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ABSTRACT OF THE DISSERTATION

FOUNDATIONS OF QUANTITATIVE INFORMATION FLOW: CHANNELS,

CASCADES, AND THE INFORMATION ORDER

by

Barbara Espinoza Becerra

Florida International University, 2014

Miami, Florida

Professor Geoffrey Smith, Major Professor

Secrecy is fundamental to computer security, but real systems often cannot avoid

leaking some secret information. For this reason, the past decade has seen grow-

ing interest in quantitative theories of information flow that allow us to quantify

the information being leaked. Within these theories, the system is modeled as an

information-theoretic channel that specifies the probability of each output, given

each input. Given a prior distribution on those inputs, entropy-like measures quan-

tify the amount of information leakage caused by the channel.

This thesis presents new results in the theory of min-entropy leakage. First, we

study the perspective of secrecy as a resource that is gradually consumed by a sys-

tem. We explore this intuition through various models of min-entropy consumption.

Next, we consider several composition operators that allow smaller systems to be

combined into larger systems, and explore the extent to which the leakage of a com-

bined system is constrained by the leakage of its constituents. Most significantly, we

prove upper bounds on the leakage of a cascade of two channels, where the output

of the first channel is used as input to the second. In addition, we show how to

decompose a channel into a cascade of channels.

We also establish fundamental new results about the recently-proposed g-leakage

family of measures. These results further highlight the significance of channel cas-
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cading. We prove that whenever channel A is composition refined by channel B, that

is, whenever A is the cascade of B and R for some channel R, the leakage of A never

exceeds that of B, regardless of the prior distribution or leakage measure (Shannon

leakage, guessing entropy leakage, min-entropy leakage, or g-leakage). Moreover,

we show that composition refinement is a partial order if we quotient away channel

structure that is redundant with respect to leakage alone. These results are strength-

ened by the proof that composition refinement is the only way for one channel to

never leak more than another with respect to g-leakage. Therefore, composition

refinement robustly answers the question of when a channel is always at least as

secure as another from a leakage point of view.
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CHAPTER 1

INTRODUCTION

In this chapter we introduce the research area of quantitative information flow,

present our research goals, describe the motivation and significance of this thesis,

delineate our most important contributions, provide an outline for the dissertation,

and enumerate the scientific publications where we have previously presented this

research.

1.1 Quantitative Information Flow

Protecting confidential information from improper disclosure is a fundamental se-

curity goal, made more challenging due to the practical difficulty of preventing all

leakage of secret information. As a basic example, a login program that rejects an

incorrect password unavoidably reveals that the secret password differs from the one

that was entered. Similarly, revealing the tally of votes in an election leaks some

information about the secret ballots—if the election happens to be unanimous, for

example, then we learn what all of the ballots were. More subtly, an adversary may

be able to observe side information about a system’s implementation that may leak

secret information. For example, Kocher’s celebrated timing attack on RSA [Koc96]

demonstrates that the timings of a set of RSA decryptions can allow an adversary

to deduce the private key.

One promising way to address information leakage is to consider it quantitatively,

based on the intuition that a login program is acceptable in practice because it leaks

only a “small” amount of information about the secret password. This viewpoint

has led to the area of quantitative information flow, which has seen growing interest

in the past decade. (See, for example, [CHM01, Bor06, Mal07, KB07, CPP08a,

CPP08b, Smi09, KS10].)
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The notion of channel from information theory [Sha48] provides a general frame-

work for quantifying the transmission of information in systems. Channels capture

the relationship between the inputs and the outputs of a system through a channel

matrix which specifies, for each input, the conditional probability of observing each

output of the system. Given a channel, it is then natural to measure the leakage

of confidential information based on how much the adversary’s uncertainty with

respect to the secret input is reduced after observing the channel’s public output:

leakage = initial uncertainty − remaining uncertainty.

The information flow community is currently studying a variety of theories of

information flow, each of them characterized by the choice of uncertainty measure.

The first uncertainty measures to be considered were Shannon entropy and guessing

entropy. Shannon entropy [Sha48] is a classic measure from information theory

that quantifies the average information content of a random variable. The Shannon

entropy of a random variable X can be understood as the expected number of

bits required to transmit X using an optimal encoding scheme. Guessing entropy

[Mas94], on the other hand, quantifies the expected number of guesses that an

adversary would have to make to correctly guess the value of the secret. Both

measures have been used to quantify information flow in a variety of scenarios,

including programs that handle sensitive information (e.g. [CHM01]), side-channel

attacks (e.g. [KB07]), and even anonymity protocols (e.g. [CPP08a]); all of which

can be modeled as channels.

Another theory of quantitative information flow that has received considerable

attention recently [Smi09, BCP09, APvRS10, HSP10, AAP10b] is based on measur-

ing uncertainty using Rényi’s min-entropy [Rén61], rather than guessing entropy or

Shannon entropy. An advantage of min-entropy leakage is that it is based directly

2



on the secret’s vulnerability to being guessed in one try by an adversary, resulting in

stronger operational security guarantees than are obtained with Shannon entropy

[Smi09]. In contrast, Shannon entropy and guessing entropy provide guarantees in

terms of the expected number of guesses that the adversary has to make, which can

be arbitrarily high even if there is a high probability that the adversary will make

the correct guess at the first attempt.

More recently, g-leakage [ACPS12], a generalization of min-entropy leakage, has

been proposed to allow for a wider variety of operational scenarios to be modeled.

With g-leakage, the benefit that an adversary obtains from making a particular guess

is specified with a gain function. This allows to model adversaries that benefit not

just from guessing the complete secret, but also from guessing values close to the

secret, that are part of the secret, that are properties of the secret, or even guessing

the secret within a number of tries. (We review the most commonly discussed

measures of leakage in Section 2.2.)

1.2 Research Goals

This thesis advances the current understanding of quantitative theories of infor-

mation flow by filling knowledge gaps, re-examining the rationale behind current

models, and providing new perspectives for the understanding of quantitative infor-

mation flow analysis. The main research problems we address in this thesis are:

1. Exploring the perspective that secrecy can be viewed as a resource that is

gradually consumed by a system.

2. Analyzing the information flow of combined channels.

3. Determining the conditions under which a channel always leaks more informa-

tion than another.

3



4. Studying techniques for factoring a channel matrix into the product of channel

matrices.

1.3 Motivation, Contribution, and Outline

This thesis begins with a review of important background concepts on Chapter 2. We

describe information-theoretic channels, review a variety of measures of information

flow, basic notions of order theory, and define an order relation for deterministic

channels (those channels in which each input maps to exactly one output) known

as partition refinement.

We start our study in Chapter 3 by noticing that the initial uncertainty or

secrecy of an input can be viewed as a resource that is gradually consumed by the

system execution. After choosing min-entropy as our measure of secrecy, we identify

three different models for its consumption: a new dynamic model of min-entropy

leakage that quantifies the information flow in a single run of the system, a new

worst-case run model, and Smith’s average-case run model [Smi09]. Our results

show that the min-entropy leakage of a single run of the system can be negative,

so min-entropy does not behave as a reasonable resource in this case. In contrast,

both worst-case and average-case min-entropy leakage are always non-negative, so

both of these models are well suited for the viewpoint of min-entropy as a resource.

However, caution should be observed with the worst-case model, as it is overly

sensitive to unlikely “bad” outputs of the system. We conclude the chapter with

a quantitative information flow analysis of the Crowds anonymity protocol with

respect to both worst-case and average-case min-entropy. This case study due to

Smith [ES13] demonstrates the importance of choosing leakage models based on the

characteristics of the scenario being studied.
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The viewpoint of secrecy as a resource naturally leads us to consider its con-

sumption when multiple channels are combined. Accordingly, in Chapter 4 we turn

our attention to the min-entropy leakage associated to combinations of channels.

We first look at the leakage of a cascade of channels. A cascade [Des53, Abr63]

is a classic construction on two channels, where the output of the first channel is

used as input to the second. Our main contribution with respect to this subject is

proving that the information flow of a cascade of channels cannot exceed the flow

of the first channel, that is, the first channel in the cascade behaves as a bottleneck.

This property is a min-entropy analogue to the classic data-processing inequality

[CT06, p. 34] for Shannon entropy leakage. Curiously, we found that such upper

bound does not hold with respect to the second channel of the cascade. However,

we found that when we turn to the min-entropy capacity of a cascade, that is, the

maximum min-entropy leakage among all possible distributions of the secret input,

both channels of the cascade behave as bottlenecks for the information flow. In

addition to studying cascading, we discuss and present refinements to other channel

composition operators that have previously appeared in the literature. Specifically,

we study the min-entropy leakage when repeated independent runs of a channel

are allowed, and the leakage in an adaptive composition of two channels where the

output of both channels is public and the second channel receives as input both the

input and the output of the first channel.

Establishing bounds on the leakage of combined channels based on the leakage of

their constituents is a good starting point towards developing compositional analysis

and design techniques for secure programs. But another useful research direction

towards this goal is the study of leakage ordering relations of channels. In particular,

knowing that a channel is always more secure than another is essential if we aim to

5



develop secure software through stepwise refinement where, at each refinement step,

the implementation must be guaranteed to be at least as secure as the specification.

Note that, in general, the leakage ordering of two channels A and B (both taking

X as input) varies with the choice of leakage measure and the distribution of the

secret input prior to the system execution. For example, if an adversary that tries

to guess the secret input knows that the input can only take one particular value,

then the channel cannot possibly leak any additional information. Therefore, it is

interesting and useful to determine the conditions under which channels satisfy a

robust leakage ordering relation, that is, a leakage ordering that is independent of

the prior distribution and the leakage measure.

We study leakage ordering relations of channels in Chapter 5. Our results show

that whenever a channel A is equivalent to a channel B followed by post-processing

with some channel R, that is, whenever A is the cascade of channels B and R, then

the leakage of channel A cannot exceed the leakage of channel B for any prior dis-

tribution or any of the leakage measures that we have mentioned: Shannon leakage,

guessing-entropy leakage, min-entropy leakage, or g-leakage. Following [ACPS12]

we call this relation composition refinement, and say that channel A is composition

refined by channel B. Our main result with respect to this topic is the proof that

composition refinement is in fact a partial order relation on channels provided that

we quotient away redundant information contained in the channel structure, such

as duplication, scaling or permutation of columns. Moreover, we explain that com-

position refinement is the only way for a channel to always leak more information

than another with respect to g-leakage, a result that was first proved by McIver et

al. [MMM12].

These results combined indicate that composition refinement is an order relation

on channels with both structural and leakage characterizations. A similar relation

6



on deterministic channels called partition refinement was previously studied by Lan-

dauer and Redmond [LR93]. As we explain in Chapter 2, partition refinement, is

an order relation on deterministic channels such that, whenever channel A is parti-

tion refined by channel B, A is guaranteed to never leak more information than B

on any prior distribution, and under of Shannon leakage, guessing-entropy leakage,

min-entropy leakage, or g-leakage. Similar to composition refinement, partition re-

finement induces a partial order on channels (in fact it induces a lattice called the

Lattice of Information) when we abstract away the redundant information contained

in channels. Moreover, partition refinement and composition refinement coincide on

deterministic channels [ACPS12]. Hence, our results imply that composition refine-

ment can be viewed as a generalization of partition refinement from deterministic

to probabilistic channels.

The importance of cascading and composition refinement within the area of quan-

titative information flow leads us to explore, in Chapter 6, techniques for decompos-

ing a channel into a cascade of channels. More specifically, our main contribution

in this chapter is a procedure for approximately factoring a channel matrix into the

product of two channel matrices. This procedure is derived from a previous result

from Ho and Van Dooren [HvD08], and relies on already existing algorithms for

factoring non-negative matrices into the product of non-negative matrices. Chan-

nel matrix factorization can be applied in a variety of scenarios including finding

channels that composition refine a particular channel, or even statistical disclosure

control of sensitive data sets.

This thesis concludes with Chapter 7, where we present a discussion of our results

and suggest future research directions.
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Computation, pages 57-75. May 2013. [ES13]

• Barbara Espinoza and Geoffrey Smith. Channels and the Information Order

(Poster). Presented at the 34th IEEE Symposium on Security and Privacy

(Oakland 2013). San Francisco, California, May 20, 2013.

• Barbara Espinoza, Annabelle McIver, Larissa Meinicke, Carroll Morgan and
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Each core chapter of this thesis includes a credits section describing the contri-

butions of my co-authors for that particular chapter.
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CHAPTER 2

PRELIMINARIES

In this chapter we review the concept of channel, a variety of measures of infor-

mation flow discussed in the literature, basic notions of order theory, the partition

refinement relation, and useful properties of linear algebra.

2.1 Channels

Throughout this thesis, we model probabilistic systems as information-theoretic

channels [Sha48] that receive a secret input and produce an observable output with

some probability. In particular, whenever we use the term channel we will be refer-

ring to discrete memoryless channels [Mac03].

Formally, a channel is a triple (X ,Y,C), where X is a finite set of secret input

values, Y is a finite set of observable output values, and C is a ∣X ∣×∣Y∣matrix, called

the channel matrix. The intent is that C[x, y] is the conditional probability1 p(y∣x)

of obtaining output y when the input is x. Note that each entry of C is between 0

and 1, and each row sums to 1:

for every x ∈ X , ∑
y

C[x, y] = 1. (2.1)

An important special case is a deterministic channel, where each input yields a

unique output. In terms of C, this means that each entry is either 0 or 1, and each

row contains exactly one 1.

1Recall that in traditional probability theory, conditional probabilities are defined in
terms of joint distributions. So, in the absence of a joint distribution, how can we speak
of C as giving the conditional probabilities p(y∣x)? We believe that it is actually best
to view these conditional probabilities as a primitive notion—they simply say that if the
input is x, then output y will occur with probability C[x, y]. Indeed, Rényi argued that
“the basic notion of probability theory should be the notion of the conditional probability
of A under the condition B” [Rén70, p. 35].

9



Given a prior distribution π on X , we can define a joint distribution p on X ×Y

by

p(x, y) = π[x]C[x, y]. (2.2)

This gives jointly distributed random variables X and Y with marginal probabilities

p(x) =∑y p(x, y) and p(y) =∑x p(x, y) respectively, and conditional probabilities

p(y∣x) =
p(x, y)

p(x)
,

provided that p(x) is nonzero.

Notice that after observing output y of the channel, an adversary A usually

doesn’t know for certain what the secret input was. However, if we make the worst-

case assumption that A knows the prior distribution π and the channel matrix C,

then A can infer the posterior probabilities p(x∣y) of input x given the observation

of output y that we can infer using Bayes’s theorem as follows:

p(x∣y) =
p(y∣x)p(x)

p(y)
=
p(x, y)

p(y)
.

For every y ∈ Y (with p(y) nonzero), these probabilities can be organized into

a posterior distribution pX ∣y. The posterior distribution pX ∣y gives A’s updated

knowledge about X if it sees output y. Note that we will write subscripts on p when

necessary to avoid ambiguity, e.g. pXY or pY .

Example 2.1.1. Consider channel ({x1, x2, x3, x4},{y1, y2, y3, y4},C), where C is:2

2Note that for clarity we represent channel matrices in tabular form, instead of their
more standard notation within box brackets or parentheses. This way we can make explicit
the input and output sets of the channels, which also serve as indexing sets for the matrices.
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C y1 y2 y3 y4

x1 0 0 1/3 2/3

x2 0 4/5 0 1/5

x3
4/7 0 2/7 1/7

x4
4/9 0 4/9 1/9

Then, if the prior is π = (3/16, 5/16, 7/32, 9/32), we get the following joint distribution

matrix:

pXY y1 y2 y3 y4

x1 0 0 1/16 1/8

x2 0 1/4 0 1/16

x3
1/8 0 1/16 1/32

x4
1/8 0 1/8 1/32

By summing the columns of the joint matrix we obtain the output distribution

pY = (1/4, 1/4, 1/4, 1/4) which happens to be uniform in this case. And by normalizing

the columns of the joint matrix we get four posterior distributions:

pX ∣y1 = (0,0, 1/2, 1/2)

pX ∣y2 = (0,1,0,0)

pX ∣y3 = (1/4,0, 1/4, 1/2)

pX ∣y4 = (1/2, 1/4, 1/8, 1/8)

Hence, after observing output y2 we know that the secret input must have been

x2. But, if we observe output y1, all we know is that the input could have been either

x3 or x4 each with equal probability.

Note that, as shown in [ES12], p is the unique joint distribution that recovers π

by marginalization and the conditional probabilities in C whenever they are defined:
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Theorem 2.1.2. pXY is the unique joint distribution that recovers π and C, in that

p(x) = π[x] and p(y∣x) = C[x, y] (if p(x) is nonzero).

Proof. First, we observe that pXY recovers π by marginalization, since for any x,

p(x) =∑
y

p(x, y) =∑
y

π[x]C[x, y] = π[x]∑
y

C[x, y] = π[x].

From this, we also see that pXY is a valid distribution, since

∑
x,y

p(x, y) =∑
x

∑
y

p(x, y) =∑
x

π[x] = 1.

Finally, pXY recovers the conditional probabilities C, whenever they are defined.

For if π[x] ≠ 0, then for any y ∈ Y,

p(y∣x) =
p(x, y)

π[x]
=
π[x]C[x, y]

π[x]
= C[x, y].

Now, to see that there is at most one such joint distribution, note first that if

π[x] = 0, then we must have 0 = p(x) = ∑y p(x, y), which implies that p(x, y) = 0,

for every y ∈ Y. Second, if π[x] ≠ 0, then we must have for every y ∈ Y,

C[x, y] = p(y∣x) =
p(x, y)

p(x)
=
p(x, y)

π[x]

which implies that p(x, y) = π[x]C[x, y]. Finally, observe that these two cases can

be merged into our definition: p(x, y) = π[x]C[x, y].

Note that we can equivalently define pXY as the product of a diagonal matrix

with π on its diagonal, and C:

pXY = diag(π)C. (2.3)

In the rest of this thesis we will write sometimes C as a shorthand for a channel

(X ,Y,C).
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2.2 Measures of Information Flow

Given a channel (X ,Y,C), we consider an adversary A that wishes to guess the

value of X . We assume that A knows both the prior distribution π and the channel.

It is then natural to measure the amount of information that flows from X to Y by

considering the reduction in A’s uncertainty about X after observing the value of

Y , giving the following intuitive equation:

leakage = initial uncertainty − remaining uncertainty. (2.4)

The different measures of leakage we now present are characterized by the choice

of uncertainty measure.

2.2.1 Shannon Leakage

Shannon entropy [Sha48] is a measure of uncertainty that quantifies the expected

amount of information contained in an outcome of a random variable. For Shannon

entropy, the information content of an individual outcome is measured with its self-

information. The self information of outcome x of a random variable X distributed

according to π is given by:

I(x) = − logπ[x].

Note that events with a higher associated probability have lower self information.

Intuitively, events that are certain to happen convey no information. In contrast,

highly improbable events are very unexpected, so their associated information con-

tent is very high.

Hence, given prior distribution π and channel C, the prior Shannon entropy,

denoted H(π), is the expected self information for all possible values of X ,
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H(π) = −∑
x

π[x] logπ[x]

and the posterior Shannon entropy is the expected Shannon entropy of the posterior

distributions,

H(π,C) =∑
y

p(y)H(pX ∣y).

The Shannon leakage, better known in the information theory community as mu-

tual information, is then the reduction in the Shannon entropy given the knowledge

of C:

I(π,C) = H(π) −H(π,C).

Mutual information is traditionally denoted as I(X ;Y ), using the random vari-

ables X and Y as parameters—instead of the prior distribution and the channel—to

indicate that the information flows from X to Y . Similarly, the prior Shannon en-

tropy is usually denoted as H(X) and the posterior Shannon entropy as H(X ∣Y ).

An important property of mutual information is that it is symmetric, so that

I(X ;Y ) = I(Y ;X), and in the case of the deterministic channels we have:

I(X ;Y ) = I(Y ;X) =H(Y ) −H(Y ∣X) =H(Y ) − 0 =H(Y ),

where the second from last step follows because in a deterministic channel the input

X fully determines the output Y .

Both Shannon entropy and Shannon leakage are non-negative quantities. This

implies that the knowledge of C cannot increase the uncertainty with respect to the

secret: H(π) ≥ H(π,C). Moreover, Shannon entropy is maximized by the uniform

prior distribution:

H(p(x1), p(x2), . . . , p(xn)) ≤H (
1

n
, . . . ,

1

n
) = logn.
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An important notion in information theory is the channel capacity, which is the

maximum leakage over all possible prior distributions. For Shannon leakage the

capacity is given by the expression supπ I(π,C). Finding the Shannon capacity of

a channel is a convex optimization problem [Mac03]. Note, however, that in the

special case where C is deterministic, the channel capacity is simply the logarithm

of the number of outputs of the channel3:

sup
π

I(π,C) = sup
π

H(Y ) = log ∣Y ∣

2.2.2 Guessing Entropy Leakage

Guessing entropy [Mas94] quantifies uncertainty in terms of the expected number of

guesses, using an optimal guessing strategy, to correctly guess the value of X . With

the elements of X indexed in non-increasing order with respect to their probability

π[x], the prior guessing entropy is

G(π) =
n

∑
i=1

iπ[xi].

The posterior guessing entropy is the expected guessing entropy of the posterior

distributions:

G(π,C) =∑
y

p(y)G(pX ∣y).

Then, the guessing entropy leakage is then the difference of these quantities:

IG(π,C) = G(π) −G(π,C).

3Here we assume that all the outputs of the channel are feasible, so there must exist a
prior distribution that causes the outputs to be equally likely.
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2.2.3 Min-Entropy Leakage

The operational significance of both Shannon entropy and guessing entropy can be

stated in terms of the expected number of guesses that the adversary would need

to determine the secret [Mas94]. But the expected number of guesses can be very

high even if the adversary has a high probability of guessing the secret successfully

in just one try.

Example 2.2.1. Let

π = (1/2,2−1000,2−1000,2−1000, . . . ,2−1000).

Then H(π) = 1/2 log 2+2999 ⋅2−1000 ⋅log 21000 = 500.5 bits, even though A has probability

1/2 of guessing the value of X correctly in one try.

For this reason, Smith [Smi09] proposed measuring information flow with min-

entropy leakage, which is based on the vulnerability of the secret to being guessed

by the adversary in one try.

We distinguish between the vulnerability before and after observing the output

of the channel. The former is called the prior vulnerability and defined as

V (π) =max
x

π[x].

The latter is the posterior vulnerability and is defined as the expected vulnerability

after observing the output of C.

V (π,C) =∑
y

max
x

π[x]C[x, y]

=∑
y

max
x

p(x, y)

=∑
y

p(y)max
x

p(x∣y)

=∑
y

p(y)V (pX ∣y)
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We can convert from probability measures to bit measures by taking the negative

logarithm. Using this method, we obtain our measures of uncertainty.

• initial uncertainty: H∞(π) = − logV (π).

• remaining uncertainty: H∞(π,C) = − logV (π,C).

In information theory, the quantity H∞ is known as Rényi min-entropy. The

notation H∞(π,C) should then be read as the posterior min-entropy of π given the

knowledge of channel C. We remark that there is no consensus in the literature

with respect to what the definition of posterior min-entropy should be, so here we

adopting Smith’s definition [Smi09].

Substituting our uncertainty measures in equation (2.4) we can define the min-

entropy leakage, denoted by L(π,C), 4 to be

L(π,C) =H∞(π) −H∞(π,C)

= − log V (π) − (− logV (π,C))

= log
V (π,C)

V (π)
.

Vulnerability is always positive. Moreover, vulnerability can only increase, in

that V (π,C) ≥ V (π) for any prior π. Thus, min-entropy leakage is the logarithm of

the factor by which knowledge of C increases the vulnerability of the secret.

Note that with min-entropy, the secrecy of the distribution in Example 2.2.1 is

now H∞(π) = − logV (π) = − log 1/2 = 1, a quantity that accurately reflects the large

threat to the secret.

Of course min-entropy is a rather crude measure, in that it depends only on the

maximum probability in π. So, for example, the min-entropy is also 1 on the distri-

4Note that we deviate from the notation V (X), V (X ∣Y ), H∞(X ∣Y ), and LXY used in
[Smi09, Smi11]. Instead we follow [ACPS12] in adopting a notation that makes explicit
the dependence on X’s prior distribution.
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bution (1/2, 1/2), which is clearly less secure than (1/2,2−1000,2−1000,2−1000, . . . ,2−1000).

Still, it is reasonable to say that both are situations where there is little initial

secrecy.

In the case of min-entropy leakage, we will refer to the capacity of the channel

as the min-capacity and use the notationML(C):

ML(C) = sup
π
L(π,C).

Min-capacity is always realized by a uniform distribution on X (and possibly

by other distributions as well) [BCP09, KS10], and can be easily calculated as the

logarithm of the sum of the column maximums in C:

Theorem 2.2.2. ML(C) = log∑y maxxC[x, y], and it is realized on a uniform

prior π.

Proof. For any prior π, we have

L(π,C) = log
V (π,C)

V (π)

= log
∑y maxx π[x]C[x, y]

maxx π[x]

≤ log
∑y maxx(maxx π[x])C[x, y]

maxx π[x]

= log∑
y

max
x

C[x, y]

The upper bound is realized when π is uniform. (It can also be realized on nonuni-

form π, provided that some proper subset of the rows of C includes at least one

maximum from each column.)

Theorem 2.2.2 gives two useful corollaries:

Corollary 2.2.3. If C is deterministic, thenML(C) is the logarithm of the number

of feasible outputs.
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Corollary 2.2.4. ML(C) = 0 iff the rows of C are identical.

If we turn from min-capacity to min-entropy leakage, we find that leakage of 0

is more subtle. In fact, we have L(π,C) = 0 whenever the adversary’s best guess is

unaffected by the output y. This can sometimes be surprising, as in the following

example from [Smi11], which illustrates the so-called base-rate fallacy.

Example 2.2.5. Suppose that C is the channel matrix of a good, but imperfect, test

for cancer:

C positive negative

cancer 0.90 0.10

no cancer 0.07 0.93

Moreover, suppose that for the population under consideration (say, age 40–50, no

symptoms, no family history) the prior π is

π[cancer] = 0.008 π[no cancer] = 0.992

Then, although the channel might appear to be quite reliable, we find that the min-

entropy leakage is 0. For we find that the joint matrix pXY is

pXY positive negative

cancer 0.00720 0.00080

no cancer 0.06944 0.92256

Hence the sum of the column maximums coincides with π[no cancer], since both

column maximums occurs in the no cancer row. This implies that V (π) = V (π,C),

giving L(π,C) = 0. Operationally, this reflects the fact that the adversary should
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guess no cancer, regardless of whether the test was positive or negative. (In partic-

ular, p(cancer∣positive) ≈ 0.094, which is much greater than p(cancer) = 0.008, but

still much less than 0.500.)

Min-capacity is a useful measure in situations where the prior π is unknown.

Moreover, because min-capacity is relatively simple to calculate, particularly in the

case of deterministic channels, it may facilitate the design of practical quantitative

information flow analyses. For whenever we can show that min-capacity is small,

we know that min-entropy leakage must also be small, whatever the prior π may

be. Furthermore, it has been shown [ACPS12], that min-capacity is also an upper

bound for Shannon capacity (i.e. the maximum Shannon leakage over all priors π),

a result that further highlights the significance of min-capacity as an upper bound

on a channel’s leakage. On the other hand, for a particular prior π we may find that

L(π,C) is far less thanML(C). So in cases where the prior π is known, it is more

precise to use the min-entropy leakage with respect to π.

We should finally emphasize that all the information flow measures that we

have considered are information theoretic, rather than computational. To see this,

consider the following example from [Smi11]. Let C be a channel that takes as

input a uniformly-distributed 100-digit prime p, and that outputs pq, where q is a

uniformly-distributed 101-digit prime. Then the posterior vulnerability V (π,C) = 1,

since each column of the channel matrix has a unique nonzero entry. Hence C’s min-

entropy leakage exceeds 322 bits, since (by the prime number theorem) V (π) < 10−97.

Nevertheless, finding the input given the output requires factoring a very large

number into the product of two roughly equally-sized primes, a problem strongly

believed to be computationally hard.
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2.2.4 g-Leakage

The theory of min-entropy assumes that the adversary can benefit only from exactly

guessing the entire secret. With g-leakage [ACPS12], the benefit obtained by the

adversary is instead modeled with a gain function g that returns a value between 0

and 1 to indicate the adversary’s gain, given a guess and the secret’s actual value.

With gain functions it is possible to model a wide variety of operational scenarios,

for example, we can model adversaries that benefit from guessing values close to the

secret, that are part of the secret, that are properties of the secret, or even guessing

the secret within a number of tries.

Formally, a gain function is a function g ∶ W × X → [0,1], such that W is a

finite non-empty set of allowable guesses, and X is the set of possible secrets of the

channel.

We can then consider the gain function when calculating the secret’s vulnerabil-

ity. This results in the prior g-vulnerability, which is the maximum expected gain

over all possible guesses:

Vg(π) =max
w
∑
x

π[x]g(w,x).

Similarly, the posterior g-vulnerability, is the expected g-vulnerability of the poste-

rior distributions:

Vg(π) =∑
y

max
w
∑
x

π[x]C[x, y]g(w,x)

=∑
y

max
w
∑
x

p(x, y)g(w,x)

=∑
y

p(y)Vg(pX ∣y).
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Note that g-vulnerability coincides with vulnerability when we choose the iden-

tity gain function:

gid(w,x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, if w = x,

0, if w ≠ x.

Similar to min-entropy, we can now define g-entropy, g-leakage and g-capacity:

Hg(π) = − logVg(π)

Hg(π,C) = − logVg(π,C)

Lg(π, c) = Hg(π) −Hg(π,C) = log
Vg(π,C)

Vg(π)

MLg(C) = sup
π
Lg(π,C)

Unlike min-capacity, g-capacity is not realized on the uniform prior in general.

Furthermore, calculating a g-vulnerability is not as straightforward as calculating a

vulnerability, since we now have to determine the guessing strategy that maximizes

the adversary’s gain. However, an important property of g-leakage is the “miracle”

theorem which tells us that for any channel C and gain function g, min-capacity is

an upper bound for g-capacity: MLg(C) ≤ ML(C). Hence, if the min-capacity of

C is small, then the g-leakage with respect to any gain function g and prior π must

also be small.

2.3 Order Relations

In this section we briefly review the definitions of some order-theoretic concepts that

we use throughout this thesis [Dav02].

Definition 2.3.1. Let S be a set. A partial order on S is a binary relation ≤ on S

such that, for all x, y, z ∈ S,
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• x ≤ x (reflexivity),

• x ≤ y ∧ y ≤ x⇒ x = y (antisymmetry),

• x ≤ y ∧ y ≤ z ⇒ x ≤ z (transitivity).

Definition 2.3.2. Let S be a set. A pre-order on S is a binary relation ≤ on S

such that, for all x, y, z ∈ S,

• x ≤ x (reflexivity),

• x ≤ y ∧ y ≤ z ⇒ x ≤ z (transitivity).

Definition 2.3.3. The least upper bound x ∨ y is an element of S such that:

• x ≤ (x ∨ y) and y ≤ (x ∨ y).

• (x ∨ y) ≤ w for all w ∈ S such that x ≤ w and y ≤ w.

Definition 2.3.4. The greatest lower bound x ∧ y is an element of S such that:

• (x ∧ y) ≤ x and (x ∧ y) ≤ y.

• w ≤ (x ∧ y) for all w ∈ S such that w ≤ x and w ≤ y.

Definition 2.3.5. A lattice is a set S partially ordered by a relation ≤ such that the

least upper bound x ∨ y and greatest lower bound x ∧ y exist for all x, y ∈ S.

2.4 Partition Refinement

Let us now turn our attention to deterministic channels. Note that any deterministic

channel (X ,Y,C) is essentially a function C ∶ X → Y, and as such, induces an

equivalence relation ∼C on its domain X , where two inputs are equivalent if and
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only if they map to the same output [LR93, ACPS12]. Using the standard function

notation for C instead of the matrix notation, the relation ∼C is given by:

x1 ∼C x2 iff C(x1) = C(x2)

The partitions induced by deterministic channels with set of secret inputs X

can be ordered by the partition refinement relation. It is said that partition ∼C1

is refined by partition ∼C2
, denoted by C1 ⊑ C2, if each equivalence class of ∼C2

is

contained within some equivalence class of ∼C1
.

Example 2.4.1. To illustrate partition refinement, suppose that Ccountry and Cstate

are deterministic channels that receive as input information about an individual. As

depicted in figure 2.1, let Ccountry output only the individual’s country of birth and

Cstate output also the state of birth for those individuals born in the United States.

In this case we can say that Ccountry ⊑ Cstate, since the information provided by Cstate

is finer grained that the information provided by Ccountry.

The relevance of partition refinement in the context of information flow security

is that finer partitions are associated to greater amounts of information leakage

[Mal11, ACPS12]. For if A ⊑ B then, for any prior distribution π, A never leaks

more information than B with respect to Shannon leakage, guessing-entropy leakage,

min-entropy leakage, or g-leakage. Note that this is an intuitive result, since finer

partitions convey all the information of coarser ones, plus some additional details.

The partition refinement relation together with the set of all partitions induced

by deterministic channels from X constitutes a lattice [LR93]. Figure 2.2 illustrates

the resulting lattice for X = {x1, x2, x3}. From the point of view of quantitative

information flow, this lattice is known as the Lattice of Information.

As a final remark, note that the Lattice of Information is an order relation over

the partitions induced by channels, rather than an order relation over channels
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USA

Canada

UK

Venezuela

Ccountry

⊑

FL

CA

NY

MO

WA

TX

Canada

UK

Venezuela

Cstate

Figure 2.1: The partition induced by Cstate refines that of Ccountry

{{x1},{x2},{x3}}

{{x1},{x2, x3}}{{x2},{x1, x3}} {{x1, x2},{x3}}

{{x1, x2, x3}}

Figure 2.2: Lattice of Information for X = {x1, x2, x3}

themselves. The rationale behind this is that each partition of X is associated

to more than one channel—indeed renaming the output labels of a channel while

preserving the same mapping from inputs to outputs results in a different channel

that induces the same partition of X . Hence, there exist pairs of distinct channels

that induce the same partition and hence trivially partition refine each other. As a

consequence, partition refinement is not antisymmetric and, therefore, not a partial

order on deterministic channels directly. It is only a pre-order.

2.5 Linear Algebra

In this section we enumerate some definitions and properties from linear algebra

that we use in this thesis.

We start with some notions of convex algebra [Rom08]:

1. A subset X ⊆ Rn is convex if for any two points x and y in X , the line segment

between x and y falls in X .
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2. A convex combination of a set of vectors x1, x2, ..., xk ∈ Rn is a linear combina-

tion a1x1 + a2x2 + ... + akxk such that 0 ≤ ai ≤ 1 and ∑
k
i=1 ai = 1.

3. The convex hull of a set X ⊆ Rn is the smallest convex set in Rn that contains

X .

4. The convex hull of a set X ⊆ Rn is the set of all convex combinations of vectors

in X .

5. A polytope is a generalization of a polyhedron in higher dimensional space.

It is a finite region in n-dimensional space enclosed by a finite number of

hyperplanes.

6. A convex polytope in n-dimensional space, is a polytope in n-dimensional space

that is also a convex set.

7. The vertex representation of a convex polytope is an enumeration of the ver-

tices of the polytope.

The following properties of matrix multiplication are also relevant.

Theorem 2.5.1. Let A, B, C be real matrices such that A = BC. Then the i-th

row of A is a linear combination of the rows of C with coefficients given by the i-th

of B.

Proof. Let A, B, and C be of sizes m × n, m × r, and r × n respectively. Let

A(1),A(2), ...,A(m) denote the rows of A and C(1),C(2), ...,C(r) denote the rows of

C. Then we can rewrite the equation A = BC using matrix notation as

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A(1)

⋮

A(m)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b11 ⋯ b1r

⋮ ⋱

bm1 bmr

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C(1)

⋮

C(r)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Using the standard matrix multiplication procedure we get that

A(i) = bi1C
(1) + bi2C

(2) + ... + birC
(r).

Therefore, the i-th row of A is a linear combination of the rows of C with coefficients

given by the i-th of B.

Corollary 2.5.2. Let A, B, and C be channel matrices such that A = BC. Then

the rows of A are a convex combination of the rows of C with coefficients given by

the rows of B.

Proof. Since B is a channel matrix, the coefficients given by the rows of B are

non-negative and add up to one.

Note that if A, B, and C are channel matrices such that A = BC, the rows of A

(viewed as points in Rn) are within the convex hull of the rows of C.

Theorem 2.5.3. Let A, B and C be real matrices such that A = BC. Then the i-th

column of A is a linear combination of the columns of B with coefficients given by

the i-th column of C.

Proof. The proof follows the same reasoning as the one for Theorem 2.5.1.
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CHAPTER 3

MIN-ENTROPY AS A RESOURCE

In this chapter, we explore particularly the idea that secrecy can be viewed as

a resource that is “created” through a random process, and then gradually “con-

sumed” by the execution of a system. As a first intuitive example, suppose that

a system takes as input a 32-bit integer X , where we assume that all 232 possible

values are equally likely. If the system performs the bitwise “and” operation

Y = X & 0x007f;

then an adversary A seeing the value of Y learns exactly the last 7 bits of X , and

remains entirely ignorant of the first 25 bits. Thus it seems clear here that the

system starts with 32 bits of secrecy and consumes 7 bits of it, leaving 25 bits of

remaining secrecy.

But other systems are considerably more subtle. As an example, consider the

Crowds anonymity protocol of Reiter and Rubin [RR98]. In this protocol, a crowd

of m users cooperates to communicate anonymously with a server. A crowd member

wanting to send a message to the server initially sends it to a randomly-chosen for-

warder (possibly itself). Then, with probability pf , each forwarder sends the message

to another randomly-chosen forwarder (again, possibly itself) or, with probability

1 − pf , sends it to the server. Figure 3.1 illustrates a possible message path. Note

that when the server receives a message from user i, i is always a randomly-chosen

forwarder, and hence no information about the initiator is revealed. However, we

further assume that c of the crowd members are actually collaborators trying to

compromise anonymity. (The collaborators are shaded in Figure 3.1.) If user i for-

wards a message to a collaborator, then the collaborator reveals i to the server—this

weakens anonymity, since i is now more likely than the other crowd members to have
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Crowd

Server

Figure 3.1: Crowds protocol

been the initiator. But quantifying how much secrecy is consumed here is not at all

obvious. (We will give answers to this question in Section 3.5.)

The main goal of this chapter is to develop the viewpoint of secrecy as a resource

in the general setting of probabilistic systems (like the Crowds protocol), which we

model as information-theoretic channels. Note that, in light of the significance of

min-entropy leakage that we argued in Section 2.2, in this chapter we adopt min-

entropy as our measure of secrecy. Viewing min-entropy as a resource naturally

leads us to introduce in Section 3.2 a new dynamic measure of min-entropy leakage

resulting from a particular system execution, but we will argue that this measure

does not work very well, both because it makes policy enforcement difficult and

because it can result in a system “consuming” a negative amount of secrecy. We

will then argue that it is more useful to adopt a static measure of the consump-

tion caused by the system as a whole. Accordingly, in Section 3.3 we introduce a

new static measure of the min-entropy leakage resulting from the worst-case sys-

tem execution, and in Section 3.4 we contrast the newly introduced measures with

the average-case min-entropy leakage of Smith [Smi09] that we reviewed in Section
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2.2.3. Finally, in Section 3.5 we present an information flow analysis of the Crowds

anonymity protocol that illustrates how both the worst-case and the average-case

static measures of min-entropy leakage can be useful.

3.1 Creation of Min-Entropy

To begin with, we assume that the secret is created by a random process, so that

the secret is a random variable X that ranges over some finite set X according to

some distribution π. We then model the system as a channel (X ,Y,C) and make

the worst-case assumption that the adversary A, that tries to guess the value of X ,

knows both the channel and π.

Having established our threat scenario, we measure secrecy with min-entropy.

Recall from Section 2.2.3, that the prior min-entropy of the secret is the negative

logarithm of the vulnerability of the secret, that is, the worst-case probability that

the adversary will guess the value of the secret in one try:

H∞(π) = − logV (π) = − logmax
x

π[x]

Note that the prior min-entropy quantifies the uncertainty of A with respect to

the value of X before the system execution. In order to quantify the consumption

of secrecy that results from the execution of the system we also need a measure of

the remaining uncertainty. Then, the consumption of secrecy corresponds to the

information being leaked, so it is given by equation 2.4:

leakage = initial uncertainty − remaining uncertainty.

In the following sections we study three different ways of measuring the remaining

min-entropy of the secret.
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3.2 Dynamic Min-Entropy Leakage

One view of the consumption of secrecy is dynamic, considering the change of secrecy

when the adversary observes a particular channel output during an individual run

of the channel.

Definition 3.2.1. Given channel (X ,Y,C) and prior π, the dynamic min-entropy

leakage associated with output y is the decrease in min-entropy caused by y:

Ldynamic(π,C, y) =H∞(π) −H∞(pX ∣y).

Equivalently, it is the logarithm of the factor by which y increases the vulnerability:

Ldynamic(π,C, y) = log
V (pX ∣y)

V (π)
.

For instance, in Example 2.1.1, observing output y2 reveals that the secret must

be x2, since pX ∣y2 = (0,1,0,0). In this case, we can say that the secrecy of X

decreases from H∞(π) = − log 5/16 ≈ 1.678 down to H∞(pX ∣y2) = − log 1 = 0. Hence we

have Ldynamic(π,C, y2) ≈ 1.678.

Moreover, if the adversary can run the channel multiple times, using the same

value of X each time, then it can repeatedly refine the posterior distribution on X ,

by using the posterior distribution from one output as the prior distribution for the

next run.

Example 3.2.2. If we run repeatedly the channel from Example 2.1.1 and observe

the output sequence y3, y1 and y3, the distribution on X is refined as follows:
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pX = (3/16, 5/16, 7/32, 9/32)

pX ∣y3 = (1/4,0, 1/4, 1/2)

pX ∣y3,y1 = (0,0, 9/23, 14/23)

pX ∣y3,y1,y3 = (0,0, 81/277, 196/277)

Respectively, the min-entropy for these distributions is:

H∞(pX) = − log(5/16) ≈ 1.678

H∞(pX ∣y3) = − log(1/2) = 1

H∞(pX ∣y3,y1) = − log(14/23) ≈ 0.716

H∞(pX ∣y3,y1,y3) = − log(196/277) ≈ 0.708

These decreasing entropy values reflect the gradual consumption of the secrecy of X

through the repeated observations.

While this dynamic view of leakage is natural, it suffers from some significant

drawbacks. First, dynamic (run-time) policy enforcement may actually reveal infor-

mation about the secret. For instance, an execution monitor could track the amount

of remaining min-entropy, verifying that it stays above some threshold. But if a run

produces an output that leaks too much, what can the monitor do? It might try to

respond by aborting the execution, but the very act of aborting might in itself leak a

lot of information to the adversary. For example, in the case of a password checker,

aborting the execution when the adversary enters the correct password reveals the

entire password to the adversary (and also makes the password checker useless).

Moreover, under the dynamic view it turns out that min-entropy need not de-

crease monotonically—it can actually increase as a result of an observation.
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Example 3.2.3. Let channel (X ,Y,C) be as follows:

C y1 y2

x1 1 0

x2 0 1

x3 0 1

x4 0 1

x5 0 1

and suppose that π = [9/10, 1/40, 1/40, 1/40, 1/40]. Then V (π) = 9/10 and H∞(π) ≈ 0.152.

However, after observing output y2 the vulnerability decreases to V (pX ∣y2) = 1/4 and

the secrecy increases to H∞(pX ∣y2) = 2. Hence we get negative leakage:

Ldynamic(π,C, y2) = log
1/4
9/10
= log 5/18 ≈ −1.848.

A real-world scenario corresponding to this example is the case of a doctor trying

to diagnose an unknown disease. Based on the symptoms, there might be only one

likely diagnosis, making the prior “secrecy” small. But if a medical test refutes that

diagnosis, then the doctor is left with no idea of the disease, making the posterior

“secrecy” large.

We conclude that, under the dynamic perspective, min-entropy does not behave

as a reasonable resource. For this reason, we henceforth restrict our attention to

static viewpoints.

3.3 Worst-Case Min-Entropy Leakage

Perhaps the most straightforward way to achieve a static measure of the secrecy

consumption of a channel is to consider the worst-case loss of min-entropy, over
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all channel outputs. (Such worst-case measures were considered previously by Köpf

and Basin [KB07], although using guessing entropy rather than min-entropy, and by

Mardziel et al. [MMHS11]; we will discuss the latter paper further in Section 3.6.)

We first define worst-case posterior vulnerability:

Definition 3.3.1. Given prior π and channel C, the worst-case posterior vulnera-

bility is given by

V worst(π,C) = max
y∈Y

V (pX ∣y).

Notice that the worst-case posterior vulnerability is simply the maximum pos-

terior probability over all the inputs and outputs:

V worst(π,C) = max
x∈X ,y∈Y

p(x∣y).

We define the worst-case posterior min-entropy by taking the negative logarithm,

as before:

Definition 3.3.2. Hworst
∞ (π,C) = − logV worst(π,C).

Finally, we define worst-case min-entropy leakage as the difference between the

prior and posterior min-entropy; equivalently, it is the logarithm of the ratio of the

posterior and prior vulnerability:

Definition 3.3.3.

Lworst(π,C) =H∞(π) −H
worst
∞ (π,C) = log

V worst(π,C)

V (π)
.

Worst-case min-entropy leakage is sometimes a useful measure, but it has the

serious drawback that it is highly sensitive to a channel’s worst output, even if that

output is very unlikely. For instance a password checker
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if (X == g) Y = 1; else Y = 0;

has the same worst-case leakage as a program that always leaks the entire secret:

Y = X;

To see this, notice that under the password checker pX ∣1(g) = p(X = g∣Y = 1) = 1,

which means that V (pX ∣1) = 1.

3.4 Average-Case Min-Entropy Leakage

To minimize the sensitivity to unlikely “bad” outputs, it seems generally more useful

to define leakage by considering the average posterior vulnerability over all outputs.

Definition 3.4.1. Given prior π and channel C, the average posterior vulnerability

is given by

V average(π,C) = ∑
y∈Y

p(y)V (pX ∣y).

Now we define entropy and leakage as before:

Definition 3.4.2. The average posterior min-entropy is given by

Haverage
∞ (π,C) = − log V average(π,C),

and the average min-entropy leakage is given by

Laverage(π,C) =H∞(π) −H
average
∞ (π,C) = log

V average(π,C)

V (π)
.
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Note that V (π), V average(π,C), Haverage
∞ (π,C), and Laverage(π,C) are the leak-

age measures that are advocated by Smith [Smi09, Smi11] and (with a slight vari-

ation) by Braun, Chatzikokolakis, and Palamidessi [BCP09]. We presented min-

entropy leakage in more detail in Section 2.2.3.

Example 3.4.3. Returning to Example 2.1.1, we have

V average(π,C) = ∑
y∈Y

max
x∈X

p(x, y) = 1/8 + 1/4 + 1/8 + 1/8 = 5/8.

Hence we get

Laverage(π,C) = log
5/8
5/16
= log 2 = 1,

reflecting the fact that the average vulnerability is doubled by C.

Note that the adversary’s best prior guess for X is x2, since π[x2] = 5/16 is

maximal. Interestingly, the maximums in the calculation of V average reflect the ad-

versary’s best guess about X, given each output. On output y1, the best guess is x3

(or x4); on output y2, the best guess is x2; on output y3, the best guess is x4; and

on output y4, the best guess is x1.

In contrast to what we observed about dynamic posterior vulnerability, the av-

erage posterior vulnerability cannot be less than the prior vulnerability:

Theorem 3.4.4. For any π and C, V (π) ≤ V average(π,C). Hence Laverage(π,C) ≥ 0.

Proof. We have

V (π) =max
x∈X
∑
y∈Y

p(x, y) ≤ ∑
y∈Y

max
x∈X

p(x, y) = V average(π,C).

Also, as expected, the average posterior vulnerability is upper bounded by the

worst-case posterior vulnerability:
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Theorem 3.4.5. For any π and C, V average(π,C) ≤ V worst(π,C).

Proof.

V average(π,C) = ∑
y∈Y

p(y)V (pX ∣y) ≤ ∑
y∈Y

p(y)V worst(π,C) = V worst(π,C).

As an immediate consequence, worst-case min-entropy leakage must be non-

negative and must be an upper bound on average min-entropy leakage.

3.5 A Case Study: the Crowds Protocol

We conclude this chapter with a case study in which we calculate the average and

worst-case min-entropy leakage associated with the Crowds protocol of Reiter and

Rubin [RR98], which was briefly described at the beginning of this chapter. This

analysis of the Crowds protocol is due to Smith [ES13].

We assume that there are n honest users and c collaborators in the Crowd,

whose total size is m, where m = n + c. An initiator wishing to send a message to

the server first sends it to a randomly-chosen forwarder, possibly itself, each with

probability 1
m
. With probability pf , each forwarder will forward the message again to

another randomly-chosen forwarder, possibly itself; with probability 1− pf , it sends

the message to the server. If some user forwards a message to a collaborator, then

that user is said to be detected. Once a user is detected or the message reaches the

server, the protocol stops. We assume that the forwarding probability pf satisfies

0 ≤ pf < 1, since if pf = 1 then the message can never reach the server.

As a channel, the set of secret inputs X = {u1, . . . , un}, where ui means that user

i is the initiator. The set of observable outputs Y = {d1, . . . , dn, s}, where di means
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that user i was detected, and s means that the message reached the server without

ever going to a collaborator.

Now we calculate the channel matrix C, using techniques like those in [RR98].

To compute p(s∣ui), we observe that output s occurs iff the message is forwarded

one or more times among honest users, and then is sent to the server:

p(s∣ui) =
∞

∑
j=0

n

m
(pf

n

m
)
j

(1 − pf)

=
n

m
(1 − pf)(

1

1 −
pfn

m

)

=
n − pfn

m − pfn

Let D be the event that some user is detected. We have

p(D∣ui) = 1 − p(s∣ui) = 1 −
n − pfn

m − pfn
=

c

m − pfn

Now let D2 be the event that some user is detected after two or more steps. We

have

p(D2∣ui) = p(D∣ui) −
c

m
=
c(m − (m − pfn))

m(m − pfn)
=

cpfn

m(m − pfn)

Note that every user is equally likely to be detected after two or more steps, since

forwarders are all randomly chosen. Hence we can compute p(di∣ui) as follows:

p(di∣ui) =
c

m
+
1

n

cpfn

m(m − pfn)
=
c(m − pf(n − 1))

m(m − pfn)

Finally, we can calculate p(dj ∣ui), for j ≠ i, by noting that user j cannot be detected

in one step when i is the initiator:

p(dj ∣ui) =
cpf

m(m − pfn)

Assume now that the prior distribution π is uniform, so that each user has

probability 1
n
of being the initiator. This means that the prior vulnerability is

V (π) =
1

n
.
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We now determine the posterior vulnerability for each output. First, since p(s∣ui)

is the same, for every i, it is immediate that pX ∣s is a uniform distribution. Hence

V (pX ∣s) =
1

n
.

Next consider pX ∣di , for any i. We have seen that column di of the channel matrix

contains its largest entry at p(di∣ui), and n − 1 smaller entries p(di∣uj), for j ≠ i.

Moreover the sum of the column can be calculated easily, using the symmetries of

the matrix:
n

∑
j=1

p(di∣uj) =
n

∑
j=1

p(dj ∣ui) = p(D∣ui)

Hence we have

V (pX ∣di) =
p(di∣ui)

p(D∣ui)
=
c(m − pf(n − 1))

m(m − pfn)

m − pfn

c
=
m − pf(n − 1)

m
.

Note that V (pX ∣di) does not depend on i.

Now we calculate the average posterior vulnerability:

V average(π,C) = p(s)V (pX ∣s) +
n

∑
i=1

p(di)V (pX ∣di)

=
n − pfn

m − pfn

1

n
+ (1 −

n − pfn

m − pfn
)
m − pf(n − 1)

m

=
m − pfn − pfc + cm − cpfn + cpf

m(m − pfn)

=
m(c + 1) − pfn(c + 1)

m(m − pfn)

=
c + 1

c + n
.

And from this, we can calculate the average min-entropy leakage:

Laverage(π,C) = log
(c + 1)n

c + n

Remarkably, we see that the average posterior vulnerability and the average min-

entropy leakage do not depend on the forwarding probability pf .
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But this is not to say that pf is irrelevant to the effectiveness of the Crowds

protocol. For example, if pf = 0, then on output di the adversary knows that user i

was the initiator. For this reason it is interesting to consider as well the worst-case

posterior vulnerability:

V worst(π,C) =
m − pf(n − 1)

m
=
c + (1 − pf)n + pf

c + n

and the worst-case min-entropy leakage:

Lworst(π,C) = log
(c + (1 − pf)n + pf)n

c + n
.

Note that the worst-case vulnerability is maximized by pf = 0, which gives a vul-

nerability of 1. It is minimized by choosing pf close to 1, but of course this has the

drawback of making message transmission slower and also increasing the probability

that the message will go at some point to a collaborator.

The worst-case vulnerability analysis of Crowds gives useful insight, showing the

importance of carefully choosing information flow measures based the characteristics

of the scenario being studied. However, considering that worst-case vulnerability is

highly sensitive to a channel’s worst output (no matter how unlikely it may be), it

usually seems more informative to focus on the average posterior vulnerability and

average min-entropy leakage.

3.6 Related Work

In this section, we briefly discuss some additional related work.

Worst-case posterior vulnerability, discussed in Section 3.3, is used by Mardziel

et al. [MMHS11]. They consider a scenario where the confidentiality of a user’s

private information may be gradually consumed by a sequence of queries. After

each query output y, the adversary’s knowledge is updated dynamically, going from
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distribution pX to posterior distribution pX ∣y. The system wishes to ensure that the

vulnerability never exceeds some threshold t. But (as we discussed in Section 3.2)

aborting a query in the case when V (pX ∣y) > t would itself reveal information about

X . For this reason, they decide whether or not to answer a query based on the

worst-case posterior vulnerability, requiring in their Definition 3 that query C be

answered only when V worst(pX ,C) ≤ t. In their implementation, they use abstract

interpretation to compute a safe upper bound on V worst(pX ,C).

Besson et al. [BBJ13] adopt self-information, an alternative dynamic measure of

information flow, to quantify the amount of information that a fingerprinting script

learns by observing the web browser configuration of a user.1 The self-information

I(x) of outcome x of random variable X is defined as − log p(x). Note that this

measure is closely related to Shannon entropy, in that the Shannon entropy of

a random variable X is the expected self information over all possible outcomes:

H(X) = E[I(x)] = −∑x p(x) log p(x). Because they restrict their study to deter-

ministic scripts, and assuming that the probability of each browser configuration

is known, they measure the leakage about a user’s browser configuration x as the

self-information of the equivalence class of all the browser configurations that map

to the same output as x. Using this measure, they implement a hybrid information

flow monitor for fingerprinting scripts that uses a combination of static analysis and

dynamic enforcement to overapproximate the information leakage.

The channels we have considered here are known in information theory as discrete

memoryless channels; they are appropriate for modeling non-interactive scenarios.

But it is also interesting to consider interactive scenarios in which secret inputs and

observable outputs alternate. Min-entropy leakage in interactive scenarios is briefly

1Browser fingerprinting is a technique that allows websites to profile and track their
users’ browsers without storing information about them on the client side.
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explored by Andrés et al. [APvRS10]. A fuller treatment, though considering only

Shannon leakage, is given by Alvim et al. [AAP10a], making use of channels with

memory and feedback.

In this thesis we have assume that the prior π is known to the adversary. It is also

interesting to consider the case where the adversary has possibly incorrect beliefs

about the prior, a scenario explored by Clarkson et al. [CMS05] and by Hamadou

et al. [HSP10].

Algorithmic techniques for calculating or bounding min-entropy leakage or min-

capacity have seen considerable interest, including work on probabilistic automata

by Andrés at al. [APvRS10] and work on deterministic imperative programs by

Backes et al. [BKR09], Newsome et al. [NMS09], Köpf and Rybalchenko [KR10],

Heusser and Malacaria [HM10], and Meng and Smith [MS11]. Also, negative com-

plexity results have been given by Yasuoka and Terauchi [YT10].

The relationship between min-entropy leakage and differential privacy (see Dwork

[Dwo11]) has been studied by Alvim et al. [AAC+11] and Barthe and Köpf [BK11].

Finally, recall that min-entropy leakage assumes implicitly that the adversary

gains only by guessing the secret exactly, in one try. For this reason Alvim et

al. [ACPS12] introduced g-leakage, a generalization of min-entropy leakage that we

presented in Chapter 2.

3.7 Summary

In this chapter, we have explored the viewpoint of secrecy as a resource that may

be gradually consumed by a system. Having adopted min-entropy as our measure of

secrecy, we considered three measures of min-entropy consumption: a new dynamic

model of min-entropy leakage that quantifies the information flow in a single run
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of the system, a new worst-case run model, and the average-case model of Smith

[Smi09]. We concluded that the average-case model is particularly useful in that

the leakage measurements are not overly sensitive to unlikely “bad” outputs of the

system, and are always non-negative. We showed, however, that both the worst-

case and average-case measures can be useful depending on the characteristics of

the scenario being studied.

In the following chapter we study the consumption of secrecy when multiple

channels are combined through a variety of channel composition operators.

3.8 Credits

The results that we presented in this chapter are joint work with my advisor Ge-

offrey Smith and previously appeared in our journal paper titled Min-entropy as a

Resource, published in 2013 in a special issue of the Information and Computation

Journal called Information Security as a Resource.

The original idea of exploring the perspective of min-entropy as a resource came

from an invitation to my advisor to give a talk at the Information Security as a

Resource Workshop which took place at the University of Oxford in 2011. The goal

of his talk was to discuss whether secrecy could be modeled as a resource.

The analysis of the Crowds protocol that we presented in this chapter is due to

Geoffrey Smith.
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CHAPTER 4

MIN-ENTROPY LEAKAGE OF COMBINED CHANNELS

In this chapter we turn our attention to the behavior of min-entropy leakage

when we combine multiple channels. Ideally, we would be able to compute the

leakage of a system in terms of the leakage of its constituents. However, such closed

formulas are typically not possible. Still, as the following sections describe, we can

derive a number of useful bounds depending on what mechanism we use to combine

the channels.

In Section 4.1 we start by studying cascading [Des53, Abr63], a classic construc-

tion on two channels where the output of the first channel is used as the input to

the second. A natural question concerns the amount of information flow in a cas-

cade of channels, as compared with in each of the two channels. In the theory of

Shannon leakage, the classic data-processing inequality [CT06, p. 34] says that the

Shannon leakage on a cascade of channels cannot exceed that of either channel; this

straightforwardly implies similar bounds for Shannon capacity. In this section, our

main goal is to investigate whether similar properties hold for min-entropy leakage.

In particular, we show that under any prior distribution, the min-entropy leakage

of a cascade of channels cannot exceed the leakage of the first link, and show that,

contrary to our intuition, it can exceed the leakage of the second link. Given the

cascade C of channels (X ,Y,A) and (Y,Z ,B) conditional vulnerabilities V (π,C),

V (π,A), and V (π,B). We show that V (π,C) ≤ V (π,A), but that no relationship

need hold between V (π,C) and V (py,B). In the case when A is deterministic,

however, we show that V (π,C) ≤ V (py,B). Turning to min-capacity, we generalize

the results of Köpf and Smith [KS10], showing that the min-capacity of a cascade of

channels is upper bounded not just by the logarithm of the number of intermediate

results, but also by the min-capacity of each of the links. These results give us a
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general technique for bounding the min-entropy leakage of any channel that can be

factored into a cascade of channels.

In Sections 4.2 and 4.3 we consider the information flow associated to other chan-

nel composition operators that have previously appeared in the literature, while

providing some refinements to the models and illustrative examples throughout.

Concretely, in Section 4.2 we study the information flow when repeated indepen-

dent runs of a channel are allowed. We show that the min-capacity in repeated

independent runs of a channel grows logarithmically with respect to the number of

runs n, a result that was first proved by Köpf and Smith [KS10] within the context

of timing attacks against a cryptosystem. Later, in Section 4.3 we look at the min-

entropy leakage in an adaptive composition of channels A and B, where the output

of A is observable and B receives as input not only the output from A but also the

input to A. In this case, as shown by Barthe and Köpf [BK11], the min-capacity

of the combined channel is upper bounded by the sum of the min-capacities of A

and B. We also analyze the case of non-adaptive composition where B ignores the

output from A, extend the upper bound from Barthe and Köpf to the general case

of n adaptive and non-adaptive compositions, and show that these more general

upper bounds are actually tight.

4.1 Leakage of a Cascade of Channels

In this section we establish upper bounds on the min-entropy leakage and min-

capacity of a cascade of channels under a given prior distribution. In subsection

4.1.1 we first carefully study the semantics of cascading of channels, exposing some

technical subtleties with non-uniqueness of joint distributions and also taking care to

deal with undefined conditional probabilities. Once we have settled the foundations
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X A Y B Z

Figure 4.1: Cascade of channels A and B

of cascades of channels, in subsection 4.1 we study their min-entropy leakage and,

in subsection 4.1.3, we establish upper bounds on their min-capacity.

4.1.1 Foundations of Cascades of Channels

Given channels (X ,Y,A) and (Y,Z ,B), where the set of outputs of the first is the

same as the set of inputs of the second, it makes sense to form a cascade of channels

that composes the channels sequentially [Abr63]. Intuitively, given a prior distribu-

tion π, the cascade of channels will proceed in two steps. First, the information in

X flows through the first channel and determines a distribution py and a random

variable Y . Then, the information in Y flows through the second channel to pro-

duce the final output Z distributed according to pz. This construction is depicted

in Figure 4.1.

When we consider the formal semantics of a cascade of channels, we might expect

that there is a unique joint distribution pXY Z that recovers π and the conditional

probabilities A and B, whenever they are defined. Curiously, this turns out not to

be true.

Example 4.1.1. Let X = Y = Z = {0,1}, and let A, B, and π be as follows:

A 0 1

0 1/4 3/4

1 1/2 1/2

B 0 1

0 1/2 1/2

1 1/4 3/4

π = (2/3, 1/3).
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With this setup, we can pinpoint at least two scenarios for the joint distribution

pXY Z. Recall that any joint distribution must satisfy the product rule

p(x, y, z) = p(x)p(y∣x)p(z∣x, y)

whenever the conditional probabilities are defined. Since we demand p(x) = π[x] and

p(y∣x) = A[x, y], it is clear that our only freedom is in choosing p(z∣x, y).

For our first scenario, we make Z the exclusive or of X and Y :

q(z∣x, y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, if z = x⊕ y

0, otherwise

Using the product rule, we obtain the following joint distribution:

X Y Z q(x, y, z)

0 0 0 1/6

0 0 1 0

0 1 0 0

0 1 1 1/2

1 0 0 0

1 0 1 1/6

1 1 0 1/6

1 1 1 0

This joint distribution q recovers π as well as the conditional probabilities A and B.

For example, we can verify that qZ ∣Y (0∣1) = 1/4 = B[1,0]:

qZ ∣Y (0∣1) =
qY Z(1,0)

qY (1)
=
∑x qXY Z(x,1,0)

∑x,z qXY Z(x,1, z)
=

0 + 1/6

0 + 1/2 + 1/6 + 0
= 1/4.

Note, however, that the definition of q is contrary to our intended “cascading” be-

havior, since it makes the conditional probability of Z depend on both X and Y .1

1A strange consequence is that qZ ∣Y depends on prior π. For instance, if we change π

to (1/2, 1/2), we find that qZ ∣Y no longer coincides with B.

47



For our second scenario, we instead make the conditional probability of Z depend

only on Y , choosing p(z∣x, y) = p(z∣y). This gives a second joint distribution that

recovers π and the conditional probabilities A and B:

X Y Z p(x, y, z)

0 0 0 1/12

0 0 1 1/12

0 1 0 1/8

0 1 1 3/8

1 0 0 1/12

1 0 1 1/12

1 1 0 1/24

1 1 1 1/8

Using the intuitions developed in Example 4.1.1, we formally define the semantics

of a cascade of channels:

Definition 4.1.2. The cascade of channels (X ,Y,A) and (Y,Z ,B) under prior

distribution π has joint distribution pXY Z , where

pXY Z(x, y, z) = π[x]A[x, y]B[y, z].

We now establish the properties of pXY Z in a series of theorems.

Theorem 4.1.3. pXY Z recovers the prior π by marginalization, in that p(x) = π[x].

Proof. For any x ∈ X , we have
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p(x) =∑
y,z

p(x, y, z)

=∑
y,z

π[x]A[x, y]B[y, z]

= π[x]∑
y

A[x, y]∑
z

B[y, z]

= π[x]∑
y

A[x, y]

= π[x]

Theorem 4.1.4. pXY Z is a valid joint distribution.

Proof. Each p(x, y, z) is non-negative because it is the product of non-negative fac-

tors π[x],A[x, y] and B[y, z]. Moreover, we have

∑
x,y,z

p(x, y, z) = ∑
x,y,z

π[x]A[x, y]B[y, z]

=∑
x

π[x]∑
y

A[x, y]∑
z

B[y, z]

=∑
x

π[x]

= 1.

Theorem 4.1.5. pXY Z recovers the conditional probabilities in A and B, in that

p(y∣x) = A[x, y] whenever p(x) ≠ 0, and p(z∣y) = B[y, z] whenever p(y) ≠ 0.
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Proof. Assuming that p(x) ≠ 0, we have

p(y∣x) =
p(x, y)

p(x)

=
∑z p(x, y, z)

π[x]

=
∑z π[x]A[x, y]B[y, z]

π[x]

=∑
z

A[x, y]B[y, z]

= A[x, y]∑
z

B[y, z]

= A[x, y]

Similarly, assuming that p(y) ≠ 0, we can verify that p(z∣y) = B[y, z].

Theorem 4.1.6. Whenever p(x, y) ≠ 0, we have p(z∣x, y) = p(z∣y).

Proof. Assuming that p(x, y) ≠ 0, we have

p(z∣x, y) =
p(x, y, z)

p(x, y)

=
π[x]A[x, y]B[y, z]

∑z∈Z π[x]A[x, y]B[y, z]

=
π[x]A[x, y]B[y, z]

π[x]A[x, y]∑z B[y, z]

= B[y, z]

= p(z∣y)

This last property gives the intended cascading behavior: the conditional prob-

ability of output z depends only on the intermediate result y and not directly on

the secret input x. Moreover, p is the unique joint distribution that satisfies these

four theorems:
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Theorem 4.1.7. If qXY Z is any joint distribution that recovers π, gives the correct

conditional probabilities when they are defined, and satisfies q(z∣x, y) = q(z∣y) when

they are defined, then qXY Z is equal to pXY Z.

Proof. If all the conditional probabilities are defined and q(z∣x, y) = q(z∣y), we know

that

q(x, y, z)

q(x, y)
=

q(x, y, z)

∑z q(x, y, z)
= q(z∣y).

Moreover, since qXY Z recovers B we have

q(x, y, z) = (∑
z

q(x, y, z))B[y, z].

Since it also recovers A we know that q(y∣x) = ∑z q(x,y,z)
q(x) = A[x, y]. Then, substituting

∑z q(x, y, z) into the previous equation we get

q(x, y, z) = q(x)A[x, y]B[y, z].

Finally, since q(x, y, z) recovers the prior distribution π we conclude that

q(x, y, z) = π[x]A[x, y]B[y, z].

Now we consider the cases where conditional probabilities are undefined. If q(x) = 0,

we must have 0 = ∑y∑z q(x, y, z), which means that p(x, y, z) = 0 for every y ∈ Y

and z ∈ Z . Similarly, q(x, y) = 0 implies that q(x, y, z) = 0 for every z ∈ Z . Also,

if q(y) = 0, then q(x, y, z) should be zero for every x ∈ X and z ∈ Z . Since we can

merge all the cases into q(x, y, z) = p(x, y, z), we have concluded the proof.

We next turn our attention to the conditional probabilities p(z∣x), showing that

these can be obtained by matrix multiplication:

Theorem 4.1.8. Whenever π[x] ≠ 0, we have p(z∣x) = AB[x, z].
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Proof. If π[x] ≠ 0, then

p(z∣x) =
p(x, z)

p(x)

=
∑y p(x, y, z)

p(x)

=
∑y π[x]A[x, y]B[y, z]

π[x]

=∑
y

A[x, y]B[y, z]

= AB[x, z]

This last property motivates the following definition, which specifies the channel

matrix of the cascade in terms of the channel matrices of the links, and independently

of a prior distribution:

Definition 4.1.9. The cascade of channels (X ,Y,A) and (Y,Z ,B) is the channel

(X ,Z ,AB).

In the rest of this document, we will sometimes write C = AB to indicate that

channel C is the cascade of channels A and B. But we must be careful with this

notation, since definition 4.1.9 does not suffice to determine pXY Z as the following

example illustrates.

Example 4.1.10. Recalling Example 4.1.1, we can calculate the conditional prob-

abilities p(z∣x) by multiplying the matrices A and B. For convenience, here we

organize these probabilities in matrix form and denote them with pZ ∣X.

pZ ∣X 0 1

0 5/16 11/16

1 3/8 5/8

=

A 0 1

0 1/4 3/4

1 1/2 1/2

⋅

B 0 1

0 1/2 1/2

1 1/4 3/4

52



In contrast, the conditional probabilities q(z∣x) do not coincide with the matrix prod-

uct:

qZ ∣X 0 1

0 1/4 3/4

1 1/2 1/2

This might make us wonder whether the property that pZ ∣X is given by matrix mul-

tiplication might suffice to determine pXY Z. But this turns out not to be true. Con-

sider the channels

A y1 y2

x1
1/2 1/2

x2
1/2 1/2

B z1 z2

y1 2/3 1/3

y2 1/3 2/3

π = (2/3, 1/3).

If we define qXY Z as in Example 4.1.1, then we get qXY Z ≠ pXY Z , but nevertheless

qZ ∣X 0 1

0 1/2 1/2

1 1/2 1/2

= AB.

4.1.2 Min-Entropy Leakage of a Cascade of Channels

If we imagine channels as pipes, and information as water that flows through these

pipes, then we might anticipate that the leakage in a cascade of channels cannot

exceed the leakage of the first link. We prove this property in Theorem 4.1.11.

Theorem 4.1.11. Let (X ,Z ,C) be the cascade of (X ,Y,A) and (Y,Z ,B). Then

for any prior distribution π, we have L(π,C) ≤ L(π,A).
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Proof. Unfolding the formula of min-entropy leakage, we observe that the desired

inequality is equivalent to an inequality on the posterior vulnerabilities:

L(π,C) ≤ L(π,A) ⇐⇒ log
V (π,C)

V (π)
≤ log

V (π,A)

V (π)
⇐⇒ V (π,C) ≤ V (π,A).

Those posterior vulnerabilities are the sum of the column maximums in the corre-

sponding joint matrices:

V (π,C) =∑
z

max
x

pXZ(x, z) V (π,A) =∑
y

max
x

pXY (x, y).

Recall from equation (2.3) that we can express the joint matrices as a matrix prod-

uct:

pXZ = diag(π)C pXY = diag(π)A.

Considering that (X ,Z ,C) is a cascade of channels we get

pXZ = diag(π)C = diag(π)(AB) = (diag(π)A)B = pXYB.

Hence, it is our goal to prove that the sum of the column maximums in pXY must

be at least as large as the sum of the column maximums in pXYB.2

Let αy for y ∈ Y denote the maximum of column y of pXY :

αy =max
x

pXY (x, y).

Also, let µz denote the maximum of column z of pXZ :

µz =max
x

pXZ(x, z).

Then, for every z ∈ Z , the elements in column z of PXZ satisfy

pXZ(x, z) =∑
y

pXY (x, y)B[y, z] ≤∑
y

αyB[y, z].

2Notice that the number of columns in pXY and pXZ need not match, so the task
cannot be reduced to comparing the matrices column by column.
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In particular, this property is satisfied by the column maximum:

µz ≤∑
y

αyB[y, z].

Then, using these properties we proceed with the proof:

V (π,C) =∑
z

max
x

pXZ(x, z)

=∑
z

µz

≤∑
z

∑
y

αyB[y, z]

=∑
y

∑
z

αyB[y, z]

=∑
y

αy∑
z

B[y, z]

=∑
y

αy

=∑
y

max
x

pXY (x, y)

= V (π,A).

Alternative proof. A more compact proof of this theorem can be obtained as follows.

For any prior π,

V (π,C) =∑
z

max
x

p(x, z)

=∑
z

max
x
∑
y

π[x]A[x, y]B[y, z]

≤∑
z

∑
y

max
x

π[x]A[x, y]B[y, z]

=∑
y

∑
z

B[y, z]max
x

π[x]A[x, y]

=∑
y

(∑
z

B[y, z]) (max
x

π[x]A[x, y])
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=∑
y

max
x

π[x]A[x, y]

=∑
y

max
x

p(x, y)

= V (π,A).

Therefore,

L(π,C) = log
V (π,C)

V (π)
≤ log

V (π,C1)

V (π)
= L(π,C1).

It is interesting to note that Theorem 4.1.11 can be viewed as the min-entropy

analogue to the classic data-processing inequality for mutual information (Shannon

leakage). Recall from Section 2.2.1, that mutual information is the measure of leak-

age obtained by measuring uncertainty using Shannon entropy. The data-processing

inequality tells us that post-processing can only destroy information.

The standard formulation of the data-processing inequality [CT06, p. 34] starts

with the hypothesis that X , Y , Z form a Markov chain, denoted X → Y → Z, which

means that the joint distribution satisfies the equality

p(x, y, z) = p(x)p(y∣x)p(z∣y). (4.1)

It says then that the flow from X to Z cannot exceed the flow from X to Y , as

measured by mutual information:

I(X ;Z) ≤ I(X ;Y ).

A drawback of this formulation is that the prior π is “hard coded” into the Markov

chain, rather than being a separate parameter as in the formulation of Theorem 4.1.11.

Moreover, equation (4.1) runs into undefined conditional probabilities if some values

of X or Y have probability 0. We can provide an alternative and arguably more

expressive formulation in terms of cascades.
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Theorem 4.1.12. Let (X ,Z ,C) be the cascade of (X ,Y,A) and (Y,Z ,B), that is,

C = AB. Then for any prior distribution π, we have

I(π,C) ≤ I(π,A).

Proof. From Theorem 4.1.1, we know that for any values x ∈ X , y ∈ Y, and z ∈ Z

such that p(x, y) > 0, we have p(z∣x, y) = p(z∣y).

The proof immediately follows, since the data-processing inequality [Gal68, p.

26] tells us that whenever the previous condition holds, we have I(X ;Z) ≤ I(X ;Y )

which is an alternative notation for I(π,C) ≤ I(π,A).

Returning now to min-entropy leakage, when we consider the leakage in the

second link of a cascade of channels, we find that it does not behave in the same

way as the leakage in the first link. In fact, as the following example shows, the

leakage of a cascade of channels may exceed the leakage of the second link.

Example 4.1.13.

A y1 y2

x1 1 0

x2 1 0

x3 0 1

B z1 z2

y1 1 0

y2 0 1

C z1 z2

x1 1 0

x2 1 0

x3 0 1

= AB

If π = (1/3, 1/3, 1/3), then pY = pZ = (2/3, 1/3), and:

L(π,C) = log
V (π,C)

V (π)
= log

2/3
1/3
= log 2

L(pY ,B) = log
V (pY ,B)

V (pY )
= log

1
2/3
= log 3/2

Hence, the cascade C leaks more than the second link B. Moreover, the knowledge

of the output of B could not have possibly doubled the prior vulnerability as in the
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case of C, since doubling a vulnerability of 2/3 would mean a posterior vulnerability

of 4/3, a value that falls outside the range of valid probabilities.

To understand why the second link behaves differently, notice that when we

compare the leakages L(π,C) and L(π,A) in Theorem 4.1.11, we are comparing

log V (π,C)
V (π) and log V (π,A)

V (π) , which reduces to comparing the numerators V (π,C) and

V (π,A). In contrast, when we try to compare L(π,C) and L(pY ,B), we are actu-

ally comparing log V (π,C)
V (π) and log V (pY ,B)

V (pY )
, which differ in both the numerators and

denominators.

Exploring further, we found that it is not even possible to establish that V (π,C) ≤

V (py,B) in general. As an example, if there is only one value of X and multiple

possible values of Y , then V (π,C) is certainly equal to 1, while V (py,B) could be

less than 1.

However, given the additional assumption that A is deterministic, we would

expect that V (π,C) ≤ V (py,B). Intuitively, if we correctly guess X , then we can

use A to deduce Y as well. We prove this in the following theorem:

Theorem 4.1.14. If (X ,Z ,C) is the cascade of (X ,Y,A) and (Y,Z ,B), where A

is deterministic, then for any prior π we have V (π,C) ≤ V (py,B).

Proof. Let f ∶ X → Y denote the function described by the deterministic channel A,

that is, f(x) = y ⇐⇒ A[x, y] = 1. Also, let [x]f be the set of elements in X that

map to f(x), that is, [x]f = {x′ ∈ X ∣ f(x′) = f(x)}. Since A is deterministic, for

each x ∈ X the probability π[x] is at most the probability of its image pY [f(x)]:

pY [f(x)] = ∑
x′∈X

π[x′]A[x′, f(x)]

= ∑
x′∈[x]f

π[x′]A[x′, f(x)] + ∑
x′∈X∖[x]f

π[x′]A[x′, f(x)]

= ∑
x′∈[x]f

π[x′]A[x′, f(x)]
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= ∑
x′∈[x]f

π[x′]

≥ π[x]

Furthermore, we can see that C[x, z] = B[f(x), z]:

C[x, z] =∑
y

A[x, y]B[y, z]

= A[s, f(x)]B[f(x), z] + ∑
y∖{f(x)}

A[x, y]B[y, z]

= A[s, f(x)]B[f(x), z]

= B[f(x), z].

Then, using the previous two properties we can proceed with the proof:

V (π,C) =∑
z

max
x∈X
(π[x]C[x, z])

=∑
z

max
x∈X
(π[x]B[f(x), z])

≤∑
z

max
x∈X
(pY [f(x)]B[f(x), z])

=∑
z

max
y
(pY [y]B[y, z])

= V (py,B).

Unlike our results for min-entropy leakage, with Shannon mutual information

leakage we get bounds on both links of the cascade [Abr63]. We can easily prove the

bound on the second link if we consider that a Markov chain X → Y → Z implies

another Markov chain Z → Y → X . So, by the data-processing inequality, we have

I(Z;X) ≤ I(Z;Y ). But now we can use the symmetry of mutual information (i.e.

the fact that I(X ;Y ) = I(Y ;X)) to deduce that I(X ;Z) ≤ I(Y ;Z). This gives the

following corollary.
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Corollary 4.1.15. Let (X ,Z ,C) be the cascade of (X ,Y,A) and (Y,Z ,B). Then

for any prior distribution π, we have

I(π,C) ≤ I(pY ,B).

Remark 4.1.16. The symmetry of mutual information is key in proving the data-

processing inequality for the second link of a cascade. But it is arguably a strange

property; it seems counterintuitive that the mutual information leakage from X to

Z should be the same as the mutual information leakage from Z to X. Min-entropy

leakage, in contrast, is not symmetric in general. As an example, consider the

following n × (n + 1) channel matrix:

C z1 z2 z3 z4 . . . zn+1

x1
1/2 1/2 0 0 . . . 0

x2
1/2 0 1/2 0 . . . 0

x3
1/2 0 0 1/2 . . . 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

xn
1/2 0 0 0 . . . 1/2

.

Under a uniform prior distribution, V (π) = 1
n
and V (π,C) = n+1

2n
, which implies that

L(π,C) = log n+1
2
. But when we view pXZ as a channel from Z to X, we find that

V (pZ) =
1
2
but also the posterior vulnerability of Z given the output of the channel

is ∑xmaxz pXZ(x, z) =
1
2
, which implies that the leakage from Z to X is 0.

4.1.3 Min-Capacity of a Cascade of Channels

A bound on the min-capacity of a cascade of channels was shown earlier by Köpf

and Smith [KS10]. They showed that if a channel C can be factored into the cascade

of channels A and B, then the min-capacity of C is at most the logarithm of the
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number of the number of feasible outputs of A. They used this result to establish

security guarantees of blinded cryptography under timing attacks, modeling such

an attack as a channel whose input is a secret decryption key and whose output is

a sequence of timings of decryption operations using that key. They showed that

this channel can be factored into the cascade of two channels such that the set of

intermediate results is small, which implies that its min-capacity is small.

Here we go beyond the upper bound established in [KS10], by extending Theo-

rem 4.1.11 to the capacity of a cascade of channels. Moreover, we show that unlike

our result for min-entropy leakage under prior π, we can prove that the min-capacity

of a cascade of channels cannot exceed the min-capacity of the second link.

Theorem 4.1.17. If (X ,Z ,C) is the cascade of (X ,Y,A) and (Y,Z ,B), then

ML(C) ≤min(ML(A),ML(B)).

Proof. By Theorem 4.1.11 and the definition of min-capacity we know that for any

prior π,

L(π,C) ≤ L(π,A) ≤ML(A).

Hence

ML(C) = sup
π
L(π,C) ≤ML(A).

To obtain the upper bound with respect to B, we observe that

ML(C) = log∑
z

max
x

C[x, z]

= log∑
z

max
x
(AB)[x, z]

= log∑
z

max
x
(∑

y

A[x, y]B[y, z])

≤ log∑
z

max
x
(∑

y

A[x, y]max
y′∈Y

B[y′, z])
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= log∑
z∈Z

max
x
(max

y′∈Y
B[y′, z])

= log∑
z

max
y′∈Y

B[y′, z]

=ML(B).

We can also provide an alternative proof for the upper bound on the capacity of

a cascade of channels from [KS10]. That is, the capacity of a cascade of channels

cannot exceed the logarithm of number of intermediate results:

Corollary 4.1.18. If (X ,Z ,C) is the cascade of (X ,Y,A) and (Y,Z ,B), then

ML(C) ≤ log ∣Y ∣.

Proof. We haveML(C) ≤ML(A). ButML(A) is the logarithm of the sum of the

column maximums of A. Since A has ∣Y ∣ columns, and each maximum is at most 1,

we haveML(C) ≤ log ∣Y ∣.

4.2 Leakage of a Repeated Independent Runs Channel

We now turn our attention to the behavior of min-entropy leakage when repeated

independent runs of a channel are allowed. We can model this scenario with a

channel that receives an input in X , feeds it to multiple copies of a channel (X ,Y,C),

and collects the outputs from each run into a tuple in Yn. Figure 4.2 illustrates this

combination of channels. The effects of repeated independent runs of a channel

on min-entropy were first studied by Köpf and Smith [KS10] within the concrete

scenario of a timing attack against a cryptosystem that implements input blinding

and bucketing.
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Figure 4.2: Repeated independent runs of channel C

The resulting combined channel C(n) is a channel from X to Yn and the en-

tries [x, (y1, . . . , yn)] of its matrix give the probability of producing the sequence

of outputs (y1, . . . , yn) when the input to the channel is x. Since the probabilities

of producing a particular output in each run are conditionally independent given

a secret input, we calculate entries of the combined channel matrix by multiplying

the individual conditional probabilities.

Definition 4.2.1. The matrix of the channel (X ,Yn,C(n)) that results from n in-

dependent runs of channel (X ,Y,C) is given by

C(n)[x, (y1, . . . , yn)] =
n

∏
i=1

C[x, yi].

Note that the study of repeated independent runs of a channel makes sense only

in the case of a probabilistic channel C; otherwise given a secret input every run (of

channel C) would return the same output.

Curiously, even when L(π,C) = 0, the leakage under two repeated independent

runs L(π,C(2)) can be greater than zero.
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Example 4.2.2. Let the matrix of channel (X ,Y,C) be

C y1 y2

x1 0.9 0.1

x2 0.1 0.9

Then, if the prior is given by π = (0.05,0.95) we get joint distribution

C y1 y2

x1 0.045 0.005

x2 0.095 0.855

and the min-entropy leakage is

L(π,C) = log
0.095 + 0.855

0.95
= log

0.95

0.95
= 0.

However, if we consider two independent runs of C, the resulting combined matrix

C(2) satisfies C(2)(x, (y1, y2)) = C[x, y1]C[x, y2], giving

C(2) (y1, y1) (y1, y2) (y2, y1) (y2, y2)

x1 0.81 0.09 0.09 0.01

x2 0.01 0.09 0.09 0.81

and associated joint matrix

pXY (y1, y1) (y1, y2) (y2, y1) (y2, y2)

x1 0.0405 0.0045 0.0045 0.0005

x2 0.0095 0.0855 0.0855 0.7695

But now, the sum of the column maximums of the joint matrix (posterior vulnera-

bility) exceeds the prior vulnerability and we get a non-zero min-entropy leakage

L(π,C(2)) = log
0.0405 + 0.0855 + 0.0855 + 0.7695

0.95
= log

0.981

0.95
> 0.
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It can be shown that the vulnerability of the secret cannot decrease after each

additional independent run of channel C. Similarly, neither the leakage nor the

capacity of C(n) can decrease as n grows. It is then of interest to understand how

fast the capacityML(C(n)) increases as more repetitions are allowed.

Boreale et al. [BPP11] proved that ML(C(n)) converges exponentially quickly

to the logarithm of the number of distinct rows in C. (Intuitively, distinct rows of

the channel matrix can be distinguished by repeatedly sampling the output.) More

precisely, their Theorem 1 restricted to the case of a uniform prior (which realizes

min-capacity) can be restated in the following form:

Theorem 4.2.3. Let K denote the number of distinct rows in C. Then there is an

ǫ > 0 such that

logK ≥ML(C(n)) ≥ logK + log r(n),

where r(n) = 1 − (n + 1)∣Y ∣2−nǫ.

However, the min-capacity ML(C(n)) grows only logarithmically with respect

to the number of runs n. This result was first proved by Köpf and Smith [KS10]

within the context of timing attacks against a cryptosystem, but the proof holds in

general for any n independent runs channel C(n).

Theorem 4.2.4. For any channel (X ,Y,C) and number of repetitions n,

ML(C(n)) ≤ ∣Y ∣ log(n + 1).

Proof. The proof relies on the information-theoretic method of types; see for example

[CT06]. The key idea is that, in view of Definition 4.2.1, the conditional probability

of an output sequence ȳ does not depend on the ordering of the outputs, but only

on the number of occurrences of each element of Y within ȳ; this information is

called the type of ȳ. For example, if Y = {y1, y2, y3, y4} and n = 10, then the output
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sequence (y3, y2, y2, y4, y2, y3, y2, y2, y2, y2) has type (0,7,2,1). In general, a type is

a length-∣Y ∣ sequence of numbers, each between 0 and n, whose sum is n. We write

tȳ to denote the type of ȳ, ∣tȳ∣ to denote the number of sequences with type tȳ, and

T to denote the set of all types.

Because two output sequences with the same type have the same conditional

probability given the secret, it follows that we can factor C(n) into the cascade of a

channel A from X to T and a channel B from T to Yn. More precisely, we define

A[x, tȳ] = ∣tȳ∣C
(n)[x, ȳ]

and

B[tȳ, ȳ
′] =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
∣tȳ ∣

, if ȳ′ has type tȳ

0, otherwise.

It is easy to see that A and B are well-defined channel matrices and C(n) = AB.

Hence we can apply Corollary 4.1.18 to deduce that ML(C(n)) ≤ log ∣T ∣. Since

each type is a length-∣Y ∣ sequence of numbers between 0 and n, we see that ∣T ∣ ≤

(n + 1)∣Y ∣, and the theorem follows.

The bound on the size of T in the above proof is quite crude, since it ignores

the fact that the numbers in a type must sum to n. Köpf and Smith [KS10] also

showed a tighter bound by calculating ∣T ∣ precisely:

Theorem 4.2.5. For any channel (X ,Y,C) and number of repetitions n,

ML(C(n)) ≤ log(
n + ∣Y ∣ − 1

n
).

Proof. We show that

∣T ∣ = (
n + ∣Y ∣ − 1

n
).

Counting ∣T ∣ can be viewed as an “Occupancy Problem” as discussed in Section

II.5 of Feller [Fel68]. We want to know in how many ways we can place n indistin-

guishable “balls” (the outputs) into ∣Y ∣ “bins” (the possibilities for each output). In
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general, the number of ways of putting n indistinguishable balls into b bins turns

out to be the binomial coefficient

⎛
⎜
⎜
⎝

n + b − 1

n

⎞
⎟
⎟
⎠

.

To see this, note that each such placement can be represented as a string of n stars

(representing the balls) with b−1 bars inserted (representing the boundaries between

the bins). For example, with n = 5 and b = 4, the string

∗ ∗ ∣ ∗ ∣∣ ∗ ∗

represents the case when we put 2 balls in the first bin, 1 ball in the second bin,

0 balls in the third bin, and 2 balls in the fourth bin. If the symbols were all

distinguishable, then the number of such strings would be (n+ b−1)!. But since the

n stars and b − 1 bars are indistinguishable, then the total number of strings is

(n + b − 1)!

n!(b − 1)!
,

which is equal to the above binomial coefficient.

The following is an example where these bounds are useful to prove formal se-

curity guarantees of a system.

Example 4.2.6 (Bounding the leakage of timing attacks on cryptosystems). In-

put blinding and bucketing are countermeasures against timing attacks to public-key

cryptosystems. Input blinding consists of randomizing the cyphertext before decryp-

tion and de-randomizing it after decryption. Hence, with blinding, the time required

to decrypt a cyphertext is a randomized function of the decryption key and is in-

dependent of the cyphertext. Bucketing, on the other hand, consists of limiting the

decryption operation to take one of only a small number of possible times; this re-

quires sometimes delaying the response of the decryption algorithm.
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Köpf and Smith [KS10] observed that a timing attack against a cryptosystem

that implements blinding can be modeled as a repeated independent runs channel

(X ,Yn,C(n)) that receives the secret decryption key and outputs a sequence of n

timing observations with that key.

Hence, Theorem 4.2.5 can be directly applied to establish an upper bound for the

min-capacity of the timing attack channel:

ML(C(n)) ≤ log(
n + ∣Y ∣ − 1

n
).

Moreover, bucketing allows the assumption that ∣Y ∣ is small.

Concretely, consider a cryptosystem that implements input blinding and bucket-

ing with a total of 5 buckets (∣Y ∣ = 5). Then, the channel of a timing attack with 240

timing observations is given by (X ,Y240 ,C(2
40)) and its capacity is at most

ML(C(2
40)) ≤ log(

240 + 4

240
) ≈ 155.4 bits.

4.3 Leakage of an Adaptive Composition of Channels

Barthe and Köpf [BK11] studied a form of channel composition that is more pow-

erful than cascading. Their model considers two channels, A and B, where the

second channel receives as input not only the output from A but also the input to

A. Furthermore, the outputs from both channels are revealed. We illustrate this

construction in Figure 4.3.

An example scenario for this kind of composition consists of two privacy pre-

serving randomized queries to the same dataset, where the second query adapts

its results depending on the results of the first one. Each of the queries can then

be modeled by a probabilistic channel with the special restriction that the channel
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A

B

Y1

Y2

X

Figure 4.3: Adaptive channel composition A +B

of the second query must be ready to handle two inputs: the secret dataset and

the result from the previous query. The following is a formal definition of adaptive

composition:

Definition 4.3.1. The adaptive composition of channels (X ,Y1,A) and (Y1×X ,Y2,B)

is the channel (X ,Y1 ×Y2,A +B) where

(A +B)[x, (y1, y2)] = A[x, y1]B[(y1, x), y2].

Note that this definition makes sense because, when the conditional probabilities

are defined, the entries of the matrix (A +B) are consistent with the chain rule for

probabilities:

p(y1, y2∣x) = (A +B)[x, (y1, y2)]

= A[x, y1]B[(y1, x), y2]

= p(y1∣x)p(y2∣y1, x)

Barthe and Köpf established an upper bound on the min-capacity of A +B:

Theorem 4.3.2. The min-capacity of the adaptive composition of channels (X ,Y1,A)

and (Y1 × X ,Y2,B) is at most the sum of the min-capacities of the channels:

ML(A +B) ≤ML(A) +ML(B).
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Contrast this with the case of cascading, where Theorem 4.1.17 tells us that

the capacity of a cascade of two channels is upper bounded by the minimum of

the capacities of the channels. Both bounds provide nice guarantees in terms of the

behavior of channels when combined under specific conditions. However, we observe

that the more restrictive conditions of cascading result in stronger capacity bounds.

We can also think of composing channels A and B non-adaptively by having B

“ignore” the output from A. We denote this kind of composition with A+naB. Note

that letting B ignore the output from A amounts to assuming that Y1 and Y2 are

conditionally independent given the knowledge of X :

p(y1, y2∣x) = p(y1∣x)p(y2∣x).

Hence the formula for the combined channel is unchanged since this conditional

independence also implies that

p(y2∣x) = p(y2∣y1, x) = B[(y1, x), y2].

Therefore, we can still establish the same upper bound for the min-capacity of non-

adaptive composition A +na B.

Corollary 4.3.3. The min-capacity of the non-adaptive composition of channels

(X ,Y1,A) and (Y1 ×X ,Y2,B) is at most the sum of the min-capacities of the chan-

nels:

ML(A +na B) ≤ML(A) +ML(B)

Of course, the upper bound from both the adaptive and non-adaptive cases can

be extended to the scenario where n compositions are performed:

Corollary 4.3.4. ML(A +B +⋯ +Cn) ≤∑
n
i=1ML(Ci).

Corollary 4.3.5. ML(A +na B +na ⋯+na Cn) ≤∑
n
i=1ML(Ci).
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But we can wonder whether the upper bounds from corollaries 4.3.4 and 4.3.5

can be strengthened, particularly in the non-adaptive case. The following example

shows that these bounds are actually tight.

Example 4.3.6. Let us consider some deterministic channels with two feasible out-

puts; the min-capacity of any such channel is 1 bit. First, consider a family of

channels Ei that (like a password checker) output 1 exactly when a guess ci matches

the secret input:

Ei: if (X == ci) Y = 1; else Y = 0;

Composing either adaptively or non-adaptively n different instances of the family

Ei yields a channel with n + 1 distinct outputs, since at most one of the Ei’s may

produce the output 1. Hence, the min-capacity of the composition is logarithmic in

n:

ML(E1 +E2 +⋯+En) = log(n + 1).

Consider now a variant family Gi, where the equality test is replaced with a

greater-than-or-equal test:

Gi: if (X >= ci) Y = 1; else Y = 0;

Now it makes a difference whether we compose adaptively or non-adaptively. With

a non-adaptive composition, we can get at most n + 1 outputs from the combined

channel. To understand why, assume that the cis are chosen in increasing order.

Then, the sequence of outputs must consist of k 1’s (meaning that the value of X

is greater than k of the ci’s) followed by (n − k) 0’s, for some k between 0 and n.

Hence the combined channel has logarithmic capacity:

ML(G1 +na G2 +na ⋯+na Gn) = log(n + 1).
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In contrast, with an adaptive composition, the resulting combined channel may

yield a binary search where each Gi checks a different bit of the secret. For instance,

if X is a 10-bit secret, we can build a combined channel that behaves as follows:

G1: if (X >= 512) Y1 = 1; else Y1 = 0;

G2: if (X >= 512*Y1 + 256) Y2 = 1; else Y2 = 0;

G3: if (X >= 512*Y1 + 256*Y2 + 128) Y3 = 1; else Y3 = 0;

...

This results in 2n feasible outputs, giving linear capacity:

ML(G1 +G2 +⋯ +Gn) = n.

Since each Gi has capacity 1, and n compositions of Gi yield a capacity of at most n,

we conclude that the upper bound from Corollary 4.3.4 cannot be strengthened. But

what if we restrict ourselves to non-adaptive composition? Curiously, that bound

turns out to be tight as well.

Consider finally a family of programs Ai that use a bitwise “and” operation to

test the ith bit of the secret:

Ai: if (X & 2i−1) Y = 1; else Y = 0;

Clearly, composing non-adaptively n instances of Ai gives 2n feasible outputs, again

giving linear capacity:

ML(A1 +na A2 +na ⋯+na An) = n.

4.4 Related Work

In this section, we briefly discuss some additional related work.

72



The problem of transmitting information through channels in cascade has been

studied from the dawn of information theory, as in telecommunications it is very

common to split a channel into multiple links. For the case of discrete memoryless

channels with a common alphabet for the inputs and outputs, Desoer [Des53] proves

that the Shannon capacity of a cascade of channels cannot exceed the Shannon

capacity of each link in the cascade. Focusing on the same type of channels, Kiely

and Coffey [KC93] study the effect of the ordering of the links on the Shannon

capacity of a cascade.

The work of El-Sayed [ES78] provides a proof of the data processing inequality

for Rényi entropies of order α (for 0 ≤ α ≤ 1), while we consider min-entropy, which

is Rényi entropy of order ∞. Moreover, El-Sayed’s definition of conditional Rényi

entropy is different from the one that we use.

Alvim et al. [AAC+11] study the relationship between min-entropy leakage and

differential privacy [Dwo11], a popular approach to protecting privacy in databases

that allow statistical queries. They model a differentially-private query on a secret

database X as a cascade of a deterministic channel A that returns the query’s real

answer Y (which might reveal too much about X), followed by a second channel B

that returns a randomized answer Z. The goal is to minimize the leakage through A,

L(π,A), while simultaneously maximizing the utility of Z with respect to Y , which

is formalized as V (pY ,B). We can see that our results are somehow consistent

with their goals: Theorem 4.1.11 says that L(π,C) ≤ L(π,A), which means that

the randomization mechanism might help but cannot hurt; and Theorem 4.1.14

says that V (pY ,B) ≥ V (π,C), which means that Z’s utility with respect to Y may

exceed but cannot be less than its utility with respect to X (which in turn corrolates

closely with the leakage from X to Z).
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4.5 Summary

In this chapter, we have shown that min-entropy leakage satisfies a number of com-

positionality results that allow the leakage of a complex system to be bounded by

the leakage of its constituents.

First, we presented a careful account of channel cascading, and showed that

cascading satisfies some nice properties with respect to min-entropy leakage, most

importantly, that the min-entropy leakage of a cascade of channels is upper bounded

by the min-entropy leakage of the first link. This property is a min-entropy analogue

to the data-processing inequality for Shannon leakage. Curiously, we found that

such upper bound does not hold with respect to the second link of the cascade.

Although, when we turned our attention to min-capacity, we found that both links

of the cascade behave as bottlenecks to the information flow of the combined channel.

We also studied the information flow when repeated independent runs of a chan-

nel are allowed, showing the min-capacity of the combined channel grows logarithmi-

cally with respect to the number of runs, a result that was first proved by Köpf and

Smith [KS10] within the context of timing attacks against a cryptosystem. Finally,

we reviewed the results from Barthe and Köpf [BK11] regarding the min-entropy

leakage in an adaptive composition of channels A and B, who showed that the min-

capacity of the combined channel is upper bounded by the sum of the min-capacities

of A and B. Going further, we analyzed the case of non-adaptive composition where

B ignores the output from A, extended the upper bound from Barthe and Köpf to

the general case of n adaptive and non-adaptive compositions, and showed that

these more general bounds cannot be strengthened.
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In the following channel we will expand our study of channel cascading, showing

its important role in determining a leakage ordering relation of channels regardless

or prior distribution or leakage measure.
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CHAPTER 5

ABSTRACT CHANNELS AND THEIR LEAKAGE ORDERING

“I cannot believe that something so ugly as multiplication of matrices is

an essential part of the scheme of nature.”

Sir Arthur Eddington

Consider a channel C from X to Y. Recall from Chapter 2 that if an adversary

knows the prior distribution π and C, then its initial uncertainty about X is a

function of π. But each separate output value y allows it to update its knowledge

about X from π to a posterior pX ∣y via Bayesian reasoning. Hence, its expected

remaining uncertainty bout X , after seeing the output of C, will depend on the set

of possible posterior distributions on X and their probabilities. The leakage is then

the difference between the initial and remaining uncertainties.

This general quantitative framework is clear enough; but there is of course more

than one way to measure the uncertainty associated with a probability distribution

as we discussed in Section 2.2. Each leakage measure has its own operational sig-

nificance, which might or might not suit a given operational scenario. Moreover,

the leakage caused by some C will also depend on its prior π. As a result, if we

consider the leakage ordering of two channels A and B (both taking X as input), it

is difficult to give an answer that is robust, i.e that does not depend on the particular

prior and leakage measure. But such a robust ordering is indispensable if we aim

to develop software through stepwise refinement, based on general laws that hold in

all contexts.

There is such a robust order for deterministic channels, provided by the partition

refinement relation (⊑) [LR93]. As we discussed in Section 2.4, any deterministic

channel from X to Y induces a partition on X , where x1 and x2 belong to the same
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block iff they map to the same output. That is, each block of the partition is the

pre-image of some output y.

Recall channels Cstate and Ccountry from Example 2.4.1, where the partition in-

duced by Cstate refines that of Ccountry by mapping all states back to USA. It is

intuitively clear that an adversary will always prefer the finer grained partition in-

duced by Cstate to that of Ccountry, whatever the input prior π. This is supported

by a theorem due to Yasuoka and Terauchi [YT10], Malacaria, [Mal11], and Alvim

et al. [ACPS12], which says that channel B partition refines channel A iff A never

leaks more information than channel B on any prior π and under Shannon leakage,

min-entropy leakage, guessing entropy leakage or g-leakage.

This is an outstanding property, not only it says that channels in the partition

refinement relation satisfy a robust leakage ordering, but it also states that the only

way for a deterministic channel A to never leak more than a deterministic channel

B is for A’s partition to be refined by B’s.

In this chapter we generalize these nice properties from deterministic to proba-

bilistic channels. A first issue, however, is that the story for deterministic channels

is not quite as nice as it appears, in that partition refinement is not in fact a partial

order on deterministic channels, but only a pre-order. Because distinct determinis-

tic channels can induce the same partition on X (since the particular names of the

outputs and their order do not matter), partition refinement is not antisymmetric.

While this problem is rather obvious in the case of deterministic channels, we will

see that it is more subtle for probabilistic channels, and this will lead us to introduce

abstract channels formed by quotienting away the redundant structure of channel

matrices. In Section 5.1 we present abstract channels and explore their fundamen-

tal properties, including their canonical representation by reduced channels and by

hyper-distributions.
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Turning to the robust leakage ordering of abstract channels, in Section 5.2 we

consider a generalization of partition refinement called composition refinement (⊑○)

[ACPS12], where A ⊑○ B holds if A can be expressed as B followed by “post-

processing”. We show that composition refinement is antisymmetric and, therefore,

a partial order on abstract channels.

In Section 5.3 we show that composition refinement and the strong g-leakage

ordering (≤G) coincide, where A ≤G B holds if A never leaks more than B with

respect to g-leakage on any prior distribution or gain function. Hence, composition

refinement is partial order on abstract channels that has both structural and leakage

characterizations, and is therefore a compelling generalization of partition refinement

to probabilistic channels.

In Section 5.4 we explore the relationship between composition refinement and

other leakage orderings showing that, like partition refinement, composition refine-

ment entails a robust leakage ordering. A byproduct of this result is a family of

data-processing inequalities that hold for any choice of concave uncertainty func-

tion, in particular, a new data-processing inequality for guessing entropy. However,

we explain that with respect to min-entropy alone, a leakage ordering for all priors

does not guarantee composition refinement, and conjecture that this is also the case

for Shannon entropy.

Given that the strong g-leakage ordering implies composition refinement, and

that composition refinement implies a robust leakage ordering, in Section 5.5 we

investigate whether, like min-entropy leakage, Shannon leakage and guessing entropy

leakage can be expressed as g-leakages for some choice of gain function. Specifically,

we show that casting these measures as g-leakages is possible if we generalize gain

functions beyond what was considered by Alvim et al. [ACPS12].
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Finally, in Section 5.6 we discuss the compositionality properties of abstract

channels. We show that, surprisingly, abstract channels cannot be combined to

form more complex structures (e.g. cascades) because they lack critical information

about the real channel outputs.

5.1 Abstract Channels

Given a channel (X ,Y,C) and a prior distribution π, it can easily happen that

distinct output values y and y′ in Y give rise to the same posterior distribution on

X . In that case there is actually no benefit to the adversary from distinguishing

outputs y and y′, since each gives the same knowledge about X . Furthermore, the

output values themselves make no difference: all that matters to an adversary that

observes output y is its associated posterior distribution pX ∣y. In fact, assuming that

the adversary knows C and π, the posterior distributions pX ∣y and their probabilities

are what C reveals to the adversary about X .

In light of these observations, from the perspective of information flow secu-

rity, a channel simply maps prior distributions on X to distributions of posterior

distributions on X , which following [MMM10] we call hyper-distributions.

Example 5.1.1. Consider channel (X ,Y,C) with secret inputs X = {x1, x2, x3},

public outputs Y = {y1, y2, y3, y4}, and channel matrix

C y1 y2 y3 y4

x1 1 0 0 0

x2 0 1/2 1/4 1/4

x3
1/2 1/3 1/6 0
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Then, given the uniform prior π = (1/3, 1/3, 1/3), we get joint distribution

pY X y1 y2 y3 y4

x1
1/3 0 0 0

x2 0 1/6 1/12 1/12

x3
1/6 1/9 1/18 0

Now, the (marginal) distribution on the outputs is pY = (1/2, 5/18, 5/36, 1/12), and nor-

malizing the columns we get the posterior distributions:

pX ∣y1 = (2/3,0, 1/3)

pX ∣y2 = (0, 3/5, 2/5)

pX ∣y3 = (0, 3/5, 2/5)

pX ∣y4 = (0,1,0)

For clarity, we represent these posterior distributions in table form, together with

the output probabilities at the bottom margin:

pX ∣Y y1 y2 y3 y4

x1
2/3 0 0 0

x2 0 3/5 3/5 1

x3
1/3 2/5 2/5 0

1/2 5/18 5/36 1/12

Notice then that outputs y2 and y3 produce the same posterior distribution, i.e.

pX ∣y2 = pX ∣y3. Hence, the hyper-distribution produced by C on π, which we denote

with C(π), has only three columns rather than four:

C(π) =

x1
2/3 0 0

x2 0 3/5 1

x3
1/3 2/5 0

1/2 15/36 1/12
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In this representation, the columns of the hyper-distribution are the distinct posterior

distributions of X, with their corresponding probability on the bottom margin. Note

that the probability 15/36 of the middle posterior distribution is obtained by adding

p(y2)+p(y3), that is, 5/18+ 5/36. We also dropped the column labels, since there is no

longer a one-to-one correspondence between the posterior distributions and the set

Y.

We have seen in the previous example how a channel maps a prior distribution

to a hyper distribution. We capture this relation in the following definition.

Definition 5.1.2 (Abstract channel). The leakage semantics C of channel (X ,Y,C)

is the mapping that C gives from prior distributions on X to hyper-distributions on

X , that is,

C ∶ DX → DDX

We call this mapping an abstract channel.

Any reasonable leakage measure should be well defined on abstract channels.

In fact, as the following theorem confirms, this is the case for the usual leakage

measures.

Theorem 5.1.3. Shannon leakage, guessing entropy leakage, min-entropy leakage,

and g-leakage are well defined on abstract channels.

Proof. As we saw in Section 2.2.3, min-entropy leakage is the logarithm of the

ratio between the prior and posterior vulnerabilities: L(π,C) = log V (π,C)
V (π) , where

V (π) = maxx π[x], and V (π,C) = ∑y p(y)V (pX ∣y). Hence, the column labels make

no difference in the calculations. Moreover, if pX ∣y = pX ∣y′ then the posterior vulner-

ability is unaffected by merging outputs y and y′, since then

p(y)V (pX ∣y) + p(y
′)V (pX ∣y′) = (p(y) + p(y

′))V (pX ∣y).
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A similar argument can be applied to the other three leakage measures.

This abstracted semantic perspective of channels makes us realize that their

conventional channel-matrix representation can contain redundant structure as far

as leakage is concerned, namely (1) labels on columns, (2) columns that are all

zero, representing outputs that can never occur, and (3) similar columns, which

are columns that are scalar multiples of each other and therefore yield the same

posterior distributions. By eliminating this redundancy, we obtain a well defined

reduced channel:

Definition 5.1.4 (Reduced channel). The reduced channel Cr of channel (X ,Y,C)

is formed by deleting the output labels, dropping all-zero columns from C, then adding

similar columns together, and finally ordering the resulting columns lexicographically.

Theorem 5.1.5. Any channel C has the same leakage semantics as its reduction

Cr.

Proof. Given a prior distribution π, output labels, all-zero columns, and column

ordering all have no effect on the resulting hyper-distribution. Moreover, similar

columns contribute weight to the same posterior distribution; hence merging them

leaves the hyper-distribution unchanged.

In fact, a reduced channel serves as a canonical representation of an abstract

channel.

Corollary 5.1.6. Channels A and B represent the same abstract channel if and

only if Ar = Br.
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Example 5.1.7. Given X = {x1, x2, x3} consider the following two channels A and

B:

A y1 y2 y3

x1 1 0 0

x2
1/4 1/2 1/4

x3
1/2 1/3 1/6

B z1 z2 z3

x1
2/5 0 3/5

x2
1/10 3/4 3/20

x3
1/5 1/2 3/10

While these channels may look very different, they are semantically the same channel

as far as leakage of X is concerned; that is, as abstract channels they are the same.

Indeed both map prior distribution π = (p1, p2, p3) to the same hyper-distribution:

A(π) = B(π) =

x1
4p1

4p1+p2+2p3
0

x2
p2

4p1+p2+2p3

3p2
3p2+2p3

x3
2p3

4p1+p2+2p3

2p3
3p2+2p3

(4p1+p2+2p3)
4

(3p2+2p3)
4

To understand this, note that the second and third columns of A are similar,

in that column 2 is two times column 3. In the same way, columns 1 and 3 of B

are similar, in that column 1 is two-thirds times column 3. Merging these similar

columns we find that A and B have the same reduced channel:

Ar = Br =

x1 1 0

x2
1/4 3/4

x3
1/2 1/2

While we have said that an abstract channel is a mapping from priors to hyper

distributions, in fact the mappings that come from channel matrices are highly

constrained. Let ⌈π⌉ be the support of distribution π, that is, those elements of X

for which π[x] ≠ 0. Then we have that:
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Theorem 5.1.8. An abstract channel C with input X is completely determined by

its behavior on any full-support prior π, that is, one with ⌈π⌉ = X .

Proof. Let π be a full support prior distribution on X . If π yields a certain hyper-

distribution then by scaling each posterior distribution with its probability we re-

cover the joint matrix of Cr under π. Then, normalizing the rows of the joint matrix

gives Cr.

It follows that we can also canonically represent an abstract channel by the

hyper-distribution that it produces on (for instance) the uniform prior. We showed

such a hyper-distribution in Example 5.1.1.

5.2 Structural Ordering

Recall from section 2.4 that deterministic channels are essentially functions and,

as such, induce a partition on their set of inputs. Moreover, these partitions are

partially ordered by the partition refinement relation (⊑). An important property of

partition refinement is that channels that are in the partition refinement order also

satisfy a robust leakage ordering, that is, a leakage ordering that is independent of

the leakage measure and prior distribution. Even more remarkable, the converse is

also true, so the only way for a deterministic channel A to never leak more than a

deterministic channel B is for A’s partition to be refined by B’s. Here we formalize

this property due to Yasuoka and Terauchi [YT10], Malacaria, [Mal11], and Alvim

et al. [ACPS12]:

Theorem 5.2.1. If (X ,Y,A) and (X ,Z ,B) are deterministic channels, then A ⊑ B

iff A never leaks more than B on any prior π (and gain function g) and under

Shannon leakage, min-entropy leakage, guessing-entropy leakage, or g-leakage.
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We remark that, in general, the leakage ordering of a pair of channels may vary

according to the choice of prior distribution and leakage measure, so Theorem 5.2.1

is a very nice property from the perspective of information flow security. For it

allows a robust comparison of the leakage of channels that operate over a common

set of secret inputs.

A relevant question is then whether we can generalize Theorem 5.2.1 to proba-

bilistic channels. Note that, unlike deterministic channels, probabilistic channels do

not partition the set of secret inputs, so in order to generalize partition refinement we

need to find an alternative (more general) structural order relation on probabilistic

channels and show that it is associated to a robust leakage ordering.

Fortunately, as first noted in [ACPS12], partition refinement is strongly con-

nected to cascading, as the following example illustrates.

Example 5.2.2. Coming back to example 2.4.1, consider now a deterministic chan-

nel Cmerge that maps all the American states in Cstate back to USA. Then, chan-

nel Ccountry is equivalent to Cstate followed by postprocessing with Cmerge, that is,

Ccountry = CstateCmerge.

In general, it has been shown [LR93, ACPS12] that given deterministic channels

A and B, A ⊑ B iff there exists a deterministic channel R such that A = BR. This

observation motivates the following definition due to Alvim et al. [ACPS12].

Definition 5.2.3. For channels A and B, we say that A is composition refined by

B, written A ⊑○ B whenever there exists a channel R such that A = BR.

It follows then that, for deterministic channels, A ⊑ B iff A ⊑○ B, making com-

position refinement a promising candidate for generalizing partition refinement to

probabilistic channels.
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A first step towards proving that composition refinement is a generalization of

partition refinement is to verify that it is also a partial order. Here we show that

composition refinement is easily seen to be reflexive and transitive on probabilistic

channels, and thus a pre-order.

Theorem 5.2.4. Composition refinement is reflexive and transitive on the domain

of probabilistic channels, and thus, a preorder.

Proof. To prove reflexivity we just need to observe that for any channel matrix C,

C = CI where I is the identity matrix. Hence, for all channels, C ⊑○ C.

Transitivity follows from the associativity of matrix multiplication since, for any

channel matrices A,B,C,R1,R2, whenever A = BR1 and B = CR2, we have that

A = (CR2)R1 = C(R2R1). Hence, A ⊑○ B and B ⊑○ C implies that A ⊑○ C.

However, composition refinement is not antisymmetric as can be seen from ma-

trices A and B in Example 5.1.7, which composition refine each other despite being

distinct:

A y1 y2 y3

x1 1 0 0

x2
1/4 1/2 1/4

x3
1/2 1/3 1/6

=

B z1 z2 z3

x1
2/5 0 3/5

x2
1/10 3/4 3/20

x3
1/5 1/2 3/10

⋅

R1 y1 y2 y3

z1 1 0 0

z2 0 2/3 1/3

z3 1 0 0

B z1 z2 z3

x1
2/5 0 3/5

x2
1/10 3/4 3/20

x3
1/5 1/2 3/10

=

A y1 y2 y3

x1 1 0 0

x2
1/4 1/2 1/4

x3
1/2 1/3 1/6

⋅

R2 z1 z2 z3

y1 2/5 0 3/5

y2 0 1 0

y3 0 1 0

But if we restrict ourselves to the domain of abstract channels, we find that

composition refinement is better behaved: it becomes a true partial order. This
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is analogous to the way partition refinement, as described in Section 2.4, is only a

pre-order on deterministic channels directly, but becomes a partial order when we

restrict ourselves to the domain of the partitions induced by deterministic channels.

Note that, like abstract channels, the partition induced by a deterministic channel

abstract away from information that is not relevant to leakage alone, such as the

names of the channel outputs and their order.

We next prove that composition refinement is antisymmetric on abstract chan-

nels, and therefore a partial order. The first part of this proof is Lemma 5.2.8, which

can be seen as a generalized data-processing inequality for abstract channels and

concave (⌢) uncertainty functions. A function is said to be concave (⌢) if the line

segment between any two points on the graph of the function lies below the graph.

We write (⌢) after concave to give the reader a quick reminder of the shape of a

concave function.

Definition 5.2.5 (Concave function). A function f is concave (⌢) if the domain of

f is a convex set and for all x, y ∈ domf , and 0 ≤ λ ≤ 1,

λf(x) + (1 − λ)f(y) ≤ f(λx + (1 − λ)y)

Definition 5.2.6 (Strictly concave function). A function f is strictly concave (⌢)

if the domain of f is a convex set and for all x, y ∈ dom f , and 0 < λ < 1,

λf(x) + (1 − λ)f(y) < f(λx + (1 − λ)y)

Definition 5.2.7 (Convex function). A function f is convex if −f is a concave

function.

Lemma 5.2.8 (Generalized data-processing inequality for abstract channels). Let

A and B be abstract channels, with (A,X ,Y) and (B,X ,Z) their representation as
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reduced channels, 1 and let F be a concave (⌢) function from distributions on X to

the reals, and for any channel (C,X ,Y), let

F (π,C) =∑
y

p(y)F (pX ∣y).

If A = BR for some channel (R,Z ,Y) then, for any full-support prior π, we have

F (π,A) ≥ F (π,B).

Furthermore, if A ≠ B and F is strictly concave, then the inequality is strict.

Proof. Our proof relies on Jensen’s inequality [CT06], that is, if λ1, λ2, . . . λn are

coefficients in [0,1] that sum to one, and F is concave, then

∑
n

λnF (xn) ≤ F (∑
n

λnxn).

We use the following matrix notation. Given matrix M with row labels X and

column labels Y we write Mx,y (instead of M[x, y]) to denote the (x, y) entry of M

andM ,y to denote column y of M . A fundamental property of matrix multiplication

is that (MN) ,y = M(N ,y), i.e. that column y of MN is a linear combination of

the columns of M with column y of N as the coefficients, and thus that in fact the

parentheses above are not necessary.

We write Dπ to denote the diagonal matrix with π on its diagonal; hence DπA is

the joint matrix giving pXY . Note that because A is reduced and π is full support, the

columns of DπA are all non-zero and non-similar; hence normalizing these columns

is well defined and gives the posterior distributions pX ∣y, which are all distinct. Since

the (necessarily non-zero) sum of column y ofDπA is p(y), we have pX ∣y =
1

p(y)DπA ,y.

For B, similarly, the posterior distributions pX ∣z are all distinct and we also have

that pX ∣z =
1

p(z)DπB ,z.

1For clearer notation, we specify labels for the columns of reduced matrices A and B.
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We now show that F (π,A) ≥ F (π,B) under these conditions. First we have

F (π,A)

= ≪ definition of F (π,A) ≫

∑
y

p(y)F (pX ∣y)

= ≪ pX ∣y =
1

p(y)
DπA ,y ≫

∑
y

p(y)F (
1

p(y)
DπA ,y)

= ≪ A = BR≫

∑
y

p(y)F (
1

p(y)
Dπ(BR) ,y)

= ≪ (BR) ,y =∑
z

B ,zRz,y ≫

∑
y

p(y)F (
1

p(y)
Dπ∑

z

B ,zRz,y)

= ≪ multiplying and dividing by p(z) and reorganizing≫

∑
y

p(y)F (∑
z

Rz,yp(z)

p(y)
(

1

p(z)
DπB ,z))

= ≪ pX ∣z =
1

p(z)
DπB ,z ≫

∑
y

p(y)F (∑
z

Rz,yp(z)

p(y)
pX ∣z)

which contains F applied to a linear combination of the posterior distributions,

whose coefficients
Rz,yp(z)

p(y) we now show are convex and thus suitable for applying

Jensen’s inequality. They sum to one because

∑
z

Rz,yp(z)

= ≪ p(z) =∑
x

(DπB)x,z ≫

∑
z

Rz,y∑
x

(DπB)x,z

= ≪ distributive law≫

∑
x,z

(DπB)x,zRz,y
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= ≪ definition of matrix multiplication≫

∑
x

(DπBR)x,y

= ≪ A = BR≫

∑
x

(DπA)x,y

= ≪ definition of p(y)≫

p(y).

Hence we can continue our reasoning

∑
y

p(y)F (∑
z

Rz,yp(z)

p(y)
pX ∣z)

≥ ≪ (*) Jensen’s inequality≫

∑
y

p(y)∑
z

Rz,yp(z)

p(y)
F (pX ∣z)

= ≪ simplifying and reorganizing≫

∑
z

p(z)F (pX ∣z)∑
y

Rz,y

= ≪∑
y

Rz,y = 1≫

∑
z

p(z)F (pX ∣z)

= ≪ definition of F (π,B)≫

F (π,B)

so that F (π,A) ≥ F (π,B) as claimed.

Now suppose that A ≠ B and F is strictly concave.

A strict form of Jensen’s inequality is that if λ1, λ2, . . . λn are coefficients in [0,1]

that sum to one, with at least one λi ≠ 1, and F is strictly concave, and the xn’s are

all distinct, then

∑
n

λnF (xn) < F (∑
n

λnxn).
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We now show that this gives strict inequality at (∗) above. Because B is reduced,

the distributions pX ∣z (the normalized columns of DπB) are distinct; otherwise B

would have similar columns. Those are the distinct xn’s for the strict Jensen’s

inequality.

We now consider the λn’s, showing that at least one of them is not one. No

two columns of R can have a single non-zero entry in the same row, since those

two columns would generate similar columns in A, contradicting the fact that A is

reduced. Thus, if all columns ofR have exactly one non-zero value, since those values

are alone in their rows and R is a channel matrix, in fact R must be a permutation

of the identity. But that makes A a column permutation of B, impossible if A and

B are reduced and distinct.

Therefore, channel matrix R must have some column R ,y′ in which at least two

entries are non-zero. But from ∑z Rz,y′p(z) = p(y′), proved just above, plus the fact

that p(z) is nowhere zero, we have at least one z′ (in fact, two) with
Rz′,y′p(z

′)

p(y′) ≠ 1.

This z′ gives the λn ≠ 1 (for that y′) that the strict Jensen’s inequality requires.

These facts taken all together allow us to make step (*) above strict, since for

all y’s (the non-strict) Jensen’s inequality applies, and for y′ it applies strictly.

A simple consequence of Lemma 5.2.8 is the following theorem, which is itself of

interest—it is a strict version of the classic data-processing inequality for Shannon

leakage.

Theorem 5.2.9 (Strict data-processing inequality). Let A and B be distinct abstract

channels with (A,X ,Y) and (B,X ,Z) their representation as reduced channels. If

A ⊑○ B, then for any full-support prior π, the Shannon leakage of A is strictly less

than than that of B: that is I(π,A) < I(π,B).
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Proof. We appeal to the strict concavity (⌢) of Shannon entropy [Gal68, p. 85]

and use H for F in Lemma 5.2.8, to conclude that H(π,A) > H(π,B). Hence

I(π,A) < I(π,B).

Given Theorem 5.2.9, our desired result is now easy.

Theorem 5.2.10. (⊑○) is a partial order on abstract channels.

Proof. Since (⊑○) is reflexive and transitive, we just need to show that it is anti-

symmetric on abstract channels. Let A and B be distinct abstract channels with

(A,X ,Y) and (B,X ,Z) their representation as reduced channels. If A ⊑○ B ⊑○ A

then by Theorem 5.2.9 we have, for any full-support prior π, that I(π,A) < I(π,B) <

I(π,A), which is impossible.

We now illustrate Theorem 5.2.9 through a concrete example.

Example 5.2.11. Let A, B, and R be as shown, satisfying A = BR:

A y1 y2 y3

x1
7
12

1
3

1
12

x2
3
8

3
8

1
4

=

B z1 z2 z3

x1
1
2

1
4

1
4

x2
1
4

3
4

0

⋅

R y1 y2 y3

z1
1
2

1
2

0

z2
1
3

1
3

1
3

z3 1 0 0

Note that A and B are distinct reduced matrices where A ⊑○ B.

Given prior distribution π = (3
4
, 1
4
), we get joint matrices DπA and DπB, and

the factorization is preserved (since A = BR implies DπA =DπBR):

DπA y1 y2 y3

x1
7
16

1
4

1
16

x2
3
32

3
32

1
16

=

DπB z1 z2 z3

x1
3
8

3
16

3
16

x2
1
16

3
16

0

⋅

R y1 y2 y3

z1
1
2

1
2

0

z2
1
3

1
3

1
3

z3 1 0 0
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Notice that column y1 of DπA is a linear combination of the columns of DπB, with

column y1 of R as coefficients:

DπA ,y1 =
1

2
DπB ,z1 +

1

3
DπB ,z2 + 1DπB ,z3

Also, we can see from row z1 of R that column z1 of DπB gets split into two equal

pieces, which are used in forming columns y1 and y2 of DπA.

We can also rewrite each column of the joint matrices as the scalar product of the

column sum (which is the probability of the corresponding output) and the normalized

column (which is the corresponding posterior distribution):

DπA ,y1 =
17

32

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

14
17

3
17

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

DπA ,y2 =
11

32

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

8
11

3
11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

DπA ,y3 =
1

8

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

DπB ,z1 =
7

16

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6
7

1
7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

DπB ,z2 =
3

8

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

DπB ,z3 =
3

16

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Hence the equation for DπA ,y1 can be rewritten to

17

32

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

14
17

3
17

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
1

2

7

16

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6
7

1
7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
1

3

3

8

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ 1
3

16

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
7

32

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6
7

1
7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
1

8

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
3

16

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
17

32

⎛
⎜
⎜
⎝

7

17

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6
7

1
7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
4

17

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
6

17

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎠

This shows that the posterior distribution pX ∣y1 can be written as a convex combina-

tion of the posterior distributions pX ∣z1, pX ∣z2, and pX ∣z3.
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Finally, we can show the steps that establish that the posterior Shannon entropy

of channel A is strictly greater than the posterior Shannon entropy of channel B:

H(π,A) >H(π,B).

H(π,A)

= ∑
y

p(y)H(pX ∣y)

=
17

32
H

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

14
17

3
17

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
11

32
H

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

8
11

3
11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
1

8
H

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
17

32
H

⎛
⎜
⎜
⎝

7

17

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6
7

1
7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
4

17

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
6

17

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎠

+
11

32
H

⎛
⎜
⎜
⎝

7

11

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6
7

1
7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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= ∑
z

p(z)H(pX ∣z)

= H(π,B)

Recall now that by the strict concavity of Shannon entropy and the strict Jensen’s

inequality, the Shannon entropy of a convex combination of distinct distributions

(with at least one coefficient λi ≠ 1) is strictly greater than the convex combination

of the entropies of the distributions; note that the first two terms in the crucial “>”

step are of this form.

Finally, we have I(π,A) =H(π) −H(π,A) < H(π) −H(π,B) = I(π,B).

We now look at the link between composition refinement and reduced channels.

For channels A and B we write A ≡○ B to mean that A and B are equivalent with

respect to composition refinement, that is, A ⊑○ B and B ⊑○ A.

Theorem 5.2.12. For any channel C we have that C ≡○ Cr.

Proof. The reduced form Cr of channel C is defined via a series of operations:

deleting all-zero columns, summing similar columns, and permuting columns. Each

of those can be achieved by cascading channel C with a channel matrix that performs

the post-processing with a matrix R1 so that Cr = CR1. Hence, Cr ⊑○ C.

For the reverse direction the operations are adding an all-zero column, splitting

a column into several similar columns, and reordering columns. Again, all of these

can be achieved by cascading with a matrix R2 so that C = CrR2. Hence, C ⊑○ Cr,

and have proved that C ≡○ Cr.
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We remark that, in the proof above, by multiplying C on the right with R1 we

cannot delete non-zero columns, so it is essential for the proof of this theorem that

we need only delete all-zero columns from C to obtain Cr. Also, by multiplying

Cr on the right with R2, we cannot decompose a column into a sum of dissimilar

columns, so it is essential that we need only sum similar columns of C to obtain Cr.

Theorem 5.2.13. A ≡○ B iff Ar = Br.

Proof. If A ≡○ B then by Theorem 5.2.12 we have that Ar ≡○ A ≡○ B ≡○ Br, so by

transitivity Ar ≡○ Br and by the antisymmetry of ⊑○ (Theorem 5.2.10) we conclude

that Ar = Br. On the other hand, if Ar = Br, then by reflexivity of ⊑○ we get that

Ar ≡○ Br, so by Theorem 5.2.12 and transitivity we find that A ≡○ B.

We conclude this section reporting that preliminary investigations by McIver,

Morgan and Meinicke [MEM+13] suggest that composition refinement is not a lat-

tice, as is the case with partition refinement. Future research should confirm this

conjecture and analyze its implications for the quantitative information flow analysis

of programs.

5.3 Equivalence of the Structural and Leakage Orderings

We have so far seen that composition refinement is a partial order on abstract

channels (Theorem 5.2.10) so, in order to determine whether it generalizes partition

refinement to probabilistic channels, we now consider its relationship to leakage

ordering relations.

First, let us consider the situations in which A ⊑○ B implies that A leaks no more

than B. We can argue informally that this should be the case for any reasonable

leakage measure: if A = BR for some channel R, then an adversary should never
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prefer channel A to channel B, because given channel B the adversary can always

simulate channel A by simply post-processing the output from channel B according

to channel R. And indeed this property does hold for Shannon leakage (Theorem

4.1.12), min-entropy leakage (Theorem 4.1.11), g-leakage [ACPS12], and, as we will

explain in Section 5.4, guessing entropy leakage. It is a generalized data-processing

inequality, proved here for the case of g-leakage.

Theorem 5.3.1. For any channels (A,X ,Y) and (B,X ,Z), If A ⊑○ B then the

g-leakage of A never exceeds that of B, for any prior π and any gain function g (We

denote this by A ≤G B.)

Proof. Note first that given channel (X ,Y,C), because Lg(π,C) = log
Vg(π,C)
Vg(π)

and

Vg(π,C) and Vg(π) are positive, we have Lg(π,A) ≤ L(π,B) iff Vg(π,A) ≤ Vg(π,B).

Also,

Vg(π,C) =∑
y

max
w
∑
x

π[x]C[x, y]g(w,x),

and we represent the adversary’s strategy for choosing w, given y, as a probabilistic

channel S from Y to W . Hence we have,

Vg(π,C) = max
S
∑
x,y,w

π[x]C[x, y]S[y,w]g(w,x)

= max
S
∑
x,w

π[x](CS)[x,w]g(w,x). (5.1)

Now notice that in the case where A = BR, any optimal strategy S for A is

equivalent to a strategy for B, namely RS; but of course RS might not be optimal

for B—there might be a better strategy S′. This allows us to calculate

Vg(π,A)

= ≪ equation 5.1≫

max
S
∑
x,w

π[x](AS)[x,w]g(w,x)
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= ≪ A = BR≫

max
S
∑
x,w

π[x](BRS)[x,w]g(w,x)

≤ ≪ S′ can be RS ≫

max
S′
∑
x,w

π[x](BS′)[x,w]g(w,x)

= ≪ equation 5.1≫

Vg(π,B)

which gives the inequality Vg(π,A) ≤ Vg(π,B) that we seek.

Now, if A ⋢○ B, does it mean that there exist a prior π and gain function

g that causes A to leak strictly more than B? The following theorem, due to

McIver et al. [MMM12], establishes exactly that: the strong g-leakage order implies

composition refinement. This implication was first studied in [ACPS12], but not

proved in full generality—it was shown only in the case when the columns of B are

linearly independent—and the general result was as denominated the Coriaceous

Conjecture.

Theorem 5.3.2. For any channels (A,X ,Y) and (B,X ,Z), if A ≤G B then A ⊑○ B.

Proof. We argue the contrapositive, showing that if A ⋢○ B, then we can construct

a gain function g and a prior π such that Vg(π,A) > Vg(π,B); note that this implies

that Lg(π,A) > Lg(π,B) and hence A ≰G B.

If A ⋢○ B, then there exists no channel (R,X ,Y) such that A = BR. If we

write B↑ for the channel matrices {BR ∣ R is any channel from Z to Y}, then our

assumption becomes A ∉ B↑.

Because matrix A and the matrices in B↑ go from X to Y, they can be embedded

into Euclidean space of dimension N = ∣X ∣ × ∣Y ∣ by gluing their columns together in

order. Then B↑ becomes a set of points in N -space which we observe by linearity
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of matrix multiplication is both convex and closed. Furthermore, A is a point in

N -space that does not belong to B↑.

By the Separating Hyperplane Lemma [Tru71] there is therefore a hyperplane in

N -space such that point A strictly on one side, an all of the set B↑ strictly on the

other side. If G is the normal of the hyperplane, also an N -vector, this gives us

that A ⋅G > B′ ⋅G for all B′ ∈ B↑, were (⋅) denotes the dot product of the vectors.

Note that we can assume a (>)-separation without loss of generality, because we

can negate G if necessary. Moreover we can assume without loss of generality that

the elements of G are in [0,1]. First, we can eliminate negative elements of G by

adding a constant k to each entry; this has the effect of increasing both sides of the

inequalities above by exactly k∣X ∣, since A and each B′ are channel matrices, so as

vectors they all sum to ∣X ∣. Second, we can eliminate elements of G that are greater

than 1 by scaling G, which simply scales both sides of the inequalities.

Now by “ungluing” we can view G, a vector in N -space, as a matrix (though not

necessarily a channel matrix) from X to Y. Hence we can view G as a gain function

g ∶ Y × X → [0,1] using Y as the set of guesses and defined by g(y, x) = G[x, y].

It turns out that this g is precisely the gain function that causes A to leak more

than B under the uniform prior πu. For by the definition of g-vulnerability we have

Vg(πu,A) =max
SA

∑
x,y

πu[x](ASA)[x, y]g(y, x)

and

Vg(πu,B) =max
SB

∑
x,y

πu[x](ASB)[x, y]g(y, x)

where strategies SA for A are channel matrices from Y to Y and strategies SB for B

are channel matrices from Z to Y. Note then that the identity matrix I is a strategy

for A, and that each BSB is in B↑. Hence, letting So
B denote any optimal strategy

for B, we have
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Vg(πu,B)

= ≪ So
B is optimal≫

∑
x,y

πu[x](BSo
B)[x, y]g(y, x)

= ≪ πu is uniform over X ≫

1

∣X ∣
∑
x,y

(BSo
B)[x, y]G[x, y]

= ≪ taking dot-product in vector form≫

1

∣X ∣
∑
x,y

(BSo
B) ⋅G

< ≪ Separating Hyperplane Lemma and BSo
B ∈ B

↑ ≫

1

∣X ∣
∑
x,y

A ⋅G

= ≪multiplying by the identity I ≫

∑
x,z

πu[x](AI)[x, y]g(y, x)

= ≪ SA can be I ≫

∑
x,z

πu[x](ASA)[x, y]g(y, x)

≤ ≪ definition of Vg ≫

Vg(πu,A).

Hence, the structural order given by composition refinement is equivalent to the

strong g-leakage order, so composition refinement is a compelling generalization of

partition refinement to probabilistic channels.

Note, however, that the strong leakage ordering with respect to other leakage

measures may not be sufficient to guarantee their composition refinement ordering.

In particular, as we will show in the following section, the strong min-entropy order
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is strictly weaker than composition refinement. But we do not know whether the

strong leakage orders with respect to Shannon entropy or guessing entropy are also

strictly weaker.

5.4 Relationship to Other Leakage Orderings

We have so far proved that composition refinement is equivalent to the strong g-

leakage ordering (≤G), and thus, can be understood as a generalization of partition

refinement from deterministic to probabilistic channels. However, recall that parti-

tion refinement is associated to a robust leakage ordering, that is, a leakage ordering

not just with respect to g-leakage, but with respect to any of the leakage measures

(Theorem 5.2.1). In Section 5.3 we argued informally that any reasonable leakage

measure should consider that if A = BR for some channel R, then an adversary

should never prefer channel A to channel B. In this section we prove that indeed

composition refinement implies strong leakage orderings also for guessing entropy

leakage, Shannon leakage, and min-entropy leakage. Therefore, these are all weaker

leakage ordering relations than (≤G). We define these strong leakage orderings as

follows:

Definition 5.4.1 (Strong guessing entropy leakage order). Channels A and B are

in the strong guessing entropy leakage order, written A ≤guessing B, if IG(π,A) ≤

IG(π,B) for any prior distribution π.

Definition 5.4.2 (Strong Shannon leakage order). Channels A and B are in the

strong Shannon leakage order, written A ≤Shannon B, if I(π,A) ≤ I(π,B) for any

prior distribution π.
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Definition 5.4.3 (Strong min-entropy entropy leakage order). Channels A and B

are in the strong min-entropy leakage order, written A ≤min−entropy B, if L(π,A) ≤

L(π,B) for any prior distribution π.

However, we explain that (≤min−entropy) does not imply composition refinement,

and thus (≤min−entropy) is strictly weaker than (≤G). In addition, we conjecture that

(≤Shannon) is also strictly weaker than (≤G). It is not yet clear, however, whether

(≤guessing) implies (≤G).

5.4.1 Guessing Entropy Leakage

Recall from Section 2.2.2 that guessing entropy is the expected number of guesses,

using an optimal guessing strategy, to correctly guess the value of X . Note that

the adversary’s optimal guessing strategy consists of guessing the values of X in

non-increasing order of probability. Hence, if the elements of X are indexed in

non-increasing order with respect to their probability π[xi], the guessing entropy is

G(π) =
n

∑
i=1

iπ[xi].

In this section we show that composition refinement implies the strong guessing

entropy leakage ordering (≤guessing) by using Lemma 5.2.8 to derive a version of

data-processing inequality for guessing entropy. In order to apply Lemma 5.2.8, we

first prove that guessing entropy is a concave function.

Theorem 5.4.4. Guessing entropy is a concave function.

Proof. For our argument, we use an auxiliary sorting function sort(π) that takes a

distribution π and sorts it in non-increasing order of probability. With this function,

we no longer need to assume a special indexing of the distribution π in the definition
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of G(π) which is now given by

G(π) =
n

∑
i=1

i(sort(π))[xi].

The first step in our proof is to observe that an arbitrary convex combination

of two probability distributions yields a higher guessing entropy than it would if

we first sort the probability distributions before combining them. We express this

formally in the following inequality, where p and q are probability distributions and

λ is a scalar between 0 and 1.

G(λp + (1 − λ)q) ≥ G(λsort(p) + (1 − λ)sort(q)) (∗)

Intuitively, sorting the distributions ahead of the combination step will cause

the larger probability values in both distributions to be combined together, leaving

less probability mass available for the smaller elements of the resulting probability

distribution. But such smaller elements have a greater weight—given by the adver-

sary’s guessing attempt number—in the formula of guessing entropy, so the greater

the probability mass we make available for later guessing attempts the greater the

guessing entropy of the probability distribution.

We now continue the proof, showing that guessing entropy is concave since it

satisfies Definition 5.2.5.

G(λp + (1 − λ)q)

≥ ≪ by (*)≫

G(λsort(p) + (1 − λ)sort(q))

= ≪ definition of G(π)≫
n

∑
i=1

i (sort(λsort(p) + (1 − λ)sort(q))) [xi]

= ≪ λsort(p) + (1 − λ)sort(q) is already sorted≫
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n

∑
i=1

i(λsort(p) + (1 − λ)sort(q))[xi]

= ≪ distributive law≫
n

∑
i=1

i(λsort(p))[xi] +
n

∑
i=1

i((1 − λ)sort(q))[xi]

= ≪ pushing λ and 1 − λ outside of the sums≫

λ
n

∑
i=1

i(sort(p))[xi] + (1 − λ)
n

∑
i=1

i(sort(q))[xi]

= ≪ definition of G(π)≫

λG(p) + (1 − λ)G(q).

Now that we have proved that guessing entropy is concave, we can use Lemma

5.2.8 to show that guessing entropy satisfies the data processing inequality.

Theorem 5.4.5 (Data-processing inequality for guessing entropy). Let A and B be

channels such that A = BR for some channel R. Then IG(π,A) ≤ IG(π,B) for any

prior distribution π.

Proof. First, we show that if A is the cascade of B and R, that is, A = BR, then

Ar = BrT for some channel matrix T .

A = BR

⇒ ≪ Ar ⊑○ A, so Ar = AR1 for some R1 ≫

Ar = (BR)R1

⇒ ≪ B ⊑○ B
r, so B = BrR2 for some R2 ≫

Ar = ((BrR2)R)R1

⇒ ≪ associativity of matrix multiplication≫

Ar = Br(R2RR1)
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⇒ ≪ Let T = R2RR1 ≫

Ar = BrT

Since G is a concave function (Theorem 5.4.4) we can use G for F in Lemma 5.2.8

to conclude that G(π,Ar) ≥ G(π,Br) for any full-support prior π. Moreover, given

that G(π,Ar) = G(π,A) (Theorem 5.1.3) we have showed that G(π,A) ≥ G(π,B)

for any full-support prior π.

We are now left with proving that G(π,A) ≥ G(π,B) for any non full-support

prior. If π is not full-support then the zero probability inputs do not contribute

toward the calculation of the guessing entropy. Therefore, if we remove from A, B

and π the rows and probabilities corresponding to those inputs we obtain truncated

versions of the matrices and the prior distribution, which we denote with A′, B′

and π′ respectively, with the property that that G(π,A) = G(π′,A′) and G(π,B) =

G(π′,B′). Moreover, if A = BR then row i of A is a combination of the rows of

R with coefficients in row i of B, so after truncating rows from both A and B we

still get that A′ = B′R. Hence, we can apply Lemma 5.2.8 as before, but this time

with the reduced versions of the truncated matrices A′ and B′ to conclude that

G(π,A′) ≥ G(π,B′) for any full-support prior π. But given that π′ is full-support,

and that the guessing entropy is not affected by truncating the matrices and the

prior, we have shown that if A = BR then G(π,A) ≥ G(π,B) for any prior π.

At this point it follows, from the definition guessing entropy leakage, that when-

ever A = BR, we have that for all π:

G(π,A) ≥ G(π,B) iff −G(π,A) ≤ −G(π,B)

iff G(π) −G(π,A) ≤ G(π) −G(π,B)

iff IG(π,A) ≤ IG(π,B)
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Therefore, A ⊑○ B implies A ≤guessing B, so from Theorem 5.3.2 we have that

A ≤G B ⇒ A ⊑○ B ⇒ A ≤guessing B.

Hence, the strong guessing entropy leakage ordering (≤guessing) is a weaker leakage

ordering than the strong g-leakage ordering (≤G). Of course, the two relations could

possibly be equal.

5.4.2 Shannon leakage

From the data-processing inequality (Theorem 4.1.12), it follows that composition

refinement implies the strong Shannon leakage order (≤Shannon), that is, A ⊑○ B

implies A ≤Shannon B. So we also have that ≤Shannon is a weaker leakage ordering

relation than ≤G :

A ≤G B ⇒ A ⊑○ B ⇒ A ≤Shannon B.

We remark that we can provide an alternative proof of the data-processing in-

equality by deriving it from Lemma 5.2.8 and appealing to the concavity of Shannon

entropy [Gal68, p. 85]. We can simply follow the same argument we used to show

the data-processing inequality for guessing entropy.

Furthermore, we conjecture that ≤Shannon is strictly weaker than ≤G based on the

following pair of channels from [ACPS12, Section VI].

A y1 y2

x1
1/4 3/4

x2
1/4 3/4

x3
3/5 2/5

B z1 z2 z3

x1
1/2 0 1/2

x2 0 1/2 1/2

x3
1/2 1/2 0
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It can be shown that A ⋢○ B, and yet, based on experimental evidence (first

attempted by Alvim et al.[ACPS12]), it is likely that A ≤Shannon B. In particular,

after a brute force search approach we were unable to find a prior π that causes

I(π,A) to exceed I(π,B). In addition, we observed that the surface plot of I(π,B)−

I(π,A) with respect to π = (p1, p2,1− (p1 +p2)) appears to lie above the zero plane.

5.4.3 Min-Entropy Leakage

We have three different ways to show that A ≤G B implies A ≤min−entropy B. The

most straightforward is to note that min-entropy leakage is realized from g-leakage

on the identity gain function, so it immediately follows that (≤min−entropy) is a weaker

ordering relation than (≤G). We can also appeal to Theorem 4.1.11, which is a data-

processing inequality for min-entropy leakage, in combination with theorem 5.3.2 to

conclude that

A ≤G B ⇒ A ⊑○ B ⇒ A ≤min−entropy B.

We can also use Lemma 5.2.8, although in a slightly less direct way than we did

for guessing entropy or Shannon entropy. Vulnerability is actually a convex function

[BCP09], so instead of V (π) we choose −V (π) for the concave function F of Lemma

5.2.8. Note that with this choice of F ,

F (π,C) =∑
y

p(y)F (pX ∣y) = −∑
y

p(y)V (pX ∣y) = −V (π,C).

We can then conclude that if A = BR for some channel matrix R then −V (π,A) ≥

−V (π,B) for all π, or equivalently, V (π,A) ≤ V (π,B). Therefore, L(π,A) ≤ L(π,B)

for all π so we have an alternative proof for Theorem 4.1.11.

However, A ≤min−entropy B does not imply A ⊑○ B. In fact, there exist channels

A and B such that for all π, L(π,A) ≤ L(π,B) and yet A ⋢○ B. We illustrate this

in the following example:
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Example 5.4.6. Let channels A and B be as follows:

A y1 y2

x1
2/3 1/3

x2
2/3 1/3

x3
1/4 3/4

B z1 z2 z3

x1
1/2 1/2 0

x2
1/2 0 1/2

x3 0 1/2 1/2

It can be verified using the linear programming algorithm from section VI.F of

[ACPS12] that for all π, L(π,A) ≤ L(π,B). However, A ⋢○ B, since B is invertible

and assuming that A = BR for some R we find that R = B−1A, but the unique

matrix R that results from this calculation contains negative entries and, thus, is

not a channel matrix.

Therefore, the strong min-entropy leakage ordering is strictly weaker than the

strong g-leakage ordering.

5.5 Expressing Other Leakage Measures as g-Leakages

In the previous section we showed that the strong leakage orderings with respect to

guessing entropy, Shannon entropy, and min-entropy are all implied by the strong

g-leakage ordering. In addition, we know that min-entropy leakage is the g-leakage

resulting when we choose the gid gain function. In this section we show that by

generalizing gain functions beyond what was considered in [ACPS12], we are also

able to express both guessing entropy leakage and Shannon leakage as additive g-

leakages. Additive leakage measures leakage as the difference between the posterior

and prior vulnerabilities, rather than the (logarithm of) their ratio; for min-entropy

leakage, this idea was introduced in [BCP09].
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In [ACPS12], gain functions are limited to functions g ∶ W × X → [0,1], where

W is a finite set of guesses. Here we make two major extensions: we allow the set

W to be uncountably infinite, and we allow gain functions to return values in the

range [−∞,∞).

5.5.1 Guessing Entropy Leakage as a g-Leakage

We can express G(π) as the negation of a g-vulnerability if we let W be the set of

all permutations σ of X . We can then define the gain function

g(σ,x) = −i

where i is the unique index of x within permutation σ, assumed to range from 1 to

n. Note that this gain function has range in [−n,−1].

It is easy to see that the permutation σ = (x1, x2, . . . , xn) (based on the indexing

above) realizes the “max” in the vulnerability. Hence we have

Vg(π) =max
w∈W
∑
x∈X

π[x]g(w,x)

=
n

∑
i=1

π[xi]g((x1, x2, ..., xn), xi)

=
n

∑
i=1

π[xi](−i)

= −
n

∑
i=1

iπ[xi]

= −G(π).

Note that the g-vulnerability is always negative in this case. Also, as expected, a

higher g-vulnerability corresponds to a lower guessing entropy.
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The posterior guessing entropy is the expected g-vulnerability of the posterior

distributions:

G(π,C) = ∑
y∈Y

p(y)G(pX ∣y).

Hence with theW and g that we have defined, the posterior g-vulnerability becomes

Vg(π,C) = ∑
y∈Y

p(y)Vg(pX ∣y)

= ∑
y∈Y

p(y) (−G(pX ∣y))

= −G(π,C).

Now that we know both Vg(π) and Vg(π,C), we can calculate the additive g-

leakage:

L+g(π,C) = Vg(π,C) − Vg(π)

= −G(π,C) − (−G(π))

= G(π) −G(π,C).

This last expression is exactly the guessing entropy leakage IG(π,C). Thus,

IG(π,C) can be expressed as an additive g-leakage if we allow gains outside of the

range [0,1].

Note that we could additionally ensure that we have only positive g-vulnerabilities

by adding n to all gain values, thus shifting the range to [0, n−1]. However, negative

gains will still be necessary to express Shannon entropy below.

5.5.2 Shannon Leakage as a g-Leakage

By further relaxing gain functions, we can also express Shannon entropy as a (neg-

ative) g-vulnerability.
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To do this, we let W be the (uncountably infinite) set of all probability distri-

butions q on X , and we define g by

g(q, x) = log q[x].

Since q[x] is in [0,1], this gain function has range [−∞,0].

The g-vulnerability associated to this gain function is

Vg(p) =max
q∈W
∑
x∈X

p[x] log q[x].

It turns out that Vg is realized when q = p, which implies that Vg(p) = −H(p).

To prove this, we start with the equivalent formulation

Vg(p) = −min
q∈W
∑
x∈X

p[x] log
1

q[x]
.

Then, we just need show that ∑x∈X p[x] log
1

q[x] is minimized by choosing q = p, and

that the minimum is H(p). This follows immediately from the following lemma:

Lemma 5.5.1. For all p and q, H(p) ≤∑x p[x] log
1

q[x] .

Proof. The proof can be achieved using Gibbs’ inequality [Mac03] which says that

the relative entropy or Kullback-Leibler divergence [Mac03] of distribution q from

distribution p, written DKL(p∣∣q) is non-negative. The Kullback-Leibler divergence

is a non-symmetric measure of the similarity between two probability distributions

and is defined as:

DKL(p∣∣q) =∑
x

p[x] log
p[x]

q[x]

Our proof then proceeds as follows:

∑
x

p[x] log
1

q[x]
−H(p) =∑

x

p[x] log
1

q[x]
+∑

x

p[x] log p[x]

=∑
x

p[x] log
p[x]

q[x]

=DKL(p∣∣q)

≥ 0.
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The posterior Shannon entropy is then given by

H(π,C) = ∑
y∈Y

p(y)H(pX ∣y).

Therefore, in the same way as the posterior guessing entropy, the posterior g-

vulnerability becomes

Vg(π,C) = ∑
y∈Y

p(y)Vg(pX ∣y)

= ∑
y∈Y

p(y) (−H(pX ∣y))

= −H(π,C).

With our choice of gain function, the additive g-leakage coincides with the Shan-

non leakage:

L+g(π,C) = Vg(π,C) − Vg(π)

= −H(π,C) − (−H(π))

=H(π) −H(π,C)

= I(π,C).

Note, however, that with this gain function the gain values are unbounded, so

we cannot get rid of the negative g-vulnerabilities by adding a constant to all gain

values like we suggested in the case of guessing entropy.

5.6 Compositionality of Abstract Channels

This section is a note of caution about abstract channels. The reader might be

surprised to learn that abstract channels are not compositional, meaning that the

112



abstract channel of a composition of channels cannot be determined based on the

abstract channels of its constituents. For example, given reduced channels Ar and

Br, we do not have enough information to calculate the reduced channel (AB)r of

the cascade of A and B.

To understand this, recall that an abstract channel is just a mapping from prior

distributions to hyper-distributions. Indeed, when we calculate the reduced channel

we discard all the information about the original column labels of the channel and

their order. As a consequence, if we try to cascade reduced channels Ar and Br we

will surely find ourselves in trouble. First of all, the sizes of the matrices may no

longer match to allow for matrix multiplication. But most importantly, the columns

of Ar do not represent real channel outputs and therefore it would be semantically

incorrect to match the outputs of Ar with the inputs to Br in order to deduce the

matrix of the cascade.

But this issue is not exclusive to probabilistic channels. The same thing occurs

for deterministic channels and the partitions they induce on the set of secret inputs

X . Given the partition of X induced by deterministic channel C we know that all the

inputs within a particular block of the partition map to the same output of C, but we

do not know to which one specifically. Therefore, given just the partitions induced

by deterministic channels A and B, we cannot calculate the partition associated to

AB.

However, since reducing a channel has no effect on the set of inputs or their

order, it is still possible to cascade a reduced channel matrix Br after a concrete

channel A. Curiously, by further reducing the resulting combined channel ABr we

can actually find the reduced channel (AB)r of the cascade without knowing matrix

B:

(ABr)r = (AB)r.
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We can also cascade a reduced channel after any number of cascaded channels and

obtain the reduced channel of the cascade:

(ABCr)r = (A(BCr))r = (A(BCr)r)r = (A(BC)r)r = (ABC)r.

In general, it is possible to obtain the reduced channel of the cascade in just one

step. We can formally express this property if we follow Landauer and Redmond’s

work for deterministic systems [LR93] and define the # function of any channel A

for any reduced channel Br as follows:

A#(Br) = (AB)r.

Then, we obtain the following theorem:

Theorem 5.6.1. The composition of the # functions for channels A and B is

equivalent to the # function of the cascade AB:

A# ○B# = (AB)#.

Proof. Given channels (X ,Y,A) and (Y,Z ,B), let Cr be any reduced channel from

Z . Then,

A# ○B#(Cr) = A#(B#(Cr))

= A#((BC)r)

= (A(BC))r

= ((AB)C)r

= (AB)#(Cr)

However, we remark that only the last link in a sequence of cascaded channels

can be a reduced channel.
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We end this section with a simple observation about the relationship between

composition refinement and reduced channels. Note that if A ⊑○ B, then for some re-

duced channel Cr, we have that Ar = (BCr)r. This is just an immediate consequence

of the fact that (ABr)r = (AB)r and the definition of composition refinement.

5.7 Related Work

There has long been interest in the robustness of information flow measures and

on the leakage orderings on channels that they give. Such studies can both estab-

lish and refute relationships among measures. For instance, Massey [Mas94] com-

pares Shannon entropy H and guessing entropy G, showing that G(π) > 2H(π)−2,

but that there is no interesting upper bound on G(π) in terms of H(π). Another

negative result is given by Pliam [Pli00], who shows the incomparability of Shan-

non entropy and marginal guesswork, which is the minimum number of brute-force

guesses required to guess a secret with some specified probability of success. With

respect to vulnerability and min-entropy, Santhi and Vardy [SV06] prove a bound

between posterior Shannon entropy and Bayes risk, which is the complement of

posterior vulnerability; in our notation their bound can equivalently be written as

H(π,C) ≥ − log V (π,C) = H∞(π,C). Further study of similar bounds is done by

Chatzikokolakis, Palamidessi, and Panangaden [CPP08b].

Turning to comparisons between channels, we have the results of Yasuoka and

Terauchi [YT10] and Malacaria [Mal11] described in Section 1 that establish the

robustness of partition refinement in comparing deterministic channels. For prob-

abilistic channels, Braun, Chatzikokolakis, and Palamidessi [BCP09] compare the

leakage ordering resulting form multiplicative and additive versions of min-entropy

leakage. They show that when comparing two channels on a given prior, it makes
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no difference whether multiplicative or additive leakage is used. But when channels

are compared with respect to their capacity then multipicative and additive leakage

can produce inconsistent results.

Finally, Sabelfeld and Sands [SS01] describe a partial equivalence relation or

“PER” model of security specifications, based on partitions of the hidden-value

space; and there are some similarities between their treatment of partitions and ours:

in particular, refining a PER that specifies a program’s input could be understood

as allowing the program to be less secure; and refining an output PER would require

the program to be more secure. Their extension to probability, however, does not

seem to lead to the same relation between channels as ours does.

5.8 Summary

In this chapter we looked into the mathematical foundations of quantitative infor-

mation flow. We argued that, from the information-theoretic perspective, abstract

channels are the fundamental objects of study. For when we consider the infor-

mation leakage caused by channel C, the essential fact is precisely the mapping

that C gives from prior distributions to hyper-distributions—and any of the multi-

tude of possible leakage measures can be seen as simply summarizing this mapping.

Concretely, then, we have seen that classical channel matrices contain structural re-

dundancies, and that quotienting away these redundancies leads to reduced channels.

The usefulness of the abstract-channel framework is further clarified by our study

of composition refinement, which is only a pre-order on channel matrices, but which

we have proved is a partial order on abstract channels. And, given that composition

refinement coincides with the strong g-leakage ordering (≤G), it is a partial order

with both structural and information leakage characterizations—and is therefore a
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compelling generalization (from deterministic to probabilistic channels) of partition

refinement.

Having showed the equivalence between composition refinement and the strong

g-leakage ordering, we looked at the relationship with other leakage orderings, show-

ing that composition refinement also implies strong leakage orderings with respect to

guessing entropy, Shannon entropy and min-entropy. Note that these results, com-

bined with the similar property for g-leakage [ACPS12], constitute a generalized

data-processing inequality. We also remarked that the strong min-entropy leakage

ordering is strictly weaker than (≤G), and conjectured that this is also the case for

the strong Shannon entropy ordering.

Since (≤G) implies all the strong leakage orderings with respect to guessing en-

tropy, Shannon entropy, and min-entropy, we wondered if g-leakage encompasses

all of these measures. Indeed, we already knew that min-entropy leakage is a g-

leakage, but we also proved that Shannon leakage and guessing entropy leakage can

be expressed as additive g-leakages if we extend the gain functions considered in

[ACPS12] to allow uncountably infinite sets of guesses and gain functions that take

values in the range [−∞,∞).

Finally, we remarked that abstract channels are not compositional, that is, the

abstract channel of a composition of channels cannot be determined based only on

the abstract channels of its constituents.
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CHAPTER 6

CHANNEL MATRIX FACTORIZATION

In Chapter 4, we established upper bounds on the min-entropy leakage of a

cascade of channels based on the leakage of its first link. Moreover, we proved in

Chapter 5 that composition refinement is associated to a robust leakage ordering

of channels, and that it is in fact the only way for a channel to never leak more

information than another with respect to g-leakage. In light of the significance of

composition refinement and cascading, in this chapter we set out to study techniques

for decomposing a channel matrix into the cascade of two channel matrices. Note

that if channel A can be decomposed into the cascade BR of channels B and R, we

know that B composition refines A, and that the leakage of B is an upper bound

for the leakage of A. Therefore, given a channel A, such techniques can be applied

to find a channel B such A ⊑○ B, or, in general, in the analysis and design of secure

systems.

Decomposing a channel into a cascade of two channels amounts to finding a fac-

torization of its channel matrix into the product of two channel matrices. Hence,

we are interested in solving a matrix factorization problem subject to the restriction

that both the input matrix and the resulting matrix factors are row-stochastic, that

is, their rows are non-negative and add up to one. At first glance, it may seem

that this problem can be solved using classic numerical analysis methods for matrix

decomposition. But the constraints imposed by row-stochastic matrix factorization

make such methods inapplicable. Fortunately, and quite surprisingly, it turns out

that this problem can be characterized as a non-negative matrix factorization prob-

lem (NMF), where the intent is to approximate a non-negative matrix as the product

of two non-negative ones. This observation was first pointed out by Ho and Van

Dooren [HvD08], who studied a method for NMF that preserves the row and col-
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umn sums of the input matrix. Therefore, in order to factor a channel matrix into

the product of channel matrices, we can take full advantage of the existing body of

knowledge for solving NMF.

The contributions of this chapter include showing how NMF algorithms can be

used to solve the problem of decomposing a channel into the cascade of two channels.

We also describe a procedure that uses basic matrix multiplication properties to

obtain a factorization of a channel matrixA into the product of two channel matrices,

given a non-negative factorization of A. This procedure is directly derived from the

proof from Ho and Van Dooren [HvD08] that any non-negative factorization of a row-

stochastic matrix A is associated to a row-stochastic factorization of A. Finally, we

suggest scenarios where channel matrix factorization can be applied to the analysis

and design of secure systems.

Throughout this chapter we use the following notation. For any matrix X we

denote the entry at the i-th row and j-th column with X[i, j]. Similarly, for any

vector p we denote its i-th entry as p[i]. We also use the notation A(i) to refer to the

i-th row of matrix A. In order to specify the dimensions of a matrix X of m rows

and n columns we will write X(m ×n). Finally, argminx f(x) denotes the function

that returns the values of x that minimize function f .

For a review of the linear-algebraic concepts we use in this chapter we recommend

referring to Section 2.5.

The rest of this chapter is organized as follows. Section 6.1 gives a formal

treatment of the channel matrix factorization problem. Section 6.2 describes a

procedure to obtain a channel matrix factorization given a non-negative matrix

factorization, and proposes a solution to the channel matrix factorization problem

using non-negative matrix factorization with the generalized Kullback-Leibler (KL)

divergence. Section 6.3 is a survey of the existing algorithms for solving NMF with
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the generalized KL divergence. Section 6.4 explains how to apply channel matrix

factorization to the analysis and design of secure systems. Finally, Section 6.5

presents related work, and Section 6.6 summarizes the chapter.

6.1 Channel Matrix Factorization

We consider the problem of factoring a channel matrix into the product of two

channel matrices. This is a matrix decomposition problem subject to the restriction

that both the input matrix and the resulting factors are row-stochastic. A matrix

A(m × n) is row-stochastic if its rows are non-negative and add up to one, that is,

for any row index i,
n

∑
j=1

A(i)[j] = 1.

We remark that, in general, an exact factorization of a channel matrix A(m×n)

into channel matrix factors B(m × r) and R(r × n) might not exist for a specified

factorization rank r, particularly if r ≤ min(m,n). To understand this, it is conve-

nient to view matrix multiplication from a row-wise perspective: if A = BR, then

row i of matrix A is a linear combination of the rows of R with coefficients in row i

of B. Formally,

A(i) = B(i)R =
r

∑
k=1

B(i)[k]R(k).

But the rows of matrix B are stochastic vectors and, therefore, constitute sets of

convex coefficients. Hence, the rows of A are convex combinations of the rows of R.

Geometrically, this means that when solving a channel matrix factorization problem

we are interested in finding the vertices of a convex polytope (rows of R) that falls

within the space of probability distributions (so that the rows of R are stochastic

vectors) and that, at the same time, contains all of our original data points (rows

of A). Clearly, if r <min(m,n), such polytope might not exist.
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Therefore, we formulate the channel matrix factorization problem as that of

approximately factoring a channel matrix A into the product of two channel matrix

factors B and R. It is also important in our formulation to specify the rank of

the factorization, which is the number of rows of the second matrix factor R, or

equivalently, the number of vertices of the convex polytope that we want to find.

We will also refer to the rows of matrix R as the basis vectors of the factorization.

Formally, we define the channel matrix factorization problem as follows:

Problem 6.1.1 (Channel matrix factorization). Given a channel matrix A(m ×n)

find channel matrix factors B(m × r) and R(r × n) such that r ≤min(m,n) and:

A ≈ BR.

Notice that because the rows of both B and R are stochastic vectors, any ap-

proximate solution Ã = BR is also necessarily row-stochastic.

The problem of channel matrix factorization can also be expressed as an opti-

mization problem where we want to minimize some measure of dissimilarity between

our original data matrix A and the resulting decomposition BR. Let f be our dis-

similarity function. Then, we can formally define the optimization problem as:

Problem 6.1.2 (Channel matrix factorization as an optimization problem). Given

a channel matrix A(m×n) find channel matrix factors B(m× r) and R(r ×n) such

that r ≤min(m,n) and f(A,BR) is minimized with respect to B and R.

Classic methods for matrix factorization such as LU, QR, or singular value de-

composition [GVL12] cannot be applied to solve row-stochastic matrix factorization

because they do not guarantee that the resulting factors will be non-negative, much

less row-stochastic.

122



Our problem is closer to that of non-negative matrix factorization (NMF) [LS01]

[PT94], where both the input matrix and the factors are bound to be non-negative.

Formally, NMF is defined as:

Problem 6.1.3 (Non-Negative Natrix Factorization). Given a non-negative matrix

X(m × n) find non-negative matrix factors W (m × r) and H(r × n) such that r ≤

min(m,n) and:

X ≈WH.

Similarly, NMF can be expressed as an optimization problem, by choosing a

dissimilarity function f as follows:

Problem 6.1.4 (NMF as an optimization problem). Given a non-negative matrix

X(m × n) find non-negative matrix factors W (m × r) and H(r × n) such that r ≤

min(m,n) and f(X,WH) is minimized with respect to W and H.

At first glance, it may seem that the additional condition of row-stochasticity

imposed by channel matrix factorization results in a much harder problem than

NMF. However, in the next section we will show that, contrary to our intuition,

given a non negative matrix factorization of a channel matrix A it is easy to obtain

also a channel matrix factorization. This will allow us to take advantage of existing

numerical optimization algorithms for solving NMF.

6.2 Non-Negative Matrix Factorization Characterization

Ho and Van Dooren [HvD08] proved that given a factorization of a row-stochastic

matrix A into non-negative—but not necessarily row-stochastic—factors W and H

it is possible to obtain row-stochastic factors B and R so that A = BR. Their proof

is part of a more general theorem stating that any non-negative factorization WH of
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a matrix A has the form WH = PDR where P is column-stochastic, D is diagonal

non-negative, and R is row-stochastic. Furthermore, if A is row-stochastic, then

matrix PD is also row-stochastic. Similarly, if A is column-stochastic, then matrix

DR is also column-stochastic.

Based on their proof, in Algorithm 1 we present a procedure for transforming

a non-negative matrix factorization of a channel matrix into a channel matrix fac-

torization. Given a channel matrix A, and a non-negative factorization A = WH ,

the algorithm first normalizes the rows of H to obtain a channel matrix R. Then,

it pushes the normalization constants into matrix W to obtain a channel matrix B.

The output matrices B and R then satisfy BR =WH .

Algorithm 1 Convert NMF to channel matrix factorization

Require: non-negative matricesW (m×r), H(r×n) such thatWH is row-stochastic
Ensure: channel matrices B(m × r), R(r × n) such that BR =WH

1: B ← 0(m × r)
2: D ← 0(r × r)
3: R ← 0(r × n)
4: { Build diagonal matrix D with row sums of H }
5: for k = 1 to r do

6: D[k, k] =∑
n
j=1H

(k)[j]
7: end for

8: { Normalize rows of H to obtain R }
9: for k = 1 to r do

10: for j = 1 to n do

11: R(k)[j] = H(k)[j]
D[k,k]

12: end for

13: end for

14: { Push row sums of H into W to obtain B }
15: B ←WD

16: return B,R

The following proof of the correctness of Algorithm 1 is a more leisurely written

version of Ho and Van Dooren’s original proof, simplified for the particular case of

row-stochastic matrices.
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Proof. After the loop in line 5, D is a diagonal matrix with the row sums of H on

its diagonal. Then, the loop in line 9 normalizes the rows of H by dividing each row

by the row sums stored in matrix D. Since multiplying on the left by a diagonal

matrix scales the rows of a matrix by the factors in the diagonal, at this point W ,

D, and R satisfy:

WH =W (DR).

Then, on line 15 we set B to be the product of matrices W and D. Consequently,

after this step, the matrix product BR is equal to the input matrix WH :

WH =W (DR) = (WD)R = BR.

So far we have proved that R is row stochastic and that BR =WH . Furthermore,

we know that B must be non-negative, because that is the case for both matrices

W and D. We now need to show that matrix B is also row-stochastic. We can see

this by considering that both WH = BR and R are row-stochastic. Then, it follows

that the rows of B must add up to one:

r

∑
k=1

B[i, k]

= ≪ the rows of R sum to one≫
r

∑
k=1

B[i, k]
n

∑
j=1

R[k, j]

= ≪ distributive law≫
r

∑
k=1

n

∑
j=1

B[i, k]R[k, j]

= ≪ associativity≫
n

∑
j=1

(
r

∑
k=1

B[i, k]R[k, j])

= ≪ definition of matrix multiplication≫
n

∑
j=1

(BR)[i, j]
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= ≪ the rows of BR sum to one≫

1

We now present an example of how to transform a non-negative matrix factor-

ization of a channel matrix, into a channel matrix factorization.

Example 6.2.1. This example illustrates how to obtain a channel matrix factoriza-

tion of a channel matrix A given a non-negative factorization A =WH. We follow

the steps in Algorithm 1.

A y1 y2 y3

x1
7/10 0 3/10

x2 0 5/8 3/8

x3
7/15 5/24 13/40

=

W z1 z2

x1 0 3/5

x2
3/4 0

x3
1/4 2/5

⋅

H y1 y2 y3

z1 0 5/6 1/2

z2 7/6 0 1/2

=

W z1 z2

x1 0 3/5

x2
3/4 0

x3
1/4 2/5

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D z1 z2

z1 4/3 0

z2 0 5/3

⋅

R y1 y2 y3

z1 0 5/8 3/8

z2 7/10 0 3/10

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

W z1 z2

x1 0 3/5

x2
3/4 0

x3
1/4 2/5

⋅

D z1 z2

z1 4/3 0

z2 0 5/3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

R y1 y2 y3

z1 0 5/8 3/8

z2 7/10 0 3/10

=

B z1 z2

x1 0 1

x2 1 0

x3
1/3 2/3

⋅

R y1 y2 y3

z1 0 5/8 3/8

z2 7/10 0 3/10
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Hence, in order to obtain a channel matrix factorization of a channel matrix A

we can use NMF techniques to first find a non-negative factorization A =WH , and

then follow Algorithm 1 to finally obtain channel matrix factors B and R. There is

of course the challenge that NMF techniques generally return approximate factor-

izations of the original input matrix, so the approximation WH is not guaranteed

to be row-stochastic. However, Ho and Van Dooren [HvD08] also showed that when

the generalized KL divergence, defined below, is used as a dissimilarity function for

NMF, the outputs of NMF algorithms preserve the row sums and column sums of

the input matrix. In particular, this implies that if matrix A is row-stochastic, the

approximation factors W and H are also row-stochastic. Therefore, in order to solve

row-stochastic matrix factorization, we can leverage the existing literature of NMF

with the generalized KL divergence.

The generalized KL divergence [CZPA09], also known as I-divergence, from ma-

trix A to matrix B is defined as:

D(A∣∣B) =∑
i,j

(A[i, j]log
A[i, j]

B[i, j]
−A[i, j] +B[i, j]).

D(A∣∣B) is a measure of the bits of information lost when B is used to approximate

A. Some properties of D(A∣∣B) include that it is non-negative and that it is zero if

and only if A = B. The generalized KL divergence is also not symmetric in A and

B in the sense that D(A∣∣B) ≠ D(B∣∣A).

The generalized KL divergence belongs the class of Csiszár f -divergences, to the

class of Amari alpha-divergences, and to the class of beta-divergences. It is also a

Bregman divergence, and it reduces to the KL divergence DKL when the entries in

both A and B are non-negative and sum to 1.
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The problem of NMF with the generalized KL divergence can be formalized as

follows:

Problem 6.2.2 (NMF with the generalized KL divergence). Given a non-negative

matrix X(m×n) find non-negative matrix factors W (m×r) and H(r×n) such that

r ≤min(m,n) and D(X ∣∣WH) is minimized with respect to W and H. That is, find

W and H that are a solution to:

argminW≥0,H≥0D(X ∣∣WH).

Let KL-NMF be some algorithm for solving problem 6.2.2. Using KL-NMF

we can construct a procedure for solving the channel matrix factorization problem

when the generalized KL divergence is the dissimilarity function. We present this

procedure in algorithm 2.

Algorithm 2 Channel matrix factorization with the generalized KL divergence

Require: channel matrix A(m × n), factorization rank r ≤min(m,n)
Ensure: channel matrices B(m×r), R(r×n) that are local minimizers ofD(A∣∣BR)
1: W,H ← KL-NMF(A,r)
2: Convert WH to channel matrix factorization BR using Algorithm 1
3: return B,R

We should remark that problem 6.2.2 is not convex in both W and H at the

same time [LS01], so numerical optimization methods are not guaranteed to find a

global minimizer of the dissimilarity function. Nevertheless, the dissimilarity func-

tion becomes convex if we fix either W or H . Existing algorithms for solving NMF

with the generalized KL divergence take advantage of this property but can only

guarantee to return a local minimizer of the dissimilarity function. Fortunately,

these local minimizers are, in fact, the set of matrices that Ho and Van Dooren

[HvD08] showed that preserve the row sums of the input matrix.

Another aspect that adds to the complexity of problem 6.2.2 is the possibility of

multiple global minimizers of the dissimilarity function. However, as described by

128



Cichocki et al. [CZPA09, section 1.3.2], this problem is mitigated (except for scaling

and permutation ambiguities) when the input matrix X is normalized. Such is the

case of row-stochastic matrices.

In the next section we present a brief survey of the existing techniques for solving

NMF with the generalized KL divergence.

6.3 Algorithms for Solving NMF with the Generalized KL

Divergence

Since Lee and Seung proposed the first algorithm for solving NMF with the general-

ized KL divergence [LS01], researchers have come up with a variety of numerical ap-

proximation methods to solve the problem. Such methods can be classified based on

the technique used to optimize the dissimilarity function. The most widespread tech-

niques include multiplicative update rules, projected gradients, and quasi-Newton

optimization [CZPA09].

Algorithms that use multiplicative update rules follow an iterative procedure

where one of the matrices W or H is fixed while the other one is optimized by mul-

tiplying each of its entries by some factor. Lee and Seung’s original algorithm

[LS01], which uses this technique, can be understood as following a diagonally

scaled gradient descent approach where we alternate between optimizing W and

H . Another algorithm that falls into this category include the alpha SMART algo-

rithm [CAZ+06, CZA06], which is based on the more general Amari alpha-divergence

[CZPA09]. This algorithm optimizes the parameters using exponentiated gradient

descent and provides a better convergence rate and efficiency than the method of

Lee and Seung. Also, a multiplicative algorithm was recently proposed by Févotte

and Idier [FI10] that handles the general case of the beta-divergences.
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In contrast to multiplicative update rule algorithms, projected gradient algo-

rithms use additive update rules to optimize the matrices W and H . Such algo-

rithms alternate between optimizing W and H using the gradient descent method.

Then, after each update step, all negative elements in either W or H are set to

zero. The projected gradients method was first suggested by Lin [Lin07], but only

developed for the case of the squared Euclidean distance. More recently, Yang et

al. [YZYO11] proposed a version of the projected gradients method for optimizing

the original KL divergence DKL(X ∣∣WH). They argue that when the input ma-

trix has been normalized—as in the case of row-stochastic matrices—we can replace

the generalized KL divergence with the original KL divergence as the dissimilarity

function for NMF. Their paper also discusses some experiments where the proposed

algorithm results in better approximations and faster running times than previously

studied algorithms.

Quasi-Newton optimization methods are second order optimization methods,

that is, they not only rely on the gradient of the dissimilarity function—which

indicates the direction of the steepest descent—but also on its curvature. This

additional consideration is aimed to help the algorithm find better solutions and

improve the convergence rates. An example of this kind of method is the NMF

with projected quasi-Newton optimization for alpha-divergences [ZC06]. At each

optimization step, this algorithm sets the negative entries in the factors W and H

to zero in order to enforce the non-negativity constraint.

Some challenges in the implementation of the previous algorithms include initial-

izing the matrix factors W and H , choosing the learning rate for gradient descent

based algorithms, and specifying stopping criteria. Due to the non-convex nature of

the problem, NMF algorithms tend to be sensitive with respect to these parameters.

See [CZPA09] for a survey of techniques for handling these problems.
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Researchers have also made available software packages with implementations

of NMF algorithms. For instance, nmfpack by Hoyer [Hoy06] and NMFLAB by

Cichocki and Zdunek [CZ06] provide MATLAB® implementations of a variety of

NMF algorithms.

6.4 Applicability

The channel matrix factorization technique from Algorithm 2 can be used to find

channels that composition refine a given channel. Even though Algorithm 2 only

guarantees to return a factorization that locally minimizes the dissimilarity function,

this procedure may still find an exact factorization if it does exist.

To illustrate this, we implemented Algorithm 2 using the multiplicative update

rules NMF algorithm from Lee and Seung [LS01]. Using this implementation, we

were able to find the following exact factorization of matrix A from Example 6.2.1,

by choosing r = 2:

A y1 y2 y3

x1
7/10 0 3/10

x2 0 5/8 3/8

x3
7/15 5/24 13/40

=

B z1 z2

x1 1 0

x2 0 1

x3
2/3 1/3

⋅

R y1 y2 y3

z1 7/10 0 3/10

z2 0 5/8 3/8

Of course, we already knew that matrix A above has an exact factorization with

factorization rank 2. But it is generally unknown which factorization rank would

result in an exact factorization. One approach for addressing this challenge is to ex-

ecute multiple runs of the algorithm with different factorization ranks. For example,

we executed our implementation of Algorithm 2 for each possible factorization rank

of a channel matrix A(20×20) generated by multiplying a channel matrix B(20×5)

and a channel matrix R(5×20). Figure 6.1 shows the resulting generalized KL diver-
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Figure 6.1: D(A∣∣BR) for each factorization rank of a channel matrix A(20 × 20).

gence for each run. As expected, we can observe that the divergence is (practically)

zero starting at a rank of 5.

We can motivate another possible usage scenario of channel matrix factoriza-

tion by recalling that the min-capacity of a cascade of channels A = BR is upper

bounded by the (logarithm of the) number outputs of channel B. Hence, if we can

approximately factor A into the channel matrix product Ã = BR with factorization

rank r, the min-capacity of Ã is at most log r. Based on this observation, a potential

application of Algorithm 2 is in statistical disclosure control [Geh10], where the in-

tent is to reveal accurate statistics about a set of individuals while preserving their

privacy. The idea would be to model a sensitive query as a channel matrix A, and

then find an approximate channel matrix factorization Ã of A with a factorization

rank r chosen according to the maximum amount of min-entropy leakage desired.
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Then, the approximation Ã can be used instead of A in order to provide formal

information flow security guarantees.

6.5 Related Work

An NMF problem that appears to be similar to that of channel matrix factoriza-

tion is Convex-NMF [DLJ10], a method that is used for data clustering. The goal

in Convex-NMF is to find a decomposition of a non-negative matrix X into non-

negative matrix factors W and H , such that the rows of H are convex combinations

of the rows of X . Therefore, with Convex-NMF, the rows of H fall within the

convex hull of the rows of X . But this is an unnecessary restriction for channel

matrix factorization, where the intent is actually the opposite: to find a channel

matrix H such that the rows of X fall within the convex hull of the rows of H . Note

that, in general, attempts to solve channel matrix factorization using data clustering

algorithms results in the same issue.

We also considered using principal component analysis (PCA) [Shl05] to solve

the problem of channel matrix factorization. PCA is a statistical procedure for di-

mensionality reduction of a data set. Given a set of points in Rn, PCA finds an

orthonormal basis that minimizes the approximation errors that result from pro-

jecting the original data points on the lower-dimensional subspace spanned by the

first k basis vectors. The vectors of this basis are referred to as the principal compo-

nents. PCA lets the first principal component lay on the axis where the projections

of the points exhibit the highest variance. The subsequent principal components are

chosen in decreasing order of variance.

In order to factor a channel matrix A into the channel matrix product BR we

could think of using principal component analysis to first reduce the dimensionality
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of the rows of matrix A based on the desired factorization rank, and then use a

convex hull algorithm to find the vertices of a convex polytope that contains the

lower-dimensionality data set. However, both the lower-dimensionality data set,

and the vertices of the convex polytope may fall outside of the space of stochastic

vectors. Furthermore, restricting the convex hull algorithm to choose only stochastic

vectors may result in a greater loss of precision.

6.6 Summary

We have described a general method for approximately factoring a channel matrix

into the product of two channel matrices. Such method relies on existing algorithms

for solving the NMF problem with the generalized KL divergence, and is based on

the proof from Ho and Van Dooren [HvD08] that any non-negative factorization

of a row-stochastic matrix is associated to a row-stochastic factorization. We also

presented a brief survey of the existing algorithms for solving NMF with the gener-

alized KL divergence, and classified them according to the numerical optimization

method used for minimizing the dissimilarity function. Finally, we pointed out some

readily available libraries for solving NMF with the generalized KL divergence, and

identified some scenarios where channel matrix factorization can be applied to the

analysis and design of secure systems.

6.7 Credits

The findings that I have presented in this chapter are the result of a paper I wrote

for the Data Mining class I took during Fall 2011 under the supervision of Prof. Tao

Li.
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The characterization of channel matrix factorization using principal component

analysis discussed in the related works section is the result of an earlier paper that

I wrote for the Topics in Algorithms class I took during Spring 2010 under the

supervision of Prof. Giri Narasimhan.
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CHAPTER 7

CONCLUSION

In this thesis we have addressed four research problems in the area of quantitative

information flow: (1) exploring the perspective that secrecy can be viewed as a

resource that is gradually consumed by a system, (2) analyzing the information

flow of combined channels, (3) determining the conditions that give rise to a robust

leakage ordering of channels, and (4) studying techniques for factoring a channel

matrix into the product of channel matrices.

We began our study by considering the consumption of secrecy in a system.

After choosing min-entropy as our measure of secrecy, we looked into three different

models for its consumption: a new dynamic model of min-entropy leakage that

quantifies the information flow in a single run of the system, a new worst-case run

model, and the generally discussed average-case model. We found that min-entropy

does not behave as a reasonable resource in the dynamic model, since an adversary

that tries to guess the value of the secret may find that its level of secrecy has

increased after observing the output of the channel. We also remarked that the

dynamic model makes policy enforcement difficult, in that stopping a potential leak

during the execution of the system may actually reveal information about the secret.

We then moved on to study the worst-case model, and found that min-entropy does

behave as a resource in this case. However, a drawback of focusing on the leakage of

the worst-case output of the channel is that the measurements end up being overly

sensitive to bad outputs of the system that are possibly highly unlikely, as is the

case of an adversary that guesses the correct password for a particular user. We

thus looked back at the average-case model of min-entropy leakage, which apart

from conforming to the viewpoint of secrecy as a resource, does not exhibit any of

the drawbacks of the previous models. Even so, the worst-case model may still be of

136



interest depending on the scenario being studied, as highlighted by the information

flow analysis of the Crowds anonymity protocol which we discussed. Moreover, it

might be useful to keep in mind that the worst-case min-entropy leakage gives an

upper bound for the average min-entropy leakage and, therefore, for the min-capacity

of a channel.

Having considered the min-entropy consumption within a system, we moved

on to study its consumption when multiple systems are combined. We showed

that min-entropy leakage satisfies a number of compositionality results that allow

the leakage of a complex system to be bounded by the leakage of its constituents.

First of all, we proved that the min-entropy leakage of a cascade of two channels

is upper bounded by the min-entropy leakage of the first channel. However, such

upper bound does not hold with respect to the second channel of the cascade. But

when we turned our attention to min-capacity, we found that both channels of the

cascade behave as bottlenecks to the information flow of the combined channel.

Moving on to other channel composition operators, we studied the information flow

when repeated independent runs of a channel are allowed, showing that the min-

capacity of the combined channel grows logarithmically with respect to the number

of runs, a result that was first proved by Köpf and Smith within the context of

timing attacks against a cryptosystem. Regarding the min-entropy leakage in an

adaptive composition of channels, we reviewed the results from Barthe and Köpf

who showed that the min-capacity of the combined channel is upper bounded by

the sum of the min-capacities of both channels. Going further, we analyzed the

case of non-adaptive composition where the second channel ignores the output from

first one, extended the upper bound from Barthe and Köpf to the general case of

n adaptive and non-adaptive compositions, and showed that these more general

bounds cannot be strengthened.
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The leakage bounds for combined channels that we have presented here could

possibly facilitate the development of compositional analysis and design techniques

for secure systems. In fact, upper bounds on the capacity of a cascade and on

the capacity of a repeated independent runs channel had already been used by

Köpf and Smith to establish formal bounds on the leakage of a timing side channel

attack against a cryptosystem that is protected by blinding and bucketing. Fu-

ture work should study leakage bounds of repeated independent runs channels and

adaptive compositions of channels with respect to other leakage measures, besides

min-entropy leakage.

The third research problem that we set out to solve could also be useful in the

development of secure software. Indeed, knowing that a channel is always more

secure than another regardless of prior distribution or leakage measure is necessary

if we aim to develop secure software through stepwise refinement. In this thesis

we showed that whenever channel A is the cascade of channels B and R for some

channel R, that is, whenever A is composition refined by B, then the leakage of

B is an upper bound for the leakage of A for any of the usual leakage measures.

Note that this property is a generalized data-processing inequality. Moreover, we

proved that composition refinement is in fact a partial order on abstract channels,

which are formed by quotienting away the redundant structure of channels as far

as information leakage is concerned. These results are further complemented by the

proof that composition refinement is the only way for channels to satisfy a leakage

ordering with respect to g-leakage regardless of the prior distribution or the choice

of gain function. It is then clear that cascading plays a crucial role in establishing

the leakage ordering of channels.

The significance of composition refinement is further highlighted by noticing its

connection to partition refinement. Recall that, composition refinement coincides
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with partition refinement on deterministic channels. Furthermore, like partition re-

finement, it is associated to a robust leakage ordering on channels; although partition

refinement is limited to the realm of deterministic channels. Therefore, composition

refinement can be seen as a generalization of partition refinement from determin-

istic to probabilistic channels. However, there are some discrepancies. First of all,

leakage ordering regardless of the prior with respect to min-entropy leakage alone

is not sufficient to guarantee composition refinement. Similarly, it is likely that this

is also the case for Shannon leakage. Finally, it should be noted that preliminary

investigations suggest that composition refinement is not a lattice, as is the case

with partition refinement. Future work should confirm this conjecture and analyze

its implications for the quantitative information flow analysis of programs.

Another interesting result that we encountered along the way is that both guess-

ing entropy leakage and Shannon leakage can be expressed as additive g-leakages if

we allow uncountably infinite sets of guesses and gain functions that take values in

the range [−∞,∞). Recall that additive g-leakage measures leakage as the differ-

ence between the posterior and prior g-vulnerabilities, rather than the logarithm of

their ratio. Relevant future work is then about the mathematical properties of addi-

tive g-leakage and the implication of relaxing the restrictions originally imposed on

the gain functions. It would also be interesting to determine whether min-entropy

leakage can be expressed as an additive g-leakage.

Finally, we remarked that the abstract channel of a composition of channels

cannot be determined based only on the abstract channels of its constituents, a result

that discourages the usage of abstract channels for the purpose of compositional

program analysis.

The last of our four research problems, channel matrix factorization, was moti-

vated by the key roles that cascading and composition refinement play in the foun-
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dations of quantitative information flow. Our study of channel matrix factorization

resulted in proposing a general procedure for approximately factoring a channel

matrix into the product of two channel matrices. We found that, as described in

the data mining literature, any exact non-negative factorization of a row-stochastic

matrix is associated to a row-stochastic factorization. Furthermore, we learned

that whenever the generalized KL divergence is used as a dissimilarity function for

non-negative matrix factorization of a row-stochastic matrix, the solutions are also

row-stochastic. Hence, our procedure for channel matrix factorization relies on ex-

isting algorithms for solving the non-negative matrix factorization problem with the

generalized KL divergence.

Channel matrix factorization can be applied in the analysis and design of secure

systems. For instance, we discussed its application to the problem of finding a

channel that composition refines a particular channel. We also suggested its usage

in the area of statistical disclosure control, where the goal is to reveal accurate

statistics about a set of individuals while preserving their privacy.
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