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ABSTRACT OF THE THESIS

DEVELOPMENT OF DISTRIBUTED GENERATION INFRASTRUCTURE FOR

MICROGRID CONNECTIVITY TO OPERATIONAL POWER SYSTEMS

by

Nayeem Mohammad Abdullah

Florida International University, 2010

Miami, Florida

Professor Osama A. Mohammed, Major Professor

Distributed Generation (DG) from alternate sources and smart grid technologies

represent good solutions for the increase in energy demands. Employment of these DG

assets requires solutions for the new technical challenges that are accompanied by the

integration and interconnection into operational power systems.

A DG infrastructure comprised of alternate energy sources in addition to

conventional sources, is developed as a test bed. The test bed is operated by

synchronizing, wind, photovoltaic, fuel cell, micro generator and energy storage assets, in

addition to standard AC generators. Connectivity of these DG assets is tested for viability

and for their operational characteristics. The control and communication layers for

dynamic operations are developed to improve the connectivity of alternates to the power

system. A real time application for the operation of alternate sources in microgrids is

developed. Multi agent approach is utilized to improve stability and sequences of actions

for black start are implemented. Experiments for control and stability issues related to

dynamic operation under load conditions have been conducted and verified.
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1. INTRODUCTION

1.1. Literature Review

Technological advances have led to a greater to utilization of power froi

renewable sources. The recent improvements in the power electronics field and switchin

devices are enabling us to control power at greater levels with a faster response.

The increase in energy demands, coupled with constraints on investments i

conventional power generation plants and ecological issues have led to increased calls f<

the integration of non-conventional energy sources in the existing power system. TI

integration of non-conventional sources can be in many forms such as clusters <

generators as micro-grids, collection of microgrids as smart grids, distributed generato:

and embedded generating stations. Most of these sources are installed and located at loe

centers, with a primary intention to meet the local demand for uninterruptible, clean ar

cheap energy with increased reliability. These sources are synchronized with the mai

grid so as to draw power from it in case of shortage and inject power into it during e

excess generation period [1- 3].

All these factors promise a great future for the power system and for tI

consumer, but these technologies can add as many challenges as they may try to sole

[4]. The present power system is a complex network of many interconnected systen

operating in various geographical locations, virtually presenting a synchronize

mechanical system. The non-conventional sources are mainly power electronic devi(

based systems with a much lower response time, posing serious synchronization issue
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The geographical distribution of these micro sources also presents a lot of co-ordinatior

and control issues. The major branches of the power system, generation, transmission.

distribution, control, optimization and tariff, need to be reassessed in light of distribute

and micro, non-conventional sources.

A lot of research efforts are directed towards improving the technology of th(

non-conventional sources, distributed generation and microgrids to enable smootl

integration to the power system. Most of the work is based on simulation and in cases o

hardware implementation, only a certain component is verified. It is an important concert

to verify the results in response to a control action of a component or a system as a resul

of applying a procedure to connect distributed resource to the power system to verify th<

effects of integration.

The increase in the demands for energy is pushing the present generation an(

transmission systems to their limits. In addition, the cost of increasing the capacity of th<

conventional power plants is very high and, is concentrated on one company o

organization. The ecological problems caused by pollution due to the conventiona

sources and pollution from coal and oil based fuel is also forcing the governments o

various countries to look for alternative options.

Adding to all this, the losses suffered by power companies during black outs an<

brown outs are very high and render normal life services difficult where everythinj

depends on electricity. This has led to the concept of distribution in generation center

and also a call for independent generation. Although deregulation in developed countrie

has helped in competition among the power companies benefitting the consumers, ther,
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is still ground to be covered to provide continuous and independent energy. This has led

the consumer to start utilizing micro sources, which provide a cheap and clean energy

option at small cost in the long run.

All these factors are driving the present power systems towards integration of

non-conventional micro-sources of energy. These sources will be distributed among the

load centers and in wide areas geographically, with comparatively small amount of

generation capability. The present centralized control architecture of the power system

will have to give way towards distributed and decentralized control architecture, with

independent agents making the decisions based on the persisting conditions. This will

reduce any manual errors and also the time for decision making. This improvement in

control architecture will suffice to provide continuous energy supply for consumers even

during faults on the main grid. In addition, it will also reduce the errors which were

responsible for black outs. The examples for these are the 2001 and 2003 black outs in

New York and 2008 brown out in Miami. It will also play a great role in reducing the

losses caused by natural calamities such as lightening strikes and wind storms etc as seer

in India and Africa [5-6].

The present sources for harnessing power are based on fossil fuels, hydro anc

nuclear sources. Power plants using these sources are located at a distance from the loac

center, with distance based on the type of fuel used, availability of areas and other

facilities.

The renewable energy sources are based on solar, wind, hydro, geo-thermal anc

tidal forms of energy. These sources are generally tapped by PV arrays, wind generatiot

farms, fuel cells and special machines to harness the power. As the power utilized by th<
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consumers is at a fixed A.C. voltage and frequency, most of these systems depend

heavily on power electronics to convert the power from DC or from varying AC to fixed

frequency and voltage AC.

The future trend focuses on integrating these sources along with the conventional

sources at load centers. This presents the general concept of a Microgrid, a cluster of

internal generation and loads, functioning in synchronism with the main grid. As these

sources are located around the load centers, unlike the conventional generation plants,

these are comparably smaller in quantity and are distributed among vast geographical

areas, hence, are also called distributed resources. However, there lies a subtle difference

between the distributed generation and microgrids. Microgrids are combination of

resources, which could be non-conventional and distributed, and load centers with certain

logic's of operation, whereas distributed generation refers to all kinds of smaller

generating systems such as dedicated wind, PV farms, gas turbines, micro generators,

fuel cells and combustion generators irrespective of them making and alliance with the

load centers [7-8].

1.2. Grid Integration Challenges with Sustainable Energy
Resources

Benefits of integrating distributed resources with the power system cannot be

achieved without solving the technical issues concerning the operation of these resources.

The operational challenges which provide roadblocks for integrating the distributed

resources with the power system are presented in this section.
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The microgrid and distributed generation present feasible and practical solution to

the increasing energy demand. However utilities are cautious in integrating dispersed

generating units to their system [9]. Microgrid integration challenges can be broadly

classified into two categories:

a.) Technical Challenges: Issues such as safety, security, islanding, restoration

from scheduled and unscheduled shut downs, control, stability, protection co-

ordination, capacity and reserve management, reliability and power quality

liability, cost development in the needed interconnection technologies are all

among the urgent concerns needing to be addressed [10]

b.) Non-Technical Challenges: Issues pertaining to pricing incentives, decision

priority, risk responsibility and insurance for new technologies adaptation,

interconnection standards and regulatory control and addressing barriers.

The following sections present the technical and non-technical challenges from the

perspective of utility company and Independent Power Producer (IPP) [11].

1.2.1. Issues affecting the Main Grid Performance

1.) Control Problem: As discussed earlier the normal operation of the power

system depends on the satisfaction of the various network constraints. However, the

integration of microgrids and distributed generations increases the complexity. In case of

a conventional power system the constraints and variables of operation are controlled by

the utility operators. In case of a power system with microgrids and distributed

generation not just the power system but also the microgrid should satisfy the constraints

of the individual network as well the mutual constraints at the point of integration. This

5



poses new challenges as the network constraints such as voltage and frequency are to be

maintained not just by the power system utility but also by the microgrid.

2.) Scheduling: In centralized power management, scheduling is an important

factor for the reliability of the energy supply. Integrated operation of distributed

resources puts a concern on this issue with respect to the utility company as most of the

non-conventional sources are non-dispatchable sources such as wind and PV array. In

case of these systems a special scheduling and dispatching terminology is required.

3.) Protection: Traditionally electricity distribution allows a unidirectional

power flow and the feeders are protected with unidirectional protection gear. MG can be

integrated with distribution network in two distinctive modes. In the first mode the MG

only draws the difference of local generated power and local loads and during any

disturbance isolates itself as an Islanded power system. In this mode there is no injection

of power into the main grid. Second mode is grid connected power injection and power

drawing mode where the MG feeds the excess generated power into the main grid, or

draws from the microgrid during deficiency. In this case the power flow is bidirectional,

concerning about requirements of a manipulated distribution system to allow MG

operation. Also in case of interconnection protection and communication infrastructure

functionality and reliability have to be addressed by both utility and IPP. Relays are

normally used to provide zonal protection and are independently protecting each zone

without any cross-communication between the zones. After integration a dynamic

communication layer is required or intelligent agents are required to assess the situation

for decision making.
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4.) Transmission Congestion: In the present system, the economic dispatch

also considers the losses in the transmission lines to balance the load and demand, with

the integration of MGs this issue has to be addressed. Also the congestion and loading

limits of the transmission lines are to be considered.

5.) DG Penetration: The maximum penetration level of the DG which will let

the utility compromise on the stability and reliability has been estimated up to 25% by

many researchers.

6.) Cost Sharing: The commercial viability of the microgrid concept should

be mutually beneficial for the IPP and also for the utility company. The profit and loss

sharing as well as investment costs need to be assessed in a suitable way. Generally some

microgrid models deploying wind generators draw reactive power from the main grid

even in case of grid synchronized power injection mode. There needs to be a strategy to

properly distribute the profits which requires real time online calculation. Another

problem faced is the dispatching and scheduling of power from the MGs. As most of the

MG sources are non-dispatchable it creates a problem for the utility company for unit

commitment and dispatch. There have been some efforts to address the unit commitment

problems in microgrids [12] however they are needed to be tested in a real time

environment and are present analysis work is rudimentary.

As solutions are being developed for the above mentioned concerns, there needs

to be a platform to verify the solutions and assess their reliability before implementing

them in the present power system.
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1.2.2. Issues for Microgrid Energy Sharing and Power Quality

1.) Voltage and Frequency Management: In case of grid connected operation,

the microgrid considers the frequency and voltage of the main grid for reference. The

microgrid in this case should continue to support the grid by following the dynamic

variations. However, more important concern is during the islanded operation of the

Microgrid. One or more primary or intermediate sources within the microgrid should

form a grid and establish the voltage and frequency. Non-dispatchable sources provide a

concern here as they do not have any inertia and cannot supply to the dynamic variations

in the load. This can generally be overcome by using storage and intermediate resources

such as flywheel or combustion generators.

2.) Balance between supply and demand: If the microgrid was exporting or

importing power to the grid before islanding, then control action should be implemented

to balance generation and demand. If the connected load exceeds the available

generation, load management should be implemented.

3.) Power Quality: As the microgrid employs power electronic based

generators, the power quality is another constraint. The MG should maintain the

harmonics within the limits during the grid connected and islanded mode.

4.) Communication within Microgrid Components: A major concern is the

communication within the various microgrid components. If the communication layer is

unavailable or unreliable then the control and protection logic will cease to exist in a

Microgrid. The communication layer should connect the generation sources, loads,

control systems and protection system to alleviate the problems during islanded mode of

operation.
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1.3. Statement of the Problem

The purpose of this thesis is to develop operational strategies for implementing

power system test bed with AC generating stations emulating power plants, transmission

and distribution systems through transmission line and bus bar models, constant current,

constant impedance and constant power loads models emulating load centers,

communication and data acquisition layers and control layer interconnected with

sustainable energy resource emulators interconnected to form microgrid integrated with

the conventional AC system. This platform is hence comprised of AC generating stations,

transmission and distribution system using lines and cable emulators, dynamic and

controllable loads, energy control and management systems, and data acquisition and

communication systems representing the modern day power system. Along with this, the

platform also contains microgrids, with internal generation comprising of renewable or

non-conventional sources of power such as wind, PV arrays, fuel cells and combustion

generators. The purpose behind the integration of microgrids in this energy system test

bed is to determine the effects of the integration of renewable energy sources on the

existing AC power system. This will help in determining the efficiency of the power

electronic converters, the control system, control algorithms, and will act as a framework

for testing various control algorithms, communications layers, power electronic

converters and source simulations. The power system test bed overall is to represent the

state of the modern day power system with the addition of microgrids and distributed

generation. The basis of this work is Dr. Mohammed's idea of power system test bed and

microgrid platform [13].
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1.4. Contribution of Thesis

The power system and microgrid platform developed in this thesis will enable the

researchers to study the dynamics of the present power system with the integration of

microgrids and hence improve the overall system. To study power system operational

issues in the presence of distributed renewable energy sources.

There are four main areas of application of this research. The first one helps in

determining the security and the stability of the present power system to handle the

microgrids, smart grids and distributed generation. Different sources or simulations of

sources can be implemented to test the response of the system. This helps the national

power grid to evolve from a centralized generation and control architecture towards a

distributed and decentralized architecture. The second area of concern is the

implementation of control architecture, the work in this thesis acts as a platform to

conduct research on different control methodologies and to verify the logic on actual

power system. The third area of concern is the optimization of power, the present

platform provides a unique opportunity to develop and implement logic to optimize the

power in the system with the integration of non-conventional sources. The present system

of economic dispatch and unit commitment is based on a centralized approach and load

prediction is determined based on a large scale area. This system will help in

implementing prediction and optimization techniques on a hierarchical level. The last

area is to implement new techniques for power system protection. Present power system

architecture is based on the direction of power flow, voltages and frequency, and is

overall one dimensional with consideration on voltage, frequency and power from the
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main grid. With the advent of microgrids, the direction of the power, voltage and

frequency during islanded and synchronized operation varies, and hence the protection

architecture could be modified to adapt to these constraints. The platform developed in

this thesis will help in implementing and studying all the above characteristics and in the

development of better techniques to solve the issues related to integration of microgrids.

1.5. Organization of the Thesis

The thesis is organized into 11 chapters. Chapter 2 presents the sustainable

energy resource emulators developed for integration with the AC power system on the

test bed. Chapter 3 presents the development of components for the AC test bed. This

includes the generating stations emulated by induction motor driven alternator,

transmission line and bus bar modules, synchronization module and block diagram for

the desired test bed. Chapter 4 presents the implementation details of the components of

the test bed. The various architectures in which the test bed can be configured are also

presented in this chapter. Chapter 5 presents the integration of alternate energy resources

to emulate a microgrid and their interconnection with the AC power system on the test

bed. Chapter 6 describes the communication layer developed for inter component data

transfer and monitoring on the test bed for control and data logging. Chapter 7 presents

the experiments performed on the test bed with experimental setup and results. A section

is also included to analyze the results obtained for the experiments. Chapter 8 presents

the practical implementation and educational impact details of the test bed. Chapter 9

presents the discussion of overall research conducted as a part of this work followed by

the conclusion in Chapter 10 and future work in chapter 11.
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2. SUSTAINABLE ENERGY SOURCES

2.1. PV Array Emulator

Photovoltaic arrays are a composition of photovoltaic (PV) cells in a series

parallel arrangement. The number of cells and their arrangement determine the current or

the voltage that is available. Generally for simulations, the PV arrays are modeled using

an equivalent one diode model to represent a solar cell, assuming the energy input source

as a voltage controlled current source.

Ipra

I Isca Vpva

Figure 2.1-1 Circuit Diagram representing a PV Array equivalent circuit

Where, Ipva is DC current output from the array, Isca is the short circuit current at room

temperature and Vpva is the DC output voltage of the array.

As the power from the PV array fluctuates with the change in intensity of light,

these arrays are connected to power electronic interface devices. These devices

implement the Maximum Power Point Tracking (MPPT) algorithm to extract maximum

power from the array at the operating voltage and current. These arrays are generally not
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directly connected to the loads due to the unreliability of the power source, hence they

are connected to storage systems and loads in parallel. Dump loads, which are basically

heating loads are also connected in some case and are applied in case of saturation of

storage system and unavailability of load. The figure below represents a PV array based

system.

C-- Ir -I-:

T

Dc/DC

Converter

PCC

,, .t Il

Figure 2.1-2 PV Array block diagram and interface model.

2.1.1. Implementation of PV Array Emulator

The basic operation characteristics of a PV array have been presented in the

preceding section. As the response of the PV array depends on the solar energy, it was

considered a better option to simulate a PV array system than designing an actual PV

array. There are basically two ways in which the PV array can be implemented.

The PV array model can be implemented by utilizing a 42V DC permanent magnet motor

Solver motor generator set of 250Watts capacity. An experiment was conducted to verify

the viability of this design. The DC motor generator set was connected to a Grid Tie
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Inverter and loaded. The results and the experimental setup are displayed in the figure's

2.1.3 and 2.1.4 respectively.

/

Figure 2.1-3 Experimental set up for PV array emulator using Motor Generator set

It has been observed that voltage and power output of the set can be adjusted by

adjusting the DC motor speed, this variation causes a change in the DC generator output.

The power electronic converter utilizes a MPPT algorithm to set the operating point

based on the voltage. This system can also be extrapolated by using a Hampden motor

generator set. The benefit in this case is that operation voltage is higher and access to

field of both the machines is available which provides a separate control for voltage

output and power output. A road block was encountered however as a grid tie inverter
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(GTI) was unavailable for 120V DC input. This can be implemented in the future with a

Semikron power electronic module based grid tie inverter.

Secondly the PV array model can also be implemented by using a programmable DC

power supply providing a cost effective solution.

Tek JL " Stop M Pos: 0.0005 CH2

Coupling

ias
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I I lU®

Probe

I I I IVotageI II II I

CH2 5.00V M 50.O m s CH2 I -4, Om V
3-Jun-03 12:46 53.99381H z

Figure 2.1-4 DC Voltage output of the DC generator and AC output of the Grid Tie Inverter

2.2. Wind Energy Emulator

2.2.1. Model for Wind Energy Emulator

Wind has been used as a source of energy for a long time now but it has been only

in the last century that it has been used to generate electricity and only recently with the

development in power electronics, mechanical and electric machines technologies, it has

become economically feasible to use wind for electricity generation. Microgrid and

Distributed generation concepts have led to a renewed interest in Wind energy from the

utility companies. Although wind currently accounts for less than two percent of global

electricity production, the installed wind capacity is growing rapidly. There are steady

gains in Europe on deployment of wind energy based generators. Recently, a large
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market for wind energy has developed in Asia, particularly in India and China. This

makes wind a suitable model for non-conventional electrical energy resource and makes

it an important component to include as a part of the Power System Test Platform. Power

in the wind is extracted by wind turbines, which generally vary between large turbines

generating more than 1000kW of power to microturbines generating up to 1kW of power.

The Wind emulators are modeled by using a DC Motor to emulate the wind by

variation in speed and torque, this motor is coupled to a generator, as a synchronous

machine functions at constant frequency Induction machines are used as generators. The

reactive power to the induction generator is provided by the capacitor bank or main grid.

The block diagram in figure 2.2-1 represents a typical wind emulator system.

DC Motor Ind Gen

DSPACE, Cap
_ Bank;

Rectifier

DC Bus

Figure 2.2-1 Wind Energy Emulator Block Diagram
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2.2.2. Implementation of Wind Emulator on 120Volts and 42 Volts DC
Machine and Induction Generator set

The Wind emulator is an important part of the non-conventional energy source

utilized in the microgrid. There are three major parts of this emulator, namely, Wind

Speed emulator, Wind generator and power electronic interface system. The modeling of

the wind turbine system as a part of this thesis is based on [14-15] DC Motor and

Induction Generator model, emulating wind variations and generator response.

The Wind Speed emulator has been implemented on a DC motor. A real time Simulink

model has been designed in Matlab to implement the speed variation. The model is

displayed in the figure 2.2-2.

I -, L

Figure 2.2-2 Real time Simulink model for wind turbine emulator on a DC motor

As can be seen, the speed of the machine is varied either based on the programmed

model or by the user input. An option was to program the values of speed data, but it was

preferred to use an ad hoc model as it would provide a better analysis of the system. The

Simulink model logic is implemented by the dSPACE 1104 control board. A KBPWS

drive was used for controlling the speed of the DC motor. This is a power electronic

rectifier, which works on PWM (pulse width modulation) through a control voltage of 0-
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5V DC. This control voltage is responsible for DC output of the rectifier varying from 0-

120V DC. Figure 2.2-3 presents a picture of the speed control system of the DC motor.

f IN

Figure 2.2-3 Power electronic drives for Speed variation and 42V DC Motor and Induction
Generator set

The second part of the wind turbine emulator is the generator, as the speed of the wind is

varying it has been a better approach to utilize induction generator rather than a

synchronous machine. Hampden induction machine of 250 watts is used as a generator in

this model. The induction machine does not have any explicit field. In its operation as a

motor the induced eddy currents in the rotor generate a field for the induction machine.

However for its operation as a generator it requires an additional field for voltage build

up. There are two ways in which this can be provided. The machine can be started as a

motor and then a prime mover can drive the induction machine to make it operate as a

generator in this case the induction generator draws the reactive power from the main
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grid. The problem in this case is that machine will always rotate at a constant frequency

and fall into the motoring mode once the speed of the prime mover falls below the speed

pertaining to the operating frequency of the grid. The other option is to use capacitors to

provide the reactive power to the field, as the capacitors store voltage they provide for

eddy current generation in the rotor. It is a better way of providing reactive power as the

machine can operate at any frequency without any trouble of entering the motoring mode.

A capacitor based charging module was developed to provide the reactive power to the

induction generator used for this experiment. The capacitor charging module and the

picture of the generator is presented in the figure 2.2-4.

Figure 2.2-4 Capacitor based field excitation module for Induction generator
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Figure 2.2-5 Hampden Induction Generator Figure 2.2-6 Motor solver Induction Generator

An experiment was conducted to verify the response of the induction generator and DC

motor set to verify the output and characteristics. It was performed on 208V and 42V

machines. The figures 2.2-5 and 2.2-6 display the experimental setup for both of these

cases.

The results of the 42V induction motor generator set are presented in the figures 2.2-7,

2.2-8 and 2.2-9. The 208V machine also provided similar results and they have been

recorded on multi meters.
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Figure 2.2-7 Start up characteristics of Induction Generator
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Figure 2.2-8 Loading event
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Figure 2.2-9 Frequency of operation

2.2.3. AC-DC Buck Converter for Wind Energy System

The final part in the wind emulator is the rectifier, as the output frequency and

voltage of the wind turbine is fluctuating it cannot be directly tied to the grid. It was

considered to develop a rectifier module using Semikron power diode based bridge. A
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simulation of the rectifier was first done to verify the concept. The Simulink model

developed has been presented in the figure 2.2-10.

.0l, SHeaso-eme,

H dcope 
the

Figure 2.2-10 Rectifier module Simulink nmodel and DC voltage output waveform graph

As the grid tie inverter has a limit of 60V maximum on the DC input side, the firing

angle for the buck converter was adjusted to provide a 50V DC output from the rectifier

module. It can be observed from the graph in figure above that the output remains within

the prescribed range.

Hardware module was later developed and an L-C filter was also used to reduce the

ripple content in the DC output. The figure 2.2-11 presents the hardware rectifier module.
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Figure 2.2-11 Rectifier module with L-C filter

Another model of buck converter is used for using dSPACE 1104 control board

presented in figure 2.2-13. It provides faster control and reduces the spikes on the output

DC Voltage. Semikron diode rectifier module is used with an IGBT and LC filter for

controlling the DC Voltage. The Simulink block used for control is presented along with

the hardware module in the figures 2.2-12 and 2.2-13.
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Figure 2.2-12 dSPACE/Simulink Buck Converter module for Wind Energy Generator

-~

II

Figure 2.2-13 Semikron AC/DC Buck Converter for Wind Generator
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2.3. Fuel Cell Emulator

Fuel cell is another alternate resource and it's a critical component of the microgrid as it

can be installed at load centers and hence increasing the reliability of the system. The

block diagram 2.3-1 provides the details of the fuel cell model

Fear H2  DC DC Lus
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H2 O
V PCC

Env ir nrr enta
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Figure 2.3-1 Fuel Cell Block Diagram
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Figure 2.3-2 Fuel Cell Emulator from DC Power Supply
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Fuel cell emulator is implemented through a programmable DC power supply on the test

bed. The voltage and current can be programmed in the power supply with pre

determined variations recorded from an actual fuel cell. The figure 2.3-2 the DC power

supply used for the fuel cell variation.

2.4. Micro Generator Emulator

The auxiliary sources utilized in the microgrid or for distributed generation are

Micro turbines, combustion generators, gas turbines and oil based generators. These

sources are generally applied to meet the dynamic variations in the load as they have a

rotating energy unlike the power electronic based devices. Moreover these sources are

dispatchable sources and hence also provide reliability to the system. These sources are

also used for reference in case of an islanded operation. Generally either the largest

generator is used for reference or a combination of large generators is used based on

application criterion. Although these are technically conventional generators, the gas

turbines and combustion generators can be run by bio gas and others such fuels instead of

the fossil fuel. The benefit of utilizing oil based generators is for reliability concerns and

quick response in case of an outage, as black start of the system relies on these

generators.

Synchronous machine is coupled with a DC motor to emulate a Microgenerator

set. The speed of the DC Machine acting as a prime mover and field of the synchronous

machine are controlled using power electronic AC-DC drives at 20 kHz switching

frequency. Simulink model is developed to control the speed of the DC machine and field

of the AC machine in turn providing frequency control and field voltage control on the
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AC side. A fuzzy logic module is used in the Simulink module to regulate the control

voltage of the drives by verifying the feedback voltage with the reference value set by the

user [16]. The reference value can be set in terms of operating voltage and frequency on

the control desk layout. The Simulink model and dSPACE user interface are presented in

figures 2.4-1 and 2.4-2 with the drive boards in figure 2.4-3.
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Figure 2.4-1 Simulink Model for Combustion Generator Emulator Control

A control desk layout is developed in dSPACE for monitoring the generator set

and providing the reference values for voltage and frequency. The interface can log the

voltage and frequency values and helps in catering to the dynamic load variations during

islanded operation of the microgrid.
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Figure 2.4-3 Power Electronic Drive Boards for DC Motor and Alternator field control
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3. TEST BED DEVELOPMENT

This chapter presents the development of the components used for implementing

the test bed acting as a power system and microgrid simulator. The design and

construction of the components as well as simulation of the test bed is provided.

3.1. Generating Station Emulator

The generating station was designed to emulate a real time conventional power plant in a

real time power system. The power plants of a modern power system are designed as

motor and generator sets called as generating station. Each generating station comprises

of five machines mounted on top of a metal base platform. Out of these 5 machines four

are Induction machines and there is one DC machine. The primary application of these

machines is to act as prime mover to the Stamford generator mounted on the lower

platform of the generating station. As one machine is used as a prime mover during one

instance of operation, secondarily, these machines can also be used as mechanical loads

emulating pulsed or base loads on the power system. In total there are 5 generating

stations, the maximum power output of the generator is determined based on the power

rating of the prime mover under utilization. Three of the generating stations have been

modeled to provide a maximum power of 5kW or 7.5HP and the rest of the two

providing a maximum output of 3kW. The minimum power operating range of these

machines is 1HP. The DC machine provides a maximum power of 2HP in all the

generating stations. The figures 3.1-1 and 3.1-2 present the picture of the generating

station.
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Figure 3.1-1 Generating station front panel Figure 3.1-2 Generating station side view

An additional auxiliary generating station, Hampden machine desk is also present on the

platform. This station can either be utilized as a load or as a generator with a maximum

power interaction capability of 3kW.

The machine used as a prime mover for the Alternator in the generating station is

powered through the FIU power grid. This emulates the conventional energy input in a

modern power plant being water, oil or coal. Machines on the upper platform of the

generating stations not being utilized as prime mover can be powered from the Energy

Systems Lab power grid, which is the power system test bed developed as a part of this

thesis, utilizing the power of the generating station, making these machines function as

loads.

The Alternator installed in the generating station is manufactured by Stamford and the

capacity of the alternator is 10kW and hence is upgradeable by increasing the prime

mover capacity. However, it has different settings to be operated for different power
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ratings. As a part of this thesis the armature windings of the Alternator are connected as a

wye for operation of 5kW mode. It can be adjusted to operate in 10kW mode by

connecting the armature as a double wye. A self excited DC machine installed on the

shaft of the Alternator provides the excitation to the generator. Hence the control of the

excitation can be done by manipulating the operating characteristics of the DC machine.

This control can be obtained through the AVR used on the generator and is discussed in

the next chapter.

3.2. Transmission and Distribution System

The transmission and distribution system comprises of transmission line and bus bar

models developed to emulate scaled down models. The system also employs

synchronization module, transformer based lines and data acquisition system embedded

into the modules for communication.

3.2.1. Transmission Line Modules

The transmission line model is a three phase transmission line simulator operating at

208 Volts. This line model has been built and based on length it simulates three kinds of

lines short, medium and long. As the test bed is intended to emulate terrestrial and mobile

power system as in ship board and airplanes, the lines have 5 connectors and option to

connect neutral to solid ground or leave it floating.

The transmission line model consists of various modules that can be interconnected in

different configurations depending on the length being modeled. The transmission line

model is constructed using lumped parameters for resistance, inductance and capacitance

[13].
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The ABCD parameters for the transmission line model are represented below as a

matrix.

Vs (1+YZ1) (Z1+Z2+YZ1Z2) Vr
Is Y (1+YZ2) Ir

Where the parameters are as follows,

A = D = (1 + YZ1)in per unit

B = (Z1 + Z2 + YZ1Z2)in ohms

C = Y

Where A,B,C and D are the parameters that depend on the transmission-line constants

R,L,C and G. ABCD parameters can be used to describe the variation of the line voltage

with the line loading. The basic line module uses 2.5 ohm at 60Hz air core inductors with

shunt capacitors to emulate a transmission line. The inductor coils are connected in

parallel in a short transmission line emulating 70 miles to reduce the resistance and line

to ground capacitance in neglected in this model. In case of medium and long lines the

capacitance and resistance increases. Figure 3.2.-3 represents a long line model and

further details about the transmission lines are presented in the Appendix-B.

Figure 3.2-3 300 Mile Transmission Line Emulator
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3.2.2. Transformer based High Voltage Transmission Line

A transmission line is also developed to emulate a HV line model on the test bed. 6

1kVA multi tap single phase transformers with voltage taps of 120, 240 and 480 volts are

used for this emulation. A simulation of the system is conducted to verify the high

voltage line with transformers on the system prior to the implementation for 120/240

Volt system and results are presented below. The figure 3.2-1 presents the Simulink

model and figures 3.2-2 and 3.2-3 present the voltage waveforms at primary and

secondary terminals of the transmission line with the physical implementation picture in

figure 3.2-4

1 -- c3

,- 7
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Figure 3.2-1 Simulink model of the partial power system test bed model with transformers based line

Figure 3.2-2 Primary voltage of the transformer Figure 3.2-3 Secondary voltage of Transformer
T.L.

A VII

Figure 3.2-4 hardware Implementation of Transformers based line
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3.2.3. Generator and Load Buses with DAQ system

Another important component of the hardware development is the bus bar model. The

bus bar model consists of a module that contains switching devices (sensors) and data

acquisition terminals. This module is then interfaced to a computer through a data

acquisition card from either National Instruments or through dSPACE 1104 control

board. The computer uses Labview and Control Desk software packages for data display,

assessment, control and data logging acting as a Remote Terminal Unit (RTU).

The bus bar is designed to capture 3-phase current profile and 3-phase line to line

voltage profile; this is done through the utilization of voltages and current transformers to

step down the voltage to input levels for data acquisition system. The developed bus bar

model can monitor the three phase and neutral currents (Ia, Ib, Ic and In) and three phase

voltages (Va, Vb and Vc), enabling in measurement of frequency, power factor, real

power, reactive power and phasor measurements.

Different models of the system are developed based on the input output ratio. 1:3, 3:1,

2:2, 3:3 and 1:1. Difference in models provides with an advantage of optimizing the bus

base on the device of coupling. For example a 1:3 bus helps in analyzing the output of the

generator with the measurement devices at output terminal and 3:1 model reduces the

measurement components and is customized for measurement on the output side. Figure

3.2-4 shows different models of the bus bar modules and further details of its

development are presented in the Appendix-B.
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Figure 3.2-5 Load Bus Module with dSPACE DAQ

3.2.4. Synchronization Module with DAQ system

An important part of the test bed is the synchronizer module enabling in digital

synchronization of different AC generation systems. The module consists of a switch

with current and voltage transformers at both the terminals. The measurement outputs are

wired to the Labview RTU for control from the Labview Software Package. It has a

TURN ON/OFF response time of 'Z cycle and 100 pin patch output for connection to the

Labview PCI slot on the computer. There are two models of the synchronizer module one

model is designed to monitor the current and voltage waveforms in three phases at each

terminal of the module. Another module is optimized to reduce the components and only

uses two VT's on either terminals providing sufficient information for the

synchronization experiment. The module is presented in the figure 3.2-5 and further

details are presented in the Appendix-B.
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Figure 3.2-6 Synchronizer module with Labview RTU Connector

3.3. Simulink Model of the Test Bed

A Simulink model of the power system which was modeled and designed was created to

verify the modeling and stability of the power system for the application. The modeling

values for the Simulink components were provided from the components modeled and

designed in hardware such as transmission lines and loads. Figure 3.3-1 presents the

Simulink model of the power system test bed.

The model utilized 5 generators and generator buses to represent the real time generating

stations and two load buses were utilized to verify the load centers. The base loads

modeled for the design of the hardware implementation of the power system test bed

were neglected as they do not make any big difference. A subsystem was also modeled to

emulate a microgrid load center with combustion generator and is displayed in the figure

below.
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Figure 3.3-1 Simulink model of the power system test bed and microgrid platform
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Figure 3.3-2 Simulink model for a load center with micro generation emulating a microgrid

3.4. Block Diagram for Hardware Test Bed Implementation

The power system comprising of the generating stations, transmission lines and

distribution systems is represented in the block diagram in figure 3.4-1. The block

diagram also presents the scheme of network between various generators. The

distribution system connecting the loads and the generating stations also is displayed as

well. The computers connected to the generating stations represent the SCADA and

control systems, the communication network is represented by the dotted lines. The agent

control specifies the agent platform installed to allow programming for agent based

control system on the framework.
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4. IMPLEMENTATION OF SOURCES AND LOADS ON
THE TEST BED

This chapter presents the implementation of the developed components to be configured

as the test bed. The details of AVR and governor control in generation stations interface

for synchronizer module, load implementation and different architectures of test bed are

presented in this section.

4.1. AVR Implementation on the Generating Station

The AVR (Automatic Voltage Regulator) is a major part of the generating station,

regulating the voltage within the limits and constraints. It is responsible for stability,

security and power quality. AS 440 an AVR model manufactured by Siemens was

selected for this function. A block diagram of the AS 440 AVR and its interaction

scheme with the alternator is presented below in figure 4.1-1.

AS440 is a half wave phase controlled thyristor type AVR and forms part of the

excitation system for a brushless generator. Positive Voltage build up from residual

levels is ensured by efficient semi conductors in the circuitry of the AVR. The main

functions of the AVR are divided based on the block diagram and further details are

provided in the appendix. The figure 4.1-2 presents a picture of the AVR installed on the

frame of the Alternator.
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Figure 4.1-1 AVR block diagram displaying the alternator excitation field and the power electronic
interface

Figure 4.1-2 AVR installed on the front panel of the alternator
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An experiment to verify the operation of the AVR in external manual control mode

and internal automatic control mode is conducted. The AVR was operated in both the

external manual control mode and the internal automatic control mode. The Alternator

operated at rated frequency and voltage at no load and full load conditions. The

experiment was verified with both resistive and reactive loads. A transmission line model

was also used to dampen the dynamics as in case of a modern power plant. The picture of

the experiment setup and the voltage graph of the Alternator output are shown in figures

4.1-3, 4.1-4 and 4.1-5.

Figure 4.1-3 Experimental setup for AVR and frequency response verification of the alternator
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Figure 4.1-4 AVR voltage response Figure 4.1-5 Alternator response on loading

It was observed that the voltage output of the generating station responded in a better

manner with the operation of the AVR in internal automatic control mode than in the

external manual control mode. The above figure displays the voltage of the generating

station upon loading, the graph displays the damping of the spikes upon loading but it can

also be observed that there is no reduction the operating voltage.

4.2. Frequency Control from Lenze Drive

The speed control of the prime mover to control the speed of the alternator,

eventually controlling the electrical output frequency is called as governor control. It is a

critical control for the stable operation of a power system as all the generating stations

are synchronized to operate at a constant frequency. Heavy disturbances in frequency can

make the system run out of synchronism, leading to tripping of relays and disconnection

of generator from the rest of the grid and in worst case, extreme damage to the

equipment.

44



The prime movers on each of the generating stations have been equipped with Lenze

SMV (Space Modulation Vector) open loop drives to control the speed to operation. This

emulates the speed control of the governor in a modern power system.

The frequency reference point programmed in the drive will adjust the frequency

of electrical power input to the Induction machine acting as prime mover and hence

providing a set point to the output speed of the Induction Machine. This system replicates

the Steam turbine and governor in a modern thermal power system. The frequency set

point to the motor drive of the prime mover can be provided either manually or through a

ModBus protocol as the drive is equipped with a communication device working on the

ModBus protocol. The control of the frequency can be monitored from the electrical

output by the data acquisition system. This control system will then poll a frequency

reference set point on the ModBus network, as the ModBus network provides a unique

identifier to each machine, the reference point of the instructed machine is changed by

the provided value. These motor drives are electronically programmable and can also be

programmed for braking and regenerative functions of the machine but this is beyond the

scope of this thesis work. The graph in figure below presents the result of the experiment

conducted to verify the frequency response of the machine. It can be observed that

frequency remains constant at 60Hz and also the voltage is not dropping by any

considerable value. The experiment set used for verification for AVR response was used

for this experiment.
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Figure 4.2-1 Frequency response of Alternator on Loading

4.3. Digital Synchronizer Interface in Labview

The power system will be implemented by synchronized operation of all the generating

stations. A digital synchronizer module was developed based on Labview software and

DAQ boards, It obtains the voltage and frequency values from the two generating stations

and provides a digital platform to synchronize the generators on the operating computer.

Figure below presents the logic of the synchronizer module.

It can be observed from the block diagram in figure 4.3-1 that the DAQ board acquires

the voltage from the generating stations on the left and right of the synchronizer modules.

The Root Mean Square (RMS) value of the voltage magnitude and the frequency are then

calculated by the logic implemented in the software. The software module acquires

voltages of two lines from both sides of the synchronizer bus. The operator can

synchronize the system by clicking the synchronize check button by verifying the voltage

magnitude, frequency and phase angle. The phase sequence of the lines on both sides of

the bus can be verified by checking if voltage of both the lines displayed in two different

graphs peaks at the same time. If the lines are not in same phase sequence then there will
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always be a 30 degree difference between the voltages of the two lines, this can be

adjusted by interchanging any one line on the incoming generator side. Figure below

presents the Labview VI block diagram and Front Panel.

Main Grid Voltage and Frequency

Labview DAQ NI 6025E/Labview

Software verifies and monitors both Syinchronizer Bus

sides of the Bus and implements the

decision. ynchronizerSwit h

Incoming Gen Voltage an d Frequency

Figure 4.3-1 Synchronizing Module operation
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Figure 43-2 Synchronizing Module, Labview V.I. Block Diagram and Front Panel

A major hurdle in the synchronization of the Alternators was due to the Induction

motor being utilized as a prime mover. Frequency of operation of a power system is

60Hz in the United States and a variation on either side of the scale up to 0.02Hz is

allowed. In case of synchronization in the power system, problem was arisen due to the

speed of two induction motors not being the same. To understand the problem, consider

two generating stations about to be synchronized. Frequency of the first generator being

60.003Hz and the second generator being 60.004Hz, although the frequency of operation

is within the limits for power system stability, the machine drives detected an error. The

motor drives are supposed to operate at the programmed frequency, but as the generating

stations were synchronized the speed of operation was same for both the generating

stations and the prime movers. Due to this the prime mover of the machine operating at

60.003Hz started rotating at 60.004Hz, which is faster than the programmed frequency
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making the Induction machine work as a Induction generator. This resulted in tripping of

the second machine within a few cycles of operation.

The solution to this problem was attained by manipulation of induction motor

operation based on the operation characteristics. Slip of the induction motor is difference

between the synchronous speed created by the magnetic field and the speed of the rotor

and in case of mechanical load, the rotor starts receding and the slips starts increasing. As

the slip of the Induction motor as presented in the equation below depends on the load, It

was decided that upon loading the Generating

s* (Ns- 1) =Nr

Station before synchronization, the machine frequency reference will be higher than the

operating frequency to account for frequency fall due to load and the load is exactly

equivalent to the base load on the power system.

4.4. Load Connection and other System Integration

There are two different types of loads modeled for implementation on the test bed as

constant impedance and constant current models. The constant impedance model is

implemented by using resistance and inductance boxes. The resistance-reactance load

device has three variables, resistance, capacitance and inductance. The value of the

resistance in controlled by toggle switches provided on the interface panel. The reactance

load is controlled related knobs which serve to adjust power factor of the load for either

lagging or leading power factor. Another model of constant impedance load is based on

lighting load emulator controlled through the Labview DAQ device. It can be varied to
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draw up to 1 kVA of power and can be programmed as cyclic variation through Labview

RTU.

Constant current load model is implemented to induction motor drives connected

to bus bars on the test bed. The bus bar can be controlled from dSPACE or Labview

computer and the load on the motor is adjusted through a mechanical brake applied on

the shaft of the motor.

4.5. Architectures for Test Bed Configuration

The test bed is implemented in a manner where it can be manipulated and changed to

emulate various power system configurations. As the test bed is supposed to model

terrestrial and mobile power system the components have been developed in a manner to

provide a flexibility to vary the configuration of the test bed.

It can be connected in a serial bus, ring and other architectures for the required

experiment. As the test bed is to be integrated with distributed resources and microgrids

the test bed has a capability at various points to integrate with other systems. The

different modes in which the test bed has been connected and operated are presented in

the figures 4.5-1, 4.5-2, 4.5-3 and 4.5-4. The hardware implementation picture of the test

bed is presented in figure 4.5-5.
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Figure 4.5-2 Ring Bus Architecture of the test bed
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5. IMPLEMENTING A MICROGRID EMULATOR WITH
ALTERNATE SOURCES

The concept of a Microgrid assumes that a cluster of loads and generators operate

in unison. This cluster of loads and generators based on the state of operation can operate

either in synchronism with the main grid or function alone as an individual power system

in itself, isolated from the main grid. The idea behind this is to utilize the power and

energy resources which are available within the load area and compensate the power

drawn from the grid in case of synchronized operation. In addition to this during any

faults on the main grid, the microgrid can disconnect itself from the main grid and

provide an uninterruptible power supply to the internal loads increasing the reliability. As

the local generation system forms a cluster with the loads, this generally can happen only

at the load centers, geographically representing a town, village, county and in some cases

even a city [17].

The sources are generally renewable but large microgrids can also employ

combustion generators and other unconventional sources to support the voltage and

frequency during the islanded mode of operation. The sources accounting for local

generation in a microgrid are PV Array, fuel cells, wind Generators, small gas turbine

generators, microturbines, batteries, ultra capacitors and fly-wheels. Combustion

generators, microturbines and gas turbine generators are dispatchable sources among the

above, whereas wind generators and PV arrays are intermittent, with the rest being

storage resources [18-19].
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There are many topologies in which the internal generators, loads and storage

systems can be interconnected and controlled to form a microgrid. As this concept is

relatively young new concepts might come into existence when this thesis is being

written. We discuss some popular and effective topologies which are either deployed or

have been considered technically superior.

One of the methods is to rectify the output of the non-conventional AC resources

and connect all the generators to a common DC bus, which is later connected to a power

electronic inverter which regulates the AC voltage and frequency. The output of the AC

bus is then connected to the Load point and also to the main grid. This is called as the

point of common coupling. The interconnection between the main grid and the microgrid

at this point is based on a certain logic implemented either by the microcontroller of the

power electronic inverter or an Agent. The storage system is connected at the DC bus, the

connection is made in such a way that the storage system charges when the power is

excessive or during the normal operation and discharges during the power shortage. This

operation is again based on the logic implemented. In this topology the loads are divided

into two types, critical and normal. In case of normal operation when the power is able to

meet the demands both the loads are supplied power but in case of shortage in power

availability critical loads are given priority and hence load shedding is initiated with

normal loads. The loads are assumed to be controlled loads.

In another topology, if the power generated through the source provides a DC or

varying output then it is rectified in the first stage, then these resources can be connected

either to a same DC bus or different buses based on the voltage. This is later connected to

an Inverter which regulates the AC output at a constant voltage and frequency of
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an Inverter which regulates the AC output at a constant voltage and frequency of

operation, the AC power from the dispatchable resources is then synchronized at AC bus,

which is connected to the load and main grid at the point of common coupling (PCC).

There is also a small variation of this topology, in case of geographically large

microgrids all the resources might not be available at same point, hence the resources are

directly connected to the loads and the synchronization of all the resources might occur

along the distribution system. This method does not consider a separate interconnection

system for the resources as in the earlier topologies and is more practical.

This thesis aims to implement the concept of distributed generation not only on

terrestrial systems but also on shipboard and other mobile power systems. In shipboard

and other mobile power systems there are minor differences in consideration with

grounding, load management and critical applications, we neglect these minor differences

as this work aims at developing an approximate power system platform for all power

systems research. The concept of Microgrid varies between terrestrial power systems and

shipboard power systems. Mobile power systems do not have separate load centers which

demand continuous power supply and have different interests than the main grid. In fact

they have only one grid; however the loads are different with critical loads, non-critical

loads, continuous loads and intermittent loads. The logic here is to supply power based

on the circumstances, this is generally implemented by the control system. The aim of

these power systems is to extract maximum power from the non-conventional sources

and optimize the operation of conventional sources. At the same time there is no isolated

mode of operation. The system should always supply power based on the priority of

control. The AC operation of these power systems generally occurs at higher frequencies
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and higher voltages, present trend is also to use DC for loads. Hence, all these resources

are connected in a ring network and the loads are connected through rectifiers. The non-

conventional generation resources are connected through Inverters, the resources capable

of utilization in these kinds of system include PV array, Fuel Cell and tidal energy.

Combustion generators, oil and gas turbines are the conventional sources for these power

systems.

5.1. Microgrid Operation

5.1.1. Grid Connected Mode of Operation

This is the synchronized operation of the Microgrid. In this mode of the

microgrid, the controller at the point of common coupling or the inverter takes the

reference for the Voltage and frequency of the microgrid from the main grid. In this

operation the microgrid is unable to generate power required for the internal loads, hence

it draws power from the main grid. Main grid is responsible for voltage and frequency

support to the microgrid and also to supply active and reactive power as presented in

figure 5.1-1.

In this mode of operation if the resources in the microgrid generate more power

than the internal loads require. The main grid can draw power from the microgrid,

according to the NERC regulations the main grid should possess a capability to draw the

power and for the microgrid to maintain the power at certain standards. However, the

main grid can select to purchase power from the microgrid or from another microgrid or

generate its own power based on the economic market and main grid load conditions. In
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case of main grid rejecting the power from the microgrid, the excess power is diverted

either to storage or to dump loads.

Reactive Power Flow

Point of

Common
voltage ard Coupling
Frequency
reference

Power System
Microgrid - Distibuion Bs

Active Power Flow

Figure 5.1-1 Microgrid Synchronized Power Consumption Mode

As this also is a synchronized mode of operation the main grid provides the

reference for voltage and frequency. Although the microgrid is injecting the power into

the main grid, the main grid is supposed to support the voltage, frequency and supply the

reactive power as well to the microgrid, figure 5.1-2 displays the directions of active and

reactive power flow.
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Figure 5.1-2 Microgrid Synchronized Power Injection Mode

5.1.2. Islanded Operation

In this mode of operation, the microgrid and the main grid disconnect. This might

happen due to two reasons, low power quality or a fault within microgrid, secondly it can

also happen due to low power quality, fault or a black out on the main grid. Generally in

synchronized mode if the power quality of the microgrid is low the main grid will not

accept power from the microgrid but will still maintain synchronization as the voltage

and frequency are supported by main grid. However in case of a fault in the microgrid,

the main grid will disconnect itself from the microgrid. In second case when the power

quality of main grid is low or during a fault on the main grid, the microgrid isolates itself

from the main grid. This is called as Islanded mode of operation. In this mode the

controller takes the reference of frequency and voltage from the programmed constant

values. The control system manages the loads by verifying the voltage and frequency. It
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controls the loads so as to meet generation and demand criterion [20]. It can also shed

non-critical loads during this mode of operation to maintain reactive power, so as to

maintain voltage and frequency.

Voltage and
Frequency Point of
internal Common

Reference Coupling

- r Power SystemMicrogrid - Distribution Bus

Internal Power Flow

4

No Power
Exchange

Figure 5.1-3 Microgrid Islanded Mode of Operation

5.2. Black Start Issue

The restoration of power after complete outage is called as Black Start. In a

conventional power system restoration is a very complicated process, involving manually

carried tasks according to predefined guidelines. They have to be completed in a fast

way, in real time and under extremely stressed conditions. These complexities make the

decision support tools to assist system operators extremely valuable.

However, this process is different in case of a microgrid as the independent variables

affecting the system are lower in number compared to the conventional power system.

Although this reduces the complication, the incompatibility of microsources to be

60



directly connected to the loads creates a new problem. The characteristics of these

sources are not viable for direct connection to the LV grid as the voltage and frequency

fluctuates and also there is no support for the transient reactive power, as most of these

sources are connected through power electronic devices, there is no inertia or kinetic

energy within the sources as in case of conventional generators to meet the dynamics of

the system.

There are many control schemes which have been designed to meet with this issue.

The main areas of concern are voltage, frequency and reactive power support, which can

be achieved by managing the dynamics of the system. The concept here is to utilize

flywheels, batteries and if possible combustion generators which can handle the

dynamics of the system. This can either be implemented manually or through a control

agent deployed in the framework [21].

5.3. Microgrid Model Implemented on the Test Bed

Microgrid model on implemented on the test bed emulates PV array, wind

energy generator, combustion generator and battery array for storage. The microgrid is

modeled as a load center with independent generation through alternate resources [23].

The alternate resources are connected to DC bus level distribution system. DC voltage is

maintained same at one bus but is controlled and variable at different levels on different

buses for connecting different loads on the DC system. Figure 5.3-1 represents the

implementation of the microgrid on the test bed as a block diagram and figure 5.3-2

presents the hardware implementation.
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Figure 5.3-1 Block Diagram of the Microgrid Model Implemented on the Test Bed
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Figure 5.3-2 Hardware Implementation of Microgrid with DC Bus, Loads and Monitoring Station on
the Test Bed

5.4. Microgrid Control Interface in Labview

A control and monitoring module has been developed in Labview. It's a Labview

Virtual Instrument (VI) to manage the islanding and grid connected operation and loads

in the microgrid. An explanation of the VI is presented by decimating the VI in different

parts based on the application.

The function of the microgrid islanding and load management system is to

provide digital outputs from the NI USB6259 DAQ board. The top two outputs on the

front pane! are programmed for the two digital output channels in the DAQ assistant
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toolbox in Labview. They have been connected in not gate logic, allowing the DAQ

board to provide 5V DC output to only one of the solid state relays of the synchronizer

buses at a given time. This guarantees the operation of the microgrid either islanding or

in grid connected mode at one time. The mode can be changed by the

islanding/synchronize switch from the front panel of the VI. The block diagram presented

in the figure below explains the operation graphically. The other channels which are

connected to front panel displays are for the controllable loads in the microgrid. These

loads can be controlled by providing the 5V DC output from the DAQ board. The control

and monitoring for these is provided in the front panel of the VI.

Second part of the VI is to acquire the data from the main grid and the microgrid, helping

in the connection of microgrid to the system. This part acquires the voltages and

frequency on the main grid, it calculates the power drawn by the microgrid, power

injected by the non-conventional sources and total power interchange. This part is also

responsible for monitoring the voltage and frequency of the microgrid during the islanded

mode of operation. Figures 5.4-1 and 5.4-2 present the Block Panel of LavView VI of

Microgrid Interface and user Front Panel interface is presented in 5.4-4 and 5.4-5.
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Figure 5.4-2 Block Diagram of Power calculation in Microgrid Management System VI in Labview
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5.5. DC Bus and DC Distribution

The alternate resources are coupled at the DC bus in the microgrid, as the microgrid

contains various alternate resource emulators at various physical locations and also as the

real time system will have distributed loads a DC distribution system is developed on the

microgrid. Three DC buses carry the power from different alternate sources and are

interconnected to the DC loads on the system. This also provides an added flexibility to

emulate DC loads on a mobile power system. The picture of the DC distribution is

presented in the figure 5.5-2.

The DC distribution can also be integrated with the test bed by interconnecting the P.C.C.

at the test bed to the AC/DC converter which regulates the DC voltage and the power
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input from the main grid. This also emulates a scaled down version of HVDC line on the

system by interconnecting the AC system by rectifying on the DC side.

Propulsion Motor 1Battery Bank 1 Pulse Load 1 Fuel Cel 1 Service Load 1 Energy Storage DC Load 1
SMain DC Bus 

EM r -4 M N2 ® Au.lBu
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Figure 5.5-1 Block Diagram of DC Distribution system within the AC test bed
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Figure 5.5-2 DC Distribution system on the Test Bed

5.6. DC level Storage System

Two 5kwh battery banks are develop to be connected to the DC bus for voltage

regulation a during peak load and energy storage during no load periods on the system.

The banks can be connected to the DC bus with trickle chargers for online charging and

recharging of the system. A mechanical flywheel model is available for catering to the

dynamic load variations on the microgrid and can be integrated with the system using

AC/DC/AC converters.

69



i -

1 .t

mm 

-4..--

Figure 5.6-1 Battery Bank array

fr&

Figure 5.6-2 Flywheel Model

70



6. CONTROL AND COMMUNICATION INFRASTRUCTURE

This chapter presents the modeling and design of control and communication layers. It

presents the infrastructure designed for control framework and the devices. It also

presents experiments done to implement communication framework. Lastly details on

administration and management of the Multi Agent System framework installed and

implemented as a part of power system test bed and microgrid platform.

6.1. Control and Data Acquisition Devices used on the Test Bed

The SCADA system and the control system for the power system platform are closely

related in this work. Matlab and Simulink are used for developing the control logic

presented in the earlier sections. Real time workshop in Simulink is used to developing

the model and then integrating with dSPACE 1104 control board. Real time workshop

has options of converting the Simulink model into C or C++ code, this code is later

burned into the Digital Signal Processor (DSP) in the control board. The dSPACE control

board is managed by the dSPACE control desk software which is used to develop the

GUI (Graphic User Interface). The dSPACE 1104 control board has 8 manual A/D

(analog to digital) and D/A (digital to analog) channels, it also has a 16 channel PWM

generator, RS485 and RS422 UART's (Universal Asynchronous Receiver and

Transmitter).

Labview software and DAQ boards N16025E, N16071E and NIUSB6259M are used for

control in the synchronizer module and microgrid management system. Labview

software has two panels, the block diagram and the front panel. The block diagram acts
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as the code for the system and the front panel is similar to a GUI. The difference between

dSPACE and Labview is response time, Labview is comparatively slower than dSPACE

but as it is also cheaper, it is suitable for applications not requiring fast response, on the

other hand dSPACE is expensive but it is a very good way for application to systems

requiring faster response and higher accuracy.

... AIMS,

-11

Figure 6.1-1 NI 6259M BNC Test Bed AC system Control Board

6.2. Communication Components and Technologies
Implemented on the Test Bed

Communication is an important part of the test bed project. Proper control depends on

reliable communication. Few experiments were conducted to verify the effectiveness of

the communication layers which could be implemented for the present components of the

power system. Xbee module employing the Zigbee IEEE 802.11 protocol was one among

them. A virtual instrument was built in Labview to feed the data acquired from the

generator bus and send it to the Xbee module, although the interface was functioning

properly and the data was being sent from the Xbee sender module, the data was not
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received at the receiver module and was being lost. Zigbee protocol is for serial and

unreliable communication and hence it was felt that it was not effective to utilize Xbee

module for communication in control system. It can still be used for monitoring purposes

as data loss will not account for any stability concerns in these kinds of applications.

The present architecture of the power system test bed employs Ethernet based

communication, although it is wired communication a wireless router can be employed in

case of wireless applications. This network works based on the Labview data server and

web server. The web server is used for publishing the Virtual Instruments in Labview on

the internet which can be later monitored or controlled from anywhere on the globe. The

variables on the virtual instruments can also be shared using shared variables in Labview.

The next important concern is to develop a network of the generating stations connecting

the motor drives in a ModBus protocol based network. The software interface for this

network has been developed in Labview, with virtual instruments created for sending

signal and receiving signal from the drives.

Figure 6.2-1 NI 6259USB DAQ system used for Microgrid Interface VI in chapter 5.3
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6.3. Lenze Motor Drive Communication

The electric drives used for controlling the alternators are equipped with ESVZARO

RS232/485 based ModBus and LECOM communication module. The control of these

drives will enable in remote monitoring and control of the frequency of the alternators.

The hardware wiring followed for both the protocols is same and the drives have been

hardwired according to the protocol based manner. The selection of the protocol is based

on the TechLink or any other software interface. The 5 pole connector of the ESVZARO

module is used with a 2 wire connection and RS 485 protocol. An RS 232 to RS 485

converter is used for wiring the drive to the computer. The input terminal of the drive is

cross connected at transfer and receiver terminals with a 1200hm resistor for reducing

the noise. Twisted pair cable is used for connecting the drive and the RS 232-485

converter as it causes a very low noise. Figure 6.3-1 presents the terminal connection on

RS 485 terminal and (It is to be noted that TX-transmistter on drive becomes RX-receiver

on computer and vice versa) drive terminals.

00000
120!)
1/4W

Figure 6.3-1 Drive Terminal Hardware Connection
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The drives of the network are connected in serial order and in a ring bus structure. The

advantage of ring structure for communication with drives is increase of reliability with a

closes loop. The commands for the drive are broadcasted on this network and the

respective drive is identified through the unique network address according to the

program developed. The protocols followed for sending and receiving data are based

upon the protocol followed among ModBus and LECOM. A block diagram is presented

which explain the network connection of the drives.

ModBus is a asynchronous serial protocol designed for industrial communication

applications. The ModBus RTU architecture is based upon a PLC to device

communication structure and, as such is Master-Slave in orientation. The SMV drive in

this case acts as the slave in this network, responding to commands and requests from the

master computer. Figure 6.3-2 presents the flow of commands.

Figure 6.3-2 Network Control of Lenze Motor Drive

While the ModBus RTU protocol does not specify the physical layer, the ESVZARO

module uses the RS 485 protocol.

Typical Commands which can be given between the master and slave are:

* Run command from Remote Computer on ModBus Network.
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" Frequency Reference

" Reporting of Fault of Drive to the Master

" Request for regeneration Voltage from the master

The drive has 20 parameters for communication for operations varying from network

control, baud rate adjustment, network address setting etc. The manual for ESVZARO

module provides further details [26]. The ModBus protocol is used through Techlink

software package. The application allows programming the drive address and

communicating for receiving and sending commands. However, a drawback with this

application is that it there is no interface to send and receive commands through any of

the control devices mentioned earlier and hence the following LECOM protocol is

reviewed.

LECOM protocol is better than ModBus due to its speed, higher baud rate support and

different architecture support. The block diagram of LECOM protocol is presented

below. However, the complexity with LECOM is in building customized software

interface [27].

A library of LECOM protocol based Virtual Instruments in Labview is developed to

communicate with the electric drive. The VI's developed are generally designed for

applications as sub VI's which verify the protocol and execute the command for any

application. As the commands are generally to acquire data and send data, the VI's are

branched as 'askVI' and 'sendVI'. The concept here is to create a separate interface

library which can be used with any experiment created in Labview.
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Figure 6.3-3 LECOM Protocol

The list of functions of VI's developed as a part of the library for implementing the

LECOM protocol on the test bed is as follows:

" Acquire Speed, Frequency, Voltage and Current at the Drive.

" Perform Network Start, Stop, RUN and pause operations from the RTU.

" Provide Speed, Frequency, Voltage and Current Reference for the Drive.

" Acquire Active Power, Reactive Power and Regenerative Power at drive

terminals.

" Reset Fault, Provide Set point for frequency, voltage and current tripping and

override internal relaying.

" Implement PID control and PID set point.

77



- re curet na~me cut

Figure 6.3-4 Block Diagram for Data Acquiring VI for LECOM protocol

6.4. SCADA system in Labview

The previous sections presented the communication layer from components to the

control computer by using DAQ system and communication between the RTU and motor

drive for generator control. Another critical layer of communication is between the

various components on the test bed, inter-process and inter-component communication.

Labview software package used for control and DAQ and mentioned in the previous

sections provides platform called Shared Variable for sharing the information between

two applications. It is clusters the variables to a same value on the network and the data

transfer is facilitated using a TCP/IP network. A TCP/IP network is implemented on the

test bed for this application. The values of the variables are buffered on the sending

78



system. The time delay is affected by the DAQ board used on the transmitter side, the

size of the variable buffer and the TCP/IP network in the background. To reduce the time

delay the buffer has been sized to zero providing an advantage of no time delay due to

buffer but very rarely data can be lost if the sending application rate is faster than the

receiving rate.

There are a lot of dispersed and individual applications developed for control and

monitoring on the test bed (e.g. Synchronizer modules, microgrid interface, alternate

emulators). Shared variable is used to interlink all these applications for a common

database platform.

A SCADA system interface monitoring the data of all the applications on the Master

control computer is developed on the test bed. The interface acquires the data of various

distributed applications on the test bed and can monitor and control the applications from

remote system. This provides a great benefit of distributed control from a clustered

common unit. The data can be stored in an excel sheet or a MySql database format for

further evaluations and stability studies of the test bed. It also helps in emulating faults

and contingencies on the system to evaluate response, by disconnecting transmission

lines and buses, closing relays and removing generators from a remote location. The user

interface panel of the SCADA system is presented in figure 6.4-1.
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Figure 6.4-1 User Interface of SCADA system of the Test Bed

Labview package provides a data socket server and web server which can be configured

for publishing data to the internet. Data Socket server is used for sending and receiving

data packets on the internet using the TCP/IP platform. Figure 6.4-2 presents the

LabView VI published as a web page, on the Internet Explorer web browser.
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Figure 6.4-2 Synchronizer Module VI published on the Internet (Internet Explorer is used for
viewing the Web Page VI).

The LabView web server can be configured and programmed to publish this data on the

internet. This is a very critical application as it allows the consumers with alternate

energy resources to monitor the energy data from remote computers and it also allows to

independent power producers to control their energy input and output from the microgrid

from remote computers on the globe. This feature of Labview is used for building two
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applications for monitoring and control. The programming for the web server on the VI

developed determines if the VI is allowed partial control, full control or no control from

the remote computer. The VI is viewed exactly as a web page from any internet browser

connected to the internet.

6.5. Simulation of an Agent Framework for Test Bed
Application

A software (or hardware) entity that is situated in some environment and is able to

autonomously react to changes in that environment is defined as an agent. Prior to

presenting the benefits and application areas of multi agent systems, it's important to

differentiate between the existing technology and the multi agent system. The present

control systems acquire the data and implement the logic which has been programmed

according to the algorithm. The conceptual difference between the present control system

and multi agent system is that control system takes just one decision based on the

programming and does not take any independent decision. On the other hand a multi

agent system is provided with details for actions but not on when to be taken. The multi

agent system assesses the situation from the data acquired and based on the data it will

take and independent decision. Although it has communication from the other agents in

the system, it does not need to be aware of other zones in the system for which the

particular agent is not responsible. The control here is decentralized as there is no master

controller. It is equivalent to a human controlling and decision making process. The

figure below explains the concept of application of multi agents systems in a power

system.
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Figure 6.5-1 Multi Agent System application in power systems

There are a lot of benefits obtained by addressing the control based on multi agent

System related to time of response, reduced response times and distributed control. The

goal of this thesis was to develop a platform to implement Multi Agent System (M.A.S.)

based control. Although there are many definitions of agent systems, some defining

dSPACE and Simulink based systems also as agents. The idea of this thesis was to stick

to the definition of the agent presented in the work of Stephen McArthur et al [28-29].

There are many platforms which can be used to implement agent systems like JADE

(Java Agent Development Framework), etc. It was decided upon to use JADE as it

conforms to FIPA (Foundation for Intelligent Physical Agents) specifications. A plug in

called eJADE allows Eclipse IDE (Integrated Development Environment) to utilize all

features of JADE in a GUI based environment.

JADE is a software framework fully implemented in Java language. It

simplifies the implementation of multi-agent systems through a middle ware that
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complies with the FIPA specifications and through a set of graphical tools. JADE allows

installation of agents either on the computer systems in the same network or on different

network. The network specified here is based on the JADE platform; the system which

hosts this platform is called as the main container. As JADE also allows for

intercommunication between different agents, the interplatform communication between

agents helps in implementing complicated tasks. Agents can be implemented at various

levels and different components in the test bed and the intercommunication between

agents and interface between the SCADA system and JADE will benefit in implementing

control system for complicated areas [30-31]. The figure below represents the block

diagram of agents and interconnection with power system components.

Dspace, Labview

i--.... _..r~ Patfor

LabPiew,

Webserver

Figure 6.5-2 Multi Agent System application in power systems
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Figure 6.5-3 Energy Management System

An agent based energy management system was developed to present the multi agent

system logic. A power buying agent, which is registered with the management system

representing the main grid, power selling agent representing a microgrid and registered

with the management system were developed. The behaviors in the JADE framework,

basically java methods to implement certain logic were extended for obtaining this

operation. However the system has just been developed in terms of code for simulating

the proof of concept. The work on implementing hardware control of components on the

test bed is to be carried out by inter process communication between JADE and

MATLAB and JADE and LabView platforms. Also any other package instead of JADE

can also be considered based on the application. The application can be further enhanced

by programming the control using a dsPIC programmed from dSPACE control board

code generator.
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7. EXPERIMENTAL RESULTS AND ANALYSIS

This chapter presents the results of power system and microgrid during

various stages of operation. The results indicate that the distributed generation and

microgrid increase the reliability of the present power system. The results also indicate

that modeling of the various components of the power system represent similar behavior

of a modem power system. Hence, the study of dynamics by integrating distributed

resources and techniques will provide true values as in case of a modem power system.

The following experiments are case studies conducted on the test bed. These

experiments were conducted in order to determine the stability of the power system

developed as a part of this thesis, its response to various events. Experiments to verify the

benefit of distributed generation and microgrid, and connection of microgrid to power

system are also conducted.

7.1. Experiment 1: Energy Sharing between Test Bed and

Microgrid

7.1.1. Experimental Setup and Results

This experiment was conducted to study the energy sharing between the

main grid and energy from the alternate sources. A partial setup of the test bed with

resistive load was connected to the microgrid model through the grid tie inverters and a

DC power supply was used for emulating alternate resources. The setup is presented in

the figure below.
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Figure 7.1-1 Power Sharing with Resistive Load

Initially only the Generating Station is catering to the load and GTI is disconnected from

the system. The voltage and current waveforms of the system are presented in the figure

below. The DC Bus voltage, current, Load bus voltage and current waveforms are

presented in the following figures 7.1-2, 7.1.3 and 7.1-4. The waveforms present the

instantaneous values obtained from the CT and PTs and the conversion ratios for these

measurement devices can be obtained from the appendix b from the bus bar section. Also

the real time RMS values obtained are presented in the analysis section.
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Figure 7.1-2 Generating Station Catering to the R- Load
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Figure 7.1-3 Steady State Response of Gen connected to R-Load

The GTI is then turned on with the load connected to the system. Two figures

present the scenario is the system after connecting the GTI. Firstly the steady state

waveform presents the frequency and the voltage waveforms over a period of time
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displaying the stability of the system. The second figure presents the Voltage and Current

waveforms without any considerable harmonics on the load.
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Figure 7.1-4 Gen and GTI sharing R-Load
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Figure 7.1-5 GT I and Gen Sharing R-Load
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Figure 7.1-6 Load Bus and DC Bus

7.1.2. Analysis

The real time experimental data was also recorded to analyze the results in details

and to present perspective of the experiment to display the power sharing between

various components in the system, verify RMS values and observe any other special

phenomena. The Matlab file used for reading the data from the real time dSPACE values

is provided in Appendix E.

The RMS voltage and current waveforms indicated that the variation is within the

permissible range and also the figure displaying the power at each bus specifies the

reduction in the amount of power tapped from the conventional generator. It should be

noted that the DC bus power is the total power input to the 3 GTI's connected as a wye

and the other power values are per phase.
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Figure 7.1-11 Power Values at different Buses

It is to be noted that the RMS values presented are single phase voltage and

current values for generator bus, grid tie inverter and load bus. The dc bus power

indicates the total 3-phase power input fed to the grid tie inverters connected as a wye.

7.2. Experiment 2: Islanded Operation of Microgrid

7.2.1. Experimental Setup and Results

An experiment was conducted on the test bed and microgrid framework to

observe the capability of the microgrid in islanding mode. The present configuration of

the microgrid deploys grid tie inverters which can work only in grid connected mode.
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The concept here is that they always require an external reference for voltage and

frequency values. However, during islanded mode of operation the main grid is

disconnected from the microgrid. Also in general most of the microgrid models utilize

combustion or micro generators which require a very small time for starting up.

Although, these generators are based on conventional fuel they provide very good

support for dynamic load variations and small faults due to the inertia. This combustion

cum micro generator of 250watts is used for providing frequency and voltage support to

the microgrid during islanded mode of operation.

Test Bed :Main Grid

Point of
Conunon

Coupling

G TI.

DC BUS

DC Emnlators

Combustion
Generator AC BUS

Figure 7.2-1 Islanded Operation Experiment
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As soon as the microgrid enters the islanded mode, the combustion generator

turns on to provide voltage and frequency support to the microgrid. At the first instance

the fuzzy logic controller is not turned on and the microgrid has the common problem of

nuisance tripping. The problem of nuisance tripping is common a challenge for present

scenario where the Grid Tie Inverter trips frequently during dynamic load variations due

to changes in frequency and voltages references considering it to be a fault. It generally

occurs in Grid Tie Inverters without internal reference capability.

During second instance of this experiment the fuzzy logic controller is turned on

and is used for controlling the dynamic variations in the frequency and voltage values.

The waveforms are presented in the figure 9.1-1 and 9.1-2. It is observed that the

problem of nuisance tripping is reduced very highly when compared to the previous

situation.
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Figure 7.2-2 Frequency Response of Microgrid in Islanded mode
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Figure 7.2-2 Voltage Response of Microgrid in Islanded mode

7.2.2. Analysis

The microgrid is modeled to operate and increase the reliability of power to the

internal loads. The voltage and frequency waveforms display that the microgrid is stable

during the islanded operation due to the dynamic support provided by the combustion

generator model and also utilizes the power from the alternate energy resources. The drop

in the voltage and frequency during the point of islanding can be further improved by

using the fuzzy logic control of the combustion generator with the GTI which draws

power from the microgrid.
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7.3. Experiment 3: Wind Energy Integration to Test Bed

7.3.1. Experimental Setup and Results

This experiment presents the robustness of the main grid and the microgrid, on

the main grid part; it displays the stability of the system even when pulsating power is

injected into the system. Although this power is at proper frequency and voltage, it keeps

varying emulating the energy from a wind based energy emulator. The microgrid also

presents its robustness to maintain constant DC voltage at the DC bus with a very small

variation. There are totally 5 kinds of speed variations performed on the wind emulator in

one variation cycle as presented in the figure below. The output voltage of the AC

machine acting as generator can be observed in the graph. As the load is not connected to

the system initially the current output of the AC generator is almost zero. The DC voltage

output of the Buck converter is maintained at a constant Value.

CGeneatmn~ ----

Station 0"OD

GT:

3C Du:

SGt. a-:: CC '.Te 1

Figure 7.3-1 Setup for Wind Energy injection into test bed
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The variation of AC input to the AC-DC buck converter, DC bus and Inverter input and

output are displayed in the results in figures 7.3-2 and 7.3-3.
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Figure 7.3-2 Wind Gen Voltage
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Figure 7.3-3 Wind Gen Voltage and Current at GTI Load
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Figure 7.3-4 Wind Gen V/I and rectified DC Voltage (GTI I/P)

7.3.2. Analysis of Results

The waveforms recorded on the load bus and the generator buses are used for this

analysis. It is clear that the GTI injects the pulsating power available at the DC bus and

also that the variations of the wind energy emulator are stabilized properly by

maintaining a constant DC voltage at the DC bus by the help of the buck converter. The

instantaneous values of the voltage and current waveforms at the generator, load and

inverter bus are presented in the figures 7.3-5 and 7.3-6.
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7.4. Experiment 4: Response to Loss of Generation

7.4.1. Experimental Setup and Results

An experiment has been conducted on the power system test bed to verify the

sustainability of the network to sudden loss of generation. The network was divided into

two zones with Zone A comprising of 2 generating stations of total 1OkVA capacity and

Zone B comprising generating stations with a total 8kVA capacity. The connection

between these zones is made through the Synchronizer Module 3 (labeled accordingly).

The different load emulators connected on the system include 5 inductive and resistive

load boxes of LkVA capacity each, a combination of inductive and capacitive load of

4.4kVA and three 250VA 3 Phase induction machines. The total load on the system is

summed up to be around IOkVA.

GZone A :----- G.

Load and Distribution Network

I____Zones B.

Figure 7.4-1 Loss of Generation
Zone 2 is disconnected by operating on the Labview GUI at computer system 3.

As zone 2 is disconnected a part of the load amounting to a total value of 2kVA is also
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Zone 2 is disconnected by operating on the Labview GUI at computer system 3.

As zone 2 is disconnected a part of the load amounting to a total value of 2kVA is also

disconnected from the system. A virtual instrument using labview is developed to record

the voltage and frequency values to an excel sheet as a .lvm file. These values can be

used for plotting waveforms to observe the response of the system. The frequency and

voltage waveforms are plotted in figures 7.4-1 and 7.4-2.
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Figure 7.4-1 Frequency Response to Loss of Generation
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Figure 7.4-2 Voltage Response to Loss of Generation

7.5. Experiment 5: Contingency Analysis

This experiment is conducted to analyze the response of the AC part of the test bed to

various contingencies which normally arise on a real time power system. The system was

analyzed for dynamic load variation, loss of a transmission line, loss of load network and

a few other variations. However, as the system remained stable during these experimental

exposures to the AC part of the test bed only the experiment of verifying the response of

the test bed to a self clearing single line fault.

7.5.1. Experimental Setup and Results

The power system network is also analyzed for a contingency response to

determine its effectiveness. For the first contingency, the power system test bed is
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connected in a serial bus configuration. This is especially considered because in a ring

structure a contingency can be easily handled as there would always be another route for

the power flow. A transmission line connecting generating station 2 to the power system

is treated to self clearing fault emulation. This fault is emulated by connecting an

oscilloscope lead with ground potential to one of the phases of the transmission line, as

this creates a short circuit on one phase it causes a single line to ground fault. This lead is

connected only for about 0.5 second, i.e. for 30 cycles.
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Figure 7.5-1 Frequency Response for self clearing fault
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8. PRACTICAL USE AND SCALING ISSUES

This chapter presents the practical use of the test bed by examining and presenting

research and educational applications. It also presents the scaling issues of this system.

8.1.1. Educational Impact

The test bed is developed for demonstrating the power system operation and control

techniques to the under graduate and graduate students. It acts as an effective tool for

demonstrating the sustainable energy resources operation through the various alternate

energy emulators developed as a part of this work. It also presents the configuration of

these emulators as a microgrid with internal loads and grid integration capabilities. This

helps in educating the students about future issues in power systems and to educate

engineers for the future.

Three demonstration experiments are also developed as a part of this work.

1. Wind Energy Emulator through Induction Generator.

2. Islanding support of microgrid through fuzzy controlled Microgenerator

3. Digital Synchronization of alternators using Labview RTU

These experiments will help the students gain a practical understanding of the system

Along with these experiments, the students are also involved in developing component:

for the test bed providing adequate knowledge to gain hands on experience. A few mor<

demonstration experiments can be added to increase the test bed perform as a educationa

laboratory for power systems. The details of experiments are provided in the appendix.
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8.1.2. Scaling and System Description

The power system test bed contains different equipments and components such as

generating stations with electric drives on the prime mover control, protective devices

(relays, fuses, switch breakers etc). The test bed was originally modeled and scale up to

IEEE 15 bus system and is a three phase system operating at 25kVA generation capacity

from conventional sources at two low voltage level of 120V phase and high voltage level

of 240V phase at 60Hz AC frequency. The generation and storage capacity from the

alternate energy resources is 1OkVA and hence the present operating capacity of the

system is 35kVA. The DC bus operates at two voltage levels 42V and 100V for

interconnection with appropriate loads.

The sensor and monitoring system is scaled down by using the secondary side impedance

of the VT's and CT's on the AC system and by the transducer ratio on the DC zone in the

microgrid. This allows rapid scaling of the system component such as transmission lines

and buses. The scale here is referred to the secondary side of the data acquisition devices.
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9. DISCUSSION OF OVERALL RESEARCH RESULTS

The power system and distributed generation test bed is a combination of several

subsystems, the emulation of this test bed cannot be represented without acknowledging

the alternate resource emulators and implementation of various parts of the conventional

power system on the test bed. In this thesis analysis of various subsystems in performed.

Alternate resources are implemented by analyzing the techniques to represent an

actual system by simulating the characteristics of a real time model and developing a

emulator representing the real time characteristics. The responses of real time alternate

emulators and modeling of hardware emulators to represent the real time characteristics

is presented in chapter 2. Two wind energy emulators representing high voltage and low

voltage farms are presented in chapter 2 along with a fuzzy logic block developed for

frequency and voltage regulation in hardware in the loop combustion generator designed

for islanding support in a microgrid.

Generating station emulators representing power plants in an AC system are

presented for their response similar to an actual system. Transmission line models and

bus bar models for transmission and distribution system are presented with a DAQ

system on the test bed in chapter 3. Chapter 3 also presents the block diagram designed to

represent the test bed and the simulation of the test bed in MATLAB Simulink for

verifying the response of interconnection of the AC system.

The developed components for the AC system are interconnected to implement

the conventional AC system of the test bed. AVR response and governor control through

the drives of the induction machine acting as a prime mover are presented. Chapter 4 also
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presents the synchronization module and other applications built in LabView for control

and monitoring of the AC system.

The interconnection of the alternate source emulators presented in chapter 2 is

presented to emulate a microgrid model with internal loads and generation in chapter 5.

Virtual Instrument is developed in LabView for monitoring and control of the microgrid

enabling in data logging for energy exchange between the AC system and the microgrid.

A module is also developed to force microgrid into islanding mode for experimental

analysis. DC bus on the microgrid to distribute the power from alternate emulators and

connect the internal DC loads is also presented in chapter 5.

Communication layer for control and data logging issues for stability studies are

developed in chapter 6. VI's for implementing the communication using ModBus

protocol for motor drives used as prime movers for generating stations are developed.

Communication system using Shared Variable in LabView for inter-process and inter-

platform communication on the test bed is also developed and the SCADA system is

presented emulating a central monitoring station. The VI's are also published as web

page on the internet using the LabView web server for remote access and control

especially designed for home application of microgrid.

Experimental analysis of the system is conducted by verifying the response of the

system during the energy sharing between alternate resources and the AC power system.

System is also evaluated for stability during injection of wind energy based pulsating

power input to the AC system. The load and the generator voltage and current are

monitored for this experiment. Another experiment is conducted to analyze and study the

response on voltage and frequency on the load bus of an internal load in a microgrid
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during the state of islanding; this experiment also presents the advantages of the fast

starting combustion generator developed in chapter 2. Two experiments are conducted to

demonstrate the operation of the AC system as a real time power system with evaluation

to loss of generation in a zone and also for a contingency.

The power system test bed is emulating an AC power system integrated with

microgrid at different points in the system due to the integration of these subsystems. It

acts as a platform to continue research and also for educational demonstration of future

power systems with distributed generation and control using hardware in the loop based

components.

Experiments are also devised in chapter 8, for improving the present education

system in power system by accommodating the alternate energy resources and microgrid

concepts. The basic power system operation is also explained in a better manner

practically through the various applications developed for monitoring and control. This

helps in creating better education facilities for future engineers with adequate information

about the issues pertaining to the present and future power systems.
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10. CONCLUSION

In this work the state of the art for power system and microgrid integration is

advanced by developing a test bed and emulating a microgrid with sustainable energy

resource emulators.

Distributed generation resource emulators and their operation as a microgrid in

synchronization with emulated power system test bed have been successfully

demonstrated. The development process started with a thorough literature review and it

was determined that the present research work stresses on microgrid component

modeling but does not verify the issues related to integration by physical implementation.

The distributed generation resources developed as a part of this thesis

successfully emulates characteristics of the real time systems. Synchronization of the

microgrid with the power system was demonstrated successfully. The present work

demonstrates a significant ability to verify the effects on the microgrid and power system.

These alternate sources can be deployed to increase the power capability of the present

system and increase its dependability and also improve the stability.

The experimental result on microgrid islanding presents that the techniques

developed can be deployed for the future power systems with non conventional resources

in load centers.

Experiments are then developed on the test bed for demonstration and educational

purposes and the impact of the test bed for educational improvement is also presented.

The overall research results of the work are also discussed.
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11. FUTURE WORK

The microgrid developed as a part of this work on the test bed represents all the

concepts of alternate resources; however, the microgrid deploys grid tie inverters which

can only inject power into the test bed as the grid tie inverters can work only on power

injection model. Semikron module can be used to develop GTI which can draw power

from the test bed for loads within the microgrid during shortage of power from the main

grid.

DC bus deployed on the microgrid is used for connecting to regulated sources and

distribution and it can be greatly improved by developing a DC distribution system which

connects all the sources and loads on the DC side in the microgrid. The DC load centers

can be improved further by connecting DC/AC converters for DC distribution system.

This system can also help in integration of hybrid electric vehicles into the grid following

a certain program for power sharing and power density management. Dynamic behavior

of the microgrid can be improved further by using flywheel models and the motors on the

generating stations in the test bed can be utilized for this purpose.

The load models developed for the test bed are manually variable for load changes.

This can be further improved by emulating constant current, impedance and load models

using inductance coils and by emulating various machine behaviors using the phase

variable model.

In this work the SCADA system is developed to monitor the parameters of the systenm

at all the buses and transmission lines. This can be further developed as a PMU by

logging the data in the real time and using it for online evaluation of the system and tc

use the simulation data during any failures in the communication system.
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APPENDIX

Appendix A - AS 440 AVR Implemented on Gen Station

AS 440 AVR adaptable with Stamford generators, has been utilized for voltage

regulation in the work. The Generator used is of brushless type, with the excitation

available through a DC machine mounted on the shaft of the alternator. DC generator

mounted is a self excited machine and residual voltage is used for voltage build up

initially in the DC generator and then the field of the alternator. Figure 10.1 displays a

picture of the AVR.

Figure A-1 AS 440 AVR

The AVR is linked with the main stator windings and the exciter field windings tc

provide closed loop control of the output voltage with load regulation of +/- 1.0%. The
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AVR controls the power fed to the exciter field of the DC generator and hence the

excitation field of the alternator eventually. It is also equipped with a frequency

measuring circuit to monitor the generator output and provide under speed protection of

the excitation system, by reducing the output voltage proportionally with speed below a

pre-settable threshold. A manual adjustment is also present for setting of the under

frequency roll of point, (UFRO). This also has a capability of 50 or 60Hz operation

selection.

A quadrature droop C.T. which provides a power factor dependent signal for the AVR is

installed for parallel operation of generators. The DROOP adjustment is normally preset

to give 5% voltage droop at full load zero power factor. An analog input (Al A2) is

provided to connect to a Power Factor Controller or other devices. It is designed to accept

DC signals up to +/- 5 Volts. The DC Signal applied to this input adds to the AVR

sensing circuit. Al is connected to the AVR 0 volts. Positive on A2 increases excitation

and negative on A2 decreases excitation. The trim control present on the AVR allows the

user to adjust the sensitivity of the input, with trim fully anti-clockwise the externally

applied signal has no effect. Figure 10.2 provides a brief summary of the actions which

can be performed on the AVR. The AVR AS 440 manual can be referred to for more

details.
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Appendix B - Development Details of Transmission Line and
Bus Bar Modules

The Transmission lines were designed based on the pi model representation. In all, three

base models have been designed. Emulating long, medium and short distance lines, long

lines were modeled with higher resistance and reactance compared to medium lines. The

short lines have negligible line to ground capacitance as transmission lines employed by

distribution system do not have much influence by line to ground capacitance.

Long transmission lines have six inductance coils, providing the resistance and inductive

reactance. The gauge of wire is 18, L=12.Oh, L-G Capacitance=2.2 F and Rdc=2.232.

Medium line and short lines were modeled using 15 gauge wire with L=2.70H,

Rdc=0.59 Q and C=20 F. The inductors in short line were connected in parallel with

pairs of two to reduce the resistance and the capacitor was disconnected. Figures below

present the Simulink models, results and transmission line pictures.

Figure B-1 Transmission Line Model
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Figure B-3 Sending and Receiving terminal waveforms

The buses were designed for generator, synchronizer and load systems. All the buses

employ Crydom solid state relays for switching, simulating action of the circuit breaker,

the relay action is based on SCADA system. Figure below presents the Crydom relay.

Figure B-4 Crydom Switch

Each bus module is connected on either sides of the relay with electrical connections witi

data acquisition capability. Voltage and current transformers have been used fo

acquiring the stepped down current and voltage values. The measurement transformer

were later connected to potentiometers to provide variation in the acquired value. Thi

was important to bridge the difference between the data acquisition system an(

measurement devices. Two types of bus models are presented below.
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The synchronizing module or the synchronizer bus is another important component of the

power system test bed. The custom design of this hardware is critical for the operation of

the synchronizer module based on labview. The module has data acquisition capability

on both sides of the relay to provide data to the software. The simulation and picture of

the module are presented below. The figures also display the waveforms on the primary

and the secondary of the measurement transformers.

SE-'

Figure B-7 Synchronizer Module

The data acquisition system comprises of Labview and dSPACE hardware modules. NI

6025E, NI 6071E and USB 6051M are the DAQ boards used for labview, among these

6071E has been used for critical applications on the power system for its faster response

and reliability. NI 6071E is aI00 pin control board. Its pin output is presented in the

figure later.
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Figure B-8 Synchronizer module simulation

Figure B-9 Primary Voltage at Potential Transformer

Figure B-10 Secondary Voltage at Potential Transformer
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Appendix C - Education Demonstration Experiments

Synchronization of Alternators in Power Systems
PURPOSE: To study the characteristics of Synchronization of Alternators to the Power
System by a Digital Synchronizer
DISCUSSION:
The concept of synchronizing to AC Machines is to ensure that they are operating in
parallel and in tandem. In case of DC Machines it is easier to ensure it as the only
parameter is voltage. In case of AC system the voltage variation is based on frequency,
phase sequence and phase variation. This can be done manually by verifying the voltages
in all three phases, verifying the frequency and phase sequence. Then the machines can

be synchronized when the voltage difference between them is lowest, by using the dark

light method. However, this concept can be explained in better manner by using the

digital synchronization system used presently.
APPARATUS:

1. Labview Synchronizer VI

2. Hardware Synchronizer Module designed at Energy Systems Laboratory

3. Voltmeters for verification

PROCEDURE:
I. The labview synchronizer module provided at Energy Systems Laboratory should

be connected to two AC Machines on either sides.

2. The Synchronizer Module is equipped with data acquisition blocks to provide

information to the software blocks in labview.

3. The Digital Synchronizer VI should be activated on the computer.

4. The machines should be turned on both sides of the hardware module.

5. The waveforms on both sides of the module will be displayed as machine 1 and

machine 2 on the VI.

6. The VI also displays frequency and voltage on both sides, it can be verified

manually by using voltmeters.

7. Machines should be checked for identical voltage and frequency values.

8. At the point when both the waveforms overlap, the difference between th<

voltages is zero and the "SYNCHRONIZE" switch on the VI should be clicked tc

synchronize the machines.

QUESTIONS:
1. What is the reason that you observe the waveforms to be moving on the plotter

you see on Digital Synchronizer VI?

2. What will happen when you synchronize when the parameters are not identical?

3. What is Hunting?
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DIGITAL SYNCHRONIZER VI

Figure 1: Labview Synchronizer Block Diagram
'4 

II

Figure 2: Labview Synchronizer GUI
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Operation of Induction Machine based Wind Generator
PURPOSE: To study the characteristics of Induction Generator based Wind Turbine
Generator
DISCUSSION:

The utilization of non-conventional energy sources for electrical energy has thrown
many challenges and new prospects. Utilization of Induction machines as generators
coupled to wind turbines is also applied. Induction machines are used as generators as

they are variable speed machines and are also very robust. Synchronous machines are
also used and they have their own pros and cons. Induction machines do not have explicit
field for excitation and hence when operated as generators they require reactive power
for starting up and also for voltage build up. They can acquire this reactive power either

through charged capacitance or through the grid if connected to the grid.
APPARATUS:

4. One 250W DC Machine

5. One 250W Induction Machine

6. Wind Emulator module based on dSPACE-1104 board

7. dSPACE 1104 MODULE

8. One Capacitance module

PROCEDURE:
9. The DC Machine is used as a prime mover to emulate wind turbine.

10. The real time model for wind emulator can be run for providing random

variations in the speed of the DC Machine.

11. The capacitance module should be charged before connecting to the induction

generator.

12. The value of voltage and the starting waveform should be recorded as soon as the

generator starts.

13. The voltage and frequency value of the induction machine should be recorded al

steady state mode.

14. Apply a load of 150watts on the generator in steps and record the values o

voltage, current and frequency.

15. The waveforms should also be recorded for the above steps.

16. In the second part the generator should be connected to the grid before starting

and the capacitance box should be disconnected.

17. The voltage and frequency values should be recorded at start up.

18. The load should be applied in steps to a maximum of 150watts and voltage

current and frequency should be recorded.

QUESTIONS:
4. What is the reason that induction machine needs capacitance to start up, can i

work with inductance?
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5. What is the difference between frequency and voltage on loading when
capacitance box is connected?

6. What is the reason for frequency variation and what is the reason for voltage

variations?

7. Why is there a difference between start up voltage when capacitance is connected

and when grid is connected?

Fgure 1: Winds EmultrV
ci~~ . cc cc

- 4.-

fS

Figure 2: Power Electronic Module Setup
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Appendix C - Simulation Code of an Agent System in Eclipse
using JADE for implementation on Test Bed

JADE is Java Agent Development Framework, it is based on the Java language and

JADE provides the API (Application Programming Interface) for developing agent based

systems. The minimum software requirement to execute the system is the Java Run Time

Environment 1.4 (JRE 1.4). As the Eclipse plug in for JADE eJADE has been used for

development based on a GUI (Graphic User Interface), Eclipse IDE is also required.

Although JADE can still be run from the command line interface but it makes programs

difficult and complicated to manage.

The default agents which will be deployed with the deployment of the system are (Agent

Management System) AMS and (Directory Facilitator) DF. The AMS is an important

component and every agent on the platform registers itself with the AMS and is provided

a unique Agent Identifier for management purposes. The directory facilitator is another

service agent, basically every agents which intends to communicate with other agents on

the platform, registers itself with the directory facilitator. The directory facilitator is

similar to yellow pages service providing agent identifiers and agent location to othei

agents on the system which wish to communicate. JADE Administrators guide and JADE

programmers guide can be referred to for more details. The code for the simple energy

management agent program is presented below.

Buyer Agent

import jade.domain. FIPAException;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain. FIPAAgentManagement. ServiceDescription;

public class PowerBuyerAgent extends Agent {
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// The name of the microgrid
private String targetBookTitle;
// The list of known seller agents
private AID[] sellerAgents;

// Put agent initializations here
protected void setup() {

// Printout a welcome message
System.out. println("Hallo! Buyer-agent "+getAID(.getName(+" is

ready.")

// Get the title of the book to buy as a start-up argument

Object[] args = getArguments();
if (args != null && args.length > 0) {
targetMicrogridTitle = (String) args[0];
System.out.println(" Target Microgrid is "+targetMicrogridTitle);

// Add a TickerBehaviour that schedules a request to seller agents

addBehaviour(new TickerBehaviour(this, 60000) {
protected void onTickO {

System.out.println("Trying to buy

"+targetMicrogridTitle);
// Update the list of seller agents
DFAgentDescription template = new DFAgentDescription();
ServiceDescription sd = new ServiceDescriptionO;
sd.setType("Power-selling");
template.addServices(sd);
try {

DFAgentDescription[] result = DFService.search(myAgent, template);

System.out.println("Found the following seller agents:");
sellerAgents = new AID[result. length];
for (int i = 0; i < result.length; ++i) {

sellerAgents[i] = result [i].getName();
System.out.println(sellerAgents[i] .getName());

}
}
catch (FIPAException fe) {

fe.printStackTraceo;
7

// Perform the request
myAgent.addBehaviour(new RequestPerfonner());

}
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else {
//Make the agent terminate immediately
System.out.println("No microgrid title specified");

doDeleteO;
}

}
//Put agent clean-up operations here
protected void takedownO {

//Printout a dismissal message
System.out.println("Buyer- agent"+getAIDo .getName() +" terminating.

}
/* *

Inner class RequestPerformer.
This is the behaviour used by Power-buyer agents to request seller

agents the target Microgrid.
*/

private class RequestPerformer extends Behaviour {
private AID bestSeller; // The agent who provides the best ofTer

private int bestPrice; II The best offered price
private int repliesCnt = 0; // The counter of replies from seller agents

private MessageTemplate mt; // The template to receive replies
private int step = 0;

public void action() {
switch (step) {
case 0:

// Send the cfp to all sellers
ACLMessage cfp = new ACLMessage(ACLMessage.CFP);
for (int i = 0; i < sellerAgents.length; ++i) {

cfp.addReceiver(sellerAgents[i]);

}
cfp.setContent(targetMicrogridTitle);
cfp.setConversationld("Power-trade");
cfp.setReplyWith("cfp"+System.currentTimeMillisO); // Unique value

myAgent.send(cfp);
// Prepare the template to get proposals

mt = MessageTemplate.and(MessageTemplate.MatchConversationId("Power-
trade"),

MessageTemplate.MatchInReplyTo(cfp.getReplyWitho));
step = 1;

break;
case 1:
II Receive all proposals/refusals from seller agents
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ACLMessage reply = myAgent.receive(mt);
if (reply != null) {
// Reply received
if (reply.getPerformative() == ACLMessage. PROPOSE) {

// This is an offer
int price = Integer.parselnt(reply.getContentO);
if (bestSeller == null j) price < bestPrice) {

// This is the best offer at present
bestPrice = price;
bestSeller = reply.getSender();

}
}
repliesCnt++;
if (repliesCnt >= sellerAgents.length) {

// We received all replies
step = 2;

}
else {

blockO;

I
break;

case 2:
// Send the purchase order to the seller that provided the best offer

ACLMessage order = new
ACLMessage(ACLMessage.ACCEPT_PROPOSAL);

order.addReceiver(bestSeller);
order.setContent(targetBookTitle);
order.setConversationld("Power-trade");
order.setReplyWith("order"+System.currentTimeMillis();
myAgent.send(order);
// Prepare the template to get the purchase order reply
mt = MessageTemplate.and(MessageTemplate.MatchConversationld("Power-

trade"),
MessageTemplate.MatchInReplyTo(order.getReplyWith()));

step = 3;

break;
case 3:

// Receive the purchase order reply

reply = myAgent.receive(mt);
if (reply != null) {

// Purchase order reply received

if (reply.getPerformative() == ACLMessage.INFORM) {
// Purchase successful. We can terminate
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System.out.println(targetMicrogridTitle+" successfully purchased from
agent "+reply.getSender().getName());

System.out.println("Price = "+bestPrice);

myAgent.doDelete();

}
else {

System.out.println("Attempt failed: requested Microgrid is unwilling.");

}

step = 4;

}
else {
blockO;

}
break;

}
}

public boolean doneO {
if (step == 2 && bestSeller == null) {

System.out.println("Attempt failed: "+targetMicrogridTitle+" not

available for sale");

}
return ((step == 2 && bestSeller == null) step == 4);

}
} // End of inner class RequestPerformer

}

Seller Agent

import jade.core.Agent;
import jade.core.behaviours.*;
import jade. lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;
import jade.domain.DFService;
import jade.domain.FIPAException;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.FIPAAgentManagement.ServiceDescription;

import java.util.*;

/** Inner class offerRequestsServer.

* This is the behaviour used by Power-Seller agents to serve incoming requests for offer

* from buyer agents.
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* If the requested Power is in the local catalogue the seller agent replies
* with a PROPOSE message specifying the price. otherwise a REFUSE message is sent

back.
*

* @author M.A.Nayeem
*

public class PowerSellerAgent extends Agent {
// The catalog of Power for sale (maps the title of a Power to its price)

private Hashtable catalogue;
// The GUI by means of which the user can add Power in the Catalogue

private PowerSellerGui myGui;

// Put Agent initializations here

protected void setup() {
// Create the catalogue

catalogue = new Hashtable();

// Create and show the GUI
myGui = new PowerSellerGui(this);
myGui. showO;

// Register the Power-selling service in the yellow pages

DFAgentDescription dfd = new DFAgentDescription();
dfd.setName(getAIDO);
ServiceDescription sd = new ServiceDescriptionO;
sd.setType("Power-Trading");
sd.setName("JADE-Power-trading");
dfd.addServices(sd);
try {

DFService.register(this, dfd);

}
catch (FIPAException fe) {

fe.printStackTraceo;
}

// Add the behaviour serving queries from buyer agents

addBehaviour(new offerRequestsServer());

// Add the behaviour serving purchase orders from buyer agents

addBehaviour(new PurchaseOrdersServer());

// Put agent clean-up operations here
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protected void takedown() {
// Deregister from the yellow pages

try {
DFService.deregister(this);

}
catch (FIPAException fe) {

fe.printStackTrace();
}

// Close the GUI
myGui.dispose();

// Printout a dismissal message
System.out.println("Seller-agent "+getAID().getName()+" terminating.");

}
/** This is invoked by the GUI when the user adds a new microgrid power unit

for sale
*/

public void updateCatalogue(final String title, final int price) {

addBehaviour (new OneShotBehaviour() {
public void action() {

catalogue.put(title, new Integer(price));

}
} );

}

private class offerRequestsServer extends CyclicBehaviour {
public void action () {

ACLMessage msg = myAgent.receive ();
if (msg != null) {

// Message received. Process it

String title = msg.getContent();
ACLMessage reply = msg.createReply();

Integer price = (Integer) catalogue.get(title);

if (price !=null) {
// The requested microgrid is ready for trade. Reply with

the price
reply. setPerformative(ACLMessage. PROPOSE);

reply. setContent(String.valueOf(price. intValue()));

}
else {

// The requested microgrid not ready for trade.

reply. setPerformative(ACLMessage. REFUSE);

reply. setContent("not-available");

}

135



myAgent.send(reply);

}

}//End of inner class OfferRequestsServer

/* *

*/
private class PurchaseOrdersServer extends CyclicBehaviour {
public void action() {

MessageTemplate mt =
MessageTemplate.MatchPerformative(ACLMessage.ACCEPT_PROPOSAL);

ACLMessage msg = myAgent.receive(mt);
if (msg != null) {

// ACCEPT_PROPOSAL Message received. Process it

String title = msg.getContent();
ACLMessage reply = msg.createReply();

Integer price = (Integer) catalogue.remove(title);
if (price != null) {

reply.setPerformative(ACLMessage.INFORM);
System.out.println(title+" sold to agent "+msg.getSenderO.getNameO);

J

else {
// The requested microgrid has traded with another utility.
reply. setPerformative(ACLMessage. FAILURE);
reply.setContent("not-available");

}
myAgent.send(reply);

}
else {
block();

} // End of inner class OfferRequestsServer

//The reference for this code is from the JADE programmers GUIDE for an agent based

trading system
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Appendix D - User Manual for Test Bed Operation

The sequences of steps to be followed to start the power system test bed and operate it

are presented as follows. Firstly the power system is to be started, it requires starting the

generating stations, the prime movers required for the experiment can be selected and

mechanically coupled to the alternator using belt, from different machines mounted on

the rack. The block diagram representing the power system skeleton is presented in figure

10.3.

Gen 1

GGen _

I-.-

Figure D-1 Generating Stations Connection Skeleton
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The continuous lines connecting the generating stations in the block diagram are

equipped with synchronizing modules and they are to be synchronized initially. The

generating stations can be synchronized in any order as long as one machine is

synchronized at a given time instance. The order which was followed during the

experimental work followed a sequence of synchronizing generating station number 5

and 4 initially. Then generating station 3 was synchronized with the previous set.

Another set with generating stations 1 and 2 was synchronized separately and then these

two sets were synchronized to form a complete power system. To convert this power

system into a ring type the transmission line between generating stations 5 and 1

displayed by a dotted can be connected.

Each of the generating stations has a internal load which is emulated by a 3 phase load

box, this should be connected prior to synchronizing the generating stations and can also

be adjusted to different values. The microgrid and the other load areas are to be

connected only after the synchronization process is completed, otherwise the system will

become unstable if by any chance the load is higher than the generation. The microgrid

initially will be operated in the synchronized power consumption mode, acting as a load

center.

To perform different microgrid operations, firstly the non-conventional sources should be

operated. PV array can be turned on by operating the DC power supply. The wind turbine

emulator is started by executing the real time simulink model for wind speed emulator,

then the rectifier module is activated from Labview. The combustion generator or the
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stand alone back up inverter should be turned on to provide the voltage and frequency

reference to the microgrid for islanded operation. The microgrid management system VI

needs to be executed for the Labview environment and DAQ devices to function

according to the design. eJADE environment in Eclipse IDE on the computer systems

needs to be activated and deployed in order to create and test any multi agents or to

program any agent system.

After performing the above mentioned states, the test bed starts functioning completely,

any experiments can be performed on the test bed as long as they do not disturb the

stability of the system.
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Appendix E - m-File used for evaluating the dSPACE logged
data from Experiments

t=x.X.Data; % time for each experiment=20s
Idc=x.Y(1,1).Data;
Vdc=x.Y(1,2).Data;
IL=x.Y(1,3).Data;
Ig=x.Y(1,4). Data;

Iinv-x.Y(1,5).Data;
IL=x.Y(1,6).Data;
Vg=x.Y(1,7).Data;
Vinv=x.Y(1,8).Data;

%% Graphs

figure(1)
subplot(2,1,1)
plot(t,Ig)
xlabel('time')
ylabel('Generator Current')

subplot(2,1,2)
plot(t,Vg)
xlabel('time')
ylabel('Generator Voltage')

figure(2)

subplot(2,1,2)
plot(t,VL)
xlabel('time')
ylabel('Load Voltage')

subplot(2,1,1)

plot(t,IL)
xlabel('time')
ylabel('Load Current')
o

figure(3)

subplot(2,1,2)
plot(tVinv)
xlabel('time')

ylabel('Inverter Voltage')
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subplot(2,1,1)

plot(t,Iinv)
xlabel('time')
ylabel('Inverter Current')

figure(4)

subplot(2,1,2)
plot(t,Idc)
xlabel('time')
ylabel('DC Current')

subplot(2,1,1)

plot(t,Vde)
xlabel('time')
ylabel('DC Voltage')

% Power Calculations
Pinv=(Vinv). *Iinv
Pg=(Vg).*Ig
Pde=Vdc.*Ide
PL=VL.*IL
% Power Graphs
figure(5)

subplot(2,2,1)
plot(t,Pde)
ylabel('DC Power')

subplot(2,2,2)
plot(t,Pg)
ylabel('Generator Power')

subplot(2,2,3)
plot(t,PL)
ylabel('Load Power')

subplot(2,2,4)
plot(t,Pinv)
ylabel('Inverter Power')

141


	Florida International University
	FIU Digital Commons
	4-12-2010

	Development of distributed generation infrastructure for microgrid connectivity to operational power systems
	Nayeem Mohammad Abdullah
	Recommended Citation


	tmp.1397144323.pdf.xgq7o

