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ABSTRACT OF THE THESIS

DEVELOPMENT OF MICROSATELLITE MARKERS IN CANNABIS SA TIVA FOR

FINGERPRINTING AND GENETIC RELATEDNESS ANALYSES

by

Hussain J. Al-Ghanim

Florida International University, 2003

Miami, Florida

Professor Jose Almirall, Major Professor

Microsatellite markers were developed for Cannabis sativa L. (marijuana) to estimate the

level of polymorphism, usefulness for DNA typing (genotype identification), and to

measure the genetic relationships between the different plants. Twelve different

oligonucleotide probes were used to screen an enriched microsatellite library of Cannabis

sativa in which 49% of the clones contained microsatellite sequences. Characterization

of microsatellite loci in Cannabis revealed that GA/CT was the most abundant class of

isolated microsatellites representing 50% overall. Eleven polymorphic SSR markers

were developed, derived from dinucleotide motifs and eight from trinucleotide motifs. A

total of 52 alleles were detected averaging 4.7 alleles/locus. The expected heterozygosity

of the eleven loci ranged between 0.368 and 0.710 and the common probability of

identical genotypes was 1.8 x 10-7. The loci identified 27 unique profiles of the 41

Cannabis samples. The eleven microsatellite markers developed in this study were found

to be useful for DNA fingerprinting and for assessing genetic relationships in Cannabis.
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Introduction

The history of Cannabis:

Cannabis sativa L. (marijuana) is one of the oldest cultivated plants. Depending

on the person's point of view, Cannabis is useful, a reagent euphoria, or evil [1]. "To the

agriculturist, Cannabis is a fibre crop; to the physician of a century ago it was a valuable

medicine; to the physician of today it is an enigma; to the user a euphoriant; to the police,

a menace; to the traffickers, a source of profitable danger; to the convict or parolee and

his family a source of sorrow" [2].

Throughout history, Cannabis has been used as a source of hempen fiber for rope

and fabric from its stems, food and oil from its seeds, and a psychoactive drug from its

flowers and leaves. The oldest documented history of Cannabis dates to 10,000 B.C. in

China. It is believed to be indigenous to Asia and to parts of Iran, southern Siberia, the

Kirghiz Desert, India, and the Himalayas [3]. Cannabis has been known in China since

Neolithic times 6,000 BP. Because almost every part of the plant is capable of being

used, people of China use the extracted hemp fibers that are long and durable to make

variety of items including ropes, clothes, papers, and fishing nets. In addition, the seeds

were used as an important "grain" whereas leaves and roots were recommended for

various medical illnesses such as gout, rheumatic pains, and constipation [3, 4].

Cannabis cultivation eventually made its way to India, Europe, and Africa. The

Aryans introduced Cannabis into the Indian culture 4,000 years ago, and Scythians

brought Cannabis to Europe 2,800 years ago [5]. By the 12 th century, Cannabis was

being utilized in the Islamic paper mills, but not until the 15 th century in the English ones.
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In the 1500's, Spanish troops brought Cannabis to South America, whereas the English

brought Cannabis to North America for rope production around 1600's.

Cannabis and the Law:

By 1860, the number of people taking marijuana for recreational use had sharply

increased such that it replaced alcohol as a popular form of intoxication [6]. In 1870,

Cannabis was listed in the United States Pharmacopoeia as a source of medicine for a

variety of illnesses. In 1915, California was the first state to outlaw Cannabis, and many

other states followed soon after. After that, the price driven by the Marijuana Tax Act of

1937 made it unrealistic to use marijuana as a medicine. By 1941, Cannabis was

removed from the United States Pharmacopoeia. Congress passed the Control Substance

Act of 1970 to classify psychoactive drugs into five schedules based on their

characteristics. In United States, marijuana is listed in schedule I which is the most

restrictive. Schedule I drugs present a high potential for abuse and no medical usage [1].

Legally, marijuana is all parts of any plant of the genus Cannabis including seeds, resin

(hashish), and any derivative compound. In U.S. and Canada, it is a criminal offense for

someone to possess Cannabis plants (marijuana), Cannabis resin (hashish), or any

cannabinoid constituents.

Cannabis taxonomy:

Cannabis has been introduced to lands and climates that are far and different from

its natural habitat which forces it to adapt to the new environment and consequently

develop certain characteristics that vary per location. Human intervention has

contributed to the rise of various races and strains of the plant by selecting the plant for

different purposes. For example, people grow Cannabis for longer and stronger fiber,
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high oil content, or greater narcotic effect [7]. Cannabis, marijuana, and hemp are terms

that are used interchangeably. However, Cannabis is the botanical genus of the plant and

marijuana describes Cannabis plants that contain high A9 tetrahydrocannabinol (THC)

content and are used for their psychoactive potency [1]. Hemp is used to describe

Cannabis plants that have low THC content and are cultivated for fiber. Therefore, there

are two distinctive strains; one is generally cultivated for fiber (hemp) and the other for

drug use (marijuana) [8].

There had been immense debates over how many species Cannabis plants

contain. Many different taxonomic names and descriptions for Cannabis have been

reported according the International Code of Botanical Nomenclature. Some of these

specific names reported by Schultes (1974) [9] are: C. americana Houghton et Hamilton;

C. erratica Sievers; C. foetens Gilibert; C. generalis H.L Krause; C. gigantea Crevost; C.

indica Lamarck; C. lupulus Scopoli; C. pedemontana Camp; C. ruderalis Janischewsky,

and C. sativa Linnaeus.

Historically, botanists recognized generally three major species of Cannabis: C.

sativa, C. indica, and C. ruderalis. These three species had been carefully described and

often distinguished by different growth habitats, characters of the seeds, and the major

difference in the structures of the wood and fruit [7, 10]. The name Cannabis sativa is

initially reported by Bauhin in 1623, but it is first published by Carlous Linnaeus in the

seminal text Species Plantarum of 1753 which is considered the internationally accepted

starting point for botanical nomenclature [11]. Linnaeus originally gave India as the

country of origin for Cannabis sativa L. (L stands for Linnaeus), but later he realized that

C. sativa was indigenous of Asia. The old polytypic view of Cannabis evolved in 1783
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when Lamarck described C. indica to be very distinct from C. sativa [12]. Lamarck gave

Asia as a source of origin for C. indica. In 1924, a Russian botanist, Janischewsky

described a new species called C. ruderalis. He mentioned that C. ruderalis is known to

inbreed in Volga region, western Siberia, central Asia, and Russia.

On the other hand, Small and Cronquist strongly support the concept that the

variations within the genus Cannabis are due to the cultivation and selection of man [13].

They surveyed plants that represented a diverse population of Cannabis and concluded

that there is no difference between wild and cultivated strains. They also conducted

numerous studies pertaining to the cytology and breeding behavior, chemical variations,

and morphology of seeds. They concluded that there is inevitably one species of

Cannabis [13]. Hemp specialist Dewey also observes that when the different strains of

Cannabis are cultivated together under new conditions, they do not remain distinct, thus

cannot regard them as individual species [14]. Today, most botanists strongly support the

view that Cannabis is a genus with a single highly variable species (C. sativa), which has

diversified into a wide variety of ecotypes and cultivated races [15]. In addition, most

state and federal laws acknowledge Cannabis as a single species. Currently, Cannabis is

listed as belonging to [16]:

Kingdom - Plantae - Plant

Subkingdom - Embryophyta - Seed bearing

Phylum - Tracheophyta - Vascular plant

Subphylum - Pterosida - Fern like

Class - Angiospermae - Flowering plants

Subclass - Dicotyledonae - Two seed leaves, mulberry, Elm Trees
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Order - Urticales - Hops and Hemp

Family - Cannabinaceae - Hops and Hemp

Genus - Cannabis

Species - sativa

Cannabis botany:

Cannabis is a tall erect, dioecious plant, which means that the male and female

flowers develop on separate plants. Cannabis can grow to a height of 6 meters (20 feet)

in about 5-6 month [17] with adequate sunlight and ample irrigation. Cannabis is a

diploid organism with 2n = 20 chromosomes, two of which are sex chromosomes.

Female plants have two X chromosomes while male plants have one X chromosome and

a Y chromosome [18]. The female plant tends to be smaller and fuller in structure when

compared to the male plant. Females also have more leaves located at the top of the plant

with many leaves surrounding the flowers. The calyx is covered with resin exuding

glandular trichomes (hairs). The clusters of 10 to 100 individual flowers are considered

the "bud" of commercial marijuana. Many growers prefer to produce seedless buds

(sinsemilla) by removing male plants before they mature and release pollen. Sinsemilla

plants have a reputation of producing high potency marijuana since metabolites are

invested in the production of resin rather than seeds. As the calyces swell, the glandular

trichomes on the surface develop and secrete aromatic tetrahydrocannabinol (THC) laden

resin. THC serves as a barrier to water loss in Cannabis. This is because THC is viscous

hydrophobic oil that eludes on the surface of the plant and supplies a waxy coating to the

leaves [19]. The three major forms of abuse are: marijuana which is prepared from the
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dried flowering tops and leaves, hashish which consists of dried resin and compressed

flowers, and hash oil which is prepared by extraction from hashish using distillation [1].

Cannabis as a drug of abuse:

Cannabis is the only genus known to produce chemical substances called

cannabinoids. These substances are responsible for the psychoactive ingredients of

marijuana. The cannabinoids belong to a class of chemicals called terpenoids (terpene)

[15]. These compounds are essential oils within the plant. They cannot produce the

psychoactive action in the acid form in which they are found naturally in the fresh plant

material. In order to generate the psychoactive potential of marijuana, the plant material

must be heated to remove the carboxyl group. For this reason, and because cannabinoids

(non-polar molecules) have low solubility in water, they are normally administrated by

smoking. According to a study carried out by the British Medical Association [20], there

are more than 60 different cannabinoids and over 400 active components identified in

different Cannabis plants. Cannabinol (CBN), cannabidiol (CBD), A8

tetrahydrocannabinol (A8 THC), and A9 tetrahydrocannabinol (A9 THC) have been

identified as the major constituents (figure 1). The psychoactive effect is primarily

associated with the concentration of A9 THC while the others have no known

pharmacological activity [8].
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A9-TETRAHYDROCANNABINOL (A9-THC) A8-TETRAHYDROCANNABINOL (A8-THC)
(The primary psychoactive molecule)

Figure (1): The chemical structure of the four major chemical substances found in

Cannabis

Vollner reported that the fiber type of Cannabis is characterized by high CBD to

THC ratio (>5) whereas the drug type has a much lower ratio (<0.2) [21]. The variation

in the ratio of the cannabinoids has been also correlated with several factors such as

environmental conditions, the stage of the plants' development, the time of the sample

collection [22]), soil nutrients [23], and the intensity of light [24]. However, the results

of most significant studies on Cannabis constituents agree that the ratios of cannabinoids
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(THC, CBN, and CBN) and/or their absence in some sample are mainly under genetic

control [25].

Forensic identification of marijuana:

In forensic investigations, the plant-like materials that are confiscated by the

police are usually accompanied by the question: "Is this plant material Cannabis?" [15].

The common procedures utilized by forensic science laboratories for Cannabis

identification are based on the study of morphological (botanical) features of the material

and on the presence of certain chemical compounds. The forensic experts consider that

the tests commonly employed can identify Cannabis beyond reasonable doubt. The

botanical identification of Cannabis is determined microscopically. The analysis of the

leafy material by the microscope is based on the observation of certain morphological

features. The presence of characteristic glandular hairs, cystolithic hairs, and non-

glandular hairs are strongly diagnostic for Cannabis [15]. The upper surface of the

Cannabis leaves has short hairs called cystoliths that often contain calcium carbonate

crystals. In addition, when the plant is about to flower, the upper surface of the leaves

has glandular hairs that contain resin [26]. When all the above criteria are met, the

microscopic analysis can be conclusive for the identification of Cannabis. However,

sometimes the drying process, the age of plants, and the harvesting and preserving

conditions of the material can significantly affect the botanical features of Cannabis.

Moreover, Nakamura reported more than 80 different plant species contain cystolithic

hairs resembling those found in Cannabis [27]. Therefore, forensic experts now rely on

both microscopic and chemical techniques to conclusively distinguish Cannabis.
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The chemical identification of Cannabis is carried out by using several different

techniques such as the Duquenois test, thin layer chromatography (TLC), gas

chromatography (GC), high performance liquid chromatography (HPLC), and/or mass

spectroscopy (MS). The modified Duquenois test [28] is one of the best color tests used

in drug identification of marijuana. This test can indicate that the unknown material is

marijuana when a final purple color reaction is observed. TLC, GC, and HPLC are the

commonly used chromatographic techniques to detect the major Cannabis constituents

(THC, CBD, and CBN). MS is also an excellent and widely used method to identify

marijuana [29].

In recent years, DNA technology has been given close attention in the analysis of

marijuana. The DNA sequencing analysis have been employed successfully in plant

genetic studies and recently employed as new DNA method in forensic investigation for

Cannabis identification. The sequence analysis of the nuclear ribosomal DNA of two

internal transcribed spacer (ITS 1 and ITS2) as well as the sequences of the trnL intron of

the intergenic spacer between the trnL 3' exon and trnF gene of chloroplast DNA have

been the most useful for the identification of Cannabis [15].

DNA era:

One of the central missions for many important braches of biological science is

the analysis of genetic diversity and relatedness between and within different species,

populations, and individuals. The common techniques of evaluating the genetic

variability such as comparative anatomy, morphology, embryology, and physiology have

been strongly complemented by the different molecular markers. The development of

molecular markers are based on polymorphisms found in proteins or DNA, a source of
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data which has been used by research laboratories in a variety of fields such as taxonomy,

phylogeny, ecology, genetics, forensics, and plant breeding [30].

For many years, protein genetic markers (allozymes) have been the molecular

markers of choice. Since the 1960s, allozyme electrophoresis has been employed in

many organisms from bacteria to various animal and plant species. These markers were

used in numerous fields such as biochemistry, genetics and breeding for different

purposes such as population structure, mating system, and systematics [31]. However, in

recent years, this trend has shifted dramatically towards the DNA molecule as a powerful

source of polymorphisms. The unique portions of an individual's DNA sequence has

made it possible to study the genetic diversity and relatedness between organisms. A

wide variety of techniques to visualize DNA polymorphisms have been developed and

molecular markers have been derived from those techniques.

Restriction fragment length polymorphism:

David Botstein and his coworkers were the first to exploit the small variations

found between people at the genetic level to be used for human gene map construction

[32]. This type of variation they used is called restriction fragment length polymorphism

(RFLP). In 1985, while searching for disease markers in DNA, Alec Jeffreys discovered

a unique application for the RFLP to the science of human identification. "DNA

fingerprinting" is a term first described by Jeffreys for a method that allows for fast

detection of many highly variable DNA loci based on variations in the length of the

repetitive DNA sequence clusters [33, 34]. The DNA fingerprinting method detects

polymorphisms by hybridization of specific multilocus "probes" to restriction fragments

separated by electrophoresis. The result is a multi-banded pattern whose complexity
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suggests a fingerprint unique to each individual. This leads to the first forensic use of

DNA in England that made use of DNA fingerprinting. The police investigation

together with the DNA fingerprinting was able to identify Colin Pitchfork as murderer of

two young girls in the English Midlands. Consequently, an innocent suspect was freed

for a crime that he did not commit based on DNA evidence [35].

The most useful forms of RFLP markers arise from variation in the number of

tandemly repeated DNA sequence occurring between two restriction sites. These

sequences are called variable number of tandem repeats (VNTR) or minisatellite [33, 34].

This type of DNA fragment consists usually of a 10 to 60 base motif that is found within

and between genes. Clusters of such sequences are widely dispersed in the genomic

DNA. The number of the repeats at a given locus is variable, each of these variations

make a VNTR allele [35]. Many of these loci have dozens of alleles thus heterozygosity

is common, resulting in a high degree of polymorphisms among these loci. The standard

DNA testing employed in forensics uses four to ten different VNTR probes to

discriminate between individuals. Despite its informative input in numerous fields and

applications, the RFLP technique has limitations that restrict its wider acceptance. The

RFLP pattern requires fairly high molecular weight DNA (50-200 micrograms of DNA

per individual) to generate a DNA fingerprint pattern of a particular organism [35].

Moreover, RFLP profiles take a longer time to develop and require better quality DNA.

PCR era:

In 1985, a new technique called the polymerase chain reaction (PCR) [36, 37]

invented by Kary Mullis has changed the face of molecular biology forever and started a

new era of PCR-based fingerprinting techniques. PCR is able to amplify any DNA
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sequence of interest to high copy numbers and hence the name molecular "Xeroxing"

[35]. To amplify a particular DNA sequence, two single-stranded oligonucleotide

primers are designed to complement a specific sequence on the template DNA. Upon the

introduction of PCR, a wide variety of PCR-based techniques were developed to detect

polymorphism. A thorough review of these techniques can be found in Innis et al. (1990)

[38]. All the PCR-based techniques require only small amounts of the genomic DNA

(1/10 to 1/100 the amount needed of RFLP) [35], and the results can be obtained in a

short time. Applying such techniques dominate the field of molecular biology to generate

different molecular markers for various applications.

Random amplified polymorphic DNA:

Based on PCR technology, Williams introduced a method that employs the use of

one or two GC-rich PCR primers of arbitrary ten base oligonucleotides to generate some

molecular markers [39]. This technique that is termed random amplified polymorphic

DNA (RAPD) and the RAPD markers are easily developed based on PCR amplification

of random loci in the genome of a species. Because the 10 base primer(s) sequence is

arbitrary, no prior knowledge of the genomic DNA sequence composition is needed;

therefore the primers can be used universally for the DNA analysis of eukaryotes and

prokaryotes [30]. These primers have the possibility of annealing at a number of

different loci in the genomic DNA. For amplification products to occur, the primer(s)

have to bind at two different sites on opposite strands of the DNA template and within an

amplifiable distance of each other. Since multiple fragments are produced by a single

amplification, the polymorphisms are detected as presence or absence of each fragment in

the pattern.
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Primers prefer to bind to those target sites with a high degree of homology. Thus,

the number of PCR products is directly related to the number and orientation of the

sequences that are complementary to the primers in the genome. Polymorphisms in the

RAPD markers are attributed to several types of events. The first type is the insertion of

a large piece of DNA between the two annealing sites. The deletion of a DNA fragment

holding primer-annealing sites can also result in fragment variations. In addition, some

nucleotide substitution can affect the affinity of the primers to the annealing sites [30].

However, because these RAPD fragments are scored as dominant markers, the

heterozygous state cannot be distinguished from the homozygous state. RAPD markers

cannot be used to estimate the allele frequencies for population genetics studies nor it can

be used for comparative mapping [39, 40]. In addition, the allele frequencies are also

needed for DNA fingerprinting in order to estimate the individual's probability of match.

Amplified fragment length polymorphism:

Another method that employs the use of specific oligonucleotide primers is

termed amplified fragment length polymorphism (AFLP) technique [41]. AFLP

technology is based on the selective PCR amplification of restriction fragments from the

total digest of DNA and generates a banding pattern that can be used as a unique

identifier. AFLP is a highly selective method for fingerprinting genomic DNA of any

origin and complexity. AFLP combines several techniques which results in its high

power of discrimination. The technique is used to generate high density genetic marker

maps for the selected desired traits in various crops such as barley, tomato, and potatoes.

Similar to RFLP and RAPD analysis, AFLP derives from mutations in restriction sites or

length variation of restriction fragments [42]. AFLP offers several advantages over the
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other DNA fingerprinting systems. The most important are the capacity to examine an

entire genome for polymorphism. AFLP has been shown to be more reproducible that

the older RAPD technique because it utilizes two specific PCR primers in the DNA

amplification reaction.

The AFLP method entails several steps [43]. The first step involves restriction

digestion of the genomic DNA with two specific enzymes, a rare cutter and a frequent

cutter. Then, adaptors are added to the ends of the DNA fragments to generate known

sequence for PCR amplification. Primers are designed to recognize the known adaptor

sequence and one, two, or three additional base pairs (any one of the four possible

nucleotides: A, T, G, or C) of the restriction fragments. The additional base pairs are

known as selective nucleotides. PCR amplification is specific for the fragments where

the primers are able to anneal. Generally, two separate selective rounds of PCR are

carried out. The first round is called "pre-selective PCR amplification" which only

employs one selective nucleotide. The second round is known as "selective

amplification" [43] which uses the same selective nucleotide of the first round plus one or

two new ones. Normally, AFLP will generates 50 to 100 amplified fragments that can be

separated on polyacrylamide gel using electrophoresis [44]. AFLP detects polymorphism

as presence or absence of a band.

Microsatellite:

Microsatellite DNA has evolved as a robust molecular marker technique. A

microsatellite [45] is also known as simple sequence repeat (SSR) [46] or short tandem

repeat (STR) [47]. Microsatellites are DNA sequences of six or fewer bases that are

repeated in tandem arrays (i.e. CTCTCTCTCTCTCT) [48]. The most abundant type of
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the motifs is the dinucleotide repeat. Microsatellites are evenly distributed in human and

other mammalian genomes as well as in plants [49]. They are 10-fold more frequent in

the human genome than in plant and vary significantly among species of plants [50, 51].

Microsatellites can be found in any location on the genome, but they are less abundant in

protein-coding regions (exons) than in non-coding regions (introns). In addition, the total

microsatellite content in the genome is related to the overall genomic size of the organism

[52].

Weber defines the microsatellites structure in terms of three categories [53]:

perfect repeats (without interruption i.e. (NIN 2)x); imperfect repeats (interrupted by non-

repeat bases i.e. (NiN 2)x(N)y(NiN 2)z), and compound or complex repeats (two or more

repeats runs adjacent to each other i.e. (NiN 2)x(N 3N4)y). The variation in the number of

repeats among different fragments provides the basis for the polymorphism.

Microsatellite loci can be highly polymorphic, with a recent report of two loci in barley

having 28 and 37 alleles [54]. Once these microsatellites have been found, the unique

DNA sequences flanking the repeats are used to design pairs of oligonucleotide primers

for PCR. Because the primers are complementary to unique DNA sequences, they can be

designed to be about 23 bases long, which improve the specificity of the amplification

and the reproducibility of results. The alleles differ in the number of repeats of the

microsatellite sequence. For example, two alleles arise if they differ by two dinucleotide

repeats, thus the two possible CT alleles generated could be CT 6 (CTCTCTCTCTCT)

and CT8 (CTCTCTCTCTCTCTCT). The different alleles can be amplified by PCR and

separated by gel or capillary electrophoresis that detects the length difference in the
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number of microsatellite repeats. Since the amplified DNA fragments from the

microsatellite loci differ in size, heterozygosity can be directly assessed. If the individual

is homozygote, then both parents contribute the same allele, whereas the heterozygote's

individual receive different alleles from his/her parents [55]. Unlike with RAPDs and

AFLPs where Hardy-Weinberg equilibrium must be assumed to calculate heterozygosity

and allele frequencies, microsatellites allow a direct test of Hardy-Weinberg equilibrium

and estimation of allele frequency and heterozygosity. This method repeatedly identifies

a single locus and targets hypervariable regions of the genome. Polymorphism is

generally detected as a length difference in the amplified product. This length difference

may be as small as one base pair.

The inherent instability of the microsatellite loci makes them very useful for

evolutionary and genetic studies. Mutation rates of microsatellite loci are usually higher

than the mutation rates at other loci within the same genome. Microsatellite mutation

rates in vivo are estimated to be from 102 events per locus per generation in E. coli [56]

to around 6 x 10-6 events per locus per generation in Drosophila [57]. Two models have

been proposed to explain the mechanism of microsatellite instability. The first model

indicates that microsatellite instability is a result of an increased rate of unequal crossing-

over within the repeats. This unequal crossing over is caused by recombination among

homologous chromosomes that are imperfectly aligned. The second model argues that

microsatellite instability is a result of an elevated rate of slip-strand mispairing (SSM)

during DNA replication. This SSM process starts with the DNA polymerase "slippage"

during replication, which leads to partial dissociation of the original template and the

newly replicated strand. Consequently, this may cause misaligned reassociation of the

16



two strands and failure in mismatch repair. The results of a number of experiments argue

in favor of SSM to be the major cause of the instability [56, 59].

Several important advantages make microsatellite markers the method of choice

for DNA fingerprinting and analysis of genetic relationships. Microsatellite is usually a

single locus with multiple alleles and this robust technique can be easily distributed

between different laboratories as primer sequences [45]. Thus microsatellites act as

universal genetic markers by serving as common tool for collaborative research [43, 60].

Microsatellites can also be used in multiplex PCR where several microsatellite loci can

be assayed in the same amplification reaction. Microsatellite markers are codominant,

highly informative, reproducible, have high discriminatory power, and easily genotyped

[61-64]. In forensics, sometime is important to detect mixed samples profiles, which

only can be detected by SSR. Furthermore, the use of fluorescence detection techniques

improves the resolution and accuracy in calling the allelic profiles as well as expedites

data collection and thus lowers the costs. The recent advancement in electrophoresis and

analysis instrumentations that provides high-throughput and semi-automated analysis

allow for effective utilization of plant genetic diversity. Because of these advantages,

microsatellites have become well suited for wide range of applications in genetic

mapping [65], fingerprint and genotype identification [66], seed purity evaluation and

germplasm conservation [67], genetic relatedness and paternity studies [68], and marker-

assisted selection [69].

In human forensics, microsatellite markers are employed in the development of

unique allelic profiles to determine the individual's identity. Thus, the forensic DNA

community employs the use of tetranucleotide microsatellite markers for DNA
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fingerprinting analysis. Today, most forensic laboratories are using the 13 CODIS loci,

which are capable of generating DNA profiles with high discriminating power [55]. The

importance of plant DNA fingerprinting to forensics begin in 1993 when the legal

precedent was established for the use of plant DNA evidence in criminal casework. In

Bogan vs. State of Arizona, a woman was killed and her body was dumped in the Arizona

desert under a Palo Verde tree. Seedpods from a Palo Verde tree found in Bogan's car

were identified as a DNA match to the same tree, where the murder victim was found.

The plant DNA profiles used in this case were RAPDs-based [70].

Cannabis (marijuana) is one of the most widely used illicit drugs in United States

and throughout the world [71]. Marijuana is encountered frequently in daily criminal

cases. Molecular marker systems based on RAPD [72] and AFLP [73, 74] have been

developed for C. sativa and have been used for fingerprinting analysis. However,

RAPDs are dominant makers with serious reproducibility problems. AFLP analysis

detects multiple loci with high reproducibility, however, AFLP are also dominant

markers [64]. RFLP markers are highly polymorphic but they are very labor intensive.

Microsatellite markers have been developed for some plants for general purposes [52, 65]

but have not been applied forensically to C. sativa. To date, forensic labs and the general

forensic science community lack a simple, standardized technique for fingerprinting

analysis of marijuana plants that have been seized as evidence in a case. The objective of

this work was to develop a number of microsatellite markers capable of individualizing

Cannabis plants for fingerprinting and genetic relatedness analyses.
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Materials and Methods

The construction of the microsatellite library was performed of the genetics lab at

the United States Department of Agriculture-Agricultural Research Service-Subtropical

Horticulture Research Station (USDA-ARS-SHRS), Miami, Florida. The enrichment

protocols utilized were based on a modified version of the method described by Edwards

et al. (1996) [75]. Microsatellite loci were developed by a marker enrichment technique,

which consisted of: 1) hybridizing extracted genomic DNA of a known cultivar of C.

sativa with specific repeat unit probes, 2) sequencing positive clones, 3) designing

oligonucleotide primers on either side of the repeat region, and 4) testing loci for

polymorphism by sampling different unrelated individuals.

Microsatellite Enrichment Protocols:

DNA isolation and preparation of genomic DNA:

Cannabis genomic DNA was provided by Dr. Heather Coyle (Connecticut State

Forensic Science Laboratory, CSFSL, USA) and Dr. Gary Shutler (Royal Canadian

Mounted Police, RCMP, Canada) which was extracted with a QIAGEN DNeasy kit

(QIAGEN Operon, Alameda, CA) according to the manufacturer's recommendations

[74]. Then, 360 ng of the genomic DNA (18 ng/pl) was digested with 5 U of the

restriction endonuclease enzyme Sau3AI (10 U/pl), 2.5 pl of 10X reaction buffer (Life

Technologies, Inc., Gaithersburg, MD), and dH20 to a final volume of 25 pl. This

mixture was incubated at 370 C for 90 minutes followed by inactivated of enzyme at 650

C for 10 minutes. To confirm that the genomic DNA was cut by Sau3AI, a 500 ng of the
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digested DNA was electrophoresed on a 0.7% agarose gel using 50% TBE buffer and

visualized with ethidium bromide.

Preparation of the linkers:

The Sau linkers were prepared by the following oligonucleotides:

*Sau-L-A: 5'-GCGGTACCCGGGAAGCTTGG-3'

*Sau-L-B: 5'-GATCCCAAGCTTCCCGGGTACCGC-3'

The Sau-L-B was phosphorylated by mixing together 5 pg of Sau-L-B oligomer in TB (5

pl), 5 pl of l0X Kinase buffer, 5 pl of 10 mM ATP, 3 pl of 10 U/pl of T4 polynucleotide

kinase (New England Biolabs, Inc., Beverly, MA), and dH 20 for a final volume of 50 pl.

The reaction mixture was incubated at 370 C for one hour and then at 650 C for 15

minutes. After that, 5 pg of the Sau-L-A oligomer was diluted in 50 pl of 1X kinase

buffer containing 2 mM ATP and mixed with 5'-phosphorylated Sau-L-B mixture. This

mixture made up the Sau linkers after running the following thermocycle program: 2

minutes at 850 C, 15 minutes at 650 C, 15 minutes at 370 C, 15 minutes at 220 C, and

finally incubating for 15 minutes on ice.

To purify the linkers, the mixture was extracted with equal volume of

phenol:chloroform:isoamyl alcohol (PCI) using a ratio of 25:24:1. The aqueous layer

containing the linkers was transferred to a clean tube and Sau linkers were precipitated

using 11 pl of 3 M NaOAc (pH 5.2) to a final concentration of 0.3 M and 333 pl of

absolute ethanol. The resulting solution was incubated on ice for 30 minutes and

centrifuged at 12,000 rpm for 15 minutes at 00 C. The supernatant was discarded and the

pellet was rinsed once with 500 pl of ice cold 70% ethanol. The ethanol solution was
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centrifuged at 12,000 rpm for 15 minutes at 00 C and the supernatant was poured off.

Finally, the recovered Sau linkers pellet was air-dried at room temperature for 10 minutes

and then resuspended in 10 pl of nuclease-free water.

DNA/linkers ligation:

In the ligation step, 200 ng of the digested DNA was mixed with 8 pl of 5X ligase

buffer, 2 pl of T4 DNA ligase (Life Technologies, Inc., Gaithersburg, MD), about 1 pg of

Sau linkers (1 pl), and dH 2O to a final volume of 40 pl. This reaction mix was incubated

at 40 C for 72 hours. The ligation reaction was stopped by heating at 650 C for 10

minutes and then put on ice. The ligation reaction was purified to remove excess linkers

with Performa DTR Gel Filtration Cartridges (Edge Biosystems, Inc., Beverly, MA)

according to the manufacturer's recommendations. The success of the ligation reaction

was verified using a PCR amplification in which the PCR mix had the following:

Reagent Amount ( p)

Linkers-ligated DNA 5
lOX buffer with 15 mM MgCl2 .5
NTP (2.5 mM each)

Sau-L-A primer (10 pM) 1
Tag polymerase (5 U/ l) 0.5
H 2 0 14

Total 25

The reaction mixture was amplified using the following PCR program: 94* C for 3

minutes, (94* C for 1 minute, 680 C for 1 minute, 72* C for 1 minute) for 30 cycles, 720

C for 10 minutes, and hold at 4* C. Finally, 5 pl of PCR product was electrophoresed on

a 0.9% agarose gel and 50% TBE at 109 voltage for one hour. A successful ligation
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reaction would show a visible "smear" of amplified PCR products when visualized with

ethidium bromide.

Pre-amplification for microsatellite enrichment:

The following reaction mix was prepared in triplicates:

Reagent [Amount ( .l)
Linkers-ligated DNA 1
i OX buffer with 15 mM MgCl 2 5
Sau-L-A primer (10 M) 2

NTP (2.5 mM each) 4

Tag polymerase (5 U/pl) 0.5
H20 37.5
otal 50

The triplex mixtures were amplified using the following PCR program: 940 C for 3

minutes, (94* C for 1 minute, 68* C for 1 minute, 720 C for 1 minute) for 20 cycles, 720

C for 10 minutes, and hold at 40 C. The triplex reaction mixtures were pooled together

and purified using the PCI extraction in which equal volume of PCI was added to the

mix, vortexed thoroughly, centrifuged at 13,000 rpm for 10 minutes, and the top layer

was transferred to a clean tube. Then the solution was ethanol precipitated by adding 5 M

of NaCl to a final concentration of 100 mM (3 pl) and 2.5X volumes of ice-cold absolute

ethanol (383 pl). The resulting solution was incubated on ice for 60 minutes and

centrifuged at 13,000 rpm for 20 minutes on 00 C. The supernatant was carefully

discarded and the DNA pellet was dried in a vacuum centrifuge and resuspended in 29 pl

of nuclease free water. 4 pl of the result was electrophoresed in a 0.9% agarose gel and

50% TBE to check if enough DNA was recovered during the pre-amplification.
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Preparation for enrichment of microsatellite:

Twelve different biotinylated oligonucleotide probes were employed all of which

contain Biotin-ATAGAATAT at the 5' end [75]. Those probes consisted of two types of

dinucleotide repeats: (CT)15 and (GT)15 and ten types of trinucleotide repeats: (CAA)lo,

(ATT)o, (GCC)lo, (ACC)lo, (AGG)lo, (CTT)Io, (AGC)o, (ACG)1 0, (ACT)lo, and

(ATC)o (Invitrogen, Chicago, IL). Each type of the biotinylated oligonucleotide probes

was resuspended in TE (pH 8) to make 1 pg/pl the stock solution. In a separate tube,

each probe solution was diluted 1/10 with nuclease free water. A master mix containing

the 12 probes was prepared 10 pl of the diluted solution (120 pl total volume).

To prepare the dynabeads for enrichment, 100 pl aliquot of the stock dynabeads

solution was washed to remove the sodium azide preservative as described by the

following manufacturer's steps:

1. The Dynabeads M-280 Streptavidin (Dynal, Oslo, Norway) were resuspended in

sodium azide by gently shaking the vial.

2. 100 pl of dynabeads solution was transferred to a clean microcentrifuge tube.

3. The tube was placed in the Dynal MPC magnet for 2 minutes without disturbance.

4. The supernatant was removed carefully with a pipette and, as possible, avoiding

to touch the inside wall of the tube where the magnetic beads are attracted.

5. The tube was removed from the magnet and 100 pl of the 2X B&W wash buffer

was added to resuspend the dynabeads again. The 2X B&W buffer was made by

mixing 10 mM of tris-HCl (pH 7.5), 1 mM of EDTA, and 2 M of NaCl.

6. The tube was placed in the Dynal MPC magnet for 2 minutes and the wash buffer

was then removes.
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7. The wash was repeated 4 more times using 100 pl of 2X B&W buffer as

described by step 5 and 6.

8. After the final wash, the dynabeads were resuspended is another 100 pl of 2X

B&W buffer.

9. In this step, 100 pl of the 12 biotinylated probes mix made earlier was added to

the dynabeads and mixed thoroughly (100 ng/pl total oligo concentration).

10. The dynabeads were allowed to hybridize with the biotinylated probes by placing

the tube on a mixing table for 30 minutes at room temperature.

11. The tube was placed in a MPC magent for 3 minutes and the supernatant was

removed afterward.

12. The dynabeads were washed 3 times with 100 pl of 1X B&W buffer as above.

13. Finally, the dynabeads were resuspended in 500 pd of 2X B&W buffer.

Enrichment of microsatellite sequence:

The pre-amplified linkers-ligated DNA was denatured by incubating at 950 C for

7 minutes and immediately placed on ice for at least 5 minutes. To enrich for the

microsatellite-containing fragments, the following mix was prepared:

Reagent mount ( 1)

Denatured DNA 25

Sau-L-A oligo (1 pig) 1
Hybridization buffer* 474
Dynabeads in 2X buffer 500
Total 1000

*The hybridization buffer ingredients:

50% formamide, 3X SSC, 25 mM Na-phosphate (pH 7), and 0.5% SDS.

The reaction solution was mixed overnight at room temperature on a mixing table.
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Dynabeads/hybridization washes:

The washes were carried on as follows:

1. The hybridization reaction was placed in the MPC magnet for 3 minutes at room

temperature.

2. Leaving the tube in the MPC magent, the hybridization solution was pipetted out.

3. 1.0 ml of wash buffer #1 (2X SSC and 0.01% SDS) was added.

4. The reaction tube was then removed from the MPC and the solution was mixed

gently to resuspend the dynabeads. After that, the solution was incubated at 420

C for 3 minutes in waterbath without agitation.

5. Again, the tube placed in MPC for 2 minutes at 42* C (MPC was placed in the

waterbath from now on).

6. The supernatant was removed and fresh 1 ml of wash buffer #1 was added.

7. The washes were repeated 4 times (steps 3-6) with wash buffer #1.

8. The washes were repeated 3 times using wash buffer #2 (0.5X SSC and 0.01%

SDS) as described in steps 3-6.

9. After the final wash, the entire wash buffer was removed and the dynabeads were

resuspended in 200 pl of nuclease free water then transferred to a clean 500 pl.

10. The DNA fragments were eluted and captured by denaturing at 950 C for 7

minutes and placing the tube immediately on ice for at least 10 minutes.

11. The tube was then place in MPC magnet (set on ice) and incubated for 2 minutes.

12. The supernatant (enriched DNA) was removed and transferred to a 1.5 p tube.

The dynabeads were resuspended in 500 pl of 2X B&W buffer and stored at 40 C.
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13. The recovered enriched DNA was concentrated by adding 5 M NaCl to a final

concentration of 100 mM NaCl (4 pl) and 2.5X volumes of ice-cold absolute

ethanol. The solution was incubated on ice for 60 minutes and centrifuged at

13,000 rpm for 20 minutes at 0* C.

14. The supernatant was poured off and the DNA pellet was centrifuged in vacuum

for 30 minutes.

15. The DNA was resuspended in 25 pl of nuclease free water.

To further increase the DNA fragments containing microsatellites, second PCR

amplification and enrichment were performed.

Pre-cloning amplification:

After the second enrichment of the microsatellite containing fragments, the PCR

reaction mix was prepared in triplicate containing the following:

Reagent Amount ( 1)
Linkers-ligated DNA 1
lOX buffer with 15 mM MgCl 2 5

Sau-L-A prim er (10 pM ) 2(. m ehTo ra 5 U l5

dNTP (2.5 mM each) 4_______

Tag polymerase (5 U/pA) 0.5
H20 37.5

Total 50

The pre-cloning amplification was carried on by denaturing at 940 C for 3 minutes,

followed by 25 cycles of 1 minute at 940 C, 1 minute at 680 C, and 1 minute at 72* C.

The final extension was 10 minute at 720 C and hold at 4* C. The triplex PCR reactions

were pooled together and purified once by equal volume of PCI. 3 pl of 5 M NaCl was

added to the reaction tube and mixed thoroughly (100 mM NaCl final concentration).
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Fragment size fractionation:

First, the SizeSep 400 Spun Column Sepharose (Amersham Pharmacia Biotech,

Inc., Piscataway, NJ) was equilibrated as described by the manufacturer. The

equilibration wash buffer was prepared to contain 10 mM tris-HCl (pH 8), and 100 mM

NaCl. Then the spun column was inverted several times to resuspend the Sepharose CL-

4B gel. The top and bottom caps were removed and placed aside. The column was

allowed to drain out for about 10 minutes but without drying the gel. The bottom cap

was replaced and 2 ml of equilibration buffer was added. Next, the top cap was replaced

and the column was inverted several times to resuspend the gel again. Both caps were

removed again and the column was allowed to drain as before. The wash with the

equilibration buffer was repeated twice more. At the final wash, the buffer was stopped

just as the last of the buffer enters the top of the gel and then both caps were replaced.

Second, the size-fractionation of the enriched DNA fragments was performed

following the manufacturer's recommendations:

1. A 1.5 ml microcentrifuge tube was placed in the bottom of a 30 ml cortex tube.

The caps were removed from the spun column and placed inside the

microcentrifuge tube so that the tip of the column would be inside the tube.

2. The entire cortex tube was centrifuge at 400 x g for 2 minutes.

3. The column was removed and placed upright in a rack so that the gel should be

compact and dry.

4. The enriched DNA solution was slowly applied to the top of the gel by carefully

avoiding the run of the DNA past the sides of the gel.

5. The loaded column was placed back into the 30 ml cortex tube with a clean tube.
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6. The cortex tube was centrifuged at 400 x g for 2 minutes.

7. The column was discarded and the effluent collected in the microcentrifuge tube

was saved for the next step.

Third, the size-fractionated DNA was concentrated by ethanol precipitation as

described previously. The final DNA recovered was resuspended in 25 pl of nuclease

free water.

Cloning reaction:

The cloning reaction was performed using the TOPO TA Cloning Kit (Invitrogen

Corp., Chicago, IL) as described by the manufacturer's recommendations:

1. The ligation reaction was made by mixing 4 pl of the enriched DNA, 1 pl of salt

solution, and 1 pd of TOPO vector.

2. The reaction was incubated at room temperature for 30 minutes.

3. 2 pd of the ligation reaction mixture was transferred to one vial of competent E.

coli cell. The result was mixed gently without a pipette and the remaining

ligation reaction mixture was store at - 200 C.

4. The vial was incubated on ice for 30 minutes.

5. The plasmid vectors were transformed into E. coli cells by heat shocking at 42* C

for 30 seconds without agitation.

6. The vial was placed immediately on ice.

7. 250 p1 of SOC broth was added to the E. coli cells followed by incubating at 370

C for 60 minutes with shaking at 200 rpm.
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8. 30 pl aliquot of the transformation mix was plated on separate pre-warmed Luria-

Bertani agar plates with 100 pg/ml Ampicillin using a sterilized spreader. The

entire volume of the reaction mixture was plated out.

9. The plates were placed at 370 C overnight.

Plasmid recovery:

Sterile toothpicks were used to inoculate 96-well plates containing 100 pl of SOC

broth with 100 pg/ml Ampicillin. The broth culture plates were covered with aluminum

foil tape and placed at 370 C overnight. 25 pl of the cells culture from each well was

transferred to another 96-well plate. The plates were centrifuged to pellet cells and then

were inverted and spun for a short time to remove the broth. The cells were resuspended

with 50 pd of 10 mM tris-HCl (pH 8). The plates were covered with foil tape and stored

at - 20* C until using in the next step. These cells were used as a template for insert PCR

with M13 primers (Life Technologies, Inc., Gaithersburg, MD). The remaining 75 pl of

the cells culture were store at -20* C after adding 25 pl of glycerol and spinning at 1700 x

g for 20 minutes to pellet cells.

M13 insert amplification:

The following amplification mix was prepared:

Reagent 1 rxn ( l) 105 rxn (one plate, 1)

lOX buffer with 15 mM MgC12 1.5 157.5
NTP (2.5 mM each) 0.6 63

M13 Forward 0.3 31.5
13 Reverse 0.3 31.5

Tag polymerase (5 U/ 1) .06 6.3
H20 9.24 970.2

Total 12 1260
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12 pl of master mix was added to each well of 96-well PCR plate. To the appropriate

well, 3 pl of the cells culture solution was added as well. The reaction mix was amplified

using the following PCR program: 940 C for 5 minutes, (940 C for 30 seconds, 600 C for

seconds, and 720 C for 2 minutes) for 30 cycles, and final extension for 10 minutes at 720

C then holding at 40 C. 5 pl of PCR products from two columns were electrophoresed on

2% agarose gel with 50% TBE. This was to check for the success of M13 amplification

and size fractionation in which all plasmid inserts should be 400 bp or above.

Exonuclease I treatment:

In a half-skirted plate, the following reaction mix was prepared:

Reagent 1 rxn ( l) 105 rxn (one late, 1)

Exonuclease I (20 U/ l) 0.025 2.63
Exonuclease iOX buffer 2 210
dH2O 12.975 1,362
Total 15 1,575

15 pl of reaction mix was added to each well of half-skirted plate. Then, 5 pl of M13

PCR products were added to the appropriate wells. The PCR products were incubated

using the following thermalcycle program: 370 C for 60 minutes, 650 C for 20 minutes,

and hold on 40 C. 40 pl of absolute ethanol was added to each well. The plate was

covered with aluminum foil tape and mixed by inverting for several times. The plate was

incubated for 15 minutes at room temperature. Then the plate was centrifuged at 1700 x

g for 30 minutes. The foil tape was removed followed by inverting the plate and spinning

at 10 x g for 30 seconds. The plate was air dried for at least 15 minutes, covered with

aluminum foil tape, and saved at -200 C until used for cycle sequencing.
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Cycle sequencing:

The PCR products amplified from plasmid inserts were sequenced using BigDye

Terminator TM Cycle Sequencing Ready Reaction Kit (Version 2.0) (Applied Biosystems,

Foster City, CA) on an MJ Research Thermocycler (MJ Research, Inc., Walthan, MA).

The cycle sequencing mix was prepared with the following:

Reagent 1 rxn ( 1) 104 rxn (one late, 1)

7 primer (1.6 pmol/pl) 1 104
5X buffer 1.75 182

igDye Terminator 0.5 52
H20 6.75 702
otal 10 1040

10 pd of the sequencing mix was added to each well containing the previously dried insert

PCR product. The cycle sequencing reaction was carried out using the following PCR

program: 960 C for 10 seconds, (50* C for 5 seconds, 60* C for 4 minutes) for 26 cycles

and hold at 40 C. After that, 40 pl of the 76% ethanol was added to each well plate to

concentrate the sequencing products. The plate was then covered with aluminum foil

tape and mixed thoroughly by inverting. The sequencing products were allowed to

precipitate overnight at room temperature on dark location. The next day, the plate was

taken out and centrifuged at 1810 x g for 45 minutes (4000 rpm). The foil tape was

removed and plate was inverted and centrifuged for 10 x g for 30 seconds. The plate was

then air dried for at least 15 minutes.

The sequencing products were denatured by adding 10 pl of Hi-Di formamide to

each well and incubating at 950 C for 2 minutes then placed immediately on ice for at

least 10 minutes. Next, the plate was centrifuged at 3500 rpm for 20 seconds and loaded
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into the ABI Prism 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA). The

sequencing products were electrophoresed on the ABI 3100 and analyzed with DNA

Sequencing Analysis Software 3.7 (Applied Biosystems, Foster City, CA). The

sequences generated from the automatic sequencer were analyzed using the GCG

Wisconsin Packages (Accelrys, Madison, WI) to identify those that contain microsatellite

loci. Microsatellite loci were imported into Sequencher v.4.1 to sort, clean up, and

generate consensus sequences for primer design.

Primer design and fragment analysis:

The sequence files for those that have enough flanking sequences at both ends

were combined with the others that needed reverse sequencing using T3 universal primer

to be used for primer design. Based on the flanking sequences, the PCR primers were

designed using GCG Wisconsin Packages (Accelrys, Madison, WI). The GCG program

applied specific criteria when selecting the optimal primers candidates. Some of these

most important criteria were:

GCG Primer Design Selection Criteria

Primer Size: 18-22 nucleotides
rimer GC Content: 0-55%

Primer Tm: 50-65* C
Product Length: 100-350 bp
Product GC Content: 0-55%

Product Tm: 70-95* C

Difference in Primer Tm: 2.00 C
uplicate Primer Endpoints is Not Allowed

One primer pair was selected and synthesized for each locus from QIAGEN

Operon (Alameda, CA). All primer pairs were tested by PCR with six different annealing

temperatures (50* C, 53.2* C, 55.5* C, 58.4* C, 61.80 C, and 64.60 C). The optimal
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annealing temperature was determined to be 530 C at which the amplicons had the

highest intensity as measured by relative fluorescent unit (rfu). With some modification,

the M13 fluorescent tail primer method described by Roy et al. (1996) [76] was used as a

screening technique to detect polymorphism among the different loci and subsequently

for fragment analysis. In this method, 19 oligonucleotide bases was added at the 5' end

of the forward PCR primers having the following sequence:

5'- CACGACGTTGTAAAACGAC -3'

This above sequence was identical to the fluorescently labeled (fam) universal M13

forward (-29) primer, which was also included in the amplification reaction.

For fragment analysis, the tailed forward primers gave a complementary sequence

to the M13 primer, which was employed for primering in the PCR amplification to

subsequently produce fluorescently-labeled PCR product. The PCR reaction was

prepared (for one reaction) by adding 1 pd of lOX buffer with 15 mM MgC 2, 0.2 pl of

dNTP's (2.5 mM each), 0.25 pl of forward tail primer (10 pM), 0.25 pl of reverse primer

(10 pM), 0.6 pl M13 tag primer (1 pM with fam), 0.1 pl of taq polymerase (5 U/pl), 1 p1

of DNA template (10 ng/pl), and dH2O to a final volume of 10 pl. The PCR reaction was

carried on by denaturing at 940 C for 5 minutes, followed by 40 cycles of 45 seconds at

940 C, 45 seconds at 530 C, and 1 minute at 720 C. The final extension was 10 minute at

720 C and hold at 40 C. For those primer pairs that did not produce PCR product with

M13-tail fluorescent label method, direct 5'-labeled fluorescent primers were used

(Invitrogen Corp., Chicago, IL).
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Determination of allele size:

The PCR products were electrophoresed in a capillary electrophoresis instrument

(ABI Prism 3100) using Performance Optimized Polymer 4 (POP4) (Applied

Biosystems, Foster City, CA). Each sample was prepared by mixing 1.5 pl of the PCR

product with 12 pl of Hi-Di formamide and 0.1 pl of GeneScan 500 ROX fluorescently

labeled size standard (Applied Biosystems, Foster City, CA). The PCR products were

denatured by incubating at 950 C for 2 minutes and immediately cooling on ice for at

least 10 minutes. Samples were injected electrokinetically at 3 kV for 10 seconds and

were run at 600 C for 45 minutes at 15 kV. The data generated was imported into

GeneScan 3.7 software (Applied Biosystems, Foster City, CA) for fragment size

determination. The final allele size determination of the microsatellite data was

performed using Genotyper 3.7 software (Applied Biosystems, Foster City, CA).

Statistical analyses:

All samples were scored for the allele designations based on repeats size which

were employed in different statistical analyses. To investigate some genetic parameters

of polymorphism, the following was calculated: allele frequencies, number of alleles per

locus (n), effective number of alleles (ne), observed heterozygosity (Ho), expected

heterozygosity (He), and probability of identical genotypes (PI). The genetic parameters

were determined using the eleven microsatellite over 33 diploid Cannabis plants

(excluding duplicate samples). Observed heterozygosity (Ho) was obtained by dividing

the number of heterozygous plants over the total number of plants tested for each locus.

The degree of polymorphism was measured using expected heterozygosity (He) [77]:

He= 1- Z P'.
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where Pi is the frequency of the ith alleles for each locus in Cannabis. Probability of

identical genotypes (PI) was estimated according to Paetkau et al. (1995) [78]:

PI =Z Pi _ X (2 PiPj)2

where Pi is the frequency of ith allele and P is the frequency of (; +1)th allele detected.

Effective number of alleles (ne) was calculated based on Morgante's formula [65]:

ne ( Xpi2)-

The genetic relationships among the unique Cannabis profiles were analyzed

using the neighbor joining method (NJ) [79] and unweighted pair group method

(UPGMA) [80]. These cluster analyses (NJ and UPGMA) represented collections of

statistical methods that were used to divide a set of members into groups (clusters).

Group members would share certain properties in common and those members that were

genetically related would have close genetic distance whereas those that were less related

would be further a part in the dendrogram. The analyses might reveal associations and

structure in data which could provide some insight into the research topic. The NJ and

UPGMA trees were generated based on the following genetic distance: Chord [81],

unbiased Nei [82], and modified Roger [83]. In order to give a confidence limit to the

relationships between Cannabis plants, 2000 replicas of bootstrapping [84] were

performed with the NJ method to test support at the branch nodes. Those nodes with

bootstrap values below 50% are considered unsupported. Principal component analysis

(PCA) was also used to show correlation between the data sets in 3 dimensional space

across the plants tested [80]. The calculations of genetic distances, cluster analyses, and

PCA were performed using the NTSYSpc v.2.1 package [85]. The bootstrap was

performed using the TreeMaker program [86].
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Results

Characterization of isolated microsatellite sequences:

The cloning step of the enriched Cannabis DNA generated 685 clones, from

which 192 clones were sequenced (two 96-well plates). Ninety-five (95) clones were

considered useful as they contained either dinucleotide motifs with nine or greater repeat

units, or they contained trinucleotide motifs with five or greater repeat units. The types

of microsatellite motifs identified were consistent with the twelve types of

oligonucleotide probes that were used for the enrichment. The isolated microsatellite

sequences were as follows: 51% dinucleotide repeats, 49% trinucleotide repeats, 79%

perfect repeats, 14% imperfect repeats, and 7% compound repeats (table 1).

Total clones of enriched DNA 685
Total sequencing reactions 192
Total microsatellite inserts (%) 49%
Frequency of microsatellites in Cannabis sativa (%)
GAT/CTA GA/CT AAG/TTC GTT/CAA GT/CA CAT/GTA ACG/TGC GGA/CCT
10.2% 50.0% 15.3% 16.3% 1.0% 5.1% 1.0% 1.0%

Type of repeat (%)
By nucleotide string
Di 51.0%
Tri 49.0%
By form
Perfect 78.6%
Imperfect 14.3%
Compound 7.1%

Table (1): Microsatellite enrichment success for Cannabis sativa and characterization of

the microsatellite types
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The isolated microsatellites had two types of dinucleotide repeats and six types of

trinucleotide repeats. The majority of microsatellite loci were composed of a GA/CT

dinucleotide motif representing 50% overall. The most common isolated trinucleotide

motifs were GTT/CAA, AAG/TTC, and GAT/CTA representing 16%, 15%, and 10%

respectively, of all detected microsatellites (table 1). The maximum repeat units recorded

for dinucleotide motifs were 49 repeats and 17 repeats for the trinucleotide motifs. The

number of repeat units ranged between 15 bp (5 trinucleotides) to 98 bp (49

dinucleotides). A complete list of the frequency of microsatellite types recovered from

Cannabis sativa is shown in table 1.

Characterizations of the selected microsatellite sequences:

Thirty-six clones had suitable flanking regions for GCG primer design. From

these 36 loci, seven could not generate primer sets because of low annealing temperature

particularly due to a high concentration of nucleotides A and T. Of 29 primer pairs

designed by GCG, 25 sets were selected, synthesized and tested for polymorphism.

Fourteen primer pairs were eliminated because they produced no PCR products,

nonspecific products, or complex (uninterpretable) products. These products were

mainly due to the high tendency of primers to produce palindromes or primer dimers

between the two primer sequences. In addition, two of those fourteen primer pairs were

monomorphic. The remaining eleven loci, examples shown in figure 2-4, were found to

be polymorphic and reliable for scoring the different alleles across the 41 Cannabis

samples (table 2). The original genomic DNA used in the library construction (G40,

table 3) was also included to provide a positive size control. All of the amplified

products were in the expected size range and the PCR products ranged from 105 bp to
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339 bp. The eleven STR markers were derived from three dinucleotide repeats, five

trinucleotide repeats, one compound trinucleotide repeat, and two imperfect trinucleotide

repeats (table 2).

GGG G3''G -C G - C G C ' 7

4, 'l, ' ;Va

Figure (2): Cycle sequencing of the locus BOl-CANN1 encoding for the (GAA) 3 (A)(GAA) 3
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II °

Figure (3): Cycle sequencing of the locus E07-CANN1 encoding for the (CTA)q

G G G G oG G: :G,. ,. .. G G G;. G G G G: GE G- G G G G' G

I I , V I

Figure (4): Cycle sequencing of the locus B02-CANN2 encoding for the (AAG),o
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ocus Repeat Primers (5'-3') Alleles Size Range

C11-CANN1 (GAT)8(GGT)7  GTGGTGGTGATGATGATAATGG 5 150-175 bp

(P4) TGAATTGGTTACGATGGCG

O1-CANNI (GAA)13(A)(GAA) 3 TGGAGTCAAATGAAAGGGAAC 5 323-339 bp

(P6) CCATAGCATTATCCCACTCAAG

02-CANN2 (CTT)6(ATT)(CTT) 0 AGATGATGCCAAGAGGCAC 4 221-236 bp

P7) TACCCATCCCCTTGGATCAC

08-CANN2 (GA)21  GCAAGAAGTAGAGAGACAATCC9 171-203 bp

(P9) CCCTCAACACTCATTAACTCAC

11-CANNI (CT)18  GCATGTGGTTGTTTCGTACCC 7 285-297 bp

(P13) CAGCGAACATTCACTCTAGCTC

02-CANN2 (AAG) 0  CAACCAAATGAGAATGCAACC 3 163-172 bp

(P14) TGTTTCTTCACTGCACCC

09-CANN2 (GA)s CGTACAGTGATCGTAGTTGAG 6 204-224 bp

(P15) ACACATACAGAGAGAGCCC

E07-CANNi (CTA)9  CAAATGCCACACCACCTTC 3 105-111 bp

(P17) GTAGGTAGCCAGGTATAGGTAG

05-CANNI (TTG)9  TTGATGGTGGTGAAACGGC 4 235-244 bp

(P19) CCCCAATCTCAATCTCAACCC

02-CANNi (GTT) 7  GGTTGGGATGTTGTTGTTGTG 3 105-111 bp

(P24) AGAAATCCAAGGTCCTGATGG

06-CANN2 (ACG) 7  TGGTTTCAGTGGTCCTCTC 3 266-273 bp

(P25) ACGTGAGTGATGACACGAG

Table (2): The 11 SSR markers and the primer sequences
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Samples Information Duplicate Link
1 Northeast-street#1 1
2 Northeast-street#1 1

3 Northeast-street# 1
4 Northeast-street#1
5 Northeast-street#1 3
6 Northeast-street# 1 3

7 Northeast-street#1 4

8 Northeast-street# 1
9 Northeast-street# 1
10 Northeast-street# 1 5
11 Northeast-street#2
12 Northeast-street#2 A

13 Northeast-street#2 A

14 Northeast-street#2 6
15 Northeast-street#2 7

16 Northeast-street#1 2

17 Northeast-street# 4

18 Northeast-street#1 5
19 Northeast-street#2 6

20 Northeast-street#2 7

21 Canada
22 Canada 9
23 Canada E
24 Canada
25 Canada C
26 Canada 10-C

27 Canada E
28 Canada 10-C

29 Canada
30 Canada
31 Canada 11

32 Canada
33 Canada
34 Canada 11
35 Canada
36 Canada 9
37 Canada
38 Canada B
39 Canada B
40 Used in library construction 8 9

G41 Canada 8

Table (3): List of information and association known between the 41 C. sativa plants

(personal communication with Dr. Coyle at CSFSL and Dr. Shutler at RCMP)
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Continue Table (3):

* Identical number (1-8) code for duplicate samples
* Identical letter code for related samples
A: closely related by AFLP
B: originated from the same grower
C: related by AFLP
D: originated from the same grower
E: related by AFLP
9: identical based on AFLP
10: identical based on AFLP
11: identical based on AFLP

Polymorphisms of microsatellite loci:

A total of 52 alleles were detected across the eleven loci. The number of alleles

per locus ranged from three at loci P14, P17, P24, and P25 to nine at locus P9 (table 4).

On average, 4.7 alleles and 2.4 effective alleles per locus were detected. The difference

between the average number of alleles per locus and the effective number of alleles per

locus infers the presence of rare alleles that occurred in few genotypes. Allele

frequencies for 33 Cannabis samples excluding the duplicates were generally low

(ranging from 0.015 to 0.773) especially at loci with a large number of alleles. The level

of polymorphism detected at each locus was evaluated by expected heterozygosity (He).

Expected heterozygosity ranged between 0.368 and 0.710 with a mean value of 0.568.

The observed heterozygosity (Ho) ranged between 0.152 and 0.727 with an average of

0.529. The total probability that two unrelated individuals would have the same genotype

across all eleven loci by chance (PI) was estimated to be low (1.8 x 107) (table 4), thus

resulting in high discrimination power between unrelated individuals.
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Locus Ho He N ne PI
P4 0.6061 0.5429 5 2.2089 0.258
P6 0.5758 0.5612 5 2.2782 0.2718
P7 0.1515 0.4926 4 1.971 0.2978
P9 0.4545 0.6901 9 3.2267 0.1281
P13 0.6364 0.5882 7 2.4281 0.2384
P14 0.6061 0.595 3 2.4694 0.2484
P15 0.7273 0.7103 6 3.4517 0.1293
P17 0.6667 0.5092 3 2.0374 0.3226
P19 0.6061 0.6396 4 2.7745 0.2014
P24 0.3658 0.3678 3 1.5812 0.4418
P25 0.4242 0.5478 3 2.2112 0.302
Average 0.5291 0.5677 4.7273 2.4217 1.8 x 10-7a

Table (4): Calculation of different genetic parameters for Cannabis samples excluding

the duplicates

a Product of values across all loci analysis of Cannabis plant
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Sample Info 150 153 156 165 175
P4- 1 0.5 0.5

P4-g2 0.5 0.5

P4-g3 0.5 0.5

P4-g4
P4-g5 0.5 0.5

P4-g6 0.5 0.5
P4-g7 0.5 0.5

P4-g8 1

P4-g9 0.5 0.5

P4- 10 0.5 0.5

P4-g11 1

P4- 12 0.5 0.5

P4- 13 1

P4-g14 1

P4- 15 0.5 0.5

P4- 16 0.5 0.5

P4- 17 0.5 0.5

P4- 18 0.5 0.5

P4- 19 1

P4-g20 0.5 0.5

P4-21 0.5 0.5

P4-g22 1

P4-g23 0.5 0.5

P4-g24 0.5 0.5

P4-025 1

P4-g26 0.5 0.5

P4-g27 1

P4-g28 0.5 0.5

P4-g29 0.5 0.5

P4- 30 1

P4-31 0.5 0.5

P4-g32 0.5 0.5
P4-g33 0.5 0.5
P4-g34 0.5 0.5
P4-g35 1

P4-g36 1

P4-g37 0.5 0.5

P4-g38 0.5 0.5

P4-g39 1

P4-g40 1

P4-g41 1

Allele Count 2 50 |19 |10 1
Total Alleles 82

Allele Fre 0.0244 0.609756 0.231707 0.121951 0.012195

Table (5): Genotyping using P4 primer set, allele count, and allele frequencies
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Sample Info 323 326 329 333 339
P6-g1 0.5 0.5
P6-g2 0.5 0.5
P6-g3 0.5 0.5
P6-g4 0.5 0.5

P6-g5 0.5 0.5
P6-g6 0.5 0.5
P6-g7 0.5 0.5
P6-g8 1

P6-g9 1
P6-g10 0.5 0.5

P6-gl 1

P6-g 12 1

P6-g13 I
P6-g14 1

P6-gi5 0.5 0.5

P6-g16 0.5 0.5
P6-g17 0.5 0.5
P6-g18 0.5 0.5
P6-g19 1
P6-g20 0.5 0.5

P6-g21 1

P6-g22 0.5 0.5

P6-g23 0.5 0.5

P6-g24 1
P6-g25 0.5 0.5

P6-g26 0.5 0.5

P6-g27 0.5 0.5

P6-g28 0.5 0.5

P6-g29 1

P6-g30 0.5 0.5

P6-g31 1

P6-g32 1

P6-g33 1
P6-g34 1

P6-g35 1

P6-g36 0.5 0.5

P6-g37 0.5 0.5

P6-g38 0.5 0.5

P6-g39 0.5 0.5

P6-g40 0.5 0.5
P6-g41 0.5 0.5

Allele count 30 44 2 1 5
Total alleles 82

Allele fre 0.365854 0.536585 0.02439 0.012195 0.060976

Table (6): Genotyping using P6 primer set, allele count, and allele frequencies
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Sample Info 221 222 230 236
P7-g1 1
P7-g2 1
P7-g3 1

P7-g4 1
P7-g5 1

P7-g6 1
P7-g7 _

P7-g8 0.5 0.5
P7-g9 1
P7-g10 1
P7-g11 0.5 0.5
P7-g12 1
P7-g13 1
P7-g14 1
P7-g 15 1
P7-g16 1

P7-g17 1
P7-g18 1
P7-g19 1
P7-g20 1
P7-g21 1

P7-g22 1

P7-g23 1

P7-g24 0.5 0.5
P7-g25 1
P7-g26 1

P7-g27 1
P7-g28 1
P7-g29 1
P7-g30 0.5 0.5
P7-g31 1
P7-g32 0.5 0.5
P7-g33 1

P7-g34 1

P7-g35 1
P7-g36 1

P7-g37 1

P7-g38 1

P7-g39 1

P7-g40 1

P7-g41 1

Allele count 51 13 14 4
Total allele 82
Allele freg 0.621951 0.158537 0.170732 0.04878

Table (7): Genotyping using P7 primer set, allele count, and allele frequencies
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Sam le Info 171 173 179 191 193 195 199 201 203
P9-gI___ __ 1 ____ ___

P9-g2 __ __1________

P9- 3 ____0.5 0.5____
P9-g4 0.5 _ ___0.5

P9-S5

P9-g7 0.5 0.5__ ______

P9-g8 ____ ___ ___

P9-g9 0.5 0.5____

P9-g 10 0.5 0.5 ____

P9-gil 1__ _ _ _ _ _ __ _ _ _ _ _

P9-g 12 ________1____________

P9-g 13 __ _ _____1____________

P9-g14 ____________1________

P9-gi 15__ 0.5 0.5 ____

P9-g16 ____0.5 0.5____
P9-g17 0.5 _ ___0.5____

P9-g18 _ ___0.5 0.5 ________

P9-g 19 _ ___1________

P9-g20 _ ___0.5 0.5____
P9-g21 1
P9-g22 0.5 _ ___0.5

P9-g23 1

P9-g24 0.5 0.5____

P9-g25 I ____

P9-g26 ____1____

P9-g27 0.5 0.5
P9-g28 ____1

P9-g29 ____0.5 0.5

P9-g30 ____0.5 0.5
P9-g31 ____1

P9-g32 ________1

P9-g33 ____0.5 0.5

P9-g34 ____1

P9-g35 ____1

P9-g36 ____0.5 0.5

P9-g37 ____0.5 _ ___0.5

P9-g38 ___ ____1____

P9-g39 ____________ ___

P9-g40 ____0.5 _ ___ ____0.5

P9-g41 ____0.5 _ ___0.5 ____________

Allele count 2 15 4 5 39 14 1 1
Total alleles 82
Allele fre 0.02439 0.18293 0.04878 0.060976 0.475610 0.170732 0.012195 0.0122 0.012195

Table (8): Genotypinig using P9 primer set, allele count, and allele frequencies

47



Sample Info 285 287 289 291 293 295 297
13-g 1____ 0.5 _____0.5

P13-g2 0.5 0.5
l13-g3 1 ____

13- 4 1_ _ _

l13-g5 1 ____

P13-g6 _ __1_ _ _

13-g7 1____I____

P13- 8 0.5 0.5 ____

P13-g9 0.5 0.5
13- 1O 0.5 0.5____
13-gil 1

13 20.5 ____ _____0.5

13-g13 0.5 _____0.5

13-g14 0.5 0.5
13-gI5 0.5 _____0.5

13-g16 1 ____

13-g17 1 _____ ___

13-g18 0.5 _____0.5

13 90.5 0.5
13-g20 0.5 ____ _____0.5

13-g21 1 _____ ___

13-g22 0.5 _____0.5

P13-g23 1

13-g24 0.5 0.5
P13-g251

13-g26 0.5 _____0.5

P13-g27 _____0.5 0.5

P13-g28 _____0.5 0.5

P13-g29 _____1

13-g30 ____ __ ___1

13-g31 _____0.5 0.5
13 321_

P13-g33 __ ___0.5 _ ____0.5_____

13-g34 _____0.5 0.5 ____

P13-g35 _____1 ___

P13- 36 __ __ 0.5 _ ____0.5_____

13-g37 ______ ___0.5 0.5

P13-g38 __ ___0.5 0.5

13-g39 _____0.5 0.5

13-g40 _____0.5 _____0.5

13-g41 _ _ __0.5 _ _ __ _ _ __0.5

Illele count 1 45 2 3 2 28 1

Total alleles 82
illele freg 0.012 195 0.54878 0.02439 0.036585 0.02439 0.34 1463 0.012 195

Table (9): Genotyping using P 13 primer set, allele count, and allele frequencies
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Sample Info 163 166 172
P14-gl
P14-g 2
P14-g3 1
P14-g4 1
P14-g5 1
P14-g6 1

P14-g7 1

P14-g8 0.5 0.5

P14-g9 0.5 0.5

P14-10 0.5 0.5
P 14- 1 0.5 0.5

P14-g12 0.5 0.5
P14-g13 0.5 0.5
P14-g14 1

P14-g15 0.5 0.5
P14- 16 1

P14- 17 1

P14-g18 0.5 0.5
P14-g19 1

P 14-g20 0.5 0.5

P14- 21

P 14-g22 0.5 0.5

P 14-g23 0.5 0.5

P 14-g24 0.5 0.5

P14-g25 0.5 0.5

P14-g26 0.5 0.5

P14- 27 1

P14-g28 0.5 0.5

P14-g29 0.5 0.5
P14- 30 1

P14- 31 0.5 0.5
P14-g32 1

P14-g33 1

P 14-g34 0.5 0.5

P14-g35 0.5 0.5

P14-g36 0.5 0.5

P14-037 0.5 0.5
P14-g38
P14- 39

P 14- 40 0.5 0.5

P14- 41 0.5 0.5

Allele Count 42 31 9
Total alleles 82
Allele Freq. 0.512195 0.378049 0.109756

Table (10): Genotyping using P14 primer set, allele count, and allele frequencies
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Sample Info 204 214 218 220 222 224
P15-1 1_

P15-g2 1

P15-g3 1

P15-g4 0.5 0.5
P15-g5 1

P15-g6 1
P15-g7 1

P15-g8 1

P15-g9 0.5 0.5
P15-g10 0.5 0.5
P15-g 1 0.5 0.5
P15-g12 0.5 0.5

P15-g13 0.5 0.5

P15-g 14 1
P15-g15 0.5 0.5

P15-g16 1
P15-g17 1

P15-g18 0.5 0.5

P15-g_9 1

P15-g20 0.5 0.5

P15-g21 1

P15-g22 0.5 0.5

P15-g23 0.5 0.5

P15-g24 0.5 0.5

P15-g25 0.5 0.5
P15-g26 0.5 0.5
P15-g27 0.5 0.5

P15-g28 0.5 0.5

P15-g29 1

P15-g30 0.5 0.5

P15-g31 0.5 0.5

P15-g32 0.5 0.5

P15-g33 0.5 0.5

P15-g34 0.5 0.5

P15-g35 0.5 0.5

P15-g36 0.5 0.5

P15-g37 1

P15-g38 _ 0.5 0.5

P15-g39 0.5 0.5

P15-g40 0.5 0.5

P15- 41 0.5 0.5

Allele count 21 7 39 12 2 1

Total allele 82
Allele freg 0.256098 0.085366 0.47561 0.146341 0.02439 0.012195

Table (11): Genotyping using P15 primer set, allele count, and allele frequencies
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Sample Info 105 108 111
P17-g1 1
P17-g2 1

P17-g3 0.5 0.5
P17-g4 1
P17-g5 0.5 0.5

P17-g6 0.5 0.5
P17-g7 0.5 0.5
P17-g8 0.5 0.5
P17-g9 0.5 0.5
P17-g10 0.5 0.5
P17-g11 0.5 0.5
P17-g12 0.5 0.5
P17-g13 0.5 0.5
P17-g14 0.5 0.5
P17-g15 0.5 0.5
P17-g16 0.5 0.5
P17-g17 0.5 0.5
P17-g18 0.5 0.5
P17-g19 0.5 0.5
P17-g20 0.5 0.5

P17-g21 1
P17-g22 0.5 0.5
P17-g23 1

P17-g24 0.5 0.5
P17-g25 1

P17-g26 1

P17-g27 0.5 0.5
P17-g28 1
P17-g29 0.5 0.5
P17-g30 1
P17-g31 0.5 0.5
P17-g32 1

P17-g33 1
P17-g34 0.5 0.5
P17-g35 0.5 0.5
P17-g36 0.5 0.5
P17-g37 0.5 0.5
P17-g38 0.5 0.5

P17-g39 1

P17-g40 0.5 0.5

P17-g41 0.5 0.5

Allele count 5 27 50
Total allele 82

Allele freg 0.060976 0.329268 0.609756

Table (12): Genotyping using P17 primer set, allele count, and allele frequencies
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Sample Info 235 238 241 244
P19-gi
P19-g2 1
P19-g3 0.5 0.5
P19-g4 0.5 0.5
P19-g5 1
P19-g6 _

P19-g7 0.5 0.5

P19-g8 1
P19-g9 0.5 0.5
P19-g10 0.5 0.5
P19-g11 0.5 0.5
P19-g12 1
P19-g13 1
P19-g14 0.5 0.5
P19-gl5 0.5 0.5

P19-g16 0.5 0.5

P19-g17 0.5 0.5

P19-g18 0.5 0.5

P19-g19 0.5 0.5
P19-g20 0.5 0.5

P19-g21 1
P19-g22 0.5 0.5

P19-g23 1
P19-g24 0.5 0.5
P19-g25 0.5 0.5

P19-g26 0.5 0.5

P19-g27 0.5 0.5

P19-g28 0.5 0.5

P19-g29 I
P19-g30 1
P19-g31 _

P19-g32 0.5 0.5
P19-g33 0.5 0.5
P19-g34 1
P19-g35 0.5 0.5
P19-g36 0.5 0.5
P19-g37 1
P19-g38 0.5 0.5
P19-g39 1
P19-g40 0.5 0.5

P19-g41 0.5 0.5

Allele count 2 32 37 11
Total allele 82
Allele freg 0.02439 0.390244 0.45122 0.134146

Table (13): Genotyping using P19 primer set, allele count, and allele frequencies
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Sample Info 105 108 111
P24-g1 0.5 0.5
P24-g2 0.5 0.5
|P24-g3 1

P24-g4
P24-g5 0
P24-g6 0
P24-g7 1

P24-g8 1
P24-g9

P24-g10 0.5 0.5
P24-g11 0.5 0.5

P24-g12 1

P24-g13 1
P24-g14 1

P24-g15 0.5 0.5
P24- 16 1

P24- 17 1

P24- 18 0.5 0.5
P24- 19 1

P24- 20 0.5 0.5

P24-g21 0.5 0.5

P24-g22 0.5 0.5

P24-g23 1

P24-g24 0.5 0.5

P24-g25 1
P24-g26 1

P24-g27 1

P24-g28 1

P24-g29 1

P24- 30 1

P24- 31 0.5 0.5

P24-932 1
P24-g331

P24-g34 0.5 0.5

P24-g351

P24-_36 0.5 0.5

P24-g37 1

P24-g38
P24-g39 1

P24-g40 0.5 0.5

P24-g41 0.5 0.5

Allele count 3 61 18
Total alleles 82
Allele freg 0.036585 0.743902 0.219512

Table (14): Genotyping using P24 primer set, allele count, and allele frequencies
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Sample Info 266 269 273
P25-gi 0.5 0.5
P25-g2 0.5 0.5

P25-g3 0.5 0.5
P25-g4 0.5 0.5
P25-g5 0.5 0.5
P25-g6 0.5 0.5
P25-g7 0.5 0.5
P25-g8 1

P25-g9 1
P25-g 10 1

P25-g11 0.5 0.5

P25-g12 1
P25-g13 1
P25-g14 1
P25-g15 1
P25-g16 0.5 0.5
P25-g17 0.5 0.5
P25-g18 1
P25-g 19 1
P25-g20 1

P25-g21 0.5 0.5
P25-g22 1

P25-g23 0.5 0.5
P25-g24 0.5 0.5

P25-g25 1

P25-g26 1

P25-g27 0.5 0.5

P25-g28 1

P25-g29 1
P25-g30 1
P25-g31 1

P25-g32 0.5 0.5
P25-g33 1
P25-g34 1

P25-g35 0.5 0.5

P25-g36 1

P25-g37 1
P25-g38 0.5 0.5
P25-g39 0.5 0.5
P25-g40 1

P25-g41 1

Allele count 33 45 4
Total alleles 82
Allele freg 0.402439 0.54878 0.04878

Table (15): Genotyping using P25 primer set, allele count, and allele frequencies
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Genetic identifications and relationships:

The microsatellite data was very useful to detect the identical Cannabis samples.

According to the blind testing of the 41 Cannabis samples using the 11 SSR markers, the

following sets had the same DNA fingerprint: G1/G2, G10/G15/G18/G20,

G22/G36/G40/G41, G26/G28, G3/G7/G16/G17, G14/G19, G31/G34, and G5/G6. These

identical sets were easily identified based on Chord's genetic distance by both NJ tree

(tree 1) and UPGMA tree (tree 2) in which there were no genetic distance between the

sets.

NJ and UPGMA methods were used to generate dendrograms using different

distance coefficients to give different views on the genetic relationships among the 27

unique genotypes of Cannabis (tree 3-6). The NJ and UPGMA dendrograms were

constructed using Chord's genetic distance (tree 3; 4), unbiased-Nei (tree 5), and with

modified Roger (tree 6). Bootstrapping with 2000 replications was performed using the

NJ method based on Chord's and DNA shared alleles genetic distance (tree 7 and 8

respectively). The only three clusters that could be considered supported were between

the following: G12 and G13 with bootstrap values of 100%, G38 and G39 with bootstrap

value of 85%, and G4 and G27 with bootstrap value of 55% (tree 8).

Principal Component Analysis (PCA) was performed on all 27 unique Cannabis

genotypes in which 34.6% total variation was captured using three coordinates (figure 5).

G30 had very distinct profile and could be easily recognized as outlier sample in PCA.

After G30 was disregarded from the PCA testing, the remaining 26 genotypes became

more widely dispersed on the PCA scatter plot in which 33.8% total variation was

captured in the three coordinates (figure 6).
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Tree (1): NJ tree based on Chord's genetic distance across the 41 Cannabis plants
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Tree (2): UPGMA tree based on Chord's genetic distance across the 41 Cannabis plants
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Tree (3): NJ tree based on Chord's genetic distance across 27 different genotypes
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Tree (4): UPGMA tree based on Chord's genetic distance across 27 different genotypes
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Tree (5): UPGMA tree based on Nei-unbiased genetic distance across 27 different

genotypes
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Tree (6): NJ tree based on modified Roger genetic distance across 27 different genotypes
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Tree (7): NJ plus bootstrap values based on DNA shared Alleles (DSA) genetic distance
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Tree (8): NJ plus bootstrap values based Chord's genetic distance
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3-D PCA Plot for Cannabis Genotypes

14.5o Variation for R 1
10.7% Variation for R2
9.4% Variation for R3

34.6% Total Variation

G929
(i26C

G'26 G7O

SG23 23
J G35I3 \

G3 111o a 1 0.30 IG39 ~1R2 om R3 oo//

o30 /
-0 2 1  

- -R1
((( )44

Figure (5): PCA of the 27 unique Cannabis genotypes

64



3-" PCA Plot for Cacnnabis Genotypes
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Figure (6): PCA of 26 different Cannabis genotypes (removing outlier G30)
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Discussion

Cannabis genotyping:

The genotyping analysis was determined by separating the fluorescently labeled

PCR products by capillary electrophoresis using ABI 3100. The smaller fragments were

detected first as they reach the laser-scanning detector. Then, the allele sizes were called

by linear extrapolation based on the internal size standard. At each locus, the individual

sample would be either homozygous (figure 7) or heterozygous (figure 8). However,

some non-specific banding patterns were occasionally detected that did not affect

interpretation of the SSR results as they fell outside the expected size range. Some

considerations were taken into account when determining the allele sizes or in comparing

allele sizes called with different labeled primer methods (M13-tail fluorescent label and

direct fluorescent label).

. ' I I I I I I ' I ' I I '
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Figure (7): Homozygous profiles using P17
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Figure (8): Heterozygous profiles using P25
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First, the dinucleotide loci (P9, P13, and P15) composed of alleles that exhibited

multiple stutter peaks which also referred to as slippage peaks or shadow bands [87]. The

slipped-strand mispairing is the primary proposed mechanism for the stutter peaks in

which a region of the primer-template complex dissociates during the PCR extension

period leading to slippage of the primer or the template strand [87]. These bands differed

in size by two bp increments. The stutter peaks could sometimes cause difficulties in

calling the different alleles and make it hard to discriminate between two alleles differing

by two bp. At least four well-define peaks were apparent for each allele. There is more

than one way of choosing a single peak that represents each allele. Generally, the highest

peak would be used for assigning the allelic sizes. However, because the total number of

stutter peaks for an allele varied in each locus and seems to increase with increase in the

number of repeat motifs, the highest peak at each locus may varied as well. In locus P13,

for example, the second right-most peaks were observed to have the highest relative

fluorescent units (rfu) amongst (figure 9) and therefore were chosen to designate the

allelic sizes at such locus. The highest peak may or may not code for the true size of the

template but in this case it did. These multiple stutter peaks were observed only in the

dinucleotide loci. To reduce the amount of stutter products, someone could use SSR

markers that have longer repeat units, imperfect repeat markers, and DNA polymerases

with faster processivity [55].
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Figure (9): Genotyping of C. sativa samples using P13 and the stutter peaks
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Second, the addition of an extra non-templated nucleotide to PCR products by the

taq polymerase varied at different loci. This extra nucleotide is most often adenosine (A)

and thus the mechanism sometimes referred to as "adenylation" and the amplicon as

"plus A" [55]. The degree of adenylation is dependent on the PCR conditions and the

primer sequences. The redesigning of PCR primers via "PIG-tailing" [88] could increase

the plus A form and thus simplify the banding pattern. In addition, to overcome these

variations and to stay consistent with the true peak (minus A), the post-PCR treatment

with T4 DNA polymerase would remove any non-templated overhang products [89].

Although the plus A form was favored in this study by adding a final extension

step at 720 C for ten minutes during PCR, the amplicons varied between no adenylation

would take place to complete adenylation (figure 10). In most loci, the true allele peaks

(minus A) observed to be very clearly defined and have higher intensity than the plus A

peaks. In these cases, the true allele peaks would be used when calling alleles throughout

such loci (P4, P6, P7, P9, P14, P13, P19, and P24). This could be clearly observed in

figure 11 and 12. On the other hand, whenever adenylation was active, the plus A peak

would appear to have higher intensity than the true allele peaks. In P15, P17, and P25

loci that followed this pattern, the plus A peaks would be utilized to designate the allelic

sizes. For example, figure 13 shows the plus A peaks are used to score the different

alleles at P25 locus.
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Figure (10): Mixed preferential amplification of plus A and true allele in P24 locus
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Figure (12): Genotyping using P19 and scoring by the true peaks
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Figure (13): Genotyping using P24 and scoring by the plus A peaks

The eleven loci consisted of alleles that differ by two bases or a multiple of two

for dinucleotide repeats (figure 9) and three bases or multiple of three for trinucleotide

repeats (figure 11-13) (+/- one base). This was true for all markers except for locus P7

where four alleles were detected in which allele called 221 differed by one base pair from

allele called 222. Allele 221 was a replica of allele 222 with one base insertion that was

repeatedly observed and clearly distinguishable as it illustrated in figure 14. This
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difference was even more obvious in sample labeled p7-gl where the two forms of

alleles were present at the same time.
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Figure (14): Genotyping using P7 and the special case
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Microsatellites in Cannabis:

In plants, on average, there is one microsatellite every 33 kb whereas

microsatellites occur approximately every 6 kb in the human genome [49]. Therefore, to

obtain an enriched map of STR markers that represents the genome, screening hundreds

of thousands of inserts would be necessary. Several methods have been developed to

shorten the screening step and produce genomic libraries enriched for certain

microsatellite types. In this study, an enriched microsatellite library was created using a

modified version of the method developed by Edwards et al. (1996) [75]. DNA

sequences were obtained from a total of 192 colonies of which 49% contained STR insert

(table 1). Most of the microsatellite sequences isolated had flanking sequences that were

insufficient (i.e. containing less than 25 bp sequences on either side of the repeat). This

close proximity of the repeat unit to the cloning site was the main reducing factor for

generating useful markers. This problem was also observed in a number of other studies

[90, 91]. Such a problem could be due to the size fractionation step and/or to the

restriction enzyme used.

The frequency of each class of microsatellite is highly variable among plant

species [49]. The variation reported in different plant studies might be caused by

variations in genome structure of different species surveyed [90]. In this study, the

results indicate that the GA/CT motif was the most highly dispersed microsatellites

detected in the Cannabis genome. The GA/CT motif represented 50% of the total

microsatellite repeats detected (table 1). This is consistent with the surveys of

microsatellite repeats in hop (Humulus lupulus, the closest relative to C. sativa) [92] and

other studies [52, 63] in which GA/CT motif was the most abundant. However, other
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reports of microsatellite repeats in mangrove [60] and potato [66] revealed a greater

abundance of AC/TG motif over GA/CT motif. The number of trinucleotide repeats

detected was similar to that of the dinucleotide repeats (table 1). Trinucleotide profiles

are easier to score than the dinucleotide profiles because the variations in the number of

core units of trinucleotide motifs are larger in length. In addition, the trinucleotide loci

show more distinct allelic profiles by avoiding the stutter pattern that is often associated

with the amplification of dinucleotide loci motifs [47, 55, 93].

Microsatellite polymorphism and applications:

Different RAPD, AFLP, RFLP, and SSR studies revealed various estimates for the

genetic polymorphism, most of them were below or near the level of polymorphism

obtained by SSR markers [62, 94, 95]. Microsatellite markers have shown high levels of

polymorphism in many plant species including rice [96], tropical trees [97], Hop [95], oat

[98], maize [99], wheat [100], sunflower [101], and many more. To discriminate

between different cultivars of C. sativa and to potentially associate the samples of clonal

origin using microsatellites, the selected STR loci would need to be highly polymorphic.

The discrimination power, ease of genotyping, and high reproducibility (figure

15, 16) emphasize that these eleven microsatellite markers are very useful for DNA

fingerprinting in Cannabis. The blind test of microsatellite typing for the 41 samples

matched the identities of the duplicates and the unique samples reported afterward by

AFLP typing (table 3). G26/G28, G31/G34, and G22/G36/G40 were found to be

identical by AFLP (table 3) and by the SSR markers (tree 1; 2), which strongly suggest

that they could be clonally propagated. The remaining identical sets consisted of known

duplicate samples (table 3), showing reproducibility of this typing technique. In addition,
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the 11 SSR loci were very effective in uniquely identifying 27 profiles of the Cannabis

samples tested (tree 1; 2). Microsatellite DNA also had high resolution and sensitivity

for calculating the various genetic parameters presented in table 4.
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Figure (15): P17 and reproducibility between using the M13 fluorescent tail primer and

the direct fluorescent primer
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Figure (16): P6 and reproducibility between the results

The genetic relationships using the NJ and the UPGMA methods were able to

complement the known association level between the Cannabis plant samples (table 3).

First, samples G12 and G13 were found to have the strongest ties across all dendrograms

(tree 1-8) supported by a bootstrap value of 100% (tree 7; 8). This relationship was in

agreement with the information that both samples were closely related by AFLP analysis

(table 3). In addition, all dendrograms were able to group G38 and G39 together with a

minimum bootstrap value of 76% (tree 7). These results were consistent with the

information that both samples came from the same grower (table 3). This information

could link these samples to a specific source. Moreover, the seized samples G32, G33,

and G35 clustered together in the microsatellite tree (tree 2-8) all of which were reported
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as originating from the same source (table 3). G25 and G26 were associated in the same

cluster by the AFLP data (table 3) and by all the different microsatellite dendrograms.

However, microsatellite data supported the relatedness of G27 and G4 together with a

minimum bootstrap value of 55% (tree 8) more than G27 was related to G23 found using

AFLP data (table 3). Moreover, G1 and G21 were found the closest to G38 and G39

cluster (tree 2-8). G24 with G31 were observed together in the same cluster as well as G3

with G23, G5 with G8, and G29 with G37 (tree 2-8).

G30 is highly distinct individual according to both PCA (figure 5) and the

different microsatellite dendrograms (tree 1-8). In figure 6, G5 and G14 appeared to

disperse away from the rest of the samples according to coordinates R1 and R2. PCA

scatterplot clustered G12 with G13, G33 with G32 and G35, and G39 with G38 (figure 6)

which agreed with NJ and UPGMA analysis in most of grouping made (tree 2-8).

Moreover, G29 was observed to be the closest to G37 by R3 coordinate (figure 6).

Many growers of Cannabis choose selective breeding to adapt to particular

growing conditions and to increase the THC content, which contributes to the

intoxicating effect of Cannabis [74]. Selective breeding of high THC content plants can

be obtained using two methods. The first technique is clonal propagation using stem

cuttings from clones containing high levels of THC. In this case, both the mother plant

and subsequent cuttings (daughter clones) will have identical DNA profiles. Thus, a

DNA analyst can easily detect plant materials that originated from the same source.

Second, two plants can be cross-pollinated to generate seeds. After that, each seed can be

grown into a plant that has its own unique DNA profile.
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The eleven SSR markers developed in this study proved useful for DNA

fingerprinting and genetic relatedness analyses. Since many organized marijuana

growers use clonal propagation and hydroponic methods to produce plants that yield high

drug content, this technique could be applied to provide linkage between a major source

of marijuana and the smaller growers to assess distribution patterns by tracking clonal

material. This information also could help to link cases and/or growers together with an

aim to aid law enforcement agencies in drug eradication efforts. Other growers propagate

their marijuana plants from seeds. The forensic application of this technique with seed

grown plants could be used to associate a leaf found on a suspect to plant material found

in a crime scene or to link an anonymous growing operation (i.e. marijuana cultivated in

a particular field) to material found in a suspect's possession.
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Conclusion

Microsatellite markers are used in a variety of applications and they are especially

preferable when analyzing large numbers of samples. These markers provide excellent

assessments of genetic diversity due to their high information content, ease of

genotyping, codominant and multi-allelic nature, high discriminatory power, and

reproducibility of results. Therefore, microsatellites are well suited for DNA

fingerprinting and genetic relatedness between Cannabis plants.

The microsatellite enrichment library of Cannabis was composed of 49% positive

repeat inserts. The microsatellite sequences isolated were dinucleotide repeats (51%) and

trinucleotide repeats (49%). Of these, 79% were prefect repeats, 14% were imperfect

repeats, and 7% were compound repeats. The most common microsatellite motif was the

dinucleotide GA/CT which represented 50% of all microsatellites. The most common

trinucleotide motifs were GTT/CAA, AAG/TTC, and GAT/CTA representing 16%, 15%,

and 10% respectively of the microsatellites isolated (table 1). From the twenty-five

primer pairs that were selected, synthesized, and tested for polymorphism, eleven loci

were polymorphic and reliable markers. The eleven microsatellite markers were derived

from three dinucleotide repeats, five trinucleotide repeats, one compound trinucleotide

repeat, and two imperfect trinucleotide repeats.

A total of 52 alleles were detected across 41 Cannabis plants tested. The number

of alleles per locus ranged from three to nine, averaging 4.7 alleles. The polymorphism

level at each locus was evaluated by the expected heterozygosity (He), which varied

between 0.368 and 0.710 with a mean value of 0.568. The probability of identical

genotypes across all eleven loci was calculated to be 1.8 x 10-. This allows for high
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discrimination capability between unrelated accessions. Thus, the eleven SSR markers

were used to identify all the Cannabis plants that were duplicates and all samples that

could be clonally propagated (tree 1, 2). The major genetic associations between the 27

unique genotypes were consistent when investigated by NJ, UPGMA, and PCA. These

analyses could give useful investigative leads as to distribution patterns and source of

origin of marijuana samples. The microsatellite DNA typing of Cannabis could aid the

forensic community in criminal cases as well as assist the law enforcement agencies in

drug eradication efforts.
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Development of microsatellite markers in Cannabis sativa for DNA

typing and genetic relatedness analyses

Keywords: Cannabis sativa, marijuana, microsatellite, short tandem repeat (STR), DNA

fingerprinting, DNA typing, genetic relatedness

Abstract: Microsatellite markers were developed for Cannabis sativa L. (marijuana) to

be used for DNA typing (genotype identification) and to measure the genetic

relationships between the different plants. Twelve different oligonucleotide probes were

used to screen an enriched microsatellite library of Cannabis sativa in which 49% of the

clones contained microsatellite sequences. Characterization of microsatellite loci in

Cannabis revealed that GA/CT was the most abundant class of the isolated

microsatellites representing 50% overall followed by GTT/CAA, AAG/TTC, and

GAT/CTA representing 16%, 15%, and 10% respectively. Eleven polymorphic STR

markers were developed, three derived from dinucleotide motifs and eight from

trinucleotide motifs. A total of 52 alleles were detected averaging 4.7 alleles/locus. The

expected heterozygosity of the eleven loci ranged between 0.368 and 0.710 and the

common probability of identical genotypes was 1.8 x 10". The loci identified 27 unique

profiles of the 41 Cannabis samples. The eleven microsatellite markers developed in this

study were found to be useful for DNA typing and for assessing genetic relatedness in

Cannabis.
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Introduction

Cannabis sativa L. (marijuana) is one of the oldest cultivated plants and has been

used around the world for diverse applications. Throughout history, Cannabis has been

used as a source of hemp fiber for rope and fabric from its stems, food and oil from its

seeds, and as a psychoactive drug from its flowers and leaves. Cannabis, marijuana, and

hemp are terms that are used interchangeably. However, Cannabis is the botanical genus

of the plant and marijuana describes Cannabis plants that contain high A9

tetrahydrocannabinol (THC) content and are used for their psychoactive potency [1].

Hemp is used to describe Cannabis plants that have low THC content and are cultivated

for fiber. Therefore, there are two distinctive strains; one is generally cultivated for fiber

(hemp) and the other for drug use (marijuana) [2]. Historically, there were generally

three recognized varieties of Cannabis: C. sativa, C. indica, and C. ruderalis [3]. For

many years, botanists considered each of them to be a distinct species. However, most

botanists now generally agree that Cannabis is a genus with a single highly variable

species (C. sativa) that has diversified into a wide variety of ecotypes and cultivated races

[3].

The unique portions of an individual's DNA sequence has made it possible to

study the genetic diversity and relatedness between organisms. A wide variety of

techniques to determine DNA sequence polymorphisms have been developed, and

molecular markers have been derived from those techniques. Genetic variation at the

DNA level can be detected by using different molecular markers such as restriction

fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD),

amplified fragment length polymorphism (AFLP), or simple sequence repeat (SSR). One
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of the most useful and widely used markers is SSR [4], otherwise known as microsatellite

[5], or short tandem repeat (STR) [6]. Microsatellites are DNA sequences of six or fewer

bases that are repeated in tandem arrays (i.e. CTCTCTCTCTCTCT) [7]. These repeats

reveal high levels of polymorphism between individuals due to replication slippage and

unequal crossing over [8, 9]. Microsatellites are evenly distributed in human and other

mammalian genomes as well as in plants [10].

Several important advantages make microsatellite markers the method of choice

for DNA typing and analysis of genetic relationships. Microsatellites are usually a single

locus with multiple alleles and this robust technique can be easily distributed between

different laboratories as primer sequences [5]. Microsatellites can also be used in

multiplex PCR where several microsatellite loci can be assayed in the same amplification

reaction. Microsatellite markers are codominant, highly informative, reproducible, and

have high discrimination power [11-14]. Because of these advantages, microsatellites

have become well suited for a wide range of applications in genetic mapping [15],

fingerprint and genotype identification [16], seed purity evaluation and germplasm

conservation [17], genetic relatedness and paternity studies [18], and marker-assisted

selection [19].

Molecular marker systems based on RAPD [20] and AFLP [21, 22] have been

developed and used for DNA typing analysis of C. sativa. However, RAPDs are

dominant makers with poor reproducibility between labs [14]. AFLP analysis detects

multiple loci with high reproducibility, however, AFLP are also dominant markers.

RFLP analysis is highly polymorphic but it is very labor intensive. In addition,

microsatellite markers have been developed for some plants for general purposes [23, 15]
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and very recently in C. sativa for forensic purposes [24, 25]. This report presents another

survey of the microsatellites detected in Cannabis and their forensic application. The

objective of this work was to develop a number of microsatellite markers capable of

individualizing Cannabis samples for DNA typing and genetic relatedness analyses.

Materials and Methods

Microsatellite loci were developed by a marker enrichment technique, which

consisted of: 1) hybridizing extracted genomic DNA of a known cultivar of C. sativa

with specific repeat unit probes, 2) sequencing positive clones, 3) designing

oligonucleotide primers on either side of the repeat region, and 4) testing loci for

polymorphism by sampling different unrelated individuals.

DNA isolation and preparation of genomic DNA:

Genomic DNA samples were provided by Dr. Heather Coyle (Connecticut State

Forensic Science Laboratory, CSFSL, USA) and Dr. Gary Shutler (Royal Canadian

Mounted Police, RCMP, Canada) and extracted with a QIAGEN plant DNeasy kit

according to the manufacturer's recommendations [22]. Genomic DNA was digested

with Sau3AI (Life Technologies, Inc., Gaithersburg, MD), a restriction endonuclease

recognizing the 5'-GATC-3' DNA sequence. Double-stranded linkers (Sau) were

synthesized to have a 3' overhang of CTAG by the following oligonucleotides:

*Sau-L-A: 5'-GCGGTACCCGGGAAGCTTGG-3'

.Sau-L-B: 5'-GATCCCAAGCTTCCCGGGTACCGC-3'

One ug of the linkers were then ligated to 200 ng of the Sau3AI digested genomic DNA

using 20 U of T4 DNA ligase and 8 pl of 5X ligase buffer (Life Technologies, Inc.,
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Gaithersburg, MD) in a final volume of 40 pl. The reaction mix was incubated at 40 C

for 72 hours and then the ligation reaction was stopped by heating at 650 C for 10

minutes. Excess linkers were removed with Performa DTR Gel Filtration Cartridges

(Edge Biosystems, Inc., Beverly, MA) following the manufacturer recommendations.

Microsatellite enrichment and size fractionation:

The genomic DNA was amplified by the polymerase chain reaction (PCR)

followed by purification using phenol:chloroform:isoamyl alcohol (PCI) extraction and

concentration by ethanol precipitation. The genomic DNA was enriched using a

modification of the method of Edwards et al. (1996) [26]. Twelve different biotinylated

oligonucleotide probes were employed to search for the different microsatellite motifs.

Those probes consisted of two dinucleotide motifs (CT)15 and (GT) 15, and ten

trinucleotide motifs (CAA)10, (ATT)10 , (GCC)10 , (ACC) 10, (AGG)10 , (CTT)10 , (AGC) 10,

(ACG)10 , (ACT)o, and (ATC)10 . Microsatellite-containing fragments were isolated using

Dynabeads M-280 Streptavidin (Dynal, Oslo, Norway). To enrich for STR fragments, 25

d of the denatured DNA was mixed with 1 pg of the Sau-L-A oligo, 474 d of the

hybridization buffer (50% formamide, 3X SSC, 25mM Na-phosphate pH 7.0, and 0.5%

SDS), and 500 pl of Dynabeads in 2X B&W buffer (10mM Tris-HCl pH 7.5, 1mM

EDTA and 2M NaCl). The hybridization reaction (1000 pl) was mixed well and

incubated overnight at room temperature on a mixing table. The reaction was then

subjected to the following hybridization washes: 5 washes for 3 minutes each using

buffer #1 (2X SSC and 0.01% SDS) at 42* C followed by 3 washes for 3 minutes each

using buffer #2 (0.5X SSC and 0.01% SDS) at 42* C. The wash buffer was removed and
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the Dynabeads were resuspended in 200 pl of nuclease free water. To further increase

the DNA fragments containing microsatellites, a second PCR amplification and

enrichment were performed. After the second enrichment, the genomic DNA was

amplified and purified again with an equal volume of PCI. The size fractionation was

performed using SizeSep 400 Spun Column Sepharose (Amersham Pharmacia Biotech,

Inc., Piscataway, NJ) according to the manufacturer recommendations followed by

concentration with ethanol precipitation.

Cloning reaction and plasmid recovery:

The cloning reaction was performed using the TOPO TA Cloning Kit (Invitrogen

Corp., Chicago, IL) following manufacturer's protocols. Sterile toothpicks were used to

inoculate 96-well plates containing 100 pl of SOC broth with 100 pg/ml ampicillin. The

broth culture plates were covered with aluminum foil tape and placed at 370 C overnight.

A 25 pl sample of cell culture from each well was transferred to another 96-well plate.

The plates were centrifuged to pellet cells and then were inverted and spun for a short

time to remove the broth. The cells were resuspended with 50 pl of 10mM Tris-HCl (pH

8). This was used as a template for insert PCR with M13 primers (Life Technologies,

Inc., Gaithersburg, MD).

Plasmid inserts amplification and cycle sequencing:

Plasmid inserts were amplified using M13 primers and the resulting M13 PCR

products were treated with exonuclease I (Life Technologies, Inc., Gaithersburg, MD)

followed by ethanol precipitation. The PCR products were then sequenced using BigDye

Terminator TM Cycle Sequencing Ready Reaction Kit (Version 2.0) (Applied Biosystems,
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Foster City, CA). The sequencing products were ethanol precipitated overnight at room

temperature in the dark. The sequencing products were resuspended in 10 pl of Hi-Di

formamide (Applied Biosystems, Foster City, CA) and denatured at 950 C for 2 minutes.

The cycle sequencing products were electrophoresed on the ABI 3100 and analyzed with

DNA Sequencing Analysis Software 3.7 (Applied Biosystems, Foster City, CA).

Microsatellite containing fragments were imported into Sequencher v.4.1 (Applied

Biosystems, Foster City, CA) to sort, clean up, and generate consensus sequences before

primer design.

Primer design and fragment analysis:

Based on the flanking sequences, PCR primers were designed using the GCG

Wisconsin Packages (Accelrys, Madison, WI). After examining six different

temperatures, the optimal annealing temperature was determined to be 53* C at which the

amplicons had the highest intensity as measured by relative fluorescence units (rfu).

With some modifications, the M13 fluorescent tail primer method described by Roy et al.

(1996) [27] was used as a screening technique to detect polymorphism among 25

different loci. Fragment analysis was performed using either the method described by

Roy [27] or direct 5'-labeled fluorescent primers. The PCR reaction using the direct

fluorescent primer was prepared (for one reaction) by adding 1 pd of IOX buffer with

15mM MgCl 2, 0.2 pl of dNTP's (2.5mM each), 0.25 pl of forward primer (lOuM), 0.25

p1 of reverse primer (10 M), 0.5 U of taq polymerase, 10 ng of DNA template, and dH 20

to a final volume of 10 pl. The PCR reaction was carried out by denaturing at 94* C for 5
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minutes, followed by 40 cycles of 45 seconds at 940 C, 45 seconds at 530 C, and 1 minute

at 720 C. The final extension was 10 minutes at 720 C.

Determination of allelic sizes:

The PCR products were electrophoresed in a capillary electrophoresis instrument

(ABI Prism 3100) using Performance Optimized Polymer 4 (POP4) (Applied

Biosystems, Foster City, CA). Each sample was prepared by mixing 1.5 l of the PCR

product with 12 pl of Hi-Di formamide and 0.1 pl of GeneScan 500 ROX fluorescently

labeled size standard (Applied Biosystems, Foster City, CA). The PCR products were

denatured by incubating at 950 C for 2 minutes. Samples were injected electrokinetically

at 3kV for 10 seconds and were run at 600 C for 45 minutes at 15kV. The data generated

was imported into GeneScan 3.7 software (Applied Biosystems, Foster City, CA) for

fragment size determination. The final allele size determination of the microsatellite data

was performed using Genotyper 3.7 (Applied Biosystems, Foster City, CA). An example

of alleles called for the P19 locus is shown in figure 1.

Statistical analyses:

All samples were scored for the allele designations based on the repeats size,

which were then used in different statistical analyses. To investigate some genetic

parameters of polymorphism, the following was calculated: allele frequencies, number of

alleles per locus (n), effective number of alleles (ne), observed heterozygosity (Ho),

expected heterozygosity (He), and probability of identical genotypes (PI). The genetic

parameters were determined using the eleven microsatellites over 33 diploid Cannabis

plants (excluding the duplicate samples). Observed heterozygosity (Ho) was obtained by

100



dividing the number of heterozygous plants over the total number of plants tested for

each locus. The degree of polymorphism was measured using the expected

heterozygosity (He, 28):

He =1-P 2i

where Pi is the frequency of the ith alleles for each locus in the plants analyzed. The

probability of identical genotypes (PI) was estimated according to Paetkau et al. (1995)

[29]:

YPZi (2 PiP)2

where Pi is the frequency of the ith allele and P equals the frequency of the (i +1 )th allele

studied. The effective number of alleles (ne) was calculated according to Morgante's

formula [15]:

ne =( -Pi2)-1

The genetic relationships among the unique Cannabis profiles were analyzed

using the neighbor joining (NJ) method [30]. The NJ tree was performed based on

Chord's genetic distance [31]. In order to give a confidence limit for the relationships

between the Cannabis plants, 2000 replicas of bootstrapping [32] were performed with

the NJ method to test for support of the branch nodes. Those nodes with bootstrap values

below 50% were considered unsupported. Principal Component Analysis (PCA) [33]

was also performed as another graphical method to depict the genetic relatedness between

the plants tested. The determinations of genetic distances, PCA, and NJ clustering were

performed using the NTSYSpc v.2.1 package [34]. The bootstrap was performed using

the TreeMaker program [35].
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Results

Characterization of the isolated microsatellite sequences:

The cloning step of the enriched Cannabis DNA generated 685 clones, from

which 192 clones were sequenced (two 96-well plates). Ninety-five (95) clones were

considered useful as they contained either dinucleotide motifs with nine or greater repeat

units, or they contained trinucleotide motifs with five or greater repeat units. The types

of microsatellite motifs identified were consistent with the twelve types of

oligonucleotide probes that were used for the enrichment. The isolated microsatellite

sequences were as follows: 51% dinucleotide repeats, 49% trinucleotide repeats, 79%

perfect repeats, 14% imperfect repeats, and 7% compound repeats (table 1).

Total clones of enriched DNA 685
Total sequencing reactions 192
Total microsatellite inserts (%) 49%
Frequency of microsatellites in Cannabis sativa (%)

GAT/CTA GA/CT AAG/TTC GTT/CAA GT/CA CAT/GTA ACG/TGC GGA/CCT
10.2% 50.0% 15.3% 16.3% 1.0% 5.1% 1.0% 1.0%

Type of repeat (%)
By nucleotide string

i 51.0%
ri 49.0%

By form
Perfect 78.6%
Imperfect 14.3%
Compound 7.1%

Table (1): Microsatellite enrichment success for Cannabis sativa and characterization of
the microsatellite types.
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The isolated microsatellites had two types of dinucleotide repeats and six types of

trinucleotide repeats. The majority of microsatellite loci were composed of a GA/CT

dinucleotide motif representing 50% overall. The most common isolated trinucleotide

motifs were GTT/CAA, AAG/TTC, and GAT/CTA representing 16%, 15%, and 10%

respectively, of all detected microsatellites (table 1). The maximum repeat units recorded

for dinucleotide motifs were 49 repeats and 17 repeats for the trinucleotide motifs. The

number of repeat units ranged between 15 bp (5 trinucleotides) to 98 bp (49

dinucleotides). A complete list of the frequency of microsatellite types recovered from

Cannabis sativa is shown in table 1.

Characterizations of the selected microsatellite markers:

Thirty-six clones had suitable flanking regions for GCG primer design. From

these 36 loci, seven could not generate primer sets because of low annealing temperature

particularly due to a high concentration of nucleotides A and T. Of 29 primer pairs

designed by GCG, 25 sets were selected, synthesized and tested for polymorphism.

Fourteen primer pairs were eliminated because they produced no PCR products,

nonspecific products, or complex (uninterpretable) products. These products were

mainly due to the high tendency of primers to produce palindromes or primer dimers

between the two primer sequences. In addition, two of those fourteen primer pairs were

monomorphic. The remaining eleven loci were found to be polymorphic and reliable for

scoring the different alleles across the 41 Cannabis samples (table 2). The original

genomic DNA used in the library construction (G40, table 3) was also included to

provide a positive size control. All of the amplified products were in the expected size

range and the PCR products ranged from 105 bp to 339 bp. The eleven STR markers
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were derived from three dinucleotide repeats, five trinucleotide repeats, one compound

trinucleotide repeat, and two imperfect trinucleotide repeats (table 2).

Locus Repeat Primers (5'-3') Alleles Size Range

11-CANNI (GAT)8(GGT)7  GTGGTGGTGATGATGATAATGG 5 150-175 bp

(P4) TGAATTGGTTACGATGGCG

01-CANNI (GAA) 13(A)(GAA) 3 TGGAGTCAAATGAAAGGGAAC 5 323-339 bp

(P6) CCATAGCATTATCCCACTCAAG

02-CANN2 (CTT)6(ATT)(CTT)10 AGATGATGCCAAGAGGCAC 4 221-236 bp

(P7) TACCCATCCCCTTGGATCAC

08-CANN2 (GA)21  GCAAGAAGTAGAGAGACAATCC9 171-203 bp

(P9) CCCTCAACACTCATTAACTCAC

1-CANNI (CT)18  GCATGTGGTTGTTTCGTACCC 7 285-297 bp

(P13) CAGCGAACATTCACTCTAGCTC

02-CANN2 (AAG)10  CAACCAAATGAGAATGCAACC 3 163-172 bp

(P14) TGTTTTCTTCACTGCACCC

09-CANN2 (GA)15  CGTACAGTGATCGTAGTTGAG 6 204-224 bp

(P15) ACACATACAGAGAGAGCCC

07-CANN1 (CTA) CAAATGCCACACCACCTTC 3 105-111 bp

(P17) GTAGGTAGCCAGGTATAGGTAG

05-CANN1 (TTG)9  TTGATGGTGGTGAAACGGC 4 235-244 bp

(P19) CCCCAATCTCAATCTCAACCC

02-CANN1 (GTT), GGTTGGGATGTTGTTGTTGTG 3 105-111 bp

(P24) AGAAATCCAAGGTCCTGATGG

06-CANN2 (ACG)7  TGGTTTCAGTGGTCCTCTC 3 266-273 bp

(P25) ACGTGAGTGATGACACGAG

Table (2): SSR loci and the primers developed in the study.
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amples Information Duplicate ink
1 Northeast-street# 1 1

2 Northeast-street# 1 1

3 Northeast-street# 2

4 Northeast-street#1_
5 Northeast-street#1 3

6 Northeast-street# 1 3

7 Northeast-street# 1
8 Northeast-street# 1
9 Northeast-street# 1

10 Northeast-street# 1 5
11 Northeast-street#2
12 Northeast-street#2 A

13 Northeast-street#2 A

14 Northeast-street#2 6

15 Northeast-street#2 7

16 Northeast-street#1 2

17 Northeast-street#1 4

18 Northeast-street#1 5

19 Northeast-street#2 6

20 Northeast-street#2 7

21 Canada
22 Canada 9
23 Canada E
24 Canada
25 Canada C
26 Canada 10-C

27 Canada E
28 Canada 10-C

29 Canada
30 Canada
31 Canada 11

32 Canada D
33 Canada
34 Canada 11

35 Canada D
36 Canada 9
37 Canada
38 Canada
39 Canada
40 Used in library construction 8
41 Canada 8

Table (3): List of information and associations known between the 41 C. sativa plants (personal

communication with Dr. Coyle at CSFSL and Dr. Shutler at RCMP).
* Identical number (1-8) code for duplicate samples* Identical letter code for related samples
A: closely related by AFLP B: originated from the same grower C: related by AFLP
D: originated from the same grower E: related by AFLP 9: identical based on AFLP

10: identical based on AFLP 11: identical based on AFLP
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Genetic identifications and relationships:

According to the blind testing of the 41 Cannabis samples using the 11 STR

markers, the following sets had the same DNA fingerprint: G1/G2, G 10/G 15/G 18/G20,

G22/G36/G40/G41, G26/G28, G3/G7/G16/G17, G14/G19, G31/G34, and G5/G6. The

NJ method was used to test the genetic relatedness among the 27 unique genotypes of

Cannabis using Chord's genetic distance. NJ found a single tree based on Chord's

distance coefficient (figure 2). The only three clusters that could be considered supported

were between the following: G12 and G13 with bootstrap values of 100%, G38 and G39

with bootstrap value of 85%, and G4 and G27 with bootstrap value of 55%. Principal

Component Analysis (PCA) was performed on the 27 unique Cannabis genotypes in

which 34.6% of the total variation was captured using three coordinates (figure 3a). G30

exhibited a very distinct profile and could be easily recognized as an outlier sample in

PCA (figure 3a). After G30 was disregarded from the PCA testing, the remaining 26

genotypes became more widely dispersed on the PCA scatter plot on which 33.8% of the

total variations was captured in the three coordinates (figure 3b).

Discussion

Microsatellites in Cannabis sativa:

In plants, on average, there is one microsatellite every 33 kb whereas

microsatellites occur approximately every 6 kb in the human genome [10]. Therefore, to

obtain an enriched map of STR markers that represents the genome, screening hundreds

of thousands of inserts would be necessary. Several methods have been developed to

shorten the screening step and produce genomic libraries enriched for certain
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microsatellite types. In this study, an enriched microsatellite library was created using a

modified version of the method developed by Edwards et al. (1996) [26]. DNA

sequences were obtained from a total of 192 colonies of which 49% contained STR insert

repeats (table 1). Most of the microsatellite sequences isolated had flanking sequences

that were insufficient (i.e. containing less than 25 bp sequences on either side of the

repeat). This close proximity of the repeat unit to the cloning site was the main reducing

factor for generating useful markers. This problem was also observed in a number of

other studies [36, 37]. Such a problem could be due to the size fractionation step and/or

to the restriction enzyme used.

The frequency of each class of microsatellite is highly variable among plant

species [10]. The variation reported in different plant studies might be caused by

variations in genome structure of different species surveyed [36]. In this study, the

results indicate that the GA/CT motif was the most highly dispersed form of

microsatellite detected in the Cannabis genome. The GA/CT motif represented 50% of

the total microsatellite repeats detected (table 1). This is consistent with surveys of

microsatellite repeats in hop (Humulus lupulus, the closest relative to C. sativa) [38] and

other studies [13, 23] in which the GA/CT motif was the most abundant. However, other

reports of microsatellite repeats in mangrove [39] and potato [16] revealed a greater

abundance of AC/TG motif over GA/CT motif. The number of trinucleotide repeats

detected was similar to that of the dinucleotide repeats (table 1). Trinucleotide profiles

are easier to score than the dinucleotide profiles because the variations in the number of

core units of trinucleotide motifs are larger in length. In addition, the trinucleotide loci
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show more distinct allelic profiles by avoiding the stutter pattern that is often associated

with the amplification of dinucleotide loci motifs [40, 41, 5].

Microsatellite polymorphism and applications:

Microsatellite markers have shown high levels of polymorphism in many plant

species including rice [18], wheat [42], tropical trees [43], maize [44], sunflower [45],

and many more. To discriminate between different cultivars of C. sativa and to

potentially associate the samples of clonal origin using microsatellites, the selected STR

loci would need to be highly polymorphic. The discrimination power, ease of genotyping

(figure 1), and high reproducibility emphasize that these eleven microsatellite markers

can be used for DNA typing in Cannabis. The blind test of microsatellite typing of 41

samples matched the identities of the duplicates and the unique samples reported

afterward by AFLP typing (table 3, personal communication, Dr. Coyle, CSFSL).

G26/G28, G31/G34, and G22/G36/G40 were found to be identical by AFLP (table 3) and

by STR markers, which strongly suggest that they could be clonally propagated. The

remaining identical sets consisted of known duplicate samples (table 3), showing

reproducibility of this typing technique. In addition, the 11 STR loci were very effective

in uniquely identifying 27 profiles of the Cannabis samples tested. Microsatellite DNA

also had high resolution and sensitivity for calculating the various genetic parameters

presented in table 4.

The genetic relationships using the NJ method were able to complement the

known association level between the Cannabis plant samples reported in table 3. First,

samples G12 and G13 were found to have the strongest ties supported by a bootstrap

value of 100% (figure 2). This relationship was in agreement with the information that
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both samples were closely related by AFLP analysis (table 3). In addition, figure 2 was

able to group G38 and G39 together with a bootstrap value of 85%. These results were

consistent with the information that both samples came from the same grower (table 3).

This information could link these samples to a specific source. Moreover, the seized

samples G32, G33, and G35 clustered together in the microsatellite tree (figure 2) all of

which were reported as originating from the same source (table 3). G25 and G26 were

associated in the same group by the AFLP data (table 3) and by the NJ dendrogram

(figure 2). However, microsatellite data supported the relatedness of G27 and G4

together (55% bootstrap value) more than G27 was related to G23 found using AFLP

data (table 3). G30 was found to be a distinct individual based on both NJ analysis

(figure 2) and PCA (figure 3a). Moreover, the PCA plot associated G12 with G13, G32

and G33 with G35, and G38 with G39. All of these PCA associations were in agreement

with the NJ clustering (figure 3b).

Many growers of Cannabis choose selective breeding to adapt to particular

growing conditions and to increase the THC content, which contributes to the

intoxicating effect of Cannabis [22]. Selective breeding of high THC content plants can

be obtained using two methods. The first technique is clonal propagation using stem

cuttings from clones containing high levels of THC. In this case, both the mother plant

and subsequent cuttings (daughter clones) will have identical DNA profiles. Thus, a

DNA analyst can easily detect plant materials that originated from the same source.

Second, two plants can be cross-pollinated to generate seeds. After that, each seed can be

grown into a plant that has its own unique DNA profile.
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The eleven STR markers developed in this study proved useful for DNA typing

and genetic relatedness analyses. Since many organized marijuana growers use clonal

propagation and hydroponic methods to produce plants that yield high drug content, this

technique could be applied to provide linkage between a major source of marijuana and

the smaller growers to assess distribution patterns by tracking clonal material. This

information also could help to link cases and/or growers together with an aim to aid law

enforcement agencies in drug eradication efforts. Other growers propagate their

marijuana plants from seeds. The forensic application of this technique with seed grown

plants could be used to associate a leaf found on a suspect to plant material found in a

crime scene or to link an anonymous growing operation (i.e. marijuana cultivated in a

particular field) to material found in a suspect's possession. Future work will include

further validation studies with additional samples, sensitivity and mixture studies, stutter

calculations, and mapping the loci to determine any linkage before they can be used by

the forensic community.
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Figure 1: Representative genotyping of different samples based on P19 locus using
Genotyper 3.7 software.
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3-D PCA Plot for Cannabis Genotypes
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Figure 3A: Three-dimensional prnncipal component analysis plot of the 27 unique Cannabis genotypes using correlation
coefficients based on overall allele frequencies in 11 SSR loci
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3-D PCA Plot for Cannabis Genotypes
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Figure 3B: Same as 3A except that G30 is eliminated from the plot
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