
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-21-2014

A Regression Approach to Execution Time
Estimation for Programs Running on Multicore
Systems
Mohammad Alshamlan
malsh002@fiu.edu

DOI: 10.25148/etd.FI14040809
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer and Systems Architecture Commons, and the Other Computer
Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Alshamlan, Mohammad, "A Regression Approach to Execution Time Estimation for Programs Running on Multicore Systems"
(2014). FIU Electronic Theses and Dissertations. 1240.
https://digitalcommons.fiu.edu/etd/1240

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.fiu.edu%2Fetd%2F1240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.fiu.edu%2Fetd%2F1240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.fiu.edu%2Fetd%2F1240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1240?utm_source=digitalcommons.fiu.edu%2Fetd%2F1240&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A REGRESSION APPROACH TO EXECUTION TIME ESTIMATION FOR

PROGRAMS RUNNING ON MULTICORE SYSTEMS

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Mohammad Alshamlan

2014

To: Dean Amir Mirmiran
College of Engineering and Computing

This thesis, written by Mohammad Alshamlan, and entitled A Regression Approach to
Execution Time Estimation for Programs Running on Multicore Systems, having been
approved in respect to style and intellectual content, is referred to you for judgment.

We have read this thesis and recommend that it be approved.

Hai Deng

Sakhrat Khizroev

Gang Quan, Major Professor

Date of Defense: March 21, 2014

The thesis of Mohammad Alshamlan is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Dean Lakshmi N. Reddi
University Graduate School

Florida International University, 2014

ii

c© Copyright 2014 by Mohammad Alshamlan

All rights reserved.

iii

DEDICATION

I would like to dedicate the thesis to my dearest mother Ms. Suhailah Alrukayess and

loving father Mr.Ahmad Alshamlan. Without their love, understanding, support, and

encouragement, the completion of this endeavor would never have been possible.

iv

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor Dr. Gang Quan. I feel

fortunate and blessed to have an advisor like Dr. Quan, who gave me constant guidance,

personal attention, suggestions and endless encouragement during the my master study.

I truly admire his perseverance, depth of knowledge and strong dedication to students

and quality research.

I am very grateful to my Ph.D. committee members: Dr. Hai Deng and Dr. Sakhrat

Khizroev for their thoughtful insights and suggestions in improving my research. I am

extremely proud to have such a wonderful and knowledgeable people serving on my thesis

committee.

I am thankful to the staff of ECE department at FIU, specially to Mrs. Maria

Benincasa, Mrs. Pat Brammer and Mrs. Ana Saenz for their great commitment to

student services.

Next, I would like to thank my lab mates at ARCS lab for creating a wonderfully

collaborative and enriching work environment filled with fun and laughter. I am confident

that our friendship and cooperation will go a long way.

Finally, and above all, I want to thank my family for their unlimited love, faith,

encouragement, blessings and prayers. My life-long gratitude go to my dearest mother

Mrs. Suhailah Alrukayess and my loving father Mr.Ahmad Alshamlan for all the love.

My parents are my true inspiration.

v

ABSTRACT OF THE THESIS

A REGRESSION APPROACH TO EXECUTION TIME ESTIMATION FOR

PROGRAMS RUNNING ON MULTICORE SYSTEMS

by

Mohammad Alshamlan

Florida International University, 2014

Miami, Florida

Professor Gang Quan, Major Professor

Execution time estimation plays an important role in computer system design. It is

particularly critical in real-time system design, where to meet a deadline can be as im-

portant as to ensure the logical correctness of a program. To accurately estimate the

execution time of a program can be extremely challenging, since the execution time of

a program varies with inputs, the underlying computer architectures, and run-time dy-

namics, among other factors. The problem becomes even more challenging as computing

systems moving from single core to multi-core platforms, with more hardware resources

shared by multiple processing cores.

The goal of this research is to investigate the relationship between the execution time

of a program and the underlying architecture features (e.g. cache size, associativity,

memory latency), as well as its run-time characteristics (e.g. cache miss ratios), and

based on which, to estimate its execution time on a multi-core platform based on a

regression approach. We developed our test platform based on GEM5, an open-source

multi-core cycle-accurate simulation tool set. Our experimental results show clearly the

strong relationship of the program execution time to architecture features and run-time

characteristics. Moreover, we developed different execution time estimation algorithms

using the regression approach for different programs with different software characteristics

to improve the estimation accuracy.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1 Introduction . 1
1.1 Execution Time Estimation . 1
1.2 The Research Hypothesis and Our Research 3
1.3 Significance of This Research and Our Contributions 4
1.4 Thesis Organization . 5

2 Background . 6
2.1 The Cycle Accurate Architectural Simulator 6

2.1.1 SimpleScalar . 7
2.1.2 MARSS . 9
2.1.3 GEM5 . 10

2.2 About GEM5 Simulator . 11
2.2.1 Coding Style of GEM5 . 11
2.2.2 GEM5 Internals . 12
2.2.3 Ilustating GEM5 Capabilities . 14

2.3 The Benchmarks . 17
2.3.1 The Benchmark’s Internals . 18
2.3.2 Evaluating Existing Benchmarks 19
2.3.3 Software Characteristics of Malardalen Benchmarks 20

2.4 Summary . 24

3 Our Approach . 25
3.1 The Automated Test Engine . 25

3.1.1 Integrating GEM5 . 25
3.1.2 Integrating Malardalen Benchmarks 28
3.1.3 Integrating The Regression Algorithms 32
3.1.4 Implementation of The Automated Test Engine 35

3.2 Summary . 36

4 Experiments and Result Analysis . 37
4.1 Using The Automated Test Engine . 37

4.1.1 Experiments . 37
4.1.2 Experiment Results . 38
4.1.3 Valid Experiment Results . 40

4.2 Accuracy Validation for Execution Time Estimation 42
4.2.1 Accuracy Evaluation for L . 42
4.2.2 Accuracy Evaluation for LNA . 45
4.2.3 Accuracy Evaluation for LNAF 48
4.2.4 Accuracy Evaluation for SL . 51
4.2.5 Accuracy Evaluation for SLNAF 54

4.3 Execution Time with A Given Hardware Architecture 57
4.4 Summary . 62

vii

5 Conclusions . 63

REFERENCES . 66

viii

LIST OF TABLES

TABLE PAGE

Table 2.1 List A of Malardalen Benchmarks [2] 21
Table 2.2 List B of Malardalen Benchmarks [2] 22
Table 2.3 List C of Malardalen Benchmarks [2] 23

Table 3.1 Prototyping An Automated Engine Lookup Table 30
Table 3.2 The Automated Engine Lookup Table 31
Table 3.3 Simplified Example to Illustrate The Robust Regression Approach 34

Table 4.1 L Execution Time Estimation for The Training Data 43
Table 4.2 L Execution Time Estimation for The Non-training Data 44
Table 4.3 Non-training Data Error Evaluation of L 45
Table 4.4 LNA Execution Time Estimation for The Training Data 46
Table 4.5 LNA Execution Time Estimation for The Non-training Data . . 47
Table 4.6 Non-training Data Error Evaluation of LNA 48
Table 4.7 LNAF Execution Time Estimation for The Training Data 49
Table 4.8 LNAF Execution Time Estimation for The Non-training Data . 50
Table 4.9 Non-training Data Error Evaluation of LNAF 51
Table 4.10 SL Execution Time Estimation for The Training Data 52
Table 4.11 SL Execution Time Estimation for The Non-training Data . . . 53
Table 4.12 Non-training Data Error Evaluation of SL 54
Table 4.13 SLNAF Execution Time Estimation for The Training Data . . . 55
Table 4.14 SLNAF Execution Time Estimation for The Non-training Data . 56
Table 4.15 Non-training Data Error Evaluation of SLNAF 57
Table 4.16 Comparison 1 . 60
Table 4.17 Mapping Each Executable To A Corresponding Core 61
Table 4.18 Comparison 2 . 61

ix

LIST OF FIGURES

FIGURE PAGE

Figure 2.1 SimpleScalar’s Internal Architecture [6] 9
Figure 2.2 MARSS’ Internal Architecture [33] 9
Figure 2.3 GEM5’s Internal Architecture [9] 10
Figure 2.4 A Startup Procedure In GEM5 [9] 13
Figure 2.5 A Dual Core Architecture . 14
Figure 2.6 A Simple Two Threads Program for A Dual Core Architecture . 15

Figure 3.1 The Building-blocks of Enhanced Simulator 26
Figure 3.2 The Building-blocks of Software Characteristics 28
Figure 3.3 The Building-blocks of Regression Algorithms 32
Figure 3.4 The Building-blocks of The Developed Automated Test Engine . 36

Figure 4.1 The Error Plot of L Set for The Training Data 43
Figure 4.2 The Error Plot of L Set for The Non-training Data 44
Figure 4.3 The Error Plot of LNA Set . 46
Figure 4.4 The Error Plot of LNA Set for The Non-training Data 47
Figure 4.5 The Error Plot of LNAF Set . 49
Figure 4.6 The Error Plot of LNAF Set for The Non-training Data 50
Figure 4.7 The Error Plot of SL Set . 52
Figure 4.8 The Error Plot of SL Set for The Non-training Data 53
Figure 4.9 The Error Plot of SLNAF Set 55
Figure 4.10 The Error Plot of SLNAF Set for The Non-training Data 56
Figure 4.11 Given Hardware Architecture: 4 Cores System 58

x

CHAPTER 1

Introduction

Execution time estimation is important in design of micro-processor based computing

systems. It provides the basic guidelines for selections of processors and other hard-

ware components for the systems. It also critical for resource management unit when

scheduling program execution to meet the design constraints and optimize the system

performance and other optimization goal. Estimating a program execution time is partic-

ularly critical in design of real-time systems [8, 30, 22]. Real-time systems require more

than delivering accurately produced computational results. They also require tasks to

meet their deadlines because, for applications such as medical and avionic applications,

missing a deadline can have catastrophic consequences, such as loss of life or plane crash

[21, 19].

In this chapter, we first introduce the challenges of the execution time estimation

problem. We then discuss the motivation and hypothesis of our research. Finally, we

summarize our contributions.

1.1 Execution Time Estimation

Execution time estimation is a hard problem [40]. First, the program execution times

vary not only with different architectures and specific hardware configurations [25]. The

variations become larger and larger as processor architectures become more and more

complicated today [7, 41]. Also, the program execution times vary with different software

characteristics of the programs. Different inputs, loop counts, recursive functions, and

execution paths all contribute to significant execution time variations.

From the architecture perspective, the challenges for estimating the execution time

for a program on a single processor platform are mainly related to non-deterministic

natures in cache, pipeline, and out-of-order execution [34]. While there have been

substantial amount of work for execution time estimation on single processor platform,

1

these approaches can be largely categorized into two groups: the static (or analytical)

approach and the measurement based approach [40].

The static approaches bound the execution time of a program by analyzing the possi-

ble control flow of a program and then combining it with a hardware architecture model,

such as value analysis which assigns the code addresses statically to combine registers

and local variables [38]. In a static approach, to explore all the possible path can be

challenging and time consuming. For example, Li et al. proposed to bound the worst

case execution time by formulating the problem as an integer linear program, which can

only be applicable for small size of problem due to the complexity when solving the prob-

lem [28]. In addition, to construct an appropriate abstract model for processor behavior

including memory hierarchy, data buses, and I/O devices can also be challenging and

time consuming [40].

The measurement based approaches (e.g. hardware tracing mechanisms), on the other

hand, estimate program execution times by running programs on particular hardware or

simulation platforms [44, 40]. The measurement based approach helps to identify the

architecture impacts in an intuitive and straightforward manner, without going through

the analytical analysis based on abstract architecture models. However, for measurement

based approaches, to exhaustively explore all execution paths is usually impossible. To

determine the worst-case path or states of architecture components is hard and normally

impossible as well.

This problem becomes even more challenging for multi-core systems because hardware

resources such as cache and buses are shared by multi cores, which substantially increases

the execution time variances for programs running on multiple cores [36]. For example,

Yan and Zhang proposed an analytical approach for multi-core systems that incorporates

shared caches for the execution time analysis [41]. To ease the problem in estimating

the execution time of each real-time task in an architecture with shared L2, they had

to simplify their model by assuming that all cache access to L1 data caches are cache

2

misses, and all accesses to L1 instruction caches are cache hits [25]. In addition, the

execution synchronization needs among different parallel programs also exacerbate this

problem [18, 16, 26]. As a result, while multi-core processors have become ubiquitous,

the challenge of estimating the execution time of a program has increased significantly.

In this research, we develop a new coarse-grain approach for execution time estima-

tion for programs running on multi-core platforms. The rationale is that the traditional

execution time estimation approaches, i.e. the static or measurement-based approaches,

are targeted at on one specific architecture type and configuration usually are very tim-

ing consuming in design space exploration for computing system design. Instead, we

intend to identify the relationship between the execution time and hardware architecture

configurations to facilitate the fast execution time estimation for programs running on

multi-core platforms.

1.2 The Research Hypothesis and Our Research

In this research, we intend to develop computational efficient techniques to estimate

the program execution time quickly to facilitate the design space exploration in system

design. This research hypothesizes that there is a close relationship between the execution

time and hardware architecture configurations, and regression algorithm can effectively

capture this relationship [15, 17, 4]. In addition, we believe that the execution time

estimation techniques should take into considerations not only the architecture features,

but also software characteristics as well. As a result, in our research, we classify programs

into different categories based on their software characteristics, and develop estimation

models for each category separately in order to improve the estimation accuracy.

To capture the relationship between program execution times with different archi-

tecture features, we need to simulate program execution times under a larger variety of

different hardware architecture configurations. To facilitate our research, we employed a

cycle accurate architecture simulator called GEM5 [9, 20, 42].

3

The cycle accurate architecture simulator GEM5 is a platform for research in the areas

of operating systems, compilers, and computer architecture [20, 10, 22, 46]. Simply put,

GEM5 encompasses system-level architecture as well as processor micro-architecture.

We also chose the popular benchmark in our research. The benchmarks adopted

in our research come from Malardalen’s benchmark project [2, 32, 21]. Malardalen

benchmarks are collaborative programs developed and maintained by multidisciplinary

researchers commonly used for Worst Case Execution Time (WCET) estimation when

designing real-time devices [8, 45, 31].

A program, for real-time systems, has unique software characteristics, such as: always

single path program, program contains loop, program contains nested loops, program

uses arrays or matrices, program contains recursion, or a program uses floating point

calculation. The Malardlen’s benchmark takes these software characteristics into consid-

eration, developed with the purpose to assist system designer to analyze and examine

the worst case execution times for programs in different types of applications, which fits

our research needs very well.

1.3 Significance of This Research and Our Contributions

Execution time estimation is critical in design of computing systems, especially real-time

systems when timing is as important as logical correctness [13, 29, 43, 27]. To explore

a large variety of design alternatives, the system level design of real time computing

systems demands effective and efficient computational methods for estimating execution

time [39, 19, 46, 11, 35, 5].

The research contributes by verifying and disclosing the close relationship between

program execution time and multi-core hardware architecture configurations and, based

on which, to develop an effective and efficient way to estimate program execution under

different multi-core architectures. The approach classifies commonly used software char-

acteristics in categories that allow us to compare the hardware architecture efficiently.

4

By pinpointing each set of these Hardware/Software (HW/SW) groups in the system, we

can analyze the cause and effects in the system performance and the execution time for

different hardware architectures [39, 37, 11].

The contributions of this research are the following:

1. Verifying and disclosing the close relationship between program execution times

and architectural settings;

2. Using a regression approach to develop a computation efficient method to estimate

execution times for programs with different software characteristics;

3. Investigating the effectiveness of the proposed approach using architecture level

cycle accurate simulators and well-known benchmark.

1.4 Thesis Organization

Chapter 2 provides background information about the simulation platform and the

Malardlen benchmark. In chapter 3, we discuss our efforts in the development of the

integrated simulation platform and also the software characteristics based on which we

categorize the benchmark programs. Chapter 4 presents our simulation results and val-

idation results. Specifically, we present the analytical formula obtained through the

regression method for program in each category first. We then present our validation

results. Chapter 5 concludes the thesis and summarizes the thesis contributions.

5

CHAPTER 2

Background

In this chapter, we discuss our efforts in the development of our simulation environment

that is flexible and customizable, which can be used to effectively conduct a large number

of simulations. We also discuss the benchmarks, i.e. the Malardlen, that are used for

deriving the execution time estimation.

2.1 The Cycle Accurate Architectural Simulator

The cycle accurate architectural simulator is a platform for research in the areas of oper-

ating systems, compilers, and computer architecture [20]. Simply put, the cycle accurate

architectural simulator encompasses system-level architecture as well as processor micro-

architecture. The goals are to have an intuitive approach, and they can be used to

validate the developed system result for an actual system. The desirable features of the

cycle accurate architectural simulator usually are the following:

1. Useful timing measurements (cycle-accurate)

2. Support for fully functional OSes (full-system)

3. Auxiliary features for specific experiments

4. Support for useful hardware platforms and instruction sets

5. Openness to modifying microarchitectural features

6. Availability of technical support

For the purpose of this research, the cycle accurate architectural simulator must be

able to run hundreds of thousands of experiments back-to-back. Each experiment must

be unique to all the other executed experiments, and that experiment output must be

stored in a unique file naming convention because the file name is used as an ID.

6

There are other features that are not required, but they are preferable to have. Com-

munity collaboration is important, and there are aspects that lead to an excellent com-

munity collaboration. Usually, the cycle accurate architectural simulators licensing terms

and code quality can affect the community collaboration [24].

There are some open-source licenses that can be too restrictive for industry collab-

orations in the developer community. The licenses that were used for the simulator are

not that important for this thesis. However, their effects can limit some contributions

from a developer, especially from an industrial setting [45]. Therefore, looking at the

cycle accurate architectural simulator licenses is not the focus of this research. Nonethe-

less, they have been looked into to make sure that the used cycle accurate architectural

simulator has been developed from both industry and academia.

Also, the cycle accurate architectural simulator’s internal code can limit community

collaborations. A poor code quality and lack of modularity can be intimidating to de-

velopers [14, 29, 43]. If a simulator lacks some features, adding this feature can be

challenging, and can even consume precious time that a developer does not have.

Therefore, these two features are not important, but they are taken into considera-

tion because the code quality and the license of a cycle accurate architectural simulator

affect community collaborations. There is a wide variety of cycle accurate architectural

simulators that meet these requirements. Due to the overwhelming choices and flavors

of these simulators, we evaluated three cycle accurate architectural simulators as shown

in this section.

2.1.1 SimpleScalar

At first, SimpleScalar was chosen for the research because it is an open-source architec-

tural simulator. These are some of SimpleScalar capabilities:

First, because SimpleScalar is an open-source, it means SimpleScalar can be modified.

In fact, there are several successful stories that show a sophisticated architectural simu-

7

lator is built from SimpleScalar [3]. For example, MASE and Wattch use SimpleScalar

as their base for distinctive and much more concentrated functions and features. In the

case of MASE, it gets a ground-up enhancement from SimpleScalar to deliver a powerful

micro-architectural modeling that is even more advanced than SimpleScalar can offer.

Wattch focuses on a different area, which is simulating the power consumption for a

given microprocessor. Wattch developers did not see a need to reinvent the wheel, so

they have adapted an open-source tool, which was SimpleScalar, and started adding the

missing functions [12].

The second desirable feature from SimpleScalar is a wide variety of Instruction Set

Architecture (ISA) [6]. SimpleScalar supports common commercial ISA, such as: Alpha,

ARM, and x86. In addition, SimpleScalar shines for an academic ISA that can be used as

an academic research-oriented tool. This academic ISA, which SimpleScalar supports, is

not the common MIPS ISA, but SimpleScalar uses Portable Instruction Set Architecture

(PISA) [3]. PISA has a its own compiler, which supports a common compiler such as

GNU GCC. Unfortunately, there is not a strong industry adaptation for PISA because

PISA’s objective is to be used for educational purposes.

With these key features, such as flexibility, openness, Multi-ISA support, and com-

munity collaborative work, SimpleScalar has been used as a preliminary prototype. Sim-

pleScalar’s internal architecture is shown in Figure 2.1.

The enhancement of SimpleScalar has begun, but shortly thereafter, there were sev-

eral limitations that became unavoidable to achieve the research goal. One of the draw-

backs was that SimpleScalar lacks arbitrary instruction restart. The only restart that

SimpleScalar can perform is branchescan restart, which is not helpful for the research

platform. SimpleScalar is not chosen because the platform that is being developed must

have the ability to run contiguous experiments with no human intervention through the

automated test engine as discussed in chapter 3.

8

Figure 2.1: SimpleScalar’s Internal Architecture [6]

Figure 2.2: MARSS’ Internal Architecture [33]

2.1.2 MARSS

MARSS is a simulator that has an arbitrary restartable mechanism that gives a sequential

unique experiment without a human intervention. MARSS supports just x86 ISA, which

limits the research scope [33]. Figure 2.2 illustrates MARSS’ internals.

The research platform can use MARSS to do a sheer number of experiments. The

combination between the research platform and MARSS gives the ability to manipulate

a variety of hardware configurations, such as: cache associativity, TDMA bus width,

rearranging memory hierarchy, device latencies, and system cycles.

However, MARSS has a drawback, even if MARSS is a good candidate as a cycle

accurate architectural simulator for the research platform. The capabilities of MARSS

are appealing, but its speed of executing an experiment is not. MARSS is slow to perform

9

Figure 2.3: GEM5’s Internal Architecture [9]

an experiment, so this drawback challenges the time constraints of the research.

This problem is hard to spot, but running 100, 000 samples of experiments will take

MARSS more than a month just to do all the parameter combinations. This latency is

not acceptable, so MARSS is a great architectural simulator, but its speed would leave

the research in jeopardy.

2.1.3 GEM5

GEM5 is an emerging platform from M5 and GEMS, which both are a flexible simu-

lation framework. The inheritance of this flexibility allows GEM5 to evaluate diverse

architectural design ideas with a rich support for OS facilities, such as including IO and

networking [1]. However, these features have been achieved with MARSS, but GEM5

is much faster than MARSS, and that is why the research is using GEM5 as a base

simulator. Figure 2.3 illustrates GEM5’s internals.

There are other functions and features where GEM5 surpasses MARSS capabilities.

MARSS supports just one type of ISA, but GEM5 supports the following: Alpha, ARM,

SPARC, MIPS, POWER and x86 ISAs. One of the aspects that have been discussed

and looked into is the simulator license. GEM5 supports a BSD-based license which does

not have awkward legal restrictions [9]. The source code is available to all researchers,

regardless of their uses, that allows GEM5 to have a good mix between academic and

industry collaborations [24]. In fact, these are some of the major GEM5 contributors:

AMD, ARM, HP, MIPS,MIT, Texas, and Wisconsin [1, 43, 14, 24].

10

Because GEM5 is a full emergence of M5 and GEMS, the developer community of

GEM5 has many researchers’ attention. M5 and GEMS have been used in hundreds of

publications and have been downloaded tens of thousands of times [1]. Many of these

researchers are already familiarized with GEM5 because GEM5 supports both M5 and

GEMS syntaxes [14].

2.2 About GEM5 Simulator

In this section, some basic fundamentals in GEM5 are tested. We have examined some

potential functions and features in GEM5 for enhancement purposes before integrating

them into the research platform. The GEM5 accuracy has been looked into, and the

drawbacks with this approach are discussed.

Note, all the source codes of implementation are provided in the appendices, so the

reader can replicate the research platform.

2.2.1 Coding Style of GEM5

GEM5 is a simulator that is built from two previous simulators which are M5 and GEMS.

By writing a comprehensive hardware architecture design, GEM5 executes the hardware

architecture deign with cycle accuracy.

Because M5 and GEMS have their own coding syntaxes, GEM5 accepts either coding

syntax. The coding style that is used in this thesis is M5 and not GEMS. The reason for

choosing M5 rather than choosing GEMS is simply due to the following aspects. M5’s

support does not always mean GEMS support [9]. The emergence of M5 and GEMS is

not completed yet. There are areas in GEM5 that are not fully emerged, so the developer

needs to choose a specific coding syntax. In other words, the developer has to choose

either M5 or GEMS for the non-emerged areas. Unfortunately, that is what happened

to this research.

11

The objective of this research is to allow the research platform to manipulate the hard-

ware configurations of GEM5 through M5. In actuality, that means the research platform

manipulates the M5’s SimObjects. SimObjects are located in modules of concrete hard-

ware components called SimObjects, and the SimObjects of M5 are the following: diverse

CPU models, PCI, NICs, IDE controller, a frame buffer, DMA engines, UARTs, and inter-

rupt controllers. These SimObjects provide a highly configurable simulation framework,

multiple cache coherence, and multiple ISAs, such as: ARM, ALPHA, MIPS, Power,

SPARC, and x86. SimObjects are discussed in detail in the next subsection.

2.2.2 GEM5 Internals

Knowing the internals of GEM5 helps developing a tight integration, so to accomplish

this goal there are questions that should be answered in this subsection, which are the

following. How is GEM5 implemented? Where is the main() function of GEM5? What

is the type of object orientation that GEM5 uses? What are the programming languages

that GEM5 supports? What are the domain-specific languages that GEM5 supports?

What are the standard interfaces that GEM5 supports?

First, GEM5 adopts an object-oriented design methodology. One of the advantages is

that the developer does not need to understand the entire source code for modifications

or contributions. For this research, object-oriented design allows to enhance a particular

section of a code without going through a tedious modification of the whole source code.

The reason of this accomplishment is because object-oriented design favors modularity,

so the developer just focuses on the module that needs an adjustment.

Naming a few composable objects, they are: cache hierarchy, bus configurations,

multi-core, and system clock. The major simulation components of GEM5 are located

in models of concrete hardware components called SimObjects. What is noticeable of

SimObjects is that, they share the same common behaviors in regards of configuration,

initialization, statistics, and serialization. That means the method of controlling one

12

Figure 2.4: A Startup Procedure In GEM5 [9]

SimObject can be applied to any other SimObject. These SimObjects can be system

cores, caches, or system interconnection, but they also can be an abstract entities, such

as a workload or a process context-switch for the design architecture.

Second, Python implementation in GEM5 is just 15% of all the source code, so there

are limitations for using Python instead of C++. However, the SimObjects that are not

implemented in Python are lower level designs, such as creating a new ISA. Simply put,

most of C++ SimObjects that are not duplicated in Python SimObjects are not needed

for this research.

Also, the main function of GEM5 is written in Python, and start-up code is built-in

to the main function. The simulator begins executing Python code almost immediately

on start-up. Figure 2.4 illustrates a start-up procedure.

13

Figure 2.5: A Dual Core Architecture

Third, GEM5 supports Domain-Specific Languages (DSLs), which are instruction sets

and cache coherence protocols. These two DSLs are important because they can provide

a powerful and concise way to express a variety of solutions that can be from the logic

design layer to the compilation (compiler) layer. In this research, we are not defining

a new Instruction Set Architecture (ISA), we just need to be aware of the compiler

optimization because the program-flow can change the system performance, which affects

the execution time of a program.

2.2.3 Ilustating GEM5 Capabilities

To understand GEM5, we need to have an example. The hardware design that is used

in this example is shown in Figure 2.5.

Hardware Design

To make GEM5 creates this design as shown in Figure 2.5, we need to write a com-

prehensive hardware architecture design code in Python. The source code is shown in

appendix A. Appendix A also shows an explanation of the source code implementation.

The purpose for this simple code is to show the reader how GEM5 works and to show that

14

Figure 2.6: A Simple Two Threads Program for A Dual Core Architecture

GEM5 does not support Graphical User Interface (GUI). Every hardware architecture

design must be written in programming language such as Python.

Software Design

Software instructions tell the hardware what to perform. These instructions are stored

in the main memory by assumption. There are many methods to these instructions to be

allocated in the main memory, but the common method is moving these instructions from

a non-volatile memory to a volatile memory. For example, a hard disk, a non-volatile

memory, has system boot instructions. The system wants to execute them to boot-up,

so these instructions are moved to the main memory, volatile memory, for the processor

to fetch them.

We would not use a kernel to utilize the hardware efficiently just for the sake of

simplicity. The code that we are going to write has the necessary components to utilize

the two cores of the hardware architecture design as shown in Figure 2.5. Although

there are several methods to utilize the two cores, the used method is multithreading

programming. The code flowchart is shown in Figure 2.6.

From Figure 2.6, we can see, there is a main thread that is running in core zero (C0).

The main thread means that the main() function is located in that thread. Because

the main() function makes the code executable, C0 can run the code without problems.

However, core one (C1) would not be utilized at all unless the main() function designates

a task to C1. In the Figure 2.6, we can see that we want to use C1, so we need to make

15

the main function to mange and control C1. The used approach is through creating a

new thread, and then mapping the new thread to C1. The source code of this program

is shown in appendix B.

The reason for using C as the programming language in appendix B is because GEM5

executes a machine code. Therefore, the used programming language is irrelevant to

GEM5. The coding language is considered to be a programmer personal preference. In

our case, we chose C because C is effective and efficient in a low-level system program-

ming. The compiler output is the machine-language that GEM5 understands and not

the source code that is shown in appendix B. The code compilation is not discussed here,

but the reader should keeps in mind the code that is shown in appendix B cannot run in

GEM5 as is. As a result, using a complier is a must.

Experiment Setup

So far, we have developed the software in appendix B and the hardware in appendix A,

but we have not integrated them together. The hardware that we have developed is Intel

64-bit machine, so we need to compile this code to be an Intel 64-bit machine code, this

step is done as follows.

1 gcc −s t a t i c 1 h e l l o c 2 t h r e a d s . c −o 1−he l l o−c−2threads . c

Listing 2.1: Compiling The Developed Software

A Linux environment would do it successfully on the terminal, but for this example

the used command-line terminal is bash. After the compilation is successful, the hardware

code is hard-coded for looking for a file named as same as the compiler output. The only

step that is missing is to initialize the experiment as the following command:

1 bu i ld /X86/gem5 . opt c on f i g s /example/Dual core Arch . py

Listing 2.2: Running GEM5

16

After GEM5 finishes, GEM5 would output a detailed cycle-accuracy report about the

experiment. The output report is not shown because the output result needs more than

200 pages to be printed out, but the implementation steps are explicitly shown in the

appendices. The reader can implement the steps in the appendices to retrieve the output

result.

2.3 The Benchmarks

GEM5 runs any software without problems if the program has been compiled properly

[1]. GEM5 executes the machine code, so the type of the program is irrelevant to GEM5,

but the flow program matters. The program flow can be the same for different types of

programs such as: system drivers, user applications, or benchmarks. Therefore, we do

not need to focus on the type of the program, but we need to consider the program flow

of each runnable program in GEM5.

If the type of a program is irrelevant to GEM5’s outcome because the GEM5’s out-

come depends on the program flow, we can choose benchmarks instead of the others

because their purpose is to measure the system performance. We can use benchmarks

that have different program flows and then categorize them in different software charac-

teristic sets. Different software characteristic sets are thoroughly discussed when deriving

the execution time estimation, but before we start deriving these algorithms, we really

need to understand the nature of benchmarks.

Benchmarks provide a metric for comparison among different hardware architectures

[2]. Using a well-known benchmark can allow researchers to compare their results. Com-

parison can be broader and very useful when industry sector collaborates. Therefore,

these popular benchmarks need to be examined and evaluated in the basis of which one

is compatible with the research platform.

17

2.3.1 The Benchmark’s Internals

In this subsection, we are addressing major benchmark aspects, which are: the program

flow, loops, and structure of the program.

The Effect of A Program Flow

There are distinctive features that a benchmark may have. A program can have a single-

path, or that program can have a multi-path program flow. In common cases, if a

program does not support command-line arguments, the program most likely would not

have a multi-path program flow. Because command-line arguments are commonly used

as inputs, these inputs can change the program behavior.

For example, suppose a program asks to import data for analysis purposes. If a user

inputs a file name as a data file in the command-line arguments, the program shows the

analysis. On the other hand, when the user runs the program without importing the data

file, the program asks the user where the data are stored, then the program shows the

analysis. As we can see, there is a change in behavior. This change of program behavior

is significant to the program flow.

A single-path program flow has its uses in real life application, but they are rare

cases. Proportionally, multi-path programs dominate the released programs in the market

because these programs can do more than a task. End-users and third-party developers

favor multi-path programs because to them these multi-path programs are the same

as a swiss-knife. Because the market-share of multi-path programs is much more than

single-path programs, the research focuses more into a multi-path program flow than a

single-path program flow.

The Effect of Loop

Loops have a strong role in the hardware performance because they can make the proces-

sor execute the same instructions multiple times. A program that contains loops should

18

be considered different than a program that contains nested loops. Loops can be nested,

which increases the system overhead.

Call Graph and Scope Hierarchy Graph

There are many methods to analyze the program flow, but we are going to use a Semantic

Web sErvice Editing Tool (SWEET) to generate the program flow graph.

The SWEET tool can provide a call graph and a scope hierarchy graph. The call

graph shows the building-blocks of program flow. The SWEET tool does not show every

detail such as calls to functions and entries to loops. A scope hierarchy graph is a context

sensitive graph showing calls to functions and entries to loops.

Call graph and scope hierarchy graph have common aspects which are the following.

The root of the tree is always the main() function. The scope can be initiated from a

function or a loop. An arrow from higher scope to lower scope represents a function

scope or a loop scope.

2.3.2 Evaluating Existing Benchmarks

Benchmarks are useful in many areas in computer science and engineering, but there is

not a well-known comprehensive benchmark [2]. That is why there is a sheer number of

available benchmark suites.

Due to the lack of a popular comprehensive benchmark, the evaluation has to focus

on a specific area, which is a low system benchmark. In fact, there are many benchmarks

that we do not need, such as measuring the performance of hardware components other

than the processor and the main memory. For example, measuring the performance of a

hard disk, GPU, Ethernet, or other user IO devices would not be useful to this research.

Useful information to this research are: the speed of the processor, throughput of the

processor, and memory usage.

19

One of low-level benchmarks is Drystone [2]. Drystone benchmark evaluates the

performance of various computing areas in the processor. For example, the ALU has a

different data-path for integer calculations and for floating-point calculations, so Drystone

has the ability to measure these differences in the ALU data-paths. Unfortunately, the

evaluation of Drystone stops because Drystone is not compatible with GEM5 simulator.

SPEC CPU2000 is also a low level benchmark that is compatible with GEM5, and

SPEC CPU2000 is generally used for measuring a system processor, memory subsys-

tems, and methods of compilation. There are publications that used SPEC CPU2000

for embedded devices such as: automotive, digital imaging, digital entertainment, en-

ergy consumption, networking, office automation, and telecommunications. Hence, office

automation can be a printer, so some researchers used SPEC CPU2000 to measure the

performance of an actual printer.

Given their strong correlation to the embedded domain, SPEC CPU2000 has problems

with driving the estimation algorithms. SPEC CPU2000 does not categorize specific

software characteristics of each benchmark.

Malardalen benchmarks are designed in mind for execution time estimation analysis

which means every small detail of benchmark software characteristics are given. Execu-

tion time estimation analysis looks into the program flow and the datapath extensively.

For example, the analysis can measure how many cycles are needed for a specific datapath

in the ALU, or it can trace the datapath for specific core in the processor. Malardalen

benchmarks are compatible with GEM5, and because their software characteristics are

well documented, they can be used for the research platform.

2.3.3 Software Characteristics of Malardalen Benchmarks

Malardlen benchmarks are written in C, which is the most common language for em-

bedded devices and real-time systems. Malardlen benchmarks are shown in these Tables

2.1, 2.2, and 2.3 with their software characteristics.

20

T
ab

le
2.

1:
L

is
t

A
of

M
al

ar
d
al

en
B

en
ch

m
ar

k
s

[2
]

N
o.

B
en

ch
m

ar
k

D
es

cr
ip

ti
on

S
L

N
A

B
R

U
F

1
ad

p
cm

A
d
ap

ti
ve

p
u
ls

e
co

d
e

m
o
d
u
-

la
ti

on
al

go
ri

th
m

Y
es

2
b
s

B
in

ar
y

se
ar

ch
fo

r
th

e
ar

ra
y

of
15

in
te

ge
r

el
em

en
ts

Y
es

Y
es

3
cn

t
C

ou
n
ts

n
on

-n
eg

at
iv

e
n
u
m

-
b

er
s

in
a

m
at

ri
x

Y
es

Y
es

Y
es

4
co

m
p
re

ss
D

at
a

co
m

p
re

ss
io

n
p
ro

gr
am

Y
es

Y
es

Y
es

5
co

ve
r

P
ro

gr
am

fo
r

te
st

in
g

m
an

y
p
at

h
s

Y
es

Y
es

6
cr

c
C

y
cl

ic
re

d
u
n
d
an

cy
ch

ec
k

co
m

p
u
ta

ti
on

on
40

b
y
te

s
of

d
at

a

Y
es

Y
es

Y
es

Y
es

7
d
u
ff

U
si

n
g

D
u
ff

’s
d
ev

ic
e

fr
om

th
eJ

ar
go

n
fi
le

to
co

p
y

43
b
y
te

ar
ra

y

Y
es

Y
es

Y
es

8
ed

n
F

in
it

e
Im

p
u
ls

e
R

es
p

on
se

(F
IR

)
fi
lt

er
ca

lc
u
la

ti
on

s
Y

es
Y

es
Y

es
Y

es
Y

es

9
ex

p
in

t
S
er

ie
s

ex
p
an

si
on

fo
r

co
m

-
p
u
ti

n
g

an
ex

p
on

en
ti

al
in

te
-

gr
al

fu
n
ct

io
n

Y
es

Y
es

Y
es

10
fa

c
C

al
cu

la
te

s
th

e
fa

cu
lt

y
fu

n
c-

ti
on

Y
es

Y
es

Y
es

11
fd

ct
F

as
t

D
is

cr
et

e
C

os
in

e
T

ra
n
s-

fo
rm

Y
es

Y
es

Y
es

Y
es

12
ff

t1
10

24
-p

oi
n
t

F
as

t
F

ou
ri

er
T

ra
n
sf

or
m

u
si

n
g

th
e

C
o
ol

y
-

T
u
rk

ey
al

go
ri

th
m

Y
es

Y
es

Y
es

Y
es

Y
es

21

T
ab

le
2.

2:
L

is
t

B
of

M
al

ar
d
al

en
B

en
ch

m
ar

k
s

[2
]

N
o.

B
en

ch
m

ar
k

D
es

cr
ip

ti
on

S
L

N
A

B
R

U
F

13
fi
b

ca
ll

S
im

p
le

it
er

at
iv

e
F

ib
on

ac
ci

ca
lc

u
la

ti
on

,
u
se

d
to

ca
lc

u
-

la
te

fi
b
(3

0)

Y
es

Y
es

14
fi
r

F
in

it
e

im
p
u
ls

e
re

sp
on

se
fi
l-

te
r

(s
ig

n
al

p
ro

ce
ss

in
g

al
go

-
ri

th
m

s)
ov

er
a

70
0

it
em

s
lo

n
g

sa
m

p
le

Y
es

Y
es

Y
es

15
in

se
rt

so
rt

In
se

rt
io

n
so

rt
on

a
re

ve
rs

ed
ar

ra
y

of
si

ze
10

Y
es

Y
es

Y
es

16
ja

n
n
e

co
m

p
le

x
N

es
te

d
lo

op
p
ro

gr
am

Y
es

Y
es

Y
es

17
jf

d
ct

in
t

D
is

cr
et

e-
co

si
n
e

tr
an

sf
or

m
a-

ti
on

on
a

8x
8

p
ix

el
b
lo

ck
Y

es
Y

es
Y

es

18
lc

d
n
u
m

R
ea

d
te

n
va

lu
es

,
ou

tp
u
t

h
al

f
to

L
C

D
Y

es
Y

es

19
lm

s
L

M
S

ad
ap

ti
ve

si
gn

al
en

-
h
an

ce
m

en
t

T
h
e

in
p
u
t

si
gn

al
is

a
si

n
e

w
av

e
w

it
h

ad
d
ed

w
h
it

e
n
oi

se

Y
es

Y
es

Y
es

Y
es

20
lu

d
cm

p
L

U
d
ec

om
p

os
it

io
n

al
go

-
ri

th
m

Y
es

Y
es

Y
es

Y
es

21
m

at
m

u
lt

M
at

ri
x

m
u
lt

ip
li
ca

ti
on

of
tw

o
20

x
20

m
at

ri
ce

s
Y

es
Y

es
Y

es
Y

es

22
m

in
ve

r
In

ve
rs

io
n

of
fl
oa

ti
n
g

p
oi

n
t

m
at

ri
x

Y
es

Y
es

Y
es

Y
es

Y
es

22

T
ab

le
2.

3:
L

is
t

C
of

M
al

ar
d
al

en
B

en
ch

m
ar

k
s

[2
]

N
o.

B
en

ch
m

ar
k

D
es

cr
ip

ti
on

S
L

N
A

B
R

U
F

23
n
d
es

C
om

p
le

x
em

b
ed

d
ed

co
d
e

Y
es

Y
es

Y
es

24
n
s

S
ea

rc
h

in
a

m
u
lt

i-
d
im

en
si

on
al

ar
ra

y
Y

es
Y

es
Y

es

25
n
si

ch
n
eu

S
im

u
la

te
an

ex
te

n
d
ed

P
et

ri
N

et
Y

es

26
p
ri

m
e

C
al

cu
la

te
s

w
h
et

h
er

n
u
m

-
b

er
s

ar
e

p
ri

m
e

Y
es

Y
es

27
q
so

rt
-e

x
am

N
on

-r
ec

u
rs

iv
e

ve
rs

io
n

of
q
u
ic

k
so

rt
al

go
ri

th
m

Y
es

Y
es

Y
es

Y
es

28
q
u
rt

R
o
ot

co
m

p
u
ta

ti
on

of
q
u
ad

ra
ti

c
eq

u
at

io
n
s

Y
es

Y
es

Y
es

Y
es

29
se

le
ct

A
fu

n
ct

io
n

to
se

le
ct

th
e

N
th

la
rg

es
t

n
u
m

b
er

in
a

fl
oa

ti
n
g

p
oi

n
t

ar
ra

y

Y
es

Y
es

Y
es

Y
es

30
st

S
ta

ti
st

ic
s

p
ro

gr
am

Y
es

Y
es

Y
es

31
st

at
em

at
e

A
u
to

m
at

ic
al

ly
ge

n
er

at
ed

co
d
e

Y
es

32
u
d

C
al

cu
la

ti
on

of
m

at
ri

x
es

Y
es

Y
es

Y
es

23

As we can see from these Tables 2.1, 2.2, and 2.3, there are 31 benchmarks. Also,

these Tables 2.1, 2.2, and 2.3 have columns are denoted as: S, L, N, A, B, R, U, and

F. Each letter of these columns means a specific software characteristic as follows:

S: always a single path program.

L: Contains loops.

N: Contains nested loops.

A: uses arrays and/or matrices.

B: uses bit operation.

R: contains recursion.

U: contains unstructured code.

F: uses floating-point calculation.

Usually, a program for a real-time system would have more than one software charac-

teristic. However, there are programs that just require a loop, which is just one software

characteristic. These programs that just require a loop, for example, an adaptive pulse

code modulation algorithm, simulate an extended Petri Net, and automatically generated

code.

2.4 Summary

In this chapter, we have evaluated these cycle accurate architectural simulators: Sim-

pleScalar, MARSS, and GEM5, and we have evaluated these benchmarks: Drystone,

SPEC CPU2000, and Malardalen. After we decided on GEM5 and Malardlen bench-

marks to cover the scope of the research, we have covered the simulator configurations

and evaluated the software characteristic sets.

24

CHAPTER 3

Our Approach

In the previous chapters, we covered the hardware configurations and the common soft-

ware characteristics, so in this chapter the implementation of research platform is dis-

cussed. The research platform is an automated test engine that is able to run and manage

the needed experiments for supporting the research hypothesis.

3.1 The Automated Test Engine

There are three main elements in the automated test engine, which are:

1. Utilizing cycle accurate architecture simulator (GEM5)

2. Using benchmarks with different software characteristics (Malardalen)

3. Using robust regression (execution time estimation)

In this section, we are integrating each elements to the automated test engine, and

we are enhancing the needed parts for having a tight integration.

3.1.1 Integrating GEM5

To integrate GEM5 to the automated test engine, we need to enhance the gray boxes

that are shown in Figure 3.1, which are the topic of this subsection.

Making GEM5 Integrable

We already have developed in appendix A, a python script to control GEM5 hardware

parameters and run a specific program on the hardware, but it lacks a command-line

interface. Each configurable hardware parameter for the selected design architecture

must be configured manually in the source code. For example, if a developer wants to

25

Figure 3.1: The Building-blocks of Enhanced Simulator

have 10 different hardware designs to compare, the developer needs to configure GEM5

code in appendix A by hands 10 times.

Human error plays a big role in this approach due to the fact that each experiments

are run in different times, so it is easy for the researcher to get out of track from the

current conducted experiment and the next potential ones.

GEM5 needs to be configured dynamically which means through the command-line

interface. Human errors can make the results of regression algorithms to be inaccurate,

so the automated test engine must manage the needed functionalities without human

interventions. These enhancements are coded in the source code in appendix C, and the

explanations of the code are also provided in appendix C.

The developer does not need to modify this source code for different hardware ar-

chitectures or running different software characteristics. The command-line arguments

are able to create different hardware architectures or running different software charac-

teristics through the command-line and not through the source code. Therefore, GEM5

source code in appendix C can be automated.

26

To clarify the dynamic command-line configuration method, suppose we want to run

the multithreaded hello world that we have developed in appendix B. The used machine

needs to have 4 cores with 3GHz each. Its memory hierarchy as follows: cache block size

is 256MB, stack is 128MB, main memory size is 0.5GB, TDMA bus slot is 4, L2 size is

8MB, L2 associativity is 8, DL1 size is 8KB, IL1 size is 8KB, and L1 latency is 9 cycle.

The command to create this system is the following.

1 gem5 . opt −−outd i r=/home/alshamlan/Desktop/WCET Regression/ raw gem5 data/ −−

s t a t s− f i l e =1 experment /home/alshamlan/Desktop/WCET Regression/

gem5 exper imenta l eng ine . py −−num cpus 4 −−c l o ck 3GHz −−cmd /home/

alshamlan/gem5/ t e s t s / t e s t−progs / h e l l o / bin /x86/ l i nux / h e l l o −−b l o c k s i z e

256 −−Proce s s S tackS i z e 128MB −−phy latency 40ns −−Addr Range 512MB −−

bu s s l o t 4 −− l 2 s i z e=8MB −− l 2 a s s o c 8 −− l 2 h i t l a t e n c y 90 −−l 2 mshrs

110 −−l 2 t g t s p e r msh r 14 −− l 2 w r i t e b u f f e r s 10 −− l 1 d s i z e 8kB −−

l 1 i s i z e 8kB −− i l 1 a s s o c 1 −− i l 1 h i t l a t e n c y 9 −−i l 1 msh r s 2 −−

i l 1 t g t s p e r m sh r 11 −−d l 1 a s s o c 4

Listing 3.1: The Enhanced Simulator

Further explanations of this experiment configurations are the following. First, we

have a program is a multithreading program which would utilize more than one core.

Second, the hardware configurations have been set up as the example states. Third, the

output result would output to specific name which we define. If each experiment does

not have a unique name, the simulator would overwrite the output result every time.

Therefore, the automated test engine must give every runnable potential experiment a

unique name to prevent result overwriting.

Summarizing the essential elements to make GEM5 integrable to the automated test

engine, which are:

1. A program utilizes the hardware

2. The hardware can be configured dynamically without adjusting the source code

27

Figure 3.2: The Building-blocks of Software Characteristics

3.1.2 Integrating Malardalen Benchmarks

To incorporate Malardlen benchmarks to the automated test engine Figure 3.2 shows

the needed building-blocks. The gray boxes that are shown in Figure 3.2 are the topic

of this subsection.

The automated test engine uses the benchmarks in Tables 2.1, 2.2, and 2.3 for com-

paring a sheer number of different software characteristics that are running in different

hardware architectures.

We want to see dynamic programming, migration of real-time tasks, and memory

management in a lower level of abstractions. The lower level of abstraction is much

more overwhelming to analyze. We can bypass this problem with tight integration to the

automated test engine. What Malardalen benchmarks offer, a method of knowing what

are the software characteristics in each specific benchmark. The automated test engine

can know what software characteristics are running in what hardware architecture. If

the automated test engine knows the name of the benchmark and the hardware config-

urations of the used hardware architecture, then the automated test engine can sort the

overwhelming data through the regression algorithms.

28

For integrating the automated test engine to the Malardalen benchmarks, we simply

need to develop a lookup table to allow the automated test engine to extract the relevant

information to the regression algorithms.

Software Characteristic Lookup Table

The lookup table does not need to be sophisticated, the lookup table is a list type

that is implemented in Python, and a string, which is the benchmark name, is used

for indexing. In other words, we can use the name of the benchmark to map it to the

software characteristics.

To simplify the lookup table, we categorize benchmarks in their software characteris-

tics as shown in Table 3.1.

29

Table 3.1: Prototyping An Automated Engine Lookup Table

S L N A B R U F Benchmark(s)

Yes adpcm, nsichneu, statemate

Yes Yes bs

Yes Yes Yes cnt, compress, fir, insertsort, ns, select

Yes Yes Cover, fibcall, Prime

Yes Yes Yes Yes Crc, fdct

Yes Yes Yes duff

Yes Yes Yes Yes Yes edn

Yes Yes Yes expint, janne complex, ud

Yes Yes Yes fac

Yes Yes Yes Yes Yes fft1, minver

Yes Yes Yes jfdctint

Yes Yes icdnum

Yes Yes Yes Yes lms, qurt

Yes Yes Yes Yes ludcmp, qsort exam

Yes Yes Yes Yes matmult

Yes Yes Yes ndes

By knowing the categories for these benchmarks, we can make each category to be a

set and the benchmark name is the element of that set. For further simplification, suppose

each set to be denoted to its corresponding software characteristics. For example, these

benchmark fft1 and minver have the same software characteristics, which are: S for

always a single path-program, L for containing loops, N for containing nested loops, A

for using array and/or matrices, and F for using floating-point calculations. We can

group these two benchmarks to the same software characteristic set, and let the set to

be denoted as follows: SLNAF.

30

This method can simplify the implementation of the automated test engine. The

indexing to each set would be through a loop, and the software characteristics would be

gathered from the lookup table. The lookup table that would be used for the automated

engine is shown in Table 3.2.

Table 3.2: The Automated Engine Lookup Table

Set:= {Element(s)}

L:= {adpcm, nsichneu, statemate}

LA:= {bs}

LNA:= {cnt, compress, fir, insertsort, ns, select}

SL:= {Cover, fibcall, Prime}

SLAB:= {fdct}

SLU:= {duff}

SLNAB:= {edn}

SLN:= {expint, ud}

SLR:= {fac}

SLNAF:= {fft1, minver}

SLA:= {jfdctint}

LB:= {icdnum}

SLAF:= {qurt}

LNAF:= {ludcmp, qsort exam}

SLNA:= {matmult}

LAB:= {ndes}

3.1.3 Integrating The Regression Algorithms

After execution times are obtained in our simulation environment, we resort to regression

algorithm to capture the relationship between the execution times and hardware config-

31

Figure 3.3: The Building-blocks of Regression Algorithms

urations. We integrate regression algorithms into our automated test engine, as the gray

boxes are shown in Figure 3.3.

Robust Regression Algorithm

The robust regression algorithm approach is a solution to identify the relationship be-

tween the execution time and different hardware architecture configurations. The tem-

plate equation of execution time estimation T(M,I,C,F,B,S2,A, S1) is the following:

T (M, I, C, F,B, S2, A, S1) = c0 ·M + c1 · I + c2 · C

+c3 · F + c4 ·B + c5 · S2 + c6 · A+ c7 · S1

These are the input parameters:

M: Memory access

I: Number of instructions that the executable has

C: Number of cores in the system

32

F: The frequency of the system including the processor speed

B: Number of slots in TDMA bus

S2: The size of shared L2 cache

A: L2 Associativity

S1: The size of L1 cache

The purpose of robust regression algorithm is to find the c0, · · · , c7 coefficients of

the execution time estimation T(M,I,C,F,B,S2,A, S1). These c0, · · · , c7 coefficients

capture the relationship and thus develop an efficient way to rapidly estimate the program

execution time under different hardware architecture configurations.

To improve the estimation accuracy, we classify programs with software characteristics

to be different categories and develop the estimation models for each category separately.

Table 3.2 shows these software characteristic categories.

The robust regression algorithms are integrated in the automated test engine because

the robust regression algorithms can be used to detect outliers. The robust regression

provides resistant and stable results in the presence of outliers, and the used tool to

analyze the sparsity and consistency is l1 − norm regularized regression [15, 17]. The

equation of robust regression problem with the uncertainty set for the l1 − norm regu-

larized regression problem is the following [15]:

min
β∈Rm

{‖y −Xβ‖2 +
m∑
i=1

ci |βi|}

Where y is the independent variable T(M,I,C,F,B,S2,A, S1), or the set of admis-

sible disturbances of the observed matrix X, which is the dependent variables. The ith

is the iterator, β is the estimator. The estimator βi is a fixed constant for each itera-

tion runtime. m is the number of the conducted experiments, and ci is the sought-out

coefficients.

Robust estimators should be resistant to a certain degree of data contamination [23].

An acceptable robust estimator needs the robust regression algorithms to iterate more

33

than once to minimize the error [15, 44]. The iterations are performed through a program-

ming language, in this research we are using Python. There is a function in statsmodels

library called RM() [4], which uses the l1 − norm regularized regression.

Statsmodels library is a Python module that is used for the following: estimating

several different statistical models, conducting statistical tests, and statistical data ex-

ploration. The code for the regression algorithms is shown in appendix F with further

explanations.

Simplified Example to Illustrate The Robust Regression Approach

The following example is simplified to show the reader the use of robust regression.

Suppose we want to understand the relationship between execution time T and CPU

frequency F , where the execution time T is the dependent variable and CPU frequency

F is the independent variable. The other hardware and software configurations are

constant for the sake of simplicity. Therefore, the execution time slop is T = β̂1 + β̂2F .

We have conducted four experiments as Table 3.3 shows where the number of exper-

iments is an arbitrary number.

Table 3.3: Simplified Example to Illustrate The Robust Regression Approach

Experiment Fi Ti T̂i T̃i

1 4 GHz 0.696 1.464 -0.841

2 3 GHz 2.007 2.2 1.622

3 2 GHz 4.285 2.935 6.985

4 1 GHz 4.631 3.670 6.553

T̂i is for each points had been moved vertically further from the regression line of β̂.

β̂ is the estimator for the specific iteration, which in fact this example is dedicated to

explain. Also, T̃ is the fitted value T̂i summed with the residual ri = Ti − T̂i.

We need to assume that the robust regression has iterated upto N − 2, and we are

34

going to find the end result of the robust regression, which is N − 1 of N iterations.

Hence, N is an arbitrary number for how many iterations to minimize the estimation

errors of the robust regression.

Because we are in the N − 2 iteration, the estimator is given as follows β̂N−2 =0.729

0.735

 by using the Python code in appendix F. The vertical distance from the line

to each observation in the original sample is its residual ri = Ti − T̂i = Ti − (β̂1 + β̂2F).

Since the N − 2 iteration responses have simply been moved further from the estima-

tion error given by β̂N−2 =

0.729

0.735

. By using the sample (Fi, T̃i) of the N−2 iteration,

we can have the N − 1 estimator, which is β̂N−1 =

−1.962

1.888

. This iteration has fewer

errors, the verification method is discussed in the next chapter.

3.1.4 Implementation of The Automated Test Engine

The simulator, software characteristic lookup table, and regression algorithms have been

enhanced in order to make all of them able to share resources. To this point, all of

these building-blocks cannot communicate to each other, so we need to implement the

automated test engine, which allows them to exchange.

Figure 3.4 shows the needed building-blocks for connecting the simulator, benchmark

lookup table, and the regression algorithms. The gray boxes that are shown in Figure 3.3

are incorporated into the source code of the automated test engine. The source code of

the automated test engine is shown in appendix G with further implementation details.

3.2 Summary

In this chapter, we have enhanced and used GEM5, Malardlen benchmarks, and regres-

sion algorithms to cover the scope of the research. We started with an example then

35

Figure 3.4: The Building-blocks of The Developed Automated Test Engine

we adjusted it to be compatible with other research building-blocks. After we have im-

plemented the missing building-blocks of the automated test engine, we were able to

integrate all of them into the automated test engine.

The automated test engine uses regression algorithms to derive the coefficients of the

execution time estimation algorithms. The regression algorithms use the simulator out-

put, but we want to categorize each benchmark in their software characteristics in order

to increase the accuracy of execution time estimation. The method that we developed is

a lookup table for the automated test engine to sort out the used benchmark in regards

to their software characteristics.

36

CHAPTER 4

Experiments and Result Analysis

In chapter 4, we discuss the experiments we conducted and present the analytical formula

we obtained through regression algorithm for estimating execution time of program in

each category. We then present our validation efforts and results.

4.1 Using The Automated Test Engine

This section utilizes the automated test engine towards the research and shows the exe-

cution time estimation algorithms that are derived from the automated test engine. The

implementation of the automated test engine has been discussed in chapter 3 and the

source code is shown in the appendices.

4.1.1 Experiments

The needed parameters for running the automated test engine are already defined in the

automated engine source code, so the only missing step is running the automated test

engine. The command that runs the automated engine is shown below.

1 python run automated te s t eng ine . py

Listing 4.1: Running The Automated Engine

This command is simple, but it is capable of preforming 357, 120 experiments, sorting

their results, and deriving the regression algorithm for each set. The only element that

is needed is for the user to wait for the automated test engine to finish and for the

execution time estimation algorithms to be provided. The automated test engine took

a month for conducting the 357, 120 experiments, then a week for the execution time

estimation algorithms to be provided from the regression algorithms.

The automated test engine keeps all the data processing phases, so the raw data,

the extracted data, and the sorted software characteristic sets are stored for debugging

37

and backup purposes. These files will not be deleted by the automated test engine. For

example, the conducted 357, 120 experiments use 50Gbytes from the hard disk.

4.1.2 Experiment Results

After the automated test engine finishes, one of its outputs is a file that contains the co-

efficients for each software characteristic set. These coefficients are used in the execution

time estimation algorithms as shown in the next page.

From the execution time estimation algorithms, we can see that each equation cor-

responds to a specific software characteristic set, such as L, LNA, and LNAF. Each

equation estimates the execution time for different hardware parameters which are rep-

resented in the equation as variables, such as M, A, and B. Each letter has already

been defined, but they are mentioned here again to help the reader. These are the input

parameters:

M: Memory access

I: Number of instructions that the program has

C: Number of cores in the system

F: The frequency of the system including the processor speed

B: Number of slots in TDMA bus

S2: The size of shared L2 cache

A: L2 Associativity

S1: The size of L1 cache

38

T
=

    (8
.4
·1

0
−
1
0
)
·M

+
(2
.2
·1

0
−
1
0
)
·I

+
(−

2
.8
·1

0
−
5
)
·C

+
(−

6
.4
5
·1

0
−
5
)
·F

+
(−

2
.5
·1

0
−
7
)
·B

+
(−

2
.3
·1

0
−
6
)
·S

2
+

(−
9
.7
·1

0
−
7
)
·A

+
(−

2
.9
·1

0
−
7
)
·S

1
L

(2
.1
9
·1

0
−
1
0
)
·M

+
(−

7
.5
2
·1

0
−
8
)
·I

+
(0
.3
·1

0
−
3
)
·C

+
(−

1
.6
3
·1

0
−
5
)
·F

+
(1
.2
·1

0
−
7
)
·B

+
(−

5
.1
5
·1

0
−
7
)
·S

2
+

(1
.1
·1

0
−
8
)
·A

+
(1
.4
8
·1

0
−
8
)
·S

1
L

A

(7
.6
7
·1

0
−
1
0
)
·M

+
(1
.4
6
·1

0
−
8
)
·I

+
(−

1
.3
·1

0
−
3
)
·C

+
(−

6
.3
1
·1

0
−
5
)
·F

+
(2
.9
·1

0
−
7
)
·B

+
(−

1
.8
·1

0
−
6
)
·S

2
+

(5
.7
·1

0
−
8
)
·A

+
(−

2
.0
4
·1

0
−
8
)
·S

1
L

A
B

(2
.2
·1

0
−
1
0
)
·M

+
(−

4
.3
·1

0
−
8
)
·I

+
(0
.2
·1

0
−
3
)
·C

+
(−

1
.6
3
·1

0
−
5
)
·F

+
(1
.6
·1

0
−
7
)
·B

+
(−

5
.1
·1

0
−
7
)
·S

2
+

(1
.5
·1

0
−
8
)
·A

+
(−

3
.7
·1

0
−
8
)
·S

1
L

B

(2
.8
·1

0
−
1
0
)
·M

+
(3
.0
7
·1

0
−
1
0
)
·I

+
(−

7
.6
·1

0
−
6
)
·C

+
(−

2
.1
·1

0
−
5
)
·F

+
(1
.6
·1

0
−
7
)
·B

+
(−

6
.6
·1

0
−
7
)
·S

2
+

(1
.1
·1

0
−
8
)
·A

+
(−

4
.9
·1

0
−
8
)
·S

1
L

N
A

(2
.5
·1

0
−
1
0
)
·M

+
(1
.9
·1

0
−
1
0
)
·I

+
(−

4
.5
·1

0
−
6
)
·C

+
(−

1
.9
·1

0
−
5
)
·F

+
(1
.4
5
·1

0
−
7
)
·B

+
(−

5
.9
·1

0
−
7
)
·S

2
+

(1
.4
3
·1

0
−
8
)
·A

+
(−

7
.7
·1

0
−
8
)
·S

1
L

N
A

F

(2
.6
·1

0
−
1
0
)
·M

+
(−

3
.6
·1

0
−
8
)
·I

+
(0
.3
·1

0
−
3
)
·C

+
(−

1
.9
6
·1

0
−
5
)
·F

+
(1
.7
·1

0
−
7
)
·B

+
(−

6
.1
5
·1

0
−
7
)
·S

2
+

(2
.2
·1

0
−
8
)
·A

+
(−

7
.0
4
·1

0
−
8
)
·S

1
S

L
A

(3
.5
·1

0
−
1
0
)
·M

+
(3
.2
·1

0
−
1
0
)
·I

+
(−

1
.1
·1

0
−
5
)
·C

+
(−

2
.6
7
·1

0
−
5
)
·F

+
(1
.5
9
·1

0
−
7
)
·B

+
(−

8
.3
6
·1

0
−
7
)
·S

2
+

(2
.4
4
·1

0
−
8
)
·A

+
(−

4
.9
7
·1

0
−
8
)
·S

1
S

L
A

B

(1
.3
6
·1

0
−
9
)
·M

+
(2
.0
5
·1

0
−
1
0
)
·I

+
(−

5
.9
·1

0
−
5
)
·C

+
(−

0
.1
·1

0
−
3
)
·F

+
(2
.9
·1

0
−
7
)
·B

+
(−

3
.2
·1

0
−
6
)
·S

2
+

(9
.4
6
·1

0
−
8
)
·A

+
(−

7
.2
8
·1

0
−
8
)
·S

1
S

L
A

F

(2
.4
7
·1

0
−
1
0
)
·M

+
(1
.6
·1

0
−
1
0
)
·I

+
(−

4
.4
·1

0
−
6
)
·C

+
(−

1
.8
·1

0
−
5
)
·F

+
(−

1
.3
·1

0
−
7
)
·B

+
(−

5
.8
·1

0
−
7
)
·S

2
+

(1
.5
9
·1

0
−
8
)
·A

+
(−

4
.3
·1

0
−
8
)
·S

1
S

L

(1
.3
9
·1

0
−
9
)
·M

+
(−

2
.6
·1

0
−
7
)
·I

+
(8
9
.8
·1

0
−
3
)
·C

+
(−

0
.1
·1

0
−
3
)
·F

+
(2
.0
4
·1

0
−
7
)
·B

+
(−

3
.2
7
·1

0
−
6
)
·S

2
+

(6
.2
·1

0
−
8
)
·A

+
(−

1
.5
·1

0
−
6
)
·S

1
S

L
N

A

(8
.1
·1

0
−
1
0
)
·M

+
(5
.1
·1

0
−
8
)
·I

+
(−

5
.7
·1

0
−
3
)
·C

+
(−

6
.7
·1

0
−
5
)
·F

+
(2
.3
·1

0
−
7
)
·B

+
(−

1
.9
·1

0
−
6
)
·S

2
+

(8
.4
·1

0
−
8
)
·A

+
(−

4
.7
·1

0
−
8
)
·S

1
S

L
N

A
B

(2
.4
9
·1

0
−
1
0
)
·M

+
(3
.5
8
·1

0
−
1
0
)
·I

+
(−

5
.5
·1

0
−
6
)
·C

+
(−

1
.8
9
·1

0
−
5
)
·F

+
(1
.6
8
·1

0
−
7
)
·B

+
(−

5
.8
·1

0
−
7
)
·S

2
+

(1
.8
5
·1

0
−
8
)
·A

+
(−

7
.8
·1

0
−
8
)
·S

1
S

L
N

A
F

(2
.3
·1

0
−
1
0
)
·M

+
(2
.8
7
·1

0
−
1
0
)
·I

+
(−

4
.8
4
·1

0
−
6
)
·C

+
(−

1
.7
5
·1

0
−
5
)
·F

+
(1
.6
8
·1

0
−
7
)
·B

+
(−

5
.4
7
·1

0
−
7
)
·S

2
+

(1
.6
·1

0
−
8
)
·A

+
(−

4
·1

0
−
8
)
·S

1
S

L
N

(2
.1
9
·1

0
−
1
0
)
·M

+
(−

4
.0
8
·1

0
−
8
)
·I

+
(0
.2
·1

0
−
3
)
·C

+
(−

1
.6
·1

0
−
5
)
·F

+
(1
.5
6
·1

0
−
7
)
·B

+
(−

5
.1
·1

0
−
7
)
·S

2
+

(1
.6
7
·1

0
−
8
)
·A

+
(−

5
.6
·1

0
−
8
)
·S

1
S

L
R

(2
.2
·1

0
−
1
0
)
·M

+
(6
.9
4
·1

0
−
8
)
·I

+
(−

0
.4
·1

0
−
3
)
·C

+
(−

1
.6
8
·1

0
−
5
)
·F

+
(1
.7
·1

0
−
7
)
·B

+
(−

5
.2
·1

0
−
7
)
·S

2
+

(1
.2
6
·1

0
−
8
)
·A

+
(−

4
.0
8
·1

0
−
8
)
·S

1
S

L
U

39

The left-side of the equations is the dependent variable, which is the execution time.

The execution time estimation algorithms that are shown in the previous page use T as

the execution time. However, there is a better mathematical notation to represent the

execution time, as shown below:

T ≡ T (M, I, C, F,B, S2, A, S1)

The reason for not showing the better mathematical notation with the execution time

estimation algorithms is because the algorithms we developed are long, so if we include

this T (M, I, C, F,B, S2, A, S1), then part of the algorithms would not show on the page.

Therefore, there was a need to remove part of the algorithm notation and make sure all

the equation terms are shown. We are going to use T (M, I, C, F,B, S2, A, S1) instead of

T.

4.1.3 Valid Experiment Results

Unfortunately, the used validation method for execution time estimation does not support

all the equations because the used validation method has a restriction on the sample

number of benchmarks. Table 3.2, which is the lookup table of the automated test

engine, shows that LA, SLU, SLNAB, SLR, SLA, LB, SLNA, SLAB, and LAB

sets have just one benchmark in their set.

We need at least two benchmarks that have similar software characteristics to do the

used validation method for the derived execution time estimation. Because these bench-

marks are adopted from Malardalen benchmarks, this is out of our control. Therefore,

the used validation method uses software characteristic sets that have more than one

benchmark, which are the following software characteristic sets: L, LNA, LNAF, SL,

SLNAF. The selected software characteristic equations for validations are shown in the

next page.

40

T
=

                      (8
.4
·1

0
−
1
0
)
·M

+
(2
.2
·1

0
−
1
0
)
·I

+
(−

2
.8
·1

0
−
5
)
·C

+
(−

6
.4
5
·1

0
−
5
)
·F

+
(−

2
.5
·1

0
−
7
)
·B

+
(−

2
.3
·1

0
−
6
)
·S

2
+

(−
9
.7
·1

0
−
7
)
·A

+
(−

2
.9
·1

0
−
7
)
·S

1
L

(2
.8
·1

0
−
1
0
)
·M

+
(3
.0
7
·1

0
−
1
0
)
·I

+
(−

7
.6
·1

0
−
6
)
·C

+
(−

2
.1
·1

0
−
5
)
·F

+
(1
.6
·1

0
−
7
)
·B

+
(−

6
.6
·1

0
−
7
)
·S

2
+

(1
.1
·1

0
−
8
)
·A

+
(−

4
.9
·1

0
−
8
)
·S

1
L

N
A

(2
.5
·1

0
−
1
0
)
·M

+
(1
.9
·1

0
−
1
0
)
·I

+
(−

4
.5
·1

0
−
6
)
·C

+
(−

1
.9
·1

0
−
5
)
·F

+
(1
.4
5
·1

0
−
7
)
·B

+
(−

5
.9
·1

0
−
7
)
·S

2
+

(1
.4
3
·1

0
−
8
)
·A

+
(−

7
.7
·1

0
−
8
)
·S

1
L

N
A

F

(2
.4
7
·1

0
−
1
0
)
·M

+
(1
.6
·1

0
−
1
0
)
·I

+
(−

4
.4
·1

0
−
6
)
·C

+
(−

1
.8
·1

0
−
5
)
·F

+
(−

1
.3
·1

0
−
7
)
·B

+
(−

5
.8
·1

0
−
7
)
·S

2
+

(1
.5
9
·1

0
−
8
)
·A

+
(−

4
.3
·1

0
−
8
)
·S

1
S

L

(2
.4
9
·1

0
−
1
0
)
·M

+
(3
.5
8
·1

0
−
1
0
)
·I

+
(−

5
.5
·1

0
−
6
)
·C

+
(−

1
.8
9
·1

0
−
5
)
·F

+
(1
.6
8
·1

0
−
7
)
·B

+
(−

5
.8
·1

0
−
7
)
·S

2
+

(1
.8
5
·1

0
−
8
)
·A

+
(−

7
.8
·1

0
−
8
)
·S

1
S

L
N

A
F

41

4.2 Accuracy Validation for Execution Time Estimation

In this section, we examine the accuracy of the execution time estimation algorithms,

so we are plotting the fitted model for each software characteristic set. The x-axis of

the plot is the estimated execution time, and the y-axis is the conducted execution time.

The purpose of this plot is to show the accuracy and precision for each execution time

estimation algorithm.

In addition to the error plot for each software characteristic set, we are also examining

these aspects, which are the minimal percentage error, the maximal percentage error, the

average (mean) percentage error, and the variance of each software characteristic set.

4.2.1 Accuracy Evaluation for L

The equation of L to estimate the execution time is shown as follows:

T (M, I, C, F,B, S2, A, S1) = (8.4 · 10−10) ·M + (2.2 · 10−10) · I

+(−2.8 · 10−5) · C + (−6.45 · 10−5) · F + (−2.5 · 10−7) ·B

+(−2.3 · 10−6) · S2 + (−9.7 · 10−7) · A+ (−2.9 · 10−7) · S1

We used both training data and non-training data accuracy validation methods for

the equation of L.

Accuracy Validation for The Training Data

The fitted model error plot is shown in Figure 4.1. The minimal percentage error, the

maximal percentage error, the average (mean) percentage error, and the variance of each

software characteristic set are shown in Table 4.1.

42

Figure 4.1: The Error Plot of L Set for The Training Data

Table 4.1: L Execution Time Estimation for The Training Data

Name Value

Minimal Estimated Error 0.008%

Maximal Estimated Error 3.68%

Average Estimated Error 0.93%

Variance Between Errors 1.1 · 10−4

Accuracy Validation for The Non-training Data

We conducted further 2400 experiments that were not used in the training data. We

have introduced these two new configurations S2= 4MB and A= 2 − way. The fitted

model error plot is shown in Figure 4.2. The minimal percentage error, the maximal

percentage error, the average (mean) percentage error, and the variance of each software

characteristic set are shown in Table 4.2.

43

Figure 4.2: The Error Plot of L Set for The Non-training Data

Table 4.2: L Execution Time Estimation for The Non-training Data

Name Value

Minimal Estimated Error 1.84%

Maximal Estimated Error 11.73%

Average Estimated Error 6.25%

Variance Between Errors 7.16 · 10−4

The below Table 4.3 shows five conducted experiments that are not from the training

data.

44

Table 4.3: Non-training Data Error Evaluation of L

Experiment Benchmark C F B Conducted Time Measured Time

1 nsichneu 4 1.5 10 0.000154 0.0001554056

2 adpcm 5 2 4 0.000313 0.0003277014

3 adpcm 5 2 10 0.000314 0.0003283083

4 statemate 3 3.5 10 0.000032 3.13395822E-005

5 nsichneu 2 3 9 0.000089 8.45587339E-005

Note: the storage is fixed for all the experiments in Table 4.3, which are: S2= 8MB,

A= 4− way, and S1=8KB.

4.2.2 Accuracy Evaluation for LNA

The equation of LNA to estimate the execution time is shown as follows:

T (M, I, C, F,B, S2, A, S1) = (2.8 · 10−10) ·M + (3.07 · 10−10) · I

+(−7.6 · 10−6) · C + (−2.1 · 10−5) · F + (1.6 · 10−7) ·B

+(−6.6 · 10−7) · S2 + (1.1 · 10−8) · A+ (−4.9 · 10−8) · S1

We used both training data and non-training data accuracy validation methods for

the equation of LNA.

Accuracy Validation for The Training Data

The fitted model error plot is shown in Figure 4.3. The minimal percentage error, the

maximal percentage error, the average (mean) percentage error, and the variance of each

software characteristic set are shown in Table 4.4.

45

Figure 4.3: The Error Plot of LNA Set

Table 4.4: LNA Execution Time Estimation for The Training Data

Name Value

Minimal Estimated Error 0.0%

Maximal Estimated Error 3.74%

Average Estimated Error 1.89%

Variance Between Errors 1.207 · 10−4

Accuracy Validation for The Non-training Data

We conducted further 2400 experiments that were not used in the training data. We

have introduced these two new configurations S2= 4MB and A= 2 − way. The fitted

model error plot is shown in Figure 4.4. The minimal percentage error, the maximal

percentage error, the average (mean) percentage error, and the variance of each software

characteristic set are shown in Table 4.5.

46

Figure 4.4: The Error Plot of LNA Set for The Non-training Data

Table 4.5: LNA Execution Time Estimation for The Non-training Data

Name Value

Minimal Estimated Error 2.03%

Maximal Estimated Error 7.84%

Average Estimated Error 4.22%

Variance Between Errors 6.56 · 10−4

The below Table 4.6 shows five conducted experiments that are not from the training

data.

47

Table 4.6: Non-training Data Error Evaluation of LNA

Experiment Benchmark C F B Conducted Time Measured Time

1 fir 7 1.5 10 0.0007 0.0007097631

2 insertsort 3 1 1 0.000071 7.23161185E-005

3 ns 6 1 8 0.000102 0.000099184

4 cnt 5 3 2 0.000033 0.000031853

5 cnt 3 1 1 0.000079 7.62453377E-005

Note: the storage is fixed for all the experiments in Table 4.6, which are: S2= 4MB,

A= 4− way, and S1=8KB.

4.2.3 Accuracy Evaluation for LNAF

The equation of LNAF to estimate the execution time is shown as follows:

T (M, I, C, F,B, S2, A, S1) = (2.5 · 10−10) ·M + (1.9 · 10−10) · I

+(−4.5 · 10−6) · C + (−1.9 · 10−5) · F + (1.45 · 10−7) ·B

+(−5.9 · 10−7) · S2 + (1.43 · 10−8) · A+ (−7.7 · 10−8) · S1

We used both training data and non-training data accuracy validation methods for

the equation of LNAF.

Accuracy Validation for The Training Data

The fitted model error plot is shown in Figure 4.5. The minimal percentage error, the

maximal percentage error, the average (mean) percentage error, and the variance of each

software characteristic set are shown in Table 4.7.

48

Figure 4.5: The Error Plot of LNAF Set

Table 4.7: LNAF Execution Time Estimation for The Training Data

Name Value

Minimal Estimated Error 0.0%

Maximal Estimated Error 3.33%

Average Estimated Error 1.56%

Variance Between Errors 8.76266 · 10−5

Accuracy Validation for The Non-training Data

We conducted further 2400 experiments that were not used in the training data. We

have introduced these two new configurations S2= 4MB and A= 2 − way. The fitted

model error plot is shown in Figure 4.6. The minimal percentage error, the maximal

percentage error, the average (mean) percentage error, and the variance of each software

characteristic set are shown in Table 4.8.

49

Figure 4.6: The Error Plot of LNAF Set for The Non-training Data

Table 4.8: LNAF Execution Time Estimation for The Non-training Data

Name Value

Minimal Estimated Error 8.09%

Maximal Estimated Error 14.61%

Average Estimated Error 11.50%

Variance Between Errors 5.52 · 10−4

The below Table 4.9 shows five conducted experiments that are not from the training

data.

50

Table 4.9: Non-training Data Error Evaluation of LNAF

Experiment Benchmark C F B Conducted Time Measured Time

1 qsort-exam 6 1.5 1 0.000054 5.82381438E-005

2 qsort-exam 5 3 3 0.000032 3.05091654E-005

3 qsort-exam 2 3 9 0.000032 3.26237378E-005

4 ludcmp 2 1.5 5 0.000059 6.22609006E-005

5 qsort-exam 6 2.5 4 0.000037 3.96525438E-005

Note: the storage is fixed for all the experiments in Table 4.9, which are: S2= 16MB,

A= 8− way, and S1=16KB.

4.2.4 Accuracy Evaluation for SL

The equation of SL to estimate the execution time is shown as follows:

T (M, I, C, F,B, S2, A, S1) = (2.47 · 10−10) ·M + (1.6 · 10−10) · I

+(−4.4 · 10−6) · C + (−1.8 · 10−5) · F + (−1.3 · 10−7) ·B

+(−5.8 · 10−7) · S2 + (1.59 · 10−8) · A+ (−4.3 · 10−8) · S1

We used both training data and non-training data accuracy validation methods for

the equation of SL.

Accuracy Validation for The Training Data

The fitted model error plot is shown in Figure 4.7. The minimal percentage error, the

maximal percentage error, the average (mean) percentage error, and the variance of each

software characteristic set are shown in Table 4.10.

51

Figure 4.7: The Error Plot of SL Set

Table 4.10: SL Execution Time Estimation for The Training Data

Name Value

Minimal Estimated Error 0.0%

Maximal Estimated Error 2.98%

Average Estimated Error 1.51%

Variance Between Errors 7.2522824 · 10−5

Accuracy Validation for The Non-training Data

We conducted further 2400 experiments that were not used in the training data. We

have introduced these two new configurations S2= 4MB and A= 2 − way. The fitted

model error plot is shown in Figure 4.8. The minimal percentage error, the maximal

percentage error, the average (mean) percentage error, and the variance of each software

characteristic set are shown in Table 4.11.

52

Figure 4.8: The Error Plot of SL Set for The Non-training Data

Table 4.11: SL Execution Time Estimation for The Non-training Data

Name Value

Minimal Estimated Error 0.00%

Maximal Estimated Error 9.47%

Average Estimated Error 4.47%

Variance Between Errors 1.21 · 10−4

The below Table 4.12 shows five conducted experiments that are not from the training

data.

53

Table 4.12: Non-training Data Error Evaluation of SL

Experiment Benchmark C F B Conducted Time Measured Time

1 prime 2 1.5 10 0.000067 6.48865942E-005

2 cover 4 2 9 0.00005 5.21151374E-005

3 fibcall 3 3 2 0.00003 3.25455584E-005

4 prime 5 3 5 0.000038 3.9819649E-005

5 cover 4 2.5 1 0.000041 4.20661374E-005

Note: the storage is fixed for all the experiments in table 4.12, which are: S2=

16MB, A= 8− way, and S1=8KB.

4.2.5 Accuracy Evaluation for SLNAF

The equation of SLNAF to estimate the execution time is shown as follows:

T (M, I, C, F,B, S2, A, S1) = (2.49 · 10−10) ·M + (3.58 · 10−10) · I

+(−5.5 · 10−6) · C + (−1.89 · 10−5) · F + (1.68 · 10−7) ·B

+(−5.8 · 10−7) · S2 + (1.85 · 10−8) · A+ (−7.8 · 10−8) · S1

We used both training data and non-training data accuracy validation methods for

the equation of SLNAF.

Accuracy Validation for The Training Data

The fitted model error plot is shown in Figure 4.9. The minimal percentage error, the

maximal percentage error, the average (mean) percentage error, and the variance of each

software characteristic set are shown in Table 4.13.

54

Figure 4.9: The Error Plot of SLNAF Set

Table 4.13: SLNAF Execution Time Estimation for The Training Data

Name Value

Minimal Estimated Error 0.0%

Maximal Estimated Error 3.34%

Average Estimated Error 1.04%

Variance Between Errors 8.60414 · 10−5

Accuracy Validation for The Non-training Data

We conducted further 2400 experiments that were not used in the training data. We

have introduced these two new configurations S2= 4MB and A= 2 − way. The fitted

model error plot is shown in Figure 4.10. The minimal percentage error, the maximal

percentage error, the average (mean) percentage error, and the variance of each software

characteristic set are shown in Table 4.14.

55

Figure 4.10: The Error Plot of SLNAF Set for The Non-training Data

Table 4.14: SLNAF Execution Time Estimation for The Non-training Data

Name Value

Minimal Estimated Error 8.06%

Maximal Estimated Error 14.90%

Average Estimated Error 10.27%

Variance Between Errors 3.15 · 10−4

The below Table 4.15 shows five conducted experiments that are not from the training

data.

56

Table 4.15: Non-training Data Error Evaluation of SLNAF

Experiment Benchmark C F B Conducted Time Measured Time

1 minver 6 1.5 10 0.00006 6.34795268E-005

2 fft1 6 3 7 0.000033 3.19581046E-005

3 fft1 5 1.5 9 0.000057 0.000060998

4 fft1 6 1.5 8 0.000057 6.04476998E-005

5 fft1 5 3 1 0.000033 3.13302216E-005

Note: the storage is fixed for all the experiments in Table 4.15, which are: S2=

4MB, A= 8− way, and S1=8KB.

4.3 Execution Time with A Given Hardware Architecture

In this section, we are going to write a program and estimate the execution time of that

program. In fact, the execution time estimation algorithms that we have developed are

created to accomplish this objective. For the sake of simplicity, we are going to assume

that we are given a hardware architecture and a program. Our task is to estimate the

execution time.

Suppose the given hardware is 4 cores, as shown in Figure 4.11. The hardware

parameters for the design of Figure 4.11 are as follows:

C: 4

F: 2GHz

B: 2 slots

S2: 4MB

A: 4-way associativity

S1: 8kB

57

Figure 4.11: Given Hardware Architecture: 4 Cores System

The program that we are using calculates a factorial of a given number. Because we

are just focusing on the software characteristics, we are not including IO delays in the

given program. That means printf() function is not used because in a Linux system,

everything is a file, so the input of the keyboard is stored in a file. That is why printf()

is not used. The program source code is shown below.

1 /∗

2 program de s c r i p t i o n : c a l c u l a t e s a f a c t o r i a l o f a g iven number us ing

i t e r a t i o n

3 ∗/

4

5 #de f i n e MAX 5

6

7 i n t main () /∗ main () doesn ’ t have argument (s) , which means a s i n g l e path∗/

8 {

9 i n t i , num=i=MAX;

10 /∗ we have a loop ∗/

11 whi le (−− i)

12 num ∗= i ;

13 re turn num;

14 }

Listing 4.2: Calculating A Factorial of A Given Number

58

By analyzing the program-flow, there are two distinctive software characteristics,

which has loop and single-path. The given program is categorized into a SL software

characteristic set. The used equation of estimating execution time of a SL software

characteristic set is shown below.

T (M, I, C, F,B, S2, A, S1) = (2.47 · 10−10) ·M + (1.6 · 10−10) · I

+(−4.4 · 10−6) · C + (−1.8 · 10−5) · F + (−1.3 · 10−7) ·B

+(−5.8 · 10−7) · S2 + (1.59 · 10−8) · A+ (−4.3 · 10−8) · S1

We already know what equation we need to use to estimate the execution time of the

given program, and we know these parameters’ values: C= 4, F= 2GHz, B= 2 slots,

S2= 4MB, A= 4-way associativity, and S1= 8kB.

The execution time, T(M,I,C,F,B,S2,A, S1), is missing two parameters, which are

the memory access (M) and the number of instructions (I). These two parameters have

a strong relation and depend on the complier optimization. There are several methods

to measure the number of instructions (I), such as reading how many lines there are in

the disassembler output. On the other hand, to calculate the values of memory access

(M), we need to evaluate the memory instruction of the disassembler output.

We used GEM5 to have the number of instructions (I) and memory access (M) as

follows:

M: 369920 bytes

I: 14107 instructions

Because we have all the needed parameters for execution time, T(M,I,C,F,B,S2,A,

S1), the estimated execution time is shown as follows:

59

T (M, I, C, F,B, S2, A, S1) = T (369920, 14107, 4, 2, 2, 4, 4, 8) = (2.19 · 10−10) · 369920

+(−4.08 · 10−8) · 14107 + (0.2 · 10−3) · 4 + (−1.6 · 10−5) · 2 + (1.56 · 10−7) · 2

+(−5.1 · 10−7) · 4 + (1.67 · 10−8) · 4 + (−5.6 · 10−8) · 8 = 4.60144248E − ·10−5

According to the the execution time estimation algorithms for a SL software char-

acteristic set, the estimated time for the given program running in the given hardware,

is 3.7607525 · 10−5 seconds. Table 4.17 shows the comparison between the estimated

execution time and the conducted execution time.

Table 4.16: Comparison 1

Type Value

Estimated Execution Time 3.7607525 · 10−5

Conducted Execution Time 0.000039

The error percentage of the estimated and conducted execution time is calculated as

follows:

error =
|Testimated − Tconducted|

Tconducted
· 100% = 3.57%

The error is 3.57% for the estimation algorithm, which is very close to the actual

conducted execution time result. The reason for this low error estimation percentage is

because all the cores are running the same given program. In fact, running the same

program in all the cores does not allow the memory access to change significantly.

We still want to use the given program, which calculates a factorial of a given number.

The other cores are going to run these benchmarks, which are: matmult, prime, and

statemate. Table 4.17 shows each core is mapped to a program.

60

Table 4.17: Mapping Each Executable To A Corresponding Core

Core Name Executable Name

C0 The given executable (factorial)

C1 matmult

C2 prime

C3 statamate

We are just estimating the given program execution time, and not estimating the

execution time for matmult, prime, and statamate. The hardware parameters and the

software parameters are the same as before, which are: C= 4, F= 2GHz, B= 2 slots,

S2= 4MB, A= 4-way associativity, S1= 8kB, M= 369920 bytes, and I= 17872. That

would give the same execution time estimation as before, which is T(M,I,C,F,B,S2,A,

S1) = 3.7607525·10−5. Table 4.18 shows the comparison between the estimated execution

time and the conducted execution time for each core running a different program.

Table 4.18: Comparison 2

Type Value

Estimated Execution Time 3.7607525 · 10−5

Conducted Execution Time 0.0000426

The error percentage of the estimated and conducted execution time is calculated as

follows:

error =
|Testimated − Tconducted|

Tconducted
· 100% = 11.72%

The error is 11.72% for the estimation algorithm, which is very close to the actual

conducted execution time result. The reason of this error is because the unpredictability

of resource sharing, mainly the bus contention.

61

4.4 Summary

We implemented our automated test engine and employed it to 357, 120 experiments ef-

fectively. With these experimental results, we used robust regression algorithm to capture

the relationship between execution times and computer architecture configurations. We

then conducted extensive studies to further validate our approach. Through our experi-

mental study, we found that the used validation method needs at least two benchmarks

of the same software characteristics, but we also found that Malardalen has software

characteristic sets that just have one benchmark in their set. The software characteristic

sets that have more than a benchmark in their set, which are L, LNA, LNAF, SL,

and SLNAF worked effectively in the validation tests. After we have examined their

accuracy, we used them in an example to show the potential of the developed execution

time estimation algorithms.

62

CHAPTER 5

Conclusions

The execution time is very important for computer system designs, especially for real-time

systems. In fact, the accuracy of execution time estimation is significant for guaranteeing

real-time system deadlines. For example, medical and avionic applications cannot fail to

meet a specific deadline because they would have catastrophic consequences, such as loss

of life or plane crash [21, 19]. Meeting all their deadlines is a must, failure to do so will

result in severe consequences.

Significant research on execution time estimation has been conducted for programs

running on single-core architectures. However, according to Wilhelm’s Survey, the tradi-

tional execution time estimation suffers from computational cost, which comes from the

difficulty of estimating the execution time for a given architecture, and model inflexibility,

when applying the execution time estimation model in a different hardware architecture

which commonly losses its effectiveness [40].

Our goal is deriving execution time estimation model that has fewer computations

and better hardware architecture flexibility. We believe that there is a close relation-

ship between the execution time and architecture features, and regression algorithm can

accurately capture this relationship. Therefore, our approach is the following:

1. Develop a simulation platform and environment to facilitate the benchmark profil-

ing and result analysis;

2. To improve the accuracy, we classify software characteristics into different sub-

categories;

3. Use robust regression algorithm to capture the execution time and hardware archi-

tecture configurations relationship;

4. Test effectiveness of the proposed approach.

63

We have evaluated the accuracy and precision for these L, LNA, LNAF, SL, and

SLNAF execution time estimations that we developed from the automated test engine.

The evaluation results are promising for estimating a program’s execution time. The

worst error that we have was less than 11.72%. Also, we found that the used validation

method for execution time estimation does not support all the equations because the used

validation method has a restriction on the sample number of benchmarks. As a result,

we could not validate the memory access (M) and number of instructions (I) that have

a significant variance with these sets: LA, SLU, SLNAB, SLR, SLA, LB, SLNA,

SLAB, and LAB, because the adopted Malardalen’s benchmarks just have one bench-

mark in these sets. We have to test all the execution time estimation dependent variables;

therefore, we need at least two benchmarks that have similar software characteristics to

do the used validation method.

The verified execution time estimations L, LNA, LNAF, SL, and SLNAF are shown

again in this section.

64

T
=

                      (8
.4
·1

0
−
1
0
)
·M

+
(2
.2
·1

0
−
1
0
)
·I

+
(−

2
.8
·1

0
−
5
)
·C

+
(−

6
.4
5
·1

0
−
5
)
·F

+
(−

2
.5
·1

0
−
7
)
·B

+
(−

2
.3
·1

0
−
6
)
·S

2
+

(−
9
.7
·1

0
−
7
)
·A

+
(−

2
.9
·1

0
−
7
)
·S

1
L

(2
.8
·1

0
−
1
0
)
·M

+
(3
.0
7
·1

0
−
1
0
)
·I

+
(−

7
.6
·1

0
−
6
)
·C

+
(−

2
.1
·1

0
−
5
)
·F

+
(1
.6
·1

0
−
7
)
·B

+
(−

6
.6
·1

0
−
7
)
·S

2
+

(1
.1
·1

0
−
8
)
·A

+
(−

4
.9
·1

0
−
8
)
·S

1
L

N
A

(2
.5
·1

0
−
1
0
)
·M

+
(1
.9
·1

0
−
1
0
)
·I

+
(−

4
.5
·1

0
−
6
)
·C

+
(−

1
.9
·1

0
−
5
)
·F

+
(1
.4
5
·1

0
−
7
)
·B

+
(−

5
.9
·1

0
−
7
)
·S

2
+

(1
.4
3
·1

0
−
8
)
·A

+
(−

7
.7
·1

0
−
8
)
·S

1
L

N
A

F

(2
.4
7
·1

0
−
1
0
)
·M

+
(1
.6
·1

0
−
1
0
)
·I

+
(−

4
.4
·1

0
−
6
)
·C

+
(−

1
.8
·1

0
−
5
)
·F

+
(−

1
.3
·1

0
−
7
)
·B

+
(−

5
.8
·1

0
−
7
)
·S

2
+

(1
.5
9
·1

0
−
8
)
·A

+
(−

4
.3
·1

0
−
8
)
·S

1
S

L

(2
.4
9
·1

0
−
1
0
)
·M

+
(3
.5
8
·1

0
−
1
0
)
·I

+
(−

5
.5
·1

0
−
6
)
·C

+
(−

1
.8
9
·1

0
−
5
)
·F

+
(1
.6
8
·1

0
−
7
)
·B

+
(−

5
.8
·1

0
−
7
)
·S

2
+

(1
.8
5
·1

0
−
8
)
·A

+
(−

7
.8
·1

0
−
8
)
·S

1
S

L
N

A
F

65

REFERENCES

[1] gem5. page www.gem5.org.

[2] Mlardalen wcet benchmark. page http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.

[3] Simplescalar llc. page http://www.simplescalar.com/.

[4] Statsmodels. page http://statsmodels.sourceforge.net/.

[5] M. Abd-El-Barr and H. El-Rewini. Fundamentals of computer organization and
architecture. pages 107 – 187, 2010.

[6] T. Austin, E. Larson, and D. Ernst. Simple scalar: an infrastructure for computer
system modeling. IEEE computer society, 35, 2002.

[7] G. Bernat, A. Colin, and S. Petters. Wcet analysis of probabilistic hard real-time
systems. RTSS, 2002.

[8] G. Binkert, N. Reinhardt, K, and Saidi. Processor and system-on-chip simulation.
IEEE, 5, 2010.

[9] N. Binkert and B. Beckmann. The gem5 simulator. ACM SIGARCH Computer
Architecture, 39, 2011.

[10] A. Bivens. Architectural design for next generation heterogeneous memory systems.
IEEE International Memory Workshop, pages 1 – 4, 2010.

[11] A. Bivens. Architectural design for next generation heterogeneous memory systems.
IEEE International Memory Workshop, 53:1 4, 2010.

[12] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-
level power analysis and optimization. ISCA, 6, 2000.

[13] P. Burgio, M. Ruggiero, and F. Esposito. Adaptive tdma bus allocation and elastic
scheduling: A unified approach for enhancing robustness in multi-core rt systems.
IEEE, page 187 191, 2010.

[14] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli. Accuracy evaluation of gem5 sim-
ulator system. Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC),
2012 7th International Workshop on, pages 1 – 7, 2012.

[15] X. Caramanis and S. Mannor. Robust regression and lasso. IEEE Transactions on
Information, page 35613574, 2010.

[16] T. Chantem, S. Hu, and R. Dick. Temperature-aware scheduling and assignment for
hard real-time applications on mpsocs. IEEE TRANSACTIONS ON VERY LARGE
SCALE INTEGRATION (VLSI) SYSTEMS, 19(10):2 5, 2011.

[17] C. Chen. Robust regression and outlier detection with the robustreg procedure.
SUGI 27, pages 265 – 270, 2010.

66

[18] P. Crowley and J. Baer. Worst-case execution time estimation for hardware-assisted
multithreaded processors. IEEE, 2005.

[19] R. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor
systems. ACM Computing Surveys (CSUR), 43(35):32 37, 2011.

[20] D. Ghosh, J. Sheehy, K. K. Thorup, and S. Vinoski. Programming language im-
pact on the development of distributed systems. Journal of Internet Services and
Applications, 3(1):25 – 29, 2012.

[21] Y. Gu and D. Jin. Drop test simulation and doe analysis for design optimization of
micro-electronics packages. IEEE Electronic Components and Technology Confer-
ence, page 6, 2006.

[22] G. Hellestrand. The engineering of supersystems. IEEE Computer, 38:103 – 105,
2005.

[23] P. Hollanda and R. Welschb. Robust regression using iteratively reweighted least-
squares. 6(9):813 – 827, 2007.

[24] M. Hsieh, K. Pedretti, and J. Meng. Sst + gem5 = a scalable simulation infras-
tructure for high performance computing. SIMUTOOLS ’12 Proceedings of the 5th
International ICST Conference on Simulation Tools and Techniques, pages 196–201,
2012.

[25] C. L. Janssen, H. Adalsteinsson, and S. Cranford. A simulator for large-scale paral-
lel computer architectures. ACM SIGARCH Computer Architecture News archive,
1(2):15 – 16, 2010.

[26] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-time tasks on
multi-core processors. IEEE Real-Time Systems Symposium, 31:3 8, 2010.

[27] M. E. Latoschik and H. Tramberend. Simulator x: A scalable and concurrent archi-
tecture for intelligent realtime interactive systems. IEEE Virtual Reality Conference
(VR), pages 171 – 174, 2011.

[28] Y. Li and S. Malik. Performance analysis of embedded software using implicit path
enumeration. DAC, pages 456 – 461, 1995.

[29] H. Lv, Y. Cheng, Y. Xiaoxi, G. Xiaotong, and Z. Weihua. P-gas: Parallelizing
a cycle-accurate event-driven many-core processor simulator using parallel discrete
event simulation. PADS ’10 Proceedings of the 2010 IEEE Workshop on Principles
of Advanced and Distributed Simulation, pages 94 – 96, 2010.

[30] C. McGrath, K. Ahmed, and P. Conway. The amd opteron processor for multipro-
cessor servers. IEEE Micro 23, 2:66 76, 2003.

[31] J. Mogul, A. Baumann, and T. Roscoe. Mind the gap: reconnecting architecture and
os research. HotOS’13 Proceedings of the 13th USENIX conference on Hot topics in
operating systems, 2011.

67

[32] R. Parasuraman and D. Manzey. Complacency and bias in human use of automation:
An attentional integration. IEEE, page 7 8, 2010.

[33] A. Patel, F. Afram, S. Chen, and K. Ghose. Marssx86: A full system simulator for
x86 cpus. DAC’11, 2, 2011.

[34] R. Pellizzoni and L. Sha. Coscheduling of cpu and i/o transactions in cots-based
embedded systems. Proceedings of the 2008 Real-Time Systems Symposium, RTSS
’08, 2008.

[35] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle accurate memory
system simulator. IEEE COMPUTER ARCHITECTURE LETTERS, 10(1):18 21,
2011.

[36] H. Shah and A. Raabe. Challenges of wcet analysis in cots multi-core due to diferent
levels of abstraction. IEEE, 2013.

[37] D. Staiculescu, N. Bushyager, A. Obatoyinbo, L. Martin, and M. Tentzeris. De-
sign and optimization of 3-d compact stripline and microstrip bluetooth/wlan balun
architectures using the design of experiments technique. IEEE Trans. Antennas
Propag, 53(5):18051812, 2005.

[38] S. Thesing, J. Souyris, and R. Heckmann. An abstract interpretation-base timing
validation avionics software systems. DNS, pages 625 – 632, 2003.

[39] M. Thuresson, M. Sjlander, and M. Bjrk. Flexcore: Utilizing exposed datapath
control for efficient computing. IEEE: Journal of Signal Processing Systems, 57(1):7
11, 2009.

[40] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, and
J. Staschulat. The worst-case execution time problem overview of methods and
survey of tools. 2008.

[41] W. Wolf. High performance embedded computing. San Francisco: Morgan Kauf-
mann, (3), 2001.

[42] Y. Xiaoxi, G. Xiaotong, and Z. Weihua. Analysis and comparison of a few architec-
ture simulator acceleration technologies. IEEE, 2011.

[43] K. Yang, Y. Fu, X. Han, and J. Jiang. Efficient broadcast scheme based on sub-
network partition for many-core cmps on gem5 simulator. Computer Engineering
and Technology Communications in Computer and Information Science, 337:163 –
172, 2012.

[44] W. Yang and H. Xu. A unified robust regression model for lasso-like algorithms.
IEEE Transactions on Information, page 35613574, 2013.

68

[45] H. Zeng, M. Yourst, and K. Ghose. Mptlsim: a cycle-accurate, full-system simulator
for x86-64 multicore architectures with coherent caches. ACM SIGARCH Computer
Architecture News archive, 37(2):4 – 9, 2009.

[46] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy efficient main
memory using phase change memory technology. In Proceedings of the ISCA 2009,
pages 14 – 23, 2009.

69

	Florida International University
	FIU Digital Commons
	3-21-2014

	A Regression Approach to Execution Time Estimation for Programs Running on Multicore Systems
	Mohammad Alshamlan
	Recommended Citation

	A Regression Approach to Execution Time Estimation for Programs Runningon Multicore Systems

