
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-21-2014

Real-Time Scheduling of Embedded Applications
on Multi-Core Platforms
Ming Fan
Florida International University, mfan001@fiu.edu

DOI: 10.25148/etd.FI14040815
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer and Systems Architecture Commons, Power and Energy Commons,
Systems Architecture Commons, and the Theory and Algorithms Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Fan, Ming, "Real-Time Scheduling of Embedded Applications on Multi-Core Platforms" (2014). FIU Electronic Theses and
Dissertations. 1243.
https://digitalcommons.fiu.edu/etd/1243

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.fiu.edu%2Fetd%2F1243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.fiu.edu%2Fetd%2F1243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.fiu.edu%2Fetd%2F1243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.fiu.edu%2Fetd%2F1243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1243?utm_source=digitalcommons.fiu.edu%2Fetd%2F1243&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

REAL-TIME SCHEDULING OF EMBEDDED APPLICATIONS ON

MULTI-CORE PLATFORMS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Ming Fan

2014

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Ming Fan, and entitled Real-Time Scheduling of Em-
bedded Applications on Multi-Core Platforms, having been approved in respect to
style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Malek Adjouadi

Jean H. Andrian

Nezih Pala

Deng Pan

Gang Quan, Major Professor

Date of Defense: March 21, 2014

The dissertation of Ming Fan is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2014

ii

c© Copyright 2014 by Ming Fan

All rights reserved.

iii

DEDICATION

I would like to dedicate this Doctoral dissertation to my beloved wife, Rong Rong,

and my dearest parents. Without their love, understanding, support, and encour-

agement, the completion of this endeavor would never have been possible.

iv

ACKNOWLEDGMENTS

First, I would like to express my deepest appreciation to my major advisor, Dr.

Gang Quan, for his constant guidance and endless encouragement during the last

five years of my doctoral study. I truly admire his dedication to science and research.

I would also like to express my gratitude to my Ph.D. committee members, Dr.

Jean H. Andrian, Dr. Malek Adjouadi, Dr. Nezih Pala and Dr. Deng Pan, for

their helpful insights, comments and suggestions in improving the quality of this

dissertation. I am extremely proud to have such a wonderful and knowledgeable

people serving on my dissertation committee.

I am thankful to the staff of ECE department at FIU, specially to Mrs. Pat

Brammer, Mrs. Maria Benincasa and Mrs. Ana Saenz for their great commitment

to student services.

Next, I would like to thank my lab mates, Mr. Shuo Liu, Mr. Qiushi Han,

Mr. Tianyi Wang, Mr. Shi Sha, Dr. Vivek Chaturvedi, Dr. Huang Huang and Dr.

Guanglei Liu, for creating a wonderfully collaborative work environment.

Further, I want to thank my family for their unlimited love, faith, encouragement,

blessings and prayers. I am very grateful to my beloved wife, Mrs. Rong Rong, for

accompanying and encouraging me during my entire Ph.D life. I want to give my

life-long gratitude to my dearest mother, Mrs. Zhenhuan Dang, and father, Mr.

Wei Fan, for all the love and affection they have showered upon their children. I

want to thank my sister, Mrs. Xing Fan, for being a great wall of support and

inspiration in my life. I am thankful to my mother-in-law, Mrs. Xiaochun Wang,

and farther-in-law, Mr. Delun Rong, for their care and encouragement.

Finally, and above all, I would like to thank the National Science Foundation

(NSF) for supporting the research described in this dissertation through grants

CNS-0969013, CNS-0917021 and CNS-1018108.

v

ABSTRACT OF THE DISSERTATION

REAL-TIME SCHEDULING OF EMBEDDED APPLICATIONS ON

MULTI-CORE PLATFORMS

by

Ming Fan

Florida International University, 2014

Miami, Florida

Professor Gang Quan, Major Professor

For the past several decades, we have experienced the tremendous growth, in

both scale and scope, of real-time embedded systems, thanks largely to the advances

in IC technology. However, the traditional approach to get performance boost by

increasing CPU frequency has been a way of past. Researchers from both industry

and academia are turning their focus to multi-core architectures for continuous im-

provement of computing performance. In our research, we seek to develop efficient

scheduling algorithms and analysis methods in the design of real-time embedded

systems on multi-core platforms. Real-time systems are the ones with the response

time as critical as the logical correctness of computational results. In addition, a va-

riety of stringent constraints such as power/energy consumption, peak temperature

and reliability are also imposed to these systems. Therefore, real-time scheduling

plays a critical role in design of such computing systems at the system level.

We started our research by addressing timing constraints for real-time applica-

tions on multi-core platforms, and developed both partitioned and semi-partitioned

scheduling algorithms to schedule fixed priority, periodic, and hard real-time tasks

on multi-core platforms. Then we extended our research by taking temperature

constraints into consideration. We developed a closed-form solution to capture tem-

perature dynamics for a given periodic voltage schedule on multi-core platforms,

vi

and also developed three methods to check the feasibility of a periodic real-time

schedule under peak temperature constraint. We further extended our research by

incorporating the power/energy constraint with thermal awareness into our research

problem. We investigated the energy estimation problem on multi-core platforms,

and developed a computation efficient method to calculate the energy consump-

tion for a given voltage schedule on a multi-core platform. In this dissertation, we

present our research in details and demonstrate the effectiveness and efficiency of

our approaches with extensive experimental results.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Real-Time Embedded Systems . 1
1.2 The Opportunities And Challenges For Multi-Core Platforms 4
1.3 The Research Problem And Our Contributions 9
1.4 Structure Of The Dissertation . 10

2. BACKGROUND AND RELATED WORK 12
2.1 Real-Time Scheduling . 12
2.2 Multi-Core Scheduling . 16
2.3 Power/Thermal Aware Multi-Core Scheduling 17
2.3.1 Power Aware Multi-Core Scheduling 18
2.3.2 Thermal Aware Multi-Core Scheduling 21
2.4 Summary . 24

3. PARTITIONED MULTI-CORE SCHEDULING BY EXPLORING HAR-
MONIC RELATIONSHIP AMONG REAL-TIME PERIODIC TASKS . . 26

3.1 Related Work . 26
3.1.1 Different Utilization Bounds For Single-core Systems 27
3.1.2 Partitioned Scheduling . 30
3.2 Preliminary . 32
3.3 Motivational Examples . 34
3.4 Task Partition With An Enhanced RBound 37
3.4.1 Task Set Scaling (TSS) . 38
3.4.2 Feasibility Relationship Between Γ And Γ′ 39
3.4.3 Enhanced RBound . 43
3.4.4 The Partitioning Algorithm . 45
3.5 Harmonic Advantage Exploration With CBound 47
3.5.1 Quantifying Harmonic Property . 48
3.5.2 Harmonic Aware Partitioned Scheduling 49
3.5.3 Schedulability Analysis for HAPS . 51
3.6 Experiments And Results . 53
3.6.1 Experimental Setup . 53
3.6.2 Experiment 1: Efficiency Of Our Enhanced Utilization Bound 53
3.6.3 Experiment 2: Performance Of Our Partitioned Scheduling Algorithms 56
3.7 Summary . 60

4. SEMI-PARTITIONED MULTI-CORE SCHEDULING BY EXPLORING HAR-
MONIC RELATIONSHIP AMONG REAL-TIME PERIODIC TASKS . . 61

4.1 Related Work . 61
4.2 Preliminary . 63

viii

4.2.1 System Models . 63
4.2.2 On Semi-Partitioned Scheduling . 64
4.2.3 Motivation Examples . 66
4.3 The HSP-Light Algorithm . 67
4.3.1 Algorithm Details . 68
4.3.2 Schedulability Analysis Of HSP-Light 70
4.3.3 Fast Schedulability Checking Method For HSP-Light 72
4.4 The HSP Algorithm . 78
4.4.1 Algorithm Details . 80
4.4.2 Schedulability Analysis Of HSP . 82
4.5 Experiments And Results . 85
4.5.1 Performance VS. Number Of Tasks . 87
4.5.2 Performance VS. System Utilization 88
4.6 Summary . 90

5. TEMPERATURE-CONSTRAINED FEASIBILITY ANALYSIS FOR MULTI-
CORE REAL-TIME SCHEDULING . 91

5.1 Related Work . 91
5.2 Preliminary . 93
5.2.1 System Models . 93
5.2.2 Power Model . 94
5.2.3 Thermal Model . 95
5.2.4 Problem Description . 96
5.3 Temperature Calculation For Multi-core Scheduling 97
5.3.1 Temperature Formulation Within A State Interval 97
5.3.2 Temperature Formulation For A Periodic Schedule 98
5.3.3 Steady-State Temperature Formulation 102
5.4 Identifying The Peak Temperature . 104
5.4.1 Challenging Problem In Peak Temperature Detection 104
5.4.2 Important Properties For Multi-core Temperature Variation 106
5.4.3 Peak Temperature Detection Within A State Interval 109
5.4.4 Peak Temperature Detection For A Periodic Schedule 113
5.5 Feasibility Analysis For Multi-Core Scheduling With Temperature Con-

straint . 114
5.5.1 TmaxCheck: Feasibility Checking With Initial Temperature As Tmax . 115
5.5.2 ModeCheck: Feasibility Checking With Temperature Safe Modes . . . 116
5.5.3 TssCheck: Feasibility Checking With Steady-State Temperature Formula119
5.6 Experimental Evaluations . 120
5.6.1 Accuracy Analysis Of Our Analytical Temperature Calculation Method 121
5.6.2 Steady-State Peak Temperature Variation Under Different Constant

Speeds . 124
5.6.3 Threshold Temperature Determined By TmaxCheck 125
5.6.4 Worst-Case Equilibrium Voltage Determined By ModeCheck 126

ix

5.6.5 Performance Comparison For Different Feasibility Checking Methods . 128
5.7 Summary . 130

6. LEAKAGE-AWARE ENERGY ESTIMATION FOR MULTI-CORE REAL-
TIME SCHEDULING . 131

6.1 Related Work . 132
6.2 Preliminary . 133
6.2.1 System Models . 133
6.2.2 Temperature Calculation . 134
6.3 Energy Calculation For Multi-Core Scheduling With Thermal Awareness 135
6.4 Experiments And Results . 139
6.4.1 Experimental Setup . 139
6.4.2 Accuracy Analysis . 142
6.4.3 Time Efficiency Analysis . 143
6.5 Summary . 144

7. CONCLUSIONS AND FUTURE WORK 145
7.1 Summary . 145
7.2 Future Work . 147
7.2.1 System Models And Underlying Scheduling Problem 148
7.2.2 Preliminary Results . 151

BIBLIOGRAPHY . 157

VITA . 170

x

LIST OF TABLES

TABLE PAGE

3.1 A task set with six real-time periodic tasks 34

3.2 A task set with four real-time periodic tasks 35

4.1 A task set with five real-time tasks . 66

4.2 A task set with four real-time tasks . 79

5.1 HotSpot parameters and floorplan . 121

5.2 Power/thermal parameters . 122

6.1 HotSpot parameters and floorplan . 139

6.2 Power/thermal parameters . 139

xi

LIST OF FIGURES

FIGURE PAGE

1.1 Embedded system market [114] . 2

1.2 Demand for multi-core based devices . 4

1.3 Fraction of chip reachable in one clock cycle [6, 103] 5

1.4 Time line of multi-core development [117] 7

1.5 The trend of power consumption and transistor count for a 300mm2

die [24] . 8

2.1 Power v.s. Temperature [55]: Intel Core i5-2500K (32nm Sandy Bridge),
voltage 1.26V, frequency at 1.6 GHz and 2.4 GHz, respectively. . . . 18

2.2 Illustration for RC thermal circuit on a dual-core system [116] 22

3.1 Assign tasks in Table 3.1 based on ideal harmonic relationship, and all
tasks can be scheduled successfully on two processors. 34

3.2 Assign tasks in Table 3.2 based on pCOMPACTS [66], while τ4 missing
its deadline. 35

3.3 Assign tasks in Table 3.2 based on closely harmonic relationship, and
all tasks can be scheduled successfully on two processors. 36

3.4 Proof of Theorem 3.4.1: given a task set Γ with T1 ≤ T2... ≤ TN and
τN = (CN , TN), transform Γ into Γ∗ such that τ ∗N = (kCN , kTN) and
τ ∗i = τi,∀i < N . 39

3.5 Efficiency of our enhanced utilization bound on a single core. 54

3.6 Experimental results for light task sets (ui ∈ [0, 0.5]) 55

3.7 Experimental results for light task sets (ui ∈ [0, 0.5]) by different system
utilization . 58

3.8 Experimental results for general task sets (ui ∈ [0, 1]) by different system
utilization . 59

4.1 Allocation fails when simply grouping harmonic tasks and assigning
them to the same processor. 66

4.2 Illustration of U t
X and U t

Y . 76

4.3 (a) The task set is failed to be scheduled according to HSP-light; (b)
The task set is schedulable if the heavy task τ2 is pre-assigned. . . . 79

4.4 Experimental results for general task sets by different number of tasks. . 87

xii

4.5 Experimental results for light task sets, u ∈ [0, 0.5]. 88

4.6 Experimental results for general task sets, u ∈ [0, 1]. 89

5.1 A speed schedule within 2 scheduling periods. 99

5.2 Negative interaction on temperature variation between two cores. C1 =
C2 = 0.00035, G11 = G22 = 0.4, G12 = G21 = −0.1, v1 = 0.8V ,
v2 = 0V , T1(0) = T2(0) = 75oC. 105

5.3 Ti(t) increases at both time t0 and t1. 109

5.4 Ti(t) decreases at time t0 and increases at time t1. 110

5.5 Ti(t) increases at time t0 and decreases at time t1. 111

5.6 Equilibrium voltage of core Ci under processing mode ki. a) all other
cores except Ci are under fixed constant processing modes; b) all
other cores except Ci are under any arbitrary available processing
modes. 116

5.7 Accuracy analysis of our proposed temperature calculation method. . . . 123

5.8 Steady-state temperature under different constant speeds with our ana-
lytical steady-state temperature formula. 124

5.9 Threshold temperature determined by TmaxCheck under different volt-
ages. 126

5.10 Worst-case equilibrium voltage determined by ModeCheck under differ-
ent maximum temperature constraints. 127

5.11 Feasibility ratios under different maximum temperatures. 128

6.1 Accuracy analysis, compared with the numerical method under ts = 0.01 141

6.2 Time efficiency analysis, normalized with our method 143

7.1 Impact of slack on energy consumption 155

7.2 Impact of Pind on energy consumption 156

xiii

CHAPTER 1

INTRODUCTION

Real-time embedded systems have been ubiquitous. From cell phones to dig-

ital cameras, from transportation to industry controls, from medical instruments

to home entertainment systems, such systems affect almost every aspects of our

daily life. In the meantime, to cater to the growing demand of high computing

performance for these systems, the traditional approach of increasing speed for sin-

gle processor has been a way of past. Instead, multi-core architecture is becoming

mainstream.

In this chapter, we first introduce the basics on real-time embedded systems.

Then we discuss the opportunities and critical challenges in design of real-time

systems on multi-core platforms. Next, we define our research problem and briefly

summarize our contributions. Finally, we present the structure of this dissertation.

1.1 Real-Time Embedded Systems

Real-time embedded systems are systems dedicated to special applications with

real-time constraints in an embedded mechanical or electrical environment [54]. In

a real-time embedded system, the timing constraints can be critical and need to be

guaranteed, for reasons such as safety and usability. A late response, even coming

with a logical correct result, can cause a degraded quality of service (QoS), or even

a catastrophical accident [106].

Real-time embedded systems have been widely used in a variety of devices across

a wide range of applications such as mobile phones, electronic game devices, motor

vehicles, medical equipments, avionic products, etc. The embedded system market

was valued at 121 billion dollars in 2011, and is expected to reach 194 billion dollars

by 2018 [3]. Among all these systems/applications, it is reported in 2013 up to 68%

1

of all embedded system devices have the real-time capability [114] (see Figure 1.1).

Real-time embedded systems have become indispensable in our daily life.

Figure 1.1: Embedded system market [114]

Due to the application nature, there are a large variety of different real-time

embedded systems. In general, real-time embedded systems can be classified along

different criteria. From the perspective of the nature of deadlines, real-time em-

bedded systems can be hard or soft. Hard real-time systems require deterministic

guarantee to meet all deadlines for every instance, and the failure to meet even a

single deadline can be catastrophic. For example, aviation control system and auto-

mobile’s ABS system are hard real-time systems. On the other hand, soft real-time

systems are the systems that allow for a statistical bound on the number of dead-

line misses, which are neither desirable nor fatal. Examples of such systems include

media streaming in distributed systems and non-mission-critical tasks in control

systems. Despite large variations of real-time embedded systems, one unique com-

mon feature of real-time embedded systems is that they are usually tightly resource

constrained. For instance, beside timing, real-time embedded systems are also con-

strained by size, weight, power/energy, temperature, reliability, etc. Due to limited

resources in most of embedded devices, the problem of how to improve the perfor-

2

mance meanwhile satisfying other resource constraints becomes important. Take the

mobile phones as an example, they have essential restrictions on size, weight, ther-

mal and power. Power is particularly important, as these portable devices largely

depend upon the battery-life to deliver high performance [107, 127]. To achieve high

computational performance within limited and constrained resources, an appropri-

ate real-time scheduling strategy for such embedded systems is desired.

The real-time scheduling is concerned with the allocation and management of

the resources to complete the assigned workload within timing constraints. In a

real-time embedded system, the scheduling strategy directly affects the applica-

tion’s execution and thus further affects the computing performance. Moreover, the

scheduling strategy also brings significant impact on other system performances, i.e.

power/energy, thermal, reliability, etc. There is no doubt that real-time scheduling

plays a critical role in embedded systems. Thus, it is important to design effective

and efficient scheduling techniques for real-time embedded systems.

From the processor architecture point of view, real-time embedded systems can

be categorized as either single-core or multi-core systems. The single-core system is

built by integrating only one processing core into a single chip, while the multi-core

system integrates multiple processing cores into the same chip. Over two decades,

it has been a common strategy to increase the computing performance by building

more complex single-core architecture and increasing working frequency. Such kind

of advancement has been largely driven by the continuous scaling of the transistor

feature size that facilitates exponential transistor integration capacity (doubling

every 2 years, Moore’s law). However, under current technology, the power issue

has become a critical bottleneck for further increasing the computing performance

on single-core systems. Fortunately, multi-core systems can mitigate the power issue

and thus provides capability to further increase the computing performance.

3

Figure 1.2: Demand for multi-core based devices

Today, multi-core systems have been the mainstream of microprocessor market

in various fields. For example, multi-core platforms are widely used from personal

electronic devices (e.g. smart phones, PCs, tablets and tablets) to system servers

and data centers. Moreover, there is a quick increase of multi-core devices in the

commercial market. The data shown in Figure 1.2 was gathered by one research

company [2], and shows the annual increase in the number of multi-core processors

delivered in select industries. Based on this research, starting from 2012, there is

approximately a 40% annual increment in the shipment of multi-core microproces-

sors. As multi-core architecture is becoming more and more popular, there is a quick

emerging towards multi-core for real-time embedded systems. In the following sec-

tion, we discuss the opportunities as well as challenges coming with the multi-core

technology.

1.2 The Opportunities And Challenges For Multi-Core Plat-

forms

Since early 2000, industry has begun to change its focus from single-core to multi-

core platforms. One major reason for this platform shift is that, in 2002, the classical

4

Figure 1.3: Fraction of chip reachable in one clock cycle [6, 103]

approach for increasing computing performance (by scaling the transistor size and

increasing the clock frequency) reached a physical limit, i.e. the entire chip could

not be reached in one clock cycle. This means that the performance could not be

continuously increased under the traditional way of transistor technology scaling.

Figure 1.3 shows the fraction of chip reachable in one clock cycle with respect to

year and technology. From Figure 1.3, we can see that starting from 2000, there is

an exponential drop in the percentage of chip achieved in one clock cycle. In fact,

the trend of increasing the speed of processor to increase the computing performance

is a way of past.

Multi-core platforms bring innovative solutions to overcome the limitations of

single-core platforms, such as power/thermal limitation and instruction level par-

allelism limitation [15]. First, the power and thermal issues have become a crucial

limitation in single-core design. The extremely high power consumption and ex-

cessive heat dissipation have posed critical challenges for continuously pursing high

computing performance on a single-core chip [112]. However, multi-core platforms,

compared with single-core platforms, can alleviate the power and thermal issues

5

with the same performance achievement. Instead of continuously scaling transistor

size or increasing clock frequency only on a single core, multi-core platforms can

increase the computing performance by increasing the number of processing cores

on the same chip with lower transistor integration density and/or clock frequency.

Secondly, single-core platforms confront with instruction level parallelism limitation.

Single-core architectures attempting to gain performance from techniques such as

wide issue and speculative execution achieve modest increase in performance at

the cost of significant overhead in area and energy [15]. Nevertheless, multi-core

platforms improve the computing performance by exploiting the “thread/data level

parallelism”. For instance, in a multi-core system, if all tasks are highly parallelized

among all cores, it would come out with high parallel executions. Therefore, multi-

core technology bring promising opportunities to further improve the computing

performance.

The study on multi-core platforms is long and rich, while the history of manu-

factured multi-cores has only a few decades. Figure 1.4 shows some significant time

line for the development of multi-core systems [117]. In 1972, one of the most early

studies on multi-cores, called Illiac IV [25] consisting of 64 arithmetic logic units

(ALUs), was proposed to perform parallel computing for vector and array opera-

tions. The first significant study on general purpose multi-core was performed by

Hammond [46] in 1997 (shown in the figure as the Kunle study). However, the first

manufactured multi-core appeared in the marketplace was in 2000 by AT&T Day-

tona [5]. Most of other major manufacturers followed successively to launch their

multi-core chips: the C-5 by C-Port Corp. for networking, the viper by Phillips for

multimedia, the OMAP by Texas Instruments for baseband processing, the MPCore

by ARM for configurable design, the IXP2855 by Intel for network communication,

and the Starcore by Sandbridge Technologies for signal processing. Today, multi-

6

core platforms have been broadly supported by most of chip vendors, including Intel,

AMD, ARM, IBM, Nvidia, Freescale Semiconductor, Sum microsystems, etc.

Figure 1.4: Time line of multi-core development [117]

When moving to multi-core platforms, it comes with new critical challenges in

design of real-time systems. First, in a multi-core system, the scheduler needs to

determine not only when a given application executes but also where it executes such

that the system resources can be effectively and efficiently utilized. This problem,

so called partitioning problem, is an NP-hard problem in nature [106]. Second,

by taking the timing constraints of real-time applications into consideration, the

problem of multi-core real-time computing becomes even more complicated. For

example, with consideration of the dependency among different applications, the

benefit coming from parallel executions of a multi-core system could be seriously

suffered from guaranteeing real-time constraints [10]. There are critical challenges

in design of real-time multi-core scheduling.

Secondly, the extremely high power consumption and excessive heat dissipation

have also become the critical challenges in design of multi-core systems [112]. As

shown in Figure 1.51, more than 100 billion transistors are being integrated in a

300mm2 die today, which results in a power consumption up to 300 watts. These

1Figure 1.5 is plotted based on the data reported in [24].

7

Figure 1.5: The trend of power consumption and transistor count for a 300mm2

die [24]

amount of power consumption has posed significant challenges in both portable

devices and power-rich systems. The soaring power consumption makes the heat

dissipation and the temperature control even more challenging, e.g. the severity of

the thermal problem has been highlighted by Intel’s acknowledgement that it has

hit a “thermal wall” [91].

Moreover, techniques and analysis methods for single-core platforms cannot be

readily applicable for multi-core platforms. The traditional solutions on power,

thermal and energy problems associated with single-core platforms could become

ineffective without taking the multi-core characteristics (e.g. heat transform, hot

spot and thermal gradient) into consideration [97]. Therefore, in order to take the

opportunities and advantages of multi-core technology, it is necessary and important

to appropriately consider and address the new emerging challenges.

From the above discussion, we can see that the design of multi-core systems faces

new opportunities as well as various challenges. In what follows, we describe our

research problem in this dissertation, and briefly summarize our contributions.

8

1.3 The Research Problem And Our Contributions

We are interested in the research problem on how to develop advanced techniques

for real-time embedded systems on multi-core platforms. Researchers and engineers

from both academia and industry have been working on this problem at differ-

ent design abstraction levels, i.e. from gate level, circuit level, architecture level,

to system level. Our research focuses on attacking this problem from the system

level. Specifically, we are interested in developing real-time scheduling techniques

and analysis methods to guarantee timing and other design constraints, and in the

meantime, to optimize design criteria such as system utilization, peak temperature,

power and energy consumption. Toward this problem, we have made the following

contributions:

1. First, we studied the classical problem of partitioned scheduling of real-time

periodic tasks on multi-core platforms, with each task executed on a dedi-

cated core. By taking the relationship among task periods into consideration,

we developed several novel partitioned scheduling approaches for scheduling

fixed-priority periodic real-time tasks on multi-core systems. Our proposed

algorithms can greatly improve the schedulability of real-time tasks, and thus

improve the system utilization. Compared with the related work, we found

that our proposed algorithms could achieve an improvement at least of 14.5%

in terms of task set schedulability under high system utilizations.

2. Then, we targeted at the problem of semi-partitioned multi-core real-time

scheduling, in which most of tasks were executed on dedicated cores, while

some tasks could be split and executed on different cores. We developed two

new semi-partitioned scheduling strategies for hard periodic real-time tasks on

multi-core systems. We also developed a deterministic worst-case utilization

9

bound for the proposed approaches. Simulation studies showed that our ap-

proaches could outperform the related work by 15% from the perspective of

task set schedulability when systems were heavy loaded.

3. Next, we incorporated the temperature constraint into the problem of multi-

core real-time scheduling. We developed a closed-form solution for temper-

ature calculation for periodic speed scheduling on multi-core platforms. We

further developed an effective method that can quickly obtain the maximum

temperature for a periodic multi-core schedule. To our best knowledge, this

is the first work that analytically solves the temperature calculation and peak

temperature detection on multi-core platforms with consideration of a linear

dependency model of leakage and temperature. Based on our proposed tech-

niques, we proposed three feasibility testing approaches for multi-core schedul-

ing with maximum temperature constraint.

4. Finally, we studied the energy estimation problem in multi-core scheduling.

We developed a fast and accurate solution of energy calculation on multi-core

systems with consideration of the interdependency of leakage, temperature

and supply voltage. Our solution provides a fundamental for design of energy

aware multi-core systems, and can be directly used for energy efficient multi-

core scheduling. The experimental results showed that our proposed method

can achieve an average speedup of 15X over the existing related work, with a

relative error no more than 1.5%.

1.4 Structure Of The Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we introduce some

pertinent background to this dissertation, and discuss the existing work closely re-

10

lated to our research. In Chapter 3, we study the problem of partitioned multi-core

scheduling for periodic real-time tasks, and present a new partitioned scheduling

strategy by exploring the “harmonic“ characteristic. In Chapter 4, we focus our

research in semi-partitioned multi-core scheduling, and propose an efficient schedul-

ing algorithm with bounded worst-case system utilization and limited count of split

tasks. In Chapter 5, we study the feasibility checking problem for temperature-

constrained multi-core scheduling, and propose three feasibility checking conditions

for multi-core scheduling with maximum temperature constraint. In Chapter 6, we

present an energy estimation approach for multi-core systems with consideration of

the interdependency between leakage power and temperature. Finally, in Chapter

7, we conclude this dissertation and discuss the possible future work.

11

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents the pertinent research background and related work. We

first introduce several important concepts related to real-time scheduling. Then,

we introduce some preliminaries for multi-core scheduling. Next, we discuss the

research problems and related work on power/thermal aware multi-core scheduling.

Finally, we summarize the contents of this chapter.

2.1 Real-Time Scheduling

In a real-time system, the correctness of an execution result depends not only on

the correctness of the logical computational results, but also on the time instant at

which that result is finished. We can describe a real-time system as a system that

has deadlines. The violations of timing constraints in real-time systems degrade

the quality of service, and in some cases result in catastrophical accidents [83, 106].

To guarantee the timing constraints, one effective way is to design an appropriate

scheduling algorithm.

In general, the real-time scheduling studies the problem of how to determine

when and where a given set of tasks need to be executed such that all real-time

constraints (e.g. deadlines) can be guaranteed, and meanwhile some other design

metrics (e.g. temperature, power/energy consumption and reliability) can be opti-

mized.

There are different ways to categorize the real-time scheduling. From the per-

spective of job characteristics , real-time scheduling can be categorized into hard/soft [28,

69], periodic/non-periodic [30, 49], etc. From the perspective of scheduling mecha-

nisms, real-time scheduling can be categorized into static/dynamic [68, 76], priority-

driven/non-priority-driven [98, 27], preemptive/non-preemptive [45, 35], etc. From

12

the perspective of underlying architectures, real-time scheduling can be catego-

rized into single-core/multi-core [81, 38]. From the perspective of design objectives,

real-time scheduling can be categorized into single-objective/multiple-objective (e.g.

timing constraints only or more other design objectives such as power/energy, ther-

mal, reliability) [71, 37]. In what follows, we discuss the details of the above cate-

gorizations to clearly understand the behaviors of real-time scheduling.

Hard Real-Time vs. Soft Real-Time: A hard real-time scheduling requires de-

terministic guarantee to meet all deadlines for every instance, and the failure to meet

even a single deadline can be catastrophic. Examples of hard real-time scheduling

can be found in aviation control system and automobile’s ABS. In contrast, a soft

real-time scheduling allows for a statistical bound on the number of deadline misses,

which are neither desirable nor fatal. Examples of soft real-time scheduling can be

found in multimedia player systems, in which occasionally missing of deadlines does

not effect the normal operations of the system, however, the quality of service may

degrade.

Periodic vs. Non-Periodic: In a periodic scheduling, jobs/instances coming from

the same task are released periodically with a minimum length of inter-arrival time

between any two consecutive jobs. In other words, tasks are invoked at regular in-

tervals following a determinate pattern of time intervals. For example, in air traffic

control(ATC) system, the status of each aircraft is monitored using active radars.

These radars check the status periodically and update the ATC controller [83].

In an aperiodic scheduling, each task is modeled as a sequence of jobs with un-

known/indeterminate release time, thus all tasks are invoked in irregular pattern

and the inter-arrival time between consecutive jobs in such a task may vary widely.

For instance, in a setting of radar surveillance system, the system should be respon-

sive to operator’s commands but not on the expense of task with hard deadline.

13

Static vs. Dynamic: Static scheduling determines the priorities of tasks only

based on the off-line available information. In other words, priorities of tasks are

assigned before compile time and remain unchanged throughout the execution [81],

e.g. rate monotonic scheduling (RMS). Dynamic scheduling makes scheduling deci-

sions based on the run-time information, thus the priority of each job/task becomes

known to the scheduler only after that job is released during on-line execution, e.g.

earliest deadline first (EDF).

Priority-Driven vs. Non-Priority-Driven: In priority driven real-time schedul-

ing, at any scheduling decision time instant, the jobs with the highest priorities are

scheduled and executed on the available processors. Other commonly used names

for this approach are greedy scheduling, list scheduling and work-conserving schedul-

ing [83]. Some examples of priority-driven scheduling include EDF, RMS [81], etc.

On the other hand, in non-priority driven scheduling, decisions are made based on,

instead of priority criteria, some other criteria or policy (e.g. the round-robin policy)

to determines if a task should start executing or not [113].

Preemptive vs. Non-Preemptive: If the execution of lower priority task is

stopped or preempt for a higher priority task then the scheduling scheme is called

as preemptive scheduling and otherwise non-preemptive scheduling [12, 27].

Single-Core vs. Multi-Core: Based on type of underlying architectures, real-

time scheduling can be categorized into single-core scheduling [81] and multi-core

scheduling [106]. One major difference of multi-core over single-core scheduling is

that, in multi-core scheduling, we need to decide not only when but also where a

task should be executed. Multi-core scheduling, known as a NP-hard problem [106],

is more complicated compared with single-core scheduling.

Timing-Constrained vs. Multiple-Constrained: The classical timing-constrained

real-time scheduling exclusively focus on timing constraints, while the multiple-

14

constrained real-time scheduling incorporates other design objectives such as power/energy[56],

thermal [82] and reliability [49].

Two single-core priority-based preemptive scheduling policies, i.e. Earliest Dead-

line First(EDF) and Rate Monotonic Scheduling (RMS), are of special interest and

great importance [81]. These two scheduling policies play a fundamental role in

design of real-time scheduling.

Earliest Deadline First (EDF): The EDF is a preemptive, dynamic-priority

scheduling algorithm. Task’s priorities are assigned dynamically during run time.

The task with the least time remaining before its deadline acquires the highest

priority and thus executed before others. In fact, it is proved in [81] that if a task

set is schedulable, then EDF algorithm can schedule it. Due to its 100% utilization

bound, EDF becomes the underlying scheduling algorithm for a number of other

scheduling techniques with different design objective, such as the “low power EDF”

algorithm proposed in [119].

Rate Monotonic Scheduling (RMS): Under the fixed-priority RMS policy,

tasks’ priorities are assigned based on their periods. It is shown by Liu and Layland

[81] that RMS is the optimal among all fixed-priority scheduling policies. They have

proved that a feasible schedule can be found by using RMS if the total utilization

is less than or equal to ln(2) (69.3%).

Both EDF and RMS have been used extensively in the research domain as the

underlying scheduling policy for other design metrics optimization like energy min-

imization ([98, 133, 99]), schedulability/feasibility analysis([4, 97]), etc.

15

2.2 Multi-Core Scheduling

Multi-core architecture has been widely accepted as the most important technology

in the future industrial market. By providing multiple processing cores on a sin-

gle chip, multi-core systems, compared with the traditional single-core systems, can

significantly increase the computing performance while relaxing the power require-

ment. Most of the major chip manufactures have already launched 16-core chips into

the market, i.e. AMD OpteronTM 6300 Series [7]. It is not surprising that in the

coming future, hundreds or even thousands of cores will be integrated into a single

chip [121]. The quickly emerging trend towards multi-core platforms brings urgent

needs for effective and efficient techniques for the design of multi-core scheduling.

Multi-core scheduling can be categorized into different classes based on different

criteria, i.e. homogeneous/heterogenous (from the perspective of underlying ar-

chitectures) [40, 105], global/partitioned/semi-partitioned (from the perspective of

scheduling mechanisms) [9, 10, 39], timing-constrained/multiple-constrained (from

the perspective of design constraints) [8, 115], etc.

Homogeneous vs. Heterogeneous: On a homogeneous platform, all processing

cores are identical, hence the rate of execution of all tasks is the same among all

cores. Thus, the scheduling strategy only needs to concern the execution time of each

task. While on a heterogeneous platform, since the processing cores are different,

hence the rate of execution of a task depends on both the core and the task. Indeed,

not all tasks may be able to execute on all processors. Thus, the design of multi-core

scheduling for heterogenous platforms becomes more complicated.

Global vs. Partitioned vs. Semi-Partitioned: In the global scheduling ap-

proach, all jobs first enter a global queue, and thus each task can be potentially

executed on any processor [9, 40]. In the partitioned scheduling approach, each

16

real-time task is assigned to a dedicated processor. All instances from the same task

will be executed solely on that particular processor [10, 38]. The semi-partitioned

scheduling approach is a combination of previous two approaches, i.e. some tasks

are assigned to a dedicated processor, while rest can migrate among available re-

sources [69, 72, 43, 39].

Timing-Constrained vs. Multiple-Constrained: Traditional approaches focus

exclusively on timing constraints [10, 8, 34, 39], and many recent work takes other

design objectives (e.g. power/energy, thermal and reliability) into considerations,

which makes the scheduling problem more complicated [61, 51, 58, 57, 49].

One of the most common and useful performance metrics used to compare the

effectiveness of different multi-core scheduling algorithms and schedulability analysis

is the utilization bound. The utilization bound for a scheduling algorithm is defined

as the minimum utilization of any taskset that is only just schedulable according to

that algorithm. The best known utilization bound for either global or partitioned

schedule under RMS is no more than 50% [10, 13, 9], while the utilization bound can

reach up to 69.3% for semi-partitioned scheduling under RMS [43, 44, 39]. There are

also other metrics to evaluate performances for different multi-core scheduling algo-

rithms, i.e. approximation ratio (the ratio of the number of required processors of a

multi-core scheduling algorithm over that of the optimal algorithm), and empirical

system schedulability (the percentage of tasksets that are found to be schedulable).

2.3 Power/Thermal Aware Multi-Core Scheduling

The continuously increased power consumption has resulted in a soaring chip tem-

perature. Moreover, as design paradigm shifts to deep sub-micron domain, high

chip temperature leads to a substantial increase in leakage power consumption [60],

17

Figure 2.1: Power v.s. Temperature [55]: Intel Core i5-2500K (32nm Sandy Bridge),
voltage 1.26V, frequency at 1.6 GHz and 2.4 GHz, respectively.

which in turn further deteriorates the power situation due to the interdependency

between temperature and leakage power. For instance, with Intel core i5-2500K

(32nm Sandy Bridge), the leakage power roughly grows up to 2X from 55oC (13W)

to 105oC (26W), see Figure 2.1. Further more, the soaring chip temperature ad-

versely impacts the performance, reliability, and packaging/cooling costs [97]. As a

result, power and thermal issues have become critical and significant for advanced

multi-core system design. In this section, we introduce some necessary backgrounds

of multi-core scheduling with power and thermal awareness, respectively.

2.3.1 Power Aware Multi-Core Scheduling

Catalyzed by continuous transistor scaling, hundred of billions of transistors have

been integrated on a single chip [60]. One of the immediate consequence caused by

the tremendous increase of transistor density is the soaring power consumption [18],

which further results in severe challenges in energy and temperature[57, 97]. Today,

18

power has become a critical and challenging design objective in front of system

designers. In this subsection, we first describe our research problem on power aware

multi-core scheduling, next introduce the general power model, and then discuss the

related work.

Research Problem of Power Aware Scheduling

Power aware scheduling studies the problem on how to apply the dynamic voltage

and frequency scaling (DVFS) mechanism to adjust the clock frequency and supply

voltage of a processor to execute a set of tasks such that the time constraints (e.g.

deadlines) can be guaranteed and meanwhile the power and/or energy consumption

can be optimized.

Power Consumption

The overall power consumption of an IC chip can be divided into two categories:

dynamic power and leakage power [102]. The dynamic power consumption is as-

sociated with the switching of the logic value of a gate, and thus is essential to

performing useful logic operation by charging and discharging the circuit load ca-

pacitance. In general, the dynamic power is modeled as function in proportion to

working frequency and square of supply voltage [102]. The leakage power, also known

as static power, is consumed due to the leakage mechanism of a CMOS transistor

and it does not contribute to any useful computation. Traditionally, the leakage

power is modeled as a constant, and is dominated by the dynamic power. How-

ever, as the technology entering the deep sub-micron region, leakage power becomes

more significant in the total amount of power consumption, and has distinct inter-

dependency with temperature (i.e. leakage power can be approximated as a linear

function of temperature and voltage [97]). This signifies the need for incorporating

leakage/temperature dependency into the design and analysis of power efficiency

systems.

19

Related Work On Power Aware Scheduling

Early research work on the problem of power aware multi-core scheduling is mainly

focused on minimizing the dynamic power and its corresponding energy consumption

(since dynamic power plays a dominant role over leakage power in the overall power

consumption). By taking advantage of the convex relationship between the dynamic

power and supply voltage, a number of methods (e.g. [76, 119]) were proposed to

lower down the processor speed (i.e. supply voltage and working frequency) such

that the power and/or energy consumption can be reduced meanwhile all tasks can

be finished just before their “deadlines”.

As the leakage power becomes more prominent, it is no longer optimal in the

power/energy reduction by only considering the characteristics regarding the dy-

namic consumption. This is because the saved dynamic energy might be over-

weighed by the increased leakage part. Moreover, by taking leakage/temperature

dependency into consideration, the power aware multi-core scheduling problem be-

comes even more complicated.

A great number of literature are published on solving the power aware multi-

core scheduling problems with consideration of leakage/power dependency [50, 52,

85, 129, 29, 125, 123, 90, 58, 126, 30, 118]. Based on different criteria, these existing

work can be classified into different categories. For example, based on the target

platforms, we have techniques proposed for 2-dimension multi-core platforms [50,

52], or 3-dimension multi-core platforms [85, 129]. Based on the task models, we have

tasks with stochastic [84] or deterministic workload [29, 125]. Based on the timing

requirement, we have soft real-time [123] or hard real-time scheduling [30, 118].

Based on the stages during which the scheduling decisions are made, we also have

on-line approaches [123, 90] and off-line approaches [58, 126].

20

2.3.2 Thermal Aware Multi-Core Scheduling

After introducing the problem of power aware scheduling in the above section, now

we introduce the problem of thermal aware multi-core scheduling. The aggressive

semiconductor technology scaling has pushed the chip power density doubled every

two to three years [92, 109], which immediately results in an exponential increasing

in heat density. As introduced in Chapter 1, high temperature can degrade the

performance of systems in various ways. Therefore, there is a great need of advanced

techniques for thermal/temperature aware design of multi-core systems. In this

subsection, we first introduce our research problem on thermal aware multi-core

scheduling, then describe the thermal impact, and later discuss the related work.

Research Problem of Thermal Aware Scheduling

Thermal aware scheduling studies the scheduling problem in the system level with

thermal/temperature awareness. Specifically, it studies the problem of how to de-

velop effective and efficient scheduling algorithms such that the temperature require-

ment as well as the real-time requirement can be met, and at the same time other

design metrics (i.e. peak temperature, throughput, energy consumption, etc.) can

be optimized.

Thermal Modeling of Multi-Core Platforms

From the circuit-level aspect, the multi-core thermal model can be represented

by an equivalent RC thermal circuit [105, 116]. Figure 2.2 shows an example of

such thermal model on a dual-core platform. Basically, there are four abstraction

layers in this RC-thermal model, namely die layer, thermal interface material(TIM)

layer, heat spreader layer, and heat sink layer. Thermal nodes on the die layer are

called active nodes, since they represent the actual processing cores of the system

and consume non-zero power. In contrast, thermal nodes on the thermal package

21

Figure 2.2: Illustration for RC thermal circuit on a dual-core system [116]

(i.e. three cooling layers) are called inactive nodes, since their power dissipation is

assumed to be zero regardless of the system processing modes.

Based on the circuit-level RC thermal model, the thermal phenomena of the

entire chip can be formulated as

C
dT(t)

dt
+ GT(t) = P(t) (2.1)

where C, G, T and P are thermal capacitance matrix, thermal conductance matrix,

temperature vector and power vector, respectively. From the above equation, we

can see that the higher the temperature is, the larger the power will be. Moreover,

as mentioned in previous subsection, the power P, which is comprised of dynamic

power and leakage power, also depends on temperature. Thus, we see there is an

inter-dependency between power and temperature.

Related Work On Thermal Aware Scheduling

An increasing number of researches have been published on peak temperature min-

imization for thermal aware multi-core scheduling [70, 40, 41, 63, 124, 16, 101].

Chantem et al. [28] proposed an MILP-based solution to minimize the peak tem-

22

perature when executing a task graph. Lars et al. [104] proposed an approach

to estimate the worst-case temperature for a core by searching for the worst case

task/workload allocations among different cores. Ukhov et al. [116] presented a

method to estimate the peak temperature by keeping track of temperature dynam-

ics of a multi-core system until it reached the system steady state. Kumar et. al. [70]

proposed a stop-n-go approach to reduce the peak temperature for task with data

dependencies. They distributed the slack time between jobs such that the peak

temperature could be minimized and there was no make-span violation.

There are many researchers studied the thermal aware multi-core scheduling

from the aspect of throughput maximization [29, 58, 82, 52]. Chantem et al. [29]

proposed a method to run real-time tasks by frequently switching between the two

speeds which are neighboring to an ideal constant speed whose stable temperature

was equal to the given peak temperature. Fisher et al. [40] presented a method to

minimize the peak temperature in a homogeneous multi-core system by deriving an

ideally preferred speed for each core in a global task scheduling environment. Huang

et al. [58] proposed two approaches to maximize the throughput for a periodic real-

time system under the given peak temperature constraint, one for processor with

simple active and sleep mode and the other for more complicated processors with

DVFS capabilities. Hanumaiah et al. [53] also focused on the problem of throughput

maximization, and they addressed task-to-core allocation over migration intervals

and voltage speed scaling within migration intervals as a separate problem and

translated task-to-core allocation into a MILP formulation.

Many researchers have focused on the energy minimization problem for multi-

core scheduling with maximal temperature constraint [57, 118, 19, 51, 86]. Huang

et al. [57] derived a closed-form energy calculation equation based on which they

further proposed an energy minimization scheduling method for periodic task sets.

23

In [118], Yang et al. presented a procedure to find the optimal pattern of sched-

ule with the minimum energy consumption at the steady state. Hanumaiah et

al. [51] formulated energy minimization as a quasi-concave optimization problem

and employed DVFS, task migration and cooling methods to optimize the objective

function on a multi-processor system. Liu et.al [86] developed a thermal-constrained

energy optimization procedure to minimize system energy consumption under peak

temperature constraint.

Recently, significant amount of work targeted on 3D architectures for thermal

aware multi-core scheduling has been published [33, 129, 78, 85, 90, 115]. In [78], the

authors proposed a scheduling algorithm to reduce peak temperature in a 3D multi-

core system by dynamically rotating tasks among different cores. Liu et al. [85]

proposed a 3D thermal aware job allocation technique to reduce the peak tempera-

ture, through which hot jobs were always assigned to the cores near heat sink such

that the heat could be quickly dissipated. Zhu et al. [130] presented a run-time

thermal management technique that exploited the heterogeneity of processing cores

in a 3D system. Coskun et al. [33] proposed an adaptive approach to balance the

temperature among all cores in a 3D architecture. They adopted a second order

polynomial temperature/leakage dependency model and developed a thermal aware

scheduling algorithm that made the partitioning decision based on a thermal history

of each core and that of its neighboring cores.

2.4 Summary

In this chapter, we discussed the essential background of our research and intro-

duced some closely related work. We first presented a general introduction of the

basic concepts and critical techniques in real-time scheduling. Particularly, we in-

24

troduced several different categorizations of real-time scheduling, and two impor-

tant policies (e.g. RMS and EDF) in single-core scheduling. Next, we presented

some preliminaries for multi-core scheduling, including categorizations from differ-

ent perspectives, and several metrics used for evaluate the performance of multi-core

scheduling. Then we discussed the multi-core scheduling problems with considera-

tion of power/thermal awareness. We respectively introduced the research problems

regarding to power and thermal, and discussed the related work.

In this dissertation, our goal is to develop effective scheduling methods for multi-

core real-time systems to satisfy timing and other constraints, and also to optimize

various objectives (e.g. system utilization, power/energy, temperature and relia-

bility). In the flowing four chapters, i.e. Chapters 3, 4, 5 and 6, we present our

contributions. Then we conclude this dissertation in Chapter 7.

25

CHAPTER 3

PARTITIONED MULTI-CORE SCHEDULING BY EXPLORING

HARMONIC RELATIONSHIP AMONG REAL-TIME PERIODIC

TASKS

We first present our research on classical real-time multi-core scheduling with

timing as the only constraint. Specifically, in this chapter, we focus on partitioned

scheduling for periodic real-time tasks on multi-core platforms under the Rate Mono-

tonic Scheduling (RMS) policy. One common approach for partitioned multi-core

scheduling problem is to transform this problem into a traditional bin-packing prob-

lem, with the utilization of a task being the “size” of the object and the utilization

bound of a processor being the “capacity” of the bin. However, this approach ig-

nores the fact that some implicit relations among tasks may significantly affect the

feasibility of the tasks allocated to each local processor. To improve the system

schedulability, we seek to exploit the fact that the utilization bound of a task set

increases as task periods are closer to harmonic on single-core platforms. The chal-

lenge here, however, is how to take advantage of this fact on multi-core processor

platforms while guarantee the schedulability of the real-time tasks.

3.1 Related Work

In partitioned multi-core scheduling problem, the schedulability for tasks allocated

on each processor can be determined based on feasibility conditions on single proces-

sors. To search for the optimal task partition for multiple processors is essentially a

design space exploration problem, with complexity increasing rapidly with the size

of the problem (e.g. the numbers of tasks or processors). How to quickly and accu-

rately evaluate the schedulability of a design alternative (i.e. task partition) is key to

the success of the partitioned multi-core scheduling problem. As a result, while there

26

exists exact timing analysis method for feasibility checking for tasks on a single core

platform ([81, 71, 73]), they are not commonly for partitioned multi-core scheduling

problem due to their large computational complexity. In stead, many other timing

efficient feasibility checking methods, such as the utilization-bound based feasibility

checking methods, are commonly used in the search for task partitions for multi-core

scheduling problem.

3.1.1 Different Utilization Bounds For Single-core Systems

A utilization bound f(Γ) for a task set Γ is a function of the parameters of Γ, and

can be used to determine the schedulability of Γ under certain specific scheduling

policy (e.g. RMS). By applying the parameters of Γ into f(Γ), all tasks in Γ can be

guaranteed to meet their deadlines if the task set utilization (denoted as U(Γ)) is

no more than that parametric utilization bound, i.e. U(Γ) ≤ f(Γ). Note that U(Γ)

can be calculated by summing up the task utilizations of all tasks in U(Γ), where a

task utilization is the ratio of its execution time over its period.

For single-core systems, there are several utilization bounds proposed under RMS

policy [26, 81, 71, 73, 48].

• LLBound [81]: The LLBound is a function with respect to the number of

tasks, and is formulated as

LLBound(Γ) = N(21/N − 1), (3.1)

where N is the number of tasks in the task set Γ. When N goes to infinity, the

LLBound achieves its worst-case as 69%.

• KBound [71]: The KBound has a similar form as the LLBound, and is formu-

lated as

KBound(Γ) = K(21/K − 1), (3.2)

27

where K, instead of being the number of all tasks as that used by LLBound, is

the minimum number of pseudo tasks (a pseudo task is a non-empty harmonic

task set in which any two tasks are period dividable).

• RBound [73]: The RBound is proposed for tasks with special characteristics,

i.e. the ratio between the maximum and minimum periods needs to be less

than 2. The RBound takes not only the number of tasks but also the relation-

ship among periods into consideration.

RBound(Γ) = (N − 1)(r1/N−1 − 1) + 2/r − 1 (3.3)

where N is the number of tasks in the task set, and r is the ratio between the

maximum and minimum periods and needs to satisfy 1 ≤ r < 2.

• CBound [48]: The CBound is the utilization bound proposed for a special type

of task sets, called “harmonic” task sets1, and can be formulated as.

CBound(Γ) = 1 (3.4)

where Γ is a harmonic task set.

Among all four utilization bounds shown in the above, it has been proved that for

RMS-based single-core scheduling, the RBound and CBound higher than the other

two (i.e. the LLBound and the KBound) [73, 48]. However, these two utilization

bounds (RBound or CBound) have critical limitations. The RBound can only be

applied when a given task set satisfies the period constraint (i.e. 1 ≤ r < 2), while

the CBound can only be used directly to harmonic task sets. Hence, in order to use

the RBound or CBound for checking the schedulability of an arbitrary task set, we

need to first transform the task set appropriately such that it satisfies the required

condition.

1A harmonic task set is a task set in which any two tasks are period dividable.

28

For RBound, there are a few methods proposed to transform a task set to satisfy

the condition of 1 ≤ r < 2, such as [73, 66]. In particular, Lauzac et al. [73] proposed

a task set scaling method by scaling all tasks with respect to the maximum period.

Specifically, given a task set Γ, ∀τi ∈ Γ, the period as well as the execution time of

τi was scaled by 
C ′i = Ci · 2blog Tmax

Ti
c

T ′i = Ti · 2blog Tmax
Ti
c

(3.5)

where Tmax represents the maximum period among all tasks. Their method scaled

all task periods with respect to, but no larger than Tmax. They formally proved that

as long as the scaled task set was feasible then the original task set was also feasible.

Kandhalu et al. [66] presented another method by scaling the task set with

respect to the minimum period. Specifically, given a task set Γ, ∀τi ∈ Γ, the period

and the execution time of τi was scaled by
C ′i = Ci/b Ti

Tmin
c

T ′i = Ti/b Ti
Tmin
c

(3.6)

where Tmin is the minimum period among all tasks. This method scaled all task

periods with respect to, but no smaller than Tmin. However, this approach cannot

always guarantee the schedulability of the original task set once the scaled task set

is schedulable. For example, consider a task set Γ consisting of four tasks with

execution time and periods as {(3, 24), (32, 100), (40, 135)} and (15, 140). According

to the scaling method introduced in [66], we can transform the task set to a new

task set Γ′ as {(3, 24), (8, 25), (8, 27), (3, 28)}. It is not difficult to verify that the

new task set Γ′ is schedulable while the original task set Γ is not schedulable.

For CBound, there are also a few methods proposed to transform a task set to

satisfy the harmonic condition. Han et al. [47, 48] proposed two methods, i.e. Sr

29

and DCT, to transform a task set into a harmonic one. Since both methods result

in the same harmonic task set, we only introduce the DCT method (which has a

complexity equal to N2) as below:

• Sort Γ by T with non-increasing order.

• For each τi ∈ Γ, transform Γ to Γ′i by

T ′j =


T ′j+1/(bT ′j+1/Tjc), ifj < i

Tj, ifj = i

T ′j−1 · bTj/T ′j−1c, ifj > i

(3.7)

• Find the optimal primary harmonic task Γ′ that minimizes the total task

set utilization among all Γi where i = 1, 2, ..., N . In other word, U(Γ′) =

minNi=1 U(Γ′i).

The RBound and CBound indicate that on a single-core processor, the system

utilization as well as the task set schedulability, can be greatly improved if the

relationship between task periods can be appropriately exploited.

Existing work (i.e. [73, 66, 47, 48]) has shown that, with appropriate task trans-

formation, using RBound and CBound can significantly improve the schedulability

checking accuracy.

3.1.2 Partitioned Scheduling

Partitioned scheduling is originally derived based on the traditional bin-packing

technique [106]. By mapping the utilization of a task to the “size” of the object and

the utilization bound of a processor to the “capacity” of the bin, people can directly

apply the common bin-packing strategies, i.e. First-Fit (FF), Best-Fit (BF) and

30

Worst-Fit (WF), to deal with the partitioned multi-core problem. Coffman et al. [31]

concluded the common approaches based on the traditional bin-packing methods.

For example, the FF approach assigns a task immediately to the first processor that

can provide enough capacity for it, while the BF (WF) approach always assigns

a task to the processor with the largest (smallest) total utilization that still can

accommodate that task.

There is several work proposed to study the problem of partitioned multi-core

scheduling for fixed-priority periodic real-time tasks [36, 26, 10, 34, 14, 38]. Burchard

et al. [26] evaluated the partitioned multi-core scheduling under RMS policy by

exploiting the traditional bin-packing heuristics, such as FF, BF and WF, with

a decreasing order of task utilizations. Andersson et al. [10] developed a multi-

core scheduling algorithm for fixed-priority periodic tasks, and proved that their

proposed algorithm could guarantee the schedulability of any task set with system

utilization no more than 1/3. They also showed that the utilization bound of fixed-

priority multi-core scheduling (for both partitioned and global scheduling) was no

more than 50% [10, 13]. Lopez et al. [87, 88] developed more accurate but complex

utilization bounds for multi-core scheduling under RMS by combining the number of

processors, the number of tasks and the maximum task utilization into consideration.

Later, Darera et al. [34] developed a specific utilization bound for partitioned multi-

core scheduling under the case of a greedy RMS-based algorithm. Andersson et

al. [14] introduced a new performance metric, named speed competitive ratio, to

measure the performance of partitioned multi-core scheduling under RMS, and based

on that new metric, they developed an algorithm with guaranteed schedulability

under deterministic processor speedup. Most recently, Fan et al. [38] proposed a

partitioned multi-core scheduling technique for periodic real-time tasks under RMS

policy. They toke the characteristic of the relationship between task periods into

31

the decision of task allocation and thus improved the system resource utilization.

In what follows, we first introduce some preliminary concepts for our work.

3.2 Preliminary

The multi-core platform consists of M identical processors, M ≥ 2, denoted as

P = {P1, P2, ..., PM}. The task model considered in this work consists of N sporadic

tasks, denoted as Γ = {τ1, τ2, ..., τN}. Each task τi, where 1 ≤ i ≤ N , is characterized

by a tuple (Ci, Ti). Ci is the worst case execution time of τi, and Ti is the minimum

inter-arrival time between any two consecutive jobs of τi. For the sake of simplicity,

we also refer to Ti as the period of τi. In this work, we assume that Γ is sorted with

non-decreasing period order, i.e. for any two tasks τi, τj ∈ Γ, Ti ≤ Tj if i < j. We

also use Γk to denote the task set on processor Pk.

To ease our presentation, we formally define several concepts as follows.

The task utilization of τi is denoted as ui where

ui =
Ci
Ti

(3.8)

The task set utilization of Γ is denoted as U(Γ) where

U(Γ) =
∑
τi∈Γ

ui (3.9)

Moreover, let U(Γk) represent the total utilization of all tasks assigned to Pk.

The system utilization of a multi-core platform consisting of a task set Γ and M

identical processors is denoted as UM(Γ), where

UM(Γ) =
U(Γ)

M
(3.10)

The RBound [73], as what we have introduced in Section 3.1.1, can be used as a

feasibility test method for scheduling fixed-priority periodic tasks on single-core sys-

tems. We formally present the RBound feasibility test approach with Theorem 3.2.1.

32

Theorem 3.2.1. [73] Given a task set Γ, let Γ′ be the task set by scaling all tasks

in Γ (i.e. ∀τi ∈ Γ) through 
C ′i = Ci · 2blog Tmax

Ti
c

T ′i = Ti · 2blog Tmax
Ti
c

(3.11)

where Tmax = max∀τi∈Γ Ti. Then Γ is schedulable on a single-core system under

RMS if

U(Γ) ≤ RBound(Γ′) (3.12)

The RBound(∗) is given by equation (3.4).

From Theorem 3.2.1, we can see that the RBound feasibility test first scales all

tasks in Γ with respect to the maximum period, and then predicts the schedulability

of Γ by comparing its utilization with the value of RBound under Γ′. In what follows,

we present a new task set transformation method, based on which, we then develop

a novel partitioned scheduling algorithm.

CBound feasibility test

The CBound [48] is another efficient utilization bound to test the feasibility of

periodic tasks by taking harmonic characteristic into consideration. The CBound

feasibility test method is formally concluded in Theorem 3.5.3.

Theorem 3.2.2. Given a task set Γ, let Γ′ be a harmonic task set transformed from

Γ by DCT method. Then Γ is schedulable on a single-core system under RMS if

U(Γ′) ≤ 1 (3.13)

Theorem 3.2.2 shows that by transforming a task set Γ into a harmonic task set

Γ′, we can easily predict the feasibility of Γ by check whether the utilization of Γ′ is

less than or equal to “1”. Note that the CBound feasibility test is different from the

33

Table 3.1: A task set with six real-time periodic tasks

τi Ci Ti ui

1 1 4 0.25
2 2 8 0.25
3 3 10 0.30
4 8 16 0.50
5 8 20 0.40
6 12 40 0.30

(a) Processor 1 (b) Processor 2

Figure 3.1: Assign tasks in Table 3.1 based on ideal harmonic relationship, and all
tasks can be scheduled successfully on two processors.

RBound feasibility test in terms of the way of task set transformation, i.e. CBound

test only scales the periods while RBound test scales both periods and execution

times.

3.3 Motivational Examples

Before presenting our approach in detail, we first use two examples to motivate our

research. In the first example, we illustrate that exploiting the harmonic relationship

can significantly improve the schedulability in multi-core scheduling. In the second

example, we demonstrate that we can explore this property for tasks not strictly

harmonic.

Consider a multi-core platform with two processors, i.e. M = 2, and a task set

consisting of six tasks with parameters shown in Table 3.1. When scheduling those

six tasks on two processors, it is not difficult to verify that none of the existing

34

Table 3.2: A task set with four real-time periodic tasks

τi Ci Ti ui

1 4.8 10 0.48
2 5.2 11 0.47
3 5.8 15 0.39
4 9.4 19 0.49

τ4

5.8τ3
9.2

0 15 30

5.8

τ1 4.8

0 10 20
τ2 5.2 5.2

4.8

0.2

deadline miss

τ3

5.2τ2
5.8

0 22 30

5.2

τ1 4.8

0 10 20
τ4 5.2 4.2

4.8

5.2
5.8

11 15

(a) Processor 1

τ4

5.8τ3
9.2

0 15 30

5.8

τ1 4.8

0 10 20
τ2 5.2 5.2

4.8

0.2

deadline miss

τ3

5.2τ2
5.8

0 22 30

5.2

τ1 4.8

0 10 20
τ4 5.2 4.2

4.8

5.2
5.8

11 15

(b) Processor 2

Figure 3.2: Assign tasks in Table 3.2 based on pCOMPACTS [66], while τ4 missing
its deadline.

bin-packing heuristics (e.g. “first-fit”, “best-fit” and “worst-fit”) can successfully

schedule the tasks listed in Table 3.1.

Note that, current bin-packing based approaches allocate real-time tasks solely

based on their utilization factors and simply ignore other factors such as the task

period, which can significantly affect the schedulability of a real-time task. For

example, it is a well known fact [71, 48] that a harmonic task set, i.e. the tasks with

periods being integer multiples of each other, can have a much higher schedulability

than other non-harmonic task sets. If we take this factor into consideration and

assign τ1, τ2 and τ4 to one processor, and τ3, τ5 and τ6 to another processor, as

shown in Figure 3.1(a), the task set in Table 3.1 can be perfectly scheduled on two

processors.

Since tasks with ideal harmonic relationship have much higher feasibility on a

single-core, one intuitive idea for partitioned multi-core scheduling would therefore

be the one to group tasks with ideal harmonic relationship together and assign them

to one processor. The question is what if tasks are not exactly harmonic. We use

another example to illustrate this scenario.

35

τ4

5.8τ3
9.2

0 15 30

5.8

τ1 4.8

0 10 20
τ2 5.2 5.2

4.8

0.2

deadline miss

τ3

5.2τ2
5.8

0 22 30

5.2

τ1 4.8

0 10 20
τ4 5.2 4.2

4.8

5.2
5.8

11 15

(a) Processor 1

τ4

5.8τ3
9.2

0 15 30

5.8

τ1 4.8

0 10 20
τ2 5.2 5.2

4.8

0.2

deadline miss

τ3

5.2τ2
5.8

0 22 30

5.2

τ1 4.8

0 10 20
τ4 5.2 4.2

4.8

5.2
5.8

11 15

(b) Processor 2

Figure 3.3: Assign tasks in Table 3.2 based on closely harmonic relationship, and
all tasks can be scheduled successfully on two processors.

We consider another example to schedule a task set consisting of four tasks as

shown in Table 3.2 on two processors. Different from the first example, from Ta-

ble 3.2, we can see that none of any two tasks are strictly harmonic. Thus, we can

not directly taking the harmonic advantage by assigning tasks according to the ideal

harmonic relationship, i.e. the dividable period relationship. Once again, it is not

difficult to verify that the traditional “first-fit” and “best-fit” approaches are failed

in satisfying the timing constraints for all four tasks. Even some most recent par-

titioning approach with harmonic awareness, i.e. pCOMPACTS approach [66], can

not successfully guarantee the timing constraints in this example. pCOMPACTS

measures the harmonic relationship by the distance between periods under the con-

dition of Tmax/Tmin < 2, and thus first assigns τ1 and τ2 to the same processor and

then leaves τ3 and τ4 running on another processor. This could result in a failure of

schedule for τ4, see Figure 3.2.

However, by assigning τ1 and τ4 to one processor and τ2 and τ3 to another

processor, as shown in Figure 3.3, we can build a feasible solution for all four tasks.

As indicated by this example, although τ1 and τ4 have the largest period distance,

i.e. T4 − T1 = 19− 10 = 9, among all tasks, they looks to be more closely in terms

of harmonicity. In fact, by assigning τ1 and τ4 to one processor, that local processor

can achieve a much high system utilization up to 0.97 (0.48 + 0.49), which is very

close to the maximum ideal harmonic performance, i.e. 1.

From the above two motivational examples, we can observe that: 1) Taking

36

advantage of the harmonic relationship can utilize the system processing resource

more efficiently; 2) Exploiting the task period relationship can also improve the

system utilization, but how to quantify the harmonicity between general tasks is a

challenge. In what follows, we first present a task transformation method to improve

the RBound. We then present two partitioned scheduling algorithms by taking the

harmonic relationship among task periods into consideration.

3.4 Task Partition With An Enhanced RBound

In order to apply the RBound to test the schedulability of a task set, one key point

is to develop an effective and efficient method to transform the task set to a new one

such that the ratio of the maximum and minimum period is between 1 and 2 [73].

In addition, we need to guarantee that once the new task set is schedulable, so is

the original task set.

To transform a task set, one approach [73] is to fix Tmax and scale up the rest

task periods towards Tmax so that the maximum/minimum period ratio is between 1

and 2. Another effort [66] is to keep the Tmin unchanged and scale down task periods

such that the maximum/minimum period ratio is between 1 and 2. Unfortunately,

as explained before(see Section 3.1.1), this approach cannot guarantee the schedu-

lability of the original task set even though the new task set can be schedulable. In

this section, we introduce a new method to scale task periods based on the period

of any task in the task set, and most importantly, we guarantee that the original

task set is schedulable if the new task set is schedulable.

37

3.4.1 Task Set Scaling (TSS)

Instead of using a restricted transformation, such as scaling the entire task set only

with respect to a unique task (i.e. the task with the maximum period), we introduce

a more general and flexible task set transformation method, denoted as the TSS

method, which can scale a task set with respect to the period of an arbitrary task

in a given task set.

Algorithm 1 TSS (Γ, τk)

Require:
1) Γ: input task set, sorted with non-decreasing period order;
2) τk: the kth task in Γ, based on which the task set is scaled.

1: N = |Γ|;
2: T ′k = Zk = Tk, and C ′k = Ck;
3: // step 1: transform LOWER-priority tasks into harmonic;
4: for i = k + 1 to N Zi = Zi−1 · b Ti

Zi−1
c end for;

5: // step 2: scale all tasks with respect to τk;
6: for i = 1 to k − 1 do

7: Ri = 2
blog2

Tk
Ti
c

8: T ′i = Ti ·Ri

9: C ′i = Ci ·Ri

10: end for
11: for i = k + 1 to N do
12: Ri = Zi/Tk;
13: T ′i = Zi/Ri;
14: C ′i = Ci/Ri;
15: end for
16: return Γ′;

Algorithm 1 shows the details of our proposed Task Set Scaling (TSS) method.

We assume that the input task set Γ is sorted with non-decreasing period order, i.e.

for any two tasks τi and τj, it holds Ti ≤ Tj if i < j. TSS method transforms the

entire task set Γ into another task set Γ′ by scaling all tasks with respect to τk’s

period, i.e. Tk, where τk is an arbitrary task in Γ.

38

There are two major steps in Algorithm 1: 1) Tasks with priorities lower than τk

are transformed into harmonic tasks with their periods being integer multiples of Tk

(line 4); 2) Tasks with priorities higher than τk are scaled up (line 6-10), and tasks

with priorities lower than or equal to τk are scaled such that the new period is equal

to Tk (line 11-15). After all tasks in Γ are scaled appropriately, the corresponding

task set Γ′ is returned. In what follows, we discuss the relationship between Γ′ and

Γ in terms of schedulability.

3.4.2 Feasibility Relationship Between Γ And Γ′

In this subsection, we discuss the relationship between a transformed task set Γ′ and

its original task set Γ in terms of feasibility. we show that if Γ′ is schedulable under

RMS, then Γ must be schedulable under RMS. This is essential to the application

of our utilization bound in schedulability test.

τ5
3τ3

7

0 20 40
τ6 6 6

3 3 3
1 7 1

10 30

τ2
1τ1

2

0 8 16
τ4 3

1 1 1
2

4 12

1 31

0 2TN kTNTN (k-1)TN

tk

T1T2

Figure 3.4: Proof of Theorem 3.4.1: given a task set Γ with T1 ≤ T2... ≤ TN and
τN = (CN , TN), transform Γ into Γ∗ such that τ ∗N = (kCN , kTN) and τ ∗i = τi,∀i < N .

Theorem 3.4.1. Given a task set Γ = {τ1, τ2, ..., τN−1, τN} with T1 ≤ T2... ≤ TN ,

let Γ∗ = {τ1, τ2, ..., τN−1, τ
∗
N}, such that τ ∗N = (C∗N , T

∗
N) satisfies that

C∗N = k · CN , T ∗N = k · TN (3.14)

where k is an arbitrary positive integer. If Γ is schedulable on a single-core system

under RMS, then Γ∗ must be schedulable on a single-core system under RMS.

Proof: Since the first N − 1 tasks always have higher priorities than the N th

task in either Γ or Γ∗, their schedulability does not change. Thus, we only need

39

to prove that τ ∗N is schedulable in Γ∗. Consider the kth instance of task τN in Γ.

Since Γ is schedulable, we know that the kth instance of task τN must be able to

meet its deadline. In other words, there must exist a time point tk, where tk ∈

((k − 1) · TN , k · TN], such that (see Figure 3.4)

N−1∑
i=1

Ci · d
tk
Ti
e+N · CN ≤ tk (3.15)

According to equation (3.14), we have that C∗N = k · CN . Thus, the above can be

rewritten as
N−1∑
i=1

Ci · d
tk
Ti
e+ C∗N ≤ tk (3.16)

The above inequality means that at time point tk, τ
∗
N as well as all other higher

priority tasks can completely finish their execution requirements. Note that tk ≤

k · TN = T ∗N . Thus, τ ∗N is schedulable in Γ∗. Therefore, we can see that if Γ is

schedulable, then Γ∗ must be schedulable. 2

Next, for any given task set Γ, let Γ′ be the task set obtained by applying TSS

method given by Algorithm 1. We prove that the ratio between the maximum and

minimum periods of all tasks in Γ′ is less than 2. We formally conclude this property

in Lemma 3.4.2.

Lemma 3.4.2. Given a task set Γ sorted with non-decreasing period order and a

task τk representing the kth task in Γ, let Γ′ be the scaled task set obtained by applying

TSS method (see Algorithm 1). Then we have

1 ≤ T ′max
T ′min

< 2 (3.17)

where T ′max = max∀τ ′i∈Γ′ T
′
i and T ′min = min∀τ ′i∈Γ′ T

′
i .

Proof: We prove this property by showing that T ′k (same as Tk) in the transformed

task set Γ′ is the maximum period and the ratio between Tk and any other period

40

is less than 2. On one hand, for any task τi with priority higher than τk, i.e. i < k,

according to Algorithm 1, we have

T ′k
T ′i

=
Tk

Ti · 2blog
Tk
Ti
c

(3.18)

from which we can derive that

1 =
Tk

Ti · 2log
Tk
Ti

≤ T ′k
T ′i

<
Tk

Ti · 2(log
Tk
Ti
−1)

=
2Tk

Ti · 2log
Tk
Ti

= 2 (3.19)

On the other hand, for any task τi with priority lower than or equal to τk, i.e i > k,

according to Algorithm 1, its transformed period can be represented as

T ′i =
Zi

Zi/Tk
= Tk (3.20)

Based on the above, we can immediately get

T ′k
T ′i

=
T ′k
Tk

= 1 (3.21)

where i > k. Thus far, we show T ′k(Tk) is the maximum period in Γ′, i.e. ∀i,
T ′k
T ′i
≥= 1, and the ratio of T ′k over any other period T ′i is less than 2. Therefore,

Lemma 3.4.2 is proved. 2

Now we are ready to show that after applying TSS method, the schedulability

of the original task set Γ can be predicted by that of Γ′. We formulate this property

in Theorem 3.4.3

Theorem 3.4.3. Given a task set Γ, let Γ′ be the scaled task set obtained by applying

the TSS method with respect to any task τk in Γ. If U(Γ′) ≤ RBound(Γ′), then Γ

must be schedulable on a single-core system under RMS.

Proof: According to Lemma 3.4.2, we have that Γ′ = {τ ′1, ..., τ ′k−1, τ
′
k, τ
′
k+1, ..., τ

′
N}

satisfies that 1 ≤ r < 2, where r is the ratio between the maximum and minimum

41

periods in Γ′. Thus, if U(Γ′) ≤ RBound(Γ′), according to Theorem 3.2.1, Γ′ is

schedulable on a single-core system under RMS.

Next, for ∀i > k, according to line 11-15 in Algorithm 2, we have that

T ′i = Zi/Ri = Zi/(Zi/Tk) = Tk = T ′k (3.22)

Thus, τ ′k, τ
′
k+1, ..., τ

′
N have the same as well as the lowest priority in Γ′. Moreover,

τ ′1, ..., τ
′
k−1 are tasks with priorities higher than τ ′k before as well as after the trans-

formation. Based on Lemma 2 in work [73], if Γ′ is schedulable, we know that the

following task set Γ̂′ must be schedulable.

Γ̂′ = {τ1, ..., τk−1, τk, τ
′
k+1, ..., τ

′
N} (3.23)

Then we construct task set Γ∗ from Γ̂′ by replacing τ ′i with τ ∗i , where i = k +

1, ..., N , such that T ∗i = Zi (based on line 4 in Algorithm 2) and C∗i = C ′i · (T ∗i /T ′i).

Γ∗ = {τ1, ..., τk−1, τk, τ∗k+1, ..., τ∗N} (3.24)

For i = k, ..., N − 1, we have that T ∗i+1 is an integer multiple of T ∗i , thus according

to Theorem 3.4.1, if Γ̂′ is schedulable, Γ∗ must be schedulable.

Finally, since T ∗k+1 ≤ ... ≤ T ∗N and Tk+1 ≤ ... ≤ TN , thus by extending T ∗i to Ti,

where i = k+ 1, ..., N , the schedulability of all tasks do not change. In other words,

if Γ∗ is schedulable, the original task set Γ = {τ1, ..., τk−1, τk, τk+1, ..., τN} must be

schedulable.

In sum, after applying the TSS method on a given task set Γ, if the scaled task

set Γ′ satisfies that U(Γ′) ≤ RBound(Γ′), then Γ is schedulable on a single-core

system under RMS. 2

42

3.4.3 Enhanced RBound

In this part, we propose an enhanced utilization bound based on our TSS method,

and then introduce a new feasibility test method.

First, after the transformation by TSS, we can apply the RBound function given

by equation (3.4) to evaluate the schedulability of the transformed task set, and

therefore that of the original task set. By applying TSS with different initial tasks,

we can possibly attain a higher utilization bound. Subsequently, we derive our

enhanced utilization bound in the following equation,

RBounden(Γ) = max
∀τi∈Γ

{
RBound(Γ′i) |Γ′i = TSS (Γ, τi)

}
(3.25)

where RBound(∗) is the utilization bound function given by equation (3.4) and

TSS(*, *) is our task set scaling method shown in Algorithm 1.

Next, in light of Theorem 3.4.3, we know that the task set Γ is guaranteed to be

schedulable if there exists a task τi ∈ Γ such that the condition U(Γ′) ≤ RBound(Γ′)

is satisfied. The feasibility test method based on our RBounden is concluded with

Theorem 3.4.4 in light of Theorem 3.2.1, Lemma 3.4.2 and Theorem 3.4.3.

Theorem 3.4.4. Given a task set Γ, if ∃τi, τi ∈ Γ, such that

U(Γ′) ≤ RBound(Γ′) (3.26)

where Γ′ = TSS(Γ, τi), then Γ is schedulable on a single-core system under RMS.

Theorem 3.4.4 provides a new feasibility test method by applying our proposed

TSS method to obtain an enhanced RBound to predict the schedulability for a

given task set. It is not surprising to see that our proposed feasibility test (given by

Theorem 3.4.4) can always outperform the previous RBound feasibility test[73].

43

Corollary 3.4.5. Given a task set Γ, if Γ can successfully pass the traditional

RBound feasibility test given by Theorem 3.2.1, then Γ must be able to successfully

pass the enhance RBound feasibility test given by Theorem 3.4.4.

Proof: If Γ can pass the traditional RBound feasibility test successfully, according

to Theorem 3.2.1, we must have that

U(Γ) ≤ RBound(Γ′1)

where Γ′1 is obtained by using equation (3.11). Note that U(Γ) = U(Γ′1). On other

hand, let τN represent the task with the maximum period in Γ, by using τN to our

TSS method, we can get a scaled task set, denoted as Γ′2. According to TSS method

given by Algorithm 1, we have that Γ′2 is exactly the same as Γ′1. Thus, we have

U(Γ′2) = U(Γ) ≤ RBound(Γ′1) = RBound(Γ′2)

According to Theorem 3.4.4, we get that Γ is schedulable. Therefore, if Γ can

successfully pass the traditional RBound feasibility test given by Theorem 3.2.1,

then Γ must be able to successfully pass the enhance RBound feasibility test given

by Theorem 3.4.4. 2

From Corollary 3.4.5, we can see that our proposed feasibility test method can

always outperform the previous RBound feasibility test method. In fact, the tradi-

tional feasibility test condition (given by equation (3.12)) is only one of the condi-

tions tested in our enhance feasibility test. In other words, we proposed feasibility

test method completely covers the case of the traditional RBound feasibility test.

For example, consider the following three tasks, τ1 = (7, 10), τ2 = (1, 11) and τ3 =

(1, 15). According to the traditional RBound feasibility test (see Theorem 3.2.1),

we get that

U(Γ) = 0.858 > RBound(Γ′1) = 0.783

44

Thus Γ is not schedulable under the traditional RBound test. However, by trans-

forming Γ with respect to τ2 under our TSS method, i.e. Γ′2 = TSS(Γ, τ2), we can

get the Γ′2 = {(7, 10), (1, 11), (1, 11)}. Directly, we can derive that

U(Γ′2) = 0.882 < RBound(Γ′2) = 0.916

According to Theorem 3.4.4, our proposed feasibility test can guarantee that Γ is

schedulable on a single-core system under RMS.

3.4.4 The Partitioning Algorithm

In this subsection, we first present a new multi-core scheduling algorithm, Parti-

tioned Scheduling with Enhanced RBound (PSER), then we prove its schedulability

after a successful partition.

PSER is a partitioned multi-core scheduling algorithm, which adopts our pro-

posed TSS to make the partitioning decisions for a task set.

We show the details of PSER in Algorithm 2. During each iteration, we assign a

group of tasks to a core such that the core utilization is maximized and the tasks are

deemed to be schedulable according to the RBound. The algorithm is terminated

when either all the tasks are successfully assigned or a schedulable partition can not

be found.

Note that in order to find the best combination of tasks in each iteration, the

unassigned task set Γ is transformed with respect to each of tasks in Γ (i.e. line

6). Thus, by exploring all transformations with different initial conditions, we can

optimize the grouping decisions and as a result, maximize the system utilization.

After successfully partitioning all tasks by PSER, we apply the RMS on each

core as the local scheduling policy. We prove that the schedulability of any task set

after a successful partitioning by PSER can be guaranteed.

45

Algorithm 2 Partitioned Scheduling with Enhanced RBound (PSER)

Require:
1) Task set :Γ = {τ1, τ2, ...τN};
2) Multi-core : P = {P1, P2, ..., PM};

1: sort Γ with non-decreasing period order;
2: for m = 1 to M do
3: if Γ == ∅ then break, end if ;
4: Uopt = 0;
5: for i = 1 to |Γ| do
6: Γ′ = TSS (Γ, τi);
7: sort Γ′ with non-increasing period order (for tasks with same periods, sort

them with non-increasing utilization order);
8: Γ′sub = ∅;
9: for j = 1 to |Γ′| do
10: if U(Γ′sub

⋃
{τ ′j}) ≤ RBound(Γ′sub

⋃
{τ ′j}) then

11: Γ′sub = Γ′sub
⋃
{τ ′j};

12: end if
13: end for
14: if U(Γsub) > Uopt then
15: Γopt = Γsub;
16: Uopt = U(Γsub);
17: end if
18: end for
19: assign Γopt to core Pm, and remove Γopt from Γ;
20: end for
21: if Γ = ∅ then return “success”; else return “failure”, end if ;

46

Theorem 3.4.6. If a task set Γ is successfully partitioned by PSER on M cores

and scheduled under RMS, then all tasks can meet their deadlines.

Proof: Assume that a task set Γ is successfully partitioned by PSER, then we prove

that each core can guarantee the schedulability of all tasks assigned to it. Consider

an arbitrary core Pm ∈ P , and let Γm be the corresponding task set assigned to Pm.

Once PSER finishes successfully, according to line 9-17 in Algorithm 2, we know

that there must exist τi ∈ Γm, such that

U(Γ′m) ≤ RBound(Γ′m) (3.27)

where Γ′m = TSS(Γ, τi). According to Theorem 3.4.4, Γm is schedulable on core

Pm under RMS policy. Therefore, for an arbitrary core Pm, after the partitioning

procedure PSER is successfully completed, all tasks assigned to Pm can meet their

deadline. Thus far, this theorem is proved. 2

From Theorem 3.4.6, we can see that any task set successfully partitioned by

PSER can be guaranteed to be schedulable under RMS on a multi-core system.

In what follows, we will introduce another strategy for partitioned scheduling by

exploring the harmonic advantage with CBound.

3.5 Harmonic Advantage Exploration With CBound

Instead of scaling each task with respect to both period and execution time, i.e.

like TSS (shown in algorithm 1), in this section, we introduce another approach to

take the harmonic advantage for multi-core scheduling by scaling and only scaling

the periods of all tasks. We first introduce a new metric, called “harmonic index”

to quantify the harmonic characteristic among periodic tasks. Then based on that

harmonic index, we present our second partitioned scheduling algorithm, i.e. HAPS,

47

by taking the the harmonic relationship into consideration to optimize the system

utilization. Finally, we analyze the schedulability of our proposed algorithm HAPS.

3.5.1 Quantifying Harmonic Property

Since not all tasks in a given task set are harmonic, it is desirable that we can

quantify the harmonicity of a task set. We first introduce the following two concepts.

Definition 3.5.1. Given a task set Γ = {τ1, τ2, ..., τN} where τi = (Ci, Ti), let

Γ′ = {τ ′1, τ ′2, ..., τ ′N} where τ ′i = (Ci, T
′
i), T ′i ≤ Ti, and T ′i |T ′j if i < j. (Note a|b

means “a divides b” or “b is an integer multiple of a”.) Then Γ′ is called a sub

harmonic task set of Γ.

Given task set, there may be infinite numbers of different sub harmonic task sets.

There is one type of sub harmonic task sets that is of most interest to us, which we

call the primary harmonic task set and is formally defined as follows.

Definition 3.5.2. Let Γ′ be a sub harmonic task set of Γ. Then Γ′ is called a

primary harmonic task set of Γ if there exists no other sub harmonic task set Γ′′

such that T ′i ≤ T ′′i for all 1 ≤ i ≤ n.

We are now ready to define a metric, i.e. the harmonic index, to measure the

harmonicity of a real-time task set.

Definition 3.5.3. Given a task set Γ, let G(Γ) represent all the primary harmonic

task sets of Γ. Then the harmonic index of Γ, denoted as H(Γ), is defined as

H(Γ) = min
Γ′∈G(Γ)

(U(Γ′)− U(Γ)). (3.28)

From equation (3.28), ∆U ′ defines the “distance” of a task set to the correspond-

ing prime harmonic task sets in terms of its total utilization factor.

48

In this paper, we adopt the DCT algorithm [48] to find a primary harmonic task

set for any given periodic task set. In the rest of this section, we will present our

second partitioned scheduling algorithm HAPS by exploiting the harmonic metrics

(i.e. harmonic index H) to make our partitioning decision.

3.5.2 Harmonic Aware Partitioned Scheduling

In this subsection, we introduce our second partitioned scheduling algorithm, namely

Harmonic Aware Partitioned Scheduling (HAPS). HAPS significantly distinguishes

from PSER, as well as the bin-packing based scheduling approaches (i.e. First-

Fit, Worst-Fit and Best-Fit). Instead of assigning tasks one by one, HAPS assigns

tasks group by group in order to allocate as more as tasks with closer harmonic

relationship together to the same processor.

The basic idea of HAPS can be briefly described as below:

• Among all unassigned tasks, for each task τi, construct a sub harmonic task

set Γ′ with respect of Ti.

• Pick up Ni tasks, denoted as Γsub, from higher harmonic relationship to lower

harmonic relationship by maximizing U(Γsub) while keeping U(Γ′sub) ≤ 1.

• Find the task group Γopt among unassigned tasks such that U(Γsub) is maxi-

mized.

• Allocate Γopt to an empty processor.

The HAPS is described in more details in Algorithm 3. Similar to PSER, we

denote Γ as the task set containing all unassigned tasks and denote P as the proces-

sor set containing all empty processors. We first sort Γ with non-decreasing order of

task period (line 1). Then, when both Γ and P are not empty, we pick up a group

49

Algorithm 3 Harmonic Aware Partitioned Scheduling (HAPS)

Require:
1) Task set : Γ = {τ1, τ2, ...τN};
2) Multi-core : P = {P1, P2, ..., PM};

1: Sort Γ with no-decreasing order of task period;
2: while Γ 6= ∅ and P 6= ∅ do
3: Γopt = ∅;
4: for i = 1 to |Γ| do
5: T ′i = Ti
6: for j = i+ 1 to |Γ| do T ′j = T ′j−1 · bTj/T ′j−1c;
7: for j = i− 1 downto 1 do T ′j =

T ′j+1

dT ′j+1/Tje
;

8: Γsub = pick up Ni tasks from Γ such that
(1) U(Γ′sub) ≤ 1, and U(Γ′sub) is maximized;
(2) H(Γsub) is minimized;

9: if U(Γsub) > U(Γopt) then
10: Γopt = Γsub;
11: end if
12: end for
13: Pick up Pm ∈ P , and assign Γopt to Pm;
14: Γ = Γ \ Γopt;
15: P = P \ Pm;
16: end while
17: if Γ = ∅ then return “success”; else return “fail”, end if ;

50

of tasks with optimal combination, in terms of harmonic index and total utilization,

and allocate them together to one empty processor (from line 2 to line 16). In each

iteration of the “while” loop, we first initialize the objective subset of tasks as empty

(line 3). The “for” loop (from line 4 to line 12) contains three steps: 1) transforming

the task set Γ into a harmonic task set by using the Ti as the harmonic standard;

2) picking up a sub task set, denoted as Γsub, consisting of Ni tasks with higher

harmonic relationship, meanwhile the corresponding task set utilization U(Γ′sub) is

maximized under the constraint of U(Γ′sub) ≤ 1; 3) among all |Γ| harmonic trans-

formations, choosing the sub task set that has the maximum utilization in order

to optimize the total system utilization. After finding the optimal group of tasks

by the “for” loop, assign that sub task set together to an empty processor(line 13).

Accordingly, update the unassigned task set by removing the sub task set from Γ

(line 14), and update the available processors by removing the occupied one from P

(line 15). The algorithm succeeds if all tasks could be allocated, otherwise, it fails

(line 17). In what follows, we conduct further feasibility analysis for this algorithm.

3.5.3 Schedulability Analysis for HAPS

In this section, we discuss the schedulability of our proposed HAPS algorithm. We

adopt the RMS policy as the priority assignment criteria for all tasks assigned to

each local processor. We prove that, after successfully partitioning all tasks by

HAPS, the schedulability of all tasks can be guaranteed under RMS.

First, recall that in Section 3.5.1, we define the concept of primary harmonic task

set, in which for any two tasks, the period of one can divide or be divided by other.

Then we introduce a feasibility test approach for real-time task set on single-core

by checking its corresponding primary harmonic task set.

51

Theorem 3.5.4. [48] Let Γ′ be a primary harmonic task set of Γ. Then Γ is

feasible on a single-core processor under RMS if U(Γ′) ≤ 1.

From Theorem , we see that given a task set Γ and its corresponding primary

harmonic task set Γ′, if the utilization of Γ′ is no greater than 1, then scheduling Γ

under RMS on a single-core, all tasks can meet their deadlines.

Now we are ready to draw the conclusion of the feasibility of our proposed HAPS

algorithm. We formally conclude this property in Theorem 3.5.5.

Theorem 3.5.5. If a task set Γ is successfully partitioned by HAPS on M processors

and scheduled under RMS, then all tasks can meet their deadlines.

Proof: Consider an arbitrary processor Pm, let Γm be the task set assigned to Pm.

Based on Algorithm 3, we know that all tasks in Γm are partitioned together at one

time. Moreover, according to line 8 in Algorithm 3, there exists a primary harmonic

task set of Γm, denote as Γ′m, such that

U(Γ′m) ≤ 1

According to Theorem 3.5.3, we can see that Γm is feasible on processor Pm un-

der RMS. Consequently, the task set on each local processor can be successfully

scheduled. Therefore, all tasks in Γ can meet their deadlines. 2

HAPS algorithm assigns all tasks group by group instead of one by one as the

traditional bin-packing based partitioning algorithms (i.e. First-Fit, Best-Fit and

Worst-Fit). Thus, HAPS can take the harmonic advantage by globally optimizing

the harmonicity among all tasks. In the following section, we will conduct different

experiments to evaluate the performance of our proposed scheduling algorithms in

terms of task set schedulability and system utilization. In what follows, we use

experiments to examine how effective of our proposed algorithms.

52

3.6 Experiments And Results

In this section, we present a detailed discussion of our experimental evaluations for

the proposed partitioned scheduling algorithms. We first introduce the experimen-

tal setup used in our evaluation. Then we present two groups of experiments to

investigate the performance of our proposed techniques.

3.6.1 Experimental Setup

We conducted two sets of experiments to study the performance of our proposed

enhanced utilization bound (in Section 3.4.3) and partitioned scheduling algorithms

(in Section 3.4.4 and Section 3.5.2), respectively. The scheduling performance for

different approaches were compared by using the success ratios, i.e. the number of

feasible tasks over the number of total tasks generated under a specific test point.

In what follows, we respectively present the results of two group experiments.

3.6.2 Experiment 1: Efficiency Of Our Enhanced Utiliza-

tion Bound

In this experiment, we evaluated the efficiency of our enhanced R-Bound (see Sec-

tion 3.4.3) on a single-core platform. Three different utilization bounds were imple-

mented:

• LLBound [81]: Apply the Liu&Layland′s utilization bound as shown in equa-

tion (3.1).

• RBound [73]: Calculate the utilization bound by equation (3.4) under the

traditional task set transformation method as given by equation (3.11).

53

• RBounden (our proposed method): Calculate the utilization bound by equa-

tion (3.25).

We tested the above three utilization bounds with respect to the system uti-

lization and the number of tasks, respectively. In the first experiment, we varied

the system utilization from 0.5 to 1 with an increment of 0.025. In the second

experiment, we varied the number of tasks from 4 to 16 with an increment of 2,

and the total utilization of all tasks at each test point is randomly generated with

[0.5,1]. The task periods are randomly generated within [10, 500]. For each testing

point, we generated 500 task sets, and the performance was evaluated by using the

metric success ratio, which is the fraction of the number of feasible task sets over

the number of total task sets. The experimental results were collected and plotted

in Figure 3.5.

0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

su
cc

es
s

ra
tio

system utilization

LLBound
RBound

RBounden

(a) Performance v.s. system utilization

4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of tasks

su
cc

es
s

ra
tio

LLBound
RBound

RBounden

(b) Performance v.s. number of tasks

Figure 3.5: Efficiency of our enhanced utilization bound on a single core.

Figure 3.5 shows the performance of three different utilization bounds with re-

spect to system utilization and number of tasks, respectively. From Figure 3.5(a)

and 3.5(b), we can observe that our proposed RBounden outperforms the others,

i.e. LLBound and RBound. For example, in Figure 3.5(a), when system utilization

is 0.8, RBounden can achieve a success ratio around 0.49, an improvement of 29%

54

over RBound (0.38), and an improvement of 2.7 times over LLBound (0.13). In

Figure 3.5(b), when the number of tasks is 12, the success ratio of RBoundem is

52%, while that ratio of LLBound and RBound are 47% and 46%, respectively.

0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
su

cc
es

s
ra

tio

system utilization

LLBound−WF
LLBound−BF
RBOUNDMP
PSER

(a) Number of cores: M = 4

0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

su
cc

es
s

ra
tio

system utilization

LLBound−WF
LLBound−BF
RBOUNDMP
PSER

(b) Number of cores: M = 8

0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

su
cc

es
s

ra
tio

system utilization

LLBound−WF
LLBound−BF
RBOUNDMP
PSER

(c) Number of cores: M = 16

Figure 3.6: Experimental results for light task sets (ui ∈ [0, 0.5])

Compared with RBound, the improvement of our proposed utilization bound

(i.e. RBounden) comes from the fact that, instead of choosing only one task period as

the task set transformation standard, RBounden takes all periods into consideration,

and find the optimal transformation among all task set scalings. Thus our proposed

RBounden always outperforms the traditional RBound.

55

3.6.3 Experiment 2: Performance Of Our Partitioned Schedul-

ing Algorithms

In this experiment, we studied the performance differences by different scheduling

algorithms under different system utilizations. Six algorithms were implemented in

this experiment.

• WF : Partitions each task based on the Worst-Fit (WF) bin-packing method

(which assigns each task to the core with the largest remaining capacity that

can accommodate the task), and checks the capacity of each local core with

the LLBound (see equation (3.1)).

• BF : Partitions each task based on the Best-Fit (BF) bin-packing method

(which assigns each task to the core with the smallest remaining capacity that

can successfully accommodate that task), and checks the capacity of each local

core with the LLBound.

• RBOUNDMP : Exploits the RBound with traditional task set scaling method

(see equation (3.11)), and allocates each task based on the Best-Fit strategy

under the RBound.

• PSER: Our first proposed algorithm PSER scales the entire task set (including

both periods and execution times of all tasks) with respect of each task’s

period, and then finds the maximal utilization bound among all scaled task

sets, and further partitions each task based on the corresponding scaled task

set meanwhile maximizes the total utilization of each local processor.

• HAPS : Our second proposed algorithm HAPS transforms the original task

set into a harmonic counterpart by scaling and only scaling the periods of all

tasks, and then based on our proposed harmonic index, assigns tasks with

56

closer harmonic relationship into the same processor to maximize the system

utilization.

To study the performance differences among the above scheduling approaches

with respect of system utilizations, we conducted two sub-sets of experiments, for

light and general task sets, respectively. In light task sets, the utilization of each

task was evenly distributed within [0, 0.5], while in general task sets, the utilization

of each task was evenly distributed within [0, 1]. For each experiment, we varied the

system utilization from 0.5 to 1.0 with an increment of 0.025. For both sub-sets of

experiments, we tested on different number of processors, i.e. M = 4, 8, and 16.

The experimental results for all approaches are collected and shown in Figure 3.7

and Figure 3.8.

Figure 3.7 shows the experimental results for task sets containing only light tasks

(i.e. ui ∈ [0, 0.5]) . From Figure 3.7, we can observe that PSER and HAPS can

achieve success ratios significantly better than other four approaches. Compared

with PSER and HAPS, all other four approaches, i.e. WF, BF, RBOUNDMP and

pCOMPATS, can guarantee the feasibility of any task set with utilization below

Liu&Layland’s bound, the same as PSER and HAPS. The success ratio by WF

and BF drop sharply when system utilization around 0.7. This is because that

while WF and BF can guarantee any task sets with utilizations no more than the

Liu&Layland’s bound, it rejects any task set that cannot pass the feasibility check-

ing condition determined by the Liu&Layland’s approach. While RBOUNDMP

and pCOMPATS may potentially schedule task sets with utilization higher than

the Liu&Layland’s bound, PSER and HAPS can achieve higher performance. For

example, in Figure 3.7(a), when the system utilization is around 0.85, PSER and

HAPS can respectively achieve a success ratio up to 0.55 and 0.95, while that of

RBOUNDMP and pCOMPATS is around 0.3. We can also see that the performance

57

0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

su
cc

es
s

ra
tio

system utilization

WF
BF
RBOUNDMP
PSER
HAPS

(a) 4-core platform

0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

su
cc

es
s

ra
tio

system utilization

WF
BF
RBOUNDMP
PSER
HAPS

(b) 8-core platform

0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
su

cc
es

s
ra

tio

system utilization

WF
BF
RBOUNDMP
PSER
HAPS

(c) 16-core platform

Figure 3.7: Experimental results for light task sets (ui ∈ [0, 0.5]) by different system
utilization

improvement by PSER and HAPS tends to increase as the number of processors

increases. Under the system utilization of 0.9, PSER (HAPS) can achieve a success

ratio of 0.05 (0.7) with 4 processors, 0.25 (0.95) with 8 processors, and increased up

to 0.8 (1) with 16 processors.

Figure 3.8 shows our experimental results for general task sets containing both

heavy (ui ∈ [0.5, 1]) and light (ui ∈ [0, 0.5]) tasks. From Figure 3.8, we can also

observe that our proposed algorithms, i.e. PSER and HAPS, perform better than

other four approaches. In Figure 3.8(b), when the system utilization is 0.85, PSER

(HAPS) can achieve a success ratio 5 times (7 times) of that by WF and BF, and

1.25 times (1.75 times) of that by RBOUNDMP and pCOMPATS.

58

0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

su
cc

es
s

ra
tio

system utilization

WF
BF
RBOUNDMP
PSER
HAPS

(a) 4-core platform

0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

su
cc

es
s

ra
tio

system utilization

WF
BF
RBOUNDMP
PSER
HAPS

(b) 8-core platform

0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
su

cc
es

s
ra

tio

system utilization

WF
BF
RBOUNDMP
PSER
HAPS

(c) 16-core platform

Figure 3.8: Experimental results for general task sets (ui ∈ [0, 1]) by different system
utilization

It is important to observe that for both light and general task sets, our sec-

ond proposed algorithm (HAPS) always outperforms our first proposed algorithm

(PSER). For example, from Figure 3.7(c) and Figure 3.8(c), we can see that as the

number of processors is fixed to 16, HAPS achieves better performance than PSER

when system utilization is greater than 0.85 and 0.75 for light and general task sets,

respectively. The reason is that PSER takes the harmonic advantage by only con-

sidering the relationship among periods of tasks (i.e. see task set scaling(1)), while

HAPS takes both period and utilization of each task into consideration (i.e. see

primary harmonic task set (3.5.2) and harmonic index (3.5.3)). Although by taking

the harmonic relationship among periods of tasks can potentially increase the sys-

59

tem utilization, we cannot consider the period factor isolated in order to optimize

the system utilization, specifically for multi-core scheduling. Thus, to better im-

prove the system performance of schedulability by taking the harmonic advantage,

we need to appropriately consider not only the relationship among periods but also

the utilizations of all tasks.

In summary, our experimental results clearly show, by exploiting the harmonic

relationship among tasks appropriately, PSER and HAPS can significantly improve

the schedulability of partitioned scheduling compared with the existing algorithms.

3.7 Summary

Multi-core scheduling problem is the most fundamental problem in real-time embed-

ded system design. Partitioned scheduling, as one of the major types in multi-core

scheduling design, becomes more important as the multi-core platform emerging

as the dominant technology in both research and industry fields. In this chapter,

we have presented two new partitioned approaches (i.e. PSER and HAPS) for

scheduling real-time sporadic tasks on multi-core platform under RMS. The PSER

algorithm first transformed a given task set with respect to each task’s period, and

then assigned tasks based on their scaled periods under the traditional RBound.

The HAPS algorithm took the harmonic advantage by transforming the entire task

set into a harmonic set, and based on made the partitioning decision according to

a efficient utilization bound, i.e. CBound. We formally proved that our scheduling

algorithms could guarantee the feasibility of any task set successfully passed the

partitioned procedures. Our extensive experimental results demonstrated that the

proposed algorithm can significantly improve the scheduling performance compared

with previous work.

60

CHAPTER 4

SEMI-PARTITIONED MULTI-CORE SCHEDULING BY

EXPLORING HARMONIC RELATIONSHIP AMONG REAL-TIME

PERIODIC TASKS

In the previous chapter, our focus was on partitioned scheduling algorithms.

In this chapter, we extended our research work to semi-partitioned scheduling, in

which some of the tasks are allowed to migrate among different processing cores.

Specifically, we studies the problem on how to guarantee the schedulability of a

periodic task set in semi-partitioned scheduling.

4.1 Related Work

In this section, we discuss the related work from two aspects: the work that ex-

ploit the harmonic property for periodic tasks and the work on semi-partitioned

scheduling.

The property of harmonic tasks, i.e. the tasks with periods being integer multi-

ples of each other, has been widely studied on single-core systems. Compared with

the Liu&Layland’s bound, many researchers have proposed more efficient bound for

RMS single-core scheduling. One known result is that if all tasks are harmonic in

a task set, the utilization bound can be as high as 1 [83]. Han et al. [48] proposed

a polynomial-time method to determine the task set schedulability through testing

the schedulability of a harmonic task set derived from the original task set. They

proved that any task set that can pass the schedulability test by Liu&Layland’s

bound can pass the proposed test. Kuo et al. [71] presented another polynomial-

time schedulability test method. By combining harmonic tasks into one task, the

method can reduce the effective number of tasks and then the Liu&Layland’s bound

can be used to test the schedulability. There are also a number of other researches

61

that study the relationship between system schedulability and task periods under

RMS for single-core scheduling [22, 74, 89]. For multiple processor RMS scheduling,

Jung [65] et al. studied the problem of scheduling harmonic tasks on a uniform mul-

tiprocessor platform. Müller [93] adopted the schedulability test by Han et al. [48]

to minimize the number of processors, and Fan et al. [38] proposed a scheduling

technique that improves the system schedulability by taking advantage of the har-

monic relation among tasks. All these work indicate that system schedulability can

be greatly improved if harmonic relations among different tasks can be appropriately

exploited for RMS scheduling on both single and multiple core platforms.

Semi-partitioned scheduling, by splitting a few tasks, has been shown as an effec-

tive and practical scheduling method to improve the system utilization significantly

compared with the traditional global scheduling and partitioned scheduling (e.g.

[8, 67, 11, 39, 72, 69, 43, 20].) As an example, the best known utilization bound for

either global or partitioned fixed-priority schedule is no more than 50% [10, 13, 9],

while the utilization bound can reach much higher using semi-partitioned scheduling.

For instance, Lakshmanan et al. [72] have shown an utilization bound of 65%, and

Guan et al. [43, 44] improved this bound to the traditional Liu&Layland’s bound,

i.e. 69.3% as the number of tasks goes to infinite, or any valid utilization bounds

(such as the K-bound [71] or R-bound [73]) established on single processor plat-

forms. Kandhalu et al. [66] proposed two semi-partitioned scheduling algorithms.

They show that, for task sets with each individual task utilization factor no more

than 0.5, the utilization bound can increase with the number of cores and approach

100%.

We believe that taking advantage of the harmonic relationship among task pe-

riods can greatly improve the schedulability of a semi-partitioned algorithm. Some

of the existing approaches (such as the ones in [44, 66]) exploit this relationship by

62

using the R-Bound [73], i.e. a utilization bound that takes the possible harmonic

relationship into consideration. However, employing R-bound cannot determine the

schedulability of a task set as accurate as the worst case analysis. Moreover, in order

to use R-bound, all tasks have to go through a period transformation process. After

the transformation, Kandhalu et al. [66] proposed to allocate the tasks with the

smallest periods together. Unfortunately, these tasks do not necessarily form a task

set closest to harmonic. In our approach, we developed a metric to quantitatively

measure how harmonic a task set is, and based on this metric, to effectively allocate

tasks closer to harmonic to the same processor. In addition, we can still employ the

worst case analysis to determine the maximal capacity of a processor when adding

a task to it and thus has a much better scheduling performance. The proposed

scheduling algorithm can guarantee a utilization bound the same as Liu&Layland’s

bound.

4.2 Preliminary

We are interested in the problem of semi-partitioned scheduling of sporadic tasks on

multi-core platforms based on RMS, which is known as an NP-hard problem [106].

In this section, we first present our system models used in this paper, and then we

introduce some pertinent background information and concepts necessarily for our

research. We then use an example to motivate our research.

4.2.1 System Models

The real-time system considered in this paper consists of N sporadic tasks, de-

noted as Γ = {τ1, τ2, ..., τN}, and executed on M identical processors, i.e. P =

{P1, P2, ..., PM}. Each task τi ∈ Γ, is characterized by a tuple (Ci, Ti), where Ci is

63

the worst-case execution time of τi, and Ti is the minimum inter-arrival time be-

tween any two consecutive jobs of τi. Ti is also called the period of τi in this paper.

For the sake of simplicity, we use ΓPm to denote the task set on processor Pm. For

the rest of this paper, we make two assumptions: 1) the deadline of each task is

equal to its period; 2) Γ is sorted with decreasing priority order, i.e. task τi has a

higher priority than τj if i < j. Similarly to Chapter 3, the task utilization of τi is

defined as ui = Ci
Ti

, and the task set utilization of Γ is defined as U(Γ) =
∑

τi∈Γ ui.

We further define the concepts of light task and heavy task as below:

Definition 4.2.1. Task τi is called a light task if ui ≤ 1
2
, or a heavy task otherwise.

Note that, even though we used the same terminology as that in [43], our defini-

tions of light and heavy tasks are totally different. To simplify our description, let

Θ(N) represent the Liu&Layland’s bound, i.e. Θ(N) = N(21/N − 1).

4.2.2 On Semi-Partitioned Scheduling

A semi-partitioned scheduling algorithm consists of two phases: the partitioning

phase and the scheduling phase.

In the partitioning phase, most tasks will be assigned to one processor and can

be executed only at that particular processor during running time. These tasks are

called non-split tasks [43]. A few other tasks, so called split tasks, are allowed to

be split into several subtasks and assigned to different processors with the purpose

of maximally utilizing the processor. Let task τi be a task that is split into three

subtasks, i.e. τ b1i , τ b2i and τ ti , executed on processor P1, P2 and P3, respectively. The

total execution time of τ b1i , τ b2i and τ ti equals to Ci. Specifically, the last subtask of

τi, i.e. τ ti is called tail task, and other subtasks of τi, i.e. τ b1i and τ b2i , are called body

tasks. For ease of presentation, we use CB
i and uBi to represent the total execution

64

time and utilization of all body tasks from a split task τi, respectively. Note that,

once the partitioning phase is done, the assignment of a subtask to a processor is

permanent and the subtask can only run on that designated processor.

In the scheduling phase, the scheduling strategy for each processor is determined.

In our case, all tasks assigned to the same processor are scheduled strictly conform-

ing to RMS policy, i.e. the task with a smaller period always has a higher priority.

One complexity, however, is to execute multiple subtasks assigned to different pro-

cessors according to the original logical order sequentially. Since the scheduler at the

operating system level does not necessarily know the nature of a real-time process,

to execute multiple subtasks from the same task concurrently may violate the data

or control dependency and thus leads to invalid computing results. Therefore, it is

vital to make sure that each subtask is executed according to its logical order and

without overlapping with other subtasks.

We adopt an existing approach [69, 43, 42] to solve this problem and assume

that an appropriate timer is available to monitor the execution of body/tail tasks.

Specifically, the scheduler will assign a timer to a split task, e.g. τi in the above

example. When τi arrives, the scheduler dispatches τ b1i to processor P1 immediately

and sets the timer to Cb1
i . After the timer expires, the scheduler then dispatches

τ b2i to processor P2 and sets the timer to Cb2
i . Then if the timer expires again, the

scheduler releases τ ti to processor P3. As such, all subtasks split from the same task

can only run sequentially following their logical orders to ensure the correctness of

program. Therefore, the body/tail tasks from the same task can be viewed as tasks

with the same periods but different starting times, and the synchronization problem

for split tasks from the same task can be easily resolved in practice. For more details

about the semi-partitioned scheduling, readers can refer to [43, 69, 72, 68].

65

4.2.3 Motivation Examples

Table 4.1: A task set with five real-time tasks
τi Ci Ti ui

1 2 6 0.33
2 5 10 0.50
3 3 12 0.25
4 4 20 0.20
5 15 25 0.60

τ3

τ1

τ5

2

3

2

3

2 2

1 4 1 4

2

0 105 15 20 25

τ4

τ2

τ5

5

4

5

2

5

0 105 15 20 25

2

(a) Processor 1

(b) Processor 2

Figure 4.1: Allocation fails when simply grouping harmonic tasks and assigning
them to the same processor.

Before we present our approach in detail, we first use an example to motivate our

research. Since tasks with harmonic relationship have much higher schedulability

on a single processor, an intuitive approach would therefore be the one that groups

harmonic tasks together and assigns them to one processor. Unfortunately, such a

naive approach may not work in the semi-partitioned approach.

Consider a two-processor platform with a task set shown in Table 4.1. Since

τ1 and τ3 are harmonic, we can group τ1 and τ3 to one processor, i.e. Processor

1. Similarly, we can group τ2 and τ4 to the other processor, i.e. Processor 2.

66

Since no processor can accommodate τ5 entirely, we have to split τ5 between these

two processors. There are two problems with this assignment. First, as shown in

Figure 4.1(a), the maximum capacity that can be accommodated in Processor 1 is

10. Since the subtasks from τ5 cannot be executed concurrently on two processors,

at most 4 time units from Processor 2 can be utilized by τ5 as shown in Figure 4.1(b).

As a result, τ5 cannot complete before its deadline even if all available time units

are used for its execution. Second, in order to use all 4 time units on Processor 2,

we need complicated process migration controls and synchronization mechanisms,

which increase not only the switching overhead, but also the control complexity

among different processors. Note that, if we assign τ1 and τ5 to one processor, and

the other tasks to another processor, it is not difficult to verify that the schedule is

feasible.

As indicated by this example, to take the advantage of harmonic relationship

among tasks to improve the schedulability, a critical problem is how to judiciously

choose the task to split and to synchronize among different processors. To solve

this problem, we present two novel semi-partitioned algorithms, i.e. HSP-light and

HSP, in the following sections.

4.3 The HSP-Light Algorithm

The HSP-light algorithm is a harmonic semi-partitioned algorithm developed for

light tasks. When employing the harmonic relationship to improve the scheduling

performance, it is not necessary that all tasks in the same task set are strictly har-

monic. In the rest of this section, we first present a new semi-partitioned algorithm,

and then study the schedulability of our proposed algorithm.

67

Recall that in Chapter 3, we have already defined the harmonic index, i.e. H.

In our proposed algorithm below, we apply H to quantify the harmonic relationship

among different tasks. In what follows, we introduce how we develop the HSP-light

algorithm based on this index.

4.3.1 Algorithm Details

HSP-light algorithm assigns tasks to processors from lower priority to higher priority

ones. A task is assigned to a processor that can accommodate it and also with the

resulting task set having the lowest harmonic index. In other words, a task will

be assigned to a feasible processor with the highest harmonic relationship for the

resulting task set. The schedulability of the result task set can be guaranteed by

performing the exact timing analysis [77] on the corresponding synchronized task

set, i.e. assuming all tasks start at the same time. If a task cannot be accommodated

entirely by any processor, then split occurs.

To split a task, we adopt a simple heuristic that assigns subtasks to the processor

with the highest available capacity. There are two advantages using this splitting

strategy: 1) It reduces the total split times by efficiently maximizing the workload

for each split subtask. 2) It guarantees the priority of each body task to be the

highest one on its host processor. After the split is done, the value to set up the

timer for enabling the sub-task is also determined. Algorithm 4 shows the salient

aspects of the HSP-light algorithm.

Given a task set Γ and a multiprocessor system P , HSP-light makes the assign-

ment decision for each task through the “while” loop from line 1 to line 17. Among

all unassigned tasks left in Γ, the task τi with the lowest priority is selected (line 2).

τi is assigned to the processor with the minimum harmonic index as long as that

68

Algorithm 4 HSP-light Algorithm

Require: ∀τi ∈ Γ, ui <= 1/2;
1: while Γ 6= ∅ do
2: τi := the task with the lowest priority in Γ;
3: Pm := the processor with minimum H(ΓPm + τi) in P ;
4: if ΓPm + τi is feasible then
5: Assign τi to processor Pm;
6: Continue;
7: end if
8: Pm := the processor with the maximum capacity (greater than 0) for τi;
9: if Pm does not exist, then break, end if
10: if ΓPm + τi is feasible then
11: Assign τi to processor Pm;
12: else
13: Split τi into τi1 and τi2 such that ΓPm + τi1 can maximally utilize Pm;
14: Assign τi1 to processor Pm;
15: Replace τi by τi2, and move τi back to Γ;
16: end if
17: end while
18: if Γ = ∅ then
19: Return “Success!”;
20: else
21: Return “Fail!”;
22: end if

69

processor has enough capacity for the task on each processor (from line 4 to line 7).

If this assignment fails, we split task τi and make the assignment (from line 8 to line

16). We choose the processor with the maximum execution capacity for τi. If the

corresponding capacity is large enough, then τi is assigned entirely. Otherwise, we

split τi and assign part of τi to the processor until it is maximally utilized, i.e. no

other higher priority tasks can be assigned to that processor without causing other

tasks to miss deadlines. Note that, to check the schedulability of a task set (line 4,

line 10) and to calculate the maximum execution capacity available for splitting a

task (line 13), we can use the traditional exactly timing analysis method [77] on the

corresponding synchronized task set, i.e. tasks with the same starting time. The

algorithm succeeds if all tasks are allocated, and fails otherwise. In what follows,

we further study the schedulability of Algorithm 4.

4.3.2 Schedulability Analysis Of HSP-Light

In this subsection, we are interested in examining how effective the algorithm HSP-

light can be when scheduling real-time tasks on multi-core platforms. From the

Algorithm 4, it is easy to conclude the following property.

Lemma 4.3.1. If a task set Γ is successfully partitioned by HSP-light on M proces-

sors, then there is at most one body task on each processor; and on all processors,

there are at most (M − 1) tasks to be split.

Proof: In HSP-light, splitting occurs only when no processor can accommodate

one task completely. After splitting and assigning a task, the processor that accom-

modates the body task becomes full for higher priority tasks, and no other higher

priority tasks can be assigned to it any more. The body task is the last task assigned

70

to its host processor. Therefore, there is at most one body task on each processor.

Since there are M processors, at most (M − 1) tasks will be split. 2

Lemma 4.3.1 constrains the maximum number of tasks that can be split and

migrated among different processors, and thus, the extra cost associated with the

migrations. From Lemma 4.3.1, we can derive the following property.

Lemma 4.3.2. Each body task has the highest priority on its host processor.

Proof: According to Lemma 4.3.1, we know that there is at most one body task

on each processor. Moreover, Algorithm 4 guarantees that any body is the last task

assigned to its host processor. Since tasks are assigned from the lowest priority to

the highest priority, the priority of any body task is higher than any other tasks on

its host processor. 2

More importantly, if a task set can be successfully allocated by HSP-light, all

tasks can satisfy their deadlines. The conclusion is formally formulated in the fol-

lowing theorem.

Theorem 4.3.3. If a task set Γ is successfully partitioned by HSP-light on M pro-

cessors and scheduled according to RMS, then all tasks can meet their deadlines.

Proof: For each body task, it has the highest priority at its host processor (Lemma 4.3.2).

Therefore, it can always meet its deadline unless the worst case execution time of

the original task is larger than its deadline, which is impossible. For tail tasks or

any other regular tasks added to a processor, the schedulability of the entire task set

is guaranteed based on the worst case response time analysis for the corresponding

synchronous task set as stated above (line 4, 10 and 13). 2

From Theorem 4.3.3, HSP-light is not only an allocation method but also can

serve as a schedulability test method as well. It is not surprising HSP-light is only a

sufficient schedulability test method for multi-core scheduling problem. On the other

71

hand, however, HSP-light is too complex to be used effectively as a schedulability

checking method. In what follows, we present a fast and effective schedulability

checking method for our HSP-light algorithm.

4.3.3 Fast Schedulability Checking Method For HSP-Light

Before we introduce our fast and effective schedulability checking method for our

proposed HSP-light algorithm, we first study the schedulability of a task set con-

taining a critical task, with its formal definition presented in Definition 4.3.4.

Definition 4.3.4. Let Γ = {τ1, ..., τi, ..., τN} be a task set that is schedulable by RMS

on a single processor. τi is called the critical task if when increasing the execution

time of the highest priority task, τi is the first task to miss its deadline.

In addition, for ease of presentation, we introduce the following definition.

Definition 4.3.5. A processor is called to be maximally utilized by a task set if any

increase of the execution time for its highest priority task will cause at least one task

on the same processor to miss its deadline.

In a semi-partitioned system, after partitioning, we divide the tasks into three

types: non-split task, body task and tail task. According to Lemma 4.3.2, a body

task always has the highest priority on its host processor. Thus, from Defini-

tion 4.3.4, no body task can be a critical task.

Lemma 4.3.6. The critical task on each processor can only be a non-split task or

a tail task.

In what follows, we want to study the schedulability characteristics for processors

containing non-split or tail tasks that are critical tasks. We assume that a split task

72

τi is split into Bi body tasks and one tail task, denoted as τ
bj
i (j ∈ [1, Bi]) and τ ti ,

respectively.

For two different types of critical tasks, i.e. non-split tasks and tail tasks, we

introduce two important properties, which are formulated in the following lemmas.

Lemma 4.3.7. Let ΓPm be the task set allocated to processor Pm in HSP-light.

If the critical task is a non-split task and Pm is maximally utilized by ΓPm, then

U(ΓPm) > Θ(N).

Proof: By contradiction. Assume that processor Pm is maximally utilized by ΓPm

but

U(ΓPm) ≤ Θ(N) (4.1)

Let Nm denote the number of tasks on Pm, and let a non-split task τj be the critical

task on Pm. Then we know that Nm < N . Since Θ(N) is a monotonically decreasing

function with respect to N , we have Θ(N) < Θ(Nm). According to our assumption

in equation (4.1), we get

U(ΓPm) ≤ Θ(N) < Θ(Nm)

Note that ΓPm may contain some tail tasks with deadlines less than their periods.

Given ΓPm , we can always construct another Γ′Pm such that any tail task in Γ′Pm has

its deadline equal to its original period. As such, we have

U(Γ′Pm) = U(ΓPm) ≤ Θ(N) < Θ(Nm).

Also, since τj is a non-split critical task, processor Pm is also maximally utilized by

Γ′Pm .

Now consider the critical task τj. Let us keep its period (Tj) the same, but

increase its execution time such that

∆uj = min(Θ(Nm)− U(ΓPm), 1− uj)

73

After the above transformation, the new utilization on Pm, denoted as U(Γ′′Pm) still

satisfies that U(Γ′′Pm) ≤ Θ(Nm), which implies that Γ′′Pm is feasible by RMS on

processor Pm even though τj’s execution time increases. This contradicts that Pm

has been maximally utilized by Γ′Pm and τj is the critical task. 2

Lemma 4.3.8. Let ΓPm be the task set allocated to processor Pm in HSP-light. If

the critical task is a tail task and Pm is maximally utilized by ΓPm, then U(ΓPm) >

Θ(N).

Proof: Let τ ti be the critical tail task on Pm. To simplify the description below,

let U t
X (U t

Y) denote the total utilization of tasks with priorities higher (lower) than

τi on Pm (see Figure 4.2.) From HSP-light, the processor containing the first body

task τ b1i of τi has the largest capacity to accommodate τi. Thus, we have

U t
Y + ub1i ≥ Θ(N).

Otherwise, τ b1i would be assigned to Pm instead. Moreover, since τi is a light task,

we have that ub1i < ui ≤ 1/2, from the above inequality we can derive that

U t
Y > Θ(N)− 1

2
. (4.2)

On the other hand, for processor Pm, since τ ti is the critical task, there will be no

idle time within interval [0, Ti − CB
i], where CB

i is the total execution time of τi’s

body tasks. Therefore, for τ ti and all higher priority tasks on Pm, we have

∑
j<i

Cj

⌈
Ti − CB

i

Tj

⌉
+ Ct

i ≥ Ti − CB
i (4.3)

Divide (Ti − CB
i) on both side of the above, we can get that

∑
j<i

uj ·
⌈
Ti − CB

i

Tj

⌉
· Tj
Ti − CB

i

+ uti ·
Ti

Ti − CB
i

≥ 1

74

Split the sum of the above into two parts, and rewrite as

∑
j<i,Tj<Ti−CBi

uj ·
⌈
Ti − CB

i

Tj

⌉
· Tj
Ti − CB

i

+

∑
j<i,Tj≥Ti−CBi

uj ·
⌈
Ti − CB

i

Tj

⌉
· Tj
Ti − CB

i

+

uti ·
Ti

Ti − CB
i

≥ 1 (4.4)

For the first part on the left side of equation (4.4), since
⌈
Ti−CBi
Tj

⌉
≤ Ti−CBi

Tj
+ 1, we

can derive that

∑
j<i,Tj<Ti−CBi

uj ·
⌈
Ti − CB

i

Tj

⌉
· Tj
Ti − CB

i

≤
∑

j<i,Tj<Ti−CBi

uj · (1 +
Tj

Ti − CB
i

)

Moreover, in the above, since Tj < Ti − CB
i , we have

Tj
Ti−CBi

< 1. Then we can

further derive

∑
j<i,Tj<Ti−CBi

uj ·
⌈
Ti − CB

i

Tj

⌉
· Tj
Ti − CB

i

≤
∑

j<i,Tj<Ti−CBi

2 · uj (4.5)

For the second part on the left side of equation (4.4), since Tj ≥ Ti − CB
i , we have

dTi−C
B
i

Tj
e = 1. Thus we can derive

∑
j<i,Tj≥Ti−CBi

uj ·
⌈
Ti − CB

i

Tj

⌉
· Tj
Ti − CB

i

=
∑

j<i,Tj≥Ti−CBi

uj ·
Tj

Ti − CB
i

(4.6)

And further since uBi <
1
2
, then

Tj
Ti − CB

i

≤ Ti
Ti − CB

i

< 2, if Tj ≥ Ti − CB
i . (4.7)

Put equation (4.7) into (4.6), we can derive

∑
j<i,Tj≥Ti−CBi

uj <
∑

j<i,Tj≥Ti−CBi

2 · uj (4.8)

75

UY

t

...

ui
b ui

b

ui
t

UX

t
high

priority

low

priority

Pm

1 Bi

Figure 4.2: Illustration of U t
X and U t

Y .

For the third part on the left side of equation (4.4), by applying equation (4.7), we

have

uti ·
Ti

Ti − CB
i

< 2 · uti (4.9)

Apply equation (4.5), (4.8) and (4.9) into (4.4), we can get

∑
j<i,Tj<Ti−CBi

uj +
∑

j<i,Tj≥Ti−CBi

uj + uti >
1

2

or

U t
X + uti >

1

2
(4.10)

Finally, sum up equation (4.2) and (4.10), and replace (U t
Y + U t

X + uti) by U(ΓPm),

we obtain that

U(ΓPm) > Θ(N)

2

Based on Lemma 4.3.7 and Lemma 4.3.8, we can derive the following property.

Lemma 4.3.9. If all processors in P are maximally utilized according to HSP-light,

then we have ∑
Pm∈P

U(ΓPm) > |P| ·Θ(N) (4.11)

76

Proof: Let PA denote the processors with critical tasks as non-split tasks, and PB

denote the processors with critical tasks as tail tasks. According to Lemma 4.3.6,

we have that P = PA
⋃
PB and PA

⋂
PB = ∅. Thus, we have

∑
Pm∈P

U(ΓPm) =
∑

Pm∈PA
U(ΓPm) +

∑
Pm∈PB

U(ΓPm) (4.12)

Moreover, for any Pm ∈ PA or PB, from Lemma 4.3.7 and Lemma 4.3.8, we know

that U(ΓPm) > Θ(N). Applying this to the above equation, we get

∑
Pm∈P

U(ΓPm) > |PA| ·Θ(N) + |PB| ·Θ(N) (4.13)

or ∑
Pm∈P

U(ΓPm) > |P| ·Θ(N) (4.14)

2

We are now ready to present our schedulability checking method, concluded in

Theorem 4.3.10, to quickly and effectively predict the feasibility of any periodic task

set scheduled by HSP-light algorithm.

Theorem 4.3.10. Given a light task set Γ consisting of N tasks to be scheduled on

M processors, if

UM(Γ) ≤ Θ(N), (4.15)

then Γ is feasible by HSP-light under RMS.

Proof: By contradiction. Assume that Γ is not feasible by HSP-light, thus we know

every processor is maximally utilized.

From the given condition (equation (4.15)) we have that

U(Γ) ≤M ·Θ(N), (4.16)

77

On the other hand, since all processors are maximally utilized, according to Lemma 4.3.9,

we know ∑
Pm∈P

U(ΓPm) > |P| ·Θ(N)

Since |P| = M , the above can be rewritten as

∑
Pm∈P

U(ΓPm) > M ·Θ(N) (4.17)

This contradicts equation (4.16). 2

Theorem 4.3.10 shows that a light task set with system utilization bounded by

the well-known Liu&Layland’s bound is guaranteed to be feasible using our proposed

approach, i.e. Algorithm 4.

It is worth mentioning that Theorem 4.3.3 is valid for any general task set, which

implies that if a task set can be successfully allocated using HSP-light, all tasks can

meet their deadlines. However, Theorem 4.3.10 works only for light task sets. In

other word, HSP-light cannot guarantee the schedulability of a general task set

(which contains heavy tasks), even if its total utilization is less than Liu&Layland’s

bound. In the next section, we introduce a more advanced algorithm, i.e. HSP, that

can guarantee the schedulability for any task sets with system utilizations no more

than the utilization bound.

4.4 The HSP Algorithm

The reason that HSP-light cannot guarantee the schedulability of an arbitrary task

set with utilization lower than the utilization bound is that, if a split task is a heavy

task and the tail task is very light, the overall system utilization can be very low.

We use an example to explain this observation.

78

Table 4.2: A task set with four real-time tasks
τi Ci Ti ui

1 2 50 0.04
2 49 50 0.98
3 4 90 0.044
4 4 100 0.04

τ1

τ3
b

48

0 50 100

τ3
t

τ4

τ2 4
0 50 100

48

2

2

arrive

2

2

τ3
0 50 100

τ2

τ4

τ1 4
0 50 100

2

49

2

49

4

(a) failed schedule

(b) successful schedule

1

miss deadline

2

(a) Failed Schedule

τ1

τ3
b

48

0 50 100

τ3
t

τ4

τ2 4
0 50 100

48

2

2

arrive

2

2

τ3
0 50 100

τ2

τ4

τ1 4
0 50 100

2

49

2

49

4

(a) failed schedule

(b) successful schedule

1

miss deadline

2

(b) Successful Schedule

Figure 4.3: (a) The task set is failed to be scheduled according to HSP-light; (b)
The task set is schedulable if the heavy task τ2 is pre-assigned.

Consider to schedule a task set with four tasks, as shown in Table 4.2, on 2

processors. As shown in Figure 4.3(a), even though the system utilization is very

small, i.e. (2/50+49/50+4/90+4/100)/2 = 0.55 < 0.69, HSP-light cannot schedule

this task set successfully. Note that the tail task from τ2 can be viewed as a task

with worst case execution time of 1 and deadline of 2. Adding any higher priority

task with execution time more than 1 will make τ2 infeasible. On the other hand,

if we pre-assign the heavy task τ2 to a processor, we can see that the task set can

be successfully scheduled as shown in Figure 4.3(b). Therefore, in order to take the

advantage of harmonic property to schedule general task sets, a special operation,

i.e. the pre-assignment, needs to be performed for heavy tasks.

79

4.4.1 Algorithm Details

As discussed before, HSP-light can guarantee all tasks (light or heavy) meet their

deadlines if all tasks can be assigned to a processor successfully. At the same time,

Figure 4.3 implies that heavy task pre-assignment can greatly improve the schedula-

bility of the scheduling algorithm. The question becomes which heavy tasks should

be pre-assigned and how other tasks should be assigned accordingly.

In HSP, the pre-assignment for heavy tasks follows the same strategy as intro-

duced in [43]. Specifically, for any heavy task τi, let PEmpi denote the set of empty

processors before τi’s assignment and |PEmpi | denote the number of processors in

this set. Then a heavy task τi needs to be pre-assigned to an empty processor if

∑
j>i

uj ≤ (|PEmpi | − 1) ·Θ(N). (4.18)

The detailed procedure of HSP is shown in Algorithm 5. HSP is very similar to

HSP-light, except for two important differences:

• At the beginning of semi-partitioning procedure, heavy tasks are pre-assigned

to empty processor set, denoted as PPre, if they satisfy the criteria as stated

in equation (4.18) (from line 1 to line 8);

• To ensure that a body task always has the highest priority on a processor,

a processor with heavy task pre-assignment may be excluded from the semi-

partitioning process. According to Algorithm 5, a task can be assigned to a

processor with heavy task assignment only after the heavy task pre-assigned

in the processor has a lower priority (from line 12 to line 15).

80

Algorithm 5 HSP Algorithm

Require:
1) Task set :Γ = {τ1, τ2, ...τN};
2) Multiprocessor : P = {P1, P2, ..., PM};

1: // pre-assign heavy tasks ;
2: PPre = ∅;
3: for i = 1 to N do
4: if ui > 1/2 and

∑
j>i uj ≤ (|PEmpi | − 1) ·Θ(N) then

5: Assign τi to processor Pm, where m = |P|;
6: Move Pm from P to PPre;
7: end if
8: end for
9: // assign other tasks ;
10: while Γ 6= ∅ do
11: τi := the task with the lowest priority in Γ;
12: τj := the task with the lowest priority in ΓPPre ;
13: if τi has higher priority than τj then
14: Move P (τj) from PPre to P ;
15: end if
16: Pm := the processor with minimum H(ΓPm + τi) in P ;
17: if ΓPm + τi is feasible then
18: Assign τi to processor Pm;
19: Continue;
20: end if
21: Pm := the processor with maximum capacity for τi in P ;
22: if Pm does not exist, then Break, end if
23: if ΓPm + τi is feasible then
24: Assign τi to processor Pm;
25: else
26: Split τi into τi1 and τi2 such that ΓPm + τi1 can maximally utilize Pm;
27: Assign τi1 to processor Pm;
28: Replace τi by τi2, and move τi back to Γ;
29: end if
30: end while
31: if Γ = ∅ then
32: Return “success”;
33: else
34: Return “fail”;
35: end if

81

4.4.2 Schedulability Analysis Of HSP

First, similar to Theorem 4.3.3, for HSP, the schedulability of tasks are guaranteed

as stated in the following theorem.

Theorem 4.4.1. If a task set Γ is successfully partitioned by HSP on M processors

and scheduled according to RMS, then all tasks can meet their deadlines.

Next, two important observations, similar to that in Lemma 4.3.7 and Lemma 4.3.8,

are also true and formulated in the following two lemmas.

Lemma 4.4.2. Let ΓPm be the task set allocated to processor Pm in HSP. If the

critical task is a non-split task and Pm is maximally utilized, then U(ΓPm) > Θ(N).

Lemma 4.4.3. Let ΓPm be the task set allocated to processor Pm in HSP. If the

critical task is a tail task from a light task and Pm is maximally utilized, then

U(ΓPm) > Θ(N).

Lemma 4.4.2 and Lemma 4.4.3 can be proved in the same way as that for

Lemma 4.3.7 and Lemma 4.3.8. Moreover, if a tail task from a heavy task is the crit-

ical task, we have a very important observation which is formulated in the following

lemma.

Lemma 4.4.4. Let ΓPk be the task set allocated to processor Pk in HSP. If the

critical task is a tail task from a heavy task τi and Pk is maximally utilized, then

∑
Pm∈PR

U(ΓPm) > |PR| ·Θ(N) (4.19)

where PR = {P (τj)|j ∈ [i, N]}.

Proof: For all tasks assigned to processors in PR, we divide them into two groups:

1) tasks with priorities lower than τi, denoted as ΓY , 2) tasks with priorities equal

82

or higher than τi, denoted as ΓX . Then we have∑
Pm∈PR

U(ΓPm) =
∑
τj∈ΓY

uj +
∑
τj∈ΓX

uj (4.20)

One one hand, since τi is heavy but not pre-assigned, according to equation (4.18),

we have ∑
τj∈ΓY

uj > (|PR| − 1) ·Θ(N) (4.21)

Since τ ti is the critical task on its host processor Pm, there will be no idle time within

interval [0, Ti − CB
i]. Therefore, for τ ti and all higher priority tasks on Pm, we have∑

j<i,τj∈ΓPm

Cj

⌈
Ti − CB

i

Tj

⌉
+ Ct

i ≥ Ti − CB
i

or ∑
j<i,τj∈ΓPm

uj

⌈
Ti − CB

i

Tj

⌉
· Tj
Ti

+ ui ≥ 1 (4.22)

Note that 1) Tj ≤ Ti for j < i, 2) and Ti − CB
i ≤ 1

2
Ti, since uBi ≥ 1

2
. By putting

them into the above, we can derive∑
j<i,τj∈ΓPm

uj + ui ≥ 1 (4.23)

Therefore, for all tasks in ΓX we have∑
τj∈ΓX

uj ≥ 1 (4.24)

Finally, apply equation (4.24) and (4.21) into (4.20), since Θ(N) ≤ 1, we get∑
Pm∈PR

U(ΓPm) > |PR| ·Θ(N)

2

Lemma 4.4.5. If a system is maximally utilized through HSP, then for all proces-

sors in P, we have ∑
Pm∈P

U(ΓPm) > |P| ·Θ(N) (4.25)

83

Proof: Select the heavy task, i.e. τi, that is not pre-assigned and has the highest

priority among the ones with its tail task being the critical task on its host processor.

Let PA denote the processors to which τi and other lower priority tasks are assigned.

Let PB denote the rest of processors besides PA. From Lemma 4.4.4 we know that

∑
Pm∈PA

U(ΓPm) > |PA| ·Θ(N) (4.26)

From Lemma 4.4.2 and Lemma 4.4.3, we have that

∑
Pm∈PB

U(ΓPm) > |PB| ·Θ(N) (4.27)

Sum up equation (4.26) and (4.27), since
∑

Pm∈P U(ΓPm) =
∑

Pm∈PA U(ΓPm) +∑
Pm∈PB U(ΓPm), we can derive

∑
Pm∈P

U(ΓPm) > |P| ·Θ(N) (4.28)

2

Finally, with the above conclusions, we can easily derive a schedulability checking

method for HSP algorithm, which is similar to Theorem 4.3.10, by applying the

Liu&Layland’s bound. This conclusion is formally formulated in Theorem 4.4.6.

Theorem 4.4.6. Given a task set Γ consisting of N tasks to be scheduled on M

processors, if

UM(Γ) ≤ Θ(N), (4.29)

then Γ is feasible by HSP under RMS.

Proof: By contradiction. Assume that Γ is not feasible by HSP. With equation

(4.29), we have

U(Γ) ≤M ·Θ(N), (4.30)

84

Since all processors are maximally utilized, from Lemma 4.4.5, we have that

∑
Pm∈P

U(ΓPm) > |P| ·Θ(N) (4.31)

or ∑
Pm∈P

U(ΓPm) > M ·Θ(N) (4.32)

This contradicts equation (4.30). 2

Theorem 4.4.6 provides a very efficient schedulability checking method for real-

time task sets scheduled by HSP. Given any task set Γ, if the total utilization of

Γ satisfies equation (4.29), then Γ can be successfully scheduled by HSP on M

processors. Different from Theorem 4.3.10, Theorem 4.4.6 works for arbitrary task

sets instead of light task sets alone.

It is worth mentioning that, based on our proofs, Theorem 4.3.10 and Theo-

rem 4.4.6 hold true even without the consideration of period relationships, i.e. lines

3-7 of Algorithm HSP-ligh and lines 16-19 of Algorithm HSP. To study if our ap-

proach can lead to a better utilization bound is an interesting problem and will

be our future study. In what follows, we use experiments to study the potential

improvement that can be achieved using our methods.

4.5 Experiments And Results

In this section, we investigate the performance of our proposed algorithms with

experiments. Five algorithms are implemented in our experiments.

• SPA: The SPA algorithm [43] assigns the priority of each task by RMS, and

splits a task to feed the processor until “full” (e.g. utilization equal to the

Liu&Layland’s bound). However, as long as the utilization of a task set exceeds

the Liu&Layland’s bound, it simply aborts.

85

• DM PM : The DM PM algorithm [69] assigns task priorities by deadline mono-

tonic scheduling (DMS) policy, and splits a task and assigns as large portion

of the task as possible to a processor by computing the maximum interference

to the task on each processor.

• PUB : The PUB algorithm [44], similarly to SPA, assigns tasks based on a

parametric utilization bound, but uses exact timing analysis method for task

splitting. In the following experiments, R-Bound [73] is applied with this

algorithm.

• pCOMPATS : The pCOMPATS algorithm [66] explores the R-Bound [73] for

task partitioning and splitting. R-Bound can only be applied to task sets

with ratio of any two periods no smaller than 1 and no larger than 2. In our

experiments, we used the same algorithm as that in [66] to scale a general task

set.

• HSP : Our proposed algorithm. Note that HSP is the same as HSP-light when

the task set is light, and can accommodate task sets containing heavy tasks.

We conducted two groups of experiments to study how performance of each al-

gorithm changes with different numbers of tasks and different system utilizations,

respectively. For each group of experiments, we tested on different number of proces-

sors, i.e. M = 4, 8, and 16. For each testing point in the experiments, we randomly

generated 500 task sets as test cases. The utilization of each task set varied from

0.5 to 1 (since task sets with smaller utilizations could be easily schedulable by all

approaches). The minimum inter-arrival time of each task was set to have a uniform

distribution within [50, 1000]. The scheduling performance for different approaches

are compared using the success ratios, i.e. the number of feasible tasks over the

number of total tasks generated under a specific test point.

86

4.5.1 Performance VS. Number Of Tasks

8 12 16 20 24 28 32 36 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of tasks

s
u
c
c
e
s
s
 r

a
ti
o

SPA

DM_PM

PUB

pCOMPATS

HSP

(a) Number of processors: M = 4

16 24 32 40 48 56 64 72 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of tasks

s
u
c
c
e
s
s
 r

a
ti
o

SPA

DM_PM

PUB

pCOMPATS

HSP

(b) Number of processors: M = 8

32 48 64 80 96 112 128 144 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of tasks

s
u
c
c
e
s
s
 r

a
ti
o

SPA

DM_PM

PUB

pCOMPATS

HSP

(c) Number of processors: M = 16

Figure 4.4: Experimental results for general task sets by different number of tasks.

In this group of experiments, we varied the number of tasks, i.e. N , in a task

set from 2 ×M to 10 ×M with an increment of M (where M is the number of

processors). The success ratios of all five approaches were recorded and plotted in

Figure 4.4.

From Figure 4.4, we can observe that HSP can achieve success ratios much

better than other four approaches. For example, in Figure 4.4(a), when the number

of tasks is equal to 20, HSP can achieve a success ratio of 78%, an improvement of

1.7 times of that by SPA (45%), 1.1 times of that by DM PM (71%), 1.2 times of

that by PUB (64%), and 1.1 times of that by pCOMPATS (68%). The improvement

of HSP comes from the fact that HSP takes the harmonic relationship among tasks

aggressively into consideration and tries to allocate tasks closer to harmonic together

among multiple processors. The exploitation of harmonicity is limited to that the

utilization bounds for different processors may be different depends on how existing

tasks are close to harmonic.

From Figure 4.4, we can see that, for the same number of processors (M), the

success ratio of HSP in general decreases with the increase of task numbers (N). For

example, in Figure 4.4(c) (as M = 16), the success ratio of HSP achieves 91% when

87

N = 32, but it decreases to 71% when N increases to 160. The larger the number

of task is, the lower the utilization bound can be. As a result, a task set becomes

more difficult to be schedulable. From Figure 4.4, it is also interesting to see that, if

we assume similar average number of tasks for each processor (i.e. assuming N/M

as a constant), the success ratio by HSP largely increases in general. For example,

when N/M = 5, the success ratios for M = 4, 8, 16 are 78% (see Figure 4.4(a) at

N = 20), 80% (see Figure 4.4(b) at N = 40) and 83% (see Figure 4.4(c) at N = 80),

respectively. The reason for this is that the more processors are available, there are

more opportunities that can be exploited by HSP to take advantage of the harmonic

property among tasks to improve the processor utilization.

4.5.2 Performance VS. System Utilization

To study the performance differences by different scheduling approaches under dif-

ferent system utilizations, we conducted three sub-groups of experiments, for light

and general task sets, respectively. In light task sets, the utilization of each task was

evenly distributed within [0, 0.5], while in general task sets, the utilization of each

task was evenly distributed within [0, 1]. For each experiment, we varied the system

utilization from 0.5 to 1.0 with an increment of 0.025. The experimental results for

all approaches are collected and shown in Figure 4.5 and Figure 4.6.

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

s
u
c
c
e
s
s
 r

a
ti
o

system utilization

SPA

DM_PM

PUB

pCOMPATS

HSP

(a) Number of processors: M = 4

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

s
u
c
c
e
s
s
 r

a
ti
o

system utilization

SPA

DM_PM

PUB

pCOMPATS

HSP

(b) Number of processors: M = 8

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

s
u
c
c
e
s
s
 r

a
ti
o

system utilization

SPA

DM_PM

PUB

pCOMPATS

HSP

(c) Number of processors: M = 16

Figure 4.5: Experimental results for light task sets, u ∈ [0, 0.5].

88

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

s
u
c
c
e
s
s
 r

a
ti
o

system utilization

SPA

DM_PM

PUB

pCOMPATS

HSP

(a) Number of processors: M = 4

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

s
u
c
c
e
s
s
 r

a
ti
o

system utilization

SPA

DM_PM

PUB

pCOMPATS

HSP

(b) Number of processors: M = 8

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

s
u
c
c
e
s
s
 r

a
ti
o

system utilization

SPA

DM_PM

PUB

pCOMPATS

HSP

(c) Number of processors: M = 16

Figure 4.6: Experimental results for general task sets, u ∈ [0, 1].

Figure 4.5 shows our experimental results for task sets containing only light

tasks. From Figure 4.5, we can observe that HSP can achieve success ratios sig-

nificantly better than other four approaches. Compared with SPA, all other four

approaches, i.e. DM PM, PUB, pCOMPATS and HSP can guarantee the schedula-

bility of any task set with utilization below Liu&Layland’s bound, the same as SPA.

The success ratio by SPA drops sharply when system utilization around 0.7. This is

because that while SPA can guarantee any task sets with utilizations no more than

the Liu&Layland’s bound, it rejects any task set with system utilization exceeding

the Liu&Layland’s bound. While DM PM, PUB and pCOMPATS may potentially

schedule task sets with utilization higher than the Liu&Layland’s bound, HSP can

achieve a much higher performance, especially when the system utilization is high.

For example, in Figure 4.5(a), when the system utilization is around 0.9, HSP can

still achieve a success ratio up to 30%, while that of DM PM is 10%, and that of

PUB and pCOMPATS are no more than 5%. Similar to our first group of exper-

iments, we can see that the performance improvement by HSP tends to increase

as the number of processors increases. Under the system utilization of 0.9, HSP

can achieve a success ratio of 30% with 4 processors, 40% with 8 processors, and

increased up to 60% with 16 processors.

Figure 4.6 shows our experimental results for general task sets containing both

89

heavy and light tasks. From Figure 4.6, we can also observe that HSP performs

significantly better than other four approaches. In Figure 4.6(c), HSP can achieve

a success ratio four times of that by DM-PM and PUB when the system utilization

is around 0.925.

Our experimental results clearly show, by exploiting the harmonic relationship

among tasks more aggressively, HSP can significantly improve the schedulability of

semi-partitioned scheduling compared with the existing algorithms.

4.6 Summary

In this chapter, we have presented a new semi-partitioned approach for scheduling

real-time sporadic tasks on multi-core platform under RMS. Our approach can take

advantage of the harmonic relations among task periods and improve the schedula-

bility. To achieve this goal, we introduced a metric to quantify how close a task set

is to a harmonic task set. Two algorithms, i.e. HSP-light and HSP, were presented

to schedule light and general task sets, respectively. We have formally analyzed

the schedulability for both algorithms, and presented a simple schedulability test

method for each one. Specifically, we formally proved that our scheduling algo-

rithms can successfully schedule any task set with a system utilization bounded by

the Liu&Layland’s bound. The experimental results demonstrated that the proposed

algorithm can significantly improve the scheduling performance compared with pre-

vious work.

90

CHAPTER 5

TEMPERATURE-CONSTRAINED FEASIBILITY ANALYSIS FOR

MULTI-CORE REAL-TIME SCHEDULING

In previous chapters, we present our multi-core scheduling algorithms to en-

sure the timing constraints for real-time embedded applications. In this chapter,

we consider not only timing constraints but also temperature constraints as well.

Specifically, we focus our interest on the problem that if a given real-time peri-

odic dynamic voltage frequency scaling (DVFS) schedule for a multi-core platform

can satisfy a pre-defined maximum temperature constraint. Many processors to-

day have a built-in digital thermal sensor integrated with each core with predefined

temperature limit [21]. When temperature rises above the limit, the processor can

automatically shut down. Thus real-time tasks may miss their deadlines. There-

fore, it is important to develop appropriate feasibility checking methods such that

a periodic schedule can ensure the peak temperature constraint during its life time.

5.1 Related Work

There are a few researches targeted on temperature-constrained real-time schedul-

ing. Zhang et al. [125] proposed a scheduling algorithm that guarantees the maxi-

mum temperature constraint for a periodic schedule by requiring the starting tem-

perature is no more than that at the end of its first scheduling period. Quan et

al. [97] took the temperature/leakage dependency into consideration and proposed

several feasibility conditions. All these techniques are developed based on single

core platforms. The problem becomes significantly more challenging for multi-core

systems, since the temperature of each core varies depending on not only its instant

temperature and power consumption, but also the temperatures of other cores as

well.

91

There are a few work published on thermal/tempearature aware multi-core schedul-

ing (e.g. [125, 97, 104, 116, 105, 63]). Zhang et al. [125] proposed a single-core

scheduling algorithm that guarantees the maximum temperature constraint for a

periodic schedule by requiring the starting temperature is no more than that at the

end of its first scheduling period. Quan et al. [97] took the temperature/leakage

dependency into consideration and proposed several feasibility conditions for peri-

odic scheduling on single-core platforms. Lars et al. [104] proposed an approach

to estimate the worst-case temperature on a multi-core platform by searching for

the worst-case task/workload allocations among different cores. They assumed each

core can only have two running modes (i.e. on or off), and also assumed a complete

knowledge of the temperature “impulse response function” (i.e. the temperature

variation on a core due to the heat transfer from another core, which can be very

challenging in practice). However, how to employ the proposed method for periodic

tasks is still a problem. Ukhov et al. [116] presented a method to keep track of

temperature for a multi-core platforms under steady state under the assumption

that the power consumption is a constant.

In our research, we adopt a power model that accounts for the interdependency

between leakage power and temperature, and a thermal model that takes the heat

transfer among different processing cores into consideration. In what follows, we

first introduce some preliminary background closely related to this chapter.

92

5.2 Preliminary

5.2.1 System Models

The multi-core platform considered in this work consists of Nc identical cores, de-

noted as C = {C1, C2, ..., CNc}. Each core can run in r different processing modes,

each of which is characterized by a pair of parameters (vk, fk) (1 ≤ k ≤ r), where vk

is the supply voltage and fk is the working frequency in mode k, respectively. Let

fmax be the largest frequency among different processing modes.

We assume that a static, periodic speed schedule S, which dictates how to vary

the supply voltage and working frequency for each core at different intervals, is

given. For a speed schedule S, we define the concept of state interval below:

Definition 5.2.1. Given a multi-core system and a speed schedule S, an interval

[tq−1, tq] is called a state interval if each core runs only at one processing mode

during that interval.

Consider a periodic task set, and let L denote the length of one scheduling

period (which equals to the least common multiple (LCM) of periods of all tasks).

According to Definition 5.2.1, a periodic speed schedule S essentially consists of a

number of non-overlapped state intervals, i.e. Ns state intervals, such that

1.
⋃Ns
q=1[tq−1, tq] = [0, L], and

2. [tq−1, tq]
⋂

[tp−1, tp] = ∅, if q 6= p.

For a state interval [tq−1, tq], we use κq to denote the interval processing mode, which

consists of the processing mode of each core, i.e. κq = {k1, ..., kNc} where ki is the

processing mode of core Ci.

93

5.2.2 Power Model

The overall power consumption (in Watt) of each core is composed of two parts:

dynamic power Pdyn and leakage power Pleak. In our power model, Pdyn is indepen-

dent of the temperature, while Pleak is sensitive to both temperature and supply

voltage. The dynamic power consumption of the ith core Ci, denoted as Pdyn,i, can

be formulated as [102]

Pdyn,i = γki · v3
ki

(5.1)

where vki is the supply voltage of core Ci and γki is a constant, both of which depend

on the processing mode of core Ci, i.e. mode ki. While the circuit level study reveals

a very complicated relation between leakage power and temperature, Liu et al. [122]

found that a linear approximation of the leakage temperature dependency is fairly

accurate. As such, similar to the work in [122, 97], we model the leakage power of

the ith core Ci, denoted as Pleak,i, as follows

Pleak,i =
(
αki + βki · Ti(t)

)
· vki (5.2)

where αki and βki are constants only depending on the core’s processing mode, i.e.

mode ki. Consequently, the total power consumption of core Ci at time t, denoted

as Pi(t), can be formulated as:

Pi(t) =
(
αki + βki · Ti(t)

)
· vki + γki · v3

ki
(5.3)

According to equation (5.3), we thus have

Pi(t) = θi + φi · Ti(t) (5.4)

where θi = αki · vki + γki · v3
ki

and φi = βki · vki . For the entire multi-core system, we

have

P(t) = Θ + ΦT(t) (5.5)

94

where P(t) is the power vector, T(t) is the temperature vector, Θ is the vector

of temperature independent power (i.e. Θ = {θ1, θ2, ..., θNc}, and Φ is a diagonal

matrix with the ith diagonal element as φi. Note that, to distinguish a vector/matrix

with a value, we use bold text and normal text respectively, e.g. T represents a

temperature vector and T represents a temperature value.

5.2.3 Thermal Model

The thermal behavior for a multi-core platform is modeled using an equivalent RC

thermal circuit, similar to that used in [105, 116]. A multi-core platform may con-

tains multiple die layers and thermal packaging (e.g. the thermal interface material,

heat spreader, and heat sink). Thermal nodes on die layers are called active nodes,

since they represent the actual processing cores of the system and consume non-

zero power. In contrast, thermal nodes on the thermal packaging layers are called

inactive nodes, since their power dissipation is assumed to be zero regardless of the

system processing modes. Specifically, we assume that a multi-core system C con-

sists of Nt thermal nodes, denoted as � = {Π1,Π2, ...,ΠNt}, with the first Nc nodes

as the active nodes and others as the inactive nodes. Then the thermal phenomena

of Πi (the ith thermal node) can be formulated as

Ci ·
dTi(t)

dt
+
Ti(t)− Tamb

Rii

+
∑
j 6=i

Ti(t)− Tj(t)
Rij

= Pi(t) (5.6)

where Ci is the thermal capacitance (in Watt/oC) of Πi, Rij is the thermal resistance

(in J/oC) between Πi and Πj, Ti is the temperature of Πi, Tamb is the ambient

temperature, and Pi is the power consumption of Πi. Equivalently, we have

C
dT(t)

dt
+ G

(
T(t)−Tamb

)
= P(t) (5.7)

95

where C, G, T and P are thermal capacitance matrix, thermal conductance matrix,

temperature vector and power vector, respectively. From equation (5.5) and further

normalize the temperature with respect to Tamb (i.e. T(t) ≡ T(t)−Tamb), we have

C
dT(t)

dt
+ gT(t) = Ψ (5.8)

where g = G−Φ and Ψ = Θ + ΦTamb.

Consider a state interval [tq−1, tq], according to equation (5.8), we have

dT(t)

dt

∣∣∣∣
t∈[tq−1,tq]

= AκqT(t) + Bκq (5.9)

where Aκq = −C−1gκq and Bκq = C−1Ψκq . Note that within [tq−1, tq], both Aκq

and Bκq are constant. The thermal model given by equation (5.11) is a model of

ordinary differential equations (ODE), specifically a first-order constant coefficient

ODE model, with the following solution:

T(tq) = eAκq∆tqT(tq−1) + A−1
κq (eAκq∆tq − I)Bκq (5.10)

where ∆tq = tq − tq−1, and I is an m×m identity matrix.

5.2.4 Problem Description

With the models introduced above, our research problem can be formally formulated

as follows:

Problem 5.2.2. Given:

• a multi-core system C = {C1, C2, ..., Cm} with r different processing modes;

• a static, periodic speed schedule S consisting of s state intervals within each

scheduling period;

• a maximum temperature constraint Tmax;

96

determine if, starting from the ambient temperature Tamb and repeating schedule S

until system reaches the stable status, the temperature on each core will exceed Tmax.

Note that checking temperature constraint within the first scheduling period

cannot ensure the constraint in the future. To exhaustively check temperature for

all scheduling periods would also be impossible. In what follows, we first strive to

determine the peak temperature for a schedule. We then present our solutions for

this problem.

5.3 Temperature Calculation For Multi-core Scheduling

In this section, we present new methods to rapidly calculate temperatures for a

periodic multi-core scheduling.

We first introduce the temperature formulation within a state interval. Then

we present a method to rapidly calculate temperatures when repeating a periodic

speed schedule based on temperature information of the first scheduling period.

Finally, we present an efficient method to calculate the steady-state temperature for

a periodic speed schedule.

5.3.1 Temperature Formulation Within A State Interval

Consider a state interval [tq−1, tq], according to equation (5.8), the thermal variation

can be rewritten as

dT(t)

dt

∣∣∣∣
t∈[tq−1,tq]

= AκqT(t) + Bκq (5.11)

where Aκq = −C−1gκq and Bκq = C−1Ψκq . Note that within [tq−1, tq], both Aκq

and Bκq are constant.

97

The thermal model given by equation (5.11) is a model of ordinary differential

equations (ODE), specifically a first-order constant coefficient ODE model, with the

following solution.

T(tq) = eAκq∆tqT(tq−1) + A−1
κq (eAκq∆tq − I)Bκq (5.12)

where ∆tq = tq − tq−1, and I is an m×m identity matrix.

Note that the above analytical solution for temperature calculation includes a

computationally expensive operation, i.e. the matrix exponential operation of eAκq .

Generally, there are two alternatives for solving this kind of operation: mathematical

solvers (e.g. MatLab tool) and auxiliary transformation (e.g. work [116]). Any

available auxiliary transformation method used for matrix exponential operation

can be apply to optimize the computations of the proposed analytical temperature

solutions in this work.

From equation (5.12), we can see that given a state interval, its ending tempera-

ture can be determined by the starting temperature T(tq−1) and the corresponding

interval processing mode κq. In the next subsection, we will develop some further

analytical solutions to capture the characteristic of temperature variation for a pe-

riodic schedule.

5.3.2 Temperature Formulation For A Periodic Schedule

With the method introduced above, given a periodic schedule S and the initial tem-

perature T(0), we can calculate the temperature at any time instant by tracking

temperature from one state interval to another. However, when t >> 0, the com-

putational cost can be extremely large. In what follows, we present a method to

rapidly calculate temperatures when repeating a periodic speed schedule S based on

temperature information of the first scheduling period.

98

For ease of presentation, we first introduce a new notation, i.e. Kq, where

q = 1, 2, ..., s, such that

Kq = eAκq∆tq · eAκq−1∆tq−1 ...eAκ1∆t1 (5.13)

In particular, let K be a special case of Kq when q = s, such that

K = eAκs∆ts · eAκs−1∆ts−1 ...eAκ1∆t1 (5.14)

Then we consider an arbitrary time instance tq within the first scheduling period,

i.e. tq ∈ [0, L]. If T(tq) is determined, with the help of the above notifications, i.e.

Kq and K, we then provide a method that can quickly calculate the temperature at

t = nL+ tq, where n ≥ 1.

t0

L

tsts-1tq+1tqt3t2t1
0

t'st's-1t'q+1t'qt'3t'2t'1
t

2L

t'0

tf

f

Core i

Core j

Figure 5.1: A speed schedule within 2 scheduling periods.

Before presenting our temperature calculation method for an arbitrary time

point, we first introduce a method that can quickly calculate the temperature at

the end of each scheduling period, i.e. t = nL, where n ≥ 1.

Lemma 5.3.1. Given a periodic speed schedule S, let T(L) be the temperature at

time L. When repeating S later, if (I − K) is invertible, then the temperature at

time t = nL, where n is an integer and n ≥ 1, can be formulated as

T(nL) = T(0) + (I−K)−1(I−Kn)(T(L)−T(0)) (5.15)

Proof: We first consider the temperature dynamics at the end of each schedul-

ing period, i.e. t = nL. Let the scheduling points of the state intervals in S be

99

t0, t1, ..., ts−1, respectively. After repeating S, let the corresponding points in the

second scheduling period be t′0, t
′
1, ..., t

′
s−1, respectively (see Fig. 5.1). Note that

t0 = 0, t′0 = ts = L and t′s = 2L. According to equation (5.12), at time t1 and t′1, we

have

T(t1) = eAκ1∆t1T(t0) + A−1
κ1

(eAκ1∆t1 − I)Bκ1 (5.16)

T(t′1) = eAκ1∆t′1T(t′0) + A−1
κ1

(eAκ1∆t′1 − I)Bκ1 (5.17)

Subtract equation (5.16) from (5.17), and simply the result by applying ∆t′1 = ∆t1,

t0 = 0 and t′0 = L, we get

T(t′1)−T(t1) = eAκ1∆t1(T(L)−T(0))

Similarly, we can derive that

T(t′2)−T(t2) = eAκ2∆t2eAκ1∆t1(T(L)−T(0))

...

T(t′s)−T(ts) = eAκs∆ts ...eAκ1∆t1(T(L)−T(0)) (5.18)

Since ts = L, t′s = 2L, and eAκs∆ts ...eAκ1∆t1 = K, equation (5.18) can be rewritten

as

T(2L)−T(L) = K(T(L)−T(0)) (5.19)

In the same way, we can see that

T(3L)−T(2L) = K(T(2L)−T(L))

T(4L)−T(3L) = K(T(3L)−T(2L))

...

T(nL)−T((n− 1)L) = K(T((n− 1)L)−T((n− 2)L))

Thus, we can construct that

T(xL)−T((x− 1)L) = Kx−1(T(L)−T(0)) (5.20)

100

where x = 1, 2, ..., n. Sum up these n equations based on the above, and simplify

the result, then we can derive that

T(nL) = T(0) + (
n∑
x=1

Kx−1)(T(L)−T(0)) (5.21)

In the above, {Kx−1|x = 1, 2, ..., n} forms a matrix geometric sequence. If (I −K)

is invertible, then we have

T(nL) = T(0) + (I−K)−1(I−Kn)(T(L)−T(0)) (5.22)

2

With the help of Lemma 5.3.1, we can directly obtain the temperature trace of

a periodic speed schedule at the ending points of all scheduling periods, i.e. t = nL

where n ≥ 1. Further, for any arbitrary time point, i.e. t = nL + tq where n ≥ 1

and 0 ≤ tq ≤ L, we develop a similar approach that can efficiently calculate the

corresponding temperature. We formally conclude our method in Theorem 5.3.2.

Theorem 5.3.2. Given a periodic speed schedule S, let T(L) and T(tq) be the

temperatures at time L and tq, tq ∈ [0, L], respectively. When repeating S later, if

(I−K) is invertible, then the temperature at time t = nL+ tq, where n is an integer

and n ≥ 1, can be formulated as

T(nL+ tq) = T(tq) + Kq(I−K)−1(I−Kn)(T(L)−T(0)) (5.23)

Proof: Follow the same procedure of Lemma 5.3.1’s proof, we have that

T(L+ tq)−T(tq) = eAκq∆tq ...eAκ1∆t1(T(L)−T(0))

According to equation (5.13), we can replace eAκq∆tq ...eAκ1∆t1 with Kq, then the

above equation can be rewritten as

T(L+ tq)−T(tq) = Kq · (T(L)−T(0))

101

Similarly, for all temperatures at time instances of 2L + tq, 3L + tq, ..., nL + tq, we

have

T(2L+ tq)−T(L+ tq) = Kq(T(2L)−T(L))

...

T(nL+ tq)−T((n− l)L+ tq) = Kq(T(nL)−T((n− 1)L))

Add all above n equations together, we get

T(nL+ tq) = T(tq) + Kq(T(nL)−T(0))

According to Lemma 5.3.1, we know that T(nL) can be explicitly represented by

equation (5.15). Thus, if (I −K) is invertible, by replacing T(nL) with equation

(5.15) in the above, we can get

T(nL+ tq) = T(tq) + Kq(I−K)−1(I−Kn)(T(L)−T(0)) (5.24)

2

From Theorem 5.3.2, we can see that once the temperature information in the

first scheduling period is determined, the corresponding temperature in any future

scheduling period can be quickly calculated.

5.3.3 Steady-State Temperature Formulation

Now we introduce an efficient method to calculate the steady-state temperature for a

periodic speed schedule based on the temperature information in the first scheduling

period.

Theorem 5.3.3. Given a periodic speed schedule S, let T(L) and T(tq) be the

temperatures at time L and tq, tq ∈ [0, L], respectively. If for each eigenvalue λi of

102

K, we have |λi| < 1, then the steady-state temperature corresponding to tq can be

formulated as

Tss(tq) = T(tq) + Kq(I−K)−1(T(L)−T(0)) (5.25)

Proof: As n 7→ ∞, no matter with or without temperature constraint, T(nL+ tq)

will achieve its stable status while the system achieves its thermal steady-sate. Thus,

the temperature in the system stable status corresponding to the end of the qth state

interval, denoted as Tss(tq), can be formulated as

Tss(tq) = lim
n 7→∞

T(nL+ tq) (5.26)

According to Theorem 5.3.2, if (I−K) is invertible, the temperature at time nL+ tq

can be formulated as

T(nL+ tq) = T(tq) + Kq(I−K)−1(I−Kn)(T(L)−T(0)) (5.27)

Apply equation (5.27) into (5.26), Tss(tq) can be further represented as

Tss(tq) = T(tq) +

Kq(I−K)−1(I− lim
n7→∞

Kn)(T(L)−T(0)) (5.28)

When n 7→ ∞, the matrix sequence Kn converges if and only if |λi| < 1, for each

eigenvalue λi of K [64]. Under this condition, we have limn→∞Kn = 0. Moreover,

if ∀λi, |λi| < 1 holds, (I − K) is invertible. Thus, the steady-state temperature

formulated by equation (5.28) can be further represented as

Tss(tq) = T(tq) + Kq(I−K)−1(T(L)−T(0)) (5.29)

2

It is important to point out that the condition assumed in Theorem 5.3.3, i.e.

for each eigenvalue λi of K, we have |λi| < 1, makes sense in the physical world.

103

As well known, without any peak temperature constraint, the system can always

achieve its thermal stable status by running a long enough time. Thus, the matrix

sequence Kn, as shown in equation (5.23), must converge when n 7→ ∞; otherwise

T(nL+ tq) will go to infinity, which conflicts with the practical scenario. Therefore,

the condition given in Theorem 5.3.3, i.e. ∀λi, |λi| < 1, is reasonable and feasible.

From Theorem 5.3.3 we can see that, given a periodic speed schedule S, the sys-

tem steady-state temperature can be formulated with the temperature information

of the first scheduling period directly. This is much more efficient than to keep track

of temperature variations based on equation (5.12). In the following section, we dis-

cuss the problem of how to determine the peak temperature for a given periodic

speed schedule.

5.4 Identifying The Peak Temperature

To get the peak temperature for a periodic schedule is essential for solving Prob-

lem 5.2.2. While solutions for single core platforms has been presented in previous

work (e.g. [97]), this problem becomes substantially more difficult since the tem-

perature of each core changes not only with its instant temperature and power

consumption, but also with the temperatures of other cores as well. In what fol-

lows, we first study how to find the peak temperature within a state interval. We

then discuss how to find the peak temperature for a periodic schedule.

5.4.1 Challenging Problem In Peak Temperature Detection

Intuitively, if all cores use constant speeds throughout an interval, we would expect

that the peak temperature occurs at one of the ending points of the interval. This

104

is true on a single-core case and can be easily proved. Unfortunately, it is not true

anymore for the multi-core platforms.

0 0.002 0.004 0.006 0.008 0.01
55

60

65

70

75

80

T
em

pe
ra

tu
re

 (
 o C

)

Time (s)

Core−1
Core−2

Figure 5.2: Negative interaction on temperature variation between two cores. C1 =
C2 = 0.00035, G11 = G22 = 0.4, G12 = G21 = −0.1, v1 = 0.8V , v2 = 0V , T1(0) =
T2(0) = 75oC.

Figure 5.2 shows the temperature traces of two cores when running with constant

speeds within an interval. As shown in Figure 5.2, while the temperature of Core-2

decreases monotonically, Core-1’s temperature first rises and then drops. As a result,

the peak temperature of the system does not occur at either of the ending points of

the interval at all. Then, to solve Problem 5.2.2, we have to ask the question: where

and when the processor achieves its peak temperature? In what follows, we first

present some characteristics about the peak temperature variation within a state

interval, then propose an efficient approach to detect the peak temperature for any

state interval.

105

5.4.2 Important Properties For Multi-core Temperature Vari-

ation

To study the temperature variation on a multi-core platform within a state interval,

we have made a number of interesting and important findings.

Given a state interval (i.e. [t0, t1]), if temperatures of all cores are simultaneously

either increasing or decreasing at the starting point (i.e. t = t0), then the temper-

atures of all cores must monotonically change, i.e. either all increase or decrease,

within that interval. We formally conclude this property in Lemma 5.4.1

Lemma 5.4.1. Given a multi-core platform C and a state interval [t0, t1], if it holds

∀Ci ∈ C ,
dTi(t)

dt
|t=t0 > 0 (5.30)

or

∀Ci ∈ C ,
dTi(t)

dt
|t=t0 > 0 (5.31)

then the temperature of all cores must monotonically either increase or decrease

within [t0, t1].

Proof: Assume that ∀Ci ∈ C, dTi
dt
|t=t0 > 0. Then for ∀tx ∈ [t0, t1], according to

equation (5.11), we have

dT(t)

dt

∣∣
t=tx

= AT(tx) + B (5.32)

Replace T(tx) based on equation (5.12) into the above, and after simplification, we

can derive

dT(t)

dt

∣∣
t=tx

= eA∆tdT(t)

dt

∣∣
t=t0

(5.33)

where ∆t = tx − t0. For each core Ci, from the above equation, we can directly get

that

dTi(t)

dt

∣∣
t=tx

=
Nc∑
j=1

eij ·
dTj(t)

dt

∣∣
t=t0

(5.34)

106

where eij is the item in the ith row and jth column of matrix eA∆t. On one hand, we

know that ∀eij ≥ 0 ([95]). One the other hand, we have that ∀dTi
dt
|t=t0 > 0. Thus,

we can derive

∀Ci ∈ C ,
dTi(t)

dt

∣∣
t=tx

> 0 (5.35)

Since tx is an arbitrary time instance within [t0, t1], equation (5.35) shows that

the temperature of each core will monotonically increase within the interval [t0, t1].

Similarly, if ∀Ci ∈ C , dTi
dt
|t=t0 ≤ 0, then we can prove that the temperature of

each core will monotonically decrease within [t0, t1]. Therefore, if inequality (5.30)

or (5.31) holds, the temperature of all cores will monotonically change. 2

Based on Lemma 5.4.1, we can easily derive the following property.

Corollary 5.4.2. Given a multi-core platform C and a state interval [t0, t1], if

equation (5.30) or (5.31) holds, then the peak temperature of that interval can be

detected at time t0 or t1.

Proof: According to Lemma 5.4.1, if equation (5.30) or (5.31) holds, then the

temperatures of all cores will either monotonically increase or decrease within [t0, t1].

Thus, the peak temperature must occur at one of the interval boundaries, i.e. t0 or

t1. 2

From Corollary 5.4.2, we can see that if the temperature of all cores are simul-

taneously increasing (decreasing) at t0, then the temperature keep monotonically

changing, thus we can directly detect the peak temperature at one the interval

boundaries, i.e. t0 or t1]. However, when the problems is, as shown in Figure 5.2,

the temperatures for some cores increase and some others decrease at t = t0, the

temperature variation of each core may become more complicated.

107

Lemma 5.4.3. Given a multi-core platform C and a state interval [t0, t1], for any

core Ci, Ci ∈ C, if it holds

dTi(t)

dt
|t=t0 ·

dTi(t)

dt
|t=t1 < 0 (5.36)

then there is one and only one time instance tx, tx ∈ [t0, t1], such that

dTi(t)

dt
|t=tx = 0 (5.37)

Proof: We first prove this property under a two-core platform scenario, then extend

to any multi-core platform scenario. Consider a two-core platform C = {C1, C2}.

Without loss of generality, let dT1(t)
dt
|t=t0 > 0 and dT1(t)

dt
|t=t1 < 0. According to

Lemma 5.4.1, we must have that dT1(t)
dt
|t=t0 < 0 (Otherwise, if dT1(t)

dt
|t=t0 > 0, then

both C1 and C2 will monotonically increase, which contradicts with dT1(t)
dt
|t=t1 < 0).

Then we know there must exist at least one time instance satisfies dT1(t)
dt

= 0. Let

tx represent the first time instance within [t0, t1] such that

tx = min{t
∣∣dT1(t)

dt
= 0, t ∈ [t0, t1]} (5.38)

If dT2(t)
dt
|t=tx < 0, based on Lemma 5.4.1, we know that T1(t) and T2(t) will mono-

tonically decrease from tx to t1. Otherwise, if dT2(t)
dt
|t=tx > 0, based on Lemma 5.4.1,

we would have that T1(t) and T2(t) will monotonically increase within [tx, t1], which

contradicts with our assumption since if equation (5.38) holds, then ∃ε > 0 such

that dT1(t)
dt
|t=tx+ε < 0. Based on the above analysis, we can see that tx is the unique

time instance within [t0, t1] such that dT1(t)
dt

= 0.

For any multi-core platform with more than 2 cores, from the circuit perspective,

when analyzing the temperature of the ith core that satisfies equation (5.36), we

can always combine all the other cores as an equivalent core, and then apply the

above procedure as what we did for a two-core platform to get the same conclusion.

Therefore, if the condition given by equation (5.37) holds, there must exist one and

only one time instance tx within [t0, t)1], such that dTi(t)
dt
|t=tx = 0. 2

108

5.4.3 Peak Temperature Detection Within A State Interval

Now we discuss how to effectively detect the peak temperature within a state interval

on a multi-core platform. In what follows, we first introduce three lemmas to help

us to detect the peak temperature under three different cases, respectively. Then

we introduce our proposed peak temperature detection algorithm to detect the peak

temperature for any state interval on a multi-core platform.

0 0.002 0.004 0.006 0.008 0.01
40

60

80

100

120

T
em

pe
ra

tu
re

 (
 o C

)

Time (s)

Core−1
Core−2

Figure 5.3: Ti(t) increases at both time t0 and t1.

Lemma 5.4.4. Given a multi-core platform C and a state interval [t0, t1], for any

core Ci, Ci ∈ C, if it holds

dTi
dt
|t=t0 ·

dTi
dt
|t=t1 > 0 (5.39)

then the peak temperature of core Ci within that interval can be detected at time t0

or t1.

Proof: Assume that dTi
dt
|t=t0 > 0 and dTi

dt
|t=t1 > 0 (see Figure 5.3). Then we

prove that Ti(t) will monotonically increase within [t0, t1] by contradiction. Assume

109

there exist a time instance tx, where tx ∈ [t0, t1] such that dTi
dt
|t=tx < 0. Then

there at least exist two time points ty1 and ty2, where ty1 < tx < ty2 such that

dTi
dt
|t=ty1 = dTi

dt
|t=ty2 = 0, which contradict with Lemma 5.4.3. Thus Ti(t) must

monotonically increase within [t0, t1]. Similarly, if dTi
dt
|t=t0 < 0 and dTi

dt
|t=t1 < 0, we

can get that Ti(t) must monotonically decrease within [t0, t1]. Therefore, if equation

(5.39) holds, the the peak temperature of core Ci can be directly detected at t0 or

t1. 2

0 0.002 0.004 0.006 0.008 0.01
40

60

80

100

120

T
em

pe
ra

tu
re

 (
 o C

)

Time (s)

Core−1
Core−2

Figure 5.4: Ti(t) decreases at time t0 and increases at time t1.

Lemma 5.4.5. Given a multi-core platform C and a state interval [t0, t1], for any

core Ci, Ci ∈ C, if it holds

dTi(t)

dt
|t=t0 < 0 and

dTi(t)

dt
|t=t1 > 0 (5.40)

then the peak temperature of core Ci within that interval can be detected at time t0

or t1.

110

Proof: According to Lemma 5.4.3, we know that there exist one and only one time

instance tx ∈ [t0, t1], such that dTi
dt
|t=tx = 0 (see Figure 5.4). Thus, we have

dTi(t)

dt
|t∈[t0,tx) < 0 and

dTi(t)

dt
|t∈(tx,t1] > 0 (5.41)

That means Ti(t) monotonically decreases within [t0, tx] and monotonically increases

within (tx, t1]. Thus, the peak temperature of core Ci within [t0, t1] can be detected

at time t0 or t1. 2

0 0.002 0.004 0.006 0.008 0.01
40

60

80

100

120

T
em

pe
ra

tu
re

 (
 o C

)

Time (s)

Core−1
Core−2

Figure 5.5: Ti(t) increases at time t0 and decreases at time t1.

Lemma 5.4.6. Given a multi-core platform C and a state interval [t0, t1], for any

core Ci, Ci ∈ C, if it holds

dTi
dt
|t=t0 > 0 and

dTi
dt
|t=t1 < 0 (5.42)

then the peak temperature of core Ci within that interval can be determined by using

the traditional binary search method.

111

Proof: According to Lemma 5.4.3, we know that there exist one and only one time

instance tx ∈ [t0, t1], such that dTi
dt
|t=tx = 0 (see Figure 5.5). Thus, peak temperature

of core Ci within that interval must occur at time t0, tc or t1. By applying the

traditional binary search method [32], we can easily get the peak temperature of

core Ci within that interval. 2

Based on Lemma 5.4.4- 5.42, we introduce our peak temperature detection algo-

rithm, denoted as TPeak Detection, to obtain the peak temperature among all cores

within a state interval.

Algorithm 6 TPeak Detection

Require:
1) [t0, t1] : a constant speed interval;
2) Tt0 : temperature vector at time t0;
3) κ : κ = {k1, k2, ..., kNc}, where ki is the ith core’s processing mode;

1: Tt1 = eAκ∆tT0 + A−1
κ (eAκ∆t − I)Bκ, where ∆t = t1 − t0;

2:
dT(t)
dt

∣∣
t=t0

= AκTt0 + Bκ and dT(t)
dt

∣∣
t=t1

= AκTt1 + Bκ;

3: Tmax = max{Ti(t)
∣∣ t = t0, t1; i = 1, 2, ..., Nc.};

4: for i = 1 to Nc do
5: if dTi(t)

dt

∣∣
t=t0

> 0, dTi(t)
dt

∣∣
t=t0

< 0 then

6: T peaki = calculate the peak temperature of core Ci according to Lemma 5.4.6;
7: Tmax = max{Tmax, T peaki };
8: end if
9: end for
10: return Tmax

Based on Algorithm 6, we can derive the following theorem.

Theorem 5.4.7. Given a multi-core platform C and a state interval [t0, t1] with

processing mode as κ, where κ = {k1, k2, ..., kNc}. If the starting temperature Tt0 is

known, then the maximum temperature (Tmax) among all cores within [t0, t1] can be

obtained by

Tmax = TPeak Detection(t0, t1,Tt0 , κ); (5.43)

112

Proof: For each core Ci, there are four different cases with respect of (dTi
dt
|t=t0 , dTidt |t=t1):

1) (> 0, > 0); 2) (< 0, < 0); 3)(< 0, > 0); 2) (> 0, < 0). For the case 1, 2 and 3,

according to Lemma 5.4.4 and Lemma 5.4.5, we can always detect the peak tem-

perature of core Ci at t0 or t1. For the last case, i.e. case 4, the corresponding

peak temperature can be detected by Lemma 5.4.6. By applying Algorithm 6, all

the above four cases will be considered (see line 3,6 and 7). Thus, the temperature

returned by Algorithm 6 must be the maximum temperature among all cores within

[t0, t1]. 2

Theorem 5.4.7 proves a way to effectively calculate the maximum temperature

within any constant speed interval (i.e. a state interval). In what follows, we further

discuss how to detect the peak temperature for a periodic speed schedule.

5.4.4 Peak Temperature Detection For A Periodic Schedule

Our goal is to ensure the peak temperature of the entire processor does not exceed

Tmax during its life time. Since the peak temperature of a state interval does not

necessary occur within the first scheduling period, where the system-wide peak

temperature can be? To sample temperatures using very short sampling period,

from the start to the time when system reaches the stable status, does not seem to

be a promising solution, given its prohibitive complexity. Fortunately, we have the

following theorem help us to limit the peak temperature at the system steady state.

Theorem 5.4.8. Given a multi-core platform C and a periodic speed schedule S,

if all cores start from the ambient temperature, then when repeating S, the peak

temperature occurs when temperature of the platform reaches its steady state, i.e.

max{T(t)
∣∣t ∈ [0, nL], n 7→ +∞} = max{Tss(t)

∣∣t ∈ [0, L]} (5.44)

113

Proof: Similarly with the proof of Theorem 5.3.2, for any counterpart time point

tq in two successive scheduling periods, i.e. the (n− 1)th period and the nth period,

where n ≥ 2, we can derive that

T(nL+ tq)−T((n− 1)L+ tq) = Kn
q · (T(L)−T(0))

If every core starts from the ambient temperature, i.e. T(0) = (T)amb, then we have

Ti(L)−Ti(0) ≥ 0, ∀Ci ∈ C. Moreover, we also know that every item in matrix Kn
q is

non-negative, i.e. eij ≥ 0 holds for ∀eij ∈ Kn
q . Thus, Ti(nL+tq)−Ti((n−1)L−tq) ≥

0. That means the temperature of a relative time point within any two successive

periods will monotonically increase until the system achieves the steady state. Thus

we can always determine the system peak temperature within the steady state.

According to our steady-state temperature formation shown in subsection 5.3.3, we

can easily derive the result as given by equation (5.44). 2

Note that when a processor runs with a periodic schedule and reaches the tem-

perature steady status, it does not mean that the temperature for each core remains

constant. Instead, it means that the temperature at starting points for all schedul-

ing periods are the same. To ease our effort in determining the feasibility under

peak temperature constraint, we next introduce three effective methods to test the

feasibility for a multi-core periodic schedule.

5.5 Feasibility Analysis For Multi-Core Scheduling With

Temperature Constraint

We are now ready to present our feasibility checking methods. In this section, we

present three methods to check if a periodic speed schedule can satisfy a given

maximum temperature constraint.

114

5.5.1 TmaxCheck: Feasibility Checking With Initial Tem-

perature As Tmax

As mentioned before, a schedule that is feasible for the first scheduling period under

Tmax cannot ensure that the maximum temperature constraint will not be violated

later. This is because that, after the first scheduling period, the cores need to run

at a higher initial temperatures, and thus potentially reaches even higher tempera-

tures. However, if for all the cores, the ending temperature of the first scheduling

period is no greater than the initial temperature, a feasible schedule within the

first scheduling period can ensure that the system feasibility in the future. We call

this feasibility checking method as TmaxCheck, and formally formulate it in the

following theorem.

Theorem 5.5.1. Given a periodic speed schedule S, if starting with initial temper-

ature as Tmax for all cores, S is feasible under Tmax for each state interval within

[0, L] by applying Algorithm 6, then when repeating S later, the temperature will

never exceed Tmax.

Theorem 5.5.1 can be proved by simply noting that, since Ti(L) ≤ Tmax for any

core Ci , thus Ti(L) ≤ T (0), according to Theorem 5.3.1, the second scheduling

period always starts at the same or a more favorable situation for core Ci. Thus, the

temperature constraint will not be violated in the future. In addition, the feasibility

under Tmax within the first scheduling period, i.e. [0, L], can be easily determined

by applying Algorithm 6 to each state interval within [0, L]. One problem for this

approach, however, is that it is very pessimistic to assume all cores have to start

with Tmax simultaneously. Therefore, the efficiency of Theorem 5.5.1 is limited.

115

5.5.2 ModeCheck: Feasibility Checking With Temperature

Safe Modes

According to our system models given in Section 5.2, each core can run in different

modes. For an arbitrary processing core Ci, there may exist certain processing modes

such that if all other cores do not exceed the temperature constraint (i.e. Tmax),

then Ci will never exceed Tmax. We call such modes as the safe modes of core Ci.

Once we have identified the safe modes of all cores, we can predict the feasibility of

a speed schedule by checking whether all processing modes of each core belong to

its safe mode set. For the rest of this subsection, we first discuss how to identify the

safe modes of each core, then we present a new feasibility checking method based

on the identified safe modes.

max()y T v Qα β= − + + 

3y vγ= 

max 1()y T v Qα β= − + + 

max 2()y T v Qα β= − + + 

3y vγ= 

y y

vv

Q

(a) special scenario

max()y T v Qα β= − + + 

3y vγ= 

max 1()y T v Qα β= − + + 

max 2()y T v Qα β= − + + 

3y vγ= 

y y

vv

(b) general scenario

Figure 5.6: Equilibrium voltage of core Ci under processing mode ki. a) all other
cores except Ci are under fixed constant processing modes; b) all other cores except
Ci are under any arbitrary available processing modes.

Without loss of generality, we consider an arbitrary core Ci and one of its pro-

cessing modes ki. In order to determine mode ki is a safe mode of core Ci, we need

to guarantee that the temperature of Ci always stays below Tmax under that specific

116

mode. Recall that the thermal model of core Ci is given by equation (5.6). According

to equation (5.6), the power constant consumption needed for core Ci’s temperature

to saturate at Tmax can be obtained by

dTi(t)

dt

∣∣
t=t̃

= 0 (5.45)

where t̃ is a time point such that Ti(t̃) = Tmax. By applying the above into equation

(5.6), we can derive

γki · v3
ki

= −(αki + βki · Tmax) · vki +Qi (5.46)

where

Qi =
Tmax − Tamb

Rii

+
∑
j 6=i

Tmax − Tj
Rij

(5.47)

Note that equation (5.46) is the classic depressed cubic equation [94] with respect of

vki . Since γki > 0 and −(αki + βki · Tmax) < 0, equation (5.47) has only one single

real root for vki under a fixed constant speed configuration for all other processors,

which can be solved analytically (see Figure 5.6(a)). We call the solution of equation

(5.47) under a fixed speed configuration as an equilibrium voltage of core Ci, denoted

by ṽki . Thus, we see if vi ≤ ṽki and all other cores are under that corresponding

speed configuration, then the temperature of core Ci will never exceed Tmax.

Moreover, from our thermal model of core Ci (given by equation (5.6)), we can

observe that the higher the temperatures of all other cores, the higher the rate that

core Ci can increase its own temperature. Thus, the worst-case equilibrium voltage

of core Ci under processing mode ki must occur when the temperatures for the rest

of the cores are all Tmax, i.e. Tj(t) = Tmax for ∀j, j 6= i. From Figure 5.6(b),

we can also see that when Qi achieves the minimum value (which means all other

cores except Ci achieve Tmax), the equilibrium voltage of Ci will achieve its minimum

(worst-case) value.

QWC
i =

Tmax − Tamb
Rii

(5.48)

117

We call the solution of equation (5.46) under the above condition, i.e. equation

(5.48), as a worst-case equilibrium voltage of core Ci under processing mode ki, and

denote it as ˜̃vki . In fact, ˜̃vki is the maximal voltage that can keep the temperature

of Ci always staying below Tmax under the coefficients of that specific mode. Then

we formally define the safe mode for a core as follows.

Definition 5.5.2. Let ˜̃vki be the worst-case equilibrium voltage of core Ci under

processing mode ki. Then the processing mode ki is a safe mode of core Ci if vki ≤ ˜̃vki.

With the help of Definition 5.5.2, we can establish another feasibility checking

method, called ModeCheck, in the following theorem.

Theorem 5.5.3. Given a periodic speed schedule S, if the highest speed in S of each

core belongs to one of its safe modes, then temperature will never exceed Tmax.

Proof: The proof is done by contradiction. Consider an arbitrary core Ci, and

assume that at time t = t0 we have that Ti(t) = Tmax but at time t = t0 +4t, we

have Ti(t) > Tmax, while temperatures of the rest of the cores are all below Tmax.

Based on our assumption, we must have that

dTi(t)

dt

∣∣
t=t0

=
dTi(t)

dt

∣∣
Ti(t)=Tmax

> 0 (5.49)

On the other hand, from equation (5.6), we can derive that

Ci ·
dTi(t)

dt

∣∣
t=t0

= γki · v3
ki

+ (αki + βki · Tmax) · vki −Qi (5.50)

where Qi = Tmax−Tamb
Rii

+
∑

j 6=i
Tmax−Tj

Rij
. Since core Ci runs at a safe mode and all

other cores are below Tmax, we have vki ≤ ˜̃vki and Qi ≥ Tmax−Tamb
Rii

= QWC
i . Apply

these to the above, we get

Ci ·
dTi(t)

dt

∣∣
t=t0

≤ γki · ˜̃v3
ki

+ (αki + βki · Tmax) · ˜̃vki −QWC
i (5.51)

118

Replace the right side of the above with equation (5.46), we can derive that dTi(t)
dt

∣∣
t=t0
≤

0, which contradicts equation (5.49). 2

Note that, as long as the maximum temperature Tmax and the multi-core plat-

form are given, the safe modes for each core can be readily determined. This method

is particular useful when it is much less costly to get the maximum speed of core Ci

in a schedule (such as those generated by the approach in [120]) rather than to get

the entire speed schedule for periodic tasks on each core. At the same time, this

feasibility condition is still only a sufficient condition. In other word, this method

cannot be applied to the scenarios when the maximum core speed is higher than

the maximum safe speed. In what follows, we introduce another much stronger

feasibility checking method.

5.5.3 TssCheck: Feasibility Checking With Steady-State Tem-

perature Formula

Before introduce our third method, we define an operator, denoted by 4, such that

T(tq) 4 T(tp) is equivalent to Ti(tq) ≤ Ti(tp) for i = 1, 2, ...,m. Then we present a

new feasibility checking method, called TssCheck, which provides a much strong

condition for checking the feasibility of a periodic speed schedule with maximum

temperature constraint.

Theorem 5.5.4. Given a periodic speed schedule S, when repeating S later, the tem-

perature will never exceed Tmax if for any state interval within [0, L], i.e. ∀[tq−1, tq] ⊆

[0, L], the following conditions hold:

• |λi| < 1, for each eigenvalue λi of K;

• T(t∗q) 4 Tmax −Kq∗ · (I−K)−1 · (T(L)−T(0))

119

where T(t∗q) is the maximum temperature within [tq−1, tq] and t∗q is the corresponding

time instance, both of which can be obtained by applying Algorithm 6.

Proof: The idea is to make sure Tmax is not violated within any state interval during

the system stable status. Consider an arbitrary state interval [tq−1, tq], let T(t∗q) and

t∗q be maximum temperature and the corresponding time instance, both of which

can be obtained by applying Algorithm 6. Then according to Theorem 5.3.3, the

system temperatures can achieve a stable state iff |λi| < 1, for each eigenvalue λi of

K. In this condition, (I −K) is invertible, then we have

Tss(t
∗
q) = T(t∗q) + Kq∗ · (I−K)−1 · (T(L)−T(0))

Thus, Tss(t
∗
q) 4 Tmax, if and only if

T(t∗q) 4 Tmax −Kq∗ · (I−K)−1 · (T(L)−T(0))

2

From Theorem 5.5.4, we can determine the feasibility of a given speed schedule

by checking the temperatures only at the end of all state intervals within the first

scheduling period. In the next section, we conduct experiments to evaluate our

proposed temperature calculation technique and feasibility checking methods.

5.6 Experimental Evaluations

In this section, we present a detailed discussion for our experimental evaluation of

the proposed techniques and feasibility checking methods.

Our multi-core platform consists of total nine homogenous processing cores

placed as a 3 × 3 mesh. As the goal of this work is to study system level thermal

behavior of each core on a multi-core platform, we simplified the granularity of the

120

floorplan to core level. Based on the processor model proposed in [79], we adopted

65nm technology node and applied the corresponding chip parameters. Specifically,

we used HotSpot-5.02 [108] as the reference thermal model, to compare the accuracy

and computational effectiveness of our temperature calculation method. We showed

the configuration parameters of HotSpot and our thermal model in Table 5.1 and

Table 5.2, respectively.

Table 5.1: HotSpot parameters and floorplan
Parameter Value
Total Cores 9 (3x3)
Area per Core 4 mm2

Die Thickness 0.15 mm
Heat Spreader Side 20 mm
Heat Sink Side 30 mm
Convection Resistance 0.1 K/W
Convection Capacitance 140 J/K
Ambient Temperature 35oC
Sampling Interval 10 ms

In the rest of this section, we first present an accuracy analysis for our tempera-

ture calculation approach. Then we evaluate the performance of our proposed three

feasibility checking methods.

5.6.1 Accuracy Analysis Of Our Analytical Temperature

Calculation Method

We first examined the accuracy of the proposed system level analytical temperature

calculation method with HotSpot simulator. For each core, we selected a single

constant speed within [0.6 : 0.05 : 1.3]. Then we let all cores run under the selected

speed(s) by 10 seconds. To calculate and compare the temperature traces obtained

by our method and HotSpot, we assumed a sampling interval as 10ms, and further

121

Table 5.2: Power/thermal parameters
Vdd(V) α β γ

0.00 0 0 0
0.60 0.0012 0.0098 7.2564
0.65 0.0224 0.0103 7.2564
0.70 0.0493 0.0109 7.2564
0.75 0.0838 0.0114 7.2564
0.80 0.1282 0.0120 7.2564
0.85 0.1857 0.0126 7.2564
0.90 0.2607 0.0133 7.2564
0.95 0.3591 0.0140 7.2564
1.00 0.4890 0.0147 7.2564
1.05 0.6611 0.0154 7.2564
1.10 0.8904 0.0162 7.2564
1.15 1.1972 0.0170 7.2564
1.20 1.6091 0.0178 7.2564
1.25 2.1640 0.0187 7.2564
1.30 2.9135 0.0197 7.2564

assumed one LCM contained 10 sampling intervals (note that each sampling interval

was a state interval since each core run under a constant speed). On one hand, we

calculated one temperature trace (which contained 10s/(10 ∗ 10ms) = 100 LCMs)

by our proposed analytical method shown in equation (5.23). On the other hand,

we generated the corresponding power trace under our sampling interval length (i.e.

10ms), and then used HotSpot to obtain another temperature trace. We compared

two temperature traces with respect of each core, and based on different physical

locations on a 3x3 mesh (i.e. corner core, boundary core and the central core), we

plotted three groups of results in Figure 5.7.

Figure 5.7 shows the experimental result of the accuracy of our proposed tem-

perature calculation method (given by equation (5.23)) under voltage 1.3V . From

Figure 5.7(a), 5.7(b) and 5.7(c), we can see that the temperature calculated by our

analytical method matches closely with HotSpot’s simulation result. For example,

the maximum temperature error between HotSpot and out method is 2.27oC in

122

0 2000 4000 6000 8000 10000
60

70

80

90

100

110

120

T
em

pe
ra

tu
re

 (o C
)

Time (ms)

HotSpot
Our

(a) core 1 (corner core)

0 2000 4000 6000 8000 10000
60

70

80

90

100

110

120

T
em

pe
ra

tu
re

 (o C
)

Time (ms)

HotSpot
Our

(b) core 2 (boundary core)

0 2000 4000 6000 8000 10000
60

70

80

90

100

110

120

T
em

pe
ra

tu
re

 (o C
)

Time (ms)

HotSpot
Our

(c) core 5 (central core)

Figure 5.7: Accuracy analysis of our proposed temperature calculation method.

Figure 5.7(a), 2.37oC in Figure 5.7(b) and 2.5oC in Figure 5.7(c).

Moreover, our proposed method outperforms HotSpot simulation on computa-

tional time for calculating temperature traces with the same length. In this exper-

iment, we observed that our proposed method was at least 100 times faster than

HotSpot, 0.169s versus 18.825s for the the experiment conducted in Figure 5.7.

This is because the proposed method determines temperature based on temperature

within the first scheduling period only, while HotSpot requires to repeat periodic

iterations until the end time of the entire schedule.

123

5.6.2 Steady-State Peak Temperature Variation Under Dif-

ferent Constant Speeds

In this experiment, we studied the peak temperature variation in the thermal stable

state (also called system steady state) under different constant speeds. We let all

cores run at the same speed/voltage from 0.6V to 1.3V , and used our closed-form

steady-state temperature computation method, given by equation (5.25), to quickly

calculate the steady-state temperature of all cores. In order to apply our steady-state

temperature formula given by equation (5.25), we assumed one LCM contained 10

state intervals, each of which was with a length of 10ms. And we assumed all cores

started at the ambient temperature, i.e. 35oC. After computing the steady-state

temperature under each constant speed, we recorded the maximal peak temperature

among all cores, and plotted the corresponding result in Figure 5.8.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
40

50

60

70

80

90

100

110

120

130

P
ea

k
T

em
pe

ra
tu

re
 (

 o C
)

Speed/Voltage Level (V)

based on Tss formula

Figure 5.8: Steady-state temperature under different constant speeds with our an-
alytical steady-state temperature formula.

124

Figure 5.8 shows the trend of steady-state peak temperature for a 3 × 3 multi-

core system under different single speeds/voltages. From Figure 5.8, we can clearly

observe the value of steady-state peak temperature under each speed/voltage level.

For example, in Figure 5.8, when the speed/voltage level was set to 1.3V, the peak

temperature of the entire system could reach almost up to 120oC. Figure 5.8 can

help us to quickly get an intuition of the peak temperature variation under different

speed/voltage levels.

5.6.3 Threshold Temperature Determined By TmaxCheck

Recall that in Section 5.5.1, we proposed a feasibility checking method, called

TmaxCheck, to predict the schedulability of a given schedule by initializing all

cores with certain pre-defined temperature constraint, i.e. Tmax. In steady of giving

a Tmax to determine the schedulability of a schedule, given a single speed schedule,

we can predict a feasible Tmax, called threshold temperature, which is the lowest

temperature that can be used as the temperature constraint without any violation

for that speed schedule. In the rest of this part, we studied the property of thresh-

old temperature by varying the speed/voltage level from 0.6V to 1.3V with a step

width of 0.05V . Under each speed/voltage level, we applied TmaxCheck method

to find the threshold temperature by enumerating Tmax within [40oC, 130oC]. The

corresponding result was collected and plotted in Figure 5.9.

Figure 5.9, similar to Figure 5.8 also gives an intuition of a boundary of the

maximal temperature that can be safely used as the temperature constraint for a

single speed schedule.

125

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
40

50

60

70

80

90

100

110

120

130

T
hr

es
ho

ld
 T

em
pe

ra
tu

re
 (

 o C
)

Speed/Voltage Level (V)

based on TmaxCheck

Figure 5.9: Threshold temperature determined by TmaxCheck under different volt-
ages.

5.6.4 Worst-Case Equilibrium Voltage Determined By Mod-

eCheck

The ModeCheck method, as one of our proposed feasibility checking methods, is

one and the only one method that determines the feasibility of a schedule without

any computation of temperature calculation. Regardless of what speed schedule

is given, once the temperature constraint (Tmax) is determined, the ModeCheck

method can compute a worst-case equilibrium voltage (see Section 5.5.2), which

represents the maximum safety voltage that can be used under Tmax. This worst-case

equilibrium voltage can be further used to decide whether an available processing

mode is safe or not. In this experiment, we will analyze the relationship between

the temperature constraint and worst-case equilibrium voltage.

We varied the maximum temperature constraint (Tmax) from 40oC to 130oC

with an increment of 5oC. Under each temperature constraint, we applied the

126

approach introduced in ModeCheck method (see Section 5.5.2) to calculate the

corresponding worst-case equilibrium voltage.

40 50 60 70 80 90 100 110 120 130
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

W
or

st
−

C
as

e
E

qu
ili

br
iu

m
 V

ol
ta

ge
 (

V
)

Maximum Temperature (oC)

based on ModeCheck

Figure 5.10: Worst-case equilibrium voltage determined by ModeCheck under dif-
ferent maximum temperature constraints.

Figure 5.10 shows the experimental result of the worst-case equilibrium voltage

with respect of the maximum temperature constraint. From Figure 5.10, we can

directly find the threshold voltage under each temperature constraint, and thus fur-

ther determine the safe processing mode for the entire multi-core system under that

specific temperature constraint. For example, in Figure 5.10, when the maximum

temperature was set to 90oC, the corresponding worst-case equilibrium voltage was

1.13V , thus processing modes with voltage as 0.6V, 0.65V, 0.7V, ..., 1.10V are all safe

modes.

127

5.6.5 Performance Comparison For Different Feasibility Check-

ing Methods

40 50 60 70 80 90 100 110 120 130
0

10
20
30
40
50
60
70
80
90

100
R

at
io

 o
f F

ea
si

bl
e

S
ch

ed
ul

es
 (

%
)

Temperature (oC)

TmaxCheck
ModeCheck
TssCheck
NHTCheck

(a) ASU = 0.4

40 50 60 70 80 90 100 110 120 130
0

10
20
30
40
50
60
70
80
90

100

R
at

io
 o

f F
ea

si
bl

e
S

ch
ed

ul
es

 (
%

)

Temperature (oC)

TmaxCheck
ModeCheck
TssCheck
NHTCheck

(b) ASU = 0.6

40 50 60 70 80 90 100 110 120 130
0

10
20
30
40
50
60
70
80
90

100

R
at

io
 o

f F
ea

si
bl

e
S

ch
ed

ul
es

 (
%

)

Temperature (oC)

TmaxCheck
ModeCheck
TssCheck
NHTCheck

(c) ASU = 0.8

Figure 5.11: Feasibility ratios under different maximum temperatures.

We then evaluated the performance of our proposed feasibility checking methods

in this part. Our proposed three feasibility checking methods were studied: Tmax-

Check (see Theorem 5.5.1), ModeCheck (see Theorem 5.5.3) and TssCheck (see

Theorem 5.5.4). Moreover, we conducted another no heat transfer feasibility check-

ing method, denoted as NHTCheck, which ignored any heating transfer among

any two cores and thus tested the feasibility of each core isolatedly as a single-core

scenario. NHTCheck was used as a cross-reference for our proposed three fea-

sibility checking methods. Three sub-experiments were conducted under different

128

average system utilizations (ASU), i.e. ASU is 0.4, 0.6 and 0.8. Within each sub-

experiment, we generated 200 periodic speed schedules, each of which was composed

of a group of state intervals with lengths evenly distributed within [50ms, 200ms]

and total utilization was equal to the ASU of that sub-experiment. The ambient

temperature (Tamb) was set to 35oC, and the maximum temperature constraint was

varied from 40oC to 130oC with an increment of 5oC. We collected the numbers of

feasible task sets by different methods and computed the ratio of feasible task sets

over the entire test cases. The corresponding result was plotted in Figure 5.11.

Figure 5.11 shows the feasibility checking results of different approaches under

three configurations of average systems utilization, i.e. ASU is 0.4, 0.6 and 0.8. From

Figure 5.11, we can see that NHTCheck would incorrectly predict some infeasible

schedules as feasible compared with TssCheck. For example, in Figure 5.11(a),

when the temperature constraint was set to 50oC, TssCheck gave a feasible ratio

no more than 25%, while NHTCheck predicted feasible schedules up to 45%. This

is because NHTCheck ignores the heat transfer among different cores, which lead

to a lower temperature result during the temperature calculation, and finally results

to let some infeasible schedules pass the feasibility test.

From Figure 5.11, we can also observe that TssCheck performs better than

TmaxCheck and ModeCheck. For example, in Figure 5.11(b), when the maxi-

mum temperature was set to 70oC, TssCheck presented a feasible checking result

up to 72% of the original schedules, while TmaxCheck and ModeCheck only pre-

dicted 43% and 15% feasible schedules, respectively. Moreover, from Figure 5.11(a),

5.11(b) and 5.11(c), we can further observe that with the increment of average sys-

tem utilization, the feasibility under each temperature constraint had a dramatic

drop for all three approaches. For example, when the maximum temperature was set

to 70oC, the ratio of feasible schedules by TssCheck was 98% in Figure 5.11(a), 72%

129

in Figure 5.11(b) and 0% in Figure 5.11(c). This is because under DVFS scheduling,

the average processor running speed for light loaded system (e.g. ASU is 0.4) will

be lower than that of heavy loaded system (e.g. ASU is 0.6 or 0.8). As we know, the

overall power consumption and the peak temperature under higher system utiliza-

tion will be larger than that under lower system utilization. Thus, under the same

maximum temperature constraint, the system feasibility could significantly decrease

with the increment of system utilization.

Through this experimental result, we can also conclude that temperature fac-

tor does have an important impact on system feasibility for multi-core real-time

scheduling.

5.7 Summary

Feasibility checking problem is one of the most fundamental problems in real-time

embedded system design. This problem becomes much more difficulty and challeng-

ing when shifting from single-core platforms to multi-core platforms, particularly

under maximum temperature constraint.

This work studies the feasibility checking problem for real-time periodic speed

schedule on multi-core platforms under maximum temperature constraint. We

present a number of novel analytical solutions for temperature calculation, i.e. the

temperatures within an arbitrary LCM and the thermal steady-state. Then we pro-

pose a complete solution to effectively and efficiently detect the peak temperature

for a periodic speed schedule on a multi-core platform. We further introduce three

temperature-constrained feasibility checking methods, i.e. TmaxCheck, Mod-

eCheck and TssCheck. Our proposed techniques form the basis of more advanced

thermal aware real-time embedded system design on multi-core platforms.

130

CHAPTER 6

LEAKAGE-AWARE ENERGY ESTIMATION FOR MULTI-CORE

REAL-TIME SCHEDULING

In this chapter, we further extend our research to energy minimization problem

with thermal impacts taken into considerations. One of the fundamentals in energy

efficiency design is to calculate the energy consumption effectively and efficiently for

a design alternative. To accurately and also quickly estimate the energy consump-

tion for a voltage/frequency scheduling on multi-core platforms, there are two major

challenges: 1) how to address the interdependency of leakage and temperature ap-

propriately, and 2) how to deal with the heat transfer among different processing

cores. First, by considering the leakage/temperature dependency, the leakage power

consumption (and thus the overall power consumption) varies with the tempera-

ture, and temperature changes with the power consumption as well. This interde-

pendency between leakage and temperature makes the power calculation, thus the

energy calculation, much complicated and difficult. Second, by further considering

the heat transfer among different cores, the solution of power consumption becomes

even more challenging, i.e. leading to the problems of matrix exponential operation

and its corresponding integration, which may not always have explicit analytical

solutions. In this chapter, we present a fast and accurate method to calculate the

overall energy consumption for a given voltage schedule on multi-core platforms.

Different from the traditional numerical method for energy calculation, we develop

a closed-form analytical solution for the overall energy consumption under a given

multi-core schedule.

131

6.1 Related Work

A key problem in energy efficiency design is to calculate the energy consumption for

a design alternative. Earlier research, e.g. [119, 76], has been exclusively focused

on dynamic energy consumption. Some later research such as that in [62] takes

the leakage power into consideration, but assumes that leakage power is constant.

Under this assumption, the calculation of energy consumption for a given voltage

schedule is trivial, since the overall power consumption remains the same as long

as a system keeps the same running voltage and frequency. However, when con-

sidering the leakage/temperature dependency, the problem substantially becomes

more challenging since the leakage power consumption (and thus the overall power

consumption) varies with the temperature, and temperature changes with the power

consumption as well. The energy calculation problem becomes even more compli-

cated for multi-core platforms when the leakage power of one core depends not only

on its own temperature, but also temperatures from other cores as well.

To calculate the overall energy consumption with leakage/temperatue depen-

dency taken into consideration, one intuitive and commonly adopted approach is

to use the numerical method. According to this method, the entire voltage sched-

ule is split into a set of small time intervals such that within each interval the

voltage/frequency and temperature of all cores can be regarded as invariant. The

temperature and power trace, and thus the energy consumption, for a schedule can

be obtained accordingly. For example, Liu et al. [86] formulated the energy mini-

mization under a peak temperature as a non-linear programming problem, and then

employed the above mentioned method to calculate the energy consumption. Bao

et al. [17] also used the similar approach to keep track of temperature variations,

and proposed an energy minimization method by dynamically selecting the supply

132

voltage. One major problem of this approach is that the accuracy significantly de-

pends on the variation rate of power and temperature. To achieve high accuracy,

the length of the interval needs to be kept very small and thus the computation cost

can be very high. Huang et al. [57] proposed a different approach to calculate the

energy consumption. Based on leakage/temperature dependency model proposed

in [100], they developed an analytical closed-form energy estimation method for a

schedule. However, their work can only be applied for single core platforms, since

when extending to multi-core platforms, the heat transfer among different cores

makes the existed energy calculation formula unsolvable. Sharifi et al. [105] pro-

posed a thermal aware power estimation method for heterogeneous MPSoCs with

an objective to optimize p-state per core (not energy estimation), but energy cal-

culation is not a straight forward integration of the power over time due to the

temperature variation and the unknown solution of certain matrix operation, i.e.

how to solve exponential matrix integration. We are not aware of any other tech-

nique published to analytically calculate the multi-core energy consumption with

temperature/leakage dependency taken into consideration.

6.2 Preliminary

6.2.1 System Models

The real-time system considered in this work consists of M cores, denoted as P =

{P1,P2, ...,PM}. Each core has N running modes, each of which is characterized by

a pair of parameters (vk, fk), where vk and fk are the supply voltage and working

frequency under mode k, respectively. Assume that a speed schedule S (see Chapter

5) is given.

133

Recall that, in Chapter 5, we have already defined our power model and thermal

model. To ease our presentation, we rewrite the formulas of power and thermal

models below

P(t) = Θ + ΦT(t) (6.1)

C
dT(t)

dt
+ gT(t) = P(t) + δ (6.2)

where Θ and Φ are power related coefficient matrices, and C, g and δ are thermal

related coefficient matrices.

6.2.2 Temperature Calculation

Recall that, in Chapter 5 we have proposed an analytical solution to calculate the

temperature dynamics at any time instant for a given speed schedule. To keep

the integrity of this chapter itself, we briefly present the solution of temperature

calculation below.

By applying the power model (see equation (6.1)) into the thermal model (see

equation (6.2)), we can directly obtain that

C
dT(t)

dt
+ gT(t) = Θ + ΦT(t) + δ (6.3)

Let G = g−Φ, then the above equation can be rewritten as

C
dT(t)

dt
+ GT(t) = Θ + δ (6.4)

Since C is the capacitance matrix with none zero values only on the diagonal, we

know C is nonsingular. Thus, the inverse of C, i.e. C−1 exists. Then equation (6.4)

can be further represented as

dT(t)

dt
= AT(t) + B (6.5)

134

where A = −C−1G and B = C−1(Θ + δ). The system thermal model shown in

equation (6.5) has a form of first order Ordinary Differential Equations (ODE),

which has the following solution under constant coefficients:

T(t) = etAT0 + A−1(etA − I)B (6.6)

where T0 is the initial temperature.

Specifically, for a state interval [tq−1, tq], and let κq be the corresponding interval

mode, once the temperates at the starting point, i.e. T(tq−1), are given, according

to equation (6.6), the ending temperatures of that interval, i.e. T(tq−1), can be

directly formulated as

T(tq) = e∆tqAκqT(tq−1) + A−1
κq (e∆tqAκq − I)Bκq (6.7)

where Aκq = −C−1Gκq , Bκq = C−1(Θκq + δ), and ∆tq = tq − tq−1. Note that since

Aκq and Bκq are only dependent on the core running modes, i.e. κq, within a state

interval [tq−1, tq], both Aκq and Bκq are constant.

Consequently, given a speed schedule S and the corresponding initial temperature

T(0), with the method introduced above, we can obtain the temperature traces of

S by successively calculating the temperature from one state interval to another.

6.3 Energy Calculation For Multi-Core Scheduling With

Thermal Awareness

With the temperature formulation introduced as above, we are now ready to discuss

our method to formulate the energy consumption on multi-core systems considering

the interdependence of leakage power and temperature. In what follows, we first

present an analytical solution to calculated the energy consumption for one state

135

interval. Then we formulate the total energy consumption for the entire speed

schedule.

Consider a state interval, i.e. [tq−1, tq] with initial temperature of T(tq−1). The

energy consumption of all cores within that interval can be simply formulated as

E(tq−1, tq) =

∫ tq

tq−1

P(t)dt (6.8)

Based on our system power model, given by equation (6.1), we have

E(tq−1, tq) = ∆tqΘ + Φ

∫ tq

tq−1

T(t)dt (6.9)

For a given state interval and multi-core platform, note that, θi = αki · vki + γki · v3
i

and φi = βki · vki , thus Θ is a constant. Therefore, to calculate E(tq−1, tq), we only

need to get
∫ tq
tq−1

T(t)dt.

Recall that the analytical solution for T(t) is given by equation (6.6). One

intuitive approach is therefore to find
∫ tq
tq−1

T(t)dt as follows:∫ tq

tq−1

T(t)dt

=

∫ tq

tq−1

(
etAT(tq−1) + A−1(etA − I)B

)
dt (6.10)

=

∫ tq

tq−1

etAdtT(tq−1) + A−1
(∫ tq

tq−1

etAdt− tI
)
B (6.11)

The problem of this approach is that we need to find
∫ tq
tq−1

etAdt, but unfortunately,

we are not aware of any existing method or mathematical tools that can be used to

solve the problem of exponential matrix integration. Therefore, to replace T(t) in

equation (6.9) with equation (6.6) does not seem to be a promising approach.

Note that, as long as we can get
∫ tq
tq−1

T(t)dt, we find the solution to the overall

energy consumption for state interval [tq−1, tq]. If we let X =
∫ tq
tq−1

T(t)dt, then the

above can be simplified as

E(tq−1, tq) = ∆tqΘ + ΦX (6.12)

136

In what follows, we introduce a novel method to calculate X. Recall that the

system thermal model can be formulated as (see equation (6.4)):

C
dT(t)

dt
+ GT(t) = Θ + δ

Since C,G,Θ and δ are all constants within interval [tq−1, tq], if we integrate on

both sides of the above equation with respect to time t, where t ∈ [tq−1, tq], we have

C∆Tq + G

∫ tq

tq−1

T(t)dt = ∆tq(Θ + δ) (6.13)

where ∆Tq = T(tq)−T(tq−1) and ∆tq = tq− tq−1. If we further replace
∫ tq
tq−1

T(t)dt

with X, we have

C∆Tq + GX = ∆tq(Θ + δ) (6.14)

Now let H be that

H = ∆tq(Θ + δ)−C∆Tq (6.15)

Note that, based on equation (6.7), ∆Tq can be easily calculated as

∆Tq = T(tq)−T(tq−1). (6.16)

Therefore, H can be easily obtained once the state interval [tq−1, tq] is defined.

Accordingly, from equation (6.14), we can get

GX = H (6.17)

Assuming G is nonsingular, X can thus be solved as

X = G−1H (6.18)

By applying equation (6.18) into (6.12), we can get that

E(tq−1, tq) = ∆tqΘ + ΦG−1H (6.19)

137

As such, given a multi-core platform and a state interval, the energy consumption

within the interval can be calculated using equation 6.19 analytically. We formally

present our energy calculation method for a state interval in Theorem 6.3.1.

Theorem 6.3.1. Given a state interval [tq−1, tq] ∈ S with Tq−1 the temperature

at time tq−1, the overall system energy consumption within interval [tq−1, tq] can be

formulated as

E(tq−1, tq) = ∆tqΘκq + ΦκqG
−1
κq Hκq (6.20)

Note that given a speed schedule and initial temperature, the temperature at

the ends of each state interval can be readily determined using equation (6.7). For

a speed schedule S consisting of Q state intervals, the total system energy consump-

tion under S can be obtained by summing up the energy consumptions of all state

intervals. We conclude this energy calculation method in Theorem 6.3.2.

Theorem 6.3.2. Given an initial temperature T0 and a speed schedule S consist-

ing of Q state intervals, the total system energy consumption under S, denoted as

Etotal(S), can be calculated as

Etotal(S) =

Q∑
q=1

M∑
i=1

Ei(tq−1, tq) (6.21)

where Ei(tq−1, tq) can be calculated from equation (6.20).

The computational complexity for our energy calculation of each state interval

mainly comes from the matrix multiplications and inversions, with a complexity of

O(M3). To calculate the overall energy consumption for a schedule with Q state

intervals, the complexity is thus O(Q ×M3). In what follows, we use experiments

to evaluate the performance of our proposed method.

138

6.4 Experiments And Results

In this section, we validated the proposed energy calculation method with simula-

tions. We compared our proposed method with the traditional numerical method

to obtain some insights with regard to the effectiveness and efficiency of an en-

ergy estimation approach. In what follows, we first introduce the settings for our

experiments. We then present and discuss the experimental results.

6.4.1 Experimental Setup

Table 6.1: HotSpot parameters and floorplan
Parameter V alue
Total Cores 9 (3x3)

Area per Core 4 mm2

Die Thickness 0.15 mm
Heat Spreader Side 20 mm

Heat Sink Side 30 mm
Convection Resistance 0.1 K/W

Convection Capacitance 140 J/K
Ambient Temperature 30oC

Table 6.2: Power/thermal parameters
Vdd(V) α β γ

0.0 0.0 0.0 0.0
0.8 1.4533 0.0760 6.0531
0.9 2.4173 0.0844 5.8008
1.0 4.0533 0.0936 5.8906

We performed our experimental simulations based on a 3× 3 multi-core system.

The granularity of the floorplan was restricted to core-level. Our core model was

based on 65nm technology as presented in [80]. We assumed that each core supports

3 active modes with supply voltage ranging from 0.8V to 1.0V and a step size of

0.1V . We also set one inactive/sleep mode with supply voltage equal to 0V .

139

We adopted the same thermal parameters as used in work [97] (see Table 6.4.1).

We set the power consumption under the peak temperature constraint of 1100C. The

thermal parameters, including thermal conductance, capacitance etc. were taken

from HotSpot-4.02 [1]. The thermal nodes in our thermal model included active

layer, interface layer, heat spreader and heat sink. The relevant useful parameters

were shown in Table 6.4.1. We set the ambient temperature Tamb as well as the

initial temperature T0 as 30oC.

We randomly generated 50 multi-core speed schedules as our test cases. The run-

ning mode for each scheduling interval was randomly chosen from [0, 0.8, 0.9, 1.0]V

(see Table 6.4.1). The total length of the scheduling interval was evenly distributed

within [100, 200], and the length of each scheduling interval was evenly distributed

within [30, 50]. For each test case, our proposed method as well as the traditional

numerical method with sampling interval length varied from 0.5 second to 3.0 sec-

ond were used to calculate the energy consumption. The baseline was obtained

by setting the length of sampling interval to 0.01. When applying the numerical

method, we calculated the leakage power consumption based on the accurate circuit

level leakage temperature model [80], i.e.

Ileak = Is · (A · T 2 · e((a·Vdd+b)/T) + B · e(c·Vdd+d)) (6.22)

where Is is the leakage current at certain reference temperature and supply voltage,

T is the core temperature, and A,B, a, b, c, d are physically determined constants

(i.e. fitting parameters). All simulations were conducted on a Dell Precision T1500

Desktop Workstation with CPU type of Intel i5 750 Quad Core and 4GB memory

capacity.

140

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

E
ne

rg
y

D
iff

er
en

ce
 R

at
io

(%
)

Test Case Number

ts=0.5
ts=1.0
ts=1.5
ts=2.0
ts=2.5
ts=3.0

(a) Numerical method

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E
ne

rg
y

D
iff

er
en

ce
 R

at
io

(%
)

Test Case Number

our method
ts=1.0
ts=1.5
ts=2.0

(b) Our proposed method

Figure 6.1: Accuracy analysis, compared with the numerical method under ts = 0.01

141

6.4.2 Accuracy Analysis

In this subsection, we investigate the performance of our proposed method in terms

of accuracy. To compare the accuracy of different energy estimation approaches, we

need to identify the accurate energy consumption for a given speed schedule. We

resorted to the numerical method with a very short sampling interval to achieve this

goal. The question is how short the sampling interval should be.

In our experiments, we set the length of sampling interval ts from 0.5 second to

3.0 second with a step width of 0.5 second and calculated the energy consumption

for different schedules. Particularly, we set ts = 0.01 second as the baseline since we

found that the largest relative energy difference between ts = 0.01 second and ts =

0.5 second was smaller than 0.4%. We then normalized the energy consumption by

other approaches to the baseline results. Figure 6.1(a) shows the relative differences

of energy consumption estimation results using numerical approach with different

sampling intervals, i.e. from ts = 0.5 second to ts = 3.0 second. The relative

differences of energy consumption based on our proposed approach and comparable

numerical results are presented in Figure 6.1(b).

From Figure 6.1(a), it is not surprising to see that the smaller the sampling

interval, the smaller the energy difference ratio becomes. For example, when ts

is decreased from 3.0 to 0.5, the average energy difference ratio is reduced from

1.7% to 0.4%. This is because that the smaller the sampling interval is, the less

the temperature can change. Since the numerical method estimates the leakage

consumption within an interval assuming temperature within a sampling interval

does not change, the error of the estimated leakage energy can be kept small if the

sampling interval is small enough.

On the other hand, we can see from Figure 6.1(b) that our proposed method

performed well from the aspect of accuracy. For example, the largest relative error

142

0 10 20 30 40 50
0

20

40

60

80

C
om

pu
ta

tio
n

C
os

t (
no

rm
al

iz
ed

)

Test Case Number

our method
ts=0.5
ts=1.0
ts=1.5
ts=2.0
ts=2.5
ts=3.0

Figure 6.2: Time efficiency analysis, normalized with our method

observed in Figure 6.1(b) is no more than 1.5%. As shown in Figure 6.1(b), we can

see that our method outperforms the numerical method with ts = 2.0 second for most

test cases, and compatible with the method with ts = 1.5 second. The experimental

results clearly show that our proposed approach can achieve very good accuracy in

estimating the overall energy consumption for a given speed schedule.

6.4.3 Time Efficiency Analysis

We next want to evaluate the computational efficiency of our proposed method. We

collected the CPU times for different approaches for all test cases. We then use the

CPU times of our method as the baseline results. The normalized results are shown

in Figure 6.2.

From Figure 6.2, we can see that the numerical method with a small sampling

interval can have a substantially large computational overhead than our approach.

For example, as shown in Figure 6.2, our method is more than 50 times (on average)

143

faster than the numerical approach with ts = 0.5, and 10 times (on average) faster

than that with ts = 3.0. Compared with the numerical method with ts = 1.5, which

is compatible with our method from the perspective of accuracy, our method can

achieve an average speedup of 15 times. From Figure 6.2, we can conclude that the

proposed method is much more time efficient than the numerical approach.

6.5 Summary

Energy consumption optimization is a critical design issue in design of multi-core

computing systems. It becomes more challenging in deep submicron domain when

leakage consumption becomes more and more significant and the interdependency

of leakage and temperature becomes substantial. A key to solve this problem is to

calculate the energy consumption efficiently and effectively.

In this chapter, we present a fast and accurate solution for energy calculation

on multi-core systems that takes the interdependency of leakage, temperature and

supply voltage into consideration. Different from the traditional numerical approach,

we develop an analytical formulation for the energy consumption, and based on

which, to calculate the overall energy consumption rapidly and accurately. Our

system models are rather general and can be easily extended for different platforms

and applications. Our experiments show that the proposed method can achieve a

speedup of 15 times compared with the numerical method, with a relative error no

more than 1.5%.

144

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize our contributions presented in this dissertation.

We then discuss the possible directions for our future research work.

7.1 Summary

Today, real-time embedded applications and systems have been pervasive in our

daily life. Designers from both industry and academia have made great efforts on

increasing the computing performance of such systems. For a more sustainable

improvement of computing system performance, designers rely more on multi-core

platform rather than building more complicated single core architecture and raising

its working frequency. Multi-core is becoming mainstream.

In this dissertation, we presented our research work on real-time multi-core

scheduling at the operating system level. Specifically, we presented several novel

strategies to schedule real-time tasks effectively and efficiently on multi-core plat-

forms, and optimize design criteria such as system utilization, peak temperature

and energy consumption.

First, we started our research work on partitioned scheduling problem, in which

each task is allocated to a dedicated processor and run only on that specific proces-

sor. presented two new partitioned approaches (i.e. PSER and HAPS) for schedul-

ing real-time sporadic tasks on multi-core platform under RMS. The PSER algo-

rithm first transformed a given task set with respect to each task’s period, and then

assigned tasks based on their scaled periods under the traditional RBound. The

HAPS algorithm took the harmonic advantage by transforming the entire task set

into a harmonic set, and based on made the partitioning decision according to a

efficient utilization bound, i.e. CBound. We formally proved that our scheduling

145

algorithms could guarantee the feasibility of any task set successfully passed the

partitioned procedures. The experimental results demonstrated that our proposed

algorithms could significantly improve the scheduling performance compared with

previous work. For example, when the system average utilization is around 0.8,

our proposed algorithms could improve the scheduling performance by 1.25 times

compared with existing work.

Then we moved our research concentration from the partitioned scheduling to

the semi-partitioned scheduling, in which some tasks can be split and executed

on different processing cores. We developed two semi-partitioned scheduling algo-

rithms, i.e. HSP-light and HSP, to schedule light and general task sets, respectively.

Our approaches exploited the well known fact that tasks with closer harmonic rela-

tionship have better schedulability than non-harmonic ones on a single processing

core. We formally prove that our proposed algorithms could successfully schedule

any task set with a utilization bounded by Liu&Layland’s bound. The experimental

results clearly showed that, by exploiting the harmonic relationship among tasks

more aggressively, our algorithms could significantly improve the schedulability of

semi-partitioned scheduling compared with the existing algorithms, e.g. our HSP

algorithm could achieve a success ratio up to four times over the existing work when

the average system utilization was around 0.9.

Next, we took the temperature constraint into consideration in our research

problem of multi-core real-time scheduling. Specifically, we studied the feasibility

testing problem in the design of multi-core systems. We presented a number of

novel analytical solutions for temperature calculation, i.e. the temperatures within

an arbitrary LCM and the steady-state. Then we proposed a complete solution to

effectively and efficiently detect the peak temperature for a periodic speed schedule

on a multi-core platform. We further proposed three temperature-constrained feasi-

146

bility checking methods, i.e. TmaxCheck, ModeCheck and TssCheck. Our proposed

techniques formed the basis of more advanced thermal aware real-time embedded

system design on multi-core platforms.

Finally, we diverted our focus to energy estimation problem on multi-core plat-

forms. We studied the multi-core energy calculation problem, which is one of the

most fundamental, as well as critical, problems in design of multi-core comput-

ing systems. We presented a fast and accurate solution for energy calculation on

multi-core systems that took the interdependency of leakage, temperature and sup-

ply voltage into consideration. Different from the traditional numerical approach,

we developed an analytical formulation for the energy consumption, and based on

which, to calculate the overall energy consumption rapidly and accurately. We

adopted a rather general system model and thus the proposed technique could be

easily extended to different platforms and applications. Our experiments showed

that the proposed method could achieve a speedup of 15 times compared with the

numerical method, with a relative error no more than 1.5%.

7.2 Future Work

As transistor size has become smaller and smaller, the reliability of IC chips is in-

creasingly becoming a serious concern. First, the rapidly decreased feature size of

the transistors has dramatically increased the rate of radiation-induced faults, up

to several orders of magnitude [75]. Second, the ever-increasing on-chip power con-

sumption and temperature have imposed serious threats for the lifetime reliability of

IC chips[59]. Due to the nature of safety-critical real-time systems, e.g. automobiles

and industrial controls, catastrophical consequences may occur if system faults can

not be handled timely or properly.

147

Processor faults can be largely classified as transient or permanent [111]. The

transient fault refers to the temporary malfunction of a processor, usually caused by

electromagnetic interferences or cosmetic ray radiations, that can lead to temporary

errors in computation and corruptions in data [110]. The permanent fault is caused

by hardware failures [23], and once this kind of fault occurs, it disables a processor

permanently. In our research, we only consider transient faults because they occur

more frequently than permanent faults (with a ratio of 100:1 or higher) [96].

We intend to extend our research to address the problem of how to develop

real-time scheduling algorithms under reliability constraint. Specifically, we seek to

develop a approach to minimize the energy consumption for scheduling real-time

tasks, meanwhile to guarantee pre-defined reliability requirement. In what follows,

we present some preliminary results of our research on reliability aware real-time

scheduling design.

7.2.1 System Models And Underlying Scheduling Problem

The real-time system applications considered in our work are described by DAG-

based intra-task model. A task is represented by a direct acyclic graph, denoted as

G = (V, L). V is the node (vertex) set of G, represented as V = {v1, v2, ..., vN}, and

contains the execution requirement for each node. A node vi is represented by a tuple

(ci, di), where ci is the workload on vi and di is the corresponding deadline. L is the

edge (link) set of G, and represents the precedence constraints. Each edge is denoted

as a tuple < vi, vj > which indicates that the directed edge emerges from source

node vi and incidents on the destination node vj. Nodes which have no predecessors

are called entry nodes, and those which have no successors are called exit nodes.

Moreover, let P (G) represent the path set of G, denoted as P (G) = (P1, ..., PK). A

148

path is a directed series of nodes that starts from an entry node and terminate at an

exit node. Further, for the kth path of P (G), it is represented by Pk = {vk,1, ...vk,Nk}.

We assume that the communication cost on each edge is zero.

We adopt the transient fault model with a Poisson distribution in our research

[128].

λ(f) = λ0 · 10
d·(1−f)
1−fmin (7.1)

where the exponent d(> 0) is a constant, indicating the sensitivity of fault rates

to voltage scaling. λ0 is the average fault rate corresponding to the maximum

frequency fmax. That is, reducing the frequency for energy savings will result in

exponentially increased fault rates. The maximum average fault rate is assumed to

be λmax = λ0 · 10d, which corresponds to the lowest frequency fmin.

First, the reliability of a node vi under frequency fi, denoted as Ri(fi), can be

computed by

Ri(fi) = e
−λ(fi)·

ci
fi (7.2)

where λ(fi) is given by Equation (7.1). Ri(fi) represents the probability of com-

pleting the workload ci on node vi successfully under frequency fi with no fault

occurrence.

Next, we consider the reliability on one path. Given a path Pk consisting of

Nk tasks, i.e. Pk = {v1, v2, ..., vNk}, and the corresponding frequency assignment

{f1, f2, ..., fNk}, then the path reliability of Pk, denoted as RPk , is defined as the

probability of completing all nodes on Pk successfully under that frequency assign-

ment.

RPk = R1(f1) ·R(f2, ..., fNk) +

(1−R1(f1)) ·R1(fmax) ·R(f2, ..., fNk) (7.3)

149

The first term in equation (7.3) represents the path reliability of Pk while node v1

completes successfully. Similarly, the second term represents the path reliability of

Pk while node v1 fails and subsequently is recovered with one recovery block.

Then, we consider the reliability among all paths. Given a task G, there may be

more than one path in P (G), in order to describe system reliability under certain

frequency assignment, we quantify the system reliability by choosing the minimum

path reliability under that frequency assignment among all paths. Thus, the sys-

tem reliability of G, denoted as R(G), under intra-task DVFS management can be

calculated by

R(G) = min
∀Pk∈P (G)

RPk (7.4)

Further, to clearly and explicitly describe the original task reliability require-

ment, we define the reliability threshold of G in below.

Given a task G, the reliability threshold of G, denoted as Rthr, is defined as the

minimum path reliability among all paths under the system maximum frequency,

which can be calculated by

Rthr = min
∀Pk∈P (G)

(
∏
vi∈Pk

Ri(fmax)) (7.5)

Rthr represents the minimum probability for completing any path in G success-

fully at the maximum frequency fmax with no fault occurrence. Note that Rthr is

usually referred as the reliability requirement that need be guaranteed in design of

intra-task scheduling.

Now we are ready to formulate our research problem for reliability aware energy

efficient scheduling.

Problem 7.2.1. Given a task Γ, our research problem can be formulated as follows:

Minimize: E(Γ) =
∑

Pk∈P (Γ)

wk · EPk (7.6)

150

s.t. ∀Pk ∈ P (G),

Nk∑
i=1

ci
fi
≤ dNk (7.7)

∀Pk ∈ P (G), RPk ≥ Rthr (7.8)

The objective is to minimize the energy consumption while maintaining the

system feasibility and desired reliability. The feasibility of the the real-time task

is guaranteed by satisfying equation (7.7), where ci is the execution time of node

vi under maximum frequency fmax and fi is the actual frequency assigned to it.

Similarly, the system reliability threshold is guaranteed by making sure reliability

on each path is no less than Rthr as in equation (7.8). This optimization problem is

well known to be NP-hard and an optimal solution is computationally intractable

and impractical. In the following section, we introduce our heuristic to deal with

this problem.

7.2.2 Preliminary Results

In what follows, we first discuss the available slacks for each node in a DAG-based

task. Then based on the available slacks, we present a way to calculate the potential

energy saving of each node with respect to the available slacks.

Given a task G, let X be a backup indicator vector for all nodes in G, i.e.

X = {x1, x2, ..., xN}. For ∀xi ∈ X, we have that:
xi = 1 if vi has backup block,

xi = 0 otherwise.

(7.9)

We first calculate the earliest starting time of each node. We assume that the

earliest starting time of v1 is 0, then the earliest starting time of vi, for i = 2, 3, ..., N

151

can be calculated as the latest completion time among all its predecessors. Note

that, if the frequency of a node vj is scaled down, a recovery block of size cj has

to be reserved in order to maintain its original reliability under fmax. The earliest

starting time tEi is computed in equation (7.10).

tEi =


0, i = 1

max{tEj +
cj
fj

+ xj · cj| < vj, vi >∈ L}, i = 2, ..., N

(7.10)

Then we calculate the latest starting time of each node, which is the latest

time when a node has to start execution without compromising the feasibility of

a schedule. If vi is a terminal node, it needs to begin execution ci/fi (its actual

execution requirement) amount of time before its deadline, otherwise, it should

start ci/fi ahead the latest starting time of its closet successor. Same as above, a

node vi needs to start additional ci time units ahead to leave space for its recovery

in case fault occurs to maintain its reliability. The calculation of latest starting time

for vi is given in equation (7.11).

tLi =


di − ci

fi
− xi · ci, if vi is terminal node.

min{tLj − ci
fi
− xi · ci| < vi, vj >∈ L}, otherwise.

(7.11)

After obtaining the earliest and latest starting time respectively, we can now cal-

culate the maximum amount of slacks which potentially could be used for DVFS to

reduce energy consumption. For any node vi, its maximum available slack, denoted

as si, is calculated by

si =


0, if tLi − tEi ≤ ci.

tLi − tEi , otherwise.

(7.12)

Next, based on the above result, we discuss the corresponding frequency as-

signment and the potential energy saving. First, the frequency assignment under

152

maximum available slacks can be represented by equation (7.13).

f ′i =


fmax, if si = 0.

max{ ci
si
, fopt}, otherwise.

(7.13)

Secondly, the potential energy saving for each task after DVFS can be presented by

equation (7.14).

∆Ei = Ei(fi)− Ei(f ′i) (7.14)

∆Ei represents the energy saving of vi by efficiently utilizing its available slack

si. In the following, we apply this ∆Ei to make the frequency assignment decision

in our proposed algorithm.

Scheduling algorithm Now we introduce our proposed Reliability-Aware Intra-

Task Scheduling (RA-ITS) algorithm, which statically determines the frequencies

for all nodes in a DAG task such that system energy consumption can be minimized

and meanwhile the timing and reliability constraints can be guaranteed.

Algorithm 7 Reliability Aware Intra-Task Scheduling (RA-ITS) algorithm

Require:
1) Task : G =< V,L >, V = {v1, v2, ..., vN};

1: fi = fmax, for i = 1, 2, ..., N ;
2: for i = 1 to N do
3: for ∀i ∈ [1, N], tEi = earliest start time of vi under {f1, ..., fN} (see equation

(7.10));
4: for ∀i ∈ [1, N], tLi = latest start time of vi under {f1, ..., fN} (see equation

(7.11));
5: for ∀i ∈ [1, N], si = maximum available slack of vi (see equation (7.12));
6: if max({si|i = 1, ..., N}) = 0, then Break, end if
7: for ∀i ∈ [1, N], f ′i = frequency of vi by using slack si (see equation (7.13));
8: for ∀i ∈ [1, N], ∆Ei = Ei(fi)− Ei(f ′i);
9: if max({∆Ei|i = 1, ..., N}) ≤ 0, then Break, end if
10: find vi∗ , such that ∆Ei∗ = max({∆Ei|i = 1, ..., N});
11: assign f ′i∗ to fi∗ ;
12: end for
13: return {f1, f2, ..., fN}

153

Experimental setup and results In our experiment, transient faults are assumed

to follow Poisson distribution with an average fault rate of λ0 = 10−6 at fmax, which

is a realistic fault rate as reported in [134]. Moreover, the fault rate exponent d is

set to 2. We use a cubic frequency-dependent power component Pd which is equal

to unity at fmax = 1.0. The frequency-independent power component Pind for each

task is normalized with respect to Pd and is generated according to the uniform

distribution in the range of [0, 0.25].

The task graph is generated by TGFF benchmark, which is configured as below:

1) node number for each task graph is set between [10, 20]; 2) fanin and fanout of

each node are both set to 3; 3) execution requirement of each node is set between

[20, 80]. Each point in the presented figures is obtained by averaging the results

obtained through 100 different task graphs. Moreover, we assume that all paths

have the same probability for occurring, that is wk = wh, for any two different Pk

and Ph in P (G). All energy consumption results are normalized with respect to the

no power management (NPM) scheme that executes all nodes on any path at the

maximum frequency fmax.

We compare the energy consumption of our RA-ITS approach with other two

baseline approaches, i.e the No Power Management (NPM) approach (which as-

signs maximum frequency to all nodes) and the GREEDY approach (which assigns

frequencies by letting the current executing node using the system available slacks

as much as needed under the reliability threshold).

First, we evaluated the impact of available slack on energy savings. In this part,

Pind is set to 0.05 as a constant. We use S/C to represent the maximum slack-

execution-ratio among all paths in each task graph. We vary this slack to execution

time ratio from 0.4 to 1.4, and show the result in Figure 7.1. As illustrated in

7.1, all three methods can save achieve energy savings compared to NPM. Clearly,

154

0.4 0.6 0.8 1 1.2 1.4
0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Slack−Execution−Ratio S/C

NPM
GREEDY
RA−ITS

Figure 7.1: Impact of slack on energy consumption

our RA-ITS outperforms the other two techniques. For instance, when the slack

to execution ratio is 1, our approach attains approximately 34% ((1.0 − 0.66)/1.0)

more energy saving than NPM and 8% ((0.72 − 0.66)/0.72) more than GREEDY.

Moreover, compared with NPM and GREEDY, we see that the larger the relative

slack time, the more energy saving of our RA-ITS algorithm.

Then we study the impact of Pind on energy savings. Same as [128, 131], the Pind

is varied between [0.05, 0.35] for each node vi and the maximum slack-execution-ratio

is fixed at S/C = 1.4. According to 7.2, the larger the Pind, the higher the energy

consumption. The reason is that as the Pind increases, the contribution of frequency

independent energy consumption becomes more dominant, the energy-efficient fre-

quency is therefore increased according to [132] and results in fewer opportunities

for DVFS. Even under this situation, RA-ITS still has the better performance in

terms of energy consumption.

155

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Pind

NPM
GREEDY
RA−ITS

Figure 7.2: Impact of Pind on energy consumption

Overall, the experimental results show clearly the effectiveness of our proposed

algorithm. We can see that: 1) with the increment of slack time, more energy

savings can be achieved by our RA-ITS ; 2) under different configurations of Pind,

the proposed algorithm can get an efficient energy saving.

How to take leakage/temperature dependency into consideration for reliability-

constrained scheduling is an interesting problem and needs further study.

156

BIBLIOGRAPHY

[1] Hotspot 4.2 temperature modeling tool. University of Virgina, page
http://lava.cs.virginia.edu/HotSpot, 2009.

[2] Behind the birth of m3. IHS iSuppli, 2012.

[3] Embedded system market - global industry analysis, size, share, growth, trends
and forecast. Transparency Market Research, 2013.

[4] T. F. Abdelzaher, V. Sharma, and C. Lu. A utilization bound for aperi-
odic tasks and priority driven scheduling. IEEE Transactions on Computers,
53(3):334–350, Mar. 2004.

[5] B. Ackland, A. Anesko, D. Brinthaupt, S. Daubert, A. Kalavade, J. Knobloch,
E. Micca, M. Moturi, C. Nicol, J. O’Neill, J. Othmer, E. Sackinger, K. Singh,
J. Sweet, C. Terman, and J. Williams. A single-chip, 1.6-billion, 16-b mac/s
multiprocessor dsp. Solid-State Circuits, IEEE Journal of, 35(3):412–424,
2000.

[6] V. Agarwal, M. S. Hrishikesh, S. Keckler, and D. Burger. Clock rate versus
ipc: the end of the road for conventional microarchitectures. In Computer
Architecture, 2000. Proceedings of the 27th International Symposium on, pages
248–259, Jun. 2000.

[7] AMD. Amd server processor series. pages
http://www.amd.com/US/PRODUCTS/SERVER/PROCESSORS/6000–
SERIES–PLATFORM/6300/Pages/6300–series–processors.aspx, 2013.

[8] J. Anderson, V. Bud, and U. Devi. An EDF-Based Scheduling Algorithm for
Multiprocessor Soft Real-Time Systems. In Proc. Euromicro Conference on
Real-Time Systems (ECRTS), Jul. 2005.

[9] B. Andersson. Global Static-Priority Preemptive Multiprocessor Scheduling
with Utilization Bound 38% . In Proc. ACM International Conference on
Principles of Distributed Systems (OPODIS), volume 5401, pages 73–88, 2008.

[10] B. Andersson, S. Baruah, and J. Jonsson. Static-Priority Scheduling on Multi-
processors. In Proc. IEEE Real-Time Systems Symposium (RTSS), Dec. 2001.

157

[11] B. Andersson, K. Bletsas, and S. Baruah. Scheduling Arbitrary-Deadline Spo-
radic Task Systems on Multiprocessors. In IEEE Real-Time Systems Sympo-
sium (RTSS), Dec. 2008.

[12] B. Andersson and J. Jonsson. Fixed-priority preemptive multiprocessor
scheduling: to partition or not to partition. In RTCSA ’00: Proceedings of
the Seventh International Conference on Real-Time Systems and Applications
(RTCSA’00), page 337, 2000.

[13] B. Andersson and J. Jonsson. The Utilization Bounds of Partitioned and
Pfair Static-Priority Scheduling on Multiprocessors Are 50%. In Euromicro
Conference on Real-Time Systems (ECRTS), Jul. 2003.

[14] B. Andersson and E. Tovar. Competitive analysis of static-priority partitioned
scheduling on uniform multiprocessors. In Embedded and Real-Time Comput-
ing Systems and Applications, 2007. RTCSA 2007. 13th IEEE International
Conference on, pages 111–119, Aug.

[15] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The landscape of parallel computing research: A view from berkeley. Technical
Report UCB/EECS-2006-183, EECS Department, University of California,
Berkeley, Dec 2006.

[16] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and
temperature. Journal of the ACM, 54(1):1–39, 2007.

[17] M. Bao, A. Andrei, P. Eles, and Z. Peng. Temperature-aware voltage selection
for energy optimization. In Design Automation Conference, 2008. DAC ’08.
45th ACM/IEEE, pages 1083 –1086, 2008.

[18] M. Bao, A. Andrei, P. Eles, and Z. Peng. On-line thermal aware dynamic
voltage scaling for energy optimization with frequency/temperature depen-
dency consideration. In Design Automation Conference, 2009. DAC ’09. 46th
ACM/IEEE, pages 490 –495, Jul. 2009.

[19] M. Bao, A. Andrei, P. Eles, and Z. Peng. Temperature-aware idle time distri-
bution for energy optimization with dynamic voltage scaling. In DATE, pages
21 – 27, 2010.

158

[20] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Is Semi-Partitioned
Scheduling Practical? In Euromicro Conference on Real-Time Systems
(ECRTS), Jul. 2011.

[21] M. Berktold and T. Tian. CPU Monitoring With DTS/PECI. Intel Corpora-
tion, 2010.

[22] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate Monotonic Analysis: The
Hyperbolic Bound. IEEE Transactions on Computers, 52(7):933–942, Jul.
2003.

[23] S. Borkar. Designing reliable systems from unreliable components: the chal-
lenges of transistor variability and degradation. Micro, IEEE, 25(6):10 – 16,
Nov.-Dec. 2005.

[24] S. Borkar. Thousand core chips: a technology perspective. In DAC, pages
746–749, 2007.

[25] W. J. Bouknight, S. Denenberg, D. McIntyre, J. M. Randall, A. Sameh, and
D. Slotnick. The illiac iv system. Proceedings of the IEEE, 60(4):369–388,
1972.

[26] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New strategies for assigning
real-time tasks to multiprocessor systems. Computers, IEEE Transactions on,
44(12):1429–1442, Dec.

[27] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah.
A Categorization of Real-time Multiprocessor Scheduling Problems and Algo-
rithms. In Handbook on Scheduling Algorithms, Methods, and Models. Chap-
man Hall/CRC, Boca, 2004.

[28] T. Chantem, R. P. Dick, and X. S. Hu. Temperature-aware scheduling and
assignment for hard real-time applications on mpsocs. In Proceedings of the
conference on Design, automation and test in Europe, DATE ’08, pages 288–
293, 2008.

[29] T. Chantem, X. S. Hu, and R. Dick. Online work maximization under a peak
temperature constraint. In ISLPED, pages 105–110, 2009.

[30] V. Chaturvedi, H. Huang, and G. Quan. Leakage aware scheduling on maximal
temperature minimization for periodic hard real-time systems. In ICESS,
pages 1802–1809, 2010.

159

[31] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms
for bin packing: a survey, pages 46–93. PWS Publishing Co., Boston, MA,
USA, 1997.

[32] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms
(1st ed.). MIT Press and McGraw-Hill, 1990.

[33] A. Coskun, J. Ayala, D. Atienza, T. Rosing, and Y. Leblebici. Dynamic
thermal management in 3d multicore architectures. In Design, Automation,
and Test in Europe (DATE), pages 1410–1415, 2009.

[34] V. Darera and L. Jenkins. Utilization bounds for rm scheduling on uniform
multiprocessors. In Embedded and Real-Time Computing Systems and Ap-
plications, 2006. Proceedings. 12th IEEE International Conference on, pages
315–321, 0-0.

[35] R. I. Davis and A. Burns. A survey of hard real-time scheduling for multipro-
cessor systems. ACM Comput. Surv., 43(4):35:1–35:44, Oct. 2011.

[36] S. K. Dhall and C. L. Liu. On a Real-Time Scheduling Problem. Operations
Research, 26(1):127–140, 1978.

[37] M. Fan, V. Chaturvedi, S. Sha, and G. Quan. An analytical solution for
multi-core energy calculation with consideration of leakage and temperature
dependency. In Low Power Electronics and Design (ISLPED), 2013 IEEE
International Symposium on, pages 353–358, Sep. 2013.

[38] M. Fan and G. Quan. Harmonic-fit partitioned scheduling for fixed-priority
real-time tasks on the multiprocessor platform. In Embedded and Ubiquitous
Computing (EUC), IFIP 9th International Conference on, pages 27–32, Oct.
2011.

[39] M. Fan and G. Quan. Harmonic semi-partitioned scheduling for fixed-priority
real-time tasks on multi-core platform. In Design, Automation Test in Europe
Conference Exhibition (DATE), pages 503 –508, Mar. 2012.

[40] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele. Thermal-aware global real-
time scheduling on multicore systems. In Proceedings of the 2009 15th IEEE
Symposium on Real-Time and Embedded Technology and Applications, RTAS
’09, pages 131–140, 2009.

160

[41] Y. Ge, P. Malani, and Q. Qiu. Distributed task migration for thermal manage-
ment in many-core systems. In Design Automation Conference (DAC), 2010
47th ACM/IEEE, pages 579 –584, Jun. 2010.

[42] N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-Priority Multiprocessor Schedul-
ing: Beyond Liu and Layland’s Utilization Bound. In WiP Real-Time Systems
Symposium (RTSS), Dec. 2010.

[43] N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-Priority Multiprocessor Schedul-
ing with Liu and Layland’s Utilization Bound. In IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), Apr. 2010.

[44] N. Guan, M. Stigge, W. Yi, and G. Yu. Parametric Utilization Bounds for
Fixed-Prioirity Multiprocessor Scheduling. In IEEE International Symposium
on Parallel and Distributed Processing (IPDPS), May 2012.

[45] R. Ha and J. W. S. Liu. Validating timing constraints in multiprocessor
and distributed real-time systems. In Distributed Computing Systems, 1994.,
Proceedings of the 14th International Conference on, pages 162–171, Jun. 1994.

[46] L. Hammond, B. Nayfeh, and K. Olukotun. A single-chip multiprocessor.
Computer, 30(9):79–85, 1997.

[47] C.-C. Han, K.-J. Lin, and C.-J. Hou. Distance-Constrained Scheduling and
Its Applications to Real-Time Systems. IEEE Transactions on Computers,
45(7):814–826, Jul. 1996.

[48] C.-C. Han and H.-Y. Tyan. A Better Polynomial-Time Schedulability Test for
Real-Time Fixed-Priority Scheduling Algorithms. In Proc. IEEE Real-Time
Systems Symposium (RTSS), Dec. 1997.

[49] Q. Han, M. Fan, and G. Quan. Energy minimization for fault tolerant real-time
applications on multiprocessor platforms using checkpointing. In Low Power
Electronics and Design (ISLPED), 2013 IEEE International Symposium on,
pages 76–81, Sep. 2013.

[50] V. Hanumaiah, R. Rao, S. Vrudhula, and K. S. Chatha. Throughput optimal
task allocation under thermal constraints for multi-core processors. In Pro-
ceedings of the 46th Annual Design Automation Conference, DAC ’09, pages
776–781, New York, NY, USA, 2009. ACM.

161

[51] V. Hanumaiah and S. Vrudhula. Energy-efficient operation of multi-core pro-
cessors by dvfs, task migration and active cooling. Computers(TC), IEEE
Transactions on, pages 1–14, 2012.

[52] V. Hanumaiah, S. Vrudhula, and K. Chatha. Maximizing performance of
thermally constrained multi-core processors by dynamic voltage and frequency
control. pages 310–313, 2009.

[53] V. Hanumaiah, S. Vrudhula, and K. Chatha. Performance optimal online
dvfs and task migration techniques for thermally constrained multi-core pro-
cessors. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 30(11):1677 –1690, Nov. 2011.

[54] S. Heath. Embedded Systems Design, 2nd edition. Newnes, 2003.

[55] Henry. A comparison of intels 32nm and 22nm core i5 cpus:
Power,voltage, temperature, and frequency. Intel Cor., pages
http://blog.stuffedcow.net/2012/10/intel32nm–22nm–core–i5–comparison/,
2012.

[56] H. Huang, M. Fan, and G. Quan. On-line leakage-aware energy minimization
scheduling for hard real-time systems. In ASP-DAC, pages 677–682, 2012.

[57] H. Huang and G. Quan. Leakage aware energy minimization for real-time
systems under the maximum temperature constraint. In DATE, pages 1–6,
2011.

[58] H. Huang, G. Quan, J. Fan, and M. Qiu. Throughput maximization for
periodic real-time systems under the maximal temperature constraint. In
Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, pages
363 –368, Jun. 2011.

[59] L. Huang, F. Yuan, and Q. Xu. On task allocation and scheduling for lifetime
extension of platform-based mpsoc designs. Parallel and Distributed Systems,
IEEE Transactions on, 22(12):2088–2099, Dec. 2011.

[60] ITRS. International Technology Roadmap for Semiconductors (2011 Edition).
International SEMATECH, Austin, TX., http://public.itrs.net/.

[61] R. Jayaseelan and T. Mitra. Temperature aware task sequencing and voltage
scaling. ICCAD, pages 618–623, 2008.

162

[62] R. Jejurikar, C. Pereira, and R. Gupta. Dynamic slack reclamation with
procrastination scheduling in real-time embedded systems. DAC, pages 111 –
116, 2005.

[63] D.-C. Juan, H. Zhou, D. Marculescu, and X. Li. A learning-based autore-
gressive model for fast transient thermal analysis of chip-multiprocessors. In
Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pa-
cific, pages 597 –602, Feb. 2012.

[64] S. B. Judah Rosenblatt. Mathematical analysis for modeling. Dec. 1998.

[65] M.-J. Jung, Y. R. Seong, and C.-H. Lee. Optimal RM Scheduling for Sim-
ply Periodic Tasks on Uniform Multiprocessors. In Proc. ACM International
Conference on Hybrid Information Technology (ICHIT), volume 321, pages
383–389, Aug. 2009.

[66] A. Kandhalu, K. Lakshmanan, J. Kim, and R. Rajkumar. pCOMPATS:
Period-Compatible Task Allocation and Splitting on Multi-core Processors.
In IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), Apr. 2012.

[67] S. Kato and N. Yamasaki. Real-Time Scheduling with Task Splitting on Mul-
tiprocessors. In IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), Aug. 2007.

[68] S. Kato and N. Yamasaki. Portioned Static-Priority Scheduling on Multi-
processors. In IEEE International Symposium on Parallel and Distributed
Processing (IPDPS), Apr. 2008.

[69] S. Kato and N. Yamasaki. Semi-Partitioned Fixed-Priority Scheduling on Mul-
tiprocessors. In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), Apr. 2009.

[70] P. Kumar and L. Thiele. Thermally optimal stop-go scheduling of task graphs
with real-time constraints. In ASP-DAC, pages 123–128, 2011.

[71] T.-W. Kuo and A. Mok. Load Adjustment in Adaptive Real-Time Systems.
In Proc. IEEE Real-Time Systems Symposium (RTSS), Dec. 1991.

[72] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned Fixed-Priority
Preemptive Scheduling for Multi-core Processors. In Euromicro Conference
on Real-Time Systems (ECRTS), Jul. 2009.

163

[73] S. Lauzac, R. Melhem, and D. Mossé. An Efficient RMS Admission Control
and Its Application to Multiprocessor Scheduling. In IPPS/SPDP Parallel
Processing Symposium, Mar. 1998.

[74] S. Lauzac, R. Melhem, and D. Mossé. An Improved Rate-Monotonic Ad-
mission Control and Its Applications. IEEE Transactions on Computers,
52(3):337–350, Mar. 2003.

[75] R. Lawrence. Radiation characterization of 512mb sdrams. In Radiation Ef-
fects Data Workshop, 2007 IEEE, volume 0, pages 204–207, Jul. 2007.

[76] C.-H. Lee and K. Shin. On-line dynamic voltage scaling for hard real-time
systems using the edf algorithm. In Real-Time Systems Symposium, 2004.
Proceedings. 25th IEEE International, pages 319 – 335, Dec. 2004.

[77] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algo-
rithm: Exact Characterization and Average Case Behavior. In Proc. Real
Time Systems Symposium (RTSS), Dec. 1989.

[78] J. Li, M. Qiu, J. Niu, Y. Zhu, and T. Chen. Real-time constrained task schedul-
ing in 3d chip multi-processor to reduce peak temperature. In IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing, pages 170–
176, 2010.

[79] W. Liao, L. He, and K. Lepak. Temperature and supply voltage aware per-
formance and power modeling at microarchitecture level. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 24(7):1042 –
1053, 2005.

[80] W. Liao, L. He, and K. Lepak. Temperature and supply voltage aware per-
formance and power modeling at microarchitecture level. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 24(7):1042
– 1053, Jul. 2005.

[81] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment. J. ACM, 20:46–61, Jan. 1973.

[82] G. Liu, M. Fan, and G. Quan. Neighbor-aware dynamic thermal management
for multi-core platform. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, pages 187 –192, Mar. 2012.

164

[83] J. Liu. Real-Time Systems. Prentice Hall, NJ, 2000.

[84] S. Liu, M. Qiu, W. Gao, X.-J. Tang, and B. Guo. Hybrid of job sequencing and
DVFS for peak temperature reduction with nondeterministic applications. In
ICESS, pages 1780–1787, 2010.

[85] S. Liu, J. Zhang, Q. Wu, and Q. Qiu. Thermal-aware job allocation and
scheduling for three dimensional chip multiprocessor. In International Sym-
posium on Quality Electronic Design (ISQED), 2010, pages 390–398, 2010.

[86] Y. Liu, H. Yang, R. Dick, H. Wang, and L. Shang. Thermal vs energy optimiza-
tion for dvfs-enabled processors in embedded systems. In Quality Electronic
Design, 2007. ISQED ’07. 8th International Symposium on, pages 204 –209,
Mar. 2007.

[87] J. Lopez, J. Diaz, and D. Garcia. Minimum and maximum utilization bounds
for multiprocessor rm scheduling. In Real-Time Systems, 13th Euromicro Con-
ference on, 2001., pages 67–75, 2001.

[88] J. Lopez, J. Diaz, and D. Garcia. Minimum and maximum utilization bounds
for multiprocessor rate monotonic scheduling. Parallel and Distributed Sys-
tems, IEEE Transactions on, 15(7):642–653, July.

[89] W.-C. Lu, H.-W. Wei, and K.-J. Lin. Rate Monotonic Schedulability Condi-
tions Using Relative Period Ratios. In Proc. IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA),
2006.

[90] C. Lung, Y. Ho, D. Kwai, and S. Chang. Thermal-aware online task allocation
for 3d multi-core processor throughput optimization. In Design, Automation,
and Test in Europe (DATE), pages 1–6, Grenoble, France, 2011.

[91] J. Markoff. Intel’s big shift after hitting technical wall. New York Times, 2004.

[92] G. Moore. Cramming more components onto integrated circuits. Electronics
Magazine, 38(8):114–117, May 1965.

[93] D. Müller. Accelerated Simply Periodic Task Sets for RM Scheduling. In
Embedded Real Time Software and Systems, May 2010.

[94] P. Nahin. The story of
√
−1. In Boston:Princeton University Press, 1998.

165

[95] M. Neumann, 1946, and R. J. Stern. Nonnegative matrices in dynamic systems.
Wiley, New York, 1989.

[96] P. Pop, V. Izosimov, P. Eles, and Z. Peng. Design optimization of time-
and cost-constrained fault-tolerant embedded systems with checkpointing and
replication. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 17(3):389–402, Mar. 2009.

[97] G. Quan and V. Chaturvedi. Feasibility analysis for temperature-constraint
hard real-time periodic tasks. Industrial Informatics, IEEE Transactions on,
6(3):329 –339, Aug. 2010.

[98] G. Quan and X. Hu. Energy efficient fixed-priority scheduling for real-time
systems on variable voltage processors. In DAC ’01: Proceedings of the 38th
conference on Design automation, pages 828–833, 2001.

[99] G. Quan, L. Niu, B. Mochocki, and X. Hu. Fixed priority scheduling for
reducing overall energy on variable voltage processors. RTSS’04, pages 309–
318, Dec. 2004.

[100] G. Quan and Y. Zhang. Leakage aware feasibility analysis for temperature-
constrained hard real-time periodic tasks. In Real-Time Systems, 2009.
ECRTS ’09. 21st Euromicro Conference on, pages 207 –216, Jul. 2009.

[101] G. Quan, Y. Zhang, W. Wiles, and P. Pei. Guaranteed scheduling for
repetitive hard real-time tasks under the maximal temperature constraint.
ISSS+CODES, 2008.

[102] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital integrated circuits: A
design perspective. In Englewood Cliffs, NJ: Prentice-Hall, 2003.

[103] C. A. B. REALPE. Programming languages towards multicore architectures
crisis. In TECHNOLOGY, PROGRAMMING, THOUGHTS AND OTHER
ESSENTIALS, 2013.

[104] L. Schor, I. Bacivarov, H. Yang, and L. Thiele. Worst-case temperature guar-
antees for real-time applications on multi-core systems. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2012 IEEE 18th,
pages 87 –96, Apr. 2012.

[105] S. Sharifi, R. Ayoub, and T. Rosing. Tempomp: Integrated prediction and
management of temperature in heterogeneous mpsocs. In Design, Automation

166

Test in Europe Conference Exhibition (DATE), 2012, pages 593–598, Mar.
2012.

[106] K. Shin and P. Ramanathan. Real-Time Computing: A New Discipline of
Computer Science and Engineering. Proc. IEEE, 82(1):6–24, Jan. 1994.

[107] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying real user
activity patterns to guide power optimizations for mobile architectures. pages
168–178, 2009.

[108] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware computer systems: opportunities and chal-
lenges. IEEE Micro, 23(6):52–61, 2003.

[109] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware microarchitecture. ICSA, pages 2–13, 2003.

[110] J. Srinivasan, S. Adve, P. Bose, and J. Rivers. The impact of technology
scaling on lifetime reliability. In Dependable Systems and Networks, 2004
International Conference on, pages 177 – 186, Jun.-Jul. 2004.

[111] J. Srinivasan, S. V. Adve, P. Bose, J. Rivers, and C.-K. Hu. Ramp: A model
for reliability aware microprocessor design. IBM Research Report, RC23048
Computer Science, 0, Dec. 2003.

[112] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobbs Journal, 30(3):202–210, 2005.

[113] A. Tanenbaum. Modern operating systems. Prentice Hall, 2001.

[114] U. Tech. 2013 embedded marked study. UBM Tech Electronics’s Annual
Survey of The Embedded Markets Worldwide, 2013.

[115] T.-H. Tsai and Y.-S. Chen. Thermal-aware real-time task scheduling for three
dimensional multicore chip. In ACM Symposium on Applied Computing (SAC-
2012), pages 1618–1624, 2012.

[116] I. Ukhov, M. Bao, P. Eles, and Z. Peng. Steady-state dynamic temperature
analysis and reliability optimization for embedded multiprocessor systems. In
Design Automation Conference, 2012. DAC ’12., Jun. 2012.

167

[117] W. Wolf. Multiprocessor system-on-chip technology. Signal Processing Mag-
azine, IEEE, 26(6):50–54, 2009.

[118] C.-Y. Yang, J.-J. Chen, L. Thiele, and T.-W. Kuo. Energy-efficient real-time
task scheduling with temperature-dependent leakage. In DATE, pages 9–14,
2010.

[119] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu
energy. In FOCS, pages 374–382, 1995.

[120] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu
energy. In Foundations of Computer Science, 1995. Proceedings., 36th Annual
Symposium on, pages 374 –382, Oct. 1995.

[121] D. Yeh, L.-S. Peh, S. Borkar, J. Darringer, A. Agarwal, and W. Hwu.
Thousand-core chips [roundtable]. Design Test of Computers, IEEE, 25(3):272
–278, May-Jun. 2008.

[122] L. Yongpan and Y. Huazhong. Temperature-aware leakage estimation us-
ing piecewise linear power models. IEICE transactions on electronics,
93(12):1679–1691, 2010.

[123] L. Yuan, S. Leventhal, and G. Qu. Temperature-aware leakage minimization
technique for real-time systems. In ICCAD, pages 761–764, 2006.

[124] B. Yun, K. Shin, and S. Wang. Predicting thermal behavior for temperature
management in time-critical multicore systems. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2013 IEEE 19th, pages 185–
194, 2013.

[125] S. Zhang and K. Chatha. Approximation algorithm for the temperature-
aware scheduling problem. In Computer-Aided Design, 2007. ICCAD 2007.
IEEE/ACM International Conference on, pages 281–288, 2007.

[126] S. Zhang and K. S. Chatha. Thermal aware task sequencing on embedded
processors. In DAC, pages 585 – 590, 2010.

[127] S. Zhang, K. S. Chatha, and G. Konjevod. Near optimal battery-aware energy
management. In ISLPED, pages 249–254, 2009.

168

[128] B. Zhao, H. Aydin, and D. Zhu. Generalized reliability-oriented energy man-
agement for real-time embedded applications. In Design Automation Confer-
ence (DAC), 2011 48th ACM/EDAC/IEEE, pages 381 –386, Jun. 2011.

[129] X. Zhou, Y. Xu, Y. Du, Y. Zhang, and J. Yang. Thermal management for
3d processors via task scheduling. In International conference on Parallel
processing, pages 115–122, 2008.

[130] C. Zhu, Z. Gu, L. Shang, R. Dick, and R. Joseph. Three-dimensional
chip-multiprocessor run-time thermal management. IEEE Transactions on
Computer-Aided Design of Integrated circuits and SystCems, 8(27):1479–1492,
2008.

[131] D. Zhu and H. Aydin. Energy management for real-time embedded systems
with reliability requirements. In Computer-Aided Design, 2006. ICCAD ’06.
IEEE/ACM International Conference on, pages 528 –534, Nov. 2006.

[132] D. Zhu, R. Melhem, and D. Mosse. The effects of energy management on reli-
ability in real-time embedded systems. In Proceedings of the 2004 IEEE/ACM
International conference on Computer-aided design, ICCAD ’04, pages 35–40,
Washington, DC, USA, 2004. IEEE Computer Society.

[133] Y. Zhu and F. Mueller. Dvsleak: combining leakage reduction and voltage
scaling in feedback edf scheduling. SIGPLAN Not., 42(7):31–40, 2007.

[134] J. Ziegler. Trends in electronic reliability: Effects of terrestrial cosmic rays.
2004.

169

VITA

MING FAN

2006 B.S., Software Engineering
Beihang University
Beijing, China

2009 M.S., Software Engineering
Beihang University
Beijing, China

2014 Ph.D., Electrical Engineering
Florida International University
Florida, USA

PUBLICATIONS

Ming Fan, Gang Quan, (2014). Harmonic-Aware Multi-Core Scheduling For Fixed-
Priority Real-Time Systems, IEEE Transactions on Parallel and Distributed Systems
(TPDS). (accepted)

Ming Fan, Qiushi Han, Gang Quan, Shangping Ren, (2014). Multi-Core Partitioned
Scheduling For Fixed-Priority Periodic Real-Time Tasks With Enhanced RBound,
Quality Electronic Design, International Symposium on (ISQED), 284–291.

Tianyi Wang, Ming Fan, Gang Quan, Shangping Ren, (2014). Heterogeneity Explo-
ration for Peak Temperature Reduction on Multi-Core Platforms, Quality Electronic
Design, International Symposium on (ISQED), 107–114.

Huang Huang, Ming Fan, Gang Quan, (2013). Thermal Aware Overall Energy
Minimization Scheduling for Hard Real-Time Systems, Sustainable Computing: In-
formatics and Systems (SUSCOM), 3(4):274–285.

Ming Fan, Vivek Chaturvedi, Shi Sha, Gang Quan, (2013). An Analytical Solution
For Multi-Core Energy Calculation With Consideration Of Leakage And Temper-
ature Dependency, IEEE International Symposium on Low Power Electronics and
Design (ISLPED), 353–358.

170

Qiushi Han, Ming Fan, Gang Quan, (2013). Fault Tolerance with Shared-Recovery
Checking Points, IEEE International Symposium on Low Power Electronics and De-
sign (ISLPED), 76–81. (best paper nomination)

Ming Fan, Vivek Chaturvedi, Shi Sha, Gang Quan, (2013). Feasibility Analy-
sis for Temperature Constrained Real-Time Scheduling on Multi-Core Platforms,
IEEE/ACM Design Automation Conference (DAC) Work-in-progress.

Ming Fan, Vivek Chaturvedi, Shi Sha, Gang Quan, (2013). Thermal-Aware En-
ergy Minimization for Real-Time Scheduling on Multi-core Systems, ACM SIGBED
Review - Special Issue on the Work-in-Progress (WiP) session of the 33rd IEEE
Real-Time Systems Symposium (RTSS), 10(2):27–27.

Ming Fan, Gang Quan, (2012). Harmonic Semi-Partitioned Scheduling For Fixed-
Priority Real-Time Tasks On Multi-Core Platform, Design, Automation & Test in
Europe (DATE), 503–508.

Guanglei Liu, Ming Fan, Gang Quan, (2012). Neighbor-Aware Dynamic Ther-
mal Management for Multi-core Platform, Design, Automation & Test in Europe
(DATE), 187–192.

Huang Huang, Ming Fan, Gang Quan, (2012). On-Line Leakage-Aware Energy Min-
imization Scheduling for Hard Real-Time Systems, Asia and South Pacific Design
Automation Conference (ASP-DAC), 677–682.

Guanglei Liu, Ming Fan, Gang Quan, Meikang Qiu, (2012). On-Line Predictive
Thermal Management under Peak Temperature Constraints for Practical Multi-core
Platforms, 2012, Journal of Low Power Electronics, 8(5):565–578.

Ming Fan, Gang Quan, (2011). Harmonic-Fit Partitioned Scheduling For Fixed-

Priority Real-Time Tasks On the Multiprocessor Platform, IEEE/IFIP International

Conference on Embedded and Ubiquitous Computing (EUC), 27–32.

171

	Florida International University
	FIU Digital Commons
	3-21-2014

	Real-Time Scheduling of Embedded Applications on Multi-Core Platforms
	Ming Fan
	Recommended Citation

	Real-Time Scheduling of Embedded Applications on Multi-Core Platforms

