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ABSTRACT OF THE THESIS

EXCLUSIVE ELECTRODISINTEGRATION OF THREE-NUCLEON SYSTEMS

by

Tigran Abrahamyan

Florida International University, 2003

Miami, Florida

Professor Misak M. Sargsian, Major Professor

The purpose of this research was to develop a theory of high-energy exclusive

electrodisintegration of three-nucleon systems on the example of 3He(e, e'NN)N re-

action with knocked-out nucleon in the final state.

The scattering amplitudes and differential cross section of the reaction were cal-

culated in details within the Generalized Eikonal Approximation(GEA). The mani-

festly covariant nature of Feynman diagrams derived in GEA allowed us to preserve

both the relativistic dynamics and kinematics of the scattering while identifying the

low momentum nuclear part of the amplitude with a nonrelativistic nuclear wave

function. Numerical calculations of the residual system's total and relative momen-

tum distribution were performed which show reasonable agreement with available

experimental data.

The theoretical framework of GEA, which was applied previously only for the

case of two-body (deuteron) high energy break up reactions, has been practically

implemented and shown to provide a valid description for more complex A = 3

systems.
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1 Introduction

In the 70's the theory of Quantum Chromodynamics emerged as a consistent

field theory of strong interaction. The quarks were shown to be constituent blocks

of strongly interacting particles - hadrons, while carriers of strong interactions are

known to be the gluons. Quantum Chromodynamics introduces a new phenomenon

- confinement, which is most probably due to self interaction of the gluons. Because

of the confinement quarks and gluons are not detected in free isolated states. Very

little is known about how quarks and gluons generate the nuclear force which attracts

protons and nucleons in atomic nuclei.

Strongly interacting few-body systems are considered the best micro-laboratory

where the mechanism of the generation of strong forces through quarks and glu-

ons can be investigated. Presently, our understanding of the subnuclear structure is

limited to excitation energies much smaller than the nucleon mass and to the dy-

namics of single-nucleon states characterized by the momenta < 200 - 250 MeV/c.

Nuclear dynamics at very short distances, when nucleons are strongly overlapping

each other, remain almost unexplored [1, 2]. One knows from experimental studies

of nuclear disintegrations that it is possible to detect nucleons carrying momenta

as high as 750 MeV/c. Naive application of Heisenberg's uncertainty principle sug-

gests that at these values of momenta instantaneous hadronic densities can be up to

eight times larger than in regular nuclear configurations. These are densities char-

acteristic for neutron stars (for comparison the density of such stars is known to
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be 9.1 x 1016 kg/m 3 ). In order to probe such small space-time distances in nuclear

structure one has to provide high energy and momentum transfer to the nucleus.

The electro-nuclear reactions are best suited for high momentum and energy

transfer processes since the electron coupling to the virtual photon can be precisely

calculated in QED. In addition, the well known fact from particle physics that with

increasing energies theoretical descriptions of photon-hadron interactions become

simpler and more reliable (see e.g. Ref.[4]) would be relevant also for electro-nuclear

reactions.

Few-body systems, such as 3 He (consisting of two protons and one neutron), are

advantageous for theorists in the sense that there exist well established quantum-

mechanical methods of solving the three body problem for structureless particles

interacting within a given local potential [3]. Furthermore, consideration of the

quark-gluon structure of few nucleons is significantly simplier than for heavier nuclei.

This is also true for the problems related to the relativistic generalization of the

system.

In addition to the increase of the transferred momenta and energies, an increase

of the degrees of exclusiveness of electro-nuclear reactions, when more products are

registered in the final state of the reaction, allows us to attain deeper understand-

ing of the dynamics of the reaction as well as to gain more information about the

microscopic structure of short-range nucleon correlations [1].

The combination of these two factors: high energy and momentum transfer and

exclusiveness of the reaction makes electro-nuclear reactions a unique laboratory for
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studying nuclear quantum chromodynamics.

During the last decade there was a tremendous growth in the number of proposed

and performed experiments dedicated to exclusive nuclear reactions with large values

of momentum transfer (> 1 GeV/c) (see e.g. [5]). The experimental studies of high

momentum transfer exclusive reactions are an important part of the scientific pro-

grams of the high energy, high intensity electron facilities at Jefferson Lab, USA and

HERMES, DESY, Germany. Therefore the development of an adequate theoretical

framework to describe these reactions is becoming a pressing problem.

The major issue facing the theoretical description of exclusive reactions is that

when the final state of the reaction, in addition to the scattered electron, consists of

at least one hadron the strong reinteraction of the produced hadrons in the nuclear

environment becomes the dominant feature of these reactions.

One of the issues in describing these reinteractions is that the theoretical methods

which were successful in medium-energy nuclear physics should be upgraded in order

to describe hadronic re-interactions in the processes in which energies transferred to

a nuclear target are large (- few GeV) [6].

At energies of the produced hadronic system EN < 1GeV the final state interac-

tions(FSI) in exclusive nuclear reactions are usually evaluated in terms of an effective

potential for the interaction in the residual system - the optical model approxima-

tion. Two important features of high-energy FSI make the extension of the potential

formalism to high energies problematic. Firstly, the number of essential partial waves

increases rapidly with the energy of the N(A -1) system. Secondly, the NN interac-
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tion which is practically elastic for EN < 500MeV becomes predominantly inelastic

for EN > 1GeV. Hence the problem of scattering cannot be treated as a many body

quantum mechanical problem. In this situation introducing a predominantly imagi-

nary potential to account for hadron production is not a well defined mathematical

concept. So, theoretical methods successful below 1 GeV become ineffective at the

transferred momenta which can be reached at Jefferson Lab and HERMES.

Final state reinteraction in hadron induced nuclear reactions at higher energies

(EN > 1 GeV) are often described within the approximation of the additivity of

phases, acquired in the sequential rescatterings of high-energy projectiles off the

target nucleons (Glauber model [7]). This approximation made it possible to describe

the data on elastic hA scattering at hadron energies 1 GeV < Eh < 10 - 15 GeV.

There are many theoretical works that have appeared in the last several years

where the same principle of Glauber rescattering has been applied to the description

of the cross sections of A(e, e'N) (A - 1) reactions. Many of these works discussed

the reactions in which the cross sections were integrated over the excitation energies

of the residual nuclear system and the kinematics were restricted to small momenta

of the residual system, pA_1 < pF, where pF ~ 250 MeV/c is the characteristic

Fermi momentum of the nuclear system. In all these cases the Glauber approxima-

tion, which considers the nucleons in the nuclei as stationary scatterers, was a good

approximation.

However the Glauber approximation cannot be applied to the class of eA re-

actions in which the main emphasis is given to the high momentum of the bound
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nucleon and high excitation energies of the residual nuclei. This situation is especially

important in studies of short-range nuclear properties in which large values of missing

momentum and excitation energy are involved. It is also important in studies of the

transparency of the nuclear medium for high momentum transfer electro-production

reactions.

In this thesis we present the Final State Interactions (FSI) calculations for exclu-

sive 3He(e, e'NN)N reactions within the Generalized Eikonal Approximation(GEA)[6,

2]. Unlike other high-energy approximation models (e. g. Glauber model, [7]) GEA

takes into account the preexisting momenta of nucleons in nuclei. GEA is a relativis-

tic approximation which allows us to rewrite a potentially infinite number of final

state hadronic reinteractions into a finite set of covariant Feynman diagrams. One

can actually calculate and extract all the FSI contributions, reconstructing momen-

tum distributions initially present in the 3 He nucleus which is the starting point of

any short range correlation study.

We will concentrate on the kinematical region where the bound nucleon mo-

menta and excitation energies in the nuclear system are large enough that short-

range multinucleon correlations are expected to be dominant in the nuclear wave

function. We are particularly interested in the region of the transferred four mo-

menta 1 < Q2 < 6 GeV 2. Here the lower limit is defined by the condition that the

knocked-out hadronic system is energetic enough such that high energy computa-

tional approaches become applicable. The upper limit is defined from the conditions

that color coherence effects are small and the produced hadronic state represents a

5



single state (e.g. nucleon) but not the superposition of different hadronic states (wave

packet). Thus we have a unique kinematic window where the theoretical methods

of high energy scattering may have a simpler realization due to the fact that mainly

diagonal (elastic) terms in NN rescattering will dominate.
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2 General Kinematic Requirements, Emergence

of Small Parameters

In this thesis we are considering exclusive electrodisintegration of three-body

systems on the example of the 3He nucleus. The corresponding reaction is given by:

e+3He -4 e'+p-+p-+n, (1)

and shown schematicly in Figure 1. The discussion throughout assumes that high

momentum q = ke - ke, = (qo, q) is transferred to the 3He nucleus. The main feature

of the final state in these reactions is that it contains a fast nucleon that carries

almost the entire momentum of the virtual photon pf ~ q, with q| - several GeV/c.

The two other hadrons (pr and ps) in the final state have relatively low energy

(pr,s hundreds MeV/c).

pf

S -''Relativistic

3He

N< Iu i tt

Figure 1: High energy electrodisintegration of the three-nucleon system.

Hereafter the z direction is defined by q and the scattering plane is the plane of

q and ke, vectors.
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Thus the major kinematic requirements are the following:

(a) 6 GeV 2  Q2  1 GeV 2,

(b) pf q,

(c) pf > pm, pr, ps few hundreds MeV/c. (2)

where pm = pf - q is the missing momentum of the reaction. We define the missing

energy as Em = m + EA-1 - MA, which characterizes the excitation of the residual

nuclear system (m is the mass of the nucleon). Note that our definition of Em differs

from the commonly used definition of missing energy for which the kinetic energy of

the center of mass of the A - 1 system is subtracted. However for our discussions

this difference is not important.

The lower limit in eq.(2(a)) is the main requirement that provides a high-momentum

transfer in the electrodisintegration. This condition together with eqs.(2(b)) and (c)

allows us to identify the pf as a knocked-out nucleon, while pr and p5 can be consid-

ered as recoil nucleons which do not interact directly with the virtual photon. The

upper limit in eq.(2(a)) is defined from the condition that the color coherence effects

are small and the produced hadronic state represents a single state (i. e. nucleon)

but not a superposition of different hadronic states in the form of a wave packet.

Also, due to the conditions established by eq.(2(c)) the nucleons are the basic de-

grees of freedom describing the interacting nuclear system. From the technical point

of view this means that for the set of noncovariant diagrams, comprising the co-

variant scattering amplitude, one can neglect the noncovariant diagrams containing

8



non-nucleonic degrees of freedom (e.g. negative energy projections of bound nucleon

spinors or vacuum fluctuations). In this case one can reduce the nuclear vertices to

the nonrelativistic nuclear wave functions of nuclei.

Another consequence of our kinematics is the availability of certain small pa-

rameters. If one constructs the ± components of four-momenta (which correspond

to the energy and longitudinal momentum of the particle in the light-cone reference

frame) p± = po ± pz, where z direction is defined by the direction of virtual photon

momentum q, then one observes that the condition of Eq.(2) corresponds to the

smallness of the following combinations:

q- <x «1 and pfm < (3)
q+ 2q pf+ 4P(

were x = Q 2 /2mqo. The availability of these small parameters is one of the important

features of high energy scattering as compared to the low-intermediate energy reac-

tions. We will see below how these conditions will simplify the theoretical treatment

of semi-exclusive three-nucleon electrodisintegration reactions.
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3 Some Basic Features of Exclusive

Electro-Nuclear Reactions

The first exclusive electro-nuclear reactions which have been studied at intermedi-

ate energies confirmed the expectations that the complexity of the hadronic system

significantly restricts the unambiguous treatment of the underlying dynamics of the

reaction. In general, four main processes are contributing to the exclusive electro-

nuclear reactions (Figure 2), in which at least one energetic nucleon is registered in

the final state:

h P f 4NxP f N_____
N~

(a) IA (b) FSI (c) MEC (d) IC

Figure 2: Impulse Approximation (a), final state interaction (b), meson exchange

(c), and A-isobar contribution (d) diagrams.

" Impulse approximation (IA) amplitude (Figure 2a), in which the virtual pho-

ton knocks-out the bound nucleon which propagates to the final state without

further interactions,

" Final state interaction (FSI) amplitude (Figure 2b), in which the knocked-out

nucleon reinteracts with the residual hadronic system,

" Amplitude with meson exchange currents (MEC) (Figure 2c), in which the

10



virtual photon interacts with the exchanged (between two-nucleon system)

mesons,

* Isobar current contribution amplitude (IC) (Figure 2d), in which the virtual

photon produces a A-isobar which reinteracts with the residual nuclear system

producing the final hadronic state.

The study of the small distance properties of nuclei in these reactions is related

to the exploration of the IA diagram at high values of missing momenta and energy.

However for such kinematics at small Q2 (< 1 GeV 2), practically in all cases the

FSI, MEC and IC give dominant contributions[ 8].

There are several reasons for the dominance of FSI, MEC and IC diagrams in the

kinematics of large missing momentum pm, missing energy Em and low Q2 . While at

large p, and Em the IA amplitude is defined by the nuclear wave function at short

inter-nucleon distances, the FSI, MEC and IA amplitudes are defined by the nuclear

wave function of the average configurations.

The dominance of MEC and IC amplitudes follows also from the kinematical

considerations that at small Q2 high missing momenta Pm in exclusive A(e, e'N)X

reactions can be observed only at x < 1, i.e. in the kinematic region close to the pion

threshold. It can be seen from Figure 3, where we calculated the [pmzj dependence

on x for quasi-elastic e + d -+ e' + p + n reaction, that at Q2 < 1 GeV 2 only x < 1

is appropriate for detection of large |pm,, > 300 MeV/c.

What concerns the final state interactions at small Q2, they are dominated by

11



S wave scattering and have broad angular distributions. Thus there exist no clear

criteria how to isolate or suppress FSI with respect to IA.

In general terms the dominance of FSI, MEC and IA amplitudes means the

impossibility to probe small space-time intervals in the nucleus using probes of larger

size (1/q > 1 fim).

v
0.9

a 0.8

0.7

0.6 0'=45 GEV'

0.5

0.4

0.3

0.2

Q'=0.5 GEV2

0.1

0
0 0 2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 3: The lpmz as a function of x, for different values of Q2 , for quasielastic

d(e, e'N)N reaction. The lines between Q2 = 0.5 GeV 2 and Q2 = 4.5 GeV 2 curves

correspond to the values of Q2 = 1.5, 2.5, 3.5 GeV 2.

In Figure 4 we present the typical intermediate energy measurement, which

demonstrates how large MEC and IC contributions are in the cross section at large

12



missing momenta and low Q2 . The calculations in the kinematic region of these

experiments show that at large pm MEC and IC significantly dominate the PWIA

contribution.

With the increase of energy the situation changes qualitatively. It may sound

paradoxical but at high energy transfer, when the wavelength of the probe becomes

much smaller than the sizes of interacting particles the situation becomes simpler.

10'

10-

10-

10

10-

10--

b10 6

10

10

0 200 400 600 800 1000
p, [MeV/c]

Figure 4: The pm dependence of the differential cross sections of d(e, e'p)n reactions

at Q2 = 0.13 - 0.33 GeV 2 . The data are from Ref. [8]. Solid and dashed lines

correspond to the calculation of Arenhbvel, Ref. [9], with and without MEC and IC

contributions.

As an experimental indication of MEC suppression at high Q2 in Figure 5 we
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demonstrate the Q2 dependence of the ratios of inclusive structure functions W 1/W 2

for different values of Ep,. Note that Ep4 = 0 corresponds to the deuteron threshold

where MEC should be especially enhanced. The figure clearly indicates that MEC

contribution decreases with increase of Q2 and additionally it indicates that starting

at E, > 50 MeV MEC contribution becomes small at Q 2 > 1.5 GeV 2 region.

d(e,e )X

1 E =20-40 MeV

0.75

0.25 -r

1.5 1.2 14 1.6 18 2 2.2 24
3- E,~=50 - 70 MeV

0.5

1.2 1.4 1.6 1.8 2 2.2 2.4
1.5 - 12t) t

0.5

0
1.2 1.4 1.6 1.8 2 2.2 2.4

Q
2 GeV 2

Figure 5: The Q2 dependence of the ratios of structure functions W 1/W 2 from inclu-

sive d(e, e')X reaction. The data are from Ref.[10]. E, = (W, - mD - bound

where W2 = W2 (q' + p) 2 , is the C.M. energy of the proton and neutron in

the final state of the reaction. Solid lines are PWIA predictions within light cone

dynamics in a collinear approach [11].
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4 Final State Interactions

With an increase of energy the characteristics of soft (small angle) hadron-

hadron interactions in the amplitude of Figure 2(b) simplify in several ways. The

first major qualitative change is the emergence of a practically energy independent

total cross section of hadron-hadron interactions at lab momenta > 1 - 1.5 GeV/c

(total cross sections are being constant up to momenta of 400 GeV/c). As Figure 6

200

E 180

3 160 O PP world data

140

120

100

80

60

40

20

0
0 1 2 3 4 5 6 7 8 9 10

p,,(GeV/c)

200

E 180

160 O PN world data

140 0 NP world data

120

100

80

60

40

20

1 2 3 4 5 6 7 8 9 10

p..(GeV/c)

Figure 6: Proton-proton and proton-neutron total cross sections as a function of

incoming proton momenta in Lab. frame. Solid lines are our fits to the world data

(see Appendix D for the corresponding Fortran listings).

shows both pp and pn total cross sections level out and become practically energy
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independent at lab momenta greater than a few GeV/c. This simplifies tremendously

the description of the final state interactions since the small angle NN scattering is

proportional to u5o' . The additional simplification associated with the increase of

energy is that at small angles the rescattering amplitude is predominantely imaginary

and conserves the helicity of interacting particles.

16



5 Reduction Theorem

Let us consider the following theorem: High energy particles propagating in the

nuclear medium can not interact with the same bound nucleon a second time after

interacting with another bound nucleon. In other words all those rescatterings which

have a segments similar to Figure 7 are suppressed.

P1  T T2 T3 P3

P P4

D

DNN PSI Ps2 Ps

Figure 7: Diagram for hadron-deuteron scattering

We prove the above statement for the case of the amplitude of the diagram of

Figure 7. This prove can be easily generalized to all other cases. The invariant

amplitude of the diagram in Figure 7 can be presented as follows:

A I d4ps1 d4ps2 T3 (pS - ps2 )T 2 (p4 - (PD - ps1))T(ps 2 - psi)
A i(27r) 4 i(27r) 4  D(p3 + Ps - ps2)D(pi + psi - Ps2)

FDNN(PD - Psi,Psi)
D(Ps2)D(psi)D(pD - Psi)'

where D(p) = -(p 2 - m 2 + i6). We neglect the spins since they are not relevant for

our discussion.

It is convenient for this section to use light-cone (p-, p+, pL) representation for

17



four-momentum p = (po,Pz,P), constructing the ± components as:

p = po±pz (5)

The scalar product of two four-vectors is then given by

1 1
P1 - P2 = P1OP20 - PizP2z - P1LP2 = 2P1-+P2- + 2P1-P2+ - P1IP2I. (6)

We observe that the kinematics for the scattering corresponding to Figure 7 is

such that

p1+ ~ p3+ > m and pi- ~p 3- « m, (7)

i.e. the propagating nucleon in the top of the Figure 7 is very energetic. Meanwhile

P4+ - p4- ~Ps+~- Ps- ~ m, (8)

i.e. recoiled nuclear system is non relativistic.

Next we introduce momenta:

k1 = ps2 - Psi, k2 = Ps - ps 2  and K = k1 + k2 . (9)

This results in replacement

ps2 = ps - k 2 , (10)

Ps1 = ps2 - k1 = ps - k1 - k2 = ps - K. (11)

Becouse Ko = (K+ + K_)/2 and Kz = (K+ - K_)/2

d 4 K = d2KidKodKz = d2KL (Ko, Kz) dK+dK_ = d2K 1 dK+dK- (12)
O( K+, K) 2

18



Using these definitions we obtain from eq.(4)

A n 1 d2 K 1 d2 k2 1 dK-dk 2 dK+dk 2+
Ap-pn-4 1 (27) 4  (27T) 2  (27)2

T3(k2)T2(p4 - (PD - ps + K))T 1 (K - k 2 )

D(p3 + k2)D(p1 + k2 - K)
FDNN(pD - ps + K; ps - K)

(13)
D(ps - k2 )D(ps - K)D(pD - ps +K) ('

First we integrate over dK+. As we consider K+ complex plane one can clearly see

that poles of propagators D(ps - K) and D(p1 + k2 - K) lay in the upper half-plane

whereas D(pD - ps + K) has pole in the lower half-plane. Therefore we can close

contour of integration in the upper plane and consider only first two propagators.

As we write

-D(p 1 +k 2 -K) = (p1+k2-K)-(p1+k2-K)+-

-(p1+ k2 - K) - m2+iE = -(p1+ k2 - K)_ x

x K+ - (pi + k2 )+ - (pi+k 2 -K)1+m 2 - i) (14)
(P1 + k2 - K)_

we observe that pole integration of this propagator will return negligible result. In-

deed, application of residue theorem will replace K+ with the quantity containing pi+.

DNN vertex function therefore will look like ~ FDNN(pl+). After non-relativistic re-

duction of vertex function the remaining integrand will contain deutron wave function

with the argument pl± m. For such a high momenta )D - 0 and corresponding

integral is strongly suppressed.

Now we turn to the last K+ pole and get

-D(ps - K) = (ps - K)_(ps - K)+ - (ps - K)i - m 2 +ie (15)
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= -(ps - K)_ K+ -2 -s -
- (p-K)4 ±-(P+ - (p - K) -~m

so integration over dK+ will merely leave us with the factor of 27ri/(p, - K)_. Using

the same approach we can now integrate over dk2+ by closing contour in the upper

half plane with the single pole corresponding to propagator D(p - k2 ) (other two

propagators containing k 2+ have poles in lower half-plane). As before, one can write

-D(ps - k 2 ) = (ps - k 2 )-(ps - k 2 )+ - (ps - k2)2 - m 2 +iE = (16)

= -(Ps - k2)_ k2 -- s -s+ - 2 -

P2 + -(PS+ - (s - k2) -

and effectively replace dk 2+ integration with the factor of 27ri/(ps - k2)--

The overall result reads:

-1 f d2K 1 d2k2 1 dK-dk2 _T3 (k2)T2(p4 - (PD - ps + K))T1 (K - k2)
4 1 (27r) 4  (27r) 2  D(p 3 + k 2 )D(p1 + k 2 - K)

FDNN(pD - ps + K; ps - K)

(ps - k2)-(ps - K)-D(pD - ps + K)

Next, to integrate over dK- and dk2_ one observes that in high energy limit when

p1+,p3+ m and p_-,p3- < m the fast nucleon's propagator can be expressed as

follows:

-D(p3 + k2 ) = (3 + k2 )+(p 3 + k2)- - (p3 + k3)I - m 2 + iE ' p3+(k2- + iE)

-D(p1 + k2 - K) = (p1 + k2 - K)+(pi + k2 - K)_ - (p1 + k2 - K)I -

-m2 + iE ~ pi+(k 2 _ - K- + iE). (18)

Inserting these expressions into Eq.(17) one obtains:

-1 d2Kjd 2k21 dK-dk2 _ T3 (k2)T2(p4 - (PD - ps + K))T1 (K - k2)
A(2_>ppn 4 1 (2)4  (27)2  p3+(k 2- + iE)p 1+(k 2 _ - K + iE)
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'DNN(pD - ps + K ps - K) (19)
(ps - k2)-(ps - K)_D(PD - ps + K)'

Analyzing the range of the integration over dK_ and dk 2- we first observe that

the soft rescattering amplitudes depend predominantly on qI, i.e. T(q) - T(qi)

and does not contain any singularities associated with K_ and k2 -. Other apparent

singularities may come from (ps - k2)- = 0 and (ps - K)- = 0. However according

to the redefinitions of Eq.(9) they correspond to ps2- = 0 and psi- = 0. The latter

conditions represent a bound nucleon with infinite virtuality Psi+,2+ ~ m22_ which

is suppressed by wave function of bound nucleon. Therefore the structure of dK_

and dk2 - integrations will be defined only by two denominators of a fast propagating

nucleon, i.e. by,

f dk 2 _dK- = 0. (20)
(k2 + ie)(k2_ - K_+i6)

The above integral is zero since both poles over the k2 _ are on the same side of

the complex k2 - semi-plane and one can close the contour of integration on the side

where there are no singularities exist. Thus this contribution results Apd- ,,p = 0.

This result allows us to reduce potentially infinite number of rescattering dia-

grams to a finite set of diagrams. The only diagrams that survive are those in which

a propagating fast nucleon interacts first with one target nucleon then the next one

and so on, making rescatterings strictly sequential.

Another consequence of this theorem is that, if the virtuality of a bound nucleon,

which is interacting with the propagating (energetic) nucleon, can be neglected, the

sum of the interaction amplitudes with a given nucleon can be replaced by the in-
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variant NN scattering amplitude, FNN as in Figure 8. The later can be replaced by

the phenomenological NN scattering amplitude taken from the NN scattering data.

Pi T 1 T2 T3 P3  P1  FNN P

PD PD

rDNN PS TDNN S

Figure 8: Reduction theorem for hadron-deuteron scattering.

Thus we will end up with the finite set of scattering diagrams for which Feynman

diagram rules can be identified.

The above result represents the realization of eikonal approximation. How-

ever the major difference from the conventional semiclassical approximation is that

the present approach does not require the spectator nucleons, to be a stationary

scatterers[7]. Furthermore, we will refer the present approach as generalized eikonal

approximation (GEA).
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6 Feynman Diagram Rules for the Scattering

Amplitude in GEA

In this section we will define the effective Feynman diagram rules, within GEA,

for the scattering amplitude of knocked-out nucleon to undergo n rescatterings off

the nucleons of (A - 1) residual system. The case n = 0 corresponds to the plane

wave impulse approximation in which the knocked out nucleon does not interact with

residual nucleus. We systematically neglect the diffractive excitation of the nucleons

in the intermediate states. In soft QCD processes this is a small correction for the

knock-out nucleon (projectile) energies < 10 GeV. In the hard processes (that is

when Q2 - virtuality of the photon is sufficiently large (; 6 - 8 GeV 2 )) such an

approximation can not be justified even within this energy range, because of im-

portant role of quark-gluon degrees of freedom in Color Transparency phenomena.

However our aim is to perform calculations in the kinematics where the color trans-

parency phenomenon is still a small correction and intermediate hadronic states can

be treated as a nucleon states.

According to the above discussion the n-fold rescattering amplitude will be rep-

resented through n vertex amplitude in which the each vertex corresponds to one NN

scattering - Figure 9. We can formulate the following Feynman rules of calculation

of the diagram of Figure 9 (see also Ref.[6]).

* We assigns the vertex functions FA(p,...,PA) and F_ 1 (p'2, ... ,pA) to describe

the transitions between "nucleus A" to "A nucleons" with momenta {pn}, {P'}
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P
P1 P n+1

A Pn+2  P2 PA-1

Figure 9: Diagram for n-fold rescattering.

and "(A - 1) nucleons" with momenta {p'} to "(A - 1) nucleon final state"

respectively.

" For y*N interaction we assign vertex, If*N-

" For each NN interaction we assign the vertex function FeNN(pk+lpk+1). This

vertex function are related to the amplitude of NN scattering as follows:

(p3)>(p 4)FNNu(p1)u(p2) (s - 4m2) fNN(p 3,p1)A^A,'~ S NN(p3,p1)SAa'

(21)

where s is the total invariant energy of two interacting nucleons with momenta

pi and p2 and

fNN __ 7(i + e(P3p1 (22)

where jotN, a and B are known experimentally from NN scattering data.

The vertex functions are accompanied with a-function of energy-momentum

conservation.

" For each intermediate nucleon with four momentum p we assign propagator
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D(p)-1 = -(p - m + iE)- 1. Following to Ref.[12] we choose the "minus" sign

for the nucleon propagators to simplify the calculation of the overall sign of the

scattering amplitude.

" The factor n!(A - n - 1)! accounts for the combinatorics of n- rescatterings and

(A - n - 1) spectator nucleons.

" For each closed contour one gets the factor with no additional sign.

Using above defined rules for the scattering amplitude of Figure 9 one obtains:

1 AAf d 1
FA(A-(q, pf) - n!(A - n - 1)!i1 1 depidspj _Z2f4A2+n

A A A

4 - PA)64Zpj - PA-1) fi j 4 (P, - pm) x
i=1 j=2 m=n+2

A_1(p', .,p'n+1Pn+2, .. ,PA) flNN (p2 fnNN (pn+2, pn+2) h 2)

D(p2)..D(pn+1) D(l1 )..D(l)..D(ln- 1 ) D(p1 + q)
FA(p1,...,PA) (23)

D(pi)D(p2 )..D(pn+1)D(pn+2 )..D(PA)

where, for the sake of simplicity, we neglect the spin dependent indices. Here PA and

PA-1 are the four momenta of the target nucleus, and final (A - 1) system, pj and p

are nucleon momenta in the nucleus A and residual (A -1) system respectively. Y in
h

Eq.(23) goes over virtual photon interactions with different nucleons, where rF(h are

electromagnetic vertices. -D(pk)- 1 is the propagator of a nucleon with momentum

Pk and -D(lk)- 1 is the propagator of the struck nucleon in the intermediate state,

k
with momentum lk - q + pi + F (pi - p') between k - 1-th and k-th rescatterings.

The intermediate spectator states in the diagram of Figure 9 are expressed in terms
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of nucleons but not nuclear fragments because the closure over various nuclear excita-

tions in the intermediate state is used. The possibility to use closure is related to the

fact that the typical scale characteristic for high energy phenomena is significantly

larger then the energy scale of nuclear excitations.

After evaluation of the intermediate state nucleon propagators, the covariant

amplitude will be reduced to a set of time ordered non covariant diagrams. This

will help to establish the correspondence between the nuclear vertex functions and

the nuclear wave functions. Particularly in the nonrelativistic limit the momentum

space wave function is defined through the vertex function as follows[13]:

1 A(PIp2, ... PA)A(pp2,...pA) A (p

((2 7r)3 2m)^- 1  D(pi) (4

where wave functions are normalized as: f VA(PI,p2, ... PA) 2 d 3 pid 2P2 .. d 3p - 1.
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7 Scattering Amplitudes for 3He(e, e'NN)N

Reaction

7.1 Plane Wave Impulse Approximation and Pair Distortion

Amplitudes

For the case when no final state rescatterings of leading nucleon occur straightforward

application of Feynman rules for n = 0 term from previous section yields:

q lji*N

Ie NNN
P2 f

P
He P3  ,N Ps

Figure 10: Impulse Approximation Diagram.

(2 )U )UP)U3I P2P}- m 2 + ie

[ 2 -2 + m] pi + m] L-H
x 2 2_ ' 3HeNNN (1,P 2,P3) X . (25)

Here Ao is refering to impulse approximation amplitude and A' 8 stands for coupling

of spectator pair. p = p,,'y" and F7NN(p2,p3) describes, in the most general case,

a transition of two (NN) intermediate nucleon to final continuum or bound two-

nucleon state. Since we are considering specific 3He(e, c'NN)N break-down reaction

this vertex function in our calculations assosiated with the free(continuum) NN state
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only. The spin function of 'He nucleus is denoted by x3He. F3HeNNN corresponds to

covariant 3 He --* NNN transition vertex and 17*N is a covariant electromagnetic

vertex of the Y*Nound -* N transition. Latter has the form:

F *N t~ A . -y + B -Ivq", (26)

where qv, as usually, is a momentum transferred to nucleus, and A and B are func-

tions of scalar combinations of q", pf and (p3He - pr - ps)?. It's worth to note that

since both F3HeNNN and Jj*N are relativistic covariant vertices therefore in the time

ordered expansion they contain both impulse approximation and vacuum fluctua-

tion diagrams. This implies that Ft.N may represent, for example, 7* -+ NN and

F3HeNNN also describe the processes like N 3He --+ NN. However, if we restrict by the

kinematics defined in eq. (2), then in the set of noncovariant diagrams, comprising the

covariant diagram of Fig. 10, one can neglect the diagrams which correspond to the

vacuum fluctuations. Moreover, since we are interested in target nucleon momenta

Pm < m 2 one can neglect off-shell effects in the nucleon spinors and use the closure

for the nucleons in the intermediate states:

P1,2,3 + m = u(p 1,2 ,3 , s)u(p1 ,2 ,3 , s) (27)
S

(we have adopted normalization u(p, s)u(p, s) = 2m). Thus we have neglected non-

nucleon degrees of freedom in a nucleus. Overall in discussed kinematics the rela-

tivistic effects in the nuclear wave function are a small correction and the impulse

approximation(IA) can be calculated via nonrelativistic reduction of the covariant

nuclear vertices in eq. (25). Such a reduction corresponds to taking the residue over
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dp°, at the nearest nucleon pole in the spectator nucleon propagator. The restriction

by the nearest pole in the nucleon propagators follows from the observation that this

is the only pole not associated with NN production in our kinematics, where nu-

clear excitations are small as compared to the scale of energies characteristic for the

nucleon excitations. After such integration one is left with the time ordered diagram

corresponding to the IA(or rather distorted IA), where the virtual photon knocks

out the target nucleon with momentum pi.

Returning to eq. (25) we replace projection operators by closure expansion of

eq.(27):

0 S= - Z J 27dp d3 p2 (p(S)~) (N X
A&+ As= - u dp d26p )u(pf) ' NN~p2,p3) ' *"N X

S1s2S3 i(2w)4

u(p , s3)(p3, s3)_ _ u(p 2 , s 2 )u(p 2 , s 2 )
p3 - m 2 + iE (p°)2 - p 2 2 - m 2 + iE

X u(p2, s-)u(piS) .?3HeNNN(P1, p2, p3) XHC- (28)
Pi - m2 + iE

In order to integrate over dp° by contour method we note that corresponding

poles are located at ± p2 2 + m 2 . Adding -Fi& one can displace the poles from the

real axis and by closing the contour in the upper complex half-plane easily compute

the following improper integral:

°°dp° 27ri

-o (p2 - p 2 2 + m2 + i)(p2 + Jp2|2 + m -2 ie) -2 p 2 + m2

(29)

Since we employ non-relativistic treatment of the spectator pair (Jp2 2/m 2 « 1)
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this reduces to

27ri 27ri
__ __ _ __ _ . (30)

-2 Vp 2 | 2 + m 2 2m

Keeping in mind that every argument p° is now assumed to be replaced with the

residue - |p2 2 + m 2 we rewrite eq.(28) as

AP + Aos = E d3p2 U(pr)U(ps)INN(p2,p3)U(p3, S3)U(p2, s2)

sls2s3 2m(2r)3  p3 - 2

x i(pf)Jj NU(pl, sl) X

X siU)(p 2 , s2 )U(p 3, s3)I3HeNNN(p1, P2, p3) X3He (31)
P2 - m 2 + iE

Now we are going to apply the non-relativistic reduction of the initial (F3HeNNN)

and residual (r+NN) systems' vertex functions in order to substitute them with the

corresponding non-relativistic momentum space nuclear wave functions. The general

formula for the system of A nucleons is given by

W I(psl; p 2 , 2 ; ... ; PA, sA) =

( (2wr)
3 2m)A-1

u(pi, s1) . .. u(PA, sA) A (pi, p2, ..- , PA)XA (32
-(pi - m 2 + iE)

where nucleon propagator by convention chosed to carry "minus" sign. The wave

function is normalized as:

J (p1, p2, ... , pA) |263 pi - PA d 3p1 d2 2 ... d3 pA = N, (33)

where N=1 for bound states and N = HA 1 6 3(pi - p') for A body continuum state.

We note, that to apply Eu = 2m relativistic normalization for the spinors the
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-1

(27r) 2 2m phase factor should be associated with the plane wave single nucleon

wave function.

Using eq.(32) for the case of bound system of two proton and one neutron the

last term in integrand of eq.(31) can be replaced by:

i7(pi, si)u(p2, s 2 )u(p 3, s3)I?3HeNNN(P1, P2, P3) X3He __ 3 x
pi - m 2 + '(i) (2m)x

X 4 Hee (Pi, Si; p 2 , s 2 ; P 3 , 8 3 ). (34)

The ground-state wave function of 3He, introduced this way, is chosen to be

normalized as

T Jd3pd3P2d3p 3|3H e(pi, si; p2,7 2; p3, s3 23(pI + p2 + p3) = 1. (35)
Si,S2,S3

Using the similar approach, the unbound two-nucleon state, described by the

first term in eq.(31), can be connected with final state continuum wave function:

F+ TN +)(q). The detailed discussion of this function

carried out in the Appendix A. It is shown there that asymptotic form of TW in

coordinate representation is given by plane wave eikr (delta-function in momentum

representation) and diverging ("+") spherical wave. In scattering theory this function

describes a particle of known energy k2 /2mred scattered in field U(r) of fixed force

center. Such picture is equivalent to the considered coupling of two non-relativistic

residual nucleons. mred is a reduced mass of the system whereas q and k are relative

momenta of incident and outgoing pairs, respectively. If we neglect mass difference

between proton and neutron then the reduced mass is just mred = m/2, and we have
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also q = (p2 - p3)/ 2 , k = (pr - ps)/2. It is convenient, therefore, to refer to X+(q)

as Tk±, ((p2 - p3)/2). With this notation we have:

- (Pr)U(Ps)F7vN(P 2 , P3)U(P3, s3)U(P2, s2) = 2Er 2Esk 4 7 (P2 -P3) (36)
P3 - m2 + iZ 2

Finally we can introduce electromagnetic current as

j'"(Pf, sf, pm, sm) = '(Pf, s)F*NU(Pm, sm). (37)

If we replace all three terms under the integral sign in eq. (28) with the obtained

expressions we will get:

Ao + A 5  = F d3p 2 krs( 2P)L(pm + q,pm)J3He(Pm;p2p3) (38)
spins

where we have substituted pi = pf - q - pm and pf = p, + q. We also set

F-2Er2Es.

This is the conventional formula for distorted IA amplitude (the spin coordinates

are suppressed for simplicity).

Observing that P2 + P3 = Pr + ps it is handy to define a new variable

k23 = P2 = P3 Pr + Ps (39)2 =P2 - (39)

so it replaces P2 = k23 + (Pr + ps)/ 2 , P3 = -k 23 + (Pr + Ps)/ 2 and we arrive at

AP + Aos = F J d3k 2 3 k±) (k 2 3 )j'(Pm + q, pm) X
spins

X '3He(Pmi k 2 3 + Pr 2 Ps -k 2 3 + Pr + Ps
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Accurate non-relativistic theory suggests that 4k+) (k 23 ) can be represented in

the following way (see Appendix A):

offshll(k k2 3)
Tk+ (k23) = (27r) 3 63 (k23 - krs) + 47rf N shell r s, 2

ks23 - rs -Z

where krs = (pr - ps)/2, and fj~hell is a non-relativistic amplitude for scattering of

two bound nucleon. Two terms of eq.(41) characterize two distinctive dynamics of

production of recoil(spectator) NN state. If only first term of eq.(41) is kept in 40

this will correspond to the approximation in which all three final nucleons propagate

as a plane wave (PWIA approximation). The second term describes reinteraction

between the pair of the slow nucleons which distorts the plane wave of outgoing

recoil nucleons.

Thus, the integration over the three-dimensional delta-function provides us with

Plane Wave Impulse Approximation amplitude (Born term), which is written in the

following form:

AP = (27r)3 F E jt(pm + q, pm)'3He(pm; pr; ps). (42)
spins

Note, that we were able to express all the arguments through observables avail-

able from the 3 He(e, e'NN)N experiment.

So much for PWIA term. For pair distortion amplitude the expression we left

with has the form of

A" = 47r F E d3k 2 3 fNhellrs, X23

spins 23 rs ~

X 4'W3He(Pm k2 3 - pm/2; -k 2 3 - p m / 2
), (43)
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where we have used -(pr + ps) = pf - q = pm with pm being a missing momentum.

To proceed further we recall the identity which holds under the sign of integral:

1 1
= P.V. - iir(a - a), (44)

a - ac + ZE a ~~ ac

where P.V., as always, denotes Cauchy principal value integral. With the help of

this we can replace the denominator in eq.(43) as follows:

11
k2 - k 2 - = ,r6(k3 - k2s) + P.V. - k . (45)k23- k2 k 2 3 -krs45

pole term
P.V.term

We will restrict our calculations with the pole term only. This is corresponding

to the scattering problem of unbound nucleons. Within the framework of considered

kinematics, contribution of P.V. term plays the role of a small correction. Rewriting

dok23 = 1/2 k 2 3 |dk23 dQ23 one has

A pole) = 2i 2 F fk 2 3 |dk 3dQ236(k$3 - krs)fNyhell (krs, k 23 ) X
spins

x j"(pm + q, pm) -S 3He (Pm k23 - P k 23 -1P (46)

or

A (pole) 7r2 F E J dQ23 2i krsI f'flhell (krs k'rs) X

spins

x jl (pm + q, pm) - I3He (pm; krs P -krs -P), (7

where k'rs is a vector which has absolute value of krs but points in the direction of

k 23 .

Thus, the final expression for pair distortion amplitude can be put in the following
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form:

A(pole) =r 2 F Z j"(Pm + q, pm) dQ 23 Ihe1(krs) k'rs) X
spins

X '3He(Pm krs - krs -2) (48)

where NN scattering amplitude can be expressed through partial waves phase shifts

6l using the well-known expansion

-PNhell(krs krs) 2i krsl fnhell(krs k'rs) -

= (2l + 1)(exp(2i5) - 1)P ( ,;: (49)
_=0 krs| I k rs|

In our numerical calculations we have used Fortran90 code NNSOLA.f (solution

SP03), courtesy of Virginia Tech Partial-Wave Analysis Group (SAID), which enables

to compute polarized fNN amplitude based on parametrization of world experimental

data on proton-proton and neutron-proton scatterings.
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7.2 Single Rescattering Amplitudes

The diagrams in Fig.11(a) and 11(b) describe the process where the fast (pf)

knocked out nucleon rescatters off one of the spectator nucleons. The general ex-

pression with suppressed spinors for the amplitude corresponding to the diagram in

Fig. 11(a) is given by n = 1 term of eq.(23) as follows:

q-z.
, y N F'NN Pf

-..PP

p2 P2  - Pr (a)

Pie r P3 rN Ps3
He NNN

1^' FNN Pf

- P2yPr (b)

P3He P3  P s

NNN FNN

Figure 11: Single Rescattering Diagrams.

A f d4p2 d4p3  NN(P2,P3) FWPN(2P -P2) F3HeNNN(P1,P2,P3)

l I i(27) 4 i(27r) 4  D(p2) D(pi + q) F* N D(pi)D(p2)D(p3) '

(50)

where, as before, D 1 (p) = -(p 2 - m2+ie)-1 is the propagator of nucleon with the

momentum p together with the "minus" sign, according to the convention adopted

earlier. We assume summation over initial spin values of three-body system. The
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NN interaction vertex function accountable for Fig.11(a) rescattering denoted as

FNN. Energy-momentum conservation provides us with obvious relations for the

momenta in the intermediate states

pi = P3He ~ P2 ~ p31 P2 pr + Ps - 3- (51)

Rewriting original eq. (50) in the explicit spinor-dependent form we obtain

J d4p 2 d 4 p 3  P NN (P2,P3)[P2 + m]
A(a = ( 2  4U(Ps)(Pr)(Pf) -m 2

(7)4 Z(2 r) p2 -m2 + is

F N (P2 - p 2 ) [PI + + m FyN p3 + m] X
(P1 + q)2 - m2 + iE * .N '3 _ m2 + ZE

X [p2 + m] [P1 + m] 3Hex 3+m -t-m F3HeNNN(P1, P2, P3) X e. (52)
p- m2 + i& pi - m 2 + ic"T3eN P 2p)x(2

Using the same arguments as in previous section we neglect vacuum fluctuation

diagrams. Taking advantage of the considered kinematics we also neglect off-shell

effects in the nuclear spinors. This enables us to use closure expansion of eq.(27) and

rewrite previous equation as

A dp d3 p2 dp _3 ps r NN(P2,P3) - u(p2)(p2)
Aia =- ] / . )4 .2) 4 (Ps)i(Pr)'U(Pf) /2

spins i(27)4 (20r) p2 - m2 + iE

FNN(P2 - P2) -u(p 1 + q)u(p1 + q) y __ __3_(3

(pi + q)2 - m 2 + iE y *N . - m 2 + iE

X U(p 2 )u(p 2) 'dp1Mpl) .3HeNNN(PI iP2, 3 x 3 He (53)
p2 - m2 + iE p1 - m2 + iE

Similarly to eq. (29) one can perform the integration over the dp2,3 by taking

residues over the poles in the nucleon propagators D~ 1 (P2) and D - 1 (p3). In contrast

to IA case we now need to consider propogators D- 1 (pi), D-'(p1 + q) and D- 1(p'2)

which are also depending on variables p2, p° as given by eq.(51). We observe, however,
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that poles of those propagators are all located in the upper part of the p°3 complex

planes so we can close the contour in the lower half-planes containing single poles

+ |p2 2 + m 2 and + p312 + m 2 , respectively. In addition, when talking about dp°

integration it is necessary to point out that FN (p2 -P2) does not have singularity in

p2. It reflects the fact that at high energies the total cross section of NN interaction

depends only weakly on the collision energy.

Thus, the integration results in substitution

00 dp° 3  _27i _ 2ii

-N P2,3 - m2 + i& 2 Ip2,312 + m2  2m

After this replacement and some arrangement of Dirac spinors eq.(53) is going

to look like

A = 1 d 3p2 d3p3 u(Pr) (ps)NN (PP3)U(P2 U(P3)
a 2m)2 f (27)3 (27) 3  

i2 - m2 i
( pN P2 -spn ) + p2 + E

x ?7Pf)i(P2)FN(p - P2)U(P1 + q)u(p2 ) - u(p1 + q)Ij*NU(p1) X
(Pi + q) - m 2 + i

X u(P3)i(P2)(P1)3HeNNN(P1,P2,P3) X3He (55)
pi - m 2 + iE

After p°, p° integrations were performed, the diagram of Fig. 11(a) becomes the

noncovariant time ordered diagram (from left to right), where a virtual photon is

absorbed by the target nucleon, and then the produced fast nucleon rescatters off

a spectator nucleon. The definition of the momentum space wave functions is now

straightforward. It corresponds to the nonrelativistic reduction of the nuclear ver-

tices r3 He and NN as given by eqs. (34) and (36). The third term in eq.(55) can

be replaced by electromagnetic current, just like we did in eq.(37) for impulse ap-
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proximation diagram. Finally we are also able to connect FN rescattering vertex

function to the nonrelativistic amplitude of nucleon-nucleon scattering (see eq.(21)):

u(pf)i(p2)F'NU(p1 ± q)u(p 2) s(s - 4m 2 )f f ' -p2)6aa'1

sff f(p2 - P2)6 a,a'16!,', (56)

where s is a total invariant energy. 6a,a,, 6Q~ replace spins before the collision to

the spin values after the collision in the sum Espins. For small center-of-mass angle

and high energy rescatterings, which are characteristic features for fast knocked out-

slow spectator nucleons interaction, fiff diffraction amplitude can be constructed

via parametrization of proton-nucleon and proton-proton experimental data. Corre-

sponding parameters are total cross-section otot, slope parameter B and Re to Im

amplitude ratio a:

ff f(p' -P2)1 = Jtot(2 + ae '(PP2), (57)

where I denotes that soft scattering amplitude mainly depends on x and y compo-

nents of transferred momentum. Thus, non-relativistic reduction rewrites Ala as

Al = -F 1 d3P2 d3p3 k+)(P2 p3 ) X
(2m) (27w)3 2

s fdi f(p2 - p2) 1 .
x .f+q) - P2)1 j4(p1 + q, pi) - I3He(P1; p2; p3). (58)

(P1 + q)2 - m2 + ze

with F = 2E, 2E being normalization constant. Let us analyze the propagator

-D(p1 + q) - (p1 + q) 2 - m 2 + iE as we express pi through the relation of eq.(51)

-D(p 1 + q) = M2He - 2P 3He(p 2 + p3) + (P2 + p3)2 +

+ 2q(P3He - 2 - 3) -Q 2 - m 2  Q2 _ -q 2. (59)
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Using the 4-vector conservation condition for quasielastic scattering

(AI3He, 0) + (qo, q) = (Ef, Pf) + (Er, Pr) + (Es, Ps), (60)

we can transform eq. (59) replacing m 2 by the following expression:

22m2 = (q +P3H -pr--ps)2 _

= A3He - 2 P3He(Pr - Ps) + 2m 2 + 2q(P3He - Pr - Ps) - Q2  (61)

This yields

-D(pi + q) = (P2 +p3) 2 - 2MA3He(E 2 + E 3) - 2qo(E 2 + E 3) + 2q(p 2 + p3) -

- 2m 2 + 2M3He (Er + Es) + 2qo(Er + Es) - 2q(pr + Ps) + ij (62)

or, chosing as usually transferred momentum q in the z direction, q = (0, 0, qv), we

derive the following form for knocked out nucleon propagator:

-D(p + q) = 2q ( +P3 ) - (Psz + Prz) + q(Es + Er - E2 - E3) +
qv

+ (Es + Er E2 - E3) (P2 P3 )2 -2m 2 + i. (63)

For fixed xBj Q 2 /2qom Bjorken parameter and increasing values of transferred

momentum q, only first three terms are important in this expression. Contribution of

last two terms at fixed recoil energy is of the order of O(1/qv) and they are vanishing

as we consider higher and higher qv. Therefore

-D(pi + q) t 2qv [(P2z + Paz) - (Psz + Prz) + AO + i] , (64)

where

Do = q-o (Es + Er - E 2 - E 3 ). (65)
q4
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We now observe from eq.(60) that -(p, + ps) = pf - q - p, with pm being a

missing momentum. Recalling also pi = -(p2 + p3) we rewrite eq.(64) as

-D(p1 + q) = 2qv [pmz - Piz + Ao + , (66)

where now

Ao = (El+Es +Er -M3He) -o(m+Es +Er -M3He)- Em. (67)
qv qv qv

Here we have neglected term pi 2/2m 2 « 1 in expansion for El, thus replacing it

with m in the nonrelativistic limit. It is important to mention, that in the lab-frame

description without such a neglection one cannot justify the closure over intermediate

nuclear states we performed earlier in eq.(53) for the spinor [Pi + q + m].

The missing energy Em, which is also given by Em = qo + m - m 2 + pf in case

of the 3He three-body break-up kinematics has very clear physical meaning:

Em = TNN + 1b, (68)

with TNN as a kinetic energy of the spectator two-nucleon system and 1eb as a

modulus of the target binding energy.

Observing that in high energy limit 2mqv ~ s we obtain from eq. (58) the following

expression for single rescattering amplitude

Ala = d 3 p2d3p 3 ± (+ p2 3-
(2) p3 2 (22 )

X pm.P i . j"(p + q, pi) - T3He(pl; p 2; p 3 ) (69)
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Defining new variable k = pi - pm, where pm p f - q = -pr - ps, we change

variables in eq.(69)

pi = k + pm from definition, (70)

P2 = -k - pm - p3 from eq.(51), (71)

P'2 = Pr + Ps - P3 = -Pm -P3 from p2 + P3 = pr + Ps. (72)

After replacement we get:

Aia = 2-2 d F d 3 k dp3 k ( -p 2p 3 fff(kl)
1a 2 (27)3 " 2 -kz + AO + 2E

X jl(k + pm + q, k + pm) -43He(k + pn; k p 3 - pm; p 3 )- (73)

It is convenient to change p3 variable as well, replacing it with the relative mo-

mentum of spectator pair before their interaction in F+ vertex. The corresponding

relations are k2'3 = (p'2 - p3)/ 2 = -pm/2 - p 3. The result is

A a = F d 3 k d 3  (k2 3) f__ __(k1) X

a F (27r)3  " -kz+A 0 I+ iE

x j"(k+pm+q,k+pm)x

X T3He(k + pm; -k + k2 '3 - pm! 2; -k 2 ' 3 - pm/2). (74)

We are now ready to perform k, integration. From eq.(44)

1 1

-k A= -irK(k - A) + PV. ' (75)

which represents Aia as a sum of two terms:

A PP""I") 2 2)2d3k2'3 IF(k2'3)fd k1) x
2]f 2 (2 )2dkf 1 f4
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x jA(ko + pm + q,IksO +pm) x

X I3He(ko + p ~n; -ko + 2' 3 - Pm! 2; - 2 3 - pm! 2 ), (76)

where ko = (k 1 , D0) and

Al(P.v.) _ P.V. dkz d 2k d3 k2'3 IW (k2'3 ) fiff(k-) X
a2 27 kr - ,(27)2 "zk + 0o

x j'(k+pm+q,k + pm) x

X qI3He(k +Pm - k 2 ' 3 - pm/2 -k 2 '3 - Pm/ 2 )- (77)

In its turn each of these terms splits into two terms as we use eq.(41) for continuum

wave function T(1(k2'3):

Alapole'a o = i }r d2 ki f f (kI) - j'(ko + Pm + q, ko0 + pm) x

X T3He(k + pm; -k + krs - Pm/ 2 ; krs - Pm / 2 ), (78)

Aia0.v., ) F P.V. dkz d2ki ff f(kl) x
-k z 2 - z -+ p

x j'(k+pm+q,k+pm) x

X 43He(k + Pm k + krs - Pm! 2; -krs - Pm! 2 ), (79)

A)2_ off shell, a(k

la (23w)2 - k2 - 2E2 (27)2 k ,3 ks__i

x fff (k1)j"'(ko +pm+ q, k + pm) X

X T3He(k +pm;-kA + k2' 3 - pm/2; -k2' 3 - pm/2), (80)

and

AII(Pvs) F dk r d2 k1  k offshella(krs, 2 '32 1 27r 1w7r k 2 - k2 _ Z2'3
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fdi f f(kI)
x - z k ) - j (k +} pin+ q, k + pm) X

X 'J3He(k + pm; -k + k2' 3 - pm/2; -k2' 3 - pm! 2 ). (81)

For the last two terms we can present d3 k2 '3 = 1/2lk 2'3Idk!,3 dQ21 3 and proceed

simmilar to what we did for IA pair distortion amplitude A"s (see eqs.(45)-(48)). As

before, keeping pole term only and defining k'rs = krsl (k2' 3/ k 2 '3| ) we get

A"(pole's-pole) - Z j d2 kj dQ2'3 on shell, a i
Ala ~ 2 J 27r)2 4 NN ( rs, krs) X

x fiff (kI)j(k0 +pm+qko +pm) x

X X"3He(ko + pm; -ko + k', 3 - pm/2; -k2' 3 - pm/2), (82)

4P'.~s-pole) = F J dkz d2 k 1 dQ2'3 on shell, a( rX

x f-ff(kI) .j"(k + pm+q,k pm) X

X 'I3He(k + pm; -k + k', 3 - pm/ 2; -k' 3 - pm/ 2 ). (83)

To complete the calculation of single rescattering amplitude one should calculate also

the amplitude Agb corresponding to the diagram of Figure 11(b), where the leading

nucleon rescatters second spectator nucleon. To do this we need to interchange the

momenta of nucleons "2" and "3" in the eqs.(76), (77), (82), and (83). For the sake of

brevity, however, we will do it in initial (unsimplified) expression for full Aa, given by

eq.(74), where we interchange second and third arguments of the 3He wave function

as well as replace everywhere p'2 -+ p' and p2 +4 p3. This will introduce variable k 3'2

which is handy to replace by k3' 2 = -k 2 '3 . We then can merge both integrals for A'a
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and A"b chosing notation d 3 k 3 rather than d 3k 2/ 3 or d3 k 2 3' for integration variable

corresponding to the distortion of spectators. Our final result is:

Al = Ala+ A b -  2 3 d3k' T()(k 2 3)in(k + pm+qk + pm) X

x 1-kz + A ie e(k +P m k+k 2 3  pm/2;k 3 - pm/2)+

+ fdiffk i) e(k + pm; k- pm/2; -k - k- pm/2)l. (84)
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7.3 Double Rescattering Amplitudes

This section is concerned with the double rescattering amplitude. The diagrams

of Fig.12(a) and 12(b) describe the process where the fast (p f) knocked out nucleon

rescatters sequentially off both spectator nucleons. The general expression with

suppressed spinors for the amplitude corresponding to the diagram in Fig. 12(a) is

given by n = 2 term of eq.(23) as follows:

q7
ZZ/Y N FNN FNN Pf

(a)

S 1 IN NNN NN S

FNF

Xe r NNN rNN S

Figure 12: Double Rescattering Diagrams.f+

AL = depdap~d p( p (2 p3 4 3 S4 (p1 + p2 + p3 - P3Be) X

4 , rNN p2, p3) FNN p3 - p3)
x 6(p'+ps- r - ps -D(p2)D(p3) D(pi + q +p2 +p2)

FN -2 p 2) F p 3HeNNN(p1,p2,p3) (85)
D(pi + q) y N D(pi)D(p2)D(p3 ) '

Contrary to the single rescattering case, before their interaction in IjNN vertex both

spectators underwent collision with the leading nucleon and therefore they are indis-
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tinguishable. The factor 1/[n!(A - n - 1)!] = 1/2 already canceled here to prevent

double counting while considering contribution of Fig.12(a) diagram. 4-dimensional

delta-function integrations get rid of d4p 1, d4p2 integrals and also result to energy-

momentum conservation relations

Pi = P3He -P2 - P3, p2 Pr + Ps - p3 (86)

"Minus" sign convention used to define propagators D helps us to calculate the

sign of the amplitude - there are seven D(p)s, so sign is going to be (-)' = -1.

Rewriting eq. (85) with explicit spinor dependence we have

= J -d4p3 d 4p 2 d 4 p 3 _ _NN p2 , p3 ) 2 +_3_ +
Ala = i(27r)4 (27 )4 Z(27)4 '2su~ru~ 2 _ m2+ i '3 - m2 +

F( ) (p2 - )(3i 3 + ) 2 ~P

(P i +q+p 2 -p')
2 - m 2  + i

(p1+q)2 -)-m2+i E * _245

[ $N(2 + m2) [+1 + m] 3He[p m

X [p 2 +-r] -[i + m]rn F3HeNNN(P1, P2, P3) X3 He (87)
P22 2 -n +ij, pi -rn 2 -}- ie

Next step is to neglect off-shell effects in the nucleons' spinors and get advantage

of the closure expansion ( eq. (27) ) which yields to the following:

dep' dp3 d p2 dp d
3p3

Ala s i(27r) 4 i(27) 4 i(27)4'(Psii(Pr)U(Pf)X

x xNN p2,p3 ' p2 p3 3 X
(p2 - m 2 + i-)(p12 - m 2 ± iE)

FNN(p3 -p3) -u(p1 + q+p 2 -p2)u(pi +P2 -p2 +q)
(pi+ q+p 2 -p2) 2 - m2 + iE

FN 92 - P2) -u(p + q)(p 1 + q) _riL_3)_(_3

(p1 + q)2 _ m2 + E y*N -- m 2 ±F iX

X u(p 2 -(p2) U(Pi)(Pi) - 3HeNNN(Pl ,P2, P3) XHe (88)
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where, as before, we have sum over all intermidiate spin-states.

Fixing nucleons with 4-momenta p2, P3 and p' to be on their mass-shell we

perform time-component integrations which are equivalent to the substitutions

/o dp°, 2,3  27ri 27i
] _ - (89)

-O p3',2,3 - m2 + ZE 2 P3,2,3 2  m 2  2m

Appropriately arranging Dirac spinors in eq.(88) we present the resulting equa-

tion as

1 d3p' d3p 2 d3p 3 u (pr) (ps)TNN (PP3 P) u(P)3
(2m) 3 f(2) 3 (3 ) (27) 3  p22 - m + i

spf)U(p'3)FNN('3 - p 3 )uz(p1 + q + P2 - p2)u(p 3)
(P +q+p 2 -p) 2 - m 2 +i

u(p1 + q +p2 - p2)6(p2)FNN(p2 - p 2 )u(p1 + q)u(p 2)
X X(P1 + q)2 - m2 + iE

X 'Eu(pl + q)F'$. U(pI) ui(p3)u(P2)u(P1)F3HeNNN(P1, P2,P3) X3He (90)

pi - m 2 + iE

After "0" component integrations are performed diagram of Fig. 12(a) becomes

a non-covariant time ordered diagram (from left to right), where a virtual photon is

absorbed by the target nucleon, produced fast nucleon propagates further, scatters off

P2 spectator and then p3 one. Reduction theorem prevents it to interact with, let say,

p2 particle - the corresponding amplitude is exactly zero. Thus, Double Rescattering

amplitude accounts for the most general type of the final state interactions of the

knocked out nucleon.

Similar to the previous sections we implement nonrelativistic reduction of the F

verteces and introduce electromagnetic current ju using eqs.(34), (36) and (37). We
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obtain

Aa = F d3 p' d3p2 d 3 Q() P2 p3 )X
(2m) 2  (27r) 3 (27) 3  3krs 2

Sbf ff(p3 - P3)1

(p1 + q + P2 - p2 )
2 - m 2 + iX

saf ff 5(p2 - P2) 1.

X S(f fq2 m2)1 i' I(p + q, pi) - T3He(p1; P2; p3), (91)
(Pi + q)2 - m2 + zw

where sb and sa are total invariant energies for nucleons coupling in verteces FAN

and FNN.

We now turn our attention to the propagators in eq.(91). We already dealt with

the last one of them in the previous section. It's given by eq.(66)

-D(p1 + q) = 2qv [pmz - piz + Ao + iE] . (92)

For the former one we can use both conservation relations of eq.(86) and obtain

-D(pi+q+p 2 -p2) = (P3He-p 3 +q-pr-ps+p) -m2+i (93)

Observing that due to the kinematic condition for quasielastic scattering we have

(q + P3He - Pr - ps) 2  P2 m 2 eq.(93) transforms to

-D(p 1 + q+ p2 - p2) = 2(p3 - p 3 )(P3 He + q - pr - Ps) + (p3 - p3) 2 ±i _

= 2qv (E - E3) - (p3z p3) + iE -
qv

+ ±(2(p3 -p3)(P3He - pr -ps) + (p3 -) (94)

or, keeping only the terms which are not vanishing for large qv while XBj kept fixed

we arrive at

-D(pi + q+ p2 -p2) ~ 2q [3 - (p3z - p3 z) +ie], (95)
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where

O3 = q° (E' - E3). (96)
qv

Based on the kinematic conditions of eq.(2) one can approximate s"a Sb a

2 mpfz ~ 2mq. Canceling sa/(2qvm) e 1 and sb/(2qm) t 1 one gets

AM = F d3p' d3p 2 d3p 3 4 ,(+)(P2 - P3 . if f (P3 P3)1 X
a 4 (27)3 (27r)3 (27r) 3  " 23 -(P3_- Pz) + i

f i f f (p2 - P2 ) 1.
X -P . -(p, + q, pi) - T3He(PI; 2; P3)- (97)

Pmz - Piz +ZN0 +i&

It is convinient to rewrite variables of integration in eq. (97) according to the

following definitions:

k3 = p 3 - p3 (98)

k2 = P 2 - P2 (99)

k2'3' = (P'2 - P3)/2 - Pm/2 - P'3. (100)

(for the last one we replaced p'2 as given by eq.(86) and then used the expression for

the missing momentum pm = pf - q = -p, - Ps).

Old 3-dimensional momenta which were describing intermediate states of the

3He break down reaction are connected to the new variables via set of relations

p'3  = -k 2'3' - Pm/2, (101)

p' 2 = 2k 2 '3' + p'3 = k2'3' - Pm/2, (102)

P3 = P'3 - k3 = -k 2 '3' - k3 - Pm/2, (103)

P2 = P' k2 - = k2'3 - k2 - Pm/2, (104)

Pi = -P 2 - P 3  k2 + k3 + pm. (105)
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With the help of this set eq.(97) reads as

A _a F d3k2'3 ' d'k 2 dok3 P (k 2 3 ) fiff(k3L)
2a 4 I(27r)3 (27r) 3  -k3  A3  +

Xfgf(k21) . j(k 2 + 3 +pm+q,k 2 +k 3 +pm) X
-k2z - ksz + A0 + 2E

X 'I3He(k2 + k3 + pm; -k 2 + k2'3 ' - pm/2; -k 2 '3' 3 - pm/2). (106)

Similar to what we did in order to obtain eq. (42) for Impulse Approximation

amplitude and then eq.(78) for Single Rescattering amplitude we can integrate over

the plane wave part of the continuum wave function 1 kr, (k 2'3') ( the full form of

which is given by eq.(41) ). This reduces eq.(106) to

2(0 F dk 2zd2 k21 dk d2 1  ff f(k 31)
2a = - (2z)k1 x4 (27r) -ksz +,A3 + 2E

f ff(k2i)x .kzkz+ 0Z -39 (k2+ks+pm-}q,k2+k3+pm) X
-kz- k3 z + A0 + ze

X 4'3He(k2 + k3 + pm; -k 2 + krs - pm/2 -krs - k3 - pm/ 2 ). (107)

We will not consider "s" term of the Double Rescattering amplitude, which is

corresponding to the diverging spherical wave part of the 'I', since nine-fold inte-

gration makes it contribution negligible. Meanwhile, using relations similar to eq. (75)

we can simplify eq.(107) a bit further. Keeping pole term only we first integrate over

dk 32, and then over dk 2z again keeping pole term only. The result reads

Aapole, 0) F fd 2 k2 1 d2 k3 1 fi a(k3I)fdif(k2I) XA~ = 4l 87 f dalkifsf (k)

X j (k2( A) + k3(3) + pm + q, k2(A_) + k3(03) +pm) X

X q3He(k2(o,0 3) +k3(A) + Pm; k2( _) + kr; -k 3(3) + ks), (108)
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where k2( ) (k21 , AO - A 3) and k3(o3) = (k31 , 0 3 ). We have also replaced

krs - Pm/ 2 = (kr - ks)/2 + (kr + ks)/2 = kr, (109)

-krs - Pm/ 2 = (-kr + ks)/2 + (kr + ks)/2 = ks. (110)

To complete the calculation of double rescattering amplitude one should calculate

also the amplitude Ab corresponding to the diagram of Figure 12(b). To do this we

need interchange second and third arguments of the 3He wave function as well as

replace everywhere p'2 H p3 and p2 H p3 in the eqs.(108). To preserve consistency,

however, let us present the final result in the more general form, corresponding to

eq. (106).

A2 = Ala + Alb ZFd3 2 3 k23 d3k 3 ()(k2'3) x
2b 4 J( 2 ) 3 (27T) 3

~ ff f(k 3 ) fiff(k 2 1)[-k3z + z 3 + Z -k 2 z - k3z + AO + iE

f ff(k 2 1) fiff(k 31)

-k 2z + A2 +iE - k2z - k3z + AO + iE

x j"(k2 +k 3 +pm+q,k 2 +k 3 +pm) x

X '3He(k 2 + k 3 + pm; -k 2 + k 2 '3 - pm/2; -k 2'' k3 - pm/2), (111)

where A 2 = (E2 - E 2 ).

Though intuitively clear, it's still worth to point out that contrary to single

rescattering case p2 +- p3, p2 - p3 together with interchange of second and third

arguments of the 3 He wave function leave X1 3He invariant. Indeed since k3 '2' -k2'3

-k 2 + k 2 ,3 - Pm/ 2 ; -k 2 '3 - k3 - pm/2 -+ -k 3 '2 , - k2 - pm/2; -k 3 + k3 '2' - pm/2 =

-k 2 + k 2 '3 - pm/2; -k 2'y3 - k3 - P m / 2 . (112)
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8 Differential Cross Section

8.1 General Formula

The (un-integrated) differential cross-section is equal to:

1
d1 2uo = (27) 46 4 (ke + P3HHe - k' - Pf - P - Ps) X

4j3He

X 1 J M fz2 dk' d3pf d3pr daps (113)
4 nucleons spins (27) 32E' (27r)32Ef (27r) 3 2Er (27r) 3 2E 5 '

where j3He - (keP3He) 2 - mM2He/3. The factor 1/3 in the flux factor j3He reflects

the fact that our 3 He wave function is normalized to one rather that to the number

of nucleons, three.

In eq.(113) we sum over final and average over initial spins. The factor 1/4 comes

from the averaging over initial spins of the electron and the nucleus. Since one of

the spectator nucleons (for example ps) is not observed, one eliminates this degree

of freedom by integrating over d3ps. Thus integrated differential cross section is

1
d'a = 1 2)(Ee + M3He - E'- EfEr - Es) x

4 J3He
1 d3k' dapf d3 pr 1

X nucleons spins (27r) 32E' (27r) 32Ef (27r) 32Er (27r) 32E' (114)

Delta-function integration provides us with

ps = ke - k' - Pf -Pr. (115)

The transition matrix Mfi represents the convolution of the electron and nuclear

currents, in which the nuclear current given by sum of the PWIA term ( eq. (42) ), pair
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distortion amplitude ( eq.(43) ), as well as single ( eq.(84) ) and double rescattering

amplitudes ( eq.(111) ):

1
Mf = -47 2 j e- (Ao + AS + Ai + Az) . (116)

q

Let us consider now electromagnetic amplitude j . According to eq.(57) the char-

200

s
0

180

1 60 diagonal

CHEX
140

O pn-pn world data

1 20 
0 np-np world data

A pn-np data

100

80

60

20

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5

s(GeV
2
)

Figure 13: Total cross section for proton-neutron charge-exchange scattering (dashed

line) compared with diagonal scattering total cross section.

acteristic average momenta transferred during rescattering are a 1/B. This fact

together with the kinematic restrictions of eq.(2) allows us to assume q p,, ki, k2.

Due to the high momentum transfer it is also safe to assume that charge-exchange
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effects are negligible during reinteractions of the leading nucleon. For laboratory mo-

menta starting from 1 GeV/c total cross section of charge-exchange NN interactions

drops rapidly, as it is depicted at the Figure 13.

Therefore one can factorize electromagnetic currents in eq.(84) and eq.(111) ap-

proximating

j"(k +pm +q,k + pm) j I (pm + q, pm) . (117)
jl'(k2 +k 3 +pm+q,k 2 +k 3 +pm)

Recalling that j"(pm + q, pm) a (pf, Sf)Jj*NU(Pm, s) we may present transition

matrix Mfi as follows:

,M i = 47ra 2 Ej, up(P Sf)r*NU(pm S) F (27r)3 P3He(Pm, S Pr Ps)Mf 4rvq Fs
f3/fshell (krsa k23 )

+ 47r dak 2 3  s s 2 2 '3He(Pm, s; k23 - pm/2; -k 2 3 - pm/2) -

f -j kd-jk

(21 d d3k 3 IF (k 3) X

X -f i ) q 3Hek + Pm, s -k + 3 - Pm 2 ; -k 3 - pm /2 ) +
- k z + A o + k e 

m >2 

3J

+ fk (kI) I3He(k + Pm, s; k23 - pm/2; -k - - pm /2) +
-k + Ao + is

! dok 2'3' d3 k2 d3 k Vf(+)k 2 3

4 (27r) 3 (27T) 3  3 k 2

X [fff(k 31) fdiff(k21) +
1-k 3 z + A 3 + iE -k 2z - k3 z + A0 + ik

+ fdif f(k21) fiff(k3 1) 1
-k 2z + A 2 + i -k 2z - k3z + A0 + Z

X XI3H e (k 2 + k 3 +Pm, s; -k 2 + k 2'3 ' - pm/2; - 2'3' - k 3 - Pm/2) (118)

In order to find JMfi12 from eq.(118) and it's average over spin indices let us

consider first the electromagnetic matrix elements of interacting electron and nucleon
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averaged over corresponding spin variables. Namely, one can write

2 j e)(j e))* E a(pf, Sf)y*NU(Pm, S)U(Pm, s')F *NU(Pf Sf)
sese' sf

l E u(pf, Sf)lj*NU(Pm1 S)U(Pm, S')Fy*NU(Pf, Sf) (119)
sf

where 1, = 4((ke),(k')v + (ke)v(k'), - ggvke -k') is the usual lepton tensor.

It was explicitly shown in [14] that only terms with s = s' survive in eq. (119)

upon contraction with the symmetric tensor l,. Therefore we can write

lv 5 g(pj, Sf)Jj*NU(Pm, s)(Pm S)*NU(Pf , s)
sf

l v E U(pf, Sf)Ij*NU(Pm, S)(Pm, S)r*NU(Pf, Sf )s,s'
sf

11 w"SS, , (120)

where wPV is the spin-averaged hadronic tensor which is discussed in the Appendix

C.

Using Eqs. (119) and (120) for the squared absolute value of transition matrix

elements given by eq. (118) we can rewrite eq. (114) for the differential cross section

as follows

d'a~ - 1 (27) 4 j(Ee + M3He - E' - Ef - Er - ES) x
d 3 k'd 3pfd 3pr 4 j3He

x -(47ra -)21 " S 2 F (27)3 T3He (PM; pr; PS) +
4 q 2 nucleons spins

+ 47 d3k23 N2sel rs 1 23) - W3He (pm; k23 ~ pm/2; -k23 - pm/2) -

k 23 -k -iE

1 dr 3 d3 k'3 T (k'3) x
2 23

[ f f (kI) (k + p k + k 3 - 2 ; -k' pm/2) +
X -k, + Ao + i4 '3Hek 23-
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Tf'3(1) 43e(k + Pm; k- Pm/2 -k - k'- pm/ 2 ) +
+ -k + Jo +

+ -f dk d3 k2
4](2r) (27r)3 d3 )

X fdf f (k31) fdff(k21) 1
--ksz + A3 + ZE -k2z - k3z + Do + 2E

+ df 5(k21) fdif f(k3i) X

-k 2z + A2 + iE -k 2z - k3z + Do + iE

X '3He(k2 + k3 + pm; -k 2 + k2/3' - pm/2; -k 2 ,3 - k3 - pm/2) X

1 1 1 1

(27r) 32E' (27r) 32Ef (27r) 32Er (27r) 32Ej (121)

8.2 Nuclear Decay Function

Generalizing the spectral function formalism of the semi-inclusive (e, e'N) reaction

for the exclusive reaction of eq.(1) we introduce the nuclear Decay function D which

in the IA framework characterizes the joint probability to find a nucleon in the nuclear

ground state function with momentum pm (and missing energy Em) and the recoil

nucleon with momentum pr in the decay product of residual A - 1 nucleus. Within

IA the cross section of reaction eq.(1) can be represented as follows:

d3 kd3 Pd 3P = K - ZeN(pf, ke, k') .DIA(Pm, Em, pr), (122)
e~' pf pda3H

where Em = Tr + TS + 10He - p /4m 2 . The factor UeN(ke, Vpf) is defined as

F 1 21 u 1 1 1 1
UeN(ke, e, pf) = 4 N (42a) 4 v (27) 32E' (27r) 32Ef (27r) 32Er (27r) 32E1

(123)

If we keep in eq.(121) only IA term given by eq.(40) then DIA is equal to

DIA (pm, Em, pr) = 2 Jd3k 2 3 k(k 2 3 ,s 2 , s3 ) x
SA,Sm,Sr-Ss S2,S3
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X I3He(Pm, sm; k2 3 - Pm/2, s2; -k 2 3 - Pm/2, s3) X

X 6(Em - Tr - TS - JeHe + pm/4m 2). (124)

The Decay function as it defined in eq.(124) is normalized as follows

d3prDIA(Pm, Em, Pr) = S(Em, pm), (125)

J dEmd3PmS(Em, pm) = 1. (126)

We can generalize the definition of the Decay function to include final state

interactions. Such a generalization usually meaningful within approximation in

which electromagnetic current is factorized from rescattering integrals in eq. (84) and

eq.(111) (c.f. eq.(117)). This factorization results to the formula similar to eq.(122)

with DIA replaced by distorted wave impulse approximation (DWIA) Decay function

DDWIA. Based on eqs.(42), (43), (84) and (111) one obtains:

DDWIA(Q 2 , q, Pm, Em, Pr) = 1 Z d3k 2 3 K kr(k 2 3 , s 2 , s 3 ) X

SA,Sm,Sr,Ss S2,S3

X3He (Pm, sm; k2 3  Pm/ 2 , S2; -k 23 - Pm/ 2, s3) + S 2 d3 k '3 X

Si,s2,s3 2 r

-kz + A0 + iE232~4'~~k~) - ~+zo +i 'I 3 Hek + Pmk± 3 Pm 2 -k 3 -pEm / 2

1 d3k2'3' d3k2 d3 k34'k)(k2 '3 ') fTff(k31) fdiff(k2I)
4 (27r) 3 (27r) 3  rs -k 3 z + A 3 +i -k 2 z - k3 Az + 0 + i

fif f(k 21) fiff(k31)
-k2 + A 2 + i -k 2z - k32 + AO + iE X

X 43He(k 2 + k 3 + pm; -k 2 + k 2'3' - pm/ 2 ; -k 2 '3 ' - k3 - Pm/2) x

X 6(Em - Tr - - |6He|+ pm/4m 2). (127)
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9 Numerical Estimates

9.1 Subroutine eheppn

In this section we present numerical estimates of the calculations carried out in

the previous sections. The Fortran90 external subroutine eheppn written by Misak

Sargsian for calculation of the PWIA cross section for the 3He(e, e'NN)N reaction

has been significantly upgraded in order to account for Final State Interaction effects,

including spectator pair distortion, single rescattering of the knocked out nucleon

and double rescattering. Transition matrix elements were programmed based on the

formula of eq.(118). For I3He we have used exact Faddeev 3 He wave function from

the Bochum group [15] which takes into account 102 components of 3He WF. This

state of the art solution uses different realistic NN and NNN potentials. One of the

available NN potentials is Argonne v18, which has a dominant charge-independent

piece plus additional charge-dependent and charge-symmetry-breaking terms (total

of 18 terms), including a complete electromagnetic interaction. Another potential is

the high-precision, charge-dependent Bonn nucleon-nucleon potential (CD-Bonn). In

addition to these, the Bochum group also uses Urbana IX three-nucleon interactions.

The description of the general approach to the exact solution of three-nucleon bound

systems can be found in the Appendix A.

The spectator pair soft scattering amplitude, which is given by eq. (49), has been

computed using the subroutine NNSOLA, courtesy of Virginia Tech Partial-Wave

Analysis Group (SAID). The parametrization of hard rescattering amplitudes fdiff
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is given by eq.(57). All the relevant parameters have been deduced from the world

data for NN scatterings (see Appendix D for Fortran code).

After delta function integration of the eq.(121) we left with the eight-fold cross

section differential in {Ee, Qe, Ipf j, Qf, Qr} where Ee, Qe are the energy and solid angel

of the outgoing electron, pf and Qf are the momentum and solid angle of the struck

nucleon, and Q, is the solid angle of the second nucleon. From these 8 variables

we can calculate remaining kinematical quantities. The cross section is calculated

separately for each combination of indexes (f, r, s) = (ppn), (pnp), (npp).

9.2 Comparison with Experiment

To date, there have been only few measurements of (e, e'np) or (e, e'pp) two nu-

cleon knockouts from nuclei. We compare our three-body break up calculations with

the data of 3He(e, e'pp)n experiment performed in Hall B at the Thomas Jefferson

National Accelerator Facility by Niyazov et al. [17], [16]. These measurements were

part of the "e2" run group that took data in Spring 1999 and they represent the first

measurements of two nucleon momentum distributions in 3 He .

Reference [17] reports 2.2 GeV and 4.4 GeV electron scattering measurements

from 3He using a 100% duty factor beam at currents between 5 and 10 nA incident

on a 4.1-cm long liquid 3He target. Almost all outgoing charged particles have been

detected in the Jefferson Lab CLAS (CEBAF Large Acceptance Spectrometer), a

nearly 47r magnetic spectrometer. Momentum coverage of CLAS extends down to

0.25 GeV/c for protons over a polar angular range of 80 < 0 < 140 while spanning
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nearly 80% of the azimuth. Software fiducial cuts exclude regions of non-uniform

detector response, while acceptance and tracking efficiencies are estimated using

GSIM, the CLAS GEANT Monte-Carlo simulation. It is important to point out

that in our Monte-Carlo simulations we have applied only kinematical acceptances

of the experiment. No detector acceptances were taken into account.

The experiment kinematics was restricted by the following requirements:

" pn, > 250 MeV/c.

Since the threshold for proton detection is pp = 250 MeV/c cut on the neutron

momentum p,, > 250MeV/c has been applied. This effectively suppresses the

events where two protons share the energy transfer due to the hard final state

rescattering and the neutron is low momentum spectator.

" Tr,s < qo * 0.2.

Since experiment was dedicated to deduce spectator correlated pairs (which we

call r and s nucleons) T,,,s qo * 0.2 cuts have been applied, where T stays

for kinetic energy and qo for the energy transfer. This is corresponding to the

events where r and s nucleons each have less than 20% of the energy transfer

and leading f nucleon has the remainder. The opening angle of the spectators

after these cuts shows a peak at 180 degrees, which is a strong indication of

correlated NN pairs.

* pf < 0.3 GeV/c.

In order to reduce further the effects of final state rescattering cut on the
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perpendicular component (relative to q) of the struck nucleon has been applied.

Almost all the resulting pairs are now back-to-back.

After all these cuts we have predominantly spectator pairs and measured mo-

mentum distributions reflect the pair's initial momentum distribution in the nucleus.

In the Figures 14 and 16 we compare our calculations with the data for relative

prel and total ptot momentum distributions of the pn and pp pairs for beam energies

2.2GeV and 4.4GeV. For Ee = 2.2GeV 4-momentum transfer Q 2 concentrated in the

range 0.5 < Q2 < 1.0 GeV 2. For Ee = 4.4GeV the range was 1.0 < Q2 < 2.0 GeV 2.

As usually, we define

prel = (Pr - Ps1/ 2 , (128)

ptot = lPr +Ps . (129)

Short range correlated pairs must have large relative momentum and small total

momentum.

All the quantities and cross sections are given in the lab frame. Cross sections

on the plots given in the arbitrary units.

For experimental data the relative momentum distribution rises rapidly starting

at about 0.25 GeV/c (limited by the minimum nucleon momenta of 0.25 GeV/c),

peaks at about 0.35 GeV/c, and has a tail extending to about 0.7 GeV/c. The total

momentum distribution rises rapidly from 0, peaks at about 0.25 GeV/c, and falls

rapidly. The momentum distributions have an upper limit determined by the cut

Tr,s < 0.2 * q0 .
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Our Monte-Carlo simulations produce reasonable qualitative agreement with the

data for pn pairs (see Figures 14 a) and b) ). PWIA amplitude calculations repre-

sented by the solid histograms, PWIA+pair distortion - by the dashed line. The

filled histograms include in addition the effects of single rescatterings. Double rescat-

tering contribution in this kinematics estimated to be about 10%. This contribution

is not depicted on the current plots. For pn pairs the normalization uncertainties

(systematic uncertainties) of the data are 16% for 2.2 GeV and 22% for 4.4 GeV (see

[17]).

For pp pairs systematic uncertainties are 16% for 2.2 GeV data and 34% for

4.4 GeV. We observe that pp situation looks less satisfactory. One should bear in

mind that we didn't reconstruct our events by CLAS event reconstruction package. It

is also should be pointed out that the available statistics of experimental data after all

the cuts are not very high. For 4.4GeV there are only about 340 pn pairs and 110 pp

pairs (and ten times more events for 2.2GeV). For pp relative momentum distribution

our peak shifted towards smaller momenta. However independent calculations by J.-

M. Laget presented in [16] (see Figure 15) favor our distribution rather than data. For

pp total momentum our calculations show discrepancy both with Laget calculations

and available data. Same Hall B group took more measurements during new 2001

run, and we are looking forward for additional data.
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Figure 14: Cross section (with arbitrary normalization) vs relative momentum and

total momentum of NN spectator pairs at 2.2 GeV. Points = data, solid histograms

= PWIA amplitude calculations, dashed histograms = PWIA+pair distortion, filled

histograms = PWIA+pair distortion+single rescattering. a) pn pair relative momen-

tum b) pn total momentum c) pp relative momentum d) pp total momentum.
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pairs at 2.2GeV (Ref. [16]). Points = data, solid histogram = J.-M. Laget one-

body calculations, dashed histogram = Laget's full calculations (diagrams with no

spectator nucleons). a) pn pair relative momentum b) pn total momentum c) pp

relative momentum d) pp total momentum.
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Figure 16: Cross section (with arbitrary normalization) vs relative momentum and

total momentum of NN spectator pairs at 4.4 GeV. Points = data, solid histograms

= PWIA amplitude calculations, dashed histograms = PWIA+pair distortion, filled

histograms = PWIA+pair distortion+single rescattering. a) pn pair relative momen-

tum b) pn total momentum c) pp relative momentum d) pp total momentum.
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10 Conclusions

We have developed a theory of high-energy exclusive electrodisintegration of

three nucleon system on the example of 3 He(e, e'NN)N reaction. Derivations done

in kinematics where one nucleon in final state can be clearly identified as a knocked-

out nucleon that carries practically whole momentum of the virtual photon.

The increase of transferred energies provides a qualitative new regime in electro-

nuclear reactions. The possibility to suppress the long-range phenomena in these

reactions opens a completely new window in the study of microscopic properties of

nuclear matter at small distances.

The theoretical approach which allows us to do consistent calculation is based on

the fact that in the high energy regime new small parameters (such as q) emerge.

We demonstrate how the existence of these parameters connected to the reduction

theorem which allows one to group potentially infinite number of rescattering ampli-

tudes into a finite number covariant amplitudes.

Furthermore we identify the set of effective Feynman diagram rules which allows

one to calculate these covariant amplitudes. This framework we call Generalized

Eikonal Approximation (GEA). GEA is a covariant theory in which scattering am-

plitudes are represented as a sum of the diagrams corresponding to the n'th order

rescattering of the knocked-out nucleon with residual nucleons in the target.

Applying these effective rules to the reaction under consideration we consequently

calculate PWIA scattering amplitude, pair distortion amplitude, struck nucleon sin-
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gle rescattering amplitude and double rescattering amplitude. Calculations were

carried out in details and final results are presented in a form suitable for program-

ming and numerical calculations. Manifestly covariant nature of Feynman diagrams

allowed us to preserve both the relativistic dynamics and kinematics of the scatter-

ing while identifying the low momentum nuclear part of the amplitude with non-

relativistic nuclear wave function. We have obtained the analytical expression for

differential cross section of e+ 3He -+ e'+p+p+n reaction. Numerical calculation of

residual system's total and relative momentum distribution were performed which

show reasonable agreement with available experimental data for pn pairs. The pp

pairs situation looks less satisfactory. More data needed to draw a certain conclusion.

In this thesis, the theoretical framework of Generalized Eikonal Approximation,

which was applied previously only for the case of two-body (deuteron) high energy

break up reactions, has been practically implemented and shown to provide a valid

description for more complex A = 3 systems.
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APPENDIX A. Three-nucleon bound systems

The system which consists of three nucleons received special attention in the

nuclear theory. First of all in this case we are dealing with the next simplest bound

systems after deutron, namely 3H and 3He nuclei. Here is where the three-particle

forces may exhibit themselves most clearly. It is therefore of evident importance to

use what is known about two-nucleon forces in order to ascertain whether or not

that information is adequate to account for the observed properties of A = 3 system.

Secondly, these systems can yield new data on the two-nucleon interactions itself.

While considering scattering of two nucleons, third (spectator) particle may take

up or impart enough energy to the two-nucleon subsystem to preserve the energy

balance. So sum of initial energies of scatterers now may be different from the sum

of their final energies. This off-energy-shell scatterings are important ingredients

in the dynamics of nuclei other than deutron. In the two particle scatterings bound

states cannot occur - we have as many scattering solutions as unperturbed solutions.

However, if there are three or more particles participating in the process then it may

well happen that two or more of them join up in the bound state. One of the most

fundamental routes which was developed to handle three-particles problems in non-

relativistic quantum mechanics provided by method of Fadde6v equations which we

are going to discuss in this chapter.

Let us consider three interacting particles, labeled 1, 2 and 3. Interaction

between particles 1 and 2 we denote V3 , between 2 and 3 V1 , and between 1 and 3
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- V2. To facilitate derivation of Fadde6v equations let us consider the specific case

in which particle 2 scatters on particles 1 and 3. The Lippman-Schwinger equation

for the transition operator T is:

T V +V(E - Ho +ie)~1T. (A.1)

Interaction V of incident particle 2 with the scatterers 1 and 3 is equal to

V = V + V3, (A.2)

and the unperturbed Hamiltonian Ho therefore can be expressed as

Ho = V2 + K, (A.3)

where K is the total kinetic energy of the three particles

K = + + + (A.4)
2m 1  2m 2  2m 3

The very small positive adiabatic switching factor E is introduced in order to

avoid problems due to singularities which would otherwise be present when E is

equal to one of the egenvalues of HO and this is almost always the case for scattering

problems.

Eq. (A.1) thus can be rewrited as

T = (Vi + V 3) + (V + V3)G 2T, (A.5)

where

G2 = (E - K - V2 + ki) 1. (A.6)
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Then

{1 - (V1 + V3)G 2}T = (Vi + V3), (A.7)

and

T = {1 - (V1 + V3)G2} (V + V3). (A.8)

Let us now extract from G2 the Green's function for the free particles G, defined

as

G = (E - K + iE)- 1. (A.9)

With this definition we have

G 2 = [G-1 -V2]-1 = [G- 1 -V2]-1G-1G =

= [G-1 -V2]-1(G-1 - V2 + V2 )G = (1+ [G-1 - V2]~1V2)G =

= (1 + G2V2 )G. (A.10)

Solving this for G2 we get

G2 - G2V2G = G2 [1 - V2G] = G, (A.11)

G2 = G[1 - V2G]- 1. (A.12)

In order to transform this further we first note that because G[1 - V2G] = G -

GV2G = [1 - GV2 G we can write the following identity

G[1 - V2G]~1 = [1 - GV2 -1G, (A.13)
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so eq.(A.12) may be replaced with :

G2 = [1 - GV2]-G. (A.14)

With this we now return to eq (A.8) and obtain a new form for transition operator

T:

T = {1 - (V + V3)[G-1 - V2] } (Vi + V3) =

{1 - (V1 + V3 )[1 - GV2]-'G}- (V + V3 ) =

G- 1[1 - GV2 - G(V+V 3)+G(V+V 3 )] x

3 -- 1

x 1 - G E V G(V + V3), (A.15)
. k=1 .

or

3 -1

T = (V+V 3)+(V 1+V 3) 1-G Vk G(V 1 +V 3). (A.16)

Let us define new quantities Ti by the means of equations

31 -1

Ti = V6ii + V[ 1 - G V GV, i, j = 1, 2, 3. (A.17)

Since we are considering particle 2 scatters on particles 1 and 3 we can represent

the corresponding transition operator T as a partial sum of Ti operators:

T = 7 Ti. (A.18)
i02
j? 2

Our goal is to obtain the set of coupled equations for operators Ti and to express

each one of them through others but not through itself. In order to do that we are
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going to transform eq.(A.17) by the following chain of identities:

S3 
3 ~ 3 -1

Ti = Vibij+{ 1-GZVH+GZVk}1 -G Bj GV =
l=1 k=1 c =1 .

3 -3 '-1

= V16+VGV1+VG (Vk 1-G ZV GV>=
k=1 . =1 .

3 ~3 ~-1

= Vij+±VG {E Vkskj+V [1-GTVj GVj , (A.19)
k=1 . c=1

but the quantity in braces is the same operator Ti we defined in eq.(A.17), therefore

we arrive at

3

Ti = Viij + V G 1 T . (A.20)
k=1

We can solve eq.(A.20) for operator Ti3

(1- VG)Tij = ViJ±+ViGZTkj, (A.21)
k:ci

3

Ti = (1 - G)-1Vij + (1 - VG)- 1 V E GikTkj, (A.22)
k=1

where we have introduced new operator Gik:

Gik = G(1 - Sik) = (E - K + i,)- 1(1 - 6ik). (A.23)

Our final step is to make one more definition:

ti = (1 - VIG)-1V = V(1 - GV )- 1 =

= (G(G-1 - V)) 1 = V(G-1 -V)-1(G-1 - V + V) =

V (1 + (G-1 - V)-1V) = V + V (G- 1 - V)-1V1, (A.24)

or

ti = V + V(E - K -V + iE)-1V. (A.25)
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One can show that so defined operator ti is the same transition operator T given

by eq.(A.1) for the case of two-particle scattering at energy E by particles j # i and

k ; i. Indeed, let us consider full Hamiltonian H = Ho + V, where unperturbed

Hamiltonian is now just a kinetic energy K of two interacting particles and V is the

coupling among them. Then eq.(A.1) might be transformed as

V 1 T = 1+ (E - (Ho + V) + V + i)-T, (A.26)

(E - H + V + iE)V-1 T = (E - H + V + iE) + T, (A.27)

(E - H + iE)V-1 T = (E - H + i) + V, (A.28)

T = V + V(E - H + iE)1 V, (A.29)

which is identical to eq.(A.25). Returning to eq. (A.22) and substituting new-introduced

operator ti we obtain one form of the famous Faddeev equations, namely

3

Ti = ti6i + tGikTkj, i, j = 1, 2, 3. (A.30)
k=1

As one can clearly see, this set of coupled equations is completely inhomogeneous.

In other words operator Ti does not appear on the right-hand side(Gik gives 0

when k = j). Compared to initial Lippman-Schwinger equation eq.(A.1) this is

significant improvement for three-particle problem. The kernels of corresponding

integral equations can be shown to be compact for a broad range of potentials. The

Faddeev equations are therefore an adequate starting point for a practicable solution

to the problem of three interacting nucleons.
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APPENDIX B. Scattering amplitude in the

momentum space

Elastic scattering of two particles, just like any other two-body problem, can

be treated as a scattering of one particle with the reduced mass in the field U(r)

of a fixed force center. Generally speaking, this field may have arbitrary spatial

symmetry, the special case of central field we will denote as U(r). Very far from

interaction region the wave function of a scattered particle represents a mixture of a

plane wave and a diverging spherical wave:

(r) eikrnn' + f(n, n eikr, (B.1)

where scattering amplitude f(n, n') depends on the directions of both incoming(n)

and outgoing(n') waves. Situation is much simpler in the case of centrally symmetric

fields U(r), where scattering amplitude only depends on the angle between n and

n'. For those fields we can replace f(n, n') = f(n - n') = f(O). Knowledge of f(O) is

sufficient for calculation of differential cross section:

d- = If ()1 2. (B.2)
dQ

Solution of time independent Shrddinger equation, which describes scattering in

the field U(r), given by supperposition of continuum wave functions corresponding

to motion of particle with known energy E = k 2 /2m and different values 1 of orbital

momenta:

(r)= i'(2l + 1)e"'Rkl(r)PI(cos 0), (B.3)
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where P are ordinary Legendre polynomials and 6G are phase shifts of functions

Rkl(r). Latter are the solutions of the radial Shrodinger equation:

I d (.2dr k) + k2 1a 1) - 2mU(r) Rkl = 0. (B.4)r dr dr r2

Using asymptotical form of Rkl (r) one can express scattering amplitude through

the phase shifts 6 l

fonshell(0) = 2 Z(21 + 1)(exp(2iS1 ) - 1)P(cos 0). (B.5)

The "on shell" tag should remind that this expansion is valid only for scattering

of unbound (on-mass-shell) particles, when the corresponding field U(r) is assumed

to be centrally symmetric. One can't use eq.(B.5) for bound (off shell) scatterers.

Instead of central fields let us consider arbitrary U(r) and deduce a general expression

which connects the scattering amplitude f (n, n') with the momentum space wave

functions q1(+) (q). The coordinate space Fourier-components of these functions in

asymptotic limit are given by eq.(B.1).

As usually, we define direct and inverse Fourier transformations as

I9k+) ()- +) (r)e-ZgdV (B.6)

and

= J +)(q)eir . (B.7)

Time independent Shr6dinger equation in the coordinate representation given by

1 A k)(r) + [U(r) - E],(+)(r) = 0. (B.8)
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In the momentum space one rewrites this equation as

q2 - E '+ +(q) + U(q - q') T(+) = 0, (B.9)

where U(q) is a Fourier-component of U(r):

U(q) = U(r)e-igrdV. (B.10)

Replacing last term in eq.(B.1) by function Xk(r), which is a diverging spherical

wave as r --+ oo, one has

k+)(r) = eikr + Xk(r). (B.11)

The corresponding Fourier-image of this equation has the form of

'k+)(q) = (27) 3 53(q - k) + xk(q). (B.12)

Plugging this in eq.(B.9) and replacing E = k2 /2m we get

(q2 - k2)63(q - k) + (q2 - k 2)Xk(q) =
2m 2m

f U(q - q')(27) 363 (q - k) d 3q' + U(q - q)Xk(q )r 3. (B.13)

First term on the left hand side identically vanishes and we arrive at

1 rdaq'
2m(k2 -

2 )x(q) = U(q - k) + U(q - q')x(q r)3. (B.14)
(2m)f (271))

Defining a new function F(k, q) as

Xk(q) = 2m 2F(k, q) (B.15)
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we immediately get from eq.(B.14)

/ U(q - q')F(k, q') daq'
F(k, q) = -U(q - k) - 2m .- - i 3  (B.16)

q2- k2- iE (27r)3

Infinitesimally small term ic, which was added to avoid singularities at q = ±k

could be chosen to carry either "+" or "-" sign. Depending on that sign the integral

in eq.(B.16) may have two different values. Indeed, according to contour integration

theorem, if z = oc is at least second order 0 for analitical function f(z), then

0o n] f (x)dx = 27ri E Resf (z), av E +Imz. (B.17)
V=1

As we write

q2 - k2 + i = (q - k + iE)(q + k - i), (B.18)

q2 - k 2 - iE = (q - k - i)(q + k + iE), (B.19)

and check with the Fig. 17 we see that +iE determines the value of integral through

the residue in -k whereas -ic idicates that residue should be taken at +k. Choice

+Imq +Im q

2 2 - 2 2
q2-- k2+ie E ' O ~ ~

-k+i e - k+i E"

-k k -k k
" k-i e . -k-i E

a) b)

Figure 17: a) Poles corresponding to the choice +ie, b) same for -ie.

b) automatically insures that inverse Fourier transformations of xk(q) will return
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correct diverging behavior of spherical wave Xk(r) from eq.(B.11). To prove it we

apply transformation of eq.(B.7) to eq.(B.15). With the definition n' = r/r we have

Xk(rn) = 2mf| F(k, q) eircos0 q2 dq do d(cos 0) (B.20)
q q2 - k2 - i (27) 3

where we have aligned z-direction with n'.

Integration over do gives 27, whereas integral over d = d(cos 0) can be worked

out if we slightly bend the path of integration toward the upper-half complex plane

(Fig. 18) keeping boundaries fixed at -1 and 1. Since r is arbitrary large exponent

Im

-1 
Re p =cos 0

Figure 18: Integral over dp = d(cos 0).

eiqrI is highly oscillating function and the value of integral mainly defined by the

regions where q/q = ±n'. In that regions F(k, q) ~ F(k, ±qn') and can be pulled

out in front of the integral. Observing that eiqrJ damping very fast as it departs from

the boundaries ±1 we arrive at

27t oo F(k, qn') eiqr q dq oo F(k, -qn') e~-qr q dq
XkYrn) -2 r Io q2 - k2 - i& (27) 3  Jo 2 - k2 - iE (27r)3-

(B.21)
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Substitution q --+ -q in the last integral yields

im f° F(k, qn') e6 ir q dq
Xk(rn = 27r2r -x q2 - k2- iE (B.22)

Using contour integration theorem (see eq.(B.17)) and setting n = k/k one

obtains

m eikr
Xk(r) - F(kn, kn'), (B.23)

2wr r

which is precisely what one would expect to get for diverging spherical wave.

From eq.(B.1) we identify

m
f (n, n') = -F(kn, kn') (B.24)

2wr

and eq.(B.16) can be rewritten as

Xk(q) = 47 2 n') (B.25)

With this we are able to write down the desired expression for Pik+)(q):

Sk(+)(q) = (27r) 3 63 (q - k) + 47r 2 f (n, n (B.26)
q8- k -
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APPENDIX C. Structure functions in differential

crossections

We are considering exclusive (e + A -+ e' + pf + A-1) reaction, where insident

electron with 4-vector k1 = (El, k1 ) knocks out nuclon from target nucleus A, which

4-vector is pA = (EA, PA). It is convinient to work in the frame where target is

stationar, so PA = 0 and PA = MA. Exclusive nature of reaction allows to detect

scattered electron energy-momentum k2 = (E 2 , k 2), as well as the one for knocked

out nuclon pf = (Ef, pf). The differense between initial and final electron momenta

is the 4-momentum transfered to the A, q = (qo, q). The most general considerations

allow us to represent differential cross section for this reaction as

do- = E M 2 dE 2 dQ2 dapf, (C.1)
E1Q 4

where a is the fine structure constant, Q2 = -q 2 and M 12 is a Lorentz invariant

quantity representing scalar contraction of leptonic and hadronic tensors

A/M 2 = 1 v. (C.2)

After averaging over initial and summing over final states QED yelds for leptonic

tensor to

1" = 2(k2 k" + kki - g9"k 1 - k 2 ). (C.3)

Unlike QED, the theory of strong interactions(QCD) is not complete yet, so

purely analitical expression for hadronic tensor does not exist. However fairly simple
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formula for that quantity can be obtained with the help of very general physical

assumptions about the nature of hadronic current. Namely, we can expect this

current to be gauge and Lorentz invariant. We also can assume that W"" does not

change as we swap it's superscipts / + v. Thus, we can write

+ T(P - q )(p" - PAq)+ T 2 (p q q) p q)+Mq2q )M fPf q2 )kf q2

T3__A_(__ ____ _____ \I Pfq,\ PAq y

+MT ( q - q) + (p - 2q)(p - 2q ). (C.4)
fA!P q2  q2 q2q

Scalar factors To, T 1 , T 2 and T3 contains all information about nuclon's non-

elimentar structure and can be parametrised from experimental data. More subjec-

tively, these factors can be extracted from four independent structure(or responce)

functions which are directly measured in experiment. Let us show that one can actu-

ally break down right hand side of eq.(C.2) in terms of only 4 independent mesurable

functions and then exract T-factors from them.

First note, that formally instead of claimed 4 terms contraction eq.(C.2) involves

16. However p -+ v symmetry reduces right away that number to 10:

\M/fl 2 = 1Ovw - 1lv - l2vw 2v - 313v

=100wo - 21O1w
0 1 

- 21-2W02 _ 2103w
03 +

+2112w1 + 211 3w13 + 212 3w 23 +

+11w" + 122 w2 + 133w
33. (C.5)
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One can simplify this expression further choosing De Forest's coordinate system.

We free to align 2 axis with q, so q = (qo, 0, 0, qz). It is also convinient to define (yz)

coordinate plane as (pfq) plane (which is the reaction plane), so pf, = 0. As noted

above we are considering stationar target nucleus, PA = 0. Checking with eq.(C.4)

it is easy to see that except w11 term all other hadronic tensor elements with "1"

superscript identically equal to zero. Thus we can rewrite eq.(C.5) without w 0 1 , w 1 2

and w13 terms:

2 0 0w 00 - 2102 W 0 2 
- 2l 0qwOq + 2 2qW2q + 1 1 w 1 1 + 12 2 w 2 2 + lqw44. (C.6)

It is time now to use continuity equation for electron current providing us with

qpllv = 0, (C.7)

or, since 2 q,

q010v - qvlqv = 0, (C.8)

where q, = Iq = q2. Using this we can express

lqv = lov, 1qq = q0 20. (C.9)
qv qv

Plugging eq.(C.9) in eq.(C.6) and collecting terms we obtain

|M12 00 - 2l 0 2w 02 - 2 ") 10 +
(qv)

+2 ( 20 2q + 1 1
1 1 + 12 2 w

2 2 + 00

)2
= 10 0 woo -2 ( ) 0 + q0+ +

+2120  q w 02 + 11 1w 11 + 12 2 w 2 2  
(C.10)
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Let us rewrite two last terms of eq.(C.10) in slightly different fashion:

1+ l 22 (122 + - 1 1 22 + 122 + l1 l =

122 -ii)[w22 - wl] + (122 + 111 w22 + wll] (C.11)

so eq.(C.10) can be expressed as

|Mf 2 = w - 2 ( wq + () wqq +
\qv q\v}

+2120 -0 w 2q _ w02 +

+ (122 - wii [W22 - will + (122 + 111 [w22 + w" . (C.12)

Now we are ready to define 4 structure functions:

WL (-)q [ woo - 2 -0 wq + (9i wq" (C.13)
\Q) ( qv) qv )

WVTL -2 (v (0 )2q _ w02 (C.14)

Sqv

IVTT = [w22 - w" (C.15)

Wr = [w22 + will (C.16)

which are making eq.(C.12) to look like

M 2 = loo () WL - 120 (Q)T + (122 -ii) WTT + 122 + 111 VT(C.17)

Substituting well-known expressions for componets of leptonic tensor into eq. (C.17)

we will obtain final formula for M 2:

Q4  Q2  2~

|M 2 = 2E1E 2 cos2 IL + +tan WT +2 [qv2 2~

Q2 (Q2  2O0) Q2 1
+q2 - + tan- - TI L Cos 0 + VTTcos 2. (C.18)

2 2q
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When plugging this into eq.(C.1) we obtain well-known differential cross section

formula for exclusive (e + A -4 e' + pf + A-1) reactions:

d- Q(Q2 ta 2
= -Mott -WL + + tan WT +

dE 2 dQ2 d3pf q 2q 2
1

+ q + tan2- WTL cos q + 2  2 WTT cos 2# ,(C.19)
q qv2q

where QMott - a2 cos2 '/4E 2 sin4 
B.

Just as it was with leptonic current we can expect hadronic current to be gauge

invariant. Using this one can clarify the physical meaning of structure functions

defined in eqs.(C.13)-(C.16) by expressing hadronic tensor elements via each other,

exactly like it was done in eq.(C.9). This will establish the following relations between

structure functions from the one hand and hadronic current J and charge density p

from the other:

WL = woo = (PP+), (C.20)

WTL cos 0 = -2w 0 2 = -(pJ4 + J2p+), (C.21)

WTT cos 20 = w22 - W1 1 = (J 2J2 - J1 J), (C.22)

WT = w22 + w1 1 = (J2 J2 + J1 JJj), (C.23)

with angular brackets denoting average over initial states and summation over final

states.

These representations show explicitly that, indeed, structure functions are mea-

surable quantities. In some sence they provide a direct bridge between theoretical

and experimental frameworks. To show this it is enough to substitute w/" tensor
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elements in last equations with their values from eq.(C.4). Doing that we get

Toqv T1 qv T2 qv 2 +2T 3q3g
WL2 + v+ 12 4 (qvEf - pzq0o) +MQ (qvEf - pf~gO)(C.24)

2

WTL --2T2 pq2 (qvEf - pfgO) - 2T 2 (C.25)
f~Q f Q2

WFTT T2 (C.26)
f

2

TF = -2To + T2 (C.27)
AIj

For given reaction kinematics one can actually mesuare structure functions, then

solve Eqs. eqs.(C.24)-(C.27) for To, T1, T2 and T3 and obtain desired parametrisa-

tions for those quantities.
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APPENDIX D. NN diffractive parameters

function sigma-pp-tot(s)

C pp total cross section fit in [mb] (sigma-pp)

common/par/pi,pm,pmp,pmn,tm,eb ! pm -> mass of the proton

dimension B(10)

ep = (s - 2.0*pm**2)/(2.0*pm)

p = sqrt(ep**2-pm**2)
pcm = pm*p/sqrt(s) ! in GeV

pcm = pcm/sqrt(0.389385) ! in 1/sqrt(mb)
if(p.lt.3.68) then
call Bystricky-dat(p,0.0,0,B)!using SAID's analysis
stot = 4.*pi/pcm * ( B(6)+B(7) )/2.

elseif ( p.le.5.87) then
xl = 3.68

yl = 41.39135

x2 = 3.9

y2 = 41.19135

x3 = 5.870000
y3 = 40.42657

stot = cubicspline(p,x1,x2,x3,yl,y2,y3)

elseif ( p.le.12.) then

x1 = 5.87

yl = 40.42657

x2 = 9.

y2 = 40.19135

x3 = 12.00000

y3 = 40.01630

stot = cubicspline(p,xl,x2,x3,yl,y2,y3)

else

stot = 48.0 + 0.522*alog(p)**2 - 4.51*alog(p)

endif

sigmapp-tot = stot

return

end
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function sigma-pn-tot(s)

C pn total cross section fit in [mb] (sigma-pn)

common/par/pi,pm,pmp,pmn,tm,eb ! pm -> mass of the proton

dimension B(10)

ep = (s - 2.0*pm**2)/(2.0*pm)

p = sqrt(ep**2-pm**2)
pcm = pm*p/sqrt(s) ! in GeV

pcm = pcm/sqrt(0.389385) ! in 1/sqrt(mb)

if(p.lt.1.4)then

call Bystricky-dat(p,0.0,1,B)!using SAID's analysis

stot = 4.*pi/pcm * ( B(6)+B(7) )/2.
elseif(p.le.3.1) then

x1 = 1.4

yl = 38.42728

x2 = 2.07800

y2 = 41.905

x3 = 3.1

y3 = 43.13159

stot = cubicspline(p,xl,x2,x3,y1,y2,y3)

else

stot = 47.3 + 0.513*alog(p)**2 - 4.27*alog(p)

endif

sigma.pntot = stot
return

end

function a.pp(s)

C pp Re/Im amplidtudes ratio parameter (alpha-pp)

common/par/pi,pm,pmp,pmn,tm,eb ! pm -> mass of the proton

dimension B(10)

ep = (s - 2.0*pm**2)/(2.0*pm)

p = sqrt(ep**2-pm**2)

a-pp = 0.0
if(p.lt.3.68) then
call Bystricky-dat(p,0.0,0,B)!using SAID's analysis

a-pp = ( B(1)+B(2) )/( B(6)+B(7) )
return
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elseif(p.ge.3.68.and.p.1t.5.) then

x1 = 3.68

yl = -0.3316863

x2 = 4.34

y2 = -0.352568200

x3 = 5.0

y3 = -0.3734501

a-pp = cubicspline(p,x1,x2,x3,y1,y2,y3)
return

elseif(p.ge.5..and.p.lt.101.) then

a-pp=-0.43377 +0.13158E-01*p -0.22820E-03*p**2
& +0.19088E-05*p**3 -0.59601E-08*p**4

return

endif

end

function a.pn(s)

C pn Re/Im amplidtudes ratio parameter (alpha-pn)

common/par/pi,pm,pmp,pmn,tm,eb ! pm -> mass of the proton

dimension B(10)

ep = (s - 2.0*pm**2)/(2.0*pm)

p = sqrt(ep**2-pm**2)
a-pn = 0.0

if(p.lt.1.4) then

call Bystricky-dat(p,0.0,1,B)!using SAID's analysis

a-pn = ( B(1)+B(2))/( B(6)+B(7))
return

elseif(p.ge.1.4.and.p.lt.3.) then

xl = 1.4000
yl = -0.2845016

x2 = 1.9

y2 = -0.43915290

x3 = 3.0

y3 = -0.4938042

a-pn = cubicspline(p,xl,x2,x3,y1,y2,y3)

return

elseif(p.ge.3..and.p.lt.101.) then

a-pn=-0.56207 +0.24223E-01*p -0.50362E-03*p**2
& +0.48408E-05*p**3 -0.17331E-07*p**4
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endif
return

end

function bp(s)

C pp Slope parameter (Bpp)

common/par/pi,pm,pmp,pmn,tm,eb ! pm -> mass of the proton

ep = (s - 2.0*pm**2)/(2.0*pm)

p = sqrt(ep**2-pm**2)

if(p.lt.0.926)then

xl= 0.

y1= 0.

x2= 0.745

y2= 0.6

x3= 0.926

y3= 0.39
bp = cubic-spline(p,x1,x2,x3,yl,y2,y3)

return

elseif(p.lt.1.2)then

x1= 0.9300001
y1= 0.39
x2= 1.15

y2= 2.0
x3= 1.2

y3= 3.177635
bp = cubic-spline(p,xl,x2,x3,yl,y2,y3)

return

elseif(p.lt.1.7)then

bp = 55.861-125.66*p+95.365*p**2-22.695*p**3
return

elseif(p.le.3.0)then

x1 = 1.7

y1 = 6.343315

x2 = 2.4

y2 = 7.5

x3 = 3.0

y3 = 7.903550

bp = cubic-spline(p,x1,x2,x3,yl,y2,y3)

return
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else

bp = 8.22 + 1.10*log(p/4.)
endif
return

end

function bn(s)

C pn Slope parameter (Bpn)

common/par/pi,pm,pmp,pmn,tm,eb ! pm -> mass of the proton

dimension B1(10),B2(10)

ep = (s - 2.0*pm**2)/(2.0*pm)

p = sqrt(ep**2-pm**2)
if(p.lt.0.8)then

x1= 0.

y1= 0.
x2= 0.545

y2= 1.0

x3= 0.8000000

y3= 2.232239

bn = cubic-spline(p,xl,x2,x3,yl,y2,y3)

return

elseif(p.lt.1.74)then

bn = -0.41579 + 1.8333*p + 2.6484*p**2 -1.0031*p**3

return

elseif(p.le.3.0)then
x1 = 1.740000

yl = 5.508093

x2 = 2.4

y2 = 7.202996

x3 = 3.0

y3 = 7.903550

bn = cubic-spline(p,xl,x2,x3,yl,y2,y3)

return

else

bn = 8.22 + 1.10*alog(p/4.)
endif
return

end
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function cubic-spline(p,xl,x2,x3,yt,y2,y3)

C Approximates function with the 3-nodes cubic spline

dyx2 = (y3-y2)/(x3-x2)

dyxl = (y2-yl)/(x2-x1)

gamma2 = 6.*( dyx2 - dyxl )
yyy2 = gamma2/2./(x3-xl)

yyl = dyxl - yyy2*(x2-x1)/6.

yy2 = dyx2 - yyy2*(x3-x2)/3.

C1 = yl+yyl*(p-xl)+yyy2*(p-xl)**3/(x2-x)/6.
C2 = y2+yy2*(p-x2)+yyy2*(p-x2)**2/2.

& -yyy2*(p-x2)**3/(x3-x2)/6.

if(p.le.x2) cubic-spline = C1

if(p.gt.x2) cubic-spline = C2
return

end
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