100 0.571 0.727 
 200 0.961 0.923 
 500 1.000 1.000 
 1000 1.000 1.000 
 2000 1.000 1.000 

Exponential (λ =1) 10 0.268 0.300 
 20 0.566 0.584 
 50 0.994 0.964 
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 100 1.000 1.000 
 500 1.000 1.000 
 1000 1.000 1.000 
 2000 1.000 1.000 

Weibull (2, 2) 10 0.073 0.053 
 20 0.087 0.098 

 50 0.123 0.244 
 100 0.263 0.406 
 200 0.553 0.748 
 500 0.986 0.989 
 1000 1.000 1.000 
 2000 1.000 1.000 

T (3) 10 0.204 0.190 
 20 0.333 0.220 
 50 0.652 0.491 
 100 0.907 0.712 
 200 1.000 0.957 
 500 1.000 1.000 
 1000 1.000 1.000 
 2000 1.000 1.000 

Chi-square (20) 10 0.064 0.063 
 20 0.084 0.101 
 50 0.111 0.196 
 100 0.165 0.363 
 200 0.383 0.552 
 500 0.882 0.930 
 1000 1.000 1.000 
 2000 1.000 1.000 

 

Table 3 
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Figure 1(a). Comparison of power of EM & KS tests against T (7) (α =0.05) 

 

 

 

Figure 1(b). Comparison of power of EM & KS tests against T (3) (α=0.05) 
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Figure 1(c). Comparison of power of EM & KS tests against Beta (2, 2) (α = 0.05) 

 

 

Figure 1(c). Comparison of power of EM & KS tests against Chi-square (4) (α = 0.05). 
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Figure 1(d). Comparison of power of EM & KS tests against Gamma (4, 5) (α = 5%) 

 

 

Figure 1(e). Comparison of power of EM & KS tests against a Uniform (0,1) (α = 5%) 
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Figure 1(f). Comparison of power of EM & KS tests against Weibull (2, 2) (α=0.05) 

 

 

 Testing normality when population mean and variance are unknown 

In many scenarios when testing normality, the population mean and variance are 

unknown to the experimenter and have to be estimated from the sample. In such a scenario, the 

previous test of normality cannot be used since it assumes that the population mean and variance 

are known. In this chapter we present a procedure for testing normality when the mean and 

variance are not specified. 

That is given a random sample 	ࢄ = ( ଵܺ, … , ܺ௡) of size n we are testing: 

:௢ܪ ܶℎ݁	݀ܽܽݐ	݁݉݋ܿ	݉݋ݎ݂	ܽ	݈ܽ݉ݎ݋݊	݊݋݅ݐݑܾ݅ݎݐݏ݅݀. 

:௔ܪ ܶℎ݁	݀ܽܽݐ	݋݀	ݐ݋݊	݁݉݋ܿ	݉݋ݎ݂	ܽ	݈ܽ݉ݎ݋݊	݊݋݅ݐݑܾ݅ݎݐݏ݅݀	 
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Indeed this test is more applicable to experimenters wishing to verify that data are normal 

regardless of mean or variance in order to perform many other parametric statistical tests. The test 

procedure follows directly from the case of known mean and variance. Significance points of the 

D* statistic are developed under the null hypothesis of normality similar to the case for known 

mean and variance except values were generated using the sample mean and sample variance of 

the observed samples. The table of critical values obtained is tabulated below for various sample 

sizes. 

Table 4: Significance points of D* statistic under normality when population mean and variance 

are unknown. 

Sample size p(0.01) p(0.05) p(0.10) p(0.50) p(0.90) p(0.95) p(0.99)
6 -0.15333 -0.11333 -0.09167 -0.02169 0.043333 0.056667 0.081667

10 -0.05159 -0.04435 -0.03821 -0.01308 0.011190 0.018452 0.026607

15 -0.02677 -0.02337 -0.02087 -0.00868 0.004569 0.008104 0.015061
20 -0.01809 -0.01587 -0.01453 -0.00661 0.002184 0.005128 0.011119

25 -0.01328 -0.01172 -0.01069 -0.00507 0.001604 0.004065 0.009618
30 -0.01057 -0.00933 -0.00859 -0.00416 0.001236 0.003223 0.007971
35 -0.00875 -0.00783 -0.00724 -0.00364 0.000744 0.002564 0.007173
40 -0.00749 -0.00671 -0.00626 -0.00318 0.000620 0.002266 0.005799
45 -0.00651 -0.00588 -0.00542 -0.00286 0.000448 0.001969 0.004755
50 -0.00590 -0.00523 -0.00488 -0.00240 0.000705 0.001817 0.003992

60 -0.00478 -0.00430 -0.00400 -0.00214 0.000202 0.001236 0.003857
70 -0.00400 -0.00362 -0.00337 -0.00183 0.000172 0.001036 0.002997
80 -0.00346 -0.00312 -0.00292 -0.00157 0.000165 0.000922 0.002903
90 -0.00306 -0.00277 -0.00258 -0.00138 0.000158 0.000898 0.002496

100 -0.00279 -0.00248 -0.00234 -0.00126 0.000064 0.000577 0.002611

150 -0.00177 -0.00162 -0.00151 -0.00085 0.000048 0.000445 0.001443
200 -0.00134 -0.00119 -0.00113 -0.00061 0.000044 0.000406 0.001025

300 -0.00087 -0.00079 -0.00075 -0.00043 0.000031 0.000265 0.000643
400 -0.00066 -0.00062 -0.00057 -0.00032 0.000025 0.000151 0.000737
500 -0.00052 -0.00047 -0.00045 -0.000251 0.000016 0.000134 0.000474

1000 -0.00025 -0.00023 -0.00022 -0.000127 -0.000060 0.000062 0.000239
2000 -0.00013 -0.00012 -0.00011 -0.000064 -0.00009 0.000043 0.000108

 

Table 4 
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Procedure for computing D*:  

4.1: Given a random sample ࢄ = ( ଵܺ, … , ܺ௡), compute the sample mean ̅ݔ and sample 

variance ݏଶ of ࢄ. 

4.2: Randomly generate samples ࢏ࢅ 	= ( ଵܻ௜, … , ௡ܻ௜), ݅ =  of size n from a normal ݉	݋ݐ	1

distribution ܰ(̅ݔ	,   .(ଶݏ
4.3: Compute ࢏ࢁ 	= ࢄ ࢏ࢂ and ࢏ࢅ	+ 	= ࢄ ݅ for ࢏ࢅ	− =  (m =100) .݉	݋ݐ	1

4.4: Compute D* = 
ଵ௠∑ ௜௠௜ୀଵܦ  where, ܦ௜ is the Hoeffding’s D-statistic computed between 

each ௜ܷ	 and ௜ܸ , ݅ =   .݉	݋ݐ	1
4.5: Reject the null hypothesis of normality if D* > ܦ∝ , where ܦ∝ are critical points of 

the D* statistic developed under the null hypothesis of normality.  

 

Simulation Results 

The power of the Enriched method for testing normality when the population mean and 

variance was compared to the power of the Shapiro - Wilk’s and the Anderson - Darling’s test for 

normality. These are the two most popular and possibly most powerful tests for normality when 

the mean and variance of the population are unknown. The tests were compared for various 

alternative distributions by running 10,000 repetitions for each sample size and then the estimated 

power computed for α = 5%.  Table 6 summarizes the simulated power for selected alternative 

distributions for α = 5% level of significance with corresponding graphs in Figure 2.  

From the table and graphs below it is clear that the test EM is on par with other 

traditional methods of testing for normality. The addition of the generated data to the observed 

data to develop the test statistic is justified from the results obtained. The EM method had better 

power than the AD test for some of the distributions investigated. Against a Beta (2, 2), the EM 
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test had consistently better than the AD test and had better power for smaller sample sizes than 

the SW test. For a sample size of n =10, the EM method had a power of 12% while the AD and 

SW test had power of about 7%.  The EM had power 80% for a sample size of 200 while the AD 

test was at 71% and the SW 92%. Figure 2(a) shows a graphical representation of the power of 

the three methods against the Beta (2, 2) distribution.   

Against a Uniform (0, 1) distribution the EM method was uniformly more powerful than 

the AD test and was just as powerful as the Shapiro in rejecting normality. Figure 2(b) shows all 

three methods having adequate power for a sample size of 100 with the EM method having 

greater power for small sample sizes.  Against the T distribution with n = 7 degrees of freedom, 

both the AD and SW tests have better power at smaller sample size than the EM test. A similar 

conclusion can be drawn from a Cauchy distribution where both the AD and SW tests have 

slightly better power than the EM.  

Against asymmetric distributions, all of the methods in general require much smaller 

sample size to reject normality than against symmetric distributions. Against a Weibull (2, 2) 

distribution the EM test had uniformly better power than the AD test, but both methods still 

achieved less power than the SW test. Against a Chi-square (4) distribution both the AD and SW 

test have greater power than the Enriched method for all sample sizes. The same trend is seen 

against a Lognormal (0, 1) and exponential (λ = 1) distribution.   

 

Table 5.  Comparison of Power of the Enriched method, Shapiro-Wilk’s and Anderson Darling’s 

tests against some alternative symmetric distributions for (α = 5%) level of significance. 

Distribution Sample size SW AD EM 
Beta (2,2) 10 0.032 0.030 0.071 

 20 0.072 0.068 0.128 
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 50 0.148 0.148 0.257 
 100 0.448 0.334 0.558 
 200 0.926 0.714 0.818 
 500 1.000 1.000 1.000 
 1000 1.000 1.000 1.000 
 2000 1.000 1.000 1.000 

T (7) 10 0.087 0.092 0.047 
 20 0.165 0.120 0.063 
 50 0.243 0.184 0.130 
 100 0.356 0.300 0.239 
 200 0.577 0.421 0.425 
 500 0.874 0.810 0.840 
 1000 0.996 0.980 1.000 
 2000 1.000 1.000 1.00 

Uniform (0,1) 10 0.081 0.082 0.138 
 20 0.190 0.154 0.367 
 50 0.765 0.542 0.750 
 100 0.996 0.960 0.988 
 200 1.000 1.000 1.000 
 500 1.000 1.000 1.000 
 1000 1.000 1.000 1.000 
 2000 1.000 1.000 1.000 

Cauchy (0, 1) 10 0.602 0.628 0.401 
 20 0.856 0.874 0.804 
 50 0.998 0.998 0.996 
 100 1.000 1.000 1.000 
 200 1.000 1.000 1.000 
 500 1.000 1.000 1.000 
 1000 1.000 1.000 1.000 
 2000 1.000 1.000 1.000 

Chi-square (4) 10 0.242 0.238 0.113 
 20 0.556 0.506 0.429 
 50 0.935 0.928 0.886 
 100 1.000 1.000 0.995 
 200 1.000 1.000 1.000 
 500 1.000 1.000 1.000 
 1000 1.000 1.000 1.000 
 2000 1.000 1.000 1.000 

Lognormal (0, 1) 10 0.618 0.598 0.412 
 20 0.938 0.918 0.890 
 50 1.000 1.000 1.000 
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 100 1.000 1.000 1.000 
 200 1.000 1.000 1.000 
 500 1.000 1.000 1.000 
 1000 1.000 1.000 1.000 
 2000 1.000 1.000 1.000 

Exponential (λ =1) 10 0.452 0.374 0.246 

 20 0.842 0.790 0.753 
 50 1.000 0.998 0.996 
 100 1.000 1.000 1.000 
 200 1.000 1.000 1.000 
 500 1.000 1.000 1.000 
 1000 1.000 1.000 1.000 
 2000 1.000 1.000 1.000 

Weibull (2, 2) 10 0.074 0.066 0.174 
 20 0.166 0.140 0.270 
 50 0.386 0.288 0.302 
 100 0.804 0.616 0.633 
 200 0.996 0.934 0.906 
 500 1.000 1.000 1.000 
 1000 1.000 1.000 1.000 
 2000 1.000 1.000 1.000 

Gamma (4, 5) 10 0.141 0.146 0.069 
 20 0.292 0.252 0.207 
 50 0.693 0.546 0.530 
 100 0.952 0.904 0.888 
 200 0.999 0.997 0.994 
 500 1.000 1.000 1.000 
 1000 1.000 1.000 1.000 
 2000 1.000 1.000 1.000 
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Figure 2(a). Comparison of power of various tests against Beta (2, 2) (α = 0.05) 

 

Figure 2(b). Comparison of power of various tests against T (7) (α = 0.05) 
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Figure 2(c). Comparison of power of various tests against Uniform (0, 1) (α = 0.05) 

 

 

Figure 2(d). Comparison of power of various tests against Gamma (4, 5) (α = 0.05) 
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Figure 2(e). Comparison of power of various tests against Weibull (2, 2) (α = 0.05) 

 

 

V. DISCUSSION  

Overall, the simulation reveals the EM method having good potential when compared to 

the SW and AD tests. It also had comparative power to the KS test when testing for normality 

when population mean and variance are known. The method has better power than the AD test for 

many distributions that were investigated. However, it does not exclusively outperform the 

Anderson Darling’s test and is less powerful than the Shapiro-Wilk’s test for most of the 

distributions investigated. The test typically does not have great power for small sample sizes 

against symmetric distributions but achieves good power when sample size gets moderately large.  

The test is not isolated from other tests of normality in its inability to achieve great power 

for small sample sizes as all of the methods of testing for normality typically require large sample 

size before they reach acceptable power against most symmetrical distributions. The inability to 
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achieve good power for small sample size is a major limitation that poses concern to 

experimenters and is often the criticism of goodness-of-fit tests. In order to effectively test for 

normality these tests should be used in conjunction with graphical techniques to properly 

conclude normality or non-normality. 

One observed limitation of incorporating simulated data to test for normality when the 

population mean and variance are known is an increase in the type 1 error.  The result is due to 

the fact that generated data has to be incorporated with the observed data in order to perform the 

test. The impact is more profound at smaller sample sizes where there is a tendency to have 

slightly larger deviations in the sample mean and variance from the actual mean and variance of 

the population from which the sample was generated.  Such deviations are in essence a slight 

breakdown of the theorem being used which assumes that the mean of the observed sample and 

that of the generated sample are the same. 

 When the deviation occurs, the test statistic tends to be larger since independence is 

marginally violated thus increasing the likelihood of rejecting the null hypothesis. Therefore even 

if the data is generated from a normal population with mean µ and variance ߪଶ  the test will 

sometimes reject normality if the generated data and the observed data have sample means and or 

sample variance which are far from the hypothesized population mean and variance. This error 

can be reduced by generating more samples and incorporating them with the observed sample. 

 

Recommendations 

The use of simulated data combined with observed data shows great potential. More work can be 

done to add to the investigations in this paper. In the case of testing normality when the mean and 

variance are unknown, instead of using the sample estimates of the mean and variance to generate 
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the data one could estimate the parameters by using bootstrapping. This may lead to better 

generation results as these estimates may potentially be better estimates of the true population 

mean and variance than the sample mean and sample variance. Also, investigations could be done 

into the use of another measure to detect departure from independence other than the Hoeffding’s 

-D that was used in this paper. If there is indeed a statistic that would detect more subtle 

deviations from independence than the Hoeffding’s - D then this might serve to improve the 

power of testing when using the combination of simulated data and observed data. 

 

Conclusion 

 The use of simulated data combined with observed data was investigated as a means of 

testing for normality. The investigation was done for two instances. The first instance when the 

population mean and variance are known and the other when they are unknown. The test was 

developed based upon the characterization theorem of the normal distribution by Bernstein (1941) 

and combines observed data and generated data to compute the test statistic D*. The statistic D* 

is based upon the Hoeffding’s D-statistic which tests for independence of linear combinations of 

the observed and generated data.  

Overall it was revealed that the use of Enriched data as a means of testing normality 

yielded some positive results. The test that was proposed achieved adequate power for many of 

the distributions investigated and was generally comparable to some of the existing methods of 

testing for normality. More work needs to be done to refine the method and possibly extend the 

use of simulated data to develop other goodness-of-fit tests.  The test however cannot be carried 

out without the use of computer software and generally takes a longer time to run than existing 

methods. 
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