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ABSTRACT OF THE DISSERTATION 

TWO ADAPTATION MECHANISMS REGULATE CELLULAR MIGRATION IN 

DICTYOSTELIUM DISCOIDEUM 

by 

Marbelys Rodriguez 

Florida International University, 2014 

Miami, Florida 

Professor Lou W. Kim, Major Professor 

 Dictyostelium discoideum is a simple model organism widely used to study many 

cellular functions, including differentiation, gene regulation, cellular trafficking and 

directional migration.  Adaptation mechanisms are essential in the regulation of these 

cellular processes. The misregulation of adaptation components often results in persistent 

activation of signaling pathways and aberrant cellular responses. Studying adaptation 

mechanisms regulating cellular migration will be crucial in the treatment of many 

pathological conditions in which motility plays a central role, such as tumor metastasis 

and acute inflammation. I will describe two adaptation mechanisms regulating directional 

migration in Dictyostelium cells.  

 The Extracellular signal Regulated Kinase 2 (ERK2) plays an essential role in 

Dictyostelium cellular migration. Extracellular Signal Regulated Kinase 2 stimulates 

intracellular cAMP accumulation in chemotaxing cells. Aberrant ERK2 regulation results 

in aberrant cAMP levels and defective directional migration. The MAP Phosphatase with 

Leucine-rich repeats (MPL1) is crucial for ERK2 adaptation.  Cells lacking, MPL1 (mpl1- 

cells) displayed higher pre-stimulus and persistent post-stimulus ERK2 phosphorylation, 
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defective cAMP production and reduced cellular migration. Reintroduction of a full 

length Mpl1 into mpl1- cells restored aggregation, ERK2 regulation, random and 

directional motility, and cAMP production similar to wild type cells (Wt). These results 

suggest Mpl1 is essential for proper regulation of ERK2 phosphorylation and optimal 

motility in Dictyostelium cells. 

     Cellular polarization in Dictyostelium cells in part is regulated by the activation of 

the AGC-related kinase Protein Kinase Related B1 (PKBR1). The PP2A regulatory 

subunit, B56, and the Glycogen Synthase Kinase 3 (GSK3) are necessary for PKBR1 

adaptation in Dictyostelium cells. Cells lacking B56, psrA- cells, exhibited high basal and 

post-stimulus persistent phosphorylation of PKBR1, increased phosphorylation of 

PKBR1 substrates, and aberrant motility. PKBR1 adaptation is also regulated by the 

GSK3. When the levels of active GSK3 are reduced in Wt and psrA- cells, high basal 

levels of phosphorylated PKBR1 were observed, in a Ras dependent, but B56 

independent mechanism. Altogether, PKBR1 adaptation is regulated by at least two 

independent mechanisms: one by GSK3 and another by PP2A/B56.  
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CHAPTER 1: INTRODUCTION 

 
1.1 Dictyostelium discoideum as a model system for cellular motility 

Dictyostelium discoideum cells, for a great deal of time, have been used as a 

model system to study several cellular processes including motility, differentiation, 

cytokinesis and cellular trafficking. Dictyostelium popularity as an organism model is a 

result of several reasons. Firstly, the generation of single and serial knockouts is less 

challenging than in other model systems. Secondly, cell culturing is well established in 

Dictyostelium cells. Lastly, many of the metazoan signaling pathways are conserved in 

Dictyostelium cells, possibly since it is more closely related to metazoans than other 

simple models systems like yeast, making Dictyostelium the preferred simple model 

system of study (Eichinger, L., et al. 2005; Cai, H. and Devreotes, P. 2011; Müller-

Taubenberger, A. et al. 2013).  

Dictyostelium cells in nature are usually found in the forest soil as single cells 

feeding off bacteria and yeast cells (Eichinger, L. et al. 2005; Müller-Taubenberger, A. et 

al. 2013). However, when nutrients are depleted, cells stop growing and start a 

developmental module that results in the formation of fruiting body composed mainly of 

stalk cells and spore cells; the latter germinate when conditions are favorable once again 

(Chilsholm, R. and Firtel, R. 2004; Müller-Taubenberger, A. et al. 2013).  

Dictyostelium development does not involve cellular proliferation, but requires 

multicellular aggregation. As such, cell motility is crucial for development (Chisholm, R. 

and Firtel, R. 2004). During development, cells come together guided by a gradient of 

adenosine 3’, 5’-monophosphate (cAMP) resulting in the formation of an aggregate. The 
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generation of cAMP is thought to originally be generated from “aggregation centers”, 

thought to be composed of starved cells (Chilsholm, R. and Firtel, R. 2004). The cAMP 

waves generated by the cells in the aggregation centers stimulate another wave of cAMP 

generation in the following layers of cells and thus propagate the cAMP waves 

outwardly. Because many of the signaling pathways regulating chemotaxis in 

Dictyostelium cells are conserved in metazoan cells (Chilsholm, R. and Firtel, R. 2004; 

Cai, H. and Devreotes, P. 2011), aggregating cells have been widely used as a 

chemotactic model to further understand many of the signaling pathways regulating 

directional motility.  

 

1.2 An overview of some of the signaling pathways regulating directional motility in 

Dictyostelium 

In response to cAMP stimulation, the cAMP receptor 1 (CAR1), which is a seven-

transmembrane G protein-coupled receptor (GPCR), stimulates the dissociation of 

heterotrimeric G-proteins into Gα and Gβγ subunits, which in turn activate several 

signaling pathways that regulate cAMP relay, cell polarization and directional motility.  

1.2.1 cAMP relay regulation is mediated by ERK2 and PKA 

Activation of CAR1 receptor stimulates the production and secretion of cAMP, 

resulting in the stimulation of nearby cells, which in turn, can produce and secrete more 

cAMP, resulting in the generation of a cAMP gradient (Maeda, M. et al. 2004). The 

Extracellular signal Regulated Kinase 2 (ERK2), formerly known to regulate cellular 

proliferation, differentiation, cell cycle regulation and oncogenic transformation in 

mammalian cells (Camps, M. et al. 1999), plays an essential role in regulating internal 
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level of cAMP in Dictyostelium cells (Aubry, L. et al. 1997, Wang, Y. et al. 1998, 

Madea, M. et al. 2004 and Brzostowski, J. and Kimmel, A., 2006).  

In response to cAMP stimulation, the Gβγ subunits stimulates the cAMP 

production by activating the cytosolic regulator of adenylyl cyclase (CRAC), ERK2 and 

adenylyl cyclase A (ACA), which catalyzes the synthesis of cAMP from ATP (Laub, 

M.T. and Loomis, W. 1998; Tsujioka, M. et al. 2001 and Kimmel, A. and Parent, C., 

2003). High intracellular levels of cAMP activate Protein Kinase A (PKA), which is a 

heterotetramer composed of two catalytic subunits and two regulatory subunits; the latter 

binds to cAMP resulting in its dissociation from the regulatory subunits resulting in PKA 

activation (reviewed in Laub, M.T. and Loomis, W.F. 1998). Cells lacking the catalytic 

subunit of PKA, have been shown to have defective aggregation, ACA expression and 

cAMP relay (Schulkes, C., and Schaap, P. 1995; Knetsch, M.L.W., et al. 1996; Aubry, L. 

et al. 1997). The intracellular cAMP levels are rapidly degraded by the phosphodiesterase 

Response Regulator-A (RegA) (Tsujioka, M. et al. 2001). Studies suggest ERK2 

regulates cytosolic cAMP levels mediating RegA activity; ERK2 have been suggested to 

phosphorylate RegA resulting in RegA inactivation and degradation (Chilsholm, R. and 

Firtel, R. 2004; Madea, M. et al. 2004). Reduced levels of active RegA result in cAMP 

cytosolic accumulation and further increase in PKA activity (Laub, M.T. and Loomis, W. 

1998, Tsujioka, M. et al. 2001, Maeda, M. et al. 2004 and Brzostowski, J. et al. 2006). 

Persistent activation of the GPCR receptor resulting in increased cAMP production and 

ERK2 activation results in lateral pseudopod formation and deficient chemotaxis 

(Brzostowski, J. et al. 2013). 
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Extracellular signal Regulated Kinase 2 deactivation is not completely 

understood, but several studies suggest  its activation is non-adaptive, since ERK2 

remains activated as long as cAMP levels remain high (Brzostowski, J.A. and Kimmel, 

A.R. 2006; Swaney, K.F. et al. 2010; Brzostowski, J.A., et al. 2013).  There is conflicting 

evidence regarding the negative regulators of ERK2; some studies suggest ERK2 activity 

can be inhibited through a negative feedback mechanism mediated by PKA (Laub, M.T 

and Loomis, W., 1998; Maeda, M. et al. 2004), however, another study suggests ERK2 

deactivation occurs independently of PKA, since ERK2 deactivation can occur in cells 

lacking ACA (aca- cells), which cannot produce cAMP and as a result, are unable to 

active PKA (Brzostowski, J. and Kimmel, A. 2006). The existence of additional negative 

ERK2 regulators, which can be activated independently of ACA, may provide an 

alternative explanation for the observed ERK2 adaptation in aca- cells. 

 Dual specific phosphatases (DSP), members of the phosphatase family of Protein 

Tyrosine Phosphatases (PTP), have been shown to be involved in the dephosphorylation 

of ERK2 in mammalian cells (Camps, M. et al. 1999). A Dictyostelium dual specific 

phosphatase, MPL1, further discussed in chapter 2, can provide valuable insight into 

ERK2 adaptation. Cells lacking MPL1 (mpl1- cells) exhibit persistent ERK2 activation, 

increased cAMP production and defective chemotaxis; altogether suggesting MPL1 may 

be an essential component in ERK2 adaptation.   

1.2.2 The family of small GTPases Ras regulates leading edge formation in 

chemotaxing cells 

Dictyostelium cells are able to sense the receptor occupancy both through time 

and space along the cell’s length and use that information to selectively activate/inhibit 
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certain proteins in response to the chemoattractant gradient (Swaney, K.F. et al. 2010). In 

other words, cellular polarization and thus chemotaxis require the localized activation and 

deactivation of proteins in different regions of the cell; this can be accomplished by the 

local regulation of kinases and phosphatases resulting in the enrichment or exclusion of 

certain proteins in the different areas of the cell. Several proteins, including members of 

the family of small GTPases Ras and Rac, the phosphoinositide 3-kinase (PI3K), the 

Target of Rapamicin Complex 2 (TorC2) and members of the family of AGC kinases, 

Protein Kinase BA (PKBA) and Protein Kinase B-related 1 (PKBR1), become rapidly 

activated in response to cAMP stimulation at the leading edge of the cell; whereas other 

proteins are activated or recruited to the lateral and rear sides of the cell, such as the 

Phosphatase Tensin homolog deleted ten (PTEN), p21 Activated Protein A (PAKa) and 

assembled myosin II (Chung, C. et al. 2001; Futamoto, S. et al. 2002; Park, K.C. et al. 

2004; Sasaki, A. et al. 2004; Sasaki, A. and Firtel, R. 2006; Kortholt, A. and van 

Haastert, P. J.M 2008; Swaney, K.F et al. 2010). Polarizing cells involve localized F-

actin polymerization and hence pseudopod formation at the leading edge and not the 

lateral sides of the cell, as well as limited myosin II assembly and contraction to the rear 

of the cell to aid propelling the cell forward.  

A member of the Dictyostelium Ras superfamily, RasG, has been shown to 

transiently become activated in response to cAMP stimulation at the leading edge of 

chemotaxing cells. Upstream regulators of RasG include the RasGEFR (Kae, H. et al. 

2007) and the RasGAP, DdNF1, (Zhang, S. et al. 2008), since disruptions in any of these 

genes produce abnormal RasG activation and adaptation, respectively, resulting in 

abnormal directional motility.  The activation of RasG results in the activation of PI3K, 
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which phosphorylates phosphatidylinositol 4,5-biphosphates (PIP2)  generating the 

phosphatidylinositol (3,4,5)-triphosphate (PIP3) at the membrane. Although the RasG 

activation was shown to occur independently of PI3K and actin polymerization, it has 

been proposed the presence of a positive feedback loop between RasG, PI3K and F-actin 

polymerization resulting in the amplification of the signal (Sasaki, A. et al. 2004). The 

accumulation of PIP3 serves as docking sites for many Pleckstrin homology (PH) 

domain-containing proteins, such as PKBA, that are important for cell polarity, cAMP 

relay and directional motility (Kae, H. et al. 2004; Sasaki, A. et al. 2006; Kortholt, A. and 

van Haastert, P. J.M 2008; Cai, H. and Devreotes, P. 2011; Kortholt, A. et al. 2011).  

The accumulation of PIP3 at the leading edge of the cell is also regulated by 

PTEN, which catalyzes the dephosphorylation of PIP3 at the third position; because PIP3 

is a PI3K product, PTEN have been suggested to antagonize PI3K activity and regulate 

PIP3 accumulation at the front of chemotaxing cells. In response to cAMP, PTEN 

dissociates from the membrane at the front of the cell and localizes on the cytoplasm and 

to the lateral and rear regions of the cell resulting in the accumulation of PIP3 at the 

leading edge of the cell (Futamoto, S. et al. 2002; Iijima, M., et al. 2004). Cells lacking 

PTEN (pten- cells) exhibited high levels of PIP3 and lateral pseudopod formation 

suggesting PTEN along PI3K play an essential role regulating proper PIP3-mediated 

signaling and directional migration (Iijima, M. and Devreotes, P. 2002). The localization 

of PTEN have been suggested to be regulated in part by the PIP2 binding domain 

localized in the N-terminal region of PTEN since mutations on this binding motif 

severely impairs PTEN membrane localization (Iijima, M. et al. 2004). Additionally, 

PTEN membrane localization seems to be regulated by the Phospholipase C (PLC), 
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which shown to hydrolyzes PIP2 forming diacylglycerol (DAG) and inositol-1,4,5-

triphosphate (IP3); cells lacking PLC (plc- cells) exhibited a more generalized localization 

of PTEN around the membrane in contrast to the usual lateral and rear localization 

observed in Wild type (Wt) cells (Kortholt, A. et al. 2007). Altogether, RasG and PI3K 

mediated pseudopod formation at the front of chemotaxing cells results from the temporal 

activation of PI3K, PTEN and PLC.  

Another member of the Ras superfamily, Rap1, has been shown to regulate 

cellular polarity and myosin II assembly in Dictyostelium cells (Kortholt, A. et al. 2006; 

Jeon, T. et al. 2007; Kortholt, A. and van Haaster, P.J.M. 2008). The activation of Rap1 

has been shown to be mediated by the Rap1 GEF, GbpD, resulting in the activation the 

serine/threonine kinase, Phg2 (Kortholt, A. et al. 2006). The Rap1 mediated activation of 

Phg2 plays an important role in the regulation of myosin II assembly in chemotaxing 

cells, thus regulating cell polarity and cell adhesion (Jeon, T.J. et al. 2007). In order for 

cells to extend a pseudopod, myosin II disassembly needs to occur at areas of F-actin 

polymerization; as a result, chemotaxing cells mainly contain polymerizing F-actin at the 

leading edge of the cell and restrict the myosin II assembly to the lateral and posterior 

regions of the cell (Swaney, K. et al. 2010).  Upon cAMP stimulation, myosin II is 

phosphorylated by the myosin heavy chain kinase (MHCK) in three different threonine 

residues, Thr1823,Thr1833  and Thr2029, preventing myosin II assembly at the leading edge 

of the cell (Egelhoff, T.T et al. 1993;Bosgraaf, L. and van Haastert, P.J.M. 2006). The 

activation of Phg2 was suggested to regulate myosin II phosphorylation at the cell’s 

leading edge; Wt cells overexpressing a constitutively active form of Rap1 (Rap1G12V) 

exhibited extended myosin II assembly; similarly, cells lacking Phg2 (phg2- cells), 
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accumulate higher levels of assembled myosin II at the cell cortex; altogether, these 

results suggest Rap1 and Phg2 prevent myosin II assembly at front of the chemotaxing 

cell, thus regulating cell polarity, pseudopod formation and directional migration (Jeon, 

T.J. et al. 2007). 

Another member of the Dictyostelium Ras superfamily is RasC; similarly to 

RasG and Rap1, RasC becomes activated in response to cAMP stimulation resulting in 

the activation of TorC2, which along with Phosphoinositide dependent kinase 1 (PDK1) 

phosphorylates and activates members of the AGC family of kinases, PKBA and PKBR1 

(Kae, H., et al. 2004; Lee, S. et al. 2005; Kamimura, Y., et al. 2008; Liao, X. et al. 2010; 

Cai, H., et al. 2010). The activation of RasC was suggested to be regulated by a complex 

composed of the scaffolding protein Sca1, two RasGEF proteins, RasGEFA and 

RasGEFH, and the catalytic and scaffolding subunits of the Protein Phosphatase 2A 

(PP2A) complex; in response to cAMP stimulation the Sca1 complex was shown to 

rapidly translocate to the membrane of chemotaxing cells resulting in the activation of 

RasC, thus stimulating the activation of PKBA and PKBR1 (Charest, P. et al. 2010).  

Protein Kinase BA and PKBR1 have been suggested to regulate directional migration and 

cellular polarity through the phosphorylation of several downstream proteins including 

Talin and PAKa, which have been shown to regulate cellular adhesion and myosin II 

assembly, respectively (Chung, C., et al. 2001; Kamimura, Y. et al. 2008; Charest, P. et 

al 2010; Tang, M. et al. 2010).  

A prerequisite for PKBA activation is its translocation to the membrane 

through its PH-domain that binds to PIP3 (Meili, R. et al. 1999); in contrast, PKBR1 is 
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permanently found at the membrane through a myristoylation at its N-terminal region, 

instead of the PH domain commonly found in other members of the AGC protein kinase 

family (Meili, R. et al. 1999; Meili, R. et al. 2000). Therefore, it has been suggested, 

PKBA activation is under RasG-PI3K control while PKBR1 occurs independently of 

PI3K activation (Kamimura, Y. et al. 2008; Liao, X. et al. 2010), supporting the notion 

that parallel pathways in many instances have redundant roles regulating cell polarity and 

directional motility. 

The adaptation of PKBR1 is not fully understood; recent evidence suggests the 

presence of a negative feedback mechanism between PKBR1 and Sca1 resulting in 

decreased RasC activation and subsequently decreased PKBR1 activation; Sca1 is 

possibly a PKBR1 substrate and when phosphorylated by PKBR1, Sca1 is unable to 

promote RasC activation ultimately reducing PKBR1 further activation (Charest, P. et al 

2010). In chapter 3, two novel PKBR1 negative regulators, the Glycogen Synthase 

Kinase 3 (GSK3) and the PP2A regulatory subunit, B56, will be discussed.  The role of 

GSK3 in PKBR1 regulation has been previously reported by Teo, R. and his colleagues; 

cells lacking GSK3 (gsk3- cells) exhibited undetected levels of PKBR1 activation and 

defective chemotaxis (Teo, R. et al. 2010; see chapter 3 below). In chapter 3, evidence 

suggesting GSK3 also plays a negative role in PKBR1 activation will be presented. Also, 

in chapter 3, the role of the PP2A regulatory subunit, B56, in PKBR1 adaption will be 

discussed. It was suggested that B56 negatively regulate PP2A catalytic activity in 

mammalian cells and in Dictyostelium cells because cells lacking B56 exhibited 

persistent phosphorylation of PP2A substrates (Ito, A. et al. 2000; Lee, N. et al. 2008). 

Similarly to GSK3, B56 negatively regulates PKBR1 activation in Dictyostelium cells. 
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Cells lacking B56 (psrA- cells) exhibited abnormal high basal levels of active PKBR1 

resulting in defective directional migration. Altogether, PKBR1 adaptation seems to be 

complex, possibly being regulated by multiple signaling pathways.  
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CHAPTER 2: MPL1, THE NOVEL PHOSPHATASE WITH LEUCINE-RICH-
REPEATS, IS ESSENTIAL FOR PROPER ERK2 PHOSPHORYLATION AND 
CELL MOTILITY 
 
Chapter 2 is published, see reference below,  
 
Rodriguez, M., Kim, B., Lee, N., Veeranki, S. and Kim, L. 2008. MPL1, a novel 
phosphatase with leucine rich repeats, is essential for proper ERK2 phosphorylation and 
cell motility. Eukaryotic Cell, Vol. 7, pp. 958-966 
 
 

2.1 Summary 

  
The novel Dictyostelium phosphatase Mpl1 contains six Leucine-Rich-Repeats at 

the amino-terminal end and a phosphatase domain at the carboxyl end. Similarly 

architectured phosphatases exist among other protozoa such as Entamoeba histolytica, 

Leishmania major, and Trypanosoma cruzi. Mpl1 was strongly induced after 5 hours of 

development; ablation by homologous recombination led to defective streaming and 

aggregation during development. In addition, cAMP pulsed mpl1- cells showed reduced 

random and directional motility. At the molecular level, mpl1- cells displayed higher 

prestimulus and persistent post-stimulus ERK2 phosphorylation in response to cAMP 

stimulation. Consistent with their phenotype of persistent ERK2 phosphorylation, mpl1- 

cells also displayed an aberrant pattern of cAMP production, resembling that of the regA- 

cells. Reintroduction of a full length Mpl1 into mpl1- cells restored aggregation, ERK2 

regulation, random and directional motility, and cAMP production similar to wild type 

cells. We propose that Mpl1 is a novel phosphatase essential for proper regulation of 

ERK2 phosphorylation and optimal motility during development. 
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2.2 Introduction 

Mitogen Activated Protein (MAP) kinases are central in the regulation of 

proliferation, differentiation, and cell migration in diverse eukaryotic cells (Wang et 

al.1998; Kolch 2000; Roux and Blenis, 2004; Tsai et al. 2004; Vindis et al, 2003; Huang 

et al. 2003;). MAP kinase ERK2 also plays critical roles during Dictyostelium 

development. ERK2 is essential for initiation and propagation of periodic cAMP pulses 

during aggregation and differentiation. Chemoattractants, such as cAMP, induce ERK2 

activation. Activated ERK2 subsequently inhibits the intracellular cAMP specific 

phosphodiesterase RegA, resulting in an increase in the cytosolic cAMP level (Laub and 

Loomis, 1998; Maeda et al. 2004; Sawai et al. 2005).  

erk2- cells, starved for 8 hours, exhibited  a decrease in motility and a severe 

chemotaxis defect toward cAMP gradient. Aberrancy in chemotaxis was aggravated in 

the presence of a strong cAMP gradient (2µM) compared to a weak one (0.1µM) (Wang 

et al. 1998). erk2- cells also display defective cytoskeletal remodeling in response to 

chemoattractant stimulation. A polarized wild type cell typically displays a single 

dominant leading edge enriched with F-Actin. Myosin II localizes to the lateral side and 

back of a polarized cell, where it functions to suppress lateral pseudopods and provides 

tractional force to the back. This single dominant leading edge disintegrates but forms 

again after 7 minutes in response to global cAMP stimulation (Wang et al. 1998). In 

contrast, erk2- cells, under the same condition, displayed multiple crown-like 

membranous protrusions, which were enriched not only in F-Actin but also in Myosin II 

(Wang, et al., 1998). This aberrant structure, which was proposed to be less stable and 
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unable to provide necessary traction force for cells to move, is believed to be the reason 

why erk2- cells are less motile than wild type cells (Wang, et al. 1998). 

It is well established that the dual phosphorylation of threonine176 and tyrosine178 

residues of the ERK2 activation loop, often called the TEY motif, mediates activation of 

ERK2 kinase activity. This dual phosphorylation on the TEY motif of ERK2 peaks 

around 1 minute after cAMP stimulation, but virtually no phosphorylation of the ERK2 

remains after 2~3 minutes (Kosaka and Pears, 1997, Wang et al. 1988). Adaptation of 

ERK2 is thus likely mediated by a phosphatase that can de-phosphorylate phosphates 

from both threonine176 and tyrosine178 residues.  In Dictyostelium, several tyrosine 

phosphatases (PTP1, PTP2, and PTP3) have been characterized (Early et al. 2001; 

Gamper et al. 1996; Gamper et al. 1999, Howard et al. 1992; Howard et al. 1994). These 

phosphatases are involved in cell differentiation or stress response signaling, but it is not 

known if ERK2 is regulated by any of these tyrosine phosphatases. Currently, the 

phosphatase responsible for dephosphorylating ERK2 in Dictyostelium is unidentified.  

In mammalian systems, several phosphatases are known to decrease MAPK 

phosphorylation and activity. These MAPK phosphatases belong to the Dual Specificity 

Phosphatase (DSPase) family, which dephosphorylate both phospho-Serine/Threonine 

and phospho-Tyrosine residues. Two well-characterized examples of DSPases are Cdc25 

and MAP Kinase Phosphatase (MKP). Cdc25 dephosphorylates and activates cell cycle 

dependent kinases (cdks) to promote cell cycle progression. MKP dephosphorylates and 

inactivates MAP kinase signaling at the level of MAP Kinase (Ducruet et al. 2005; Lyon 

et al. 2002; Rintelen et al. 2003). A number of mammalian MKPs contain MAP Kinase 
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Binding (MKB) domain, but no such domain can be found in the Dictyostelium genome 

by homology domain search (NCBI, Conserved Domains Search Blast).    

We have isolated and characterized the function of Mpl1, a novel Dictyostelium 

phosphatase with a Leucine-Rich-Repeat (LRR) domain. Mpl1 phosphatase domain 

contains the conserved, functionally critical signature sequence of DSPases: 

Dx26(V/L)x(V/I)HCxAG(I/V)SRSxT(I/V)xxAY(L/I)M (x can be any amino acids). This 

sequence constitutes a unique structure that enables DSPase to dephosphorylate all three 

types of phospho-amino acids (Theodosiou and Ashworth, 2002; Keyse, 2000). Mpl1 

contains LRR domain in its N-terminal region composed of six LRR sequences matching 

the consensus sequence of LxxLxLxxN/CxL (x can be any amino acids and L can be 

Leucine, Isolecine, and Phenylalanine). The LRR domain often forms a horseshoe shape 

domain capable of mediating diverse protein-protein interactions in many eukaryotes 

(Kobe and Kajava, 2001, Enkhbayar et al., 2004). The combination of potential DSPases 

with LRR domains can be found not only in Dictyostelium, but also in other parasitic 

unicellular eukaryotic organisms such as Entamoeba histolytica, Leishmania major, and 

Trypanosoma cruzi (Loftus, et al., 2005, Fig.1A).  

Ablation of Mpl1 resulted in higher prestimulus and persistent post-stimulus 

ERK2 phosphorylation upon cAMP stimulation. Furthermore, mpl1- cells displayed 

strong defects in motility. Similar to regA- cells, mpl1- cells displayed more rapid cAMP 

production during the 2-minutes window after the stimulation with cAMP compared to 

wild type cells. Considering that ERK2 is a negative regulator of RegA, persistent 

activation of ERK2 would have resulted in a persistent RegA inhibition in mpl1- cells. 

Consistently, reintroduction of the full length Mpl1 in mpl1- cells restored ERK2 
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regulation, motility, and cAMP production. We propose that Mpl1 is a novel phosphatase 

essential for proper regulation of ERK2 phosphorylation and effective cell movement 

during Dictyostelium development. 

2.3 Materials and Methods 

2.3.1 Dictyostelium culture and development 

 Dictyostelium cells were grown in axenic media (7.15g Peptone #3 (DIFCO), 7.15 

g Thiotone E Peptone (Becton Dickinson), 7.15 g Yeast extract, 15.4 g glucose 0.525 g 

Na2HPO4·7H2O, 0.48 g KH2PO4 in 1 liter of water) Cells were developed on 

nitrocellulose filters at 1x107 cells/cm2 in DB buffer (10 mM sodium phosphate, pH 6.4, 

2 mM MgCl2, and 0.2 mM CaCl2) or about one hundred actively growing Dictyostelium 

cells were mixed with 200 µl of a saturated overnight culture of Klebsiella aerogenes, 

and plated on a 100 mm SM agar plate (10g Glucose, 10g BactoPeptone, 1g Yeast 

extract, 1g MgSO4
.7H2O, 1.9g KH2PO4, 0.6g K2HPO4, 20g Agar in 1 liter of water).  

2.3.2 Full length Mpl1 cloning 

The full length Mpl1 cDNA is 2,505 base pairs (bp) long and contains single 

EcoRI site at +405, SpeI site at  + 652 and StyI site at +1742 (http://dictybase.org, 

sequence information for DDB0190671). The 662 bp partial Mpl1 cDNA fragments 

encoding the 5’ end of the gene (fragment I; +1 to +662), was generated by PCR using 

the forward primer 5’ CGGGATCCATGATATTTAAAAAATTATTTTCAAAAGG 3’ 

and the reverse primer 5’ GGGAAACTAGTGAATTGATTAATAC 3’, and subcloned 

into pBluescript II KS (-) (pKS(-), Stratagene) vector using BamHI and SpeI sites. The 3’ 

end of the gene (fragment II; +1742 to +2505), 763 bp in length was generated by PCR 

using the forward primer 5’GAATGCGGCCGCGCCAAGGAAAGATTCAGC 3’ and 
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the reverse primer 5’ CGAGCTCTTATTTTGATAAATCTTTTTCAAATTTTTTTAAT 

TGG 3’, and subcloned into the pKS (-) vector containing the fragment I using NotI and 

SacI sites. The third partial cDNA encoding the central Mpl1 cDNA region (fragment III; 

+663 to +1741) was generated by RT-PCR using the forward primer 5’ 

GTATTAATCAATTCACTAGTTTCCC 3’ and the reverse primer 5’ 

GCTGAATCTTTCCTTGGCTTTC 3’. The full length Mpl1 was generated by inserting 

the fragment III into the pKS (-) vector containing the two partial Mpl1 genes described 

above using SpeI and StyI sites.  

The Flag tag was added to the 5’ end of the full length Mpl1 by PCR using the 

forward primer 5’ ATAAGCTTTAATAAAAAATGGACTACAAGGACGACGATGA 

CAAGATGATATTTAAAAAATTATTTTCAAAAGG 3’ and the reverse primer 5’ 

GGAATTTCATAGAATTCCATATAG 3’. The PCR product was digested with HindIII 

and EcoRI, and subcloned into the pKS (-) vector containing full length Mpl1. Then, the 

construct was digested with XhoI and SacI and subcloned into the pCR 2.1-TOPO vector 

(Invitrogen) using the same sites. A positive clone was digested with HindIII and 

subcloned into an empty pKS (-) vector to introduce new restriction sites. Clones having 

BamHI at the 5’ side and XhoI at the 3’ side were selected, digested with the same 

enzymes, and subcloned into the pEXP4(+) vector (Dynes et al., 1994) previously 

digested with BclII and XhoI. All PCR products were confirmed by sequencing both 

strands after each subcloning step.   

2.3.3 Generation of mpl1- cells and northern blot analysis of Mpl1   

 The blasticidin-resistance cassette was subcloned between the LRR and 

Phosphatase (PPase) domain (Gly 583) of Mpl1 (Filled arrowhead in Fig. 1B). 



 
 

21 
 

Transformants were prescreened by PCR (the forward primer 5’ GCATCTGATAATAC 

TGATGAGGC 3’ and the reverse primer 5’ TTCAAGTTGCTGAATCTTTCC 3’). 

Genomic DNAs from the knockout candidates were isolated and 5 µg of each sample 

were digested with EcoRV (Fig. 3A). Knockout cells were analyzed by genomic 

Southern blot. The Mpl1 expression pattern was determined by northern blot analysis 

using a partial Mpl1 cDNA encoding the phosphatase domain. The levels of the residual 

partial Mpl1 transcripts in mpl1- cells were compared to that of wild type cells by RT-

PCR using the forward primer 5’ ATGATATTTAAAAAATTATTTTCAAAAGG 3’ and 

the reverse primer 5’ GGGAAACTAGTGAATTGATTAATAC 3’, resulting in a product 

that is 662 base pairs in length upstream of the blasticidin cassette insertion point. 1 ng of 

total RNA from either wild type or mpl1- cells was used for RT-PCR template for Mpl1 

amplification. Ig7 transcripts were amplified using the forward primer 5’ 

GGTGAGCGAAAGCCGAGGAGAG 3’ and the reverse primer 5’ GCAACAGTTAC 

GGGTTCCGCC 3’ as a control.  10 pg of total RNA form either wild type or mpl1- cells 

were used for RT-PCR template for Ig7 amplification. 

2.3.4 Recombinant Mpl1-Phosphatase and Phosphatase Assay 

Mpl1 phosphatase domain was initially amplified by RT-PCR with the forward 

primer 5’ CCAAGGAAAGATTCAGCAAC 3’ and the reverse primer 5’ TTATTTTGA 

TAAATCTTTTTCAAATTTTTTTAATTGG 3’, and cloned into the pCR2.1-TOPO 

vector. Positive clones were selected after sequencing the whole region. GST-Mpl1-

PPase was generated by subcloning the Mpl1 phosphatase domain into pGEX 4T-2 

(Pharmacia Inc.) after EcoRI digestion and filling-in with Klenow. Clones containing the 
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phosphatase domain were screened first by PCR and confirmed by fusion protein 

expression of 53kD upon IPTG induction. 

GST and GST-Mpl1-PPase proteins were purified with Gluthatione-Sepharose 

beads (Pharmacia Inc.), and analyzed by western blot using anti-GST antibody. Mpl1 

phosphatase activities were determined by measuring p-NP generation from p-NPP 

(Enzolyte pNPP Phosphatase assay kit, AnaSpec). The generation of p-NP was 

determined by monitoring absorption values at 405nm.    

2.3.5 Submerged aggregation assay 

For submerged aggregation experiments, log phase cells were harvested, washed 

and placed under DB buffer at indicated cell densities on a 24 well plate (Falcon 353047, 

Becton Dickinson). After 12 hours at 20oC, cell migration, streaming, and aggregation 

were monitored using Leica inverted microscope (DM IRB). 

2.3.6 Chemotaxis and random motility analyses 

Log phase cells were differentiated with 50 nM of cAMP pulses at 6 minutes 

intervals for 4 hrs. Pulsed cells were plated at a density of 3x104cells/cm2 on a 35 mm 

tissue culture dish cover (Falcon 353001, Becton Dickinson). A Schmazu 

micromanipulator with a glass capillary needle (Eppendorf Femtotip) filled with either 

0.1 µM or 2 µM cAMP solution was used for chemotaxis assay. For random motility 

analysis, cells were plated on the same tissue culture plate cover with no cAMP source, 

and their movements were recorded for 30 minutes. The responses of the cells were 

followed by time-lapse video recording with Openlab software. 

Chemotaxing cells were analyzed as described previously (Loovers et al. 2006). 

An ellipsoid was constructed around the cell to allow the same centroid for both the 
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ellipsoid and the contour. Chemotactic index, defined as the net distance moved to the 

direction of the pipette divided by the total distance moved, was computed from the 

centroid positions. The speeds of movement of cells were calculated from positions of the 

centroids. Statistical significance of differences between wild type and mutant cells were 

evaluated by obtaining P values using Student’s t test. 

2.3.7 ERK2 activation by cAMP 

Both wild type and mpl1- cells (108 cells) were stimulated with 50nM cAMP 

pulses for 4 hours, treated with 2mM Caffeine for 30 minutes, and then stimulated with 

0.1 µM cAMP. Cells were harvested at each time point, and directly lysed with SDS-

PAGE loading dye for Western blot analysis using anti-phospho-ERK2 (Cell Signaling 

Inc.) or anti-Pan-Ras antibodies (Oncogene Research products).  

2.3.8 cAMP Assay 

cAMP levels were quantified by using a cAMP assay kit (Amersham). One 

hundred million cells were pulsed with 50 nM cAMP for 5 hours (20x106 cells/ml), 

washed, and resuspended with DB buffer at a density of 5x107 cells/ml.  Before the 

activation, cells were preincubated with DB buffer containing 10 mM dithiothreitol 

(DTT) for 10 minutes on ice. 1.8 ml of cells was transferred into a cup on an orbital 

shaker for 2 minutes. 200 μl of stimulation cocktail (10 mM DTT and 100 μM of 2-

deoxy cAMP) was added to the cells. 100 μl of samples were taken at each time point 

into 1.5 ml Eppendorf tubes filled with 100 μl of 3.5% perchloric acid (PCA). Samples 

were mixed thoroughly and incubated on ice for 30 minutes. 100 μl of 50% saturated 

KHCO3 solution was added to the sample and incubated on ice for 30 minutes. After 

insoluble aggregates were removed by centrifugation, the supernatants were rapidly 



 
 

24 
 

frozen using liquid nitrogen. Samples were evaporated in Speed-vac without heating for 

15 hours, and resuspended with 110 μl of Tris-EDTA buffer from the cAMP kit. Levels 

of cAMP were determined by following the manufacturer’s instruction (Amersham Inc.).  

 

2.4 Results 

2.4.1 Mpl1 is an active phosphatase with Leucine-Rich Repeats.   

A group of genes encoding a potential DSPase domain with Leucine-Rich 

Repeats (LRR) can be found in the genome of Dictyostelium and several protozoans such 

as Entamoeba histolytica, Leishmania major, and Trypanosoma cruzi (Fig. 1A). These 

hypothetical genes show a potential DSPase (PPase) and LRR domains, and sometime 

extra domains such as tandem serine/threonine kinase domains and/or Zn finger domains. 

No other similarly structured genes were found in the currently available genome of 

metazoa or plant.   

We have cloned one such Dictyostelium gene, Mpl1, which contains a carboxyl 

terminal phosphatase domain with conserved residues essential for dual specificity 

phosphatase function and six potential Leucine–Rich Repeats at the amino-terminal half 

of the protein (Fig. 1B). Mpl1 expression pattern was determined by northern blot 

analysis using a probe encoding the phosphatase domain as shown in Figure 1C. Mpl1 

expression was significantly up-regulated upon starvation, reaching a maximum around 

10 hours. Mpl1 expression subsequently declined but was present throughout 

development. 

To ensure that Mpl1 is an active phosphatase, we generated a GST-fusion of the 

putative Mpl1 phosphatase domain (Mpl1-PPase; amino acids 580-834). GST and GST-
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Mpl1-PPase were expressed and purified from E. coli, using Gluthathione-Sepharose 

beads. Equivalent molar amounts of GST and GST-Mpl1-PPase were normalized by 

western blot using anti-GST antibody (Fig. 2A), and an equimolar amount of the proteins 

were incubated with pNPP. GST-Mpl1-PPase clearly demonstrated a phosphatase 

activity of pNPP dephosphorylation (Fig. 2B). It is, however, not known if Mpl1 is a 

bona fide dual specificity phosphatase.   

2.4.2.mpl1- cells are defective in aggregation. 

mpl1- cells were created by homologous recombination as described in Figure 3A. 

Ablation of Mpl1 gene was screened by PCR analysis and genomic Southern blot using 

Mpl1 specific probe. To determine the level of a partial Mpl1 transcript in mpl1- cells, 

transcripts were analyzed by RT-PCR using a primer set upstream of the blasticidin 

cassette insertion point. Compared to wild type cells, mpl1- cells exhibited a significant 

decrease in the level of the partial Mpl1 transcript, while Ig7 control transcript levels 

were comparable (Fig. 3A). Although faintly visible, the residual level of the partial Mpl1 

transcript did not interfere with the rescue of mpl1- phenotypes by the reintroduction of 

the full length Mpl1 gene into mpl1- cells (Fig. 4, 5, 6, 7). Aggregation minus (agg-

minus) phenotype was evident from mpl1- cells developed on Klebsiella aerogenes (Ka) 

plates for seven days (Fig. 3B). Wild type cells formed a number of fruiting bodies, 

whereas most of mpl1- cells failed to display visible structures on the plate. Occasionally, 

in less than 10 % of plaques, mpl1- cells formed various heterogeneous structures 

including aggregates and fruiting bodies. This agg-minus phenotype was rescued by the 

re-introduction of the full length Mpl1 (Fig. 3B).   
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To determine whether mpl1- cells are defective in cell migration, cells were plated 

to form territorial streams at various cell densities as described in Figure 3C. While wild 

type cells displayed eminent territorial streaming even at a density of 1.25x104 cell/cm2, 

mpl1- cells, in contrast, consistently failed to form territorial streams even at twenty times 

higher cell density. mpl1- cells occasionally formed loose aggregates, which might have 

been formed by nearby cells coalescing together in the absence of directional cell 

migration.  

2.4.3 mpl1- cells are defective in chemotaxis. 

mpl1- cells were challenged with weak (0.1µM) and strong (2 µM) gradients of 

cAMP for a duration of 60 minutes to fully examine their behavior. Cells were made 

responsive to the cAMP gradient by 4 hours of cAMP pulses, and were challenged for 

one hour with a cAMP gradient formed from a micropipette filled with 0.1 µM or 2 µM 

cAMP. During the initial 20 minutes mpl1- cells exhibited severely compromised gradient 

sensing and reduced speed (Fig. 4B, 4D, 5B, 5D) compared with wild type cells (Fig. 4A, 

4D, 5A, 5D). During the last 20 minutes duration, chemotaxis index of mpl1- cells 

improved ~ 75 % compared to wild type under both conditions, but the degrees of the 

improvement in motility were lesser (Fig. 4D, 5D). Although statistically meaningful (P 

value, 0.012), the difference of motility under weak and strong gradient was modest. 

Behaviors of mpl1- cells reintroduced with the full length Mpl1 were determined in the 

equivalent manner. Under 0.1 µM cAMP, these cells displayed wild type-like chemotaxis 

index and motility (Fig. 4C, 4D, 5C, 5D). Behaviors of HS174 cells (Wang et al. 1998), 

which lack ERK2, were monitored for comparison with other cell types described in this 

report. HS174 cells displayed more severe defects in gradient sensing and directional 
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motility compared to mpl1- cells under both gradients (Fig. 4D, 5D). These results were 

obtained from three independent experiments and the average values are summarized in 

Figure 4D and 5D.  

To determine if Mpl1 function is necessary for general motility, cells were 

stimulated with cAMP pulses as the chemotaxis assay, and their movement was 

monitored in the absence of the cAMP gradient. Wild type, mpl1- cells, mpl1- cells re-

introduced with the full length Mpl1, and HS174 cells were pulsed as described earlier, 

and were analyzed by tracing their movement for 30 minutes at 1 minute intervals (Fig. 

6A, 6B). Compared to wild type cells, mpl1- cells consistently displayed compromised 

random motility (~60%), whereas mpl1- cells re-introduced with the full length Mpl1 

showed no significant difference from wild type cells (Fig. 6B). Cells lacking ERK2 

seemed to have more problems than cells suffering from aberrant ERK2 phosphorylation 

(Fig.6B, 7A, 7B, 7C). These results showed that mpl1- cells were compromised in both 

random and directional motility, and re-introduction of Mpl1 significantly restored both 

defects.  

2.4.4 Mpl1 regulates post-stimulus ERK2 adaptation.  

Considering that one of the major dual specific phosphatases are MAP kinase 

phosphatases (MKPs), we reasoned that mpl1- cells may experience aberrant ERK2 

phosphorylation. ERK2 phosphorylation in response to cAMP stimulation was tested by 

western blot analysis using an anti-phospho-ERK2 specific antibody (Cell Signaling Inc., 

Brzostowski and Kimmel, 2006). Cells were stimulated with pulsatile cAMP for 4 hours, 

treated with 2mM caffeine for 30 minutes, and then challenged with 0.1 µM of cAMP. 

Under these conditions in wild type cells, ERK2 phosphorylation was virtually 
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undetectable before cAMP stimulation, and reached its maximum at 1 minute after the 

stimulation. mpl1- cells, however, not only displayed higher prestimulus ERK2 

phosphorylation, but also persistent phosphorylation after cAMP stimulation over 4 

minutes of duration (Fig. 7A).  The same blot was stripped and reprobed with anti-Pan-

Ras antibody to confirm equal loading across the lanes. These data indicate that Mpl1 

regulates both prestimulus and poststimulus ERK2 phosphorylation. Consistently, 

reintroduction of full length Mpl1 lowered prestimulus ERK2 phosphorylation to an 

undetectable level, and the post-stimulus level of phospho-ERK2 was similarly restored 

to that of the wild type (Fig. 7B, 7D). Western blot using anti-flag showed the expression 

of the full length Mpl1 (Fig. 7C). 

One of the well-established phenotypes of erk2- cells is their inefficiency in 

cAMP generation in response to cAMP receptor activation. It is, however, not due to the 

defective activation of Adenylyl Cyclase, but rather due to the excessive activity of 

RegA, a cytoplasmic phosphodiesterase. Upon receiving cAMP stimulation, wild type 

cells typically display the initial two minutes of slower phase in cAMP production, which 

is missing in regA- cells (Maeda et al. 2004). This two-minute window coincides with the 

transient ERK2 activation. It is, therefore, plausible that mpl1- cells also display lack of 

the initial 2-minute slower phase of cAMP production in response to the receptor 

stimulation. Production of cAMP from wild type and mpl1- cells was analyzed by [H3]-

cAMP competition assay after cAMP pulsing. The typical 2-minute slower phase in 

cAMP production was lost in mpl1- cells (Fig. 7E), similar to that of the regA- cells 

(Maeda et al. 2004).  Furthermore, re-introduction of the full length Mpl1 restored cAMP 
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production pattern comparable to that of the wild type (Fig. 7E), indicating that Mpl1 is 

also essential for proper cAMP production.   

 

2.5 Discussion  

2.5.1 Phosphatases similarly architected to Mpl1 exist in other unicellular 

eukaryotes.  

Although multiple MAP Kinase Phosphatases (MKPs) and DSPases exist in 

mammals, none of the mammalian dual specificity phosphatases contain LRR domains. 

The MKPs interact with MAP kinases either directly through the phosphatase domain or 

indirectly through MAP Kinase binding (MKB) domain.  No MKB domain was found in 

the Dictyostelium genome by NCBI homology domain search. There, however, exist 

several potential DSPases equipped with LRR domains in the genome of certain 

unicellular eukaryotic organisms such as Entameoba histolytica, Leishmania major, and 

Trypanosoma cruzi as described in Figure 1A. All these three organisms are potentially 

pathogenic, and thus understanding Mpl1 function may shed new insight on the biology 

of these parasitic organisms. It will be interesting to determine if the Mpl1 like genes of 

Entameoba histolytica, which are highly homologous to Mpl1 in domain organization, 

are also essential for ERK2 regulation and motility.  

2.5.2 Mpl1 is an essential regulator of ERK2 function.   

In this report, we showed that Mpl1 is essential for proper ERK2 regulation. 

Considering that multiple phosphatases exist in vivo, it is significant to observe aberrantly 

high level of phospho-ERK2 in mpl1- cells. In addition, the kinetics of cAMP production 

of mpl1- cells resembled that of the regA- cells, further supporting the notion that mpl1- 
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cells have higher ERK2 activity (Fig. 7E). Furthermore, reintroduction of Mpl1 in mpl1- 

cells restored ERK2 phosphorylation and cAMP production similar to that of the wild 

type (Fig. 7B, 7E). It can be said that Mpl1 is essential for proper ERK2 regulation, 

although it is not clear whether Mpl1 directly or indirectly dephosphorylates phospho-

ERK2.   

In addition to RegA regulation, ERK2 has also been implicated in polarized 

cytoskeletal reorganization (Wang et al., 1998). Upon receiving cAMP stimulation 

during aggregation process, cells lose polarity by disintegrating the leading edge and 

become rounded up within a minute, and regain polarity by reforming a leading edge 

after 6~7 minutes. Cells lacking ERK2 fail to form the dominant F-Actin filled leading 

edge. In contrast, erk2- cells generated crown-like structures filled with both F-Actin and 

Myosin II. It seems, therefore, that transient activation of ERK2 during the early response 

period is essential for selective assembly of F-Actin from Myosin II in the leading edge 

after 6 minutes of signal integration.  

Consistently, an elevation of prestimulus ERK2 phosphorylation and persistent 

poststimulus ERK2 phosphorylation in mpl1- cells were paralleled with defective 

motility. Furthermore, the restoration of normal ERK2 regulation in mpl1- cells by 

reintroduction of Mpl1 significantly improved random motility and directional motility. It 

seems conceivable that not only the deprivation, but also excessiveness of ERK2 activity 

could hamper dynamic F-Actin and Myosin II remodeling during cell movement. 

However, due to the short list of ERK2 substrates in Dictyostelium cells, it remains to be 

determined how deprivation or excess ERK2 activity regulates cytoskeletal remodeling 

during cell movement.  
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2.5.3 mpl1- cells were defective in cell migration. 

Quantitative analysis of the chemotaxis of mpl1- cells revealed several defects. 

Compared to wild type, mpl1- cells displayed severely compromised chemotaxis index 

during the initial 20 minutes duration, which improved significantly when allowed for an 

additional 40 minutes under both weak and strong cAMP gradients. Considering their 

modest phenotype and delayed improvement in directionality of mpl1- cells, it is unlikely 

that Mpl1 is the major determinant of gradient sensing.  

In contrast, motility was more severely compromised during the first 20 minutes 

under both gradients. During the last 20 minutes, the motility improved modestly under 

both gradients. The degree of improvement was slightly better under the weak than the 

strong cAMP gradient. mpl1- cells may experience more problem in ERK2 adaptation 

under strong cAMP gradient, but the mechanism behind these observations is currently 

not clear.  

In any case, mpl1- cells displayed a more severe defect in motility than the 

directionality. Re-introduction of the full length Mpl1 in mpl1- cells significantly restored 

multiple defects in aggregation, chemotaxis, random motility, ERK2 regulation, and 

cAMP production, which underscored the significance of Mpl1 in these processes.  
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2.7 Figures  
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Figure 1B
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Figure 1. Dual specificity phosphatases with Leucine-Rich Repeats.  
 
(A) Two other Mpl1 like genes exist in Dictyostelium discoideum genome. A blast search 

for Mpl1 like genes resulted in potential DSPase with LRRs in several unicellular 

protozoans such as Entamoeba histolytica, Leishmania major, and Trypanosoma cruzi. 

Serine/Threonine protein kinase (PK) and Zn-finger motifs (Zn) are found in several 

genes listed. Combination of potential DSPase and LRR seems to be unique to 

protozoans, some of which are well known parasites that could cause serious illness. 

Diagrams of these potential DSPases are shown with their amino acids lengths and their 

gene access numbers at the right side. (B) Full length Dictyostelium Mpl1 sequence is 

shown. Six conserved Leucine-Rich Repeats (LRR) are underlined, and the potential dual 

specific phosphatase (PPase) domains are in bold with essential conserved sequences 
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underlined. The insertion point of the Blasticidin cassette in mpl1- cell is marked with a 

filled arrowhead. (C) Northern blot analysis showed that Mpl1 expression was low in 

vegetative stage cells and highly enhanced during development. Maximum expression 

was observed around 10 hours and declined slightly thereafter. 

A B
Figure 2
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A405 * 0.02  + 0.03 0.18 + 0.02
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Figure 2. Mpl1 encodes an active phosphatase.  
 
(A) GST and GST-Mpl1-PPase were expressed and purified from E. coli. A major ~53kD 

band (GST-Mpl1-PPase) and a minor degradation product (*) were detected by western 

blot using anti-GST antibody. (B) Phosphatase activities were compared from purified 

proteins after normalization by western blot. GST alone displayed negligible background, 

whereas GST-Mpl1-PPase exhibited a significant increase in absorption by 

dephosphorylation of pNPP. Absorption of p-NP at 405nm was from 1mg of protein 

incubated at room temperature for an hour. Average values with standard deviations are 

shown from three independent experiments.  
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A Figure 3
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Figure 3. Generation of mpl1- cells and phenotype characterization.  
 

(A) The blasticidin resistance cassette was subcloned between LRRs and the PPase 

domain. Initial screening was performed with PCR, and the selected knock-out 
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candidates were confirmed by genomic Southern blot analysis as described in Materials 

and Methods. Levels of Mpl1 messages were compared by RT-PCR, using primers 

specific for amino-terminal region before the blasticidin cassette insertion. Ig7 transcripts 

were utilized as an internal control for RT-PCR reaction. (B) Cells were developed on 

bacterial (Klebsiella aerogenes) lawn plates for 7 days. Wild type cells produced 

numerous fruiting bodies, whereas few multicellular structures were detected from 

plaques from mpl1- cells. Reintroduction of the full length Mpl1 restored fruiting body 

formation. 1 mm scale bars are shown. (C) Wild type and mpl1- cells were developed 

under DB buffer for 12 hours at densities as marked. mpl1- cells occasionally coalesced 

together to form loose aggregates at cell densities over 5x104 cells/cm2, yet most of them 

stayed as individual cells at densities where wild type cells efficiently streamed. Scale 

bars are 100 µm.  

A Figure 4
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D
cAMP 0’-20’ 21’-40’ 41’-60’

Wt 0.1 μM CI 0.79+0.13 - -

Speed 9.5+ 2.6 - -

mpl1- 0.1 μM CI 0.41+0.39* 0.55+0.26 0.60+0.33

Speed 2.6+ 0.8* 3.3+ 2.0 4.2+ 1.9

mpl1-:: flag-
Mpl1

0.1 μM CI 0.63+0.22** - -

Speed 8.7+ 3.3**

erk2- 0.1 μM CI 0.06+ 0.36* 0.06+ 0.38 -0.02+ 0.33

Speed 3.1+ 1.1* 2.9+ 1.3 2.2+ 0.9
 

Figure 4. mpl1- cells are inefficient in chemotaxis under 0.1 µM cAMP gradient.  
 
Log phase cells of both wild type (A), mpl1- cells (B), mpl1- cells re-introduced with the 

full length Mpl1 (C) were stimulated with 50 nM cAMP pulses for 4 hours and 

challenged with a micropipette filled with 0.1 µM cAMP. Time-lapse images of cellular 

responses to the cAMP gradient were captured with OpenLab software. Tracing images 

of chemotaxing cells were arranged to demonstrate relative directional movement, cell 

shape, and distances traveled toward the cAMP point source (a filled circle) with 100 µm 

scale bars. Shown in (A) is a stack of 10 tracings, at 1 minute intervals, of wild type cells. 

mpl1- cells were monitored for 60 minutes, and shown as three consecutive 20 minute 

stacks and one whole 60 minute tracing. Stack of ten images of mpl1- cells re-introduced 

with the full length Mpl1 is shown (C). Data were from three independent experiments 

for each cell types. (D) Chemotactic index, defined as the net distance of cell movement 

in the direction of the pipette divided by the total distance moved, was computed from the 

centroid positions (Loovers et al. 2006). Average values with standard deviations were 

obtained from three independent experiments. One of the three wild type chemotaxis 

movies was analyzed for 20 minutes, and two other wild type and three rescue movies 
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were analyzed for 10 minutes, by which several cells already migrated to the tip of the 

micropipette. Chemotaxis indices and speed of movement for cells lacking ERK2 

(HS174, Wang et al. 1998) is included for comparison. erk2- cells were pulsed for 4 hours 

before challenged with cAMP gradient. *, P<0.001 compared with wild type control, 

student’s t test. **, P>0.05 compared with wild type control, student’s t test. 

A Figure 5
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cAMP 0’-20’ 21’-40’ 41’-52’

Wt 2.0 μM CI 0.82+0.12 - -

Speed 9.6 + 2.4 - -

mpl1- 2.0 μM CI 0.41+0.34* 0.65+0.25 0.58+0.36

Speed 2.5 + 1.2* 3.3+ 1.8 2.8+ 1.3 

mpl1-:: flag-
Mpl1

2.0 μM CI 0.63 + 0.17* - -

Speed 8.2 + 3.3** - -

erk2- 2.0 μM CI -0.03 + 0.44* -0.05 + 0.31 -0.06 + 0.53

Speed 2.8 + 1.3* 2.2 + 1.1 1.7 + 1.0

D

 

Figure 5. mpl1- cells displayed aggravated chemotactic responses toward 2 µM 
cAMP gradient compared to 0.1 µM cAMP gradient.  
 
Chemotactic responses of wild type (A) mpl1- cells (B), and mpl1- cells re-introduced 

with the full length Mpl1 (C) in response to cAMP gradient formed by a micropipettes 

filled with 2 µM cAMP were analyzed similar to Figure 4.  (D) Average values with 

standard deviations of chemotaxis indices and speeds were obtained from three 

independent experiments. *, P<0.001 compared with wild type control, student’s t test. 

**, P>0.05 compared with wild type control, student’s t test. 
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A Figure 6
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B
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Figure 6. mpl1- cells were also defective in random motility.  
 
Random motility of cAMP pulsed wild type, mpl1- cells, and mpl1- cells re-introduced 

with the full length Mpl1 were traced for 30 minutes with 1 minute intervals and the 

migratory paths are shown in (A). Scale bars are 100 µm. (B) Average values with 

standard deviations from three independent experiments are shown. A total of 39 wild 

type, 34 mpl1- cells, 26 mpl1- cells re-introduced with the full length Mpl1, and 30 erk2- 

cells were analyzed. *, P<0.001 compared with wild type control, student’s t test. **, 

P>0.05 compared with wild type control, student’s t test. 
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Figure 7
B
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Figure 7. Mpl1 regulates ERK2 phosphorylation in Dictyostelium.  
 
(A) Both wild type and mpl1- cells (108 cells) were stimulated with 50nM cAMP pulses 

for 4 hours, treated with 2mM caffeine for 30 minutes, and further stimulated with 0.1 
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µM cAMP. Cells were taken at each time point, and directly lysed with SDS-PAGE 

loading dye for Western blot analysis using phospho-ERK2 specific antibody and Pan-

Ras antibody (loading control). Wild type cells displayed maximal ERK2 activation 

around 1 minute, whereas phopho-ERK2 persisted over 4 minutes in mpl1- cells. Basal 

phosphorylation of ERK2 is also higher at time zero in mpl1- cells than in wild type cells. 

(B) mpl1- cells expressing flag-Mpl1 were pulsed and stimulated with cAMP and 

analyzed as described in (A). (C) Western blot using anti-flag antibody confirmed the 

expression of flag-Mpl1, which migrated as ~90kD protein as expected. (D) Levels of 

ERK2 phosphorylation levels were compared between wild type, mpl1- cells, and mpl1- 

cells re-introduced with Mpl1 were shown in (D). (E) cAMP production was measured 

from cAMP pulsed wild type, mpl1- cells, and mpl1- cells re-introduced with Mpl1. mpl1- 

cells overproduced cAMP during the initial 2 minutes of the poststimulus period, which 

resembled that of the regA- cells. In contrast, mpl1- cells re-introduced with Mpl1 

displayed essentially wild type-like pattern in cAMP production. *, P < 0.001 compared 

with wild type control, student’s t test. **, P < 0.05 compared with wild type control, 

student’s t test. t, P > 0.05 compared with wild type control, student’s t test. 
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CHAPTER 3: THE PP2A REGULATORY SUBUNIT, B56, AND THE 
GLYCOGEN SYNTHASE KINASE-3 REGULATE PROTEIN KINASE B-
RELATED 1 ADAPTATION IN DICTYOSTELIUM CELLS 
  

3.1 Summary 

 The members of the AGC protein kinase superfamily have been shown to play an 

important role in cytoskeleton remodeling and reorganization. A member of the 

Dictyostelium AGC protein kinase family, the Protein Kinase B-related 1 (PKBR1), has 

been shown to regulate chemotaxis in Dictyostelium cells. In response to cAMP 

stimulation, PKBR1 becomes rapidly activated in a Ras dependent mechanism and 

induce phosphorylation of multiple downstream effectors. Activation of  PKBR1 requires 

two phosphorylation events, one at the active loop (AL) by the phosphoinositide 

dependent kinase (PDKA) and another at the hydrophobic motif (HM) site by the Tor 

complex 2 (TorC2). The known upstream regulators of PKBR1 have been the focus of 

recent studies, but its adaptation is not fully characterized. Here we report that the PP2A 

regulatory subunit, B56, and the Glycogen Synthase Kinase 3 (GSK3) are necessary for 

PKBR1 adaptation in Dictyostelium cells. Cells lacking B56, psrA- cells, exhibited high 

basal and persistent post stimulus levels of activated PKBR1, increased phosphorylation 

of PKBR1 substrates, and aberrant motility. Furthermore, we propose the existence of a 

novel role of GSK3 in PKBR1 regulation. The overexpression of a dominant negative 

form of GSK3 (GSK3DN) and treatment of cells with the GSK3 inhibitor, Lithium 

Chloride (LiCl), resulted in increased basal levels of activated PKBR1, in a RasD 

dependent, but B56 independent mechanism. Altogether, these results suggest that 

PKBR1 adaptation is regulated by GSK3 and another by PP2A/B56.  
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3.2 Introduction 

 Motility is process involving multiple signaling pathways designed to allow cells 

to receive and interpret environmental signals, and subsequently coordinate appropriate 

and robust response. Misregulation of some of the signaling pathways that reduce cell 

motility could provide a novel insight to control pathological conditions in which motility 

is critical, such as tumor metastasis and acute inflammation. Further understanding and 

characterization of these signaling cascades would be essential in treating such diseases. 

Several of the key regulators of motility found in mammalian cells are conserved in 

Dictyostelium cells, making it a great model system to further characterize these signaling 

pathways.  

 Cellular migration is an important component of the life cycle of Dictyostelium 

cells. When the conditions are nutritional favorable, Dictyostelium cells exist as single 

cells that prey on bacteria and/or yeast (Chisholm, R. and Firtel, R., 2004; Müller-

Taubenberger, A. et al. 2013). Dictyostelium cells effectively forage their prey because of 

their ability to sense and chemotax towards very shallow gradients of byproducts and/or 

signals originated from the prey (Swaney, K. et al. 2010). Upon starvation, individual 

Dictyostelium cells come together guided by a gradient of cAMP generated by the cells 

resulting in the formation of an aggregate that differentiates into a motile slug and a 

fruiting body later (Chisholm,R. and Firtel, R. 2004). Directional cell migration guided 

by the cAMP gradient is an essential component of Dictyostelium development. 

 During the aggregation stage, the extracellular cAMP activates G-protein coupled 

receptors (GPCR) resulting in the dissociation of heterotrimeric G-proteins into Gα and 

Gβγ subunits.  Since these receptors are uniformly distributed throughout the cell 
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membrane, and the activation of cAMP receptors resemble the extracellular cAMP 

gradient pattern, it have been proposed that the signal becomes amplified downstream of 

receptor activation (Janetopoulos, C. et al. 2001; Ueda, M. et al. 2001; Sasaki, A. et al. 

2004; Charest, P. C. and Firtel, R. 2007). The Gβγ subunit have been suggested to 

activate several members of the family of small GTPases, including Ras and Rac 

(Swaney, K. et al. 2010; Yan, J. and Jin, T. et al. 2012). Activation of proteins triggers 

the activation of phosphatidylinositol-3-kinase (PI3K) resulting in the local accumulation 

of phosphatidylinositol-3,4,5-triphosphate (PIP3) on the side where cAMP concentration 

is the highest. Additionally, the PIP3 gradient is maintained by the translocation of the 

phosphatidylinositol-3-phosphatase, PTEN, from the front of the cell to the lateral sides 

and to the back of the cell. The mutual exclusion of PI3K and PTEN makes possible the 

local accumulation of PIP3 in the leading edge of the cell. In turn, PIP3 accumulation 

creates docking sites for several Pleckstrin homology (PH)-domain-containing proteins, 

several of which are crucial for pseudopod extension and F-actin polymerization 

(Charest, P. C. and Firtel, R. 2007; Swaney, K. et al. 2010). 

 An important family of kinases that modulates cytoskeletal remodeling in 

Dictyostelium is the AGC family of kinases, Akt/PKBA and Protein Kinase B-related 

(PKBR1). In response to cAMP stimulation, PKBA is rapidly recruited to the membrane 

via its PH domain. Once at the membrane, PKBA gets phosphorylated by 

phosphoinositide-dependent kinase A (PdkA) and by the Tor complex 2 (TorC2) in the 

active loop (AL) site and in the hydrophobic motif (HM) site, respectively (Meili, R. et 

al. 1999; Kamimura, Y. et al. 2008; Kamimura, Y. and Devreotes, P. 2010; Liao, X. et al. 

2010; Cai, H., et al. 2010).  Similarly to PKBA, PKBR1 gets activated upon cAMP 
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stimulation by phosphorylation in both the Active Loop (AL) site by PdKA and in the 

Hydrophobic Motif (HM) site by TorC2 (Kamimura, Y. et al. 2008; Kamimura, Y. et al. 

2010; Liao, X. et al. 2010; Cai, H., et al. 2010). In contrast to PKBA, PKBR1 does not 

have a PH domain; instead PKBR1 is permanently anchored at the membrane through a 

myristoylation site present on its N-terminus (Meili, R. et al. 2000). Interestingly, 

PKBR1 activation was found to occur independently of PI3K in contrast to PKBA, 

suggesting PKBR1 upstream regulation may be through other parallel signaling pathway 

(Kamimura, Y. et al. 2008; Liao, X. et al. 2010). Furthermore, recent evidence suggested 

that PKBA and PKBR1 activation is mediated by the small GTPase RasC, possibly 

through TorC2 regulation (Cai, H., et al. 2010). Studies showed that PKBR1 and PKBA 

activation was reduced in cells lacking RasC (rasC-), and the activation was easily 

restored upon expression of either RasC or a constitutively active form of RasC. 

However, a residual PKBR1 and PKBA activation remained in rasC- cells suggesting 

other upstream regulators of PKBA and PKBR1 are yet to be identified.  

 Although, PKBA and PKBR1 has been the focus of recent investigations, the 

adaptation mechanisms are not fully understood yet. Recently, Charest, and others 

described that a complex composed of scaffolding protein Sca1, Ras guanine exchange 

factors A (RasGEFA), Ras guanine exchange factor H (RasGEFH) and the catalytic and 

scaffolding subunits of the heterotrimeric threonine/serine phosphatase (PP2A) complex 

regulates PKBR1 and PKBA adaptation via a negative feedback mechanism (Charest, P. 

et al. 2010). The Sca1/RasGEFA/RasGEFH/PP2A/RasC complex was shown to rapidly 

translocate to the membrane of chemotaxing cells resulting in the activation of RasC at 

the front leading edge of the cell. The activation of RasC and PKBR1 were reduced 
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dramatically in cells lacking Sca1 (sca1-) suggesting that the 

Sca1/RasGEFA/RasGEFH/PP2Ac/RasC complex contributes greatly to the activation of 

RasC, and as a result PKBA and PKBR1 activation (Charest, P. et al. 2010).  

Interestingly, Sca1 possesses a PKB phosphorylation consensus motif (motif R-X-R-X-

X-S/T-X-X; Kamimura, Y. et al. 2008) that is rapidly phosphorylated with similar 

kinetics of PKBR1/PKBA activation. This phosphorylation event is greatly reduced in 

cells lacking both PKBA and PKBR1 (pkba-/pkbr1-) suggesting Sca1 function may be 

regulated by PKBA/PKBR1 phosphorylation (Charest, P. et al. 2010). Additionally, 

RasC activation was prolonged in cells lacking PKBR1 (pkbr1-) suggesting the existence 

of a negative feedback mechanism by which PKBA and PKBR1 regulate RasC activation 

and consequently their adaptation (Charest, P. et al. 2010).   

 In this report we show the PP2A regulatory subunit, B56, and the Glycogen 

synthase kinase 3 (GSK3) negative regulates PKBR1 activation in Dictyostelium cells, 

providing a novel insight into PKBR1 adaptation. Cells lacking B56, psrA- cells, 

exhibited aberrantly high basal level of active PKBR1, reduced levels of PP2A activity 

(Lee, N. et al. 2008) and reduced levels of active Ras proteins; these defects resulted in 

higher levels of phosphorylated PKBR1 substrates and defective random and directional 

migration. Additionally, psrA- cells exhibited higher levels of active Glycogen synthase 

kinase 3 (GSK3) (Lee, N. et al. 2008), which has been shown in the past to be an 

important PKBR1 regulator (Teo, R. et al. 2010; Kölsch, V. et al. 2012). When we 

examined the levels of active PKBR1 in psrA- cells expressing dominant negative GSK3 

(GSK3DN) or treated cells with Lithium Chloride (LiCl), a further increase of active 

PKBR1 was observed in psrA- cells suggesting that GSK3 also negatively regulates 
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PKBR1. Interestingly, ablation of either RasC or RasD, but not B56, abolishes GSK3 

effect on PKBR1 regulation in these cells suggesting RasC and RasD may mediate the 

effect. Altogether, PKBR1 adaptation regulation may be as complex as its activation, 

possibly mediated by at least two parallel signaling pathways, one by B56 and the other 

by GSK3/Ras. 

 

3.3 Material and Methods 

3.3.1 Cell culture  

 Ax3, psrA- , gsk3-, rasC-, rasD-, psrA-/FlagRasD(G12T), psrA-/FlagRasCG13T, 

psrA-/GSK3DN, Wt/GSK3DN and rasD-/GSK3DN cells were grown with axenic media 

(14.3g Peptone 3[Difco], 7.15g yeast extract [Oxoid], 15.4g glucose [Fisher Scientific], 

0.525g Na2HPO4·7H2O, 0.48g KH2PO4, 0.53g Na2HPO4·7H2O in 1 liter of water, pH 6.5-

6.9). The media was complemented with 5mg/ml of Blasticidin (InvivoGen) for psrA-, 

rasC-, rasD- and gsk3- strains. In addition, for gsk3- cells, 25mg/ml of Thymidine (Acros 

Organics) was added to the media.  For strains over-expressing FlagRasC, FlagRasD, 

FlagRasC(G13T), FlagRasD(G12T) or GSK3DN, 20µg/ml of G418 (GIBCO) was used 

as a selective agent for the media.    

3.3.2 Generation of Flag-tagged RasD(G12T). 

 Flag-tagged RasD(G12T) was generated using the Quick Change® Site-Directed 

Mutagenesis kit (Stratagene) with forward primer 5’-

GTTATTGTAGGTGGTACAGGTGTTGGTAAAAGTGCATTAAC-3’ and reverse 

primer 5’-GTTAATGCACTTTTACCAACACCTGTACCACCTACAATAAC-3’. The 

reaction was then treated with restriction enzyme Dpn-I at 37⁰C for 5 minutes followed 
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by transformation into DH5α competent cells (Allele). Positive colonies were purified 

and construct was confirmed using sequencing.  

Chemotaxis and Random Motility assays 

 Log-phase cells were starved at a concentration of 20x106 cells/ml in DB buffer 

(2mM MgCl2, 0.2mM CaCl2, 7.4mM NaH2PO4, 4mMNa2HPO4) for 1 hour followed by 

stimulation with 50nM cAMP every 6 minutes for a total of 4 hours at room temperature. 

Competent aggregate cells were plated at a density of 3x104 cells/cm2 on a 35-mm tissue 

culture dish cover (Falcon 353001; Becton Dickinson) and left to settle down for 5-10 

minutes at room temperature. To examine the chemotactic response, cells were exposed 

to a glass capillary needle filled with 10 μM cAMP solution with a Schmazu 

micromanipulator. To maintain the external chemotactic gradient, the capillary needle 

containing cAMP was connected to an Eppendorf FemotoJet at an injection pressure of 

20 hPa. A time-lapse video recording using OpenLab Software was used to follow the 

cell movement at 1 minute-intervals. To perform a random motility analysis, competent 

aggregate cells were plated as previously described and no source of external cAMP was 

used.  

 Chemotaxing cells were analyzed as previously described by Loovers, H. and his 

colleges (2006). An ellipse was constructed around the cell and the chemotactic index 

and velocity were calculated from the center of the ellipse. The chemotactic index is 

defined as the ratio between the net distance moved in the direction of the glass capillary 

needle and the total distance moved by the cell. The velocity was calculated as the total 

distance moved by the cell divided by the total amount of time.  
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3.3.3 Determining Ras Activation in response to cAMP stimulation 

 To examine Ras activation in response to cAMP stimulation, first of all, log phase 

vegetative cells were starved for 1 hour and stimulated with 50nM cAMP at 6 minute 

interval for 4 hours at room temperature at a concentration of 20x106 cells/ml in DB 

buffer. Competent aggregate cells were washed once with ice cold DB buffer and treated 

with 5mM caffeine at room temperature for 20 minutes at a concentration of 20x106 

cells/ml. Following treatment, cells were washed with ice cold DB buffer once and re-

suspended with 5 ml of DB buffer and shaken for 2 minutes at room temperature. Then, 

cells were stimulated with 10µM cAMP and immediately lysed with TTG buffer (20mM 

TrisBase, 150mM NaCl, 0.1% Triton-X, 20% Glycerol, 1mM EDTA, 0.1% 2-

mercaptoethanol and protease inhibitor cocktail from Roche) at 5, 30, 60 and 90 seconds.  

 Secondly, GTP bound Ras proteins were purified from cells lysates using pull-

down assays as previously described by Veeranki, S. et al. 2008.  The activated forms of 

RasD and RasG were purified using recombinant GST-Ras binding domain (RBD) from 

mammalian Raf1 (GST-RBDRaf1) and the activated form of RasC was purified using 

recombinant GST-Ras Binding Domain of Byr2 from Schizosaccharomyces pombe 

(GST-RBDByr2). Cell extracts were mixed with purified 4 µg of either GST-RBDRaf1 

or GST-RBDByr2 and incubated at 4⁰C for 90 minutes. Then, samples were washed 

three times using TTG buffer. SDS-containing sample buffer was then added to the 

pulldown reactions; samples were analyzed using a Tris-glycine-SDS-polyacrylamide 

gel, and the levels of active Ras were detected by western blot using anti-PanRas 

antibody (Calbiochem).  
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3.3.4 Determining PKBR1 activation in response to cAMP stimulation 

 To examine PKBR1 activation, competent aggregate cells were washed once with 

ice cold DB buffer and treated with 5mM caffeine at room temperature for 20 minutes. 

After the treatment, cells were washed twice with ice cold PM buffer (5mM Na2HPO4, 

5mM KH2PO4, 2mM MgSO4) and resuspended at 20x106 cells/ml in PM buffer 

followed by shaking for two minutes at room temperature, then cells were stimulated 

with 1μM cAMP followed by lysis with TTG buffer at 15, 30 and 180 seconds.  PKBR1 

phosphorylation was detected with western blot using Phospho-PKC antibody (Cell 

Signaling 190D10) as previously described by Cai. H. and his/her collegues (2010). To 

detect the phosphorylation of PKBR1 substrates containing the motif R-X-R-X-X-S/T-X-

X, western blot using anti-Phospho Akt Substrate (Cell Signaling) was done as 

previously described by Kamimura, Y. and his/her colleagues.   

 To analyze PKBR1 activation in the presence of LiCl, competent aggregate cells 

were treated with 50mM LiCl for one hour at room temperature while shaking; then cells 

were wash with ice-cold DB once followed by caffeine treatment and stimulation with 

1μM cAMP as previously described.  

 

3.4 Results 

3.4.1 B56 regulates cell motility  

 Defective aggregation during development (data not shown), led us to 

characterize psrA- cell motility. During random motility, psrA- cells exhibited an average 

velocity that is 50% reduced compared to Wt cells (Fig. 8).  
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 When the cell motility of psrA- cells was examined in the presence of an external 

cAMP gradient (10µM cAMP), psrA- cells moved slower compared to Wt cells, 

exhibiting an average velocity reduced by 60% compared to Wt cells (Fig. 8). 

Furthermore, psrA- cells displayed significantly compromised chemotaxis; psrA- cells 

exhibited an average chemotactic index (CI) of 0.4+0.4, which is 50% of the average 

chemotactic index of Wt cells (Fig. 8). These results suggest that B56 is part of a 

regulatory network controlling both random and directional cell motility of 

Dictyostelium.   

3.4.2 B56 regulates Ras activation 

 To determine the possible mechanism by which B56 regulates motility, we 

decided to examine Ras function in psrA- cells. Dictyostelium cells possess over eleven 

different Ras species and two Rap proteins; many of them, including RasG and RasC 

have been shown to be critical regulators of cellular migration (Kortholt, A. and van 

Haastert, P. 2008). RasG and RasC regulate the recruitment and activation of several 

downstream effectors involved in cellular motility, including PI3K and TorC2. Cells 

lacking either RasG or RasC exhibited compromised motility and cAMP-mediated 

signaling (Charest, P. and Firtel, R. 2007; Kortholt, A. and van Haastert, P. 2008). 

 To examine Ras activation, aggregation competent psrA- and Wt cells were 

stimulated with 10µM cAMP after treating cells with caffeine for 20 minutes. To detect 

RasG and RasD activation, the Ras Binding Domain of mammalian Raf1 (GST-RBDRaf1) 

fused with GST was used as previously described (Veeranki, S. et al. 2008).  The levels 

of active RasG and RasD were detected in Wt cells at 5 seconds after cAMP stimulation 

persisting until 30-60 seconds and decreasing thereafter (Fig. 9A). Compared to Wt cells, 
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psrA- cells exhibited lower levels of active RasG and RasD, exhibiting a weaker peak at 5 

seconds after cAMP stimulation and rapidly decreasing afterwards.  These results suggest 

psrA- cells have defective RasD and RasG activation. To determine RasC activation in 

response to cAMP stimulation, the Ras Binding Domain from Schizosaccharomyces 

pombe Byr2 (GST-RBDByr2) fused with a GST tag was used as previously described by 

Kae, H. and others (Kae, H. et al. 2004). Similarly to RasG and RasD, RasC activation at 

5 seconds was lower than Wt cells, rapidly decreasing thereafter (Fig. 9B) suggesting in 

the absence of B56, the amplitude of RasC activation is compromised in response to 

cAMP stimulation.  

3.4.3 B56 is important for PKBR1 regulation 

 Considering that psrA- cells have defective RasC activation and RasC have been 

shown to be an important regulator of the TorC2/PKBA and PKBR1 pathway, we 

hypothesized PKBR1 and PKBA activation may also be compromised in psrA- cells. To 

examine PKBA and PKBR1 activation, aggregate competent cells were stimulated with 

1µM cAMP and the phosphorylation levels of PKBR1 at the AL site were examined as 

previously described (Cao, H., et al. 2010). Upon cAMP stimulation, Wt cells rapidly 

exhibited phosphorylation at the AL site in PKBR1 and PKBA at 15 seconds, decreasing 

thereafter at 30 seconds and undetectable at 180 seconds after cAMP stimulation. The 

bands corresponding to phosphorylated PKBA or phosphorylated PKBR1 were absent in 

pkba- and pkbr1- cells, respectively. Surprisingly, when PKBA and PKBR1 AL 

phosphorylation was examined in psrA- cells, we noted higher basal levels of 

phosphorylated PKBR1, but not PKBA, prior to cAMP stimulation in these cells 

compared to Wt cells; after stimulation, a shallow increase of in the levels of 
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phosphorylated PKBR1 was observed at 15 seconds which persisted onto 180 seconds 

thereafter (Fig. 10A). These results suggest B56 plays an essential role in PKBR1 

adaptation.  

 To further investigate the effect of B56 in PKBR1 adaptation, we examine the 

activation of putative PKBR1 substrates containing the motif R-X-R-X-X-S/T-X-X in 

psrA- as previously described (Kamimura, Y., et al. 2008; Cao, H., et al. 2010). As 

expected, there were higher levels of phosphorylated PKBR1 substrates in psrA- cells 

compared to Wt cells suggesting the inability of psrA- cells to regulate PKBR1 resulted in 

higher levels of active PKBR1 effectors (Fig. 10B).  

3.4.4 Repairing Ras activation in psrA- cells does not restore PKBR1 adaptation in 

these cells 

 To examine the possibility that PKBR1 adaptation can be mediated by a RasC-

effector, the PKBR1 activation was examined in psrA- cells overexpressing a 

constitutively active form of RasC (RasCG13T). When the levels of active PKBR1 were 

examined in these cells, we observed higher levels of phosphorylated PKBR1 at the AL 

site compared to psrA- cells (Fig. 10C). These results suggest the defective PKBR1 

regulation present in psrA- cells cannot be improved by simply restoring RasC activation 

in psrA- cells. Possibly, the defective RasC activation present in these cells may not be 

the major cause of aberrant PKBR1 adaptation; possibly it may be a consequence of 

PKBR1 hyper-activation. 

3.4.5 RasD regulates PKBR1 and PKBA activation 

 Similar to RasC, RasD activation was compromised in psrA- cells (Fig. 9A). To 

determine if RasD regulates PKBR1 adaptation we decided to introduce a constitutively 
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active form of RasD (RasDG12T) in psrA- cells to restore RasD activation in these cells. 

When the PKBR1 activation was examined in psrA- cells overexpressing RasD(G12T), it 

was found to be higher than psrA- cells (Fig. 10D). These results suggest RasD may have 

a positive role in PKBR1 activation similar than RasC. When the PKBR1 activation was 

observed in cells lacking RasC, a reminiscent PKBR1 activation was observed in these 

cells suggesting the presence of other proteins regulating PKBR1 activation (Cai, H., et 

al. 2010). We propose RasD along with RasC regulates PKBR1 activation in 

Dictyostelium cells.   

 Interestingly, psrA- cells overexpressing RasD(G12T) exhibited aberrantly higher 

levels of phosphorylated PKBA at the AL site compared to psrA- cells and psrA- cells 

overexpressing RasC(G13T). Therefore, this may indicate RasD may also have a positive 

effect in PKBA activation and possibly a higher specificity towards PKBA compared to 

PKBR1. In addition, when PKBR1 and PKBA activation were determine in cells lacking 

RasD (rasD- cells), lower levels of active PKBR1 and no detectable levels of PKBA were 

observed compared to Wt cells (Fig. 11C). However, it is not known whether RasD 

regulates PKBR1 and PKBA through the TorC2 complex with RasC. Also, it is not 

known if RasD-mediated activation of PKBA is dependent on PI3K activation or whether 

it occurs through an unknown parallel pathway yet to be described.   

3.4.6 GSK3 regulates PKBR1 activation 

 Glycogen Synthase Kinase 3 has been shown in the past to be an important 

regulator of Dictyostelium development, playing a crucial role in the differentiation of 

pre-stalk and pre-spore cells (Harwood, A.J. et al. 1995; Kim, L. et al. 2000; Kim, L. et 

al. 2002; Schilde, C. et al. 2004; Lee, N. et al. 2008). In addition, PP2A/B56 was shown 
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to regulate cell fate determination modulating GSK3 activity; psrA- cells exhibited 

abnormally high levels of active GSK3 and delayed expression of pre-stalk cell markers, 

Extracellular Matrix proteins A and B (ecmA and ecmB), and high expression of pre-

spore cell markers, Spore Coat protein B (cotB) (Lee, N. et al. 2008).   

 Recent findings show that in addition to regulating development, GSK3 plays a 

role in chemotaxis; gsk3- cells exhibited defective Ras and PKBR1 regulation resulting in 

aberrant directional motility (Teo, R. et al. 2010; Kölsch, V. et al. 2012; Sun, T. et al. 

2013). PKBR1 activation is impaired in gsk3- cells, showing no detectable levels of 

phosphorylated PKBR1 on the AL site in response to cAMP stimulation as previously 

reported by Teo, R. and his colleagues (Teo, R. et al. 2010) but in discrepancy with 

(Kölsch, V. et al. 2012); the reason for this difference may be in part for the utilization of 

strains with different genetic backgrounds or the utilization of distinct experimental 

conditions.  

 Because GSK3 is necessary for PKBR1 activation and GSK3 is aberrantly 

regulated in psrA- cells (Lee, N. et al. 2008), we reasoned the abnormal high basal levels 

of active PKBR1 observed in psrA- cells may be the consequence of the GSK3 hyper-

activation present in these cells.  To determine if B56 regulation of PKBR1 activation 

could be mediated by GSK3, we decided to reduce the levels of active GSK3 in psrA- 

cells by overexpressing a dominant negative form of GSK3 (GSK3DN) as previously 

described by Lee, N. and others (Lee, N. et al. 2008); as a control, GSK3DN was also 

overexpressed in Wt cells. To our surprise, when the PKBR1 activation was examined in 

psrA- cells overexpressing GSK3DN, higher levels of basal phosphorylation in the AL 

site of PKBR1 were observed; similarly, higher levels of basal phosphorylated PKBR1 
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were obtained in Wt cells, but at lower magnitudes compared to psrA- cells (Fig. 11A). 

Furthermore, the overexpression of GSK3DN resulted in persistent phosphorylation of 

PKBR1 substrates in these cells (Fig. 11B). Another possible way to reduce GSK3 

activity in vivo is by treating cells with Lithium Chloride (LiCl), a well characterized 

GSK3 inhibitor. Similarly to GSK3DN overexpression, 50mM LiCl treatment to either 

Wt or psrA- cells resulted in higher levels of active PKBR1 compared to non-treated cells 

(Fig. 12A). As expected, no significant increase in PKBR1 activation was observed in 

gsk3- cells treated with LiCl (Fig. 12B). These results suggest GSK3 negatively regulates 

PKBR1 activation in a B56 independent mechanism. 

 Recent reports suggests GSK3 negatively regulates Ras activation since ablation 

of Gsk3 resulted in persistent Ras activation (Kölsch, V. et al. 2012; Sun, T. et al. 2013). 

Considering Ras proteins are abnormally regulated in gsk3- cells and they are PKBR1 

activators, we reasoned GSK3 negative regulation of PKBR1 activation may be mediated 

by Ras proteins. To determine if RasD is needed for GSK3-mediated PKBR1 regulation, 

we overexpressed GSK3DN in rasD- cells. When the PKBR1 activation was examined in 

rasD- cells overexpressing GKS3DN the level of active PKBR1 remained comparable to 

that of rasD- cells (Fig. 11C).  Furthermore, when rasD- or rasC- cells were treated with 

LiCl, no significant increase in PKBR1 phosphorylation was observed compared to non-

treated cells (Fig. 12C) in contrast to Wt and psrA- cells, which exhibited higher levels of 

PKBR1 activation after LiCl treatments (Fig. 12A). Altogether, these results suggest that 

GSK3 can affect PKBR1 activity in a RasC or RasD dependent mechanism.   

 On the basis of these results, GSK3 may have two different roles in PKBR1 

regulation.  One possible role being that GSK3 may be necessary for the transcription of 
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a critical regulator of the PKBR1 activation pathway. Secondly, another role of GSK3 in 

PKBR1 regulation may be mediated by RasC or RasD. The down-regulation of GSK3 

activity resulted in an increase of the basal levels of active PKBR1 in Wt and psrA- cells 

suggesting GSK3 plays a negative role in PKBR1 activation, whereas no effect was 

observed in either rasC- or rasD- cells, suggesting GSK3 role in PKBR1 adaptation 

occurs in a Ras dependent manner.  

 

3.5 Discussion 

3.5.1 B56 regulates PKBR1 adaptation 

 Dictyostelium is not the only organism that show B56 mediated adaptation of 

AGC kinases. A previous study performed on C. elegans showed PP2A/B56 plays an 

essential role in the adaptation of the AGC family kinase, Akt-1; similar finding were 

obtained in differentiated 3T3-L1 adipocytes cells, higher levels of activated Akt were 

observed upon knockdown of the PP2A regulatory subunit, B56β (Padmanabhan, S. et al. 

2009).  

 In addition to exhibiting high basal levels of active PKBR1, psrA- cells had 

reduced levels of Ras activation. On the basis of these observations, we hypothesized 

PKBR1 adaptation could be regulated by Ras proteins, possibly RasD. In the contrary to 

our expectations, upon expression of RasD(G12T) in psrA- cells, higher levels of 

phosphorylated PKBR1 and PKBA were observed in these cells suggesting RasD is a 

positive regulator of PKBR1 and PKBA. Furthermore, a previous report by Lee, N. and 

others showed psrA- cells displayed aberrant levels of active GSK3 resulting in defective 

cell differentiation during development (Lee, N. et al. 2008). GSK3 have been shown to 



 
 

64 
 

regulate PKBR1 activation (Teo, R. et al. 2010; Kölsch, V. et al. 2012). Thus, the 

aberrantly high levels of active PKBR1 present in psrA- cells could be due to the GSK3 

hyperactivation. Surprisingly, when the levels of active GSK3 were reduced in psrA- 

cells, higher levels of PKBR1 were observed indicating GSK3 negatively regulates 

PKBR1 activation in a B56 independent manner (Fig. 13). Determining B56 subcellular 

localization may help us further understand B56 function in PKBR1 adaptation.  

3.5.2 psrA- cells exhibit abnormal cellular motility 

 The role of B56 in cellular motility may be the result of aberrant regulation of 

PKBR1, which have been shown to be an essential regulator of chemotaxis in 

Dictyostelium cells (Cai, H. et al. 2010). In the absence of B56, PKBR1 adaptation was 

compromised resulting in the higher basal levels of active PKBR1 and persistent 

phosphorylation of PKBR1 substrates (Fig. 10A and B). Sca1, was suggested to be 

regulated by PKBR1 phosphorylation resulting in reduce Sca1-mediated RasC activation 

(Charest, P. et al. 2010). Increased levels of active PKBR1 in psrA- cells may result in 

increased levels of phosphorylated Sca1 and subsequently resulting in reduced RasC 

activation. This possibility is supported by the defective levels of activated RasC 

observed in psrA- cells (Fig. 9B). The cellular adhesion regulator, Talin, was also shown 

to be regulated by PKBR1 phosphorylation (Kamimura, Y. et al. 2008). In the absence of 

B56, the misregulation of Talin phosphorylation, due to high basal levels of active 

PKBR1, may result in abnormal adhesion regulation affecting cellular migration.  B56-

mediated regulation of focal adhesions have been previously reported in mammalian 

cells, but in these case paxillin, another adhesion regulator, was the target of B56 (Ito, A. 



 
 

65 
 

et al. 2000). It would be interesting to determine if paxillin function is also affected by 

B56 in Dictyostelium cells.  

3.5.3 RasD regulates PKBR1 activation 

 Previously, PKBR1 activation has been reported to be regulated by RasC in 

response to cAMP stimulation (Cai, H. et al. 2010). Cells lacking RasC exhibited reduced 

levels of active PKBR1 compared to Wt cells. Considering that PKBR1 activation was 

not completely abolished in rasC- cells, there must be additional activators of PKBR1, 

possibly other Ras proteins (Kae, H. et al. 2004; Cai, H. et al. 2010). 

 RasD may regulate PKBR1 activation similarly to RasC. PKBR1 activation in 

response to cAMP is slightly reduced in rasD- cells by approximately 40% suggesting it 

may also regulate PKBR1 activation (Fig. 11C). Overexpression of RasD(G12T) 

similarly resulted in higher levels of active PKBR1. Interestingly, RasD(G12T) 

stimulated the activation of PKBA at a greater extent in psrA- cells compared to 

RasC(G13T). This suggests that RasD can activate both PKBR1 and PKBA. 

Additionally, RasD was found to interact with PKBA in vitro forming a signaling 

complex (Bandala-Sanchez, E. et al. 2006). 

 RasD also plays an essential role in Dictyostelium development (Reymond, C.D. 

et al. 1986; Louis, S.A., et al. 1997). During development, aggregating cells differentiate 

into two major types of cells, pre-stalk and pre-spores cells, which are the precursors of 

the stalk and spores cells, respectively (Chisholm, R.L. and Firtel, R.A. 2004). The 

overexpression of RasD(G12T) resulted in increased expression of pre-stalk cell markers, 

ecmA and ecmB and reduced expression of pre-spore cell marker cotC suggesting RasD 

may promote pre-stalk differentiation and inhibit prespore differentiation (Louis, S.A., et 
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al. 1997). Similarly, PKBR1 regulates cell differentiation in Dictyostelium cells; pkbr1- 

cells failed to developed efficiently possibly due to reduced expression of pre-stalk- and 

pre-spore-specific markers (Meili, R. et al. 1999; Ochiai, H., et al. 2011). It is likely that 

RasD affect differentiation through PKBR1. Furthermore, B56 may also affect 

Dictyostelium cell differentiation through both PKBR1 and GSK3. 

3.5.4 GSK3 regulates PKBR1 regulation 

 Previous studies have shown GSK3 plays a role in PKBR1 regulation; gsk3- cells 

exhibit undetectable level of active PKBR1 in response to cAMP stimulation (Teo, R. et 

al. 2010; Fig. 12B) which is in conflict with previous observations reported by Kölsch, V. 

et al. 2012. These results suggest GSK3 have a positive role in PKBR1 activation. 

However, when the levels of active GSK3 are reduced in cells, either by the expression of 

GSK3DN or by treating cells with LiCl, higher basal levels of phosphorylated PKBR1 on 

the AL site were observed. Furthermore, the effect of GSK3DN or LiCl on PKBR1 

activation requires Ras proteins. The overexpression of GSK3DN on rasD- cells showed 

comparable levels of active PKBR1 compared to rasD- cells, in contrast to psrA- or Wt 

cells, which exhibited higher basal levels of active PKBR1 upon GSK3DN 

overexpression. Similarly, LiCl treatments on either rasC- or rasD- cells showed no 

significant difference among the levels of phosphorylated PKBR1 between treated and 

non-treated cells. Altogether, these results provide evidence of a novel mechanism of 

PKBR1 adaptation; GSK3 negatively regulates PKBR1 activity in a Ras dependent 

mechanism (Fig. 13). 
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3.6 Figures 

Wt psrA-

10μM

CI: 0.8+0.1
Speed: 8.4 µm/min+2.0

CI: 0.4 + 0.4
Speed: 2.7µm/min + 1.0

Random

Speed: 9.6µm/min + 1.7    5.4µm/min + 2.1  

Wt psrA- Fig 8

 
 
Figure 8 psrA- cells have aberrant motility compared to Wt  cells.  
 
In the absence of an external chemotactic gradient, psrA- cells had in average lower 

velocities than Wt cells. Similarly, when exposed to an external chemotactic gradient 

(10µM cAMP), psrA- cells exhibited lower velocities compared to Wt cells. When the 

chemotactic index (CI) of psrA- cells was examined, as expected, psrA- cells had lower 

directionality in the presence of a cAMP gradient compared to Wt cells.  
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Figure 9. RasG, D and C activation in response to cAMP stimulation is defective in 

psrA- cells.  

(A) psrA- cells have defective RasD and RasG activation.  The levels of active RasD and 

RasG were measured using GST-RBDRaf1. In response to cAMP stimulation, psrA- cells 

have lower levels of active Ras compared to Wt cells. Bar graph represents quantification 

of PKBR1 activation (mean + standard deviation) of two independent experiments that 

were obtained using UN-SCAN-IT gel software. (B) psrA- cells have defective RasC 

activation. Cell extracts from Wt and psrA- cells were incubated with purified GST-RBD 

Byr2. Similar to RasD and RasG, RasC activation seems to be compromised in psrA- cells 

compared to Wt cells. Bar graph represents a quantification of PKBR1 activation (mean + 

standard deviation) of two independent experiments that were obtained using UN-SCAN-

IT gel software. 
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Figure 10. psrA- cells aberrantly high levels of active PKBR1  

(A) PKBR1 and PKBA phosphorylation at the AL site was detected using anti-Phospho-

PKC antibody (Cell Signaling 190D10). The absence of bands in pkba- and pkbr1- cells 

confirmed that the antibody specifically detects phosphorylated PKBR1 and PKBA. 

Compared to Wt cells, psrA- cells exhibited abnormally high basal levels of 

phosphorylated PKBR1 at the AL site, and prolonged post-stimulus PKBR1 and PKBA 

phosphorylation.  Bar graph represents a quantification of PKBR1 activation (mean + 

standard deviation) of three independent experiments that were obtained using UN-

SCAN-IT gel software. (B)Phosphorylation levels of PKBR1 substrates are significant 

higher in psrA- cells than that of Wt cells. The phosphorylation of PKBR1 substrates 

containing the motif R-X-R-X-X-S/T-X-X (Kamimura, Y. et al. 2008) was detected 
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using the anti-Phospho Akt Substrate (Cell Signaling). Compared to Wt cells, psrA- cells 

have higher phosphorylation levels of PKBR1 substrates. (C) Overexpression of the 

constitutively active form of RasC (flag-RasCG13T) increased PKBR1 activation in 

psrA- cells. Bar graph shown was obtained with UN-SCAN-IT gel software and it 

represents the quantification of PKBR1 activation (mean + standard deviation) of three 

independent experiments. (D) Over-expressing flag-RasD(G12T) in psrA- cells resulted in 

higher PKBR1 and PKBA phosphorylation compared to psrA- cells, suggesting RasD 

stimulates PKBR1 and PKBA activation. Bar graphs shown were obtained with UN-

SCAN-IT gel software and represent the quantification of PKBR1 activation (mean + 

standard deviation) and PKBA activation of two independent experiments. 
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Figure 11. GSK3 negatively affects PKBR1 activity.  
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(A) The overexpression of GSK3DN in psrA- and Wt cells resulted in higher levels of 

PKBR1 phosphorylation. These results suggest that GSK3 has a negative role in PKBR1 

activation. Bar graph was obtained using UN-SCAN-IT gel software and they represent 

the quantification of PKBR1 activation (mean + standard deviation) of three independent 

experiments. (B) psrA- cells and Wt cells expressing GSK3DN displayed higher levels of 

PKBR1 substrate phosphorylation than that in the parental background.  (C) The 

overexpression of GSK3DN in rasD- cells did not increased PKBR1 activation in these 

cells suggesting GSK3-mediated inhibition of PKBR1 activation depends on RasD. Bar 

graphs shown were obtained with UN-SCAN-IT gel software and represent the 

quantification of PKBR1 activation (mean + standard deviation) and PKBA activation of 

two independent experiments. 
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Figure 12. Lithium chloride (LiCl) treatments to cells results in increased PKBR1 

activation  
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(A) Cells treated with GSK3 inhibitor, LiCl, showed increased PKBR1 activation 

compared to untreated cells. LiCl mediated effects on PKBR1 activation are comparable 

with those of GSK3DN. Bar graph was obtained using UN-SCAN-IT gel software and 

they represent the quantification of PKBR1 activation (mean + standard deviation) in 

response to cAMP stimulation of two independent experiments. Bar graphs shown were 

obtained with UN-SCAN-IT gel software and represent the quantification of PKBR1 

activation (mean + standard deviation) of two independent experiments. (B) LiCl effect 

on PKBR1 activation requires GSK3. The effect of LiCl treatment in PKBR1 activation 

was absent in gsk3- cells. Bar graphs shown were obtained with UN-SCAN-IT gel 

software and represent the quantification of PKBR1 activation (mean + standard 

deviation) and PKBA activation of two independent experiments. (C) LiCl effect on 

PKBR1 activation requires Ras proteins. When rasD- or rasC- cells were treated with 

LiCl, there was no significant increase in increase of PKBR1 activation compared to that 

of the non-treated cells. These results suggest Ras proteins mediate GSK3 regulation of 

PKBR1.  Bar graphs shown were obtained with UN-SCAN-IT gel software and represent 

the quantification of PKBR1 activation (mean + standard deviation) and PKBA activation 

of two independent experiments. 
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Figure 13. B56 and GSK3 regulate PKBR1 adaptation and chemotaxis.   

PKBR1 adaptation is mediated by at least two mechanisms, one by B56 and another one 

through GSK3.  
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CHAPTER 4: DISCUSSION  

 Signaling adaptation plays an essential role in the regulation of many signaling 

pathways. During directional motility, cells sense the chemoattractant gradient and bias 

their motility toward such a gradient. In Dictyostelium, adaptation allows cells to rapidly 

respond to changes in the environment by regulating the activation/deactivation of key 

regulators of motility. Cells in which some of the negative regulators are missing, for 

instance in mpl1- or in psrA- cells, exhibit aberrant cellular migration due to hyper-

activation of many signaling pathways including cAMP relay and cell polarization.  

 
4.1 MPL1 plays an essential role in ERK2 adaptation 

 To regulate cAMP relay in Dictyostelium, cells use an orchestrated 

activation/deactivation of proteins, stimulating cAMP synthesis followed by cAMP 

degradation. These periodic activations and deactivations of the cAMP synthesis 

originate pulsing waves of cAMP that spread through the area resulting in the 

synchronization of the signaling pathways of nearby cells (Chisholm, R. and Firtel, R., 

2004; Brzostowski, J. and Kimmel, A. 2006; Brzostowski, J. et al. 2013). It has been 

shown that ERK2 plays an essential role regulating the intracellular cAMP levels; ERK2 

was proposed to inhibit RegA resulting in the cytosolic accumulation of cAMP and the 

activation of cAMP-dependent proteins, such as PKA (Madea, M. et al. 1995; Madea, M. 

et al. 2004). The misregulation of ERK2 results in compromised cAMP relay and 

directional motility (Brzostowski, J. and Kimmel, A. 2006; Brzostowski, J. et al. 2013). 

 The adaptation of ERK2 is not fully understood. The cAMP dependent protein, 

PKA, was suggested to negatively regulate ERK2 activation through a negative feedback 
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mechanism (Laub,M.T. and Loomis, W. 1998; Madea, M. et al. 2004); however, ERK2 

was found to adapt in aca- cells, which fail to activate PKA as a result of deficient cAMP 

synthesis (Brzostowski, J. and Kimmel, A. 2006). Therefore, other negative regulators of 

ERK2 must exist besides PKA. Ablation of Mpl1, a member of the DSP family of 

phosphatases in Dictyostelium cells, results in persistent ERK2 phosphorylation. 

Additionally, mpl1- cells exhibit higher levels of cytosolic cAMP accumulation and 

defective directional and random motility. Altogether, these results suggest MPL1 plays 

an essential role in ERK2 regulation. 

 The regulation of MPL1 activation is currently unknown. It would be interesting 

to determine if MPL1 phosphatase activity is either activated in response to cAMP 

stimulation or whether MPL1 is constitutively active and transiently inhibited in response 

to cAMP stimulation. Previous reports showed that ERK2 remains phosphorylated in 

conditions where the cAR1 receptor remains activated, either because of constant cAMP 

levels or to decreased cAR1 phosphorylation (Brzostowski, J. and Kimmel, A. 2006; 

Brzostowski, J. et al. 2013). Examining MPL1 activity in these conditions can help us 

understand further ERK2 adaptation. Additionally, two other MPL1-like proteins exits in 

Dictyostelium; however, it is not known whether they play any role in the ERK2 

adaptation, but if so, it may be a minor one considering the overexpression of MPL1 

restored ERK2 adaptation in in mpl1- cells similarly than Wt. cells. Altogether, MPL1 

role in ERK2 adaptation provides valuable insight regarding the adaptation mechanisms 

regulating Dictyostelium motility.  
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4.2 The PP2A regulatory subunit, B56, and GSK3 play an essential role in PKBR1 

adaptation. 

 Cellular polarization requires the localized activation of many signaling pathways. 

Ras proteins regulates the activation of members of the AGC protein kinase family, 

PKBA and PKBR1, which in turn regulate the activation of many cytoskeleton 

regulators, including Talin and PAKa (Chung, C. et al. 2001; Kamimura, Y. et al. 2008; 

Charest, P. et al. 2010).  Similar to other members of the AGC family of kinases, PKBA 

and PKBR1 activation requires two phosphorylation events, one at the HM site by the 

TorC2 complex and another one at the AL site by PDKA (Meili, R. et al. 1999; 

Kamimura, Y. et al. 2008; Kamimura, Y. et al. 2010; Liao, X. et al. 2010; Cai, H., et al. 

2010). PKBA and PKBR1 adaptation has not been fully characterized. Recent evidence 

suggests PKBR1 adaptation can be regulated through a negative feedback mechanism 

involving the scaffolding subunit, Sca1; PKBR1 inhibits Sca1-mediated RasC activation 

and subsequently reduced RasC-mediated PKBR1 activation (Charest, P. et al. 2010). 

Here we have described two additional components of PKBR1 adaptation, the PP2A 

regulatory subunit, B56, and GSK3.  

 Cells lacking the regulatory subunit B56 exhibited high basal levels of PKBR1 

phosphorylation, not PKBA, suggesting PKBR1 adaptation was defective in these cells. 

Additionally, prsA- cells had reduced Ras activation compared to Wt cells. The decreased 

Ras activation observed in prsA- cells supports the notion of the presence of a negative 

feedback mechanism in which PKBR1 inhibits Sca1-mediated Ras activation resulting in 

decreased PKBR1 activation. The mechanism by which B56 regulates PKBR1 adaptation 

is not known. Previously, the PP2A catalytic subunit was found to interact with the Sca1 
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complex regulating Sca1-mediated RasC activation; Sca1 mutants lacking the region in 

which PP2A interacts with Sca1 failed to activate RasC suggesting PP2A is necessary for 

Sca1-mediated RasC activation (Charest, P. et al. 2010). The PP2A regulatory subunits 

have been shown to regulate the phosphatase activity, cellular localization, and/or 

substrate specificity of the PP2A complex (Janssens, V. and Goris, J. 2001; Cho, U. S. 

and Xu, W. 2006; Lee, N. et al. 2008; Virshup, D.M. and Shenolikar, S. 2009); in the 

absence of B56, the Sca1 complex may encounter localization problems. Determining the 

B56 cellular localization will help elucidate the mechanism of B56-mediated PKBR1 

adaptation. 

 In addition to B56, GSK3 also plays an essential role in PKBR1 adaptation. 

Previous reports show conflicting evidence regarding GSK3 role in PKBR1 regulation 

(Teo, R. et al. 2010; Kölsh, V., et al.  2012; Chapter 3). Upon reduction in the levels of 

active GSK3, either by the overexpression of GSK3DN or by treating cells with the 

GSK3 inhibitor, LiCl, resulted in higher basal levels of active PKBR1 suggesting GSK3 

plays a negative role in PKBR1 adaptation. Additionally, inhibition of PKBR1 activity by 

GSK3 is mediated by Ras proteins. When GSK3DN was overexpressed in rasD- cells, no 

changes in the basal levels of phosphorylated PKBR1 were observed in contrast to Wt 

and psrA- cells overexpressing GSK3DN. Similarly, no high basal levels were observed 

when rasD- or rasC- cells were treated with LiCl, whereas LiCl treated Wt and psrA- cells 

exhibited higher basal levels of phosphorylated PKBR1. These observations suggest that 

GSK3 negatively regulates PKBR1 activity through Ras proteins. This possibility is 

supported by recent evidence suggesting GSK3 negatively regulate Ras activation 

(Kölsh, V., et al. 2012; Sun, T. et al. 2013).  
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 Altogether, B56 and GSK3 provide valuable insight into the mechanisms 

regulating PKBR1 adaptation in Dictyostelium cells. B56, possibly regulating Sca1 

localization, and GSK3, by inhibiting Ras activation, ensure PKBR1 is transiently 

activated in response to cAMP stimulation. In turn, transient PKBR1 activation regulates 

the cytoskeleton rearrangements needed for efficient cell polarization and migration. B56 

negative regulation of AGC protein kinases have been previously reported in C. elegans 

and in differentiated 3T3-L1 adipocytes cells (Padmanabhan, S. et al. 2009) suggesting 

B56 mediated PKBR1 adaptation may be conserved among metazoans. Further analyses 

are needed to determine if GSK3 regulation of PKBR1 adaptation is present in other 

organisms.  
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